Dynamik der Heart Rate Turbulence:

ein unabhängiger Risikoprädiktor nach Herzinfarkt

Patricia Schuster

Vollständiger Abdruck der von der Fakultät für Medizin der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Medizin genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. D. Neumeier
Prüfer der Dissertation:

1. apl. Prof. Dr. G. Schmidt
2. Univ.-Prof. A. Kastrati

Die Dissertation wurde am 09.09.2004 bei der Technischen Universität München eingereicht und durch die Fakultät für Medizin am 17.11.2004 angenommen.
meinen Eltern
Inhaltsverzeichnis

1 Einleitung .. 6
2 Methodik ... 7
 2.1 Patienten ... 7
 2.2 Holter-Aufzeichnungen ... 8
 2.3 Filterkriterien .. 9
 2.4 Berechnung der HRT (allgemein) .. 9
 2.5 Beziehung zwischen TS und zugrundeliegender Herzfrequenz sowie Berechnung der Turbulence Dynamics .. 11
 2.6 Statistische Analysen ... 12
3 Ergebnisse ... 13
 3.1 Assoziation der TD mit der Mortalität .. 15
 3.2 Univariate Analyse ... 15
 3.3 Multivariate Analyse .. 15
 3.4 Kaplan-Meier Überlebensanalyse ... 17
4 Diskussion ... 18
5 Zusammenfassung .. 22
Abbildungsverzeichnis

Abbildung 1: Typische HRT-Reaktion bei einem Postinfarktpatienten 10
Abbildung 2: Beziehung zwischen Turbulence Slope (TS) und zugrundeliegender
Herzfrequenz (HF\textsubscript{VES}) sowie Berechnung der Turbulence Dynamics (TD) 14
Abbildung 3: Kaplan-Meier Überlebenskurven der Studienpatienten 17
Abbildung 4: Mögliche Ursachen der Herzfrequenzabhängigkeit der Heart Rate Turbulence
... 20
Tabellenverzeichnis

Tabelle 1: Patientencharakteristik der Studienpopulation (n=608) ... 8
Tabelle 2: Statistische Assoziation der Risikoparameter und der Behandlung mit der
 Gesamtmortalität sowie univariate und multivariate Analyse ... 16
Abkürzungsverzeichnis

bpm beats per minute
CSD Carotissinusdruck
BRS Baroreflexsensitivität
EKG Elektrokardiogramm
EMIAT European Myocardial Infarction Amiodarone Trial
HF Herzfrequenz
HF_{VES} der VES zugrundeliegenden Herzfrequenz
HRT Heart Rate Turbulence
HRV Heart Rate Variability
Hz Hertz
KI Konfidenzintervall
LVEF linksventrikuläre Auswurffraktion
ms Millisekunde
Nr. Nummer
nsVT nichtanhaltende ventrikuläre Tachykardie
RRI Schlag-zu-Schlag-Intervall
s Sekunde
SDNN Standardabweichung der Normal-zu-Normal-Intervalle
SR Sinusrhythmus
TD Turbulence Dynamics
TS Turbulence Slope
TO Turbulence Onset
VES ventrikuläre Extrasystole
VT ventrikuläre Tachykardie
1 Einleitung

2 Methodik

2.1 Patienten

Die Arbeit basiert auf einer retrospektiven Auswertung der Daten des European Myocardial Infarction Amiodarone Trial (EMIAT) [14]. EMIAT schloß 1486 Überlebende eines akuten Herzinfarktes ein. Einstiegskriterien waren ein Herzinfarkt, der vor 5-21 Tagen stattgefunden hat, ein Alter ≤ 75 Jahre sowie eine linksventrikuläre Auswurffraktion (LVEF) ≤ 40 %. Ausschlusskriterien waren Bradyarrhythmien oder Kontraindikationen gegen Amiodarone.

