Identifizierung und Klonierung von HEFL, einem neuen Interaktionspartner von Bcr-Abl

Thomas Will

Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktors der Medizin

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. D. Neumeier
Prüfer der Dissertation:
1. Univ.-Prof. Dr. J.G. Duyster
2. Univ.-Prof. Dr. F. Fend

Die Dissertation wurde am 19. 10. 2005 bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 29. 03. 2006 angenommen.
Meinen Eltern in Dankbarkeit gewidmet
Inhaltsverzeichnis

1. **Einleitung** .. 1
 1.1 *Allgemeine Einführung* ... 1
2. **Signaltransduktion** .. 3
 1.2.1 *Protein-Tyrosinkinasen* .. 3
 1.2.1.1 *Onkogene Tyrosinkinasen* .. 4
 1.2.2 *Adaptor-Proteine* .. 5
3. **Bcr-Abl und seine Rolle bei der chronisch myeloischen Leukämie** 6
 1.3.1 *Die chronisch myeloische Leukämie* ... 6
 1.3.1.1 *Klinischer Verlauf und diagnostische Befunde* .. 7
 1.3.1.2 *Therapie* .. 9
 1.3.2 *c-Abl* .. 11
 1.3.3 *Bcr-Abl* .. 14
4. **Aufgabenstellung** .. 18

2. **Material** .. 20
 2.1 *Chemikalien und Biochemikalien* ... 20
 2.2 *Enzyme* ... 21
 2.3 *Radiochemikalien* ... 22
 2.4 *Zellinien* ... 22
 2.5 *Bakterienstämme* ... 22
 2.6 *Vektoren* ... 23
 2.7 *Antikörper* ... 23
 2.8 *Molekularbiologische Kits* ... 23
 2.9 *Molekulargewichtsmarker für Proteine und Nukleinsäuren* 24
 2.10 *DNA-Konstrukte* .. 24
 2.11 *Standard-Geräte* ... 24
 2.12 *Kulturmedien, Lösungen Puffer* ... 26

3. **Methoden** .. 30
 3.1 *Arbeiten mit Nukleinsäuren* ... 30
 3.1.1 *Spaltung von DNA mit Restriktionsenzymen* .. 30
 3.1.2 *Dephosphorylierung von Plasmid-DNA* .. 30
 3.1.3 *Agarosegelelektrophorese* .. 30
| 3.1.4 | Isolierung von DNA-Fragmenten aus Agarosegelen | 31 |
| 3.1.5 | Ligation von DNA | 31 |
| 3.1.6 | Polymerase-Ketten-Reaktion (polymerase chain reaction, PCR) | 32 |
| 3.1.6.1 | PCR-Mutagenese | 32 |
| 3.1.7 | Isolierung von Plasmid-DNA aus einer Bakterienkultur | 35 |
| 3.1.8 | Bestimmung der Nukleinsäurekonzentration | 35 |
| 3.1.9 | RACE (Rapid amplification of cDNA ends) | 36 |
| 3.1.10 | Northern Blot | 40 |
| 3.2 | Arbeiten mit dem Bakterium Escherichia coli | 40 |
| 3.2.1 | Kulturmedien | 40 |
| 3.2.2 | Hitzeschock-Transformation von Bakterien | 41 |
| 3.2.3 | Induktion von rekombinantem GST-Fusionsprotein in E. coli | 41 |
| 3.2.4 | Isolierung von rekombinantem GST-Fusionprotein aus E. coli | 42 |
| 3.3 | Arbeiten mit eukaryoten Zellinien | 43 |
| 3.3.1 | Kultivierung von Zellinien | 43 |
| 3.3.2 | Bestimmung von Zellzahl und Zellvitalität | 44 |
| 3.3.3 | Transiente Transfektion von adhärenten Zellen | 44 |
| 3.4 | Arbeiten mit Proteinen | 45 |
| 3.4.1 | SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE) | 45 |
| 3.4.2 | Coomassiefärbung von Polyacrylamid-Gelen | 46 |
| 3.4.3 | Western Blot | 46 |
| 3.4.4 | Amidoschwarz-Färbung von transferierten Proteinen | 48 |
| 3.4.5 | Immunpräzipitation | 47 |
| 3.4.6 | Bindungsassay mit GST-Fusionsprotein | 48 |
| 3.4.7 | Generierung eines polyklonalen Antikörpers | 49 |
| 3.5 | Das Yeast-Two-Hybrid-System | 50 |
| 3.5.1 | Funktionsprinzip und Arbeitsschema | 50 |
| 3.5.2 | Verwendeter Hefestamm, cDNA-Bibliothek und Plasmide | 51 |
| 3.5.3 | Amplifikation der cDNA-Bibliothek | 52 |
| 3.5.4 | Herstellung und Transformation von kompetenten Hefen | 52 |
| 3.5.5 | Kotransformation | 52 |
| 3.5.6 | Isolierung von DNA aus Hefen | 53 |
| 3.5.7 | Transformation von DNA in E. coli | 53 |
| 3.5.8 | Rücktransformation von DNA in Hefen | 53 |

4. **Ergebnisse**

4.1 **Identifikation von F6/HEFL als Interaktionspartner von Bcr-Abl mittels des Yeast-Two-Hybrid-Systems**
4.2	**Klonierung der kompletten cDNA von F6/HEFL**	56
4.2.1	3'-RACE erbringt das Stop-Codon einer kleineren Splicevariante von HEFL	56
4.2.2	Sequenzanalytik des 3'-Endes des ursprünglich in Hefe identifizierter Klons F6/HEFL erbringt das Stop-Codon der größeren Splicevariante von HEFL	57
4.2.3	Bestimmung des Start-Codons von F6/HEFL durch 5'-RACE	58
4.2.4	HEFL besitzt eine interne EcoR1-Restriktionsstelle	59
4.3	**Charakterisierung von F6/HEFL auf mRNA- und Proteinebene**	61
4.3.1	Ein Northern Blot zeigt eine vornehmliche Expression von HEFL in peripheren Blut-Leukozyten und Milz	61
4.3.2	Aminosäuresequenz und Domänenstruktur des HEFL-Proteins	62
4.3.3	Ein polyklonaler Kaninchen-Antikörper gegen die SH3-Domäne von HEFL erkennt und präzipitiert ein 105 KD großes Protein	64
4.4	**Untersuchung der Protein-Interaktion zwischen F6/HEFL und Bcr-Abl**	67
4.4.1	F6/HEFL interagiert mit Bcr-Abl im humanen Zellysat (semi-in-vivo)	67
4.4.2	In-vivo-Koimmunpräzipitationsstudie von HEFL mit Bcr-Abl im Cos1-Zellsystem	68
4.5	**Bedeutung der HEFL-SH3-Domäne für die Interaktion von HEFL und Bcr-Abl**.	70
4.5.1	Die Interaktion von HEFL und Bcr-Abl scheint über Bindung der HEFL-SH3-Domäne an ein Poly-Prolin-Motiv im C-terminalen Segment des Abl-Teils von Bcr-Abl vermittelt	70
4.5.2	Die HEFL-SH3-Domäne ist nicht alleine für die Interaktion mit Bcr-Abl verantwortlich	72
4.6	Die Interaktion von HEFL mit Bcr-Abl (Wt) führt zur Phosphorylierung von HEFL	74

5. **Diskussion** | 76 |
| 5.1 | Klonierung des HEFL-Gens | 76 |
| 5.2 | HEFL hat die Domänenstruktur eines Multi-Adaptor-Proteins der Cas-Protein-Familie | 79 |
| 5.3 | Charakterisierung der Interaktion von HEFL mit Bcr-Abl | 81 |
| 5.4 | HEFL scheint in den Integrinsignalweg involviert zu sein | 84 |

6. **Zusammenfassung** | 85 |

7. **Literaturverzeichnis** | 87 |
8. Abbildungsverzeichnis ... 101

9. Danksagung ... 103
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>alpha/anti</td>
</tr>
<tr>
<td>Δ</td>
<td>delta/Deletion</td>
</tr>
<tr>
<td>μ</td>
<td>Mikro (-gramm, -liter, -mol)</td>
</tr>
<tr>
<td>Abb.</td>
<td>Abbildung</td>
</tr>
<tr>
<td>Ac</td>
<td>Acetat</td>
</tr>
<tr>
<td>ALL</td>
<td>akute lymphatische Leukämie</td>
</tr>
<tr>
<td>Amp</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>APS</td>
<td>Ammoniumpersulfat</td>
</tr>
<tr>
<td>AS</td>
<td>Aminosäuren(n)</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosintriphosphat</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>Bcr</td>
<td>breakpoint cluster region</td>
</tr>
<tr>
<td>BSA</td>
<td>bovines Serumalbumin</td>
</tr>
<tr>
<td>C</td>
<td>Celsius</td>
</tr>
<tr>
<td>c-Abl</td>
<td>zelluläre Form des Abelson-Gens</td>
</tr>
<tr>
<td>CBL</td>
<td>casitas B-lineage lymphoma protein</td>
</tr>
<tr>
<td>cDNA</td>
<td>komplementäre (complementary) DNA</td>
</tr>
<tr>
<td>CIAP</td>
<td>alkalische Phosphatase aus Kalbsdarm (calf intestinal alkaline phosphatase)</td>
</tr>
<tr>
<td>CML</td>
<td>chronisch myeloische Leukämie</td>
</tr>
<tr>
<td>CRKL</td>
<td>Crk oncogene-like protein</td>
</tr>
<tr>
<td>C-terminal</td>
<td>carboxyterminal</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s modified Eagle’s Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>Dimethylsulfoxid</td>
</tr>
<tr>
<td>DNA</td>
<td>Desoxyribonukleinsäure</td>
</tr>
<tr>
<td>dNTP</td>
<td>2’-deoxy-Nukleosid-5’-Triphosphat</td>
</tr>
<tr>
<td>ds</td>
<td>doppelsträngig</td>
</tr>
<tr>
<td>DTT</td>
<td>1,4-Dithiotreitol</td>
</tr>
<tr>
<td>E</td>
<td>Extinktion</td>
</tr>
<tr>
<td>E. coli</td>
<td>Escherichia coli</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethyldiamintetraessigsäure</td>
</tr>
<tr>
<td>EGF</td>
<td>epidermal growth factor</td>
</tr>
<tr>
<td>EGFP</td>
<td>enhanced green fluorescent protein</td>
</tr>
<tr>
<td>EYFP</td>
<td>enhanced yellow fluorescent protein</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Erklärung</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
</tr>
<tr>
<td>et al.</td>
<td>et alii</td>
</tr>
<tr>
<td>F</td>
<td>Farad</td>
</tr>
<tr>
<td>FAK</td>
<td>focal adhesion kinase</td>
</tr>
<tr>
<td>FCS</td>
<td>fetales Kälberserum</td>
</tr>
<tr>
<td>g</td>
<td>Gramm</td>
</tr>
<tr>
<td>GAP</td>
<td>GTPase aktivierendes Protein</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>granulocyte-macrophage colony stimulating factor</td>
</tr>
<tr>
<td>GEF</td>
<td>guanine nucleotide exchange factor</td>
</tr>
<tr>
<td>Grb</td>
<td>growth factor receptor-bound protein</td>
</tr>
<tr>
<td>GST</td>
<td>Glutathion-S-Transferase</td>
</tr>
<tr>
<td>GTP</td>
<td>Guanosintriphosphat</td>
</tr>
<tr>
<td>h</td>
<td>Stunde</td>
</tr>
<tr>
<td>HCl</td>
<td>Salzsäure</td>
</tr>
<tr>
<td>HEFL</td>
<td>human enhancer of filamentation like</td>
</tr>
<tr>
<td>Hepes</td>
<td>4-(2-Hydroxyethyl)-1-piperazinethanolsulfonsäure</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin G</td>
</tr>
<tr>
<td>IFN</td>
<td>Interferon</td>
</tr>
<tr>
<td>IL-3</td>
<td>Interleukin 3</td>
</tr>
<tr>
<td>IPTG</td>
<td>Isopropyl-β-D-thiogalaytopyranosid</td>
</tr>
<tr>
<td>JAK</td>
<td>Januskinase</td>
</tr>
<tr>
<td>kb</td>
<td>Kilobase(n)</td>
</tr>
<tr>
<td>KCl</td>
<td>Kaliumchlorid</td>
</tr>
<tr>
<td>kD</td>
<td>Kilodalton</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>Kaliumdihydrogenphosphat</td>
</tr>
<tr>
<td>Kin⁻</td>
<td>kinasedefekt</td>
</tr>
<tr>
<td>Li</td>
<td>Lithium</td>
</tr>
<tr>
<td>M</td>
<td>molar</td>
</tr>
<tr>
<td>mA</td>
<td>Millampere</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>Magnesiumchlorid</td>
</tr>
<tr>
<td>min</td>
<td>Minute</td>
</tr>
<tr>
<td>MKS</td>
<td>Multiklonierungsstelle</td>
</tr>
<tr>
<td>mM</td>
<td>millimolar</td>
</tr>
<tr>
<td>mRNA</td>
<td>messenger-RNA</td>
</tr>
<tr>
<td>Mut</td>
<td>Mutante</td>
</tr>
<tr>
<td>NaCl</td>
<td>Natriumchlorid</td>
</tr>
<tr>
<td>NaOH</td>
<td>Natriumhydroxid</td>
</tr>
<tr>
<td>Na₃C₆H₅O₇</td>
<td>Trinatrium-Citrat</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Bedeutung</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
</tr>
<tr>
<td>Na$_2$HPO$_4$</td>
<td>Dinatriumhydrogenphosphat</td>
</tr>
<tr>
<td>NH$_4$Cl</td>
<td>Ammoniumchlorid</td>
</tr>
<tr>
<td>NaF</td>
<td>Natriumfluorid</td>
</tr>
<tr>
<td>NCBI</td>
<td>National Center of Biotechnological Information</td>
</tr>
<tr>
<td>ng</td>
<td>Nanogramm</td>
</tr>
<tr>
<td>N-terminal</td>
<td>aminoterminal</td>
</tr>
<tr>
<td>OD</td>
<td>optische Dichte</td>
</tr>
<tr>
<td>PAGE</td>
<td>Polyacrylamidgelelektrophorese</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reaction (Polymerase-Kettenreaktion)</td>
</tr>
<tr>
<td>PH</td>
<td>Pleckstrin-homolog</td>
</tr>
<tr>
<td>Ph1</td>
<td>Philadelphia-Chromosom</td>
</tr>
<tr>
<td>Ph*</td>
<td>Philadelphia-Chromosom positiv</td>
</tr>
<tr>
<td>PI3K</td>
<td>Phosphatidylinositol-3-Kinase</td>
</tr>
<tr>
<td>PMSF</td>
<td>Phenylmethylsulfonfluorid</td>
</tr>
<tr>
<td>PtdIns(3,4)P$_2$</td>
<td>Phosphatidylinositol-3,4-bisphophat</td>
</tr>
<tr>
<td>PtdIns(3,4,5)P$_3$</td>
<td>Phosphatidylinositol-3,4,5-triphosphat</td>
</tr>
<tr>
<td>PVDF</td>
<td>Polyvinylidinfluorid</td>
</tr>
<tr>
<td>RB</td>
<td>Retinoblastom</td>
</tr>
<tr>
<td>RNA</td>
<td>Ribonukleinsäure</td>
</tr>
<tr>
<td>rpm</td>
<td>rounds per minute</td>
</tr>
<tr>
<td>RT</td>
<td>Raumtemperatur</td>
</tr>
<tr>
<td>sec</td>
<td>Sekunde(n)</td>
</tr>
<tr>
<td>SDS</td>
<td>sodium dodecyl sulfate (Natriumdodecylsulfat)</td>
</tr>
<tr>
<td>SH</td>
<td>Src-homolog</td>
</tr>
<tr>
<td>SOS</td>
<td>son of sevenless</td>
</tr>
<tr>
<td>SHC</td>
<td>Src homology 2-containing protein</td>
</tr>
<tr>
<td>Src</td>
<td>sarcoma-kinase</td>
</tr>
<tr>
<td>STAT</td>
<td>signal transducer and activator of transcription</td>
</tr>
<tr>
<td>STI</td>
<td>signal transduction inhibitor</td>
</tr>
<tr>
<td>T(A)E</td>
<td>Tris-(Acetat-)EDTA</td>
</tr>
<tr>
<td>TEMED</td>
<td>N,N,N',N'-Tetramethylendiamin</td>
</tr>
<tr>
<td>THULL</td>
<td>Threonin, Histidin, Uracil, Leucin, Lysin</td>
</tr>
<tr>
<td>Tris</td>
<td>Tris(hydroxymethyl)aminomethan</td>
</tr>
<tr>
<td>ts</td>
<td>temperatursensitiv</td>
</tr>
<tr>
<td>U</td>
<td>unit</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolett</td>
</tr>
<tr>
<td>Abkürzung</td>
<td>Deutscher Ausdruck</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>V/V</td>
<td>Volumen pro Volumen</td>
</tr>
<tr>
<td>W(T)(t)</td>
<td>Wildtyp</td>
</tr>
<tr>
<td>z.B.</td>
<td>zum Beispiel</td>
</tr>
</tbody>
</table>
1. Einleitung

1.1 Allgemeine Einführung

1. Einleitung

Ein modifizierter *yeast two-hybrid screen* wurde daher in unserer Arbeitsgruppe etabliert, um neue Interaktionspartner von BCR-ABL zu identifizieren. Dabei wurde eine c-DNA-Bibliothek der CML-Zelllinie K562 auf Interaktion mit BCR-ABL untersucht und das Protein HEFL als ein neuer Interaktionspartner identifiziert. Die vorliegende Arbeit fokussiert sich auf die
Klonierung des HEFL-Gens und die molekulare Charakterisierung der Interaktion des HEFL-Proteins mit BCR-ABL.

1.2 Signaltransduktion

1.2.1 Protein-Tyrosinkinasen

1. Einleitung

1.2.1.1 Onkogene Tyrosinkinasen

1. Einleitung

Dimerisierung/Oligomerisierung und damit Aktivierung von (Rezeptor-)Protein-Tyrosinkinasen kommt. Häufig handelt es sich dabei um die Bildung eines Fusionsproteins aus trunkierter (Rezeptor-)Protein-Tyrosinkinase fusioniert mit Proteinsequenzen, die in der Regel typische Dimerisierungs-Motive aufweisen (Rodrigues u. Park, 1994). Beispiele sind die irregulär exprimierten, konstitutiv aktiven Tyrosinkinasen Npm-Alk beim großzelligen anaplastischen Lymphom (Morris et al., 1994) und Bcr-Abl. Das Fusionsprotein Bcr-Abl wird ursächlich für die Entstehung der CML verantwortlich gemacht und in Kapitel 1.3.3 näher charakterisiert werden (Konopka et al., 1985; Daley et al., 1990).

