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Abstract

This work is motivated by a mobility study conducted in the city of Munich, Germany.

The variable of interest is a binary response, which indicates whether public transport

has been utilized or not. One of the central questions is to identify areas of low/high

utilization of public transport after adjusting for explanatory factors such as trip, indi-

vidual and household attributes. The goal of this thesis is to develop flexible statistical

models for a binary response with covariate, spatial and cluster effects. One approach

for modeling spatial effects are Markov Random Fields (MRF). A modification of a class

of MRF models introduced by Pettitt, Weir, and Hart (2002) is developed in this work.

This modification has the desirable property to contain the intrinsic MRF in the limit

and still allows for fast and efficient spatial parameter updates in Markov Chain Monte

Carlo (MCMC) algorithms. In addition to spatial effects, cluster effects are taken into

consideration. Group and individual approaches for modeling these effects are suggested.

The first one models heterogeneity between clusters, while the second one models het-

erogeneity within clusters. An unidentifiability problem occurring in the second case is

solved. For hierarchical spatial binary regression model with individual cluster effects two

MCMC algorithms for parameter estimation are developed. The first one is based on a

direct evaluation of the likelihood. The second one is based on the representation of bi-

nary responses with Gaussian latent variables through a threshold mechanism, which is

particularly useful for probit models. Extensive simulations are conducted to investigate

the finite sample performance of the MCMC algorithms developed. They demonstrate

satisfactory behaviour. Finally the proposed model classes are applied to the mobility

study.
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Chapter 1

Introduction

This work has been motivated by a German mobility study investigating the usage of

public transport options. The variable of interest was a binary response, whether public

transport has been utilized or not. One central question of the investigators is to identify

areas of low/high utilization of public transport after adjusting for explanatory factors

such as trip, individual and household attributes. Therefore the goal is to develop flexible

statistical models for a binary response with covariate, spatial and cluster effects. There

are a great number of statistical models in the literature which incorporate covariates

together with spatial information. In the context of general additive models, the sim-

plest possibility to account for spatial information would be to use an additional nominal

covariate indicating the region if there are multiple responses per region. But such an ap-

proach does not give a model for spatial dependence . This property is especially desired

if the data volume is not large with respect to the number of covariates. In this case the

assumption of a spatial structure (such as spatial smoothness) is especially helpful to be

used as additional prior information.

There are two general approaches to incorporate spatial effects in a model. The first

one is appropriate for data collected at specified point locations, while the other one uses

data regions. The first approach is known as generalized linear kriging (see for example

Diggle, Tawn, and Moyeed 1998). It is based on generalized linear mixed models (Breslow

and Clayton 1993), where spatial random effects are modeled as realizations of a stationary

Gaussian process with zero mean and a parameterized covariance structure. For binary

data this approach models the success probability pi as follows:

pi = E(Yi|xi, bi) = h(ηi) and ηi = x′
iα + bi , i = 1, . . . , n , (1.1)

where xi is the design vector of the random variable Yi and bi, i = 1, . . . , n, are re-

alizations of a zero mean stationary Gaussian process b at the locations of the Yi’s.

The parameterization of the covariance structure by a covariance parameter δ is usually

1



2 CHAPTER 1. INTRODUCTION

based on distances between the observed locations. Even in the case of normal responses

Yi, i = 1, . . . , n, maximizing the likelihood over α and δ becomes analytically intractable

as soon as independence of the spatial effects bi, i = 1, . . . , n, cannot be assumed. One

general approach therefore is to maximize the reduced log-likelihood l(Y; α̂(δ), δ) with

respect to δ, where α̂(δ) is the maximum likelihood estimate of α for fixed δ, and profile

over δ. But such estimation is computationally expensive for large data sets. For arbitrary

responses parameter estimation is carried out by Markov Chain Monte Carlo (MCMC)

methods such as Gibbs sampling (see Diggle, Tawn, and Moyeed 1998). For large data sets

the updating of the covariance parameter δ is difficult, since it requires to compute the de-

terminant and inverse of a large dimensional variance-covariance matrix at each iteration.