Tabelle 1: Patientencharakteristik der Studienpopulation (n=608)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter des Patienten (Jahre)</td>
<td>62 (9)</td>
</tr>
<tr>
<td>Frauen (%)</td>
<td>14</td>
</tr>
<tr>
<td>Vorhandensein eines Diabetes mellitus (%)</td>
<td>18</td>
</tr>
<tr>
<td>Re-Infarkt (%)</td>
<td>39</td>
</tr>
<tr>
<td>Mittleres RR-Intervall (ms)</td>
<td>814 (134)</td>
</tr>
<tr>
<td>HRV Index (units)</td>
<td>26.1 (10.4)</td>
</tr>
<tr>
<td>Vorhandensein von nichtanhaltenden VTs* (%)</td>
<td>36</td>
</tr>
<tr>
<td>LVEF** (%)</td>
<td>29 (7)</td>
</tr>
<tr>
<td>Turbulence Onset (%)</td>
<td>-0.97 (1.6)</td>
</tr>
<tr>
<td>Turbulence Slope (ms/RR)</td>
<td>4.00 (3.96)</td>
</tr>
<tr>
<td>Thrombolyse (%)</td>
<td>55</td>
</tr>
<tr>
<td>Behandlung mit Amiodarone (%)</td>
<td>50</td>
</tr>
<tr>
<td>Behandlung mit Betablockern (%)</td>
<td>37</td>
</tr>
</tbody>
</table>

* ventrikuläre Tachykardien (dokumentiert im Langzeit-EKG)
** linksventrikuläre Auswurffraktion

2.2 Holter-Aufzeichnungen

Bei allen Patienten wurde in der zweiten oder dritten Woche nach Myokardinfarkt ein 24-Stunden-Holter EKG (Marquette Medical Systems, WI, USA, Aufzeichnungsfrequenz 128 Hz) angefertigt. Die Aufzeichnungsbänder wurden von den Investigatoren der EMIAT Studie ausgewertet. Der Technischen Universität München wurden die Schlag-zu-Schlag-Intervalle (RR-Intervalle) sowie die zugehörigen Schlagklassifikationen (Sinusschlag, ventrikuläre Extrasystole, Artefakt etc.) elektronisch übermittelt.
2.3 Filterkriterien

Die Berechnung der HRT liefert nur dann sinnvolle Ergebnisse, wenn sichergestellt ist, daß die Serie der RR-Intervalle vor und nach der Extrasystole frei von Artefakten ist. Zudem muß der Extrasystole eine kompensatorische Pause folgen. Folgende Kriterien müssen erfüllt sein, damit eine Extrasystole zur Berechnung der HRT verwendet werden kann [35]:

1.) Kopplungsintervall der VES \(\leq \) vorangehendes Sinusintervall
2.) Summe von Kopplungsintervall und postextrasystolischer Pause \(\geq 150 \% \) des vorangehenden Sinusintervalls
3.) Artefakt- und arrhythmiefreier Sinusrhythmus von \(\geq 3 \) Sinusintervallen vor der VES und \(\geq 15 \) Sinusintervallen nach der VES. Ein RR-Intervall wurde dann als Nicht-Sinusintervall klassifiziert, wenn es < 300 ms oder > 2000 ms war, oder die Differenz zum Vorintervall > 200 ms oder > 20 \% betrug.

2.4 Berechnung der HRT (allgemein)

Da sich die postextrasystolischen Fluktuationen der RR-Intervalle im Bereich von Millisekunden abspielen und von Herzfrequenzvariabilität anderen Ursprungs (Atmung, Streß, körperliche Anstrengung etc.) überlagert werden, wird die HRT in einem sogenannten signalgemittelten lokalen Tachogramm dargestellt [27]. Hierzu werden die RR-Intervalle, welche die einzelnen VES umgeben, gegen ihre relative Position zur VES aufgetragen und anschließend zum sogenannten „signalgemittelten lokalen Tachogramm“ gemittelt. Abbildung 1 zeigt ein signalgemitteltes Tachogramm bei einem Postinfarktpatienten mit normaler HRT.
Die HRT wird durch zwei einfache numerische Parameter quantifiziert [27]. Die initiale Herzfrequenzbeschleunigung (RR-Intervall-Verkürzung) wird durch den Turbulence Onset (TO) quantifiziert. Er ist definiert als die Differenz zwischen dem Mittelwert der ersten beiden RR-Intervalle nach der VES und den letzten beiden RR-Intervallen vor der VES geteilt durch den Mittelwert der letzten beiden RR-Intervalle vor der VES.