1.2.2 Adaptor-Proteine

1. Einleitung

in dem thrombozytären Protein Pleckstrin definiert wurde, das als Substrat für die Proteininkinase C dient (Musacchio et al., 1993). PH-Domänen binden Phospholipide wie PtdIns(3,4)P₂ und PtdIns(3,4,5)P₃ - Produkte der Phosphatidylinositol-3-Kinase (PI3Kinase) - und werden dadurch mit der Zellmembran konnektiert. Ist die genaue Bedeutung der PH-Domäne für die intrazelluläre Signaltransduktion noch unklar, scheint doch die Interaktion mit Phospholipiden eine zentrale Rolle zu spielen (Lemmon et al., 1996).

1.3 Bcr-Abl und seine Rolle bei der chronisch myeloischen Leukämie

1.3.1 Die chronisch myeloische Leukämie (CML)

1. Einleitung

Abb. 1
Zytogenetik der CML (nach Kurzrock et al., 1988; Rabbitts, 1994)
a: Reziproke Translokation des c-Abl-Gens auf Chromosom 9 und des Bcr-Gens auf Chromosom 22 mit Bildung des Philadelphia-Chromosoms.
b: Original-Gene und Fusionsgen als molekulare Konsequenz der Translokation

Dieses Protein verfügt über eine erhöhte Tyrosinkinaseaktivität mit proliferationsfördernder Wirkung, wodurch die klonale Stammzellerkrankung ausgelöst wird. Der eindeutige Beweis für einen kausalen Zusammenhang gelang im Tier-Modell mit dem Nachweis der Fähigkeit des Bcr-Abl – Onkogens, Leukämie bei Mäusen zu induzieren (Daley et al., 1990; Kelliher et al., 1990). Details zur molekularen Pathogenese werden im Rahmen der Charakterisierung des Fusionspartners c-Abl und des Bcr-Abl – Onkogens in Kapitel 1.3.2 bzw. 1.3.3 abgehandelt.

1.3.1.1 Klinischer Verlauf und diagnostische Befunde

Der Beginn der Erkrankung ist fast immer schleichend. Vom Zeitpunkt der malignen Entartung der pluripotenten Stammzelle des Knochenmarks bis zur Diagnosestellung der

Die CML zeigt klassischerweise einen Verlauf in drei Phasen (Abb. 2).

Abb. 2
Phasenhafter Verlauf der Ph⁺ - CML (nach Staib et al., 1998)
Stufenweiser Verlauf der CML. Die Länge der einzelnen Phasen differiert individuell; dabei spielen sekundäre zytogenetische und molekulare Veränderungen eine Rolle (siehe Text).

1.3.1.2 Therapie

Behandlungsbeginn mit Imatinib zu identifizieren und damit die klonale Selektion okkult vorhandener (primär) resisterter CML-Zellen zu verhindern.

Nach den Ergebnissen einer kürzlichst veröffentlichten Studie (Hughes et al., 2003) wird eine vollständige molekulare Remission allerdings auch durch Imatinib nicht erreicht und bleibt damit weiterhin der allogenischen Knochenmarkstransplantation vorbehalten, bei der die Patienten eine Aussicht auf molekulare Heilung haben (sofern sie die Behandlung überleben) und die bis dato auch die alleinige kurative Therapieform der CML darstellt. Sie ist daher vor allem bei jungen Patienten mit verfügbarem HLA-identischem Familienspender trotz hoher therapieassoziierter Mortalität (bis 30%) nach wie vor die Therapie der Wahl.

1.3.2 c-Abl

Abl aus dem Zytoplasma kommt und als Vermittler extrazellulärer Signale in den Zellkern fungierend auf diese Weise den Zellzyklus beeinflußt. In der Regulation der Kinaseaktivität wird auch der Abl-SH3-Domäne (Abb. 3, 4) eine regulierende Funktion zugeschrieben.

Abb. 3
Inhibitionsmechanismen (-) der c-Abl Tyrosinkinase (nach Wang, 1993)

Man geht davon aus, daß durch intramolekulare Bindung der SH3-Domäne an eine prolinreiche Region im C-terminalen Segment von c-Abl die Kinaseaktivität des Proteins gehemmt wird (Cis-Inhibition); alternativ wäre die Bindung eines zellulären Inhibitors an die SH3-Domäne denkbar (Trans-Inhibition) (Abb. 3) (Wang, 1993). Auch die Tatsache, daß der Austausch der SH3-Domäne durch die virale Gag-Sequenz im retroviralen v-Abl-Gen die Deregulation und konstitutive Aktivierung der Abl-Kinase bewirkt (Wang et al., 1982) sowie Deletion und Mutation der SH3-Domäne zur Kinase-Aktivierung führen (Franz et al., 1989), unterstreicht eine regulierende Funktion der Abl-SH3-Domäne für die Kinaseaktivität.

Zur komplexen Proteinstruktur von c-Abl gehören neben der zentralen Tyrosinkinase-Domäne (SH1), SH3-Domäne und prolinreicher Region noch eine SH2-Domäne sowie die C-terminale Region, die von einem einzigen Exon kodiert wird (Abb. 4). Sie weist eine DNA- und Aktin-bindende Domäne (Kipreos u. Wang, 1992; McWhirter u. Wang, 1993) sowie ein nukleäres Translokationssignal auf, das für die Lokalisation von c-Abl im Zellkern verantwortlich ist (van Etten et al., 1989). SH3- und SH2-Domäne sind charakteristisch für Moleküle, die in Signaltransduktionswege involviert sind, indem sie an der Bildung stabilier Signalmolekül-Komplexe und wie für die SH3-Domäne gezeigt auch Regulation der Protein-Funktion beteiligt sind. Insbesondere die SH2-Domäne ist essentiell für die Substratspezifität.
von c-Abl. So bindet Abl über die SH2-Domäne z.B. an Phosphotyrosin der CTD (carboxyl-terminal repeated domain) der RNA-Polymerase II und ermöglicht dadurch die prozessive Phosphorylierung der CTD. Durch Deletion oder Mutation der SH2-Domäne hingegen verliert c-Abl die Fähigkeit, seine spezifischen Substrate zu binden und damit auch seine biologische Funktion (Duyster et al., 1995). Auch für das transformierende Potential von Bcr-Abl scheint die Abl-SH2-Domäne von essentieller Bedeutung zu sein, da ein Bcr-Abl-Protein mit mutierter SH2-Domäne nicht mehr in der Lage ist, eine CML-ähnliche Erkrankung in Mäusen zu induzieren (Ilaria et al., 1998).

Eine sehr wichtige Funktion von c-Abl liegt in der Regulation des programmierten Zelltodes (Apoptose) als zelluläre Antwort auf DNA-Schädigung durch z.B. Chemotherapeutika wie Cisplatin oder ionisierende Strahlung. Diese(s) führt nach DNA-Schädigung über Aktivierung der c-Abl-Kinase zur quantitativen und funktionellen Verstärkung des Apoptose induzierenden Proteins p73, was ein funktionelles/strukturelles Homolog des Tumorsuppressor-Proteins p53 darstellt (Gong et al., 1999; Agami et al., 1999; Yuan et al., 1999). Zu den Reaktionen, die infolge DNA-Schädigung die nukleäre Abl-Kinase aktivieren, gehört die Phosphorylierung eines Serin-Restes von Abl durch die Kinase des Ataxia-Telangiectasia-Mutations-Protein (ATM) (Baskaran et al., 1997).

Die genaue biologische Funktion von c-Abl ist noch nicht völlig geklärt. Untersuchungen mit c-Abl knock-out-Mäusen zeigten Entwicklungsstörungen mit neurologischen Defekten, Lymphopenie sowie eine hohe neonatale Mortalität der Tiere (Schwartzberg et al., 1991;
1. Einleitung

1.3.3 Bcr-Abl

Bcr-Abl ist ein Fusionsgen, das infolge einer reziproken Translokation zwischen Chromosom 9 und Chromosom 22 entsteht (Kap. 1.3.1.1). Im Zuge der Translokation werden variable Sequenzen des Bcr- (breakpoint cluster region) Gens auf Chromosom 22 jeweils mit dem zweiten Exon des c-Abl-Gens von Chromosom 9 fusioniert. Die Bruchstelle auf Chromosom 9 ist dabei derart positioniert, daß nur die vom ersten Exon des Abl-Gens kodierten Sequenzen verloren gehen, so daß das chimäre Protein die Mehrheit der strukturellen/funktionellen Domänen von c-Abl (Kap. 1.3.2) einschließlich der SH3-Domäne und der nachgeschalteten Domänen enthält (Abb. 5).

Abb. 5

Schematische Darstellung der Domänenstruktur von Bcr-Abl

DD: Dimerisierungs- (bzw. Oligomerisierungs-) Domäne; DBL: DBL homologe Domäne; PH: Pleckstrin homologe Domäne; CalB: Calciumabhängige Membran-/Phospholipid-Domäne; GAP_Rac: Rac-GTPase aktivierende Domäne; SH3: Src-homologe Domäne 3; SH2: Src-homologe Domäne 2; NLS: Nukleäres Lokalisationssignal; DNA BD: DNA bindende Domäne; Actin BD: Actin bindende Domäne

Im Gegensatz dazu liegen die Bruchstellen im Bcr-Gen innerhalb von drei Regionen, der _M-bcr_ (major breakpoint cluster region), der _m-bcr_ (minor breakpoint cluster region) und der _µ-bcr_ am 3´- Ende des Bcr-Gens. Die entstehenden Hybridgene kodieren je nach Anteil der Bcr-Sequenzen in Abhängigkeit von der Lage der Bruchstelle in der _m-bcr, M-bcr_ oder _µ-bcr_ drei unterschiedliche Transkripte und deren entsprechende Proteinprodukte, die jeweils als p185, p210 und p230 bezeichnet werden (Abb. 6).

Die Fusion von Bcr-Sequenzen an das zweite Exon von Abl führt zur konstitutiven Aktivierung der Abl-Tyrosinkinase, die essentiell ist für die onkogene Wirkung von Bcr-Abl (Cortez et al., 1995; Pendergast et al., 1993). Dies wird auch durch die erfolgreiche Behandlung der CML durch die selektive Inhibition der Bcr-Abl-Tyrosinkinase mit dem Tyrosinkinaseinhibitor Imatinib verdeutlicht (Kap. 1.3.1.2) (Druker et al., 2002). Die Kinaseaktivierung resultiert aus der Bildung von Bcr-Homotetrameren vermittelt durch ein sog. „coiled coil“ – Motiv einer N-terminalen Oligomerisierungsdomäne, die von den ersten 63 Aminosäuren von Bcr gebildet wird (McWhirter et al., 1993; McWhirter u. Wang, 1991). Darüberhinaus ist eine intakte Oligomerisierungsdomäne neben der Aktivierung der Abl-

Abb. 7

Zielproteine der Bcr-Abl-Tyrosinkinase (nach Pendergast, 2001)
Dargestellt sind Interaktionspartner von Bcr-Abl wie Adaptor-Proteine, Rezeptoren, Enzyme, Transkriptionsfaktoren, Apoptose regulierende Proteine und zytoskelettale Proteine, die durch Bcr-Abl reguliert u./o phosphoryliert werden.
Im Anschluß folgt eine knappe Abhandlung der wichtigsten gegenwärtig bekannten Signalwege über die Bcr-Abl seine onkogene Wirkung entfaltet.

Ein weiterer Signalweg, der durch Bcr-Abl aktiviert wird, ist der JAK-STAT (janus kinase signal transducer and activator of transcription) - Signalweg. JAK-Kinasen spielen eine bedeutende Rolle bei der Signalübertragung durch Zytokin-Rezeptoren (Briscoe et al., 1994). Bcr-Abl induziert die Phosphorylierung und transkriptionelle Aktivierung von STAT-Transkriptionsfaktoren und imitiert damit deren physiologische Aktivierung durch Zytokine wie Interleukin 3 (IL3), was zum Wachstumsfaktor-unabhängigen Wachstum der Bcr-Abl exprimierenden Zellen führt und als ursächlicher Mechanismus für das Wachstums-Faktor-unabhängige Wachstum von CML-Zellen angesehen wird (Carlesso et al., 1996; Shuai et al., 1996).

1.4 Aufgabenstellung

Einleitung

Das Ziel der vorliegenden Arbeit war die Klonierung der kompletten cDNA des identifizierten Klons F6, die Bestimmung seiner Proteinstruktur und Gewebeexpression sowie die Charakterisierung der Interaktion mit Bcr-Abl.

2. Material

2.1 Chemikalien und Biochemikalien

<table>
<thead>
<tr>
<th>Artikel</th>
<th>Hersteller</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamid/Bisacrylamid Gel 30</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Agar</td>
<td>Difco, Detroit, USA</td>
</tr>
<tr>
<td>Agarose, Ultra Qualität</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Ammoniumpersulfat (APS)</td>
<td>Sigma-Aldrich Chemie, Deisenhofen</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Antibiotische, antymykotische Lösung</td>
<td>Gibco/BRL, Eggenstein</td>
</tr>
<tr>
<td>Aqua destillata</td>
<td>Delta-Pharma, Pfullingen</td>
</tr>
<tr>
<td>Bacto-Agar</td>
<td>Difco, Detroit, USA</td>
</tr>
<tr>
<td>Bromophenolblau</td>
<td>Sigma-Aldrich Chemie, Deisenhofen</td>
</tr>
<tr>
<td>BSA Fraktion V</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Complete™ Protease Inhibitor Cocktail</td>
<td>Boehringer, Mannheim</td>
</tr>
<tr>
<td>Coomassie Brillantblau</td>
<td>Sigma-Aldrich Chemie, Deisenhofen</td>
</tr>
<tr>
<td>dNTP Mix, 10 mM</td>
<td>Gibco/BRL, Eggenstein</td>
</tr>
<tr>
<td>DMEM, Zellmedium</td>
<td>Gibco/BRL, Eggenstein</td>
</tr>
<tr>
<td>DOTAP®, Transfektionsreagenz</td>
<td>Boehringer, Mannheim</td>
</tr>
<tr>
<td>DTT</td>
<td>Fluka, Deisenhofen</td>
</tr>
<tr>
<td>ECL-Reagenzien</td>
<td>Amersham-Buchler, Braunschweig</td>
</tr>
<tr>
<td>EDTA</td>
<td>Fluka, Deisenhofen</td>
</tr>
<tr>
<td>Essigsäure (Eisessig)</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>Ethanol, abs.</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Ethidiumbromid</td>
<td>Roth, Karlsruhe</td>
</tr>
<tr>
<td>ExpressHyb Hybridization Solution</td>
<td>Clontech, Heidelberg</td>
</tr>
<tr>
<td>FCS</td>
<td>Serva Feinbiochemica, Heidelberg</td>
</tr>
<tr>
<td>G418, Antibiotikum</td>
<td>Invitrogen, De Schelp, Niederlande</td>
</tr>
<tr>
<td>GenePorter™, Transfektionsreagenz</td>
<td>Gene Therapy Systems, (GTS), USA</td>
</tr>
<tr>
<td>Glutathion-Sepharose</td>
<td>Pharmacia Biotech, Freiburg</td>
</tr>
<tr>
<td>Glycerin</td>
<td>Fluka, Deisenhofen</td>
</tr>
<tr>
<td>Glycin</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>HCL, 1 N</td>
<td>Merck, Darmstadt</td>
</tr>
<tr>
<td>Hefeextrakt</td>
<td>Difco, Detroit, USA</td>
</tr>
<tr>
<td>HEPES, freie säure, 1 M</td>
<td>Sigma-Aldrich Chemie, Deisenhofen</td>
</tr>
<tr>
<td>IPTG</td>
<td>Sigma-Aldrich Chemie, Deisenhofen</td>
</tr>
</tbody>
</table>
2. Material

Isopropanol Merck, Darmstadt
Kaliumchlorid Merck, Darmstadt
Kanamycin Fluka, Deisenhofen
Lachssperma-DNA Sigma-Aldrich Chemie, Deisenhofen
L-Glutamin Serva Feinbiochemica, Heidelberg
Lysozym Boehringer, Mannheim
Methanol J. T. Baker, Deventer (NL)
Naphthol Blauschwarz Sigma-Aldrich Chemie, Deisenhofen
Natriumazid Sigma-Aldrich Chemie, Deisenhofen
Natriumchlorid Roth, Karlsruhe
Natriumhydrogenphosphat Merck, Darmstadt
Natriumfluorid Fluka, Deisenhofen
Natrium-Orthovanadat Sigma-Aldrich Chemie, Deisenhofen
Natriumpyrophosphat Fluka, Deisenhofen
Nonidet P 40 Fluka, Deisenhofen
PBS, 10x, steril Gibco/BRL, Eggenstein
PMSF Boehringer, Mannheim
Protein A-Sepharose CL-4B Pharmacia Biotech, Freiburg
Rnasin, Ribonuklease Inhibitor Promega, Heidelberg
RPMI 1640 Medium ohne Glutamin Seromed, Berlin
Salzsäure, rauchend Merck, Darmstadt
SDS Fluka, Deisenhofen
Skim Milk Powder Fluka, Deisenhofen
Superfect, Transfektionsreagenz Quiagen, Heidelberg
SuperSignal® Chemiluminescent Substrate Pierce, Rockford, USA
TEMED Fluka, Deisenhofen
Tris Sigma-Aldrich Chemie, Deisenhofen
Triton X-100 Sigma-Aldrich Chemie, Deisenhofen
Trypanblau, 0,5%-ige Lösung, 10-fach Gibco/BRL, Eggenstein
Trypsin-EDTA-Lösung, 10-fach Gibco/BRL, Eggenstein
Tryptone Difco, Augsburg
Tween 20 Fluka, Deisenhofen
Zeozin®, Antibiotikum Invitrogen, De Schelp, Niederlande

2.2 Enzyme

CIAP, 20-30 U/µl Gibco/BRL, Eggenstein
DNA Polymerasel Large Fragment (Klenow) Promega, Heidelberg
2. Material

Pfu-DNA Polymerase
Stratagene, Heidelberg

Restriktionsendonukleasen
Boehringer, Gibco/BRL, New England Biolabs, Stratagene

T4-DNA Ligase
Boehringer, Mannheim

T7-DNA Polymerase
Stratagene, Heidelberg

2.3 Radiochemikalien

32P-ATP
Amersham, Braunschweig

2.4 Zellinien

Adhärente Zellen:

293-Zellen
humane Nierenkarzinom-Zell-Linie

Cos-1
Nierenzellen (african green monkey)

Suspensionszellen:

BaF3
murine pro-B-Zell-Linie

K-562
humane CML-Zellen der Blastenkrise

M-07e
humane Zelllinie bei akuter megakaryoblastischer Leukämie

2.5 Prokaryotische und eukaryotische Zellstämme

Epicurian Coli™ XL1-Blue Supercompetent Cells
Stratagene, Heidelberg

Escherichia Coli DH5α
Gibco/BRL, Eggenstein

Saccharomyces cerevisiae-Stamm Y 190
Clontech laboratories, Heidelberg

Top10F’ One Shot™ Chemically Competent cells
Invitrogen, Groningen, Niederlande

2.6 Vektoren
2. Material

<table>
<thead>
<tr>
<th>Name</th>
<th>Resistenzen</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bluescript</td>
<td>Ampicillin, Puromycin</td>
<td>Invitrogen, Leek, Niederlande</td>
</tr>
<tr>
<td>pAKT2</td>
<td>Ampicillin</td>
<td>Clontech, Palo Alto, USA</td>
</tr>
<tr>
<td>PCDNA 3.1</td>
<td>Ampicillin, Neomycin</td>
<td>Invitrogen, Leek, Niederlande</td>
</tr>
<tr>
<td>PCDNA 3.1 Zeo(+)</td>
<td>Ampicillin, Zeocin</td>
<td>Invitrogen, Leek, Niederlande</td>
</tr>
<tr>
<td>PCMV-Tag 2 B</td>
<td>Kanamycin, G418</td>
<td>Stratagene, La Jolla, USA</td>
</tr>
<tr>
<td>PGEX-KG</td>
<td>Ampicillin</td>
<td>Pharmacia, Freiburg</td>
</tr>
<tr>
<td>PSLX</td>
<td>Ampicillin, Neomycin</td>
<td>-</td>
</tr>
</tbody>
</table>

2.7 Antikörper

- **Anti Abl, 8e9, monoklonal, Maus IgG**
 Pharmingen, San Diego, USA
- **Anti Abl, Ab-3, monoklonal, Maus IgG**
 Calbiochem, La Jolla, USA
- **Anti EGFP, polyklonal, Kaninchen**
 Santa Cruz Biotech, Heidelberg
- **Anti Flag, M2, monoklonal, Maus IgG**
 Stratagene, Heidelberg
- **Anti GST (12), monoklonal, Maus, IgG**
 Santa Cruz Biotech, Heidelberg
- **Anti HEFL, Kaninchen, polyklonal IgG**
 Davids Biotechnology, Regensburg
- **Anti Kaninchen IgG, HRP-gekoppelt, Esel IgG**
 Amersham, Braunschweig
- **Anti Maus IgG, HRP-gekoppelt, Esel IgG**
 Amersham, Braunschweig
- **Anti Maus IgG, monoklonal, Kaninchen IgG**
 Jackson Immuno Research
- **Anti Phospho-Tyrosin, 4G10, monoklonal, Maus IgG**
 Upstate Biotechnology, New York, USA
- **Anti Phospho-Tyrosin, PY20, monoklonal, Maus IgG**
 Pharmingen, San Diego, USA
- **Anti Xpress™, Maus, monoklonal**
 Invitrogen, Leek, Holland

2.8 Molekularbiologische Kits

- **Human MTN™ Blot II**
 Clontech, Heidelberg
- **Marathon™ cDNA Amplification Kit**
 Clontech, Heidelberg
- **Plasmid Maxi Kit**
 Quiagen, Hilden
- **Plasmid Mini Kit**
 Quiagen, Hilden
- **Prime-IT™ Random Primer Kit II**
 Stratagene, Heidelberg
2. Material

QIAquick Gel Extraction Kit
QIAquick Nucleotide Removal Kit
QIAprep Spin Plasmid Mini Kit
QIAquick Spin Purification Kit
QickChange™ Site Directed Mutagenesis Kit
Rapid DNA Ligation Kit
TOPO TA Cloning®, Version H
Niederlande

2.9 Molekulargewichtsmarker für Proteine und Nukleinsäuren

1 kbp DNA-Molekulargewichtsmarker
100 bp DNA-Molekulargewichtsmarker
Rainbow Protein-Molekulargewichtsmarker
Prestained SDS-PAGE Standard, broad range
Bibco/BRL, Eggenstein
Gibco/BRL, Eggenstein
Amersham, Braunschweig
Biorad, München

2.10 DNA-Konstrukte

Abl SH3 in PGEX
TS-Bcr (1-509) Abl
(Temperatur-sensitive Mutante TS) in PSLX
Bcr (1-509) Abl (Kinase Defekt) in PSLX
Bcr/Abl (Wild Typ) in PCDNA 3.1 Zeo (+)
Dr. J.Y.J. Wang, UC San Diego, USA

2.11 Standard-Geräte

Agarosegel-Elektrophoresekammer Biomax HR 2025
Analysenwaage BP 221 S
Automatic Speed Vac AES 100
CO₂-Inkubator SW J 500 TV BB
Entwickler Hyperprocessor
Gefrierschränke -20°C, Premium; -80°C
Gel-Integrer-Gerät Integration Control Unit
Gelphotoapparat P90
Geltrockner SG 200
Kodak, New Haven, USA
Satorius, Göttingen
Savant
Nunc, Wiesbaden
Amersham, Braunschweig
Liebherr; Sanyo
Biorad, München
Mitsubishi
Savant
<table>
<thead>
<tr>
<th>Material</th>
<th>Hersteller / Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heizblock 5436</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Incubator-Shaker Innova 4000</td>
<td>New Brunswick Scientific, Edison, USA</td>
</tr>
<tr>
<td>Kühlzentrifuge J2-HS</td>
<td>Beckman, Fullerton, USA</td>
</tr>
<tr>
<td>Kühlzentrifugen 5417 R, 5810 R</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>LKB Ultraspec III, Spektralphotometer</td>
<td>Pharmacia Biotech, Uppsala, Schweden</td>
</tr>
<tr>
<td>Magnetrührgerät IKAMG RH</td>
<td>Janke & Kunkel, Staufen</td>
</tr>
<tr>
<td>Mikroskop V 200</td>
<td>Hund, Wetzlar</td>
</tr>
<tr>
<td>Mini Gel Elektrophoresekammer</td>
<td>Biometra, Göttingen</td>
</tr>
<tr>
<td>Multi Gel Long Elektrophoresekammer</td>
<td>Biometra, Göttingen</td>
</tr>
<tr>
<td>PCR-Thermocycler Primus</td>
<td>MWG-Biotech, Ebersberg</td>
</tr>
<tr>
<td>pH-Meter Φ 32</td>
<td>Beckman, Fullerton, USA</td>
</tr>
<tr>
<td>Photo-System Eagleye II™</td>
<td>Stratagene, Heidelberg</td>
</tr>
<tr>
<td>Refrigerated Incubator-Shaker Innova 4230</td>
<td>New Brunswick Scientific, Edison, USA</td>
</tr>
<tr>
<td>Schüttelinkubator Certomat® BS-1</td>
<td>Biotech International</td>
</tr>
<tr>
<td>Schüttler WT 12; Mini-Rocking-Platform</td>
<td>Biometra, Göttingen</td>
</tr>
<tr>
<td>Sterile Werkbank, Laminar Flow 1.8</td>
<td>Holten, Gydewang, Dänemark</td>
</tr>
<tr>
<td>Stromgenerator, Powerpack P25</td>
<td>Biometra, Göttingen</td>
</tr>
<tr>
<td>Tischzentrifuge 5417R</td>
<td>Eppendorf, Hamburg</td>
</tr>
<tr>
<td>Transphor Electrophoresis Unit</td>
<td>Hoefer, San Francisco, USA</td>
</tr>
<tr>
<td>Tri-Thermoblock</td>
<td>Biometra, Göttingen</td>
</tr>
<tr>
<td>Tube-Rotor SB1</td>
<td>Stuart Scientific</td>
</tr>
<tr>
<td>Ultraschall Gerät Sonifier 250</td>
<td>Branson, Danburry, USA</td>
</tr>
<tr>
<td>UV-Lampe TI 2</td>
<td>Biometra, Göttingen</td>
</tr>
<tr>
<td>Vortex REAX-Top</td>
<td>Heidolph, Nürnberg</td>
</tr>
<tr>
<td>Wasserbad 1083</td>
<td>GFL, Burgwedel</td>
</tr>
<tr>
<td>Zentrifuge GS-6K</td>
<td>Beckman, Fullerton, USA</td>
</tr>
</tbody>
</table>

2.12 Kulturmedien, Lösungen, Puffer

- Amidoschwarz-Färbelösung
 - 0.2% Naphtol Blauschwarz,
 - 25% Isopropanol
 - 10% Essigsäure
2. Material

Amidoschwarz-Entfärbelösung 25% Isopropanol
 10% Essigsäure

Coomassie-Färbelösung 0,25% Brilliant Blue
 45 % Methanol
 10% Eisessig

Coomassie-Entfärbelösung 45% Methanol
 10% Eisessig

DNA Präparationspuffer
 Puffer 1 (Resuspension) 50 mM Tris HCL
 10 mM EDTA, pH 8.0
 100 µg/ml RNase A

 Puffer 2 (Bakterien-Lyse) 200 mM NaOH
 1% SDS

 Puffer 3 (Neutralisation) 3 M K-Acetat, pH 5.5

DNA-Probenpuffer (10x) 50% Glycerin
 0,5% Bromophenol Blau
 0,5 M EDTA

Dropout-Lösung (10x) L-Isoleucin 300 mg/l; L-Valin 1500 mg/l
 L-Adeninhemisulfatsalz 200 mg/l; L-
 Tryptophan 200 mg/l L-Arginin 200 mg/L;
 L-Histidin 200 mg/l; L-Leucin 1000 mg/l;
 L-Lysin 300 mg/l; L-Methionin 200 mg/l; L-
 Phenylalanin 500 mg/l; L-Threonin 2000
 mg/l; L-Tyrosin 300 mg/l; L-Uracil 200 mg/l

Dropout-Lösung (-TL, 10x) ohne Tryptophan und Leucin

Dropout-Lösung (-THULL, 10x) ohne Tryptophan, Leucin, Histidin, Uracil
 und Lysin

Hefe-Lysis-Puffer 2% Triton X-100; 1% SDS; 100 mM NaCl
2. Material

10 mM Tris/HCl (pH 8.0); 1 mM EDTA

Laemmli-Puffer (2x)
1 M Tris HCL, pH 6.8
200 mM DTT
4% SDS
0.2% Bromphenol Blau
20% Glycerin

LiAc (10x)
1 M Lithiumacetat, autoklaviert

Luria-Bertani (LB)-Medium (flüssig)
1% Tryptone
0.5% Hefeextrakt
1% NaCl, pH 7.0

Luria-Bertani (LB)-Medium (fest)
1.5% Agar in LB-Medium (flüssig)

Lysis-Puffer (5x)
10 mM Tris-Hcl [pH 7.5] ; 130 mM NaCl ;
5 mM EDTA [pH 8.0]; 1% Triton X-100

Für Zellysis:
Lysis-Puffer(1x);50mM NaF;Protease-Inhibitor-Cocktail (1x) ; 1 mM PMSF; 20 mM Na-Phosphat [pH 7.5]; 10 mM Na-Pyrophosphat [pH 7.0]; 1mM Na-Orthovanadat

M9-Lösung (5x)
6.4% Na2HPO4•7H2O; 1.5% KH2PO4;
0.25% NaCl, 0.5% NH4CL in H2O ;
autoklaviert

M9-Medium
M9-Lösung; 2% Glucose; 40 mg/l Prolin;
337 mg/l Thiamin in H2O; autoklaviert

NETN-Puffer (1x)
0.5% (V/V) NP-40, 20 mM Tris [pH 8.0]
100 mM NaCl; 1 mM EDTA
PEG/TE/LiAC-Lösung
112 ml 50% PEG
14 ml TE-Puffer (10x)
14 ml LiAc (10x)

Sammelgelpuffer für SDS-Gele (4x)
5% Acrylamid/Bisacrylamidgemisch(19:1)
0.5 M Tris/HCl [pH 6.8]; 0.4% SDS
0.1% APS
0.1% TEMED

SD-Medium (10x)
6.7% “Yeast Nitrogen Base” (Difco)
in H2O; autoklaviert

SOC-Medium:
2% Tryptone
0.55% Hefeextrakt
0.5% 1 M NaCL
0.5% 1 M KCL; mit 1 M NaOH auf pH 7.0
einstellen; frisch zugeben: 1% 2 M
Glukose; 1% 2 M MgCl2

SSC (20x)
3 M NaCl
0.3 M Na3C6H5O7 [pH 7.0]

TAE-Puffer (10x)
0.4 M Tris
1.1% Essigsäure
0.5 M EDTA

TE-Puffer (10x)
0.1 M Tris/HCl [pH 7.5]
10 mM EDTA

Transfer-Puffer (10x)
250 mM Tris
2.5 mM Glycin
0.5% SDS
20% (V/V) Methanol

Trenngelpuffer für SDS-Gele (4x)
7-14% Acrylamid/Bisacrylamidgemisch(19:1)
1.5 M Tris/HCl [pH 8.8]
0.4% SDS
0.1% APS
0.1% TEMED

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tris-Glycin-Elektrophorese-Puffer (10x)</td>
<td>250 mM Tris
2.5 mM Glycin
0.5% SDS</td>
</tr>
<tr>
<td>YPD-Medium</td>
<td>1% „Yeast Extract“ (Difco)
2% „Bacto Peptone“ (Difco)
in H₂O [pH 5.8]; autoklaviert;
für die Kultivierung von Hefen zusätzlich:
50 µg/ml Ampicillin; 12 µg/ml Tetracyclin
2% Dextrose</td>
</tr>
</tbody>
</table>
3. Methoden

3.1 Arbeiten mit Nukleinsäuren

3.1.1 Spaltung von DNA mit Restriktionsenzymen

3.1.2 Dephosphorylierung von Plasmid-DNA

Sollen die Restriktionsfragmente in Vektor-DNA eingebaut werden, verwendet man die gleiche Restriktions-Nuclease(n) für die Restriktion der DNA und für das Schneiden der Vektor-DNA. Um eine Wiedervereinigung der Enden geschnittener Vektor-DNA zu verhindern und den Einbau der Restriktionsfragmente zu fördern, wurde die Vektor-DNA nach ihrer Linearisierung mit dem Enzym Phosphatase zur Entfernung der 5'-Phosphat-Reste behandelt. Dazu wurde der Restriktionsansatz mit CIAP (2-5 U) versetzt und für eine weitere Stunde bei 37°C inkubiert. Das Enzym wurde anschließend zusammen mit den Restriktionsendonuklease wieder inaktiviert (Kap. 3.1.1).

3.1.3 Agarosegelektrophorese

Die Elektrophorese in Agarose-Gelen ist ein Standardverfahren zur Analyse von DNA. Die Geschwindigkeit mit der DNA-Stücke im elektrischen Feld durch Agarose-Gele wandern hängt dabei am meisten von der Größe der DNA ab, wird aber auch durch Stromstärke, Pufferbedingungen und vor allem die Agarosekonzentration bestimmt. Gerade die letzte Eigenschaft nutzt man zur Trennung von DNA-Fragment-Gemischen verschiedener Größenklassen aus. Gele mit 0.5% Agarose dienen gut zur Auftrennung von DNA-Fragmenten im Bereich von 1000 bis 15000 Basenpaaren. Höhere Agarosekonzentrationen
eignen sich zur Auftrennung von DNA-Fragmenten zwischen 100 und 2000 Basenpaaren. Ein Gel wird durch Kochen von Agarose in TAE-Puffer (1x) hergestellt. Um die DNA-Banden anzufärben, wird Ethidiumbromid in einer Konzentration von 0.5 μg/ml zugegeben. Ethidiumbromid interkaliert zwischen die Basenpaare der DNA, die dann im ultravioletten Licht aufleuchtet. Das Ethidiumbromid enthaltene Agarose-Puffer-Gemisch wird bei einer Temperatur von ca. 50°C in einen Gelträger gegossen und polymerisiert innerhalb von 45 bis 60 Minuten aus. Die DNA-Fragmente werden dann durch Anlegen einer Spannung (20-120 V) in einer TAE-Puffer enthaltenden Elektrophoresekammer aufgetrennt.

3. Methoden

3.1.4. Isolierung von DNA-Fragmenten aus Agarosegelen

Zur Isolierung eines DNA-Fragments aus einem Agarose-Gel wird die korrelierende DNA-Bande unter UV-Licht identifiziert und mit einem sauberen, scharfen Skalpell ausgeschnitten. Um DNA-Strangbrüche zu vermeiden, wurde eine UV-Lichtquelle mit geringer Bestrahlungsstärke verwendet. Nach Anleitung des QIAquick Gel Extraction Kit (Qiagen GmbH, Hilden) wird die DNA dann mit Hilfe einer Mikrozentrifuge vollständig aus dem Agarose-Stückchen extrahiert und in 30 μl EB-Puffer (10 mM Tris-Cl, pH 8.5) aufgenommen. In dieser Präparation kann die DNA direkt für nachfolgende Reaktionen wie Ligation und Sequenzierung verwendet oder bei -20°C aufbewahrt werden.

3.1.5 Ligation von DNA

Der Einbau eines mittels des QIAquick Gel Extraction Kit aus einem Agarose-Gel extrahierten Restriktionsfragmentes in Vektor-DNA wurde gemäß des Standard-Protokolls des Rapid DNA Ligation Kit (Boehringer, Mannheim) durchgeführt. Es wurden 150 ng Insert-DNA und 50 ng linearierte, dephosphorylierte Vektor-DNA benötigt. Das molare Verhältnis von Insert und Vektor sollte idealerweise 3:1 betragen. Die Konzentration von Insert- und Vektor-DNA wurde daher zuvor durch Agarose-Gelelektrophorese mit Mengenstandards bekannter Konzentration bestimmt (Kap. 3.1.8). Für die Ligationsreaktion wurden dann die Insert-DNA und Vektor-DNA mit DNA dilution buffer und DNA ligation buffer zu einem Gesamtvolumen von 20 μl vermischt und zusammen mit 1 μl T4 DNA Ligase (5 U/μl) für fünf Minuten bei Raumtemperatur inkubiert. Das entstehende rekombinante Vektorplasmid konnte nun für die Hitzeschocktransformation von Bakterien verwendet werden (Kap. 3.2.2) oder bei -20°C gelagert werden. Zur Kontrolle wurde ein Ligationsansatz unter gleichen Bedingungen aber ohne Insert-DNA durchgeführt.
3.1.6 Polymerase-Ketten-Reaktion (polymerase chain reaction, PCR)

Das Prinzip der PCR ist die enzymatische Vermehrung eines beliebigen DNA-Abschnitts zwischen zwei Oligonucleotid-Primern, die gegenläufig an komplementäre DNA-Stränge gebunden sind (Mullis et al., 1986). Voraussetzung ist die Kenntnis über die Nukleotidsequenzen beiderseits des DNA-Abschnitts und die Verfügbarkeit von geeigneten Oligonukleotiden. Die Oligonukleotide werden als sog. Primer im Überschuß zu einer DNA-Präparation gegeben. Nach einem sich zyklisch wiederholenden Schema (Denaturierung der Matrizen-DNA, Hybridisierung der Primer, DNA-Synthese) werden in einer Kettenreaktion winzige Mengen einer gegebenen DNA-Sequenz um das Millionenfache amplifiziert. Als Enzym wird gewöhnlich die thermostabile DNA-Polymerase des Bakteriums Thermus aquaticus (Taq-Polymerase) eingesetzt. In der Medizin dient die PCR-Technik als wichtiges diagnostisches Hilfsmittel bei genetischen Krankheiten sowie viralen/bakteriellen Infektionen. In der Molekularbiologie erweist sie sich als nützlich bei der Isolierung von DNA-Klonen aus cDNA-Bibliotheken (Kap. 3.1.8) und kann bei entsprechender Gestaltung der Primer helfen, an einem interessierenden DNA-Abschnitt Punktmutationen, Deletionen und Insertionen vorzunehmen (ortsspezifische PCR-Mutagenese).

