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Abstract

In this thesis� we solve a long�standing open problem in combinatorial geome�

try known as the empty�hexagon problem or ��hole problem� Erd�os asked in ����

whether every su�ciently large set of points in general position in the plane con�

tains six points that form a convex hexagon without any points from the set in

its interior� Such a con�guration is called an empty convex hexagon� We answer

the question in the a�rmative� We show that every set that contains the vertex

set of a convex ��gon also contains an empty convex hexagon� The result is sharp

in the sense that there exist sets that contain the vertex set of a convex ��gon

and do not contain an empty convex hexagon� It is known that every �����set of

points in general position does contain the vertex set of a convex ��gon and it is

an open conjecture that ���� can be replaced by ����
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CHAPTER �

Introduction

Combinatorial geometry deals with combinatorial questions regarding collec�

tions of geometric objects such as points� lines� balls� polytopes� hyperplanes�

etc� The questions might concern� for example� the complexity of arrangements

of objects of the above type or the occurrence of certain substructures in such

arrangements� see �HDK��� Ede��� EP��� PA��� Mat��� GO��� BMP���

and references therein� The importance of the subject � apart from its apparent

beauty and usefulness for educational purposes � lies in its close relationship to

problems in such diverse �elds as number theory� graph theory� combinatorial

optimization or computational geometry�

In this thesis� we consider �nite point sets in general position in the Euclidean

plane� Here� general position means that no three points are collinear� We are

interested in regular substructures that appear whenever a point set is su�ciently

large� A classical theorem of Erd�os and Szekeres states that we can �nd the vertex

set of a convex n�gon in every point set of a suitable size �depending on n�� Up

to now it was an open problem raised by Erd�os to decide� whether one could �nd

the vertex set of an empty convex hexagon in every su�ciently large planar point

set in general position� Here� an n�gon is called empty if no other points of the

set lie in its interior�

	
	
 Foundations from Combinatorial Geometry

We presume that the reader is familiar with basic concepts in convex geome�

try� see� for example� �Mat���� In ��
�� Erd�os and Szekeres �ES��� proved the

following theorem�

Theorem � �Erd�os
Szekeres theorem�� For each positive integer n there

exists a smallest positive integer g�n� such that every planar set of at least g�n�

points in general position contains n points that are the vertices of a convex n�gon�

The standard proof of Theorem � combines two fundamental results� Ramsey�s

theorem �Ram��� from combinatorics and Carath	eodory�s theorem �see �Eck����

from convex geometry�

�
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Figure ���� Klein�s observation� Every set of �ve points in gen�

eral position in the plane contains the vertex set of a convex quadri�

lateral�

Let X be a �nite set and let
�
X

p

�
denote the set fY � Y � X and jY j � pg�

An r�coloring of a set X is a partition X � �ri��Xi of X into pairwise disjoint

sets Xi� If x � Xi� x is said to have color i� Finally� a k�set is a set with exactly

k elements�

Theorem � �Ramsey�s theorem�� For every choice of natural numbers p�

r� n� there exists a natural number N such that whenever X is an N�element set

and c �
�
X

p

�� f�� �� � � � � rg is an arbitrary coloring of the system of all p�element

subsets of X by r colors� then there is an n�element subset Y � X such that all

the p�tuples in
�
Y

p

�
have the same color�

Ramsey�s theorem is proved by induction on p� we refer to �Ne�s��� for a proof

and generalizations�

Theorem 
 �Carath�eodory�s theorem�� Let X be a set in R
d and p a

point in the convex hull of X� Then there is a subset Y of X consisting of d� �

or fewer points such that p lies in the convex hull of Y �

This theorem can be proved by induction on the dimension of the space or

it can be deduced either from Helly�s theorem or Radon�s theorem� see �Eck���

and references therein� Note that in the planar setting �d � ��� Carath	eodory�s

theorem implies that n points are the vertices of a convex n�gon if every four of

them are in convex position�

The following observation is attributed to E� Klein �ES���� It can be derived

from Figure ����

Observation � �Klein�� Every set of �ve points in general position in the

plane contains the vertex set of a convex quadrilateral�

We can now give a proof of the Erd�os�Szekeres theorem�
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Proof of Theorem � �ES���� Consider a point set X in general position

in the plane� Color a ��tuple T � X red if its four points form a convex quadri�

lateral and blue otherwise� If jXj is su�ciently large� Ramsey�s theorem provides

an n�point subset Y � X such that all ��tuples from Y have the same color� For

n � � this color cannot be blue� because any �ve points determine at least one

red ��tuple by Klein�s observation� Therefore� Carath	eodory�s theorem implies

that Y consists of the vertex set of a convex n�gon� since every four of its points

are in convex position�

The best known bounds for g�n� are

�n�� � � 	 g�n� 	
�
�n
 �

n
 �

�
� �������

The upper bound in ����� was established recently by T	oth and Valtr �TV���

based on geometric modi�cations of a Ramsey�type argument in the context of

cups and caps� Given a point set X in general position in the plane and a

suitable coordinate system� where no two points ofX have the same x�coordinate�

a k�subset Y of X is called a k�cup if the points of Y lie on the graph of a

convex function� Similarly� an l�cap is a set of l points that lie on the graph of a

concave function� The authors re�ne an argument of Erd�os and Szekeres �ES���

concerning the size of sets that contain an n�cup or an n�cap �and therefore an

n�gon��

The lower bound in ����� is due to Erd�os and Szekeres �ES�	� who gave a

suitable construction of point sets of cardinality �n�� that do not contain an

n�gon� The rough idea is to properly arrange n 
 � sets X�� � � � � Xn��� where

Xi is a set of maximum cardinality that does not contain an �n 
 i��cup or an

�i����cap� It is known that jXij �
�
n��

i

�
and it follows that

Pn��

i��

�
n��

i

�
� �n���

The lower bound is known to be sharp for n 	 � �ES��� KKS��� Bon��� and

is conjectured to be sharp for all n by Erd�os and Szekeres�

Conjecture � �Erd�os�Szekeres conjecture �ES��� ES�	���

g�n� � �n�� � �������

The determination of the exact value of g�n� constitutes a major open problem

in combinatorial geometry and was one of Erd�os�s favourite problems �Erd����

�His last contribution to the problem seems to be �ETV���� written some sixty

years after the original paper �ES����� Erd�os o�ered  ��� for a proof of this

conjecture� thereby indicating his estimation for the di�culty of �nding such a

proof �Erd����
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�
 Problem Statement and Main Result

In ����� Erd�os �Erd��� Erd�	� modi�ed the original question of �ES���

about the occurrence of convex polygons in su�ciently large point sets in general

position by adding an additional constraint� He now posed the problem of deter�

mining the smallest positive integer h�n�� if it exists� such that every set X of at

least h�n� points in general position in the plane contains n points that are the

vertices of an empty convex polygon� that is� a convex n�gon whose interior does

not contain any point of X� Trivially� h�n� � n for n 	 
� Klein�s observation

�Observation �� also implies that h��� � ��

In ����� Ehrenfeucht �unpublished� see �Erd��� Erd��� Erd�	�� established

the existence of h���� Furthermore� Harborth �Har��� and independently Morris

�unpublished� see �Erd�	�� determined the exact value h��� � ��� Harborth�s

proof consists of a case analysis based on the existence of a �possibly non�empty�

convex pentagon in every set of �� points in general position �since g��� � ��

together with a construction showing that h��� � ��� See also �Mat��� for a

presentation of a simpler alternative proof �based essentially on Ehrenfeucht�s

and Harborth�s ideas� giving the worse bound h��� 	 g���� Here� the starting

point for a case analysis is a convex hexagon �guaranteed to exist in any g����set�

with a minimum number of points in its interior� �This approach inspired our

main proof in Chapter ���

Surprisingly� in ���
 Horton �Hor��� showed that for all n � �� h�n� does not

exist� He gave a construction for point sets of arbitrary size that do not contain