\[
\text{Turbulence Onset} = \left(\frac{(RR_i + RR_{i+1}) - (RR_{i-2} + RR_{i+1})}{(RR_{i-2} + RR_{i-1})} \right) \times 100,
\]

wobei RR_i das i-te RR Intervall nach der kompensatorischen Pause (i > 0) bzw. vor dem Kopplungsintervall der VES (i < 0) ist. Ein TO > 0 % entspricht daher einer Herzfrequenzverlängerung (RR-Intervall-Verlängerung), ein TO < 0 % einer Herzfrequenzbeschleunigung (RR-Intervall-Verkürzung). Der optimale Cut-off Wert für den

Abbildung 1: Typische HRT-Reaktion bei einem Postinfarktpatienten. Die schwarze Kurve zeigt das signalgemittelte lokale Tachogramm, das aus den lokalen Tachogrammen einzelner ventrikulärer Extrasystolen (graue Kurven) gemittelt wird.
TO (zur Abgrenzung einer normalen von einer pathologischen Reaktion) beträgt 0 %, d.h. wenn der TO < 0 % ist, so ist der TO normal.

Die darauffolgende Herzfrequenzentschleunigung wird durch den sogenannten Turbulence Slope (TS) quantifiziert. Dieser ist definiert als die Steigung der steilsten Regressionsgeraden, die man durch fünf konsekutive RR-Intervalle innerhalb des ersten und zwanzigsten RR-Intervall nach der VES legen kann. Die Einheit des TS ist ms/RR-Intervall. Der optimale Cut-off Wert liegt bei 2,5 ms/RR-Intervall, d.h. ist der TS ≥ 2,5 ms/RR-Intervall, so ist der TS normal.

In dieser Arbeit wird ausschließlich der TS als Maß der HRT verwendet.

2.5 Beziehung zwischen TS und zugrundeliegender Herzfrequenz sowie Berechnung der Turbulence Dynamics

Ziel dieser Arbeit ist es, die Beziehung zwischen TS und der der VES zugrundeliegenden Herzfrequenz (HF$_{VES}$) zu untersuchen. HF$_{VES}$ wurde definiert als die durchschnittliche Herzfrequenz der letzten drei RR-Intervalle vor einer VES.

Zunächst wurden die VES eines jeden Patienten nach HF$_{VES}$ sortiert. Für jeweils fünf VES entsprechend dieser Ordnung wurde ein signalgemitteltes Tachogramm (s.o.) erstellt und der Turbulence Slope (TS) sowie die zugehörige HF$_{VES}$ bestimmt. Wurden bei einem Patienten beispielsweise 100 für die Berechnung der HRT geeignete VES über 24 Stunden aufgezeichnet, so wurden insgesamt 96 signalgemittelte Tachogramme erstellt (VES #1-5, VES #2-6, VES #3-7, ... VES #96-100), aus denen jeweils 96 TS und zugehörige 96 HF$_{VES}$ bestimmt wurden. Dieser Mittelungsprozess (aus jeweils fünf VES) ist notwendig, um (analog zum Originalverfahren) VES-unabhängige Einflußfaktoren auf die HRT „herauszumitteln“. Die Verwendung von jeweils fünf VES (und nicht z.B. 10 VES) zur Mittelung ist ein Kompromiß aus Genauigkeit und Datendichte.

Die Beziehung zwischen HF$_{VES}$ und TS wurde mit Hilfe der linearen Regressionsanalyse untersucht.

Retrospektiv wurde ein numerischer Parameter, die sogenannte Turbulence Dynamics (TD), entwickelt, um die Beziehung zwischen HF$_{VES}$ und TS zu quantifizieren. TD wurde definiert als die Steigung einer Regressionsgeraden zwischen HF$_{VES}$ und TS im Bereich der stärksten (negativen) Korrelation über 10 Schläge/min.