3.1.6.1 PCR-Mutagenese

Die Firma Stratagene (Heidelberg) ermöglicht, unter Anwendung des QuickChange™ Site-Directed Mutagenesis Kit, mittels PCR Punktmutationen sowie den Austausch von Aminosäuren oder die Deletion und Insertion von Aminosäuren an doppelsträngiger Plasmid-DNA bei einfacher Handhabung vorzunehmen (Abb. 8). Zum Einsatz kommt hierbei die thermostabile Pfu-Polymerase, eine sog. „proofreading“ - DNA-Polymerase des Bakteriums Pyrococcus furiosus, die im Vergleich zur Taq-Polymerase über eine 12-fach höhere Lesegenaugkeit verfügt.

Präparation des PCR-Reaktionsansatzes:

5µl	10-fach Reaktionspuffer
x µl (~50 ng)	doppelsträngige Matrizen-DNA
x µl (125 ng)	Primer I
x µl (125 ng)	Primer II
1 µl	10 mM dNTP-Mix (2.5 mM pro NTP)
1 µl	Pfu-DNA-Polymerase (2.5 U/µl)

Amplifikationsparameter:

1x 95°C, 30 sec
16x 95°C, 30 sec; 55°C, 1 min; 68°C, 2 min/kb Matrizen-DNA
1x 68°C, 5 min

Zur Überprüfung der Funktionalität und Effektivität des *QuickChange™ Site-Directed Mutagenesis Kit* wurde ein Kontrollansatz unter gleichen Bedingungen mit einem im Kit enthaltenen Kontroll-Plasmid und Kontroll-Primern durchgeführt.

Präparation der PCR-Kontrollreaktion:

5 µl	10-fach Reaktionspuffer
2 µl (10 ng, 0.003 nM)	pWhitescript™ Kontroll-Plasmid (5.7 kb)
1.25 µl (125 ng, 22 nM)	Kontroll-Primer I (34-mer, 100 ng/µl)
1.25 µl (125 ng, 22 nM)	Kontroll-Primer II (34-mer, 100 ng/µl)

Die weiteren Komponenten wurden entsprechend den Angaben des Experimentalansatzes konzentriert.

3. Methoden

1. Plasmid mit markiertem DNA-Abschnitt (), der mutiert werden soll.

2. Denaturierung des Plasmids und Hybridisierung der mutagenen Primer.
 - mutagener Primer
 - mutierte Sequenz

4. Verdau der methylierten, parentalen Matritzen-DNA mit der Restriktionsendo-Nuklease DPN I.

5. DNA-Präparation der mutierten Doppelsträngigen Plasmid-DNA.

Abb. 8
Schematische Darstellung der PCR-Mutagenese mittels „Site directed mutagenesis“
Nach erneuter Aufreinigung des mutierten Plasmids erfolgte die Transformation des PCR-Ansatzes in hitzekompetente Bakterien. Da die durch die PCR-Mutagenese gewonnene DNA an der Anheftungsstelle der Polymerase einen kurzen Einzelstrangabschnitt (nick) aufweist, wurde der von der Firma Stratagene im Kit mitgelieferte spezielle Stamm *Epicurian Coli® XL1-Blue Supercompetent Cells* verwendet, der aufgrund seiner Enzymausstattung derartige Lücken in der DNA schließen kann.

3.1.7 Isolierung von Plasmid-DNA aus einer Bakterienkultur

3.1.8 Bestimmung der Nukleinsäurekonzentration

Die Konzentration einer Nukleinsäurelösung kann photometrisch durch Messung der Extinktion (E) bei 260 nm und 280 nm bestimmt werden. (Sambrook et al., 1989). Der Quotient $E_{260} : E_{280}$ gibt zusätzlich Auskunft über den Reinheitsgrad der Nukleinsäurelösung und kann somit das Ausmaß etwaiger Verunreinigungen durch Pufferkomponenten oder Proteine abschätzen lassen.

Bei sehr geringen DNA-Mengen kann die Konzentration photometrisch nicht mehr erfaßt werden. In diesem Fall wurde die Nukleinsäurelösung mit einer Referenzlösung im Agarosegel verglichen. Als Maßstab wurde der 1kbp DNA-Molekulargewichtsmarker der
Firma Gibco mit bekannter DNA-Konzentration (1µg/µl) verwendet. Dessen 1636 bp-Fragment entspricht dabei 1/10 der gesamten DNA-Menge.

3.1.9 RACE (Rapid amplification of cDNA ends)

RACE ist eine Methode, die es unter Anwendung der PCR-Technik (Kap. 3.1.6) ermöglicht, fehlende Sequenzen am 3'- oder 5'- Ende eines cDNA-Fragments und damit die komplette Sequenz eines cDNA-Klons bzw. Gens zu bestimmen. Mit dem Marathon™ cDNA Amplification Kit (Clontech, Heidelberg) steht dabei ein effizientes Hilfsmittel zur Durchführung dieser Klonierungsmethode zur Verfügung. Einzige Voraussetzung sind die Kenntnis von mindestens 23 Nukleotiden des cDNA-Fragmentes, um geeignete Oligonukleotide als genspezifische Primer gestalten zu können, und die Verfügbarkeit einer cDNA-Bibliothek, deren einzelne cDNA-Moleküle an ihren Enden jeweils mit einem sog. Marathon-cDNA-Adaptor verknüpft sind (Abb. 9).

Abb. 9
Schematische Darstellung der RACE-Methode

Hierbei handelt es sich um die bekannte Basensequenz eines Oligonukleotids von 23-28 bp Länge, welches kompatibel ist mit den im Marathon™ cDNA Amplification Kit verwendeten Adaptor-Primern, die während der RACE-Methode zum Einsatz kommen. Zu Zwecken
dieser Arbeit wurde die RACE-Methode mit einer Marathon-Adaptor-ligierten Milz-cDNA-Bibliothek durchgeführt. Diese war bereits im Rahmen anderer Forschungsprojekte unserer Arbeitsgruppe hergestellt worden und mußte daher für die Fragestellung der vorliegenden Arbeit nicht mehr eigens synthetisiert werden. Im Folgenden soll das Prinzip der RACE-Methode kurz erläutert werden (Abb. 10): Je nachdem, ob das 3'- oder 5'- Ende eines gegebenen cDNA-Fragmentes fehlt oder interessiert, wird ein genspezifischer Primer (GSP) in Richtung des fehlenden 3'- oder 5'- Endes hergestellt. Der GSP sollte folgende Anforderungen erfüllen:

- Länge: 23-28 Nukleotide
- Mindestgehalt der Basen Guanin G und Cytosin C: 50-70%
- Schmelztemperatur: mindestens 60°C (bei Möglichkeit 70°C oder höher)
- Keine Komplementarität zum Marathon-Adaptor-Primer 1
- Der Primer sollte keine Schnittstellen für Restriktionsenzyme im Bereich seines 5'-Endes haben

Der GSP wird zusammen mit dem cDNA-Fragment und dem Adaptor-Primer 1 (AP1) sowie den weiteren erforderlichen Komponenten einer PCR (Kap. 3.1.6) zu einem PCR-Ansatz vermischt. Der AP1 ist komplementär zu einem Sequenzabschnitt des Marathon-cDNA-Adaptors am 3'- oder 5'- Ende eines cDNA-Klones, so daß mittels PCR die unbekannte, fehlende Sequenz zwischen dem GSP und der bekannten Sequenz des Marathon-cDNA-Adaptors am 3'- oder 5'- Ende des cDNA-Klones amplifiziert wird. Der Marathon-Adaptor-ligierten cDNA fehlt dabei eine Bindungsstelle für den AP1. Diese wird erst in der ersten Amplifikationsrunde durch Extension des GSP gebildet und steht ab dann für die folgenden PCR-Zyklen zur Verfügung. Dadurch wird der Anteil unspezifischer PCR-Produkte deutlich reduziert, da eine AP1-Bindungsstelle nur gebildet werden kann, wenn in der Population der cDNA-Moleküle eine Bindungsstelle für den GSP vorhanden ist.

Um im nicht seltenen Falle mehrerer verschieden großer Amplifikate unspezifische PCR-Produkte herauszuselektieren, wird eine zweite sog. „nested“-PCR zur Reamplifikation des primären PCR-Produktes angesetzt. Diese verwendet einen sog. „nested“ GSP und den Adaptor-Primer 2 (AP2), die so konstruiert sind, daß sie zu Sequenzen komplementär sind, die in Bezug auf die Ausgangssequenz des cDNA-Fragments bzw. die Sequenz des Marathon-cDNA-Adaptors weiter innen liegen als der GSP bzw. AP1 (Abb. 10). Es können somit nur spezifische Sequenzen der ersten PCR amplifiziert werden. Für die Synthese des „nested“ GSP gelten prinzipiell dieselben Anforderungen wie für den GSP, wobei darauf geachtet werden sollte, daß der „nested“ GSP keine Sequenzen aufweist, die mit dem weiter außen positionierten GSP hybridisieren können.
Für diese Arbeit wurde sowohl 5'- als auch 3'- RACE mit einer nach dem Protokoll des Marathon™ cDNA Amplification Kit (Clontech, Heidelberg) hergestellten Adaptor-ligierten Milz-cDNA-Bibliothek durchgeführt. Dabei wurde nach den oben gemachten Angaben analog des Protokolls des Marathon™ cDNA Amplification Kit (Clontech, Heidelberg) vorgegangen. Es wurde dazu jeweils eine touchdown-PCR mit drei Verdünnungen (1:5, 1:50, 1:250) der Adaptor-ligierten Milz-cDNA-Bibliothek und bei 5'-RACE unter Einsatz des Adaptor Primer 1 (AP1) und des genspezifischen Primer GSP1 bzw. „F6RAOU“ für die primäre PCR bzw. des AP2 und des „nested“ GSP bzw. NGSP1 „F6RANE“ für die „nested“ PCR angesetzt. Bei 3'-RACE wurden die Primer AP1 und GSP2 bzw. AP2 und NGSP2 für die primäre bzw. „nested“ PCR-Reaktion verwendet. Unter touchdown-PCR wird dabei eine Technik verstanden, die für die initialen Amplifikationsrunden eine höhere Temperatur für Hybridisierung der Primer und ihrer Extension einsetzt als sie der T_m des AP1 entspricht. Es können somit während der initialen Amplifikationsrunden nur genspezifische Sequenzen amplifiziert werden, was wie das Fehlen einer AP1-Bindungsstelle (siehe oben) die Synthese unspezifischer Sequenzen reduzieren soll.

Abb. 10
Schematische Darstellung von Primern und cDNA-Matrize bei der RACE-Methode
5'-RACE: Die Sequenz des verwendeten AP1 war 5'-CCATCCTAATACGACTCATAAGGCC-3'. Die Sequenz von F6RAOU war 5'-GGCACGGCCTGTCTGCAGCGACCTC-3'. Der genspezifische Primer F6RAOU hatte einen G/C-Gehalt von 72% und eine T_m von 73°C gemäß des Prinzips der touchdown-PCR. Der PCR-Reaktionsansatz enthielt 0.2 mM dNTP, jeweils 0.2 μM der Primer AP1 und F6RAOU, 5μl Pfu-Puffer sowie 1.5μl Pfu-Polymerase in einem totalen Volumen von 50μl. Die Zykluseinstellungen für die touchdown-PCR waren: 94°C (1 Minute) → 5 Zyklen mit 94°C (1 Minute), 75°C für 2.5 Minuten → 5 Zyklen mit 94°C (1 Minute), 72°C für 2.5 Minuten → 5 Zyklen mit 94°C (1 Minute), 70°C für 2.5 Minuten → 20 Zyklen mit 94°C (1 Minute), 68°C für 2.5 Minuten → 68°C (10 Minuten). Mit verschiedenen Verdünnungen der PCR-Produkte wurde anschließend eine „nested“ PCR zu exakt gleichen Bedingungen unter Verwendung der „nested“ Primer AP2 und F6RANE in einem Reaktionsvolumen von 30μl durchgeführt: AP2 war der „nested“ Primer für den cDNA-Adaptor und hatte die Sequenz 5'-ACTCACTATAGGGCTCGAGCGGC-3'. Der „nested“ GSP F6RANE hatte die Sequenz 5'-GAGGATTTGGAGGCGGTTGGCAGGGGC-3' (G/C-Gehalt: 67%; T_m: 73°C).

3'-RACE: Die Sequenz von GSP2 war 5'-GGCCTGGCCCCTGCCAACCGCCTCCAAA-3'. Der GSP2 hatte einen G/C-Gehalt von 71% und eine T_m von 75°C. Der NGSP2 hatte die Sequenz 5'-TCACGGACGTCGCTGCAGACAGGCCGTG-3' mit einem G/C-Gehalt von 68% und einer T_m von 74°C. Die Primer AP1 und AP2 sowie alle weiteren Komponenten und die Zykluseinstellungen für die touchdown-PCR entsprachen den zu 5'-RACE gemachten Angaben.

Zur Überprüfung der Effektivität und Funktionalität des Marathon™ cDNA Amplification Kit (Clontech, Heidelberg) wurde zusätzlich jeweils eine Kontroll-RACE-Reaktion mit den Positiv-Kontroll-Primern für das GP3PDH-Gen mitgemacht. Der 5'-RACE-GP3PDG-Primer hatte die Sequenz 5'-TCCACCACCCGTGTTGCTGTA-3'. Die Sequenz des 3'-RACE-GP3PDG-Primer lautete: 5'-GACCACAGTCCATGACAT-3'. Um die RACE-PCR-Produkte endgültig bezüglich Spezifität analysieren und sequenzieren zu können, wurden die „nested“-PCR-Produkte (Kap. 3.2; Kap. 3.3.2) anschließend nach Anleitung des TOPO TA Cloning-Protokolls, Version H (Invitrogen, Groningen, Holland) in den Vektor pCR 2.1-TOPO kloniert. Ungefähr je 15 ng der nested PCR-Produkte wurden dazu mit je 50 ng des Vektors pCR 2.1-TOPO vermischt und die Ligation nach 5 Minuten durch Zugabe von 2μl 6X TOPO Cloning Stop Solution und Mixen für 10 Sekunden bei Raumtemperatur gestoppt. Mit jeweils 2μl der Ligationsansätze wurden anschließend je 50μl TOP10F'-Zellen, die zuvor mit je 2 μl 0.5 M β-Mercaptoethanol versetzt worden waren, transformiert. Nach 30-minütiger Inkubation der Zellen bei 37°C wurden die Zellen für 30 Sekunden bei 42°C hitzeschockiert und dann sofort auf Eis gesetzt. Zu jedem tube wurden daraufhin 250 μl SOC-Medium zugegeben. Nach 30 Minuten Inkubation in einem Schüttler
bei 225 rpm und 37°C wurden je 50 µl der Transformationen auf bei 37°C vorgewärmten LB-Platten, die Ampicillin (50 µg/ml), X-GAL und IPTG enthielten, ausgestrichen und über Nacht bei 37°C inkubiert. Je mehrere weiße oder leicht blaue Klone wurden schließlich ausgewählt und restriktionsanalytisch auf die Insertion der PCR-Produkte überprüft sowie sequenziert.

3.1.10 Northern Blot

3.2 Arbeiten mit dem Bakterium Escherichia coli

3.2.1 Kulturmedien

LB-Medium (Luria-Bertani-Medium) (flüssig)
LB-Medium (Luria-Bertani-Medium) (fest): zur Präparation von Festkultur-Platten = Agarplatten
Die Medien wurden nach den in Kap. 2.12 gemachten Angaben angesetzt, auf einen pH-Wert von 7.0 eingestellt und anschließend autoklaviert.

3.2.2 Hitzeschock-Transformation

Der Escherichia coli-Stamm DH5α ist für die Hitzeschock-Transformation gut geeignet. Für die Transformation wurden 50 µl kompetente Bakterien (DH5α) auf Eis aufgetaut und jeweils mit 5 µl eines frischen Ligationsansatzes oder 1 µl Plasmid-DNA, die schon einmal aus einer Bakterienkultur aufgereinigt worden war (Kap. 3.1.7), vermischt und anschließend für 30 Minuten auf Eis inkubiert. Danach wurden die Bakterien für 20 sec bei 37°C einem Hitzeschock ausgesetzt und wieder für zwei Minuten auf Eis gekühlt. Es wurden dann 950 µl LB-Medium ohne Antibiotikum zugegeben und die Bakterien bei 37°C schüttelnd (225 rpm) für eine Stunde inkubiert und vermehrt. Im Anschluß wurden die Bakterien auf LB-Agarplatten mit Zusatz des entsprechenden Antibiotikums über Nacht (12-16 h) bei 37°C inkubiert, was bei einer funktionierenden Transformation zur Ausbildung einer Vielzahl von Einzelkolonien führte, deren jeweils 10^6-10^7 Bakterien genetisch identisch waren und allesamt die transformierte Plasmid-DNA enthielten.

3.2.3 Induktion von rekombinantem GST-Fusionsprotein in E. coli

Ein rekombinantes GST-Fusionsprotein ist ein Protein, bestehend aus dem Protein
3. Methoden 42

Glutathion-S-Transferase (GST) gekoppelt an ein von einer interessierenden cDNA kodiertes Protein. Dies wird erreicht, indem die cDNA beider Proteine Teil eines Vektorplasmids ist, wobei das GST-Gen als fester Bestandteil in den Vektor integriert ist, gefolgt von einer Multiklonierungsstelle (MKS), die die Subklonierung der interessierenden zur Expression zubringenden cDNA im passenden Leserahmen ermöglicht. Um die Expression des GST-Fusionsproteins steuern bzw induzieren zu können, ist das Vektorplasmid zusätzlich mit einem induzierbaren lacZ-Operon ausgerüstet, das dem GST-Gen direkt vorgeschaltet ist. Durch Zugabe des Induktors Isopropyl-β-D-Thiogalactopyranosid (IPTG) läßt sich somit die Expressions des GST-Fusionsproteins auslösen.