an empty convex heptagon� Again� see �Mat��� for a streamlined presentation

based on an analysis of Horton�s construction by Valtr �Val����

The problem of determining the existence of h��� remained unsettled� though

it was popularized by Erd�os and others� see� for example� �Ede��� �p� �
��

�CFG�	� �problem F�� pp� ��������� �KW�	� �ch� ����� �Sch��� �pp� ����

����� �EP��� �p� ����� �Ne�s��� �p� �

��� �CG��� �p� ��� �Mat��� �ch� 
��

�Pac��� �p� ��� �BMP��� �ch� �����

Problem � �Empty�hexagon problem � ��hole problem�� Does h���

exist� that is� does every su�ciently large set of points in general position in

the plane contain an empty convex hexagon�

Based on an extensive computerized search� Overmars �Ove��� showed that

h��� � 
� �if it exists�� Furthermore� in this paper Overmars speculates



���� RELATED WORK �

that bounds on the size of the convex hull or on the number of convex lay�

ers of a point set might be a starting point for an investigation of the empty�

hexagon problem� Several authors expressed their belief that h��� does exist

�Hor��� BK�	� Dum��� and several conjectures were raised that if correct

would imply this result �Val��� Dum���� �See also Section ��
�� See �BK�	�

for some problems that are directly linked to the empty�hexagon problem�

In this thesis� we prove the following theorem which implies that indeed every

su�ciently large planar point set in general position contains the vertex set of an

empty convex hexagon�

Theorem �� h��� 	 g����

More precisely� we show that every set that contains the vertex set of a convex

��gon also contains an empty convex hexagon� The proof of Theorem � is given

in Chapter �� The upper bound for g�n� in ����� immediately yields the following

corollary�

Corollary �� h��� 	 �����

Proof� ���� �
�
�����

���

�
� ��

Note that a proof of the Erd�os�Szekeres conjecture would imply that g��� � ���

and therefore� h��� 	 ���� Note furthermore that there exist sets of points with�

out empty convex hexagons that have eight points on the convex hull �Ove����

In this sense� Theorem � is tight� �See also the discussion in Chapter 
��

Addendum� After we had submitted our paper �Ger�� the existence of empty

convex hexagons in su�ciently large point sets in general position was established

independently in ���� by C� Nicol	as �Nica� Nicb�� Here� the worse bound h��� 	
g���� is proven by similar methods as we employ in Chapter ��

	
�
 Related Work

The Erd�os�Szekeres paper �ES��� has inspired a great deal of research con�

cerning generalizations of the original theorem and attempts at the settlement of

the Erd�os�Szekeres conjecture or the empty�hexagon problem� �Furthermore� it

helped to popularize Ramsey�s theorem�� As excellent recent surveys on the

Erd�os�Szekeres theorem and its related topics exist �MS��� BK�	� TV���

BMP���� we only indicate the nature of the questions studied� All relevant

research articles can be traced from the above surveys� Besides the above men�

tioned problems� the following directions of research were initiated�
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Generalizations to higher dimensions
 In R
d � a point set is in general

position if it does not contain d�� points lying in a common hyperplane� De�ne

gd�n� to be the smallest positive integer such that every set of gd�n� points in

general position in R
d contains n points in convex position� �Note that g��n� �

g�n��� The existence of gd�n� can be established in analogy to the planar case�

The problem of proving tight bounds for gd�n� is again open� The best known

bounds are established via projection arguments�

Accordingly� one can ask for the existence of empty convex polytopes with a

prescribed number of vertices in a su�ciently large point set X in general position

in R
d � A polytope is empty if its interior does not contain any point of X� It is

possible to extend the ideas of Horton�s construction to higher dimensions�

Generalization to planar convex sets
 The Erd�os�Szekeres theorem has

a generalization for the case of convex bodies in the plane� Here� a family of

pairwise disjoint convex sets is in general position if no set is contained in the

convex hull of the union of two other sets of the family� It is in convex position if

none of its members is contained in the convex hull of the others� Under certain

conditions the constraint of disjointness can be relaxed� This problem also has a

higher�dimensional variant�

Restricted point sets
 For � � �� an n�point X � R
� is called ��dense

if the ratio of the maximum and minimum distances occurring in X is at most

� � pn� It is known that ��dense sets contain convex polygons with !�n
�

� � ver�

tices� �Compare this to the !�logn� bound that follows from the Erd�os�Szekeres

theorem for general point sets��

Counting �empty� convex polygons
 Once the existence of �empty� con�

vex polygons in a point set has been established� the next natural combinatorial

question concerns the number of occurrences of such polygons�

Homogenous version
 It has been established that for every N �set X of

points in general position in the plane� there are n subsets� Y�� � � � � Yn � X each

of size at least c �N such that each of their transversals forms a convex n�gon� In

this context� a transversal of the sets Y�� � � � � Yn is a sequence of elements y�� � � � yn
where yi � Yi for every i� Here� c denotes a positive constant depending on n�

Partitional variant
 Here� the focus lies on the partition of a given point

set in general position in the plane into vertex disjoint n�gons �possibly with a

remainder��



���� ACKNOWLEDGEMENTS �

Modular version
 This direction is concerned with the existence of convex

polygons� where the number of interior points is divisible by a given q � N �

Dual version
 Here� a dual counterpart to the Erd�os�Szekeres theorem in

terms of arrangements of lines is studied� Further generalizations concern the

replacement of lines by pseudolines�

Generalized Convexity
 Investigations in this direction aim at those com�

binatorial properties of the plane that are essential to establish an Erd�os�Szekeres

type of result�

Algorithms
 Here� the aim is to develop e�cient algorithms for testing a

given set for the size of the largest convex polygon contained in it or the size of

the largest empty convex polygon contained in it� Particular emphasis has been

laid on the automated search for point sets that do not contain an empty convex

hexagon�

Others
 Further research in relation to the above mentioned problems con�

cerns point sets with a limitation on the maximum number of points in the interior

of a triangle� colored versions� where a color is assigned to each point and the

focus of attention lies on empty monochromatic n�gons� graph�theoretic variants

�existence of complete subgraphs with a maximum possible number of crossings

in any drawing� and purely combinatorial or algebraic variants�
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CHAPTER �

Proof of Theorem �

In this chapter we prove Theorem �� We show that every set that contains

the vertex set of a convex ��gon also contains an empty convex hexagon� The

proof will appear in �Ger��

�
	
 Overview of the Proof

Proof� In the following� let X be a �nite planar set of points in general

position that contains the vertex set of a convex ��gon� By the Erd�os�Szekeres

theorem �ES��� this is always the case if jXj � g���� LetH � X be the vertex set

of a convex ��gon in X with the minimum jX�conv�H�j� where conv�M� denotes

the convex hull of the set M � Let I �� conv�H�� �X nH� be the set of points of

X inside the convex hull of H� Note that conv�I� is a convex polygon and denote

by �I its vertex set� If jIj � �� let J �� conv�I�� �X n �I� be the set of points of
X inside the convex hull of �I� Note that conv�J� is again a convex polygon and

denote by �J its vertex set� see Figure ���� Let i �� j�Ij and j �� j�J j� Note that
� 	 i� j 	 � as otherwise there would be a ��gon H � with smaller jX � conv�H ��j�
This leaves the �� cases � 	 i 	 � and �i� j� � f
� � � � � �g� f�� � � � � �g� We argue

that in each case either an empty convex u�gon can be found �u � �� or a convex

��gon H � with smaller jX �conv�H ��j is present which contradicts the minimality

condition imposed on H� �More precisely� the vertex set of an empty convex

u�gon can be found� In the following� we do not make this distinction when the

meaning is clear from the context��

�
	
	
 Notation
 We use �i� j� to denote a speci�c case� where i and j are

de�ned as above� Sometimes we use the notation �i� j� k�� where k refers to the

number of points of X inside the convex hull of J � that is� the cardinality of

K �� conv�J� � �X n �J�� The notation � x indicates that x is a lower bound

for i� j or k� Refer to Table � for locating the proof of a speci�c case�

�
	
�
 De�nitions
 Given three points in general position� P�Q�R� de�ne

the halfplane HPQ�R� as the open halfplane de�ned by the line PQ that contains

R� A convex chain is a set of consecutive vertices of a convex polygon� Given a
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Figure ���� Basic notation

i�j � � � 
 � � � � �

� ��� � � � � � � � �

� ��� � � � � � � � �

� ��� � � � � � � � �


 ��
 ��
 ��
 ��
 ��
 ��
 ��
 ��
 ��


� ��� ��� ��� ��� ��� ��� ��� ��� ���

� ��� ����� ��� ��� ��� ��� ��� ��� ���

� ��� ����� ����
 ��
���� ��� ��� ��� ��� ���

� ��� ����
 ��� ��
���� ��� ������� ������� ������� �������

� ��� ��� ��� ��
 ��� ������� ������� ������� �������

Table �� Overview of the proof structure� for example� the

proof for the case ��� �� is given in Sections ��� �special case� and

��� �general case��

convex chain of three points� ABC� the ��sector speci�ed by this chain is de�ned

as

�ABC� �� �HAB�C� �HBC�A�� n conv�fA�B�Cg��

Note that three points in general position� S� T� U � lying in �ABC� can be used

to construct a convex hexagon if A�B�C � �STU�� see Figure ���a�
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Figure ���� De�nition� Sector