Sämtliche Berechnungen wurden mit Matlab 6.0 (Mathworks inc.) durchgeführt.
2.6 Statistische Analysen

3 Ergebnisse

In der Studienpopulation (n = 608) wurden durchschnittlich 258 ± 320 VES aufgezeichnet, die bei einer zugrundeliegenden Herzfrequenz HFVES von durchschnittlich 78 ± 13 Schläge/min aufraten. Sowohl die VES-Anzahl als auch HFVES waren signifikant mit der Mortalität assoziiert. Patienten, die während des Beobachtungszeitraumes verstarben, hatten insgesamt häufiger VES (340 ± 408 vs. 237 ± 292 (p = 0.04)), die bei einer durchschnittlich höheren Herzfrequenz (80 ± 14 Schläge/min vs. 77 ± 12 Schläge/min (p = 0.02)) aufraten, im Vergleich zu Patienten, die den Beobachtungszeitraum überlebten. Die zugrundeliegende Herzfrequenz HFVES varierte durchschnittlich um 35 ± 12 Schläge/min ohne signifikanten Unterschied zwischen überlebenden und verstorbenen Patienten.

Bei der Mehrzahl der Patienten (69 %) zeigte sich eine statistisch signifikante Korrelation zwischen TS und HFVES ohne signifikanten Unterschied zwischen überlebenden und verstorbenen Patienten. Bei der Mehrzahl der Patienten (71 %), war TS negativ mit HFVES korreliert, d.h. TS nahm mit zunehmender Herzfrequenz ab (Steigung der Regressionsgeraden = –0.06 ± 0.21, Korrelationskoeffizient = 0.16 ± 0.32). Die negative Steigung der Regressionsgeraden war signifikant größer bei überlebenden als bei verstorbenen Patienten (-0.07 ± 0.17 vs. 0.0 ± 0.31 (p = 0.002)). Die Steigung der Regressionsgeraden war weder mit HFVES, noch mit der VES-Anzahl assoziiert.

Abbildung 2A zeigt die Beziehung zwischen TS und HFVES sowie die Berechnung von TD bei einem 56-jährigen Patienten mit akutem Vorderwandinfarkt, der den Beobachtungszeitraum von zwei Jahren überlebte.

Abbildung 2: Beziehung zwischen Turbulence Slope (TS) und zugrundeliegender Herzfrequenz (HFVES) sowie Berechnung der Turbulence Dynamics (TD) bei einem 56-jährigen Postinfarktpatienten, der den Beobachtungszeitraum von zwei Jahren überlebte (A) und bei einem 72-jährigen Postinfarktpatienten, der drei Monate nach Infarkt verstarb (B). TD ist ein Maß für die Steigung der Regressionsgeraden im Bereich der stärksten Korrelation zwischen TS und HFVES.
3.1 Assoziation der TD mit der Mortalität

Bei Patienten, die während des Beobachtungszeitraums verstarben, betrug die TD -0.40 ± 0.59 ms/RRI Schläge/min. Bei Patienten, die den Beobachtungszeitraum überlebt haben, betrug die TD = -0.65 ± 0.66 ms/RRI Schläge/min. Dieser Unterschied war hochsignifikant (p < 0.001).

TD war signifikant mit beiden HRT-Parametern TO und TS assoziiert (r = 0.62 (p < 0.01) bzw. r = 0.47 (p < 0.01)).

Die linke Spalte der Tabelle 2 zeigt die Verteilungen der Risikoparameter bei Überlebenden und Verstorbenen. Die größten Unterschiede zwischen Überlebenden und Verstorbenen wurden für TO, TS und TD beobachtet (jeweils p < 0.001).