Für Zwecke dieser Arbeit wurde die cDNA des gewünschten Proteins in die GST-Expressionsvektoren pGEX-4T-3 oder pGEX-KG subkloniert und damit anschließend der Escherichia coli - Stamm DH5α transformiert. Der daraus hervorgehende Klon wurde zu einer 5 ml LB-(+ Amp) Flüssigkultur angesetzt und über Nacht bei 37°C schüttelnd (225 rpm) inkubiert. Diese Übernacht-Vorkultur wurde dann mit LB -(+Amp) Medium im Verhältnis 1:10 zur Proteininduktionskultur verdünnt (das Volumen der Proteininduktionskultur betrug üblicherweise 100 ml) und bis zu einer OD600nm = 0.5 -0.7 bei 37°C geschüttelt. In dieser Situation befinden sich die Bakterien in der logarithmischen Wachstumsphase, so daß die Zugabe des Induktors IPTG in einer Endkonzentration von 0.4 mM in dieser Phase eine effektive GST-Fusionsprotein-Translation erwarten läßt. Nach einer Induktionsdauer von zwei Stunden wurden die Bakterien bei 5000 rpm für 10 min abzentrifugiert und das Pellet in NETN-Puffer resuspendiert (dabei wurde das Äquivalent von 10-100 ml Bakterienlösung in 1 ml NETN-Puffer aufgenommen) und Aliquots zu je 1 ml bei -80°C gelagert.

3.2.4 Isolierung von rekombinantem Fusionsprotein aus E. coli

Aliquots der in NETN-Puffer aufgenommenen Bakterienpellets wurden auf Eis aufgetaut und zum Aufbrechen der Zellmembran mit Lysozym in einer Endkonzentration von 100 µg/ml für 30 Minuten auf Eis inkubiert. Die Probe wurde dann zur effizienten Lyse zehn Ultraschallimpulsen (bei 50%-iger- Leistung des Ultraschallgerätes) unterworfen und die resultierenden Zelltrümmer anschließend durch Zentrifugation (14000 rpm; 30 min; 4°C) pelletiert. Der Überstand mit der löslichen Proteinfraktion wurde aufgegeben und mit 30 µl Glutathion-Sepharose (50%-ige Lösung in PBS) für 30 min bei 4°C auf einem Rollrad inkubiert. Dabei erfolgte die Bindung der Glutathion-S-Transferase im GST-Anteils des Fusionsproteins mit hoher Affinität an ihr Substrat Glutathion als Teil der Glutathion-Sepharose. Der GST-Fusionsprotein-Glutathion-Sepharose-Komplex wurde nun abzentrifugiert (14000 rpm; 2 min; 4°C) und das Präzipitat zur Entfernung unspezifisch gebundener Proteine dreimal mit NETN-Puffer bei 4°C gewaschen und schließlich in 200 µl
3. Methoden

NETN-Puffer (mit Zusatz von Benzamidin/PMSF/Proteaseinhibitor-Cocktail) resuspendiert. Aufgereinigtes Sepharose-gebundenes Fusionsprotein konnte jetzt bis zu fünf Tage bei 4°C gelagert werden.

Zur Bestimmung der Menge und Qualität des induzierten Fusionsproteins wurde 1/10 des Aufreinigungsansatzes durch SDS-PAGE (Kap. 3.4.1) aufgetrennt und die Proteinbanden mit Coomassie-Färbelösung (Kap. 3.4.2) analysiert.

3.3 Arbeiten mit eukaryoten Zelllinien

3.3.1 Kultivierung von Zelllinien

Die Suspensionszellen K562, BaF3 und Mo7e wurden in RPMI 1640-Medium mit Zusatz von 2 mM L-Glutamin, 1% antibiotischer-antimykotischer Lösung und 10% FCS kultiviert. Mo7e-Zellen benötigten zum Wachstum zusätzlich 100 U/ml rekombinannten Granulozyten-Makrophagen-Kolonie-stimulierenden-Faktor (rGM-CSF), BaF3-Zellen Interleukin 3 (IL-3) in einer Konzentration von 0.2 ng/ml. Die Zellen wurden alle 3-4 Tage im Verhältnis 1:10 gesplittet.

Alle Zelllinien wurden im Brutschrank bei 37°C, 5% CO₂ und einer relativen Luftfeuchtigkeit von 95% inkubiert.

3.3.2 Bestimmung von Zellzahl und Zellvitalität

Zur Bestimmung der Zellzahl wurde eine Neubauer-Zählkammer (Kammerfaktor = 10⁴) (Reichert, New York, USA) verwendet. Dazu wurden die Zellen in einem kleinen Volumen Kulturmedium aufgenommen und mit einer 0.5%-igen Trypanblaulösung im Verhältnis 1:1 verdünnt und ein kleiner Tropfen davon in die Zählkammer pipettiert. Ausgezählt wurden
3. Methoden

3.3.3 Transiente Transfektion von adhérenten Zellen

Empirisch erwiesen sich das GenePorter™ Transfektionsreagenz bei Cos-Zellen, und das liposomale Reagenz DOTAP® bei 293-Zellen als am besten geeignet.

Zum Zeitpunkt der Transfektion sollten die Zellen (Cos-1; 293) eine Konfluenz von 60-80% haben. Die Zellen wurden daher am Vortag auf beschichteten Kulturschalen ausplattiert. Je nach Experiment bzw. erforderlicher Zellzahl wurden dabei auf verschiedenen großen Kulturschalen (ø: 35 mm, 60 mm, 100mm) unterschiedlich viele Zellen ausgesät (ø: 35 mm:~ 1x10^5, ø: 60 mm:~ 5x10^5, ø: 100 mm:~ 1x10^6 Zellen). Es soll im Folgenden zunächst für Cos-1- und dann für 293-Zellen eine Transfektion unter Verwendung einer 100 mm-Kulturschale beispielhaft skizziert werden: 12 µg Plasmid-DNA sowie 60 µl GenePorter™-Reagenz wurden in 500 µl serumfreiem DMEM-Medium verdünnt, anschließend gemischt und für 45 min bei RT inkubiert. Danach wurde serumfreies DMEM-Medium bis zu einem Gesamtvolumen von 5 ml zugegeben und das Kulturmedium der zu transfizierenden Zellen durch das verdünnte DNA-GenePorter™-Gemisch ersetzt. Nach fünfstündiger Inkubation bei 37°C wurden weitere 5 ml DMEM-Medium mit Zusatz von 20% FCS zugegeben. Für die Transfektion von 293-Zellen wurden 8-10 µg Plasmid-DNA bzw. 45 µl DOTAP® mit jeweils 95 µl Hepes-Puffer versetzt. Anschließend wurden beide Ansätze vermischt und für 15 min bei RT inkubiert. Danach wurde die DNA-DOTAP®-Mischung zu 6 ml frischem DMEM-Medium zugegeben und zum Ersatz des Kulturmediums der zu transfizierenden Zellen verwendet.

24 h nach Transfektion von Cos-1- und 293-Zellen wurde das Kulturmedium durch frisches DMEM-Medium ausgetauscht und die Zellen für weitere 48 h bebrütet. 72h nach Transfektion wurden die Zellen auf Eis einmal mit eiskaltem PBS mit Zusatz von Vanadat
(1mM) gewaschen und dann abgeerntet. Abschließend wurden die Zellen zentrifugiert (1400 rpm; 4°C; 5 min) und das Pellet zur Analyse der Proteinexpression oder Immunpräzipitation (3.4.5) weiterverarbeitet oder in flüssigem Stickstoff schockgefroren und im Anschluß bei -80°C aufbewahrt.

3.4 Arbeiten mit Proteinen

3.4.1 SDS-Polyacrylamid-Gelelektrophorese (SDS-PAGE)

Zur Durchführung der SDS-PAGE wurde das Gelelektrophorese-System Multigel long G47 der Firma Biometra (Göttingen) mit Trenngelvolumina von 12 ml bzw. Sammelgelvolumina von 4 ml eingesetzt. Für die Herstellung eines Polyacrylamidgels wurde zunächst das Trenngel in eine aus zwei sauberen Glasplatten (Multigel long, Biometra) zusammengesetzte Gelgieß-Vorrichtung gegossen und mit 500 µl Methanol beschichtet. Nach ca. 20 min war das Gel vollständig polymerisiert und gehärtet, so daß das Methanol durch Abkippen und Absaugen (Filterpapier) entfernt und das Sammelgel auf das Trenngel gegossen werden konnte. Gleichzeitig wurde ein Kamm eingesteckt, der durch Aussparungen im polymerisierten Gel die Geltaschen für die Proteinproben formte. Der Kamm wurde nach Festigung des Sammelgels wieder entfernt. Die Proteinproben wurden mit 2x SDS-Gelladepuffer versetzt, 10 min bei 95°C gekocht, kurz abzentrifugiert und anschließend in die Geltaschen geladen. Die Elektrophorese erfolgte mit SDS-Elektrophorese-Puffer (1x) bei einer Spannung zwischen 25-120 Volt.

3.4.2 Coomassiefärbung von Polyacrylamid-Gelen

Um die mittels SDS-PAGE aufgetrennten Proteine detektieren zu können, wurde das SDS-Gel im Anschluß an die Elektrophorese in einer Coomassie-Färbelösung enthaltenden Färbeschale für 30 min bei RT inkubiert. Danach wurde das Gel mit Coomassie-Entfärbelösung bei RT gewaschen. Nach 30 min Inkubationsdauer waren bereits größere Proteinmengen (> 1µg) zu detektieren, nach 24-stündiger Inkubation konnten dann Proteinmengen im Bereich der Nachweisgrenze der Coomassie-Färbung (100 ng) nachgewiesen werden.

3.4.3 Western Blot

Der Western Blot definiert sich als Transfer von gelektrophoretisch aufgetrennten Proteinen von der Gelmatrix auf ein geeignetes solides Trägermaterial mit anschließendem immunchemischem Nachweis der dort fixierten Proteine durch Antigen-spezifische Antikörper (Sambrook et al., 1989).

3. Methoden

Um die Transfermembran für etwaige weitere Immunmarkierungen nutzen zu können, konnten die Antikörper durch Inkubation der Membran für 30 min bei 65°C in 0.2 M Glycin-HCl-Lösung (pH 2.5) wieder abgewaschen werden.

3.4.4 Amidoschwarzfärbung von transferierten Proteinen

Nach der immunchemischen Darstellung wurde die Membran für einige Minuten in Amidoschwarzlösung inkubierte und anschließend solange entfärbt, bis die Proteinbanden sichtbar wurden. Die Proteinbanden konnten zur Dokumentation photographiert werden.

3.4.5 Immunpräzipitation

Die Immunpräzipitation dient der gezielten Isolierung von Proteinen aus einem Zellysat durch spezifische Antikörper. Wird aufgrund einer in vivo-Komplexbildung mit einem anderen
zellulären Protein auch der Interaktionspartner des gezielt präzipitierten Proteins isoliert, so spricht man von einer Koimmunpräzipitation. Die Präzipitation an sich kommt durch die Adsorption der Antigen-Antikörper-Komplexe an Protein A zustande, welches kovalent an Sepharose gekoppelt ist. Aufgrund der hohen Masse der Sepharose-Beads lassen sich die Komplexe schnell pelletieren und vom übrigen Zellysat separieren.

Zunächst wurde das gefrorene Zellpellet zur Lyse mit je nach Pelletgröße 1.5-3 ml Lysispuffer resuspendiert und auf Eis für 20 min inkubiert. Anschließend wurden die Zelltrümmer abzentrifugiert (20 min; 14000 rpm, 4°C) und der Überstand mit 30 µl Protein-A-Sepharose-Lösung (50% in PBS) versetzt und für 20 min bei 4°C auf dem Rollrad inkubiert. Durch kurze Zentrifugation (2 min; 14000 rpm; 4°C) wurden die Sepharose-Beads dann pelletiert und verworfen. Dadurch sollten unspezifisch an die Protein-A-Sepharose-Beads bindende Proteine aus dem Lysat entfernt werden (Preclear). Dieser Schritt wurde dreimal durchgeführt. Danach erfolgte die Inkubation des Zellysats mit 2µg des spezifischen Antikörpers auf dem Rollrad bei 4°C für 2-4 h oder über Nacht. Parallel wurde ein Kontrollansatz mit der Hälfte des Lysats und unspezifischem Kaninchen-Antiserum mitgeführt. Im Anschluß wurden den Lysaten 30 µl der Protein-A-Sepharose-Lösung zugegeben und eine weitere Inkubation auf dem Rollrad für 1 h bei 4°C angesetzt. Schließlich wurden die an die Sepharose gebundenen Immunkomplexe abzentrifugiert (14000 rpm, 4°C; 1 min), das Pellet dreimal mit 500 µl eiskaltem Lysispuffer gewaschen und dann mit 20 µl Lämmli-Puffer für 10 min bei 95°C gekocht. Dieser Schritt diente der Denaturierung der präzipitierten Proteine und der Lösung ihrer Bindung an die Sepharose-Beads. Die einzelnen Ansätze wurden dann kurz zentrifugiert (14000 rpm; 1 min; 4°C) und die Immunkomplexe anschließend mittels SDS-PAGE aufgetrennt und im Western Blot analysiert.

3.4.6 Bindungsassay mit GST-Fusionsprotein

Der Bindungsassay mit GST-Fusionsprotein und Zellysaten dient dem Nachweis des Bindungsverhaltens von Proteinen. Zunächst wurde das Zellysat mit 30 µl einer Glutathion-Sepharose-Lösung (50% in PBS) für 30 min bei 4°C inkubiert und die Glutation-Sepharose-Beads anschließend abzentrifugiert und verworfen. Damit sollten unspezifische Bindungen an Sepharose vermieden werden (Preclear). Dieser Schritt wurde dreimal wiederholt. Im Anschluß folgte der eigentliche Bindungsassay. Dazu wurde das Zellysat mit dem zuvor aufgereinigten GST-Fusionsprotein (Kap. 3.2.3, 3.2.4) bei 4°C für 3 h auf dem Rollrad inkubiert. Ein Kontrollansatz mit einer vergleichbaren Menge an GST wurde mitgeführt. Die Inkubationsansätze wurden anschließend abzentrifugiert (1 min; 4°C; 14000 rpm) und das Pellet dreimal mit Lysispuffer gewaschen. Abschließend wurde das Pellet in 20 µl Lämmli-

3.4.7 Generierung eines polyklonalen Antikörpers

Ungefähr 9 Milligramm rekombinantes GST-Fusionsprotein - bestehend aus GST und der SH3-Domäne von HEFL - wurden in 4.5 Liter einer Flüssigkultur des Bakterienstamms DH5α induziert und anschließend aufgereinigt (Kap. 3.2.3, 3.2.4). Nachdem der GST-Fusionsprotein-Glutathion-Sepharose-Komplex abzentrifugiert und drei- bis viermal mit NETN-Puffer gewaschen worden war (Kap. 3.2.4), mußte das GST-Fusionsprotein von den Glutathion-Sepharose-Beads separiert werden. Dazu wurde der Ansatz dreimal mit Elutionspuffer (20 mM Glutathion, 100 mM Tris/HCl [pH 8.0], 120 mM NaCl) für 5-10 min auf dem Rollrad bei 4°C inkubiert und die kompetitiv durch den Überschuß Glutathion im Elutionspuffer aus der GST-Bindung verdrängten Glutathion-Sepharose-Beads jeweils abzentrifugiert (14000 rpm; 2 min; 4°C) und verworfen. Die aus den einzelnen Elutionsrunden erhaltenen Eluate wurden anschließend gepoolt und über Nacht in 5 Litern PBS/Azid unter Verwendung des Dialysesystems Slide-a-Lyzer (Pierce, Rockford, USA) dialysiert, um freies, nicht an Glutathion gebundenes GST-Fusionsprotein zu erhalten. Aliquots von dialysiertem GST-Fusionsprotein wurden anschließend an einen kommerziellen Anbieter zur Antikörperproduktion (Davids Biotechnologie, Regensburg, Germany) geschickt, der die dazu weiter erforderlichen Schritte wie Abspaltung des GST-Anteils, Gewinnung von Präimmunserum, Immunisierung und Affinitätsreinigung durchführte. Die Schritte im einzelnen knapp dargestellt waren wie folgt:

1. Thrombinspaltung mit 10 cleavage units per mg protein (23°C für 16 Stunden).
2. Glutathion Entfernung durch Verwendung einer G10 Säule.
3. GST Entfernung mit Glutathion-Sepharose.
4. Aus 3. erhaltenes freies Protein im Durchfluss wurde zur Immunisierung verwendet
5. New Zealand White Kaninchen wurde Präimmunserum entnommen und am gleichen Tag wurde mit der Injektion von Antigen begonnen. Das Antigen wurde 3 x im Abstand von 14 und 21 Tagen injiziert.
6. 10 Tage nach der letzten Injektion wurde das Immunserum gewonnen.
7. Zur Isolierung von spezifisch gebildetem Antikörper aus dem Kaninchen-Immunserum wurde das zur Immunisierung eingesetzte Peptid an aktivierte Matrix gebunden und damit das Immunserum bei Normal-pH = 7.0 mehrmals gewaschen um unspezifisch gebundene Proteine daraus zu entfernen. Anschließend wurde durch pH- „shift“ auf pH = 2.5 die spezifische polyklonalen Antikörper enthaltende affinitätsgereinigte
3. Methoden

Fraktion gewonnen.

3.5 Das Yeast-Two-Hybrid-System

3.5.1 Funktionsprinzip und Arbeitsschema

Das Yeast-Two-Hybrid-System ist eine Methode, die die sehr effiziente Identifizierung und Klonierung von Proteinen erlaubt, die in einem eukaryotischen System miteinander interagieren. Dabei können sowohl Interaktionen zwischen bekannten Proteinen analysiert werden als auch bislang unbekannte Interaktionspartner eines bekannten Proteins aus einer cDNA-Bibliothek isoliert werden.

3. Methoden

Abb. 11
Schematische Darstellung des modifizierten Yeast-Two-Hybrid-Systems
Die Fusionierung der Tyrosinkinase Bcr-Abl an den dimerisierenden Transkriptionsfaktor Lex A führt zur Dimerisierung und Phosphorylierung von Kinasen auch in Hefen, die selbst keine Tyrosinkinasen besitzen. Dies ermöglicht die Detektion phosphotyrosinabhängiger und phosphotyrosinunabhängiger Interaktionen.