Given a convex chain of four points� ABCD� the corresponding 	�sector is

de�ned as

�ABCD� �� ��ABC� � �BCD�� n conv�fA�B�C�Dg��

Note that two points� S� T � lying in �ABCD� can be used to construct a convex

hexagon if the line ST does not intersect conv�fA�B�C�Dg�� see Figure ���b�

This means that by construction� given an edge PQ of conv�I� �respectively

conv�J��� at most three vertices of conv�H� �respectively conv�I�� can lie in an

open halfplane that is de�ned by the line PQ and does not include any other point

of I �respectively J� if no empty convex hexagon is to occur� In the following

�gures� we use the notation �PQ� to hint to this fact� see Figure ���c�

Finally� given a convex chain of �ve points� ABCDE� the corresponding 
�

sector is de�ned as

�ABCDE� �� ��ABCD� � �BCDE�� n conv�fA�B�C�D�Eg��
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Figure ���� Notation for the cases �
�� �� and �� �� 
�

Note that a single point lying in �ABCDE� can be used to construct a convex

��gon� see Figure ���d�

�
�
 Elementary Cases

Note that the cases ��� ��� �� �� �� and �� ��� �� �� are trivial as an

empty convex hexagon is present� The cases �	� �� and ��� 	� can be dealt with

by considering a line through the single interior point and one of the vertices of

the convex �� respectively ��gon� Due to the general position� on one side of this

line a convex chain of four vertices must be present which together with the two

preselected points can be used to construct an empty convex hexagon� A similar

argument settles the cases ��� ��� ��� �� and ��� ���

�
�
 The Cases �
�� �� and �� �� 
�

We approach the cases �
�� �� and �� �� 
� in two batches�

�
�
	
 The Cases ���� �� and ��� ��
 Follow the notation as indicated

in Figure ��
� The variables stand for the number of vertices of the convex ��

respectively ��gon in each sector� Assume that no empty convex hexagon is

present� Note that

� 	 a� � b� � a� 	 
���
�

� 	 a� � b� � a� 	 
�����

� 	 a� � b� � a� 	 
�����
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� �AQB�
� �BRC� � �AQB��

� �B�QPRB��

� �B�RC�
B�

B�

�a� �b�

conv�I�conv�I�

Figure ���� �x� 
�� degenerate cases with �ai� bi� ai��� � ��� �� ��

and �ai� bi� ai��� � ��� �� �� respectively� Numbers indicate the num�

ber of vertices of the ��gon that can lie in each sector without

forming an empty convex hexagon�

by construction and as otherwise a convex chain of four vertices together with two

vertices of the triangle could be used to form an empty convex hexagon� Also�

� 	 bi 	 � �� 	 i 	 
������

as otherwise a convex chain of three points together with two vertices of the

triangle and either the third vertex of the triangle or �if existent� one of its

interior points can be used to form an empty convex hexagon� Summing up the

upper bounds in ���
� " ����� yields

� �
�X
i��

�ai � bi� 	 ��������

Therefore� at most seven vertices can be placed around the triangle and in the

two cases at hand an empty convex hexagon is present�

�
�
�
 The Cases ��� �� and ��� ��
 The cases ��� �� �� and ��� �� �� can

be settled by a careful investigation of the �a�� b�� a�� b�� a�� b���tuples that are

feasible for the set of constraints ���
� " ������ Note that tuples �ai� bi� ai��� with

ai � ai�� � � are not feasible� as a convex ��gon H � with smaller jX � conv�H ��j
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a� a� a� b� b� b� Solution


 � � # # # infeasible

� � � � �	 �� �
P�

i�� �ai � bi� 	 �

� � � � �	 �� �	 �� �������������

� � � # # # infeasible

� � � �	 �� �	 �� �	 �� �������������

� � � � � � �������������

� � � � � � �������������

� � � � � �
P

�

i�� �ai � bi� � �

� � � � �	 �� �	 ��
P�

i�� �ai � bi� 	 �

� � � � � � �������������

� � � � �	 �� �	 ��
P

�

i�� �ai � bi� 	 �

� � � # # # infeasible

� � � # # # infeasible

Table �� Cases ��� 
� �� and ��� 
� ��� Combinatorial subcases

under the assumptions i� a� � a� � a� and ii� b� � b� for �xed

�a�� b�� a��� �# marks an arbitrary entry�� Note that constraint

���
� implies a� � a� 	 
�

could be constructed� see Figure ���� In Figure ���a� replace the vertices of the ��

gon lying in the union of sectors �AQB� and �BRC� �at least one by construction

and at most four in total if no empty convex hexagon is present� by points from

the convex chain AQRC of length four� In Figure ���b� accordingly replace the at

most four vertices of the ��gon lying in the union of sectors �AQB��� �B�QPRB��

and �B�RC��

Now assume without loss of generality that i� a� � a� � a� and ii� b� � b�
for �xed �a�� b�� a��� see Figure ��
� Then the only solutions to the above set of

constraints �modulo rotations and re$ections� are ��� �� �� �� �� ��� ��� �� �� �� �� ���

��� �� �� �� �� ��� ��� �� �� �� �� �� and ��� �� �� �� �� ��� see Table �� These can be

treated individually as follows�


 The subcase ��� �� �� �� �� �� can be treated as indicated in Figure ���� Here

and in the following� numbers indicate the number of vertices of the outer

polygon that can lie in each sector without forming an empty convex

hexagon� As the union of sectors allows for at most eight points in convex

position in the outmost layer� due to the presence of a convex ��gon an

empty convex hexagon must occur�
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Figure ���� The case ��� 
� �� with ��� �� �� �� �� ��


 Figure ��� indicates how to settle the subcase ��� �� �� �� �� ��� provided the

vertex Q of triangle PQR lies inside the triangle BDF � In that case the

quadrilateral BQDC exists� Similarly we can treat the case that some

other of the points P � Q lies inside the triangle BDF � If none of the points

P�Q�R lies inside the triangleBDF � the empty convex hexagon PBQDRF

occurs�


 Figure ��� indicates how to settle the subcase ��� �� �� �� �� ��� provided that

the point Q lies outside the triangle BCD� In that case the quadrilateral

CBQD exists� IfQ lies inside the triangleBCD� the empty convex hexagon

BQDERP occurs�


 The subcase ��� �� �� �� �� �� can be treated as indicated in Figure ����


 Figure ��� indicates how to settle the subcase ��� �� �� �� �� ���

The proof for the cases ��� ��� 	� and ��� ��� 	� is given in the following

Section ����

�
�
 The Cases ���� �� and �� �� ��

The cases ���� �� and �� �� �� can be dealt with simultaneously in three

steps�
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 �FA�

Figure ���� The case ��� 
� �� with ��� �� �� �� �� ��� It is assumed

that Q � �BDF �

�
�
	
 Step 	a
 First� consider the cases ��� �� and ��� �� ��� We use the

same type of approach as in Section ��
� Following the notation as indicated

in Figure ����� where variables again refer to the number of vertices of the ��

respectively ��gon lying in each sector� we arrive at the set of inequalities

� 	 a� � b� � a� 	 
�����

� 	 a� � b� � a� 	 
�����

if no empty convex hexagon is to occur� �Vertices lying in more than one sector

are assigned arbitrarily to one particular sector they lie in and therefore only

counted once�� If no empty convex hexagon is to be present� the constraint

� 	 b� � b� 	 ����
�

must also hold� By summing up the upper bounds in ����� " ���
�� it follows

that at most seven vertices can be placed around the ��gon� a contradiction in

these two cases�
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Figure ���� The case ��� 
� �� with ��� �� �� �� �� ��� It is assumed

that Q �� �BCD�
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Figure ����� The case ��� �� �� with ��� �� �� �� �� �� �� ��

�
�
�
 Step 	b
 We next consider the case ��� �� �� and evaluate the feasible

solutions to the set of constraints ����� " ���
�� By symmetry� any feasible

�a�� b�� a�� b�� a�� b�� a�� b���tuple must also satisfy the following set of inequalities�

� 	 a� � b� � a� 	 
�����

� 	 a� � b� � a� 	 
�����

� 	 b� � b� 	 �������

It follows directly from ���
� and ����� that
P�

i�� bi 	 �� Furthermore� it fol�

lows from ����� and ����� �respectively ����� and ������ that if b� � b� � � or

b� � b� � �� at most six vertices can be placed around the ��gon� Therefore�

�b�� b�� b�� b�� � ��� �� �� �� without loss of generality� By choosing a� � f�� �� �g�
it follows that only the following �a�� b�� a�� b�� a�� b�� a�� b���tuples are feasible�

��� �� �� �� �� �� �� ��� ��� �� �� �� �� �� �� �� and ��� �� �� �� �� �� 
� �� �modulo rotations

and re$ections�� These can be treated individually as follows�


 The subcase ��� �� �� �� �� �� �� �� can be treated as indicated in Figure �����

Note that at most two of the points D�E� F can lie in one of the sectors

�QPR� and �RPS� without the occurrence of an empty convex hexagon�

The same holds for A�B�C and the sectors �QRP � and �PRS�� This is

indicated by the arrows� Note that one �� and one ��sector arise�
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 �CD�

� �DCQRE�

� �ERSGF � 
 �FG�

� �GFSPA�

� �APQB�� �BQDC�

Figure ����� The case ��� �� �� with ��� �� �� �� �� �� �� ��� It is as�

sumed that Q �� �BCD�


 Figure ���� indicates how to settle the subcase ��� �� �� �� �� �� �� ��� provided

that the vertex Q of the quadrilateral PQRS lies outside the triangleBCD�

In that case� the quadrilateral BQDC exists� Note that if Q lies inside the

triangle BCD� there exists an empty convex hexagon BQDRSP �


 The subcase ��� �� �� �� �� �� 
� �� can be treated as indicated in Figure ���
�

Note that if B and C both lie in �PSQ� or both lie in �QSR�� an empty

convex hexagon occurs �ABCQSP and BCDRSQ respectively�� Again�

this is indicated by the arrows�

�
�
�
 Step �
 Now we investigate the cases ��� 	� and ��� �� 	�� Consider

the sectors occuring when rays emanate from the single point in J �respectively

K� through the vertices of the convex ��gon� Each of the four sectors can only

contain two vertices of the convex �� respectively ��gon as otherwise an empty

convex hexagon could be constructed� Since � � � � �� in the case of the ��gon

an empty convex hexagon must occur� The case of the ��gon is settled with a

similar sector argument on the next level as indicated in Figure �����



���� THE CASES ���� 
� AND �� �� �� ��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

��
��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

A

B

C

D

E
F

G

P

Q

R

S

�

�

� �DRE�

� �ERSF �

� �FSPG�

� �GPA�

� �APSQB�

� �BQC�

� �CQSRD�

Figure ����� The case ��� �� �� with ��� �� �� �� �� �� 
� ��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���

���
���
���

A

B

C

D

E

F

G

H

P

Q
R

S

T

� �RPS�

� �SPT �

� �TPQ�

� �QPR�

� �AQPRB�

� �BRC�

� �CRPSD�

� �DSE�

� �ESPTF �

� �FTG�

� �GTPQH�

� �HQA�

Figure ����� The case ��� �� ��
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�
�
�
 Step �
 In dealing with the cases ���� ��� �x a point P � J � con�

struct the sectors as in Step � and afterwards replace P with an appropriate point

from J in each sector �if necessary�� Now argue as in Step �� Proceed accordingly

in the cases ��� ��� �� by choosing an arbitrary P � K�

�
�
�
 Remark
 The approach of Sections ����
 and ����� also works

straightforward in the cases ��� ��� 	� �as indicated in Figure ������ ��� ��� 	�

and ��� ��� 	� �as indicated in Figure ������ Again� the idea is to �x a point

P � K and to create sectors from rays emanating from P that pass through the

vertices of the j�gon� Argue that each of these sectors can only contain at most

two vertices of the i�gon without the occurrence of an empty convex hexagon�

This remains true if other points of K should lie in some of the sectors� Now

create another set of sectors such that their union covers the complete region out�

side of conv�I� as indicated in the �gures� This approach is extended in Section

��� dealing with the cases �� ��� ��� ���

�
�
 The Cases ��� �� and �� �� �� ��

�
�
	
 The Cases ��� �� and ��� �� ��
 We use the same basic approach as

in Sections ��
 and ���� extending the concept and notation of Figures ��
 and
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Figure ����� The case ��� �� ��

���� in the natural way� We arrive at the set of inequalities

bi � � �� 	 i 	 �� and�����

� 	 ai � ai�� 	 
 �� 	 i 	 �� a	 �� a�������

if no empty convex hexagon is to be present �again counting vertices lying in

more than one sector only once�� This set of inequalities yields

� �
�X
i��

�ai � bi� 	 ������
�

which implies the desired contradiction that an outer convex polygon with at

most seven vertices can be present�

�
�
�
 The Case ��� �� ��
 A closer investigation of the constraints ����� "

���
� shows that in this case the only feasible �a�� b�� a�� b�� a�� b�� a�� b�� a�� b���

tuple �modulo rotation� is ��� �� �� �� �� �� �� �� �� ��� This case can be settled as

indicated in Figure �����

�
�
 Individual Cases

�
�
	
 The Case ��� 	�
 This case can be dealt with as indicated in Figure

����� Observe that P must lie in one of the triangles �ABD� �BCE� �CDA�
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 �ED�

� �EDRSF �

� �FSTG�

� �GTPA�

� �APB�

� �BPQC�

� �CQRED�

Figure ����� The case �������

�DEB or �EAC �as these cover the convex ��gon�� Without loss of generality

P is inside the triangle ABD �as in the �gure�� The line PD cuts the ��gon into

the two quadrilaterals AEDP and PDCB �and one triangle�� It follows that

m��m� 	 � and n��n� 	 � if no empty convex hexagon is to be present� �As in

previous sections� variables refer to the number of vertices of the ��gon lying in

the corresponding sectors�� This leads to at most eight points that can be placed

in convex position around the ��gon without creating an empty convex hexagon�

�
�
�
 The Case ��� 	�
 This case can be dealt with as indicated in Figure

����� Note that P must lie in one of the ��gons ADEF or ABCD �as in the �g�

ure�� Note furthermore that if in the latter case� P � �ABC or P � �BCD� an

empty convex hexagon occurs �APCDEF respectively BPDEFA�� Therefore�

assume that the convex ��gons APCB and CBPD exist and argue as indicated

in the �gure�
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Figure ���	� The case ��� ��� See Section ����� for details�
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Figure ���
� The case ��� ��� See Section ����
 for details�

�
�
�
 The Cases ��� �� and ��� 	�
 The case ��� �� can be dealt with as

indicated in Figure ����� Note that if four vertices of the ��gon lie on one side

of the line PQ� an empty convex hexagon can be constructed� The case ��� 	� is

treated similarly� Here� one of the vertices of the convex ��gon takes the role of

P �

�
�
 The Cases ���� ��

�
�
	
 A key observation
 The following observation is needed in later

sections�

Observation �� Suppose that j � � and let � 	 t 	 minfi
 �� jg� Consider
a sequence of t consecutive vertices V�� V�� � � � � Vt of conv�J�� Denote by Tn the

set of vertices of the i�gon conv�I� lying in the halfplane that is de�ned by the

line VnVn�� and that does not contain any other points of J� If jSt��

n�� Tnj � t� a

��gon H � with smaller jX � conv�H ��j can be constructed�

Proof� We prove by induction over t� We use Ul �l � N�� to denote vertices

of conv�I�� Note that jTnj � � for all n by the de�nition of J �

Let t � �� Assume that T� �� fU�g� see Figure ����� We claim that at

most four vertices of the ��gon can lie in the union of the 
�sectors �U�V�U�� and
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�U�V�U��� where U� and U� are the vertices of conv�I� preceding and succeeding

U�� �Note that U� �� U� as we presume t � i�� The bound follows directly

if no other point of J lies within the triangles �U�V�U� respectively �U�V�U��

Otherwise replace V� �respectively V�� by appropriate V �

� � J � �U�V�U� and

V �

� � J ��U�V�U� to obtain new 
�sectors �U�V
�

�U�� and �U�V
�

�U�� such that the

corresponding triangles �U�V
�

�U� and �U�V
�

�U� do not contain any points of J �

Note that these 
�sectors cover the region outside of conv�I� that was originally

covered by �U�V�U�� and �U�V�U��� �In fact� they cover a larger region�� Each of

them allows for at most two vertices of the ��gon without the occurrence of an

empty convex hexagon and the claim follows� Replacing these vertices by points

from the convex chain U�V�V�U� of length four yields a ��gon H � with smaller

jX � conv�H ��j� �A similar argument was used in Section ��
����

Now let t � �� We have to prove that if jSt��

n�� Tnj � t� a ��gon H � with

smaller jX � conv�H ��j can be constructed� If jSt��

n�� Tnj � t 
 �� we are done

by the induction hypothesis as jSt��

n�� Tnj 	 jSt��

n�� Tnj� Therefore� assume that

jSt��

n�� Tnj � t
�� Label the consecutive vertices of conv�I� as Ul �l � N�� in such

a way that U� � T� and U� �� T�� By the induction hypothesis this implies U� � T�
as otherwise jT�j � �� Now construct sectors as follows� start with the 
�sector