3.2 Univariate Analyse

Die mittlere Spalte der Tabelle 2 zeigt die Ergebnisse der univariaten Analyse. TS war der stärkste, TD der zweitstärkste Prädiktor der Gesamtmortalität in der Studienpopulation. Die relativen Risiken für TS und TD betrugen 2.9 (1.9 - 4.2) und 2.4 (1.6 - 3.6) (jeweils p < 0.001). Eine Behandlung mit Betablockern war mit einer signifikant besseren Überlebenswahrscheinlichkeit assoziiert (relatives Risiko 0.5 (0.3 - 0.8), p = 0.001). Eine Behandlung mit Amiodarone hatte keinen signifikanten Einfluß auf die Überlebenswahrscheinlichkeit.

3.3 Multivariate Analyse

Die rechte Spalte der Tabelle 2 zeigt die Ergebnisse der schrittweisen, multivariaten Cox-Regressionanalyse. Von den getesteten Variablen waren Reinfarkt, das Vorhandensein eines Diabetes mellitus, LVEF, TS und TD unabhängige Risikoprädiktoren. Mit einem Risiko von jeweils 1.8 (1.3-2.6) und 1.8 (1.2-2.9) waren Reinfarkt und TS die stärksten multivariaten Risikoprädiktoren. TD war mit einem Risiko von 1.7 (1.1-2.7) der drittstärkste multivariate Risikoprädiktor. Es zeigte sich keine Interaktion zwischen TD und Amiodaron oder einer Betablockerbehandlung.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Überlebende (n = 424)</th>
<th>Verstorbene (n = 105)</th>
<th>p-Wert</th>
<th>Relative Risiko (95% KI)</th>
<th>p-Wert</th>
<th>Relative Risiko (95% KI)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alter des Patienten</td>
<td>61 (9)</td>
<td>65 (7)</td>
<td><0.001</td>
<td>1.9 (1.3-2.7)</td>
<td>0.001</td>
<td>1.9 (1.3-2.7)</td>
<td></td>
</tr>
<tr>
<td>Reinfarkt</td>
<td>36</td>
<td>54</td>
<td><0.001</td>
<td>2.0 (1.4-2.8)</td>
<td><0.001</td>
<td>1.8 (1.3-2.6)</td>
<td>0.001</td>
</tr>
<tr>
<td>Vorhandensein eines Diabetes mellitus</td>
<td>15</td>
<td>30</td>
<td><0.001</td>
<td>2.1 (1.4-2.8)</td>
<td><0.001</td>
<td>1.5 (1.0-2.3)</td>
<td>0.035</td>
</tr>
<tr>
<td>Mittleres RR-Intervall (ms)</td>
<td>822 (132)</td>
<td>784 (138)</td>
<td>0.044</td>
<td>1.6 (1.1-2.3)</td>
<td>0.014</td>
<td>1.6 (1.1-2.3)</td>
<td></td>
</tr>
<tr>
<td>HRV Index (units)</td>
<td>26.7 (10.6)</td>
<td>23.5 (9.4)</td>
<td>0.002</td>
<td>1.8 (1.3-2.6)</td>
<td>0.001</td>
<td>1.8 (1.3-2.6)</td>
<td></td>
</tr>
<tr>
<td>Vorhandensein von nichtanhaltenden VT*</td>
<td>34</td>
<td>45</td>
<td>0.017</td>
<td>1.5 (1.1-2.2)</td>
<td>0.024</td>
<td>1.5 (1.1-2.2)</td>
<td></td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>30 (7)</td>
<td>27 (7)</td>
<td><0.001</td>
<td>1.8 (1.3-2.7)</td>
<td>0.002</td>
<td>1.5 (1.0-2.1)</td>
<td>0.048</td>
</tr>
<tr>
<td>Turbulence Onset (%)</td>
<td>-1.10 (1.63)</td>
<td>-0.47 (1.12)</td>
<td><0.001</td>
<td>1.9 (1.3-2.7)</td>
<td>0.001</td>
<td>1.9 (1.3-2.7)</td>
<td></td>
</tr>
<tr>
<td>Turbulence Slope (ms/RRI)</td>
<td>4.42 (3.88)</td>
<td>2.30 (2.64)</td>
<td><0.001</td>
<td>2.9 (1.9-4.2)</td>
<td><0.001</td>
<td>1.8 (1.2-2.9)</td>
<td>0.007</td>
</tr>
<tr>
<td>Turbulenz Dynamik (ms/RRI bpm)</td>
<td>-0.65 (0.66)</td>
<td>-0.40 (0.59)</td>
<td><0.001</td>
<td>2.4 (1.6-3.6)</td>
<td><0.001</td>
<td>1.7 (1.1-2.7)</td>
<td>0.009</td>
</tr>
<tr>
<td>Behandlung mit Amiodarone</td>
<td>51</td>
<td>53</td>
<td>n.s.</td>
<td>1.2 (0.8-1.7)</td>
<td>n.s.</td>
<td>1.2 (0.8-1.7)</td>
<td></td>
</tr>
<tr>
<td>Behandlung mit Betablockern</td>
<td>40</td>
<td>24</td>
<td>0.001</td>
<td>0.5 (0.3-0.8)</td>
<td>0.001</td>
<td>0.5 (0.3-0.8)</td>
<td></td>
</tr>
</tbody>
</table>