3.5.2 Verwendeter Hefestamm, cDNA-Bibliothek und Plasmide

3.5.3 Amplifikation der cDNA-Bibliothek

Um eine ausreichende Menge der cDNA-Bibliothek zu erhalten, wurde eine Amplifikation in *E. coli* durchgeführt. Da Plasmide mit längeren cDNA-Inserts bei Vermehrung in flüssigem Medium einen Selektionsnachteil erfahren, wurden die Bakterien auf 80 Platten (15x15 cm) gleichmäßig ausplattiert und bei 37°C über Nacht inkubiert. Anschließend wurden die Kolonien mit LB(+Amp)-Medium von den Platten abgespült und die DNA prépariert.

3.5.4 Herstellung und Transformation von kompetenten Hefen

Eine einzelne Hefe-Kolonie wurde von einer YPD-Platte (YPD-Medium mit 1.6% „Bacto Agar“[Difco]) in 20 ml YPD-Medium überführt und bei 30°C über Nacht auf einem Schüttler inkubiert. Die Hefe-Kultur wurde als nächstes auf ein Gesamtvolumen von 300 ml YPD-Medium verdünnt und wieder bei 30°C schüttelnd inkubiert. Bei einer OD$_{600nm}$ = 0.6 wurde die Kultur zentrifugiert (2300 rpm; 5 min) und mit H$_2$O in einem Volumen von 50 ml gewaschen. Das Hefe-Pellet wurde anschließend in 1.5 ml TE/LiAc-Lösung resuspendiert.

In einem Reaktionsgefäss wurden 100 µg Lachssperma-DNA (Sigma) mit 0.1 µg der Plasmid-DNA vermischt. Es wurden dann 0.6 ml PEG/TE/LiAC-Lösung zugegeben und dieser Ansatz bei 100 rpm für 30 min schüttelnd inkubiert. Im Anschluß wurden 70 ml DMSO zugegeben und die Zellen einem Hitzeschock über 15 min bei 42°C ausgesetzt. Danach wurden die Zellen unmittelbar auf Eis gesetzt und kurz (5 sec) bei 10000 rpm zentrifugiert. Das Pellet wurde in 50 µl H$_2$O resuspendiert und auf Platten ausgestrichen.

3.5.5 Kotransformation

Die Hefe L40 wurde zunächst mit pBTM116-Bcr-Abl durch Hitzeschock transformiert und auf einer SD-Platte (SD-Medium mit 1.6% „Bacto Agar“ (-Trp) ausgestrichen. Anschließend wurden Einzelklone in 5 ml YPD-Medium vermehrt und nach zwei Verdünnungsschritten in 1000 ml bei 30°C kultiviert. Als nächstes erfolgte eine Kotransformation von 100 µg DNA der cDNA-Bibliothek und 20 mg Lachssperma-DNA. Die Hefen wurden auf 80 Platten (-THULL) (Dropout-Lösung ohne Trp, Leu, Lys, His, Ura mit 1.6% „Bacto Agar“ [Difco]) und einer Platte
(−TL) ausgestrichen und bei 30°C für 3-4 Tage inkubiert. Die Transformationseffizienz wurde anhand des Wachstums auf der −TL-Platte analysiert.

3.5.6 Isolierung von DNA aus Hefen

Die Kolonien auf den Platten (−THULL) wurden in 5 ml Dropout-Lösung (−THULL) über Nacht bei 30 °C inkubiert und anschließend bei 2500 rpm für 5 min zentrifugiert. Das Pellet wurde in 0.2 ml Phenol/Chloroform/Isoamylalkohol (25:24:1) und 0.2 ml Hefe-Lysis-Puffer resuspendiert und dann mit 0.3 g Glass-Beads (Sigma) versetzt. Dieser Ansatz wurde 2 min gevortext und dann zentrifugiert (14000 rpm; 5 min; RT). Anschließend wurde der Überstand mit 0.1 Vol% 3 M NaAc und 2.5 Vol% Ethanol präzipitiert. Nach zwei Waschschritten mit Ethanol (70%ig) wurde das Pellet luftgetrocknet und dann in 50 µl TE-Puffer aufgenommen.

3.5.7 Transformation von DNA in E. coli

3.5.8 Rücktransformation von DNA in Hefen

Um sicherzugehen, daß die Interaktion zwischen dem Köder-Protein (Bcr-Abl) und dem Protein der cDNA-Bibliothek spezifisch war, wurde eine Kontrolle mit dem Protein Lamin durchgeführt. Dazu wurde die präparierte Plasmid-DNA eines interessierenden Klones in Hefe rücktransformiert, die zuvor mit Lamin-Plasmid-DNA transfiziert worden war. Im Falle eines Wachstums der solchermaßen transfizierten Hefe auf einer (−THULL)-Platte, war von einer unspezifischen Interaktion zwischen dem Köder-Protein (Bcr-Abl) und dem Protein der cDNA-Bibliothek auszugehen.
4. Ergebnisse

4.1 Identifikation von F6/HEFL als Interaktionspartner von Bcr-Abl mittels des Yeast-Two-Hybrid-Systems

<table>
<thead>
<tr>
<th></th>
<th>Lamin</th>
<th>Bcr-Abl (WT)</th>
<th>Bcr-Abl (Kin⁻)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a: Wachstum mit HEFL Keine Selektion für Interaktion</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>b: Wachstum mit HEFL Selektion für Interaktion</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

Abb. 12

Die Interaktion von F6/HEFL und Bcr-Abl ist nicht an die Tyrosinkinaseaktivität von Bcr-Abl gebunden
Die obige Tabelle ist eine Zusammenfassung der Hefedaten der Interaktion von HEFL und Bcr-Abl. Bei guter Transfektionseffizienz (reflektiert durch Wachstum auf Agar-Platten ohne die Aminosäuren Trp und Leu, a:) interagierter HEFL sowohl mit Bcr-Abl-Wildtyp (WT) als auch Bcr-Abl-Kinasedefekt (Kin⁻) (reflektiert durch Wachstum auf Agar, dem neben Trp und Leu auch die Aminosäure His fehlt, Zeile, b:). Keine Interaktion erfolgte mit Lamin, einem unspezifischen Kontrollprotein (b:).

Wie in Kap. 3.5.1 beschrieben, ist es das Ziel unserer Arbeitsgruppe, mit Hilfe dieser modifizierten Hefetechnik neue Interaktionspartner für Bcr-Abl zu identifizieren, die für die
4. Ergebnisse

Pathogenese der CML von Bedeutung sind. So ist es auf diese Weise bereits gelungen, neue Adaptormoleküle für Bcr-Abl zu klonieren (Coutinho et al., 2000; Bai et al., 1998).

Nach einer ersten Sequenzierung von 400 Basenpaaren des Klons F6 ergab ein Vergleich mit Sequenzen, die über eine Blast homology search in den über NCBI (National Center of Biotechnological Information) zugänglichen Genbanken erhalten wurden, schließlich, daß es sich hierbei um eine bisher nicht charakterisierte und neue Proteinsequenz handelte, die im Vergleich mit der SH3-Domäne von HEF1 eine Sequenzhomologie von > 60% aufwies (Abb. 13).

<table>
<thead>
<tr>
<th>SH3-Domäne</th>
<th>Homologie: 63 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEFL</td>
<td>KALLARALYDNCPSDELAFKCALTEQHVPESEGWWKCLHLGRQGGLAPNLRL</td>
</tr>
<tr>
<td>HEF1</td>
<td>KNLHARALYDNVECAELAFKGDITVIEQTGGLEGWLCSSHQGIVGFNPWKL</td>
</tr>
<tr>
<td>HEFL</td>
<td>TEVAAARPCPEFFRLGEEAPASSSEETYWQXSWXXYYEQRWSAWEGQPQATQVY</td>
</tr>
<tr>
<td>HEF1</td>
<td>I--------------------GPMQETASS----------------------HEQPSGLQMTFQKL</td>
</tr>
<tr>
<td>HEFL</td>
<td>EPPDPPTSAIRIIECKTLSPPKQAILTLPRVFVSLPLTSQ-VYDVPQTHGPGVVLKEPE</td>
</tr>
<tr>
<td>HEF1</td>
<td>QVPNPQAA-----------------PRTITYQVQ--PYSQNGTGYQVPTGHG-------TQ</td>
</tr>
<tr>
<td>HEFL</td>
<td>KQOLYDIPASPKSLHPDQASQGQVPLSLTTTRAG-QY--------------TLHNP</td>
</tr>
<tr>
<td>HEF1</td>
<td>EGEYVQVPSVQRS---------IGTSSGHPVHVKVGTFTQHVLYVEYPSYKQVYDIPS</td>
</tr>
<tr>
<td>HEFL</td>
<td>QKESWIIDYTPVSQPKSAVNPITLAEERPSRHPASSSTFTYPQPS--RSPSLTQPLN</td>
</tr>
<tr>
<td>HEF1</td>
<td>HHTQGVDIPFSSKQKPVQPSVQGKIKPQ---VYDVPQTKGVYAEPSACRDEAGLEKDY</td>
</tr>
<tr>
<td>HEFL</td>
<td>NNPMQKSLPEIPYSQY----LVPRTFPLDSEVSNK----VPSPSDSPSQGQMTKPNI</td>
</tr>
<tr>
<td>HEF1</td>
<td>DFPPPQRAGRPDKLPGLPGQYVDPQTPCTKAPGDIFTQHYNCDPAAEVPARRHQGSLPNH</td>
</tr>
<tr>
<td>HEFL</td>
<td>DPATKSSVQAGK------LRAKDEVSE--NSAGHNNWSFRRTRTSPSSTPFPR--</td>
</tr>
<tr>
<td>HEF1</td>
<td>PFPQLGQQSQWQDNADYDVPQYVQFLEPPAETSEKANFQERDGQYDPVLYNPPDAKGSRL</td>
</tr>
</tbody>
</table>

Abb. 13

Vergleich der ersten knapp 400 bp der Sequenz von HEFL mit der Sequenz von HEF1. HEFL kodiert eine SH3-Domäne, die 63% homolog ist zu der SH3-Domäne von HEF1.

Letzteres bildet zusammen mit p130Cas und Efs/Sin eine Familie von „Multidomänen“-Adaptor-Proteinen, denen eine bedeutende Rolle bei der Regulation von Zelladhäsion
zugeschrieben wird (Law et al., 1998). Das Klonieren der kompletten cDNA dieser neuen Proteinsequenz, was als wesentlicher Teil der Aufgabenstellung dieser Arbeit im Anschluß noch im einzelnen schildert werden wird, erbrachte eine cDNA-Sequenz, die im Abgleich mit den Sequenzen der Cas-Proteine HEF1/Cas-L, p130Cas und Efs/Sin die höchste Homologie wiederum zu HEF1/Cas-L zeigte (Abb. 20 und nicht gezeigte Daten). Das kodierende Gen nannten wir daher HEFL (HEF1-Like).

4.2 Klonierung der kompletten cDNA von F6/HEFL

4.2.1 3'-RACE erbringt das Stop-Codon einer kleineren Spleiß-Variante von HEFL

3'-RACE (siehe Kap. 3.1.9) wurde durchgeführt, um das 3'-Ende von F6 zu bestimmen. Die Nested-PCR-Reaktion produzierte drei DNA-Fragmente, welche ca. 1.0 sowie 0.4 und 0.3 Kilo-Basenpaare groß waren (Abb.14).

![Marker](image)

Abb. 14

3'-RACE
RACE wurde durchgeführt unter Verwendung einer Milz - cDNA - Bibliothek und Adaptor - sowie genspezifischen Primern (Kap. 3.1.9). Die hier abgebildete nested PCR-Reaktion erbrachte 3 Fragmente, die 1.0, 0.4 und 0.3 kb groß waren. Abb. 14 zeigt ein Foto von dem Gel aus dem diese Fragmente bereits für nachfolgende Analytik mit einem Skalpell ausgeschnitten worden sind. T/A-Klonieren und Sequenzieren ergaben weitere Sequenzen des 3'-Endes von HEFL sowie Sequenzen einer kleineren Spleiß-Variante von HEFL einschließlich des Stop-Codons. Dies zeigte, daß es zwei Spleißvarianten von HEFL gibt.

Die Fragmente wurden dann in einen T/A-Cloning-Vektor kloniert und sequenziert. Das Sequenzierergebnis des 1.0 kb großen Fragments erbrachte die uns bereits bekannten 400 sequenzierten Basenpaare sowie nach zusätzlichen 130 Basenpaaren ein Stop-Codon. Die
übrigen Basenpaare des RACE-Produkts waren nicht translatierte Regionen des 3’-Bereichs von F6/HEFL. Bemerkenswert war, daß die letzten 72 Basenpaare (bp 458-530) vor dem Stop-Codon der RACE-Sequenz von der Sequenz des in Hefe identifizierten Klons F6 divergierten. Letztere war wiederum ab bp 458 annähernd 100% identisch zu einem sequence tag in der Genbank. Das bedeutete, daß von F6/HEFL als Folge alternativen Spießens des primären Transkriptes zwei Produkte existieren mußten, wobei wir durch 3’-RACE das Stop-Codon der kleineren Variante bestimmt hatten (Abb. 15 b, c). Die zugehörige mRNA hat eine Größe von ungefähr 3 kb (siehe Kap. 4.3.1). Die 0.4 kb- und 0.3 kb-Fragmene erbrachten keine weiteren Informationen.

4.2.2 Sequenzanalytik des 3’-Endes des ursprünglich in Hefe identifizierten Klons F6/HEFL erbringt das Stop-Codon der größeren Spießvariante von HEFL

Nachdem in einzelnen Schritten 3006 Basenpaare des in Hefe identifizierten Klons F6 in Richtung des 3’-Endes sequenziert waren, fand sich bei Base 2354 das Thymidin eines TGA-Stop-Codons.

Abb. 15 Schematische Darstellung der DNA-Sequenz der beiden Spießvarianten von HEFL
a: Darstellung der kompletten cDNA von HEFL. Der 5’-Anfang des Gens wurde mithilfe von 5’-RACE definiert. Das 3’-Ende des Gens wurde durch schrittweise Sequenzanalytik des ursprünglich in Hefe identifizierten Klons F6 bestimmt.
b: Schematische Darstellung der kleineren Spießvariante von HEFL. Der 5’-Anfang wurde mithilfe von 5’-RACE (Kap. 4.2.3) definiert. Das 3’-Ende konnte durch 3’-RACE kloniert werden.

4.2.3 Bestimmung des Start-Codons von F6/HEFL durch 5'-RACE

5'-RACE, rapid amplification of cDNA ends (siehe Kap. 3.1.9) wurde durchgeführt, um das Start-Codon von HEFL zu identifizieren. Nachdem sich nach der initialen PCR-Reaktion kein Amplifikationsprodukt nachweisen ließ, konnten nach der nested-PCR-Reaktion drei Banden von 0.3, 0.4 und 0.8 kb Größe über gelektrophoretische Analyse aufgetrennt und isoliert werden (Abb. 16).

![Diagramm](image)

Abb. 16

5'-RACE verifiziert das Start-Codon von HEFL

RACE, rapid amplification of cDNA ends wurde durchgeführt mit einer Milz-cDNA-Bibliothek und dem Adaptor-Primer AP1 sowie dem genspezifischen Primer GSP1. Eine nested PCR-Reaktion mit den Primern AP2 und NGSP1 produzierte drei DNA-Fragmente, die 0.8, 0.4 und 0.3 kb groß waren. T/A-Klonieren und Sequenzieren der Amplifikate erbrachten jeweils ein ATG-Triplett sowie nicht translatierte Bereiche der 5'-Region von HEFL.

Die drei Fragmente wurden zum Sequenzieren in einen T/A-Klonierungs-Vektor kloniert (siehe Kap. 3.1.9). Das Sequenzierergebnis ergab für alle drei Amplifikate nicht
4. Ergebnisse

4.2.4 HEFL besitzt eine interne Eco-R1-Restriktionsstelle

4. Ergebnisse

Abb. 17

Durch Vergleich der durch 3’-RACE erhaltenen Sequenzen (siehe 4.2.1) mit der uns bekannten Sequenz von F6/HEFL ließ sich aber nun bestätigen, daß ein Abschnitt von 182 Basenpaaren vor bis 58 Basenpaare nach der Eco-R1-Restriktionsstelle - ab hier unterschieden sich dann die Sequenzen wieder - identisch war für RACE-Produkt und F6/HEFL (Abb. 15c). Damit war bewiesen, daß die Eco-R1-Restriktionsstelle Teil der Klon
4. Ergebnisse

4.3 Charakterisierung von F6/HEFL auf mRNA- und Proteinebene

4.3.1 Ein Northern Blot zeigt eine verstärkte Expression von HEFL in peripheren Blut-Leukozyten und Milz

Ein 396 Basenpaare langes DNA-Fragment von F6/HEFL, welches den die SH3-Domäne kodierenden Abschnitt umspannte, wurde mit $[^{32}\text{P}]d\text{CTP}$ markiert und als Sonde für einen Northern Blot (siehe Kap. 3.1.10) verwendet, um das Expressionsmuster von HEFL in verschiedenen menschlichen Geweben zu analysieren. Es konnten dadurch zwei verschiedene große, spezifische Transkripte nachgewiesen werden. Zum einen hybridisierte eine mRNA von ca. 5 kb Größe spezifisch mit der radioaktiv markierten DNA-Sonde. Diese mRNA war ubiquitär in verschiedenen Geweben exprimiert wie Kolon, Ovar, Prostata und Thymus. Eine deutlich erhöhte Expression zeigte sich aber in peripheren Blut-Leukozyten und in vergleichsweise dazu etwas geringerem Ausmaß in der Milz. Des weiteren beobachteten wir eine spezifische Hybridisierung der Sonde mit einer ca. 3 kb großen mRNA. Diese wies dasselbe Gewebeeexpressionsmuster auf wie die ca. 5 kb große mRNA und entspricht höchst wahrscheinlich der kleineren Transkriptionsvariante, welche aus einem alternativen Splicingvorgang des HEFL-Gens resultiert. Derselbe Blot wurde mit einer radioaktiv mit $[^{32}\text{P}]d\text{CTP}$ markierten Sonde spezifisch für ß-Actin inkubiert, um die auf dem Northern Blot enthaltene mRNA-Menge der einzelnen Gewebe zu relativieren (Abb. 18).
4. Ergebnisse

4.3.2 Aminosäuresequenz und Domänenstruktur des HEFL-Proteins

Nach Identifikation der kompletten cDNA konnte diese mithilfe eines geeigneten Computerprogramms in die Aminosäuresequenz des HEFL-Proteins übersetzt werden. Abb.19 zeigt die Aminosäuresequenz der größeren Splicevariante von HEFL (die kleinere Splicevariante wurde in Hinblick auf ihre Aminosäuresequenz nicht untersucht und im Rahmen dieser Arbeit auch nicht weitergehend analysiert). Diese bestand aus 783 Aminosäuren und hatte demnach eine kalkulierte Größe von ca. 100 kD. Nach struktureller Analyse der Aminosäuren-Sequenz konnte die Domänenstruktur von HEFL bestimmt werden.