�U�V�U�� that can hold at most two vertices of the ��gon without the occurrence

of an empty convex hexagon� �As above� replace V� by V �

� if necessary�� Next

construct the ��sectors �U�V�V�U��� �U�V�V�U��� � � � � �Ut��Vt��Vt��Ut��� that can
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Figure ����� Observation �� t � �

hold at most one vertex of the ��gon each if no empty convex hexagon is to occur�

see Figure �����

Note that at each step the construction is well�de�ned by the induction hy�

pothesis� We can construct the ��sector �U�V�V�U�� as U�� U� � T�� Assume

there exists a smallest p � N such that UpVpVp��Up�� is not a convex quadrilat�

eral� This means that Up �
�Sp��

m��
Tm
� n Tp or Up�� � �St��

m�p�� Tm
� n Tp� In the

�rst case� this implies jSt��

m�p Tmj 	 �t
��
p� In the second case� it follows that

jSp

m��
Tmj 	 p� In both cases� the induction hypothesis implies that a ��gon H �

with smaller jX � conv�H ��j can be constructed�

Therefore� the ��sectors can be constructed as described� Finally construct

the 
�sector �Ut��VtUt� that can hold at most two vertices of the ��gon without

the occurrence of an empty convex hexagon� �As above� replace Vt by V �

t if

necessary�� Note that Ut �� Tt�� as we presume jSt��

n�� Tnj � t
 �� It follows that
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at most � ����t
�� �� � t�� vertices of the ��gon can lie in the union of sectors

�U�V�U�� �
t���
l��

�UlVlVl��Ul��� � �Ut��VtUt��

Replacing these vertices by points from the convex chain U�V�V� � � � VtUt of length

t � � yields a ��gon H � with smaller jX � conv�H ��j�

�
�
�
 The Cases ���� ��
 Consider the line through two consecutive ver�

tices of conv�J�� say P and Q� and let TPQ be the set of vertices of the convex

��gon lying in a halfplane that is de�ned by the line PQ and that does not contain

any other points of J � �This halfplane is unique if jJ j � ��� Consider possible

values for jTPQj�

 jTPQj � � � This case is not possible by the de�nition of J �


 jTPQj � � � In this case� a ��gon H � with smaller jX � conv�H ��j can be

constructed� Set t � � in Observation ��


 � 	 jTPQj 	 
 � This is the assumption for our subsequent considerations�


 jTPQj � 
 � In this case� an empty convex hexagon can be constructed by

using a convex chain of four vertices of the ��gon together with P and Q�

Therefore� assume that

� 	 jTPQj 	 
������

Let R be the next vertex on the convex hull of J after passing through P and Q

�if jJ j � � then R � P �� De�ne the set TQR accordingly �take the other halfplane

if jJ j � ��� For the same reasons as above assume that

� 	 jTQRj 	 
�����

and consider the following three possibilities�

jTPQ � TQRj � 	 � In this case we can choose consecutive vertices A�B�C�D

of the ��gon such that A�B � TPQ and C�D � TQR� Label the remaining vertex

of the ��gon E� Construct the two ��sectors �APQB� and �CQRD� that can hold

at most one vertex of the ��gon each without the occurrence of an empty convex

hexagon� Next construct the 
�sector �BQC� that can hold at most two vertices

of the ��gon if no empty convex hexagon is to occur� Construct furthermore

the two 
�sectors �DRE� and �EPA�� Note that the union of these �ve sectors

covers the complete region outside of conv�I�� see also Figure ���
� Each of

the two latter 
�sectors can hold at most two vertices of the ��gon without the

occurrence of an empty convex hexagon� �If necessary� replace R �respectively

P � by appropriate R� � J ��DRE and P � � J ��EPA to obtain new 
�sectors
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 � � � � � �

Figure ����� The cases ���� ��� Example with jTPQ � TQRj � ��

�DR�E� and �EP �A� such that the corresponding triangles �DR�E and �EP �A

do not contain any points of J as in the proof of Observation ��� It follows that

at most � � � � 
 � � � � vertices of the ��gon can be placed around the ��gon

without the occurrence of an empty convex hexagon� Note in particular that the

case ��� �� is covered by the argument in this subsection�

jTPQ � TQRj � � � The case jTPQ � TQRj � 
 can be treated by the same

approach as in the previous subsection� Choose consecutive vertices A�B�C of

the ��gon such that A�B � TPQ and B�C � TQR� Label the remaining vertices

of the ��gon D and E such that the vertices C� D� E are consecutive� Construct

the two ��sectors �APQB� and �BQRC�� Next construct the 
�sectors �CRD��

�DRE� and �EPA�� As above� replace the points R and P by appropriate points

in J and modify the 
�sectors if necessary� Again� we arrive at the contradiction

that at most � � �� 
 � � � � vertices of the ��gon can be placed around the ��gon

without the occurrence of an empty convex hexagon�

jTPQ � TQRj 	 � � This case leaves the possibility of constructing a ��gon H �

with smaller jX � conv�H ��j� Set t � 
 in Observation ��

�
�
 The Cases ���� ��

The approach is similar to the one in Section ���� The key idea is to partition

the region outside of conv�I� into two 
�sectors and four ��sectors� Each 
�sector
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is de�ned by two consecutive vertices of the ��gon and one vertex of conv�J��

It can hold at most two vertices of the ��gon if no empty convex hexagon is

to occur� Each ��sector is de�ned by two consecutive vertices of the ��gon and

two consecutive vertices of conv�J�� It can hold at most one vertex of the ��gon

without the occurrence of an empty convex hexagon� It follows that a total of

� � � � � � � � � vertices of the ��gon can be placed around the ��gon without the

occurrence of an empty convex hexagon�

Consider a chain of consecutive vertices of conv�J�� VWXYZ� where V � Z

if j � �� De�ne the sets TVW �TWX �TXY and TY Z as in Section ��� �that is� TVW
is the set of vertices of the convex ��gon lying in the halfplane de�ned by the line

VW that does not contain any other points of J � etc��� As in Section ���� we

assume that

� 	 jTKLj 	 
 ��K�L� � f�V�W �� �W�X�� �X� Y �� �Y� Z�g�������

By setting t � 
� �� � in Observation � �Section ����� it follows that we may also

assume that

jTKL � TLM j � 
�����

jTKL � TLM � TMN j � ����
�

jTVW � TWX � TXY � TY Z j � ������

with �K�L�M� � f�V�W�X�� �W�X� Y �� �X� Y� Z�g �in ������ and �K�L�M�N� �
f�V�W�X� Y �� �W�X� Y� Z�g �in ���
��� Note that ����� also holds in the case

��� ��� where Observation � does not apply �since t � j�� Note furthermore

that by construction it is not possible that there is a P � TKL � TMN with

P �� TLM ��K�L�M�N� � f�V�W�X� Y �� �W�X� Y� Z�g�� We now give an explicit

construction for the two 
�sectors and the four ��sectors� A concrete example can

be found in Figure ����� The combinatorial subcases are depicted in Figure �����

�
�
	
 TWX � TXY �� �
 Label the consecutive vertices of the ��gon

A�B�C�D�E� F such that B � TWX � C � TWX � TXY and D � TXY � Note

that F �� TWX and F �� TXY as otherwise jTWX j � 
 or jTXY j � 
� Consider the

following possibilities�

�� A �� �TVW � TWX�� see Figure ����a� It follows from ����� and ����� that

B�C � TVW and D � TWX � ���
� implies E � TXY � Construct the three

��sectors �BVWC�� �CWXD� and �DXYE�� Next� construct the 
�sector

�AV B�� �Replace V by an appropriate V � � J ��AV B if necessary��
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Figure ����� The cases ���� ��� Example with TWX � TXY �� ��


 If E � TY Z then ����� implies F � TY Z� Construct the ��sector

�EY ZF � and the 
�sector �FZA�� �Again� replace Z by Z � if neces�

sary��


 If E �� TY Z then it follows from ����� that A� F � TY Z� �F �� TXY
implies in particular F �� TXY n TY Z �� In this case construct the


�sector �EY F � together with the ��sector �FY ZA��

In both cases we arrive at a set of four ��sectors and two 
�sectors as

claimed� In the following cases� assume that A � �TVW � TWX��

�� E �� �TXY � TY Z�� This case is symmetric to the previous one� Therefore�

in the following assume that E � �TXY � TY Z��

� A � TWX n TVW � see Figure ����b� It follows from ����� that E� F �
TVW � �F �� TWX implies in particular that F �� TWX n TVW �� Construct

the 
�sectors �FWA� and �BXC� together with the ��sectors �EVWF ��

�AWXB� and �CXYD�� It follows that D � TY Z as otherwise jTY Z �
TVW j � jfE� Fgj � 
� Note that �E � TVW � � �E � �TXY � TY Z�� implies

E � TY Z � Therefore� we can construct the ��sector �DY ZE�� Again the
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Figure ����� The cases ���� ��� Combinatorial subcases� The

assumption in �a� " �c� is that B � TWX � C � TWX � TXY and

D � TXY � In �a�� A �� �TVW � TWX�� In �b�� A � TWX n TVW and

E � �TXY � TY Z�� In �c�� A � TVW and E � TY Z � In �d�� it is

assumed that A�B � TWX n TXY and C�D � TXY n TWX � Only

those point positions that are essential for the construction of the

sectors are indicated�

six sectors can be constructed as claimed� In the following assume that

A � TVW �

�� E � TXY n TY Z� This case is symmetric to the previous one� Therefore� in

the following assume that E � TY Z�

�� A � TVW and E � TY Z� see Figure ����c� Construct the ��sectors

�BWXC� and �CXYD�� Consider the following four possibilities�


 B � TVW �D � TY Z� Construct the ��sector �AVWB� together with

the 
�sector �FV A�� �Replace V by V � if necessary�� Accordingly�
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construct the ��sector �DY ZE� together with the 
�sector �EZF ��

�Replace Z by Z � if necessary��


 B �� TVW � D � TY Z � Construct the ��sector �DY ZE� together

with the 
�sector �EZ �F � as in the previous subcase� If B �� TVW � it

follows from ����� that F � TVW � In this case� construct the 
�sector

�AWB� together with the ��sector �FVWA��


 B � TVW �D �� TY Z � This subcase is symmetric to the previous one�


 B �� TVW � D �� TY Z� It follows that F � TVW and F � TY Z �

Accordingly� construct the ��sectors �FVWA� and �EY ZF � together

with the 
�sectors �AWB� and �DYE��

In each case� we arrive at a set of four ��sectors and two 
�sectors that cover the

complete region outside of conv�I� as claimed�

�
�
�
 TWX � TXY � �
 See Figure ����d� Then by construction� there exist

consecutive vertices A�B�C�D of conv�I� such that A�B � TWXnTXY and C�D �
TXY n TWX � Construct the ��sectors �AWXB� and �CXYD� as well as the 
�

sector �BXC�� Label the remaining vertices of the ��gon E� F such that D�E� F

are consecutive� Now distinguish four possibilities�


 D � TY Z �A � TVW � It follows that E � TY Z as otherwise jTXY � TY Z j �

� Accordingly� F � TVW as otherwise jTVW � TWX j � 
� Construct

the ��sectors �DY ZE� and �FVWA� together with the 
�sector �EZF ��

�Replace Z by an appropriate Z � if necessary��


 D �� TY Z � A � TVW � As in the previous case� construct the ��sector

�FVWA�� If E � TXY n TY Z it follows that jTY Z � TVW � TWX j 	
jfA�B� Fgj � �� Therefore� assume that E � TY Z� It follows that F � TY Z
as otherwise jTY Z j � �� Construct the 
�sector �DYE� and the ��sector

�EY ZF ��


 D � TY Z � A �� TVW � This case is symmetric to the previous one�


 D �� TY Z � A �� TVW � Note that this case is not feasible as it would imply

jTY Z � TVW j 	 jfE� Fgj � 
�

In each feasible case� we can construct the six sectors as claimed above�

�
�
 The Cases �� ��� ��� ��

Up to this point� we have settled all cases except for �� ��� ��� 	�� These

cases� except for three special cases �see below�� can all be settled via the same

set of arguments� As above� let K �� conv�J� � �X n �J�� Fix a point P � K�

Consider rays emanating from P through each vertex of the convex j�gon conv�J��
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��� ��� 	� ��� ��� 	�

%��� �� �� �� �� %��� �� �� �� ��

%��� �� �� �� �� %��� �� �� �� ��

��� ��� 	� ��� ��� 	�

%��� �� �� �� �� �� %��� �� �� �� �� ��

%��� �� �� �� �� �� %��� �� �� �� �� ��

��� �� �� �� �� �� %��� �� �� �� �� ��

��� ��� 	� ��� ��� 	�

%��� �� �� �� �� �� �� %��� �� �� �� �� �� ��

%��� �� �� �� �� �� �� %��� �� �� �� �� �� ��

%��� �� �� �� �� �� �� %��� �� �� �� �� �� ��

��� �� �� �� �� �� �� ��� �� �� �� �� �� ��

��� ��� 	� ��� ��� 	�

%��� �� �� �� �� �� �� �� %��� �� �� �� �� �� �� ��

%��� �� �� �� �� �� �� �� %��� �� �� �� �� �� �� ��

%��� �� �� �� �� �� �� �� %��� �� �� �� �� �� �� ��

��� �� �� �� �� �� �� �� %��� �� �� �� �� �� �� ��

��� �� �� �� �� �� �� ��

Table �� The cases �� ��� ��� ��� Combinatorial subcases� �%

indicates possible permutations��

This divides the region outside the j�gon into j sectors and in each sector at most

two vertices of conv�I� can lie without forming an empty convex hexagon� �To see

this� construct 
�sectors and replace P by an appropriate P � � K where needed��

Consider all possible vertex distributions� �These are summarized in Table 
��

We want to partition the region outside the convex i�gon conv�I� into sectors

and to show that in each case at most eight vertices of the ��gon can be placed

inside the union of these sectors without creating an empty convex hexagon� The

following three simple rules are su�cient to prove this�

�
�
	
 The �rst rule
 The �rst rule deals with two vertices of conv�I� lying

in the same sector�
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Figure ����� Rule �

Rule �� Let A�� A� denote two consecutive vertices of conv�I� lying in the

same sector �aPb�� where a and b are consecutive vertices of conv�J�� Then no

vertex of the ��gon can lie in the sector �A�abA�� without the occurrence of an

empty convex hexagon�

Proof� The claim follows directly from the presence of an empty convex

��gon A�aP
�bA�� where P � � K � �aPb is chosen appropriately� see Figure

�����

�
�
�
 The second rule
 The second rule gives an upper bound on the

number of vertices of the ��gon that can lie between two non�empty sectors�

Rule �� Let A�� A� denote two consecutive vertices of conv�I� lying in dis�

tinct sectors �a�Pb�� and �a�Pb��� where a� and b� respectively a� and b� are

consecutive vertices of conv�J�� Suppose that a�� b�� a�� b� are part of a chain

of consecutive vertices of conv�J�� Let S �� �A�b�a�A�� if A�b�a�A� is a convex

quadrilateral and S �� �A�b�A����A�a�A�� otherwise� Then at most two vertices

of the ��gon can lie within S�
Remark� It is possible in Rule � that b� � a��

Proof� A 
�sector that does not contain any points of J and covers the

region of the sector S can be constructed by choosing A�� A� and an appropriate

ar among the consecutive vertices of conv�J� between b� and a� �inclusively�� see

Figure �����
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Figure ����� Rule �

�
�
�
 Application of Rules 	 and �
 The �rst two rules are al�

ready su�cient to settle the cases ��� ��� �� with distributions %��� �� �� �� ���

��� ��� �� with distributions %��� �� �� �� �� ��� ��� ��� �� with distributions

%��� �� �� �� �� �� ��� ��� ��� �� with distributions %��� �� �� �� �� �� �� ��� ��� ��� ��

with distributions %��� �� �� �� ��� ��� ��� �� with distributions %��� �� �� �� �� ���

��� ��� �� with distributions %��� �� �� �� �� �� �� and ��� ��� �� with distributions