* ventrikuläre Tachykardie † cut-off Werte im Text angegeben
3.4 Kaplan-Meier Überlebensanalyse

Abbildung 3 zeigt die Kaplan-Meier-Überlebenskurven für Patienten mit normaler und abnormaler TD. Patienten mit einer TD > -0,42 ms/RRI Schläge/min hatten eine Mortalitätswahrscheinlichkeit von 27 % während der Beobachtungszeit, wohingegen Patienten mit einer TD von ≤ -0,42 ms/RRI Schläge/min eine Mortalitätswahrscheinlichkeit von 13 % hatten.

\[\chi^2 = 21,59 \]
\[p < 0,0001 \]

Abbildung 3: Kaplan-Meier Überlebenskurven der Studienpatienten mit Turbulence Dynamics ≤ -0,42ms/RRI Schläge/min und der Studienpatienten mit Turbulence Dynamics > -0,42ms/RRI Schläge/min. Die Anzahl der Patienten der zwei Gruppen, die nach 0/0.5/1/1.5 und 2 Jahren analysiert wurden, ist unter der Abbildung dargestellt. Die Reihenfolge der Patientenreihe entspricht der Reihenfolge der Kaplan-Meier Überlebenskurven.
4 Diskussion

Die Ergebnisse dieser Arbeit zeigen, (1) daß zwischen TS und zugrundeliegender Herzfrequenz eine inverse Beziehung besteht, und (2) daß Turbulence Dynamics (TD), ein numerischer Parameter, der diese Beziehung quantifiziert, ein starker und unabhängiger Prädiktor der Langzeitmortalität bei Überlebenden eines akuten Herzinfarktes mit eingeschränkter Pumpfunktion ist. In der Studienpopulation hatten Patienten mit abnormaler TD ein 2,4-fach erhöhtes Risiko in der Folgezeit zu versterben, als Patienten mit normaler TD.

Eine weitere Erklärungsmöglichkeit für die Frequenzabhängigkeit der HRT könnte sein, daß die hämodynamischen Auswirkungen der Extrasystole selbst herzfrequenzabhängig sind (Abb. 4B).

Obwohl es hierzu weder experimentelle noch klinische Daten gibt, könnte man annehmen, daß der Blutdruckabfall durch eine VES bei niedrigen Herzfrequenzen aufgrund der längerer kompensatorischen Pause ausgeprägter ist als bei hohen Herzfrequenzen. Ob das Ausmaß des Blutdruckabfalls allerdings überhaupt die HRT im Sinne einer Dosis-Wirkungs-Beziehung beeinflusst ist unklar. Das Kopplungsintervall der VES jedenfalls (als Surrogat für die hämodynamischen Auswirkung der VES auf den Kreislauf) beeinflusste in einer vor kurzem veröffentlichten Studie das Ausmaß der HRT nicht [32].