Ein Northern Blot ergibt zwei Transkripte von HEFL von ca. 3 kb und 5 kb
4. Ergebnisse

MKGTGIMDCAPKALLARALYNCPDCSDELAFSRGIDLITILEQHVPESEGWKCLLHGGRGLAPANRLQILEVAADRPCCPPPFLRGLEAAPSEETYQVPTLPRLPPTPGVYPEQMRSWAEGPQPTAQQVYEFPDPTARTIRIEKTLFSPKQAILTLPRVRASLPFTLPSQYVDVPTQRHPVLEKEPKQQLYVIPASPPKAGLHPDQSAGQVPLISVTTLRGGYSTLPNPQKSEWYIDTPVSPGKASVRNTPLPSFASSSRPHALCSSSTTFYNPPGGRSRLTPQLNNVMPPKLSLEPSYGLVLPGTPPFFLEDSVNSKVPSSFSDPSGQQNTKPNIDIPKATSSVSQAGKELEKAKEVSENSAGHNSWFSRTTSPSEPDRLSGGSSDSRASIVSSCTTSDSSSSSESSEALESLDLQVAKETVMALQHKVSSVAGLMFVSRKWRFRDYLANIDAIHRSTDHIEASVREFLDFARGVHTACNLTDSEQLNQRIRDDMQQTISNSYRILLETKESLDNRNPWPEVLTDVQNSPDDELREFMVARMLEDIKRFASIVIANRLLFKRNYEEETVQLTNAEFKEKGYIQQPQRETESHQKSTPSTKQRREDEHSSELLKNNRANICGQNPGLIPQQPSSQTPARKPLSEHCRLYFGALFKAIASAFHGSLSSSQPAAITIQSKLVIMCGQKLVDTLCMETYERDVRNEILRGSSHLCSSLKDVALATKNAVLTYPSAALGHLOQEAEEKLEQHTRQFRGTGOLPA

Abb. 19
Aminosäuresequenz des größeren Spleißprodukts von HEFL (785 As)

Diese setzte sich aus einer N-terminalen SH3-Domäne, einer Substrat-Bindedomäne, bestehend aus einer prolinreichen Region und einer Region mit mehreren SH2-Bindemotiven, einer serinreichen Region und einer C-terminalen Domäne zusammen. Ein Abgleich der Sequenz von HEFL mit den Sequenzen der Cas-Proteine HEF1/Cas-L, p130Cas und Efs/Sin ergab die höchste Homologie zwischen HEF1/Cas-L und HEFL, was zur anfangs (Kap. 4.1) bereits erwähnten Namensgebung von HEFL (HEF-Like) motivierte.

Abb. 20
Schematische Darstellung der Domänenstruktur von HEFL und HEF1/Cas-L mit Angabe der Homologiewerte entsprechender Domänen in Prozent

<table>
<thead>
<tr>
<th>HEFL</th>
<th>SH3</th>
<th>Substrat-Bindedomäne</th>
<th>Serinreiche Region</th>
<th>C-terminale Domäne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homologie</td>
<td>63%</td>
<td>15%</td>
<td>30%</td>
<td>40%</td>
</tr>
</tbody>
</table>

Die aminoterminale SH3-Domäne sowie die carboxyterminale Region wiesen dabei eine signifikante Homologie zu entsprechenden Aminosäure-Sequenzabschnitten von HEF1/
Cas-L auf mit einer Identität von 63% bzw. 40% (Abb. 13, 20 und nicht gezeigte Daten). Dies legte die Vermutung nahe, daß HEFL zur Familie der Cas-Proteine gehört, die sich bislang aus HEF1/Cas-L, p130Cas und Efs/Sin zusammensetzt und die als „Multi-Domänen“-Adaptorproteine in die Regulation der Zelladhäsion involviert sind (Law et al., 1998).

Als nächstes konnte nun die cDNA von HEFL in den Expressionsvektor pcDNA3.1/His C subkloniert werden, um mit transienten Expressionsstudien die Interaktion mit Bcr-Abl zu charakterisieren (siehe Kap. 4.5-4.7). Die Sequenz wurde unter der Accession-Nummer AJ276678 GI: 9650710 bei NCBI hinterlegt.

4.3.3 Ein polyklonaler Kaninchen-Antikörper gegen die SH3-Domäne von HEFL erkennt und präzipitiert ein 105 kD großes Protein

Ein polyklonales Kaninchen-Antiserum gegen HEFL wurde hergestellt. Dazu wurde ein von den ersten 133 Aminosäuren von HEFL kodiertes GST-Fusionsprotein, welches auch die SH3-Domäne von HEFL umspannte, induziert (siehe Kap. 3.2.3) und nach entsprechender Aufreinigung zur Entfernung des GST-Anteils als immunogenes Agens einem Kaninchen injiziert. Dem folgten fünf weitere Booster-Immunisierungen (siehe Kap. 3.4.7). Nach einer Affinitätsreinigung des Kaninchenserums wurde der Kaninchen-Antikörper auf Funktionalität und Spezifität für Western Blot und Immunpräzipitation getestet. Der Antikörper erkannte im Western Blot mit EGFP (enhanced green fluorescent protein) fusioniertes HEFL, welches als Positiv-Kontrolle in Cos1-Zellen überexprimiert worden war.

Die erkannte Bande war 105 kD groß. Da der Antikörper gegen die SH3-Domäne von HEFL gerichtet war, die eine hohe Homologie zu der SH3-Domäne von HEF1 aufwies, war eine Kreuzreaktion mit HEF1 nicht auszuschließen.

Es wurden daher nachfolgende Studien zur Fragestellung der Spezifität des polyklonalen HEFL-Antikörpers durchgeführt. Dadurch gelang der Nachweis, daß der polyklonale HEFL-Antikörper EYFP-fusioniertes und endogenes HEFL spezifisch erkannte, aber nicht HEF1 (Daten nicht gezeigt; entsprechendes Experiment wurde von G. Bresolin aus unserer Arbeitsgruppe durchgeführt). Der polyklonale Antikörper war auch hervorragend dazu geeignet, EGFP-HEFL aus Cos1-Zelllysaten zu präzipitieren (Abb. 24).

Ein polyklonaler Kaninchen-HEFL-Antikörper erkennt HEFL im Western Blot
1 x 10^7 Cos1-Zellen (transient transfiziert mit EGFP (N-terminal) fusioniert an HEFL) wurden lysiert und mit dem polyklonalen Antikörper aus einem affinitätsge reinigten Serum eines immunisierten Kaninchens geblotted (Spalte 1, 2). Die Spezifität war vergleichbar mit einem α-EGFP-Blot (Spalte 3, 4). Endogenes HEFL wandert schneller durch das SDS-Gel (siehe Markierung). Spalten 2 und 4 enthalten nicht transfiziertes Cos1-Lysat.
4. Ergebnisse

Abb. 22
Der polyklonale Kaninchen-HEFL-Antikörper erkennt HEFL als 105 kd großes Protein im Western Blot verschiedener Zell-Lysate
Jeweils 1.7×10^6 Ba/F3-Zellen, Ba/F3-Zellen +Bcr-Abl (Ba/F3-Zellen, die Bcr-Abl exprimieren), Ba/F3-Zellen + Kit 558 (Ba/F3-Zellen, die die konstitutiv aktive Tyrosinkinase-Mutante von c-Kit exprimieren), M-07e-Zellen, M-07e-Zellen + Kit 558 (M-07e-Zellen, die die konstitutiv aktive Tyrosinkinase-Mutante von c-Kit exprimieren) und K562-Zellen wurden lysiert. Je gleiche Mengen der Lysate wurden durch ein 8%iges SDS-Gel aufgetrennt und im Western Blot mit dem Kaninchen-HEFL-Antikörper geblotted. Endogenes HEFL ist durch den Pfeil markiert.

Abb. 23
Der HEFL-Antikörper detektiert HEFL in Zellen von Patienten mit CML
2×10^7 Zellen der Leukämiezelllinie Mo7e und von Patienten mit CML wurden lysiert und die Lysate mittels eines SDS-Gels aufgetrennt (Spalten 1 und 2-5). Anschließend wurde ein Western Blot unter Verwendung des HEFL-Antikörpers durchgeführt.
4. Ergebnisse

Cos1

EGFP - HEFL

Lysate IP: αHEFL

Blot: αHEFL

Spalte 1 2

Abb. 24

Der αHEFL-Antikörper präzipitiert HEFL in Cos1-Zellysaten

1 x 10⁷ Cos1-Zellen (transient transfiziert mit (N-terminal) an HEFL fusioniertem EGFP) wurden lysiert und einer αHEFL-Immünpräzipitation unterzogen. Die gebundenen Proteine wurden mittels eines SDS-Gels aufgetrennt und im Western Blot mit dem αHEFL-Antikörper analysiert (Spalte 2). Spalte 1: Cos1-Lysat, welches EGFP-HEFL exprimiert, wurde auf einem SDS-Gel aufgetrennt und im Western Blot mit dem αHEFL-Antikörper untersucht.

4.4 Untersuchung der Protein-Interaktion zwischen F6/HEFL und Bcr-Abl

4.4.1 F6/HEFL interagiert mit Bcr-Abl im humanen Zellysat (semi-in-vivo)

Nachdem im Hefesystem die spezifische Interaktion von Bcr-Abl als Köderprotein mit HEFL als Zielprotein einer cDNA-Bibliothek aus K562-Zellen gezeigt worden war, mußte in einem nächsten Schritt überprüft werden, ob sich die in Hefe beobachtete Bindung im humanen Zellsystem (semi-in-vivo) reproduzieren ließ und ob es sich nicht um eine indirekt durch ein Hefeprotein vermittelte Interaktion handelte. Zur genau en Untersuchung dieses Sachverhalts sollten GST-Bindungsexperimente mit Lysaten der humanen Bcr-Abl-exprimierenden CML-Zelllinie K562 durchgeführt werden (siehe Kap. 3.4.6). Dazu wurde der Klon F6/HEFL in den Vektor pGEX-4T-3 subkloniert, um die Expression von GST-Fusionsprotein in Bakterien zu ermöglichen (siehe Kap. 3.2.3). Dann wurden 4 x 10⁷ K562-Zellen lysiert und das Lysat bei 4°C über Nacht mit GST-HEFL und GST alleine inkubiert. Die Lysate wurden dann abzentrifugiert und die GST-Proteine gewaschen, um mögliche unspezifisch gebundene Moleküle zu entfernen. Daraufhin wurden die Proben auf einem 8%igem SDS-Polyacrylamid-Gel aufgetrennt (siehe Kap. 3.4.1) und auf eine PVDF-Membran transferiert. Anschließend wurde ein Western Blot durchgeführt (siehe Kap. 3.4.3), wobei der Maus-Antikörper 8e9 verwendet wurde, der spezifisch die Abl-SH2-Domäne erkennt (McWhirter et al., 1993b). Es
konnte schließlich gezeigt werden, daß sowohl Bcr-Abl aber auch c-Abl mit GST-HEFL interagierten, wobei GST alleine weder mit Bcr-Abl noch mit c-Abl interagierte, was die Spezifität der Bindung zwischen Bcr-Abl/c-Abl und GST-HEFL bewies (Daten nicht gezeigt und Abb. 25).

Abb. 25

Die SH3-Domäne von HEFL vermittelt die Bindung an Bcr-Abl und cAbl

1×10^7 K562-Zellen wurden lysiert und die Lysate mit jeweils $5 \mu g$ GSTHEFL, GSTHEFLSH3 und GST inkubiert. Die gebundenen Fraktionen wurden über ein 8%iges SDS-Gel separiert. Anschließend wurde ein Western Blot mit dem Anti-Abl-Antikörper 8e9 durchgeführt. Die Menge an eingesetztem GST-Protein wurde durch Amidoblack-Färbung der Blotting-Membran sichtbar gemacht.

4.4.2 In-vivo-Koimmunpräzipitationsstudie von HEFL mit Bcr-Abl im Cos1-Zellsystem

Cos1-Zellen

![Diagramm](image)

Abb. 26

HEFL interagiert mit Bcr-Abl (Kin-) in einem Koimmunpräzipitationsexperiment

1.5 x 10^6 Cos1-Zellen wurden transient kotransfiziert mit Bcr-Abl (Kin-) und HEFL, das im verwendeten Expressionsvektor pcDNA3.1 mit der Express™-Sequenz gekoppelt war. Nach 48 Stunden Inkubation bei 37°C wurden die Zellen abgeerntet, lysiert und mit den Lysaten eine anti-Express™- Koimmunpräzipitation durchgeführt. Die gebundenen Molekülkomplexe wurden auf einem 9%igen SDS-Gel aufgetrennt und im Western Blot unter Verwendung des Abl-Antikörpers 8e9 und des anti-Express™-Antikörpers analysiert.

Cos1-Zellen wurden dazu mit HEFL im Expressionsvektor pcDNA3.1/His C und Bcr-Abl (Kin-) im Expressionsvektor pcDNA3.1/Zeo (-) transient kotransfiziert und für 48 h kultiviert, um eine ausreichende Expression der Proteine zu ermöglichen. Danach wurden die Zellen abgeerntet und in 1x Lysis-Puffer lysiert. Mit den Lysaten wurde dann unter Verwendung des anti-Express™-Antikörpers ein Koimmunpräzipitationsexperiment (siehe Kap. 3.4.5) durchgeführt, um HEFL, das N-terminal seiner Sequenz mit dem „anti-Xpress™-Antikörper-Epitop“ fusioniert war, und mit ihm interagierende Proteine zu isolieren.
Nach Auftrennung der immunpräzipitierten Komplexe durch SDS-PAGE wurde ein Western Blot durchgeführt. Zur Detektion von HEFL bzw. Bcr-Abl wurden der anti-Express™-Antikörper bzw. der Abl-Antikörper 8e9 verwendet. Dabei konnte festgestellt werden, daß HEFL mit Bcr-Abl(Kin) kopräzipitierte, was die vermutete Kinaseunabhängigkeit der Interaktion bestätigte (Abb. 26).

4.5 Bedeutung der HEFL-SH3-Domäne für die Interaktion von HEFL und Bcr-Abl

4.5.1 Die Interaktion von HEFL und Bcr-Abl scheint über Bindung der HEFL-SH3-Domäne an ein Poly-Prolin-Motiv im C-terminalen Segment des Abl-Teils von Bcr-Abl vermittelt

Mittels der GST-Bindungsstudien konnte gezeigt werden, daß die SH3-Domäne von HEFL ausreichend ist für eine Komplexassoziation mit Bcr-Abl und c-Abl (Kap. 4.4.1). Wie in Abb. 27 schematisch dargestellt besitzt HEFL C-terminal seiner SH3-Domäne unter anderem mehrere PXXP-Motive, die bekanntlich von SH3-Domänen erkannt und gebunden werden (Alexandropoulos et al., 1996).

Abb. 27

Schematische Darstellung der Domänenstruktur von HEFL

SH3: Src-homologe Domäne 3; PXXP: Poly-Prolin-Motiv; SH2: Src-homologe Domäne 2; Ser: Serin; C-terminale Domäne: Carboxy-terminale Domäne
Da auch Abl über eine SH3-Domäne verfügt, bestand prinzipiell die Möglichkeit, daß die Interaktion von HEFL und Bcr-Abl über die Bindung von HEFL an die SH3-Domäne von Abl erfolgt. Um diese Möglichkeit genauer zu untersuchen, sollte eine GST-Bindungsstudie im Cos1-Zellysat durchgeführt werden. Dabei wurde eine SH3-Mutante von HEFL (N-Y-HEFLSH3-Mut, genaue Beschreibung siehe Kap. 4.5.2) verwendet. Diese war N-terminal mit einer für EYFP (enhanced yellow fluorescent protein) kodierenden Sequenz fusioniert, die Träger eines antigenen Epitops für einen kommerziell erhältlichen Antikörper (anti-EGFP-Antikörper) ist.

Abb. 28

HEFL interagiert nicht mit der Abl-SH3-Domäne in einem GST-Bindungsexperiment (Pull down)

a: 1 x 10^7 Cos1-Zellen (transient transfiziert mit N-Y-HEFLSH3 (Trp>51Lys)-Mut) wurden lysiert und mit 5 μg GSTAblSH3 inkubiert. Die gebundene Fraktion wurde mittels eines 8%igen SDS-Gels aufgetrennt und im Western Blot mit dem Anti-EGFP-Antikörper analysiert (Blot B). Mit N-Y-HEFLSH3(Trp>51Lys)-Mut transient transfiziertes Cos1-Zellysat wurde durch ein 8%iges SDS-Gel aufgetrennt und im Western Blot mit dem Anti-EGFP-Antikörper analysiert (Blot A).

![Bcr-Abl Diagram](image)

Abb. 29

Schematische Darstellung des Bindungsmechanismus der Interaktion von HEFL und Bcr-Abl

4.5.2 Die HEFL-SH3-Domäne ist nicht alleine für die Interaktion mit Bcr-Abl verantwortlich

GST-Bindungsstudien hatten gezeigt, daß der SH3-Domäne von HEFL bei der Interaktion von HEFL und Bcr-Abl eine bedeutende Funktion zukommt. In Anbetracht dieser Erkenntnis stellte sich aber die Frage, in welchem Ausmaß die SH3-Domäne von HEFL an der Ausbildung des Komplexes zwischen Bcr-Abl und HEFL beteiligt war. Zur Abklärung dieser Fragestellung wurde eine SH3-Mutante von HEFL kloniert, um eine Interaktion über die SH3-Domäne auszuschließen. Zur Konstruktion der SH3-Mutante wurde zunächst mit Hilfe der PCR-Mutagenese (siehe Kap. 3.1.6.1) eine Punktmutation in die die SH3-Domäne

Abb. 30
Eine SH3-Mutante von HEFL interagiert mit Bcr-Abl (Kin+).
1.5 x 10⁶ Cos1-Zellen wurden transient kotransfiziert mit entweder HEFL (Wt) oder HEFLSH3(Trp51>Lys)-Mut und Bcr-Abl (Kin+). Nach 48 Stunden Inkubation bei 37°C wurden die Zellen abgeerntet und lysiert. Das Lysat wurde einer anti-Express™-Koimmunpräzipitation unterzogen. Die präzipitierten Komplexe wurden mittels eines 8%igen SDS-Gels aufgetrennt und im Western Blot mit dem Abl-Antikörper 8e9 und dem anti-EGFP-Antikörper analysiert.