%��� �� �� �� �� �� �� ��� To see this� apply Rule � whenever two consecutive vertices

of conv�I� lie in the same sector� Note that two such vertices correspond to a �

in the underlying distribution� For consecutive vertices of conv�I� lying in dis�

tinct sectors� apply Rule �� Note that in the cases at hand� Rule � needs to be

applied exactly four times as there are always exactly four non�zero entries in the

corresponding distribution sequences� It follows that at most � � � � � vertices

of the ��gon can be placed without the occurrence of an empty convex hexagon�

An example is given in Figure �����

�
�
�
 The third rule
 The third rule deals with a sequence of sectors�

where each sector contains at most one vertex of conv�I�� See also Figure �����

Rule 
� Let � 	 n 	 i
 �� Consider a sequence A�� A�� � � � � An�� of consec�

utive vertices of conv�I�� For � 	 l 	 n��� let Al � �alPbl�� where al and bl are

consecutive vertices of conv�J�� Suppose that for � 	 l 	 n� each sector �alPbl�

contains exactly one vertex of conv�I� and that a�� b�� a�� b�� � � � � an��� bn�� are
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� � � � �

P

Figure ����� Application of Rules � and �� Example for the case

��� ��� �� with distribution ��� �� �� �� �� ���

part of a chain of consecutive vertices of conv�J�� Then at most n�� vertices of

the ��gon lie in the union of sectors
Sn��

l�� �Al��alAl��

Remark� It is possible in Rule 
 that bl � al�� �� 	 l 	 n� or bn�� � a��

Furthermore� it is possible that A� and An�� both lie in �an��Pbn����

Proof� We prove by induction over n�

If n � �� we can argue that it is not possible that A� lies above the line a�b�
while A� and A� lie below it� where lying below refers to lying in the halfplane

de�ned by a�b� that includes P � Otherwise� jTa�b� j � � and a ��gon H � with

smaller jX � conv�H ��j could be constructed� �Set t � � in Observation � in

Section ����� Assume that A� also lies above a�b�� �The case that only A� and

A� lie above the line is almost symmetric�� Construct the ��sector �A�a�b�A��

together with the 
�sector �A�a�A��� If necessary� replace a� by an appropriate

a�� � �A�a�A� to obtain a new 
�sector �A�a
�

�A�� with no points of J lying

in �A�a
�

�A�� Together� the �� and the 
�sector cover �at least� the region of

�A�a�A�� � �A�a�A��� This is clear for points lying in �A�a�A�� since �A�a
�

�A��

covers �at least� this region� Note that there cannot be a point Q � ��A�a�A�� n
�A�a

�

�A��
� n �A�a�b�A��� Such a point would have to lie in the shaded region

in Figure ��
�� If a� lies to the right of b�A� �or a� � b�� then Q � �A�a
�

�A���

Otherwise b� � �A�a�A�� and we could have chosen a�� �� b�� The �� and the 
�
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Figure ���
� Proof of Rule 
� n � ��

sector allow for at most ��� � 
 vertices of the ��gon without the occurrence of

an empty convex hexagon�

For the induction step� assume that the claim is true for �� �� � � � � n
�� By the

induction hypothesis� we know that at most �n
 �� � � vertices of the ��gon can

lie in the union of sectors
Sn

l���Al��alAl�� At most two additional vertices of the
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��gon can lie in the sector �AnanAn���n
Sn

l���Al��alAl� without the occurrence of

an empty convex hexagon as it is part of the 
�sector �AnanAn���� Therefore� the

number of vertices of the ��gon that can lie in the union of sectors
Sn��

l�� �Al��alAl�

is at most �n 
 � � �� � � � n � 
 if no empty convex hexagon is to occur� It

also follows from the induction hypothesis that at most �n
���� vertices of the

��gon can lie in the union of sectors
Sn��

l�� �Al��alAl� without the occurrence of an

empty convex hexagon� Accordingly� at most two additional vertices of the ��gon

can lie in the sector �A�a�A�� n
Sn��

l�� �Al��alAl� if no empty convex hexagon is to

occur� Therefore� the above bound is sharp if and only if exactly two vertices of

the ��gon lie in the sectors �A�a�A�� and �Anan��An��� respectively�

It follows that A� must lie below the line a�b� and An�� must lie below the

line anbn as otherwise one could again replace one of the 
�sectors �A�a�A�� and

�Anan��An��� by the ��sector �A�a�b�A�� respectively �AnanbnAn��� as above�

This sector could hold only one vertex of the ��gon �without the occurrence of

an empty convex hexagon� and the union of all sectors would still cover the same

region�

This implies jSn

l�� Tal blj � n � n � �� though� and a ��gon H � with smaller

jX � conv�H ��j can be constructed by Observation �� To see this� note that

a�� b�� a�� b�� � � � � an� bn are part of a chain of consecutive vertices of conv�J� of

length L � n� �� Therefore� the claim follows�

�
�
�
 Application of Rules 	
�
 Based on the three rules we can now set�

tle all the remaining subcases of �� ��� ��� �� with the exception of ��� ��� ��

with distribution ��� �� �� �� �� �� ��� ��� ��� �� with distribution ��� �� �� �� �� �� �� ��

and ��� ��� �� with distribution ��� �� �� �� �� �� �� ��� �These cases do not allow

for a direct application of Rule 
� They are treated individually in the follow�

ing subsections�� In the other cases� at least one � appears in the distribution

sequence� We can argue as follows�

Whenever two consecutive vertices of conv�I� lie within the same sector� ap�

ply Rule �� Note that two such vertices correspond to a � in the underlying

distribution� No vertices of the ��gon can lie in the corresponding sectors�

Now take maximal series of consecutive sectors containing at most one vertex

of conv�I� each and apply Rule 
 �respectively Rule � if none of them contains

a vertex�� The number of vertices of the ��gon that can lie in the union of all

corresponding sectors is equal to q � s � �� where q is the total number of ��s in

the underlying distribution and s is the number of distinct series� Note that s is

equal to the number of gaps between two occurrences of a � in the distribution

sequence� As this number is equal to the number of ��s in the sequence� it follows
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� � � � 
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�

� �Rule ��
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conv�I�

conv�J�

�

� �

�
� �

�

�

P

Figure ����� The case ��� ��� �� with ��� �� �� �� �� �� �� ��

that q � s � � is equal to the sum of the elements of the distribution sequence�

It can easily be veri�ed that this sum is always smaller than �� Therefore� in

all these cases an empty convex hexagon occurs� �An example is given in Figure

��
���

�
�
�
 The Case ��� �� �� �� �� �� ��
 This case can be dealt with by applying

Rule 
 with n � � seven times with each vertex of conv�I� as a starting point�

Each 
�sector �Ar��arAr� is left out exactly once� Therefore� in the union of

all sectors at most �� � �� � ����� � � vertices of the ��gon can lie without the

occurrence of an empty convex hexagon�

�
�
�
 The Case ��� �� �� �� �� �� �� ��
 For the case ��� �� �� �� �� �� �� ��� label

the vertices of the polygon conv�J� in clockwise order al �� 	 l 	 �� and assume

that the sector �a	Pa
� is the one that does not contain a vertex of conv�I��

Applying Rule 
 with n � �� we can conclude that at most � � � � � vertices of

the ��gon can lie in the union of sectors
S

	

l���Al��alAl�� see Figure ��
�� Consider

A	� Note that it is not possible that A	 lies below the line a�a� and below the

line a	a
 �where below refers to the halfplane that includes P �� as otherwise a

��gon H � �� �a�a�a� � � � a
A	� with smaller jX � conv�H ��j is present�
If A	 lies above the line a�a�� only one vertex of the ��gon can lie in the then

existing ��sector �A	a�a�A�� and therefore� without the occurrence of an empty
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Figure ����� The case ��� ��� �� with ��� �� �� �� �� �� �� ��

convex hexagon� at most eight vertices of the ��gon can lie in the union of sectors