Die Ursache für die Herzfrequenzabhängigkeit der HRT könnte jedoch auch im Sinusknoten selbst liegen. Erst kürzlich konnte gezeigt werden, daß es eine Art „intrinsische“ Abhängigkeit autonomer Indizes wie der Baroreflex-Sensitivität oder der Herzfrequenzvariabilität von der Herzfrequenz gibt [34], welche dadurch zustande kommen soll, dass die neurale Aktivität und die Zykluslänge nicht linear miteinander verknüpft sind [25].

A. Die Herzfrequenz könnte die Baroreflexfunktion direkt beeinflussen. Durch einen Anstieg der Herzfrequenz könnte es zum sog. „Baroreflex-Resetting“ kommen, bei welchem die Reiz-Antwort-Kurve nach rechts verschoben wird (nach Potts et al.). Bei gegebenem Carotissinus-Druck verändert sich die lokale Steigung der Reiz-Antwort-Kurve. Derselbe Blutdruckabfall (z.B. durch eine VES) kann in Abhängigkeit von der zugrundeliegenden Herzfrequenz zu unterschiedlichen Auswirkungen auf die Herzfrequenz führen ($\Delta HF(2) < \Delta HF(1)$).

B. Die Herzfrequenz könnte das Ausmaß des VES-induzierten Blutdruckabfalles beeinflussen. Der VES-induzierte Abfall des CSD könnte bei höheren Herzfrequenzen geringer sein als bei niedrigeren ($\Delta PVES(2) < \Delta PVES(1)$) und daher geringere Auswirkungen auf die Herzfrequenz haben ($\Delta HF(2) < \Delta HF(1)$).

Der Zusammenhang zwischen Baroreflex-Dysfunktion und der Neigung zu malignen Arrhythmien ist hinlänglich bekannt [2, 29]. Ebenso ist die prognostische Bedeutung autonomer Maße wie z.B. der Baroreflex Sensitivität oder der HRT gut belegt [27, 8, 15]. All diesen Maßen ist gemein, daß sie das absolute Ausmaß der autonomen Antwort quantifizieren. Mit der TD wird ein autonomer Marker eingeführt, der eine zusätzliche Qualität der autonomen Funktion mißt, nämlich die Fähigkeit des autonomen Nervensystems,
sich an veränderte Bedingungen anzupassen. Somit ist dies die erste Arbeit, die zeigt, daß die Prognose des Patienten nicht nur durch den Verlust der autonomen Funktion per se bestimmt wird, sondern daß auch der Verlust der Anpassungsfähigkeit der autonomen Funktion die Prognose maßgeblich beeinflusst.

Zu den Einschränkungen der Arbeit zählen ein hoch vorselektiertes Patientgut mit eingeschränkter Pumpfunktion (LVEF \(\leq 40 \% \)) und hoher VES-Anzahl (\(\geq 25 \) VES). Solch eine Population ist sicherlich nicht repräsentativ für ein modern behandeltes Postinfarkt-Kollektiv. Die Follow-up Mortalität von 20 % ist nicht vergleichbar mit der Prognose von Postinfarktpatienten, die einer konsequenten Revaskularisierungstherapie zugeführt werden. Aus diesem Grunde wurden Sensitivität, Spezifität, positiver und negativer prädiktiver Wert hier auch nicht angegeben. Zudem handelt es sich bei TD um einen retrospektiv entwickelten und am Patientenkollektiv optimierten Parameter, was eine prospektive Validierung an einem unabhängigen Datensatz notwendig macht.
5 Zusammenfassung

Literatur

[35] www.h-r-t.com
Danksagung

Ich danke allen, die mir bei der Durchführung dieser Arbeit behilflich waren, insbesondere:

Herrn Prof. Dr. med. Georg Schmidt für die Überlassung der Arbeit sowie die Durchsicht und Korrektur.

Herrn Dr. med. Axel Bauer für die hervorragende Unterstützung bei der Verarbeitung der Daten sowie die Betreuung und Korrektur der Arbeit.

Frau Dr. med. Petra Barthel für die sehr gute Einarbeitung ins wissenschaftliche Arbeiten und die Ansprechbarkeit während der Datenerhebung.

Herrn Dipl. Ing. (FH) Raphael Schneider für die Unterstützung bei technischen Problemen und der Auswertung.