Dies bedeutete, daß die Interaktion zwischen HEFL und Bcr-Abl nicht direkt und ausschließlich über die HEFL-SH3-Domäne vermittelt wurde, sondern eher auf einem indirekten Mechanismus beruhte, der eventuell weitere Moleküle involviert. Letzteres wäre eine Parallele zum Bindungsmechanismus von Bcr-Abl und dem HEFL-Homolog HEF1, welches über das Adaptormolekül Crkl mit Bcr-Abl assoziiert (de Jong et al., 1997).
4.6 Die Interaktion von HEFL mit Bcr-Abl (Wt) führt zur Phosphorylierung von HEFL

Cos1-Zellen

Abb. 31

Die Interaktion von HEFL mit Bcr-Abl (Wt) führt zur Phosphorylierung von HEFL

1.5x10^6 Cos1-Zellen wurden transient kontransfiziert mit HEFL (Wt) oder HEFLSH3(Trp51>Lys)-Mut (beide Konstrukte waren im verwendeten Expressionsvektor pcDNA3.1 mit der Express™ - Sequenz gekoppelt) und Bcr-Abl Kin oder Bcr-Abl (Wt). Nach 48 Stunden Inkubation bei 37°C wurden die Zellen abgeerntet und lysiert. Mit dem Lysat wurde ein Kommmunpräzipitationsexperiment mit dem anti-Express™ (Ex) - Antikörper durchgeführt. Die präzipitierten Komplexe wurden mittels eines 8%igen SDS-Gels aufgetrennt und im Western Blot mit dem Abl-Antikörper 8e9 und dem Kaninchen-HEFL-Antikörper (Daten nicht gezeigt) sowie dem gegen Phosphotyrosin gerichteten Antikörper PY20 analysiert.
5. Diskussion

5.1 Klonierung des HEFL-Gens

Klonierung der kompletten cDNA:

Durch die Anwendung der RACE (Rapid Amplification of cDNA Ends) - Methode und Sequenzanalytik gelang es, die komplette cDNA des die SH3-Domäne von Klon F6 kodierenden Gens zu klonieren. Sequenzvergleiche zeigten wiederum eine hohe Homologie zu dem Cas-Protein HEF1. Das kodierende Gen nannten wir daher HEFL (HEF-Like).

Mittels 3’-RACE konnte das Stop-Codon einer kleineren Spleißvariante von HEFL bestimmt werden. Dabei zeigte sich, daß der Großteil der Sequenz bereits durch die im Hefesystem identifizierte cDNA des Klon F6 kloniert worden war. Lediglich 72 Basenpaare fehlten bis zum Ende dieser Spleißvariante und konnten durch 3’-RACE gefunden wurden. Da die letzten 72 Basenpaare (bp 458-530) vor dem Stop-Codon der durch RACE isolierten Sequenz von der Sequenz des in Hefe identifizierten Klon F6 divergierten und letztere aber wiederum ab bp 458 annähernd 100% identisch war zu einem *sequence tag* in der Genbank, bedeutete dies, daß von F6/HEFL als Folge alternativen Spleißens des primären Transkriptes zwei Produkte existieren mußten, wobei wir durch 3’-RACE das Stop-Codon der kleineren Variante bestimmt hatten. Daher wurde die ursprünglich im *yeast two-hybrid screen* identifizierte cDNA-Sequenz von Klon F6 schrittweise in 3’-Richtung sequenziert. Schließlich konnte so das 3’-Ende mit dem Stop-Codon der langen Spleißvariante des HEFL-Gens definiert werden (s. 4.2). Diese wurde in den beschriebenen Experimenten verwendet.

Bestimmung der mRNA-Größe und des Gewebeexpressionsmusters von HEFL durch Northern Blot:
Ein Northern Blot wurde durchgeführt, um das Expressionsmuster von HEFL in verschiedenen menschlichen Geweben zu analysieren. Es konnten dadurch zwei verschieden große, spezifische Transkriptes nachgewiesen werden. Zum einen hybridisierte eine mRNA von ca. 5 kb Größe spezifisch mit der radioaktiv markierten DNA-Sonde. Diese mRNA war ubiquitär in verschiedenen Geweben exprimiert wie Kolon, Ovar, Prostata und Thymus. Eine deutlich erhöhte Expression zeigte sich aber in peripheren Blut-Leukozyten und in vergleichsweise dazu etwas geringerem Ausmaß in der Milz. Damit weist HEFL ein anderes Verteilungsmuster auf als HEF1, welches vornehmlich in epithelialen Zellen aus Lungen- und Brustgewebe exprimiert wird (Law *et al.*, 1998). Des weiteren wurde eine spezifische Hybridisierung der Sonde mit einer ca. 3 kb großen mRNA beobachtet. Diese wies dasselbe Gewebeexpressionsmuster auf wie die ca. 5 kb große mRNA und entspricht höchst wahrscheinlich der kleineren Transkriptionsvariante, welche aus einem alternativen...

Herstellung eines polyklonalen Antikörpers gegen das HEFL-Protein:

Der polyklonale Antikörper war auch hervorragend dazu geeignet, EGFP-HEFL aus Cos1-Zellysaten zu präzipitieren und war daher in in-vivo-Koimmunpräzipitationsstudien einsetzbar.

Nachdem mit der Identifikation von Start und Ende die komplette cDNA-Sequenz von HEFL kloniert war, konnte die von ihr kodierte Aminosäuresequenz bestimmt werden.
5. Diskussion

5.2 HEFL hat die Domänenstruktur eines Multi-Adaptor-Proteins der Cas-Protein-Familie

Strukturanalysen erbrachten strukturelle Charakteristika von Proteinen der Cas-Familie, darunter eine N-terminale SH3-Domäne, eine prolinreiche Region, eine Region mit SH2-Liganden-Stellen, eine Serin-reiche Region sowie einen konservierten C-Terminus. Im direkten Sequenzvergleich mit den Cas-Proteinen p130^{Cas}, HEF1/Cas-L und Efs/Sin war die Homologie zwischen der HEFL-cDNA und HEF1/Cas-L am deutlichsten, mit den höchsten Homologiewerten für die N-terminale SH3-Domäne und die C-terminale Domäne (Abb. 13, 20 und nicht gezeigte Daten). Die SH3-Domäne von HEFL weist eine Ähnlichkeit von 83% auf zur SH3-Domäne von HEF1. Dieser auf dem Vergleich der Aminosäuresequenz beruhende hohe Grad der Konservierung spiegelt sich in den funktionellen Eigenschaften der beiden Proteine wider. So konnte in weiterführenden Experimenten gezeigt werden, daß - wie für HEF1 und p130^{Cas} bereits gezeigt - auch HEFL mit FAK interagiert und im Zuge dessen phosphoryliert wird (Bresolin, 2000). Der Assoziation der Cas-Proteine mit FAK, insbesondere der des an fokalen Adhäsionsstellen lokalisierter Proteins p130^{Cas}, wird dabei zusammen mit anderen zytoskelettalen Proteinen wie Paxillin, Talin und Tensin eine Bedeutung im Rahmen der Kontrolle der Zellmorphologie zugeschrieben als Reaktion auf die Integrin-vermittelte Zelladhäsion an extrazelluläre Matrix. Eine Beeinflussung der Regulation der Funktion von p130^{Cas} durch konstitutive Phosphorylierung infolge maligner Transformation könnte daher an der Ausbildung der charakteristischen morphologischen Eigenschaften transformierter Zellen mitwirken (Petch et al., 1995, Polte et al., 1995, Law et al, 1998). HEF1/Cas-L und p130^{Cas} binden dabei direkt mit ihrer SH3-Domäne an jeweils unterschiedliche Poly-Prolin-Sequenzmotive im Bereich des C-Terminus von FAK (Polte et al., 1995, Law et al., 1996). Im Unterschied dazu konnte für HEFL eine Interaktion mit FAK aber ebenso mit einer SH3-Deletionsmutante von HEFL gezeigt werden. Allerdings konnte für p130^{Cas} auch eine Assoziation mit der SH3-Domäne von FAK nachgewiesen werden (Polte et al., 1995). Da HEFL wie p130^{Cas} über eine Prolin-reiche Region mit vielen PXXP-Motiven verfügt, die als Konsensussequenz für SH3-Domänene dienen können, bleibt daher zu spekulieren, ob HEFL über eines seiner PXXP-Motive an die SH3-Domäne von FAK bindet. Was die Phosphorylierung von HEFL durch FAK betrifft, fiel auf, daß diese schwächer ausfällt im Vergleich zu HEF1. Dies ist möglicherweise bedingt durch das Fehlen des für Cas-Proteine typischen YDYVHL-Motivs bei HEFL. Dieses dient FAK als primäre Phosphorylierungsstelle bei den Cas-Proteinen und ermöglicht somit die Assoziation der Cas-Proteine mit Src, welche die prozessive Phosphorylierung weiterer SH2-Bindemotive der Cas-Proteine bewerkstelligt. Diese können dann wiederum als Bindestellen für
5. Diskussion

Gegensatz dazu wirkten die zahlreichen SH2-Bindesstellen im unphosphorylierten Zustand als Negativ-Regulatoren des Cas-Protein-C-Terminus (Law et al., 1996). Zusammengefaßt läßt sich in diesem hypothetischen Modell konstatieren, daß die für die Cas-Proteinfamilie charakteristische Domänenstruktur von HEFL die komplexe Assoziation mit multiplen Signal molekülen ermöglicht und darüber die Regulation des Aktinzytoskeletts koordiniert. Dies wäre eine Funktion, die für den Erwerb der invasiven Wachstumsfähigkeit maligner Zellen eine bedeutende Rolle spielen könnte.

5.3 Charakterisierung der Interaktion von HEFL mit Bcr-Abl

HEFL interagiert mit Bcr-Abl im humanen Zellysat:

Die SH3-Domäne von HEFL bindet im Abl-Teil von Bcr-Abl:

In einem weiteren GST-Bindungsexperiment mit einem GST-Fusionsprotein, was nur aus der SH3-Domäne von HEFL und der Glutathion bindenden Domäne des Enzyms Glutation-S-Transferase bestand, konnte zudem bewiesen werden, daß für die Interaktion von HEFL mit Bcr-Abl die SH3-Domäne von HEFL ausreichend ist (Abb. 25). Ein interessanter Aspekt dieser Experimente war, daß neben Bcr-Abl auch c-Abl einen Komplex mit HEFL bildete und noch dazu mit einer signifikant höheren Affinität im Vergleich zu Bcr-Abl. Eine mögliche Erklärung wäre, daß im Unterschied zu endogenem Abl die Bindestellen für die SH3-Domäne von HEFL bei Bcr-Abl bereits besetzt sind durch endogenes HEFL oder andere Proteine, möglicherweise aus der Cas-Familie. Eine weitere Charakterisierung der Interaktion zwischen HEFL und Bcr-Abl war daher notwendig. Aus Kenntnissen von der Domänenstruktur von HEFL war bekannt, daß HEFL eine Reihe von PXXP-Motiven besitzt,
5. Diskussion

Die Komplexforamtion von HEFL mit Bcr-Abl ist nicht an dessen Kinaseaktivität gebunden:

Die Interaktion von HEFL mit Bcr-Abl führt zur Phosphorylierung von HEFL:
Klärung dieser Fragen wäre selbstverständlich prinzipiell erforderlich, die Direktheit der Phosphorylierung von HEFL durch c-Abl oder FAK nachzuweisen.

5.4 HEFL scheint in den Integrinsignalweg involviert zu sein

Northern Blot-Analysen zeigten, daß HEFL ubiquitär in verschiedenen Geweben exprimiert war mit verstärkter Expression in peripheren Blutleukozyten und Milz.

Es wurde ein Antikörper gegen den N-Terminus von HEFL hergestellt. Damit gelang die spezifische Detektion von HEFL als Protein von 105 kD Größe im Western Blot sowie die Immunpräzipitation von endogenem und überexprimiertem HEFL.

In GST-Bindungsstudien und in Koimmunpräzipitationsstudien konnte eine Interaktion von HEFL mit Bcr-Abl sowohl im humanen Zellysat semi-in-vivo bzw. in vivo nachgewiesen werden. Dabei konnte gezeigt werden, daß die Assoziation von HEFL mit Bcr-Abl zumindest teilweise über die SH3-Domäne von HEFL und wahrscheinlich den C-Terminus von Abl im Bcr-Abl-Protein vermittelt wird.

Experimente mit kinaseinaktiven Mutanten von Bcr-Abl bestätigten die in Hefe beobachtete Phosphotyrosinunabhängigkeit der Interaktion von HEFL mit Bcr-Abl. Dabei konnte gezeigt werden, daß HEFL durch die Assoziation mit Bcr-Abl phosphoryliert wird.

7. Literaturverzeichnis

Alexandropoulos, K., Baltimore, D. Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel p130Cas-related protein, Sin. Genes Dev. 10 (1996) 1341-1355

Kozak, M. Interpreting cDNA sequences: some insights from studies on translation. Mamm Genome. 7 (1996) 563-574

Sawyers, C.L., Callahan, W., Witte, O.N. Dominant negative MYC blocks transformation by ABL oncogenes. Cell 70 (1992a) 901-910

Van Etten, R.A., Jackson, P., Baltimore, D. The mouse type IV c-Abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmatic localization. Cell 58 (1989) 669-678

8. Abbildungsverzeichnis

Abb. 1: Zytogenetik der CML (nach Kurzrock et al., 1988; Rabbitts, 1994) 7
Abb. 2: Phasenhafter Verlauf der Ph+ - CML (nach Staib et al., 1998) 8
Abb. 3: Inhibitionsmechanismen (-) der c-Abl Tyrosinkinase (nach Wang, 1993) 12
Abb. 4: Schematische Darstellung der Domänenstruktur von c-Abl 13
Abb. 5: Schematische Darstellung der Domänenstruktur von Bcr-Abl 14
Abb. 6: Schematische Darstellung der Domänenstruktur von c-Abl, c-Bcr und Bcr-Abl (nach Pendergast, 2001) ... 15
Abb. 7: Zielproteine der Bcr-Abl-Tyrosin-Kinase (nach Pendergast, 2001) 16
Abb. 8: Schematische Darstellung der PCR-Mutagenese mittels „Site directed mutagenesis“ .. 34
Abb. 9: RACE (Rapid Amplification of cDNA ends) ... 36
Abb. 10: Schematische Darstellung von Primern und cDNA-Matrize bei der RACE-Methode .. 38
Abb. 11: Schematische Darstellung des modifizierten Yeast-Two-Hybrid-Systems 51
Abb. 12: Die Interaktion von F6/HEFL und Bcr-Abl ist nicht an die Tyrosinkinaseaktivität von Bcr-Abl gebunden ... 55
Abb. 13: Vergleich der Sequenz von HEFL mit der Sequenz von HEF1 56
Abb. 14: 3'-RACE ... 57
Abb. 15: Schematische Darstellung der DNA-Sequenz der beiden Spleißvarianten von HEFL .. 58
Abb. 16: 5'-RACE verifiziert das Start-Codon von HEFL .. 59
Abb. 18: Ein Northern Blot ergibt zwei HEFL-Transkripte von ca. 3 und 5 kb 63
Abb. 19: Die von der kompletten cDNA von HEFL kodierte Aminosäuresequenz (785 AS). 64
Abb. 20: Schematische Darstellung der Domänenstruktur von HEFL und HEF1/Cas-L mit Angabe der Homologiewerte entsprechender Domänen in Prozent 64
Abb. 21: Ein polyklonaler Kaninchen-anti-HEFL-Antikörper erkennt HEFL im Western Blot .. 66
Abb. 22: Der polyklonalen Kaninchen-anti-HEFL-Antikörper erkennt HEFL als 105 KD großes Protein im Western Blot verschiedener Zell-Lysate 67
Abb. 23: Der anti-HEFL-Antikörper detektiert HEFL in Zellen von Patienten mit CML 67
Abb. 24: Der anti-HEFL-Antikörper präzipitiert HEFL in Cos-1-Zellysaten 68
Die SH3-Domäne von HEFL vermittelt die Bindung an Bcr-Abl und cAbl.

HEFL interagiert mit Bcr-Abl (Kin') in einem Koimmunpräzipitationsexperiment.

Schematische Darstellung der Domänenstruktur von HEFL.

HEFL interagiert nicht mit der Abl-SH3-Domäne in einem GST-Bindungs-Experiment.

Schematische Darstellung des Bindungsmechanismus der Interaktion von HEFL und Bcr-Abl.

Eine SH3-Mutante von HEFL interagiert mit Bcr-Abl (Kin').

Die Interaktion von HEFL mit Bcr-Abl(Wt) führt zur Phosphorylierung von HEFL.
9. Danksagung

Ganz herzlich bedanken möchte ich mich bei Herrn Prof. Dr. Christian Peschel, der mir das erforderliche Umfeld mit hervorragenden Arbeitsbedingungen im hämatologischen Forschungslabor des Klinikums rechts der Isar der Technischen Universität München zur Verfügung gestellt und mir die Anfertigung dieser Arbeit ermöglicht hat.

Mein ganz besonderer Dank gilt meinem Doktorvater, Herrn Prof. Dr. Justus Duyster, der mir das Thema bereitgestellt und diese Arbeit mit hervorragender Fachkompetenz zu jeder Zeit wissenschaftlich betreut sowie es verstanden hat, durch seine faszinierende und energische Begeisterung an der Sache eine große Motivation zu vermitteln.

Ebenso herzlich bedanken möchte ich mich bei Herrn Thomas Jahn, für seine vorzügliche Anleitung beim Erlernen der Arbeitstechniken und die stete Betreuung und Hilfestellung bei allen Experimenten und wissenschaftlichen Fragestellungen.

Herzlich bedanken möchte ich mich auch bei Herrn Dr. Florian Bassermann, Herrn Dr. Cornelius Miething, Herrn Jochen Metzger für wertvolle Hilfen bei der Anfertigung dieser Arbeit und ihre gute Laune, die ein angenehmes Arbeitsklima erzeugt hat, sowie bei Frau Dr. Sunita Coutinho und Herrn Dr. Ren-Yuan Bai für ihre selbstverständliche Hilfestellung bei der Arbeit im Labor. Ebenfalls bedanken möchte ich mich bei Frau Petra Seipel, Frau Dr. Susanne Urschel, Frau Claudia Mugler und Herrn Dariush Shirvani, die mir alle immer hilfsbereit zur Seite standen.

Ein herzliches Dankeschön auch an alle Mitarbeiter der Arbeitsgruppe Bernhard für die freundschaftliche Zusammenarbeit und ein gutes Arbeitsklima.