	�
l��

�Al��alAl� � �A	a�a�A���

which by construction covers the complete region outside of conv�I��

Similarly� if A� lies above the line a	a
 �and therefore also A	 by construction��

at most eight vertices of the ��gon can lie in the union of sectors

	�
l��

�Al��alAl� � �A	a	a
A��

�which by construction covers the complete region outside of conv�I�� without

the occurrence of an empty convex hexagon�

Finally� if A� lies below the line a	a
 and A	 lies above it� we know that A�

must also lie above the line a	a
 as otherwise jTa�a� j � � and a ��gon H � with

smaller jX � conv�H ��j could be constructed by Observation �� Therefore� the

��sector �A�a	a
A	� exists� which can only hold one vertex of the ��gon without

the occurrence of an empty convex hexagon� Now� applying Rule 
 with n � �

yields that at most seven vertices of the ��gon can lie in the union of sectors

�A	a�A�� �
��
l��

�Al��alAl�
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nition Rt�

without the occurrence of an empty convex hexagon� Therefore� without the

occurrence of an empty convex hexagon� at most eight vertices of the ��gon can

lie in the union of sectors

�A	a�A�� �
��
l��

�Al��alAl� � �A�a	a
A	�

which by construction covers the complete region outside of conv�I��

�
�
�
 The Case ��� �� �� �� �� �� �� ��
 Note that in the case

��� �� �� �� �� �� �� ��� applying the induction argument with n � � eight times

with each vertex of conv�J� as a starting point �in analogy to our approach to

the case ��� ��� �� with distribution ��� �� �� �� �� �� �� in Section ������ only gives

us an estimate of a total of �� � �� � ����� � � vertices of the ��gon that can lie

in the union of all sectors� Therefore� a di�erent approach for this subcase is

required�

Label the vertices of conv�J� in clockwise order as ar �� 	 r 	 ��� Consider

four consecutive vertices of the convex ��gon conv�J�� as� at� au and av� Note that

no vertex of conv�I� can lie below the line asat and below the line auav �where

below refers to the halfplance that includes P � as otherwise we could use such a
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 �A�A��

� �A�a�a�A�A��

� �A	a	a�A��
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� �A�a�a�A�� � �A�a�a�A�A��

Figure ����� The case ��� ��� �� with ��� �� �� �� �� �� �� ��� R�

contains no Am�

vertex to construct a ��gon H � with smaller jX � conv�H ��j� Denote by Rt the

region above both lines asat and atau� see Figure ��

� The union of all regions Rr

�� 	 r 	 �� de�nes the feasible region for vertices of conv�I�� Label the vertices

of conv�I� as Am �Am � �amPam���� � 	 m 	 �� a� �� a��� Note that Am lies

in Rm or Rm�� �or both� �� 	 m 	 �� R� �� R��� Consider the following three

possibilites�

There exists a region Rw with no Am lying in it� There can be at most one such

region as otherwise one could construct a ��gon H � with smaller jX � conv�H ��j�
To see this� eliminate successively the possibilities that the next Rz with this

property is Rw��� Rw��� Rw�� or Rw��� In the �rst case� jTaw aw�� j � � and in the
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other three cases one can replace one to three vertices of the ��gon a�a� � � � a� by

two to four points Am in such a way that a ��gon H � with smaller jX � conv�H ��j
appears�

Let a� be the vertex associated with the region that does not contain any

Am� Since the existence of such a region is independent of the choice of P � we

may assume that P lies in the pentagon a	a�a�a�a�� Such a P must exist for

otherwise an empty convex hexagon appears� see also Figure ��
�� �A di�erent

choice of P might result in a di�erent distribution sequence� If this is the case�

we arrive at a subcase that has already been settled�� As a consequence� at most

three vertices of the ��gon can lie in the sector �A	a	Pa�A�� as otherwise a ��gon

H � with smaller jX � conv�H ��j could be constructed �as � � � � ���

We claim that Am � Rm � Rm�� for � 	 m 	 �� that is� each Am lies above

both lines am��am and am��am�� �� 	 m 	 �� a� �� a��� To see this� start from

the line a�a� and work clockwise to prove that Am � Rm �� 	 m 	 ��� Note

that con�gurations� where jSl��

n�� Tan an�� j � l �� 	 l 	 �� yield a ��gon H � with

smaller jX � conv�H ��j by Observation � �Section ����� Now start from the line

a�a� and work counter clockwise to prove that Am � Rm�� �� 	 m 	 ���

Finally� as we are assuming that no Ar lies in R�� it follows that A� � R� and

A� � R�� Therefore� this case can be settled as indicated in Figure ��
��


At least� one Am lies in each region Rr 
� 	 r 	 �� and� say� A� � R� nR��

We claim that this implies that Au � Ru �
 	 u 	 �� as otherwise a ��gon H �

with smaller jX � conv�H ��j appears� To see this� �rst consider the point A��

If A� � R� n R�� the ��gon H � �� A�a�a� � � � a�A� with smaller jX � conv�H ��j
occurs� Therefore� A� � R�� Next� consider A
� then A	 and so on� Finally� as

we are assuming that at least one Am lies in each region Rr �� 	 r 	 �� it follows

that A� � R�� see Figure ��
�� In this case� the region outside of conv�I� can be

partitioned into eight ��sectors �Alalal��Al��� �� 	 l 	 �� a� �� a�� A� �� A��

that together allow at most eight vertices of the ��gon without the occurrence of

an empty convex hexagon�

Each Am lies in both Rm and Rm��� Again� the region outside of conv�I� can

be partitioned into eight ��sectors �Alalal��Al��� �� 	 l 	 �� a� �� a�� A� �� A��

that together allow at most eight vertices of the ��gon without the occurrence of

an empty convex hexagon�
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Figure ����� The case ��� ��� �� with ��� �� �� �� �� �� �� ��� A� �
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CHAPTER 


Discussion

We have proven that every set that contains the vertex set of a convex ��

gon also contains an empty convex hexagon� As we have mentioned in Chapter

�� this result is tight in the sense that there are sets of points without empty

convex hexagons that have eight points on the convex hull �Ove���� In fact� we

constructed such a set by hand when investigating the case ��� �� with an ��gon

instead of a ��gon on the outmost layer� see Figure 
��� Note that no ��gon with

less points in its interior can be constructed in the �gure�

It is only natural to ask for the exact bound for h���� It seems likely that

further case analysis with similar arguments as we have applied here will lead

towards this goal� A �rst step in this direction might be achieved by a solution

to the following problem�
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Figure ���� Example of a set that has eight points on the convex

hull and no empty convex hexagon�
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Figure ���� Example of a ���point set with no convex hexagon�

Problem �� Characterize all point sets in general position in the plane with

eight points on the convex hull and no empty convex hexagon�

It might also be interesting to investigate� where exactly the strategy of our

proof fails if one tries to establish the existence of empty convex heptagons in

every su�ciently large planar point set in general position �as opposed to Horton�s

result �Hor����� It is possible that constructions of point sets without empty

convex heptagons can be derived that di�er from Horton�s original one�

Some of the di�culties in the settlement of the Erd�os�Szekeres conjecture arise

from the fact that optimal sets are determined only up to geometric transforma�

tions that preserve convexity �such as rotations� re$ections or certain projections��

We make the following conjecture on the structure of optimal point sets for the

�rst open case of this problem�

Conjecture �� g��� � ��� Furthermore� after a suitable rotation of the

coordinate system� every ���point set that does not contain a convex hexagon can

be decomposed into a 
�cap� a ��cap� a ��cup and a 
�cup 
in ascending order of

y�coordinates� as indicated in Figure ����

Furthermore� we express our belief that more general structural patterns will

be observed in all extremal sets for the Erd�os�Szekeres problem�

It is also possible to test the conjecture that g��� � �� based on an analysis of

the convex layers of a ���point set as already noticed in �Bon���� Theoretically�

this type of approach works for every �xed value of n� but already in the case

n � � a large number of subcases needs to be treated individually� One exemplary
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case is treated in �Fre���� Frei also shows that the original construction of Erd�os

and Szekeres �ES�	� �as presented by Lov	asz �Lov���� for a ���point set that does

not contain a convex hexagon is tight in the sense that the addition of a single

point leads to the occurrence of a convex hexagon� The analysis is simpli�ed

by the fact that some of the conditions concerning the placement of the sets

Xi �see Chapter �� in the construction are su�cient but not necessary for the

non�occurrence of a convex hexagon�

Under the assumption that the Erd�os�Szekeres conjecture is true� the task

of determining h��� reduces to the evaluation of point sets with at most ���� �

� � ��� points� A computerized search might therefore be directed towards the

following problem�

Problem 
� Investigate point sets in general position in the plane with at

most ��� points and no convex ��gon�

Our proof of Theorem � has been analyzed by Valtr �Val�� Valtr shows that it

can be shortened at the cost of a worse bound for h��� and concludes that &we do

not see how to achieve Gerken�s constant � � � without an extensive case analysis

as in �Ger�&� Note the similarities between Valtr�s analysis and the independent

proof of Nicol	as �Nicb��

Addendum� Very recently� Szekeres and Peters �SP� have announced a

computer�based proof of g��� � ���
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