Heagerty and Lele (1998) remark (p.1104) that this step is computationally prohibitive

already for sample sizes larger than 500. To overcome this problem they assume local

independence between spatial effects which have a distance longer than some fixed value

R. Heagerty and Lele (1998) use this idea for an iterative approach to determine the local

conditional posterior mode of the spatial effect for the prediction at a new location. In

contrast to Diggle, Tawn, and Moyeed (1998), Heagerty and Lele (1998) estimate spatial

effects bi, i = 1, . . . , n using a composite likelihood approach. Gelfand, Ravishanker, and

Ecker (2000), which analyze a binary kriging model for the probit link function h(·) in

(1.1), propose to apply MCMC with a suitably selected importance sampling density.

They note that their method replaces a n × n matrix inversion with sampling from an

n-dimensional normal, which for large values of n can be carried out much faster using a

Cholesky decomposition. Their approach also does not need to compute the determinant

of the variance-covariance matrix. It allows to determine the posterior distribution of the

regression parameter α and the covariance parameter δ, but the posterior distribution for

the spatial effects bi, i = 1, . . . , n cannot be calculated this way.

The other approach to incorporate a spatial model is appropriate when spatial effects

are associated with data regions. These do not need to be on a regular lattice. The model

equation is similar as in (1.1), but now data are assumed to be aggregated over regions

and spatial effects are individual for each region instead for each observation, as before.

Therefore the linear predictors are modeled as

ηi = x′
iα + bj(i), i = 1, . . . , n, j = 1, . . . , J ,

where J denotes the number of regions and j(i) indicates the region associated with the

ith observation. The spatial effects bj, j = 1, . . . , J , are modeled as a realization from

some Gaussian Markov random field (MRF) (Besag and Green 1993). Gaussian MRF’s

are also a zero mean Gaussian process. The name Gaussian conditional autoregression

(Gaussian CAR) is also used, since such a distribution is typically given through its full

conditionals. This last fact allows fast individual updating of J << n spatial effects in
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a Gibbs sampler scheme. More precisely, the distribution of the spatial effect bj given

all the other spatial effects depends only on the spatial effects of the neighbors of the

jth region. Therefore this approach requires some spatial neighborhood structure. This

modeling is appropriate for our mobility application, since data are aggregated over postal

codes of Munich, Germany. It is natural to consider two postal codes as neighbors if

they have a joint border. In contrast to the stationary Gaussian process used in kriging,

in Gaussian CAR models the explicit form of its precision matrix (inverse covariance

matrix) is available. Therefore we do not need to compute the inverse of the variance-

covariance matrix when updating the covariance parameter δ. Moreover this precision

matrix is usually sparse, which allows to compute its determinant much faster, as in

the kriging approach. Further, Pettitt, Weir, and Hart (2002) use this fact and propose

a specific dependence structure which provides even an analytical computation of its

determinant. The next difference to stationary Gaussian processes, used in kriging, is that

some Gaussian CAR models possess an improper joint density. The simplest example is

the intrinsic CAR model (Besag and Green 1993), whose precision matrix is only semi

positive. Fahrmeir and Lang (2000) use improper intrinsic CAR models as a prior for a

Bayesian semi parametric regression model for multi categorical time-space data, while

Knorr-Held and Rue (2000) applied intrinsic CAR priors for Poisson models used in

disease mapping. For our application we study more advanced proper Gaussian CAR

models with a parameterized correlation matrix. In particular, we develop a modification

of the Pettitt’s CAR model, which includes in the limit a specific intrinsic CAR model.

The modification we propose still has all nice properties of the Pettitt, Weir, and Hart

(2002) CAR models: proper joint distributions, a similar interpretation of parameters,

the same conditional correlations and more important allows for fast computation of the

determinant of the precision matrix, providing fast Gibbs sampling. Gaussian CAR models

will be considered in more detail in Section 2.

A principally different, well-known approach, also developed for spatial regression

binary data over the region lattice is the auto logistic regression model. Huffer and Wu

(1998), which use this method for the analysis of the distribution of plant species in

Florida, U.S.A., propose to extend the auto logistic modeling of the success probability

for each species by incorporating a fixed effect term x′
iα:

log

(
pi

1 − pi

)
= x′

iα + γy∗
i , y∗

i :=
∑

j:i∼j

yj ,

where ”i ∼ j” indicates that sites i and j are neighbors. They work with a regular rect-

angular lattice and one-observation-per-site data. But in spite of this simplicity Huffer

and Wu (1998) note that exact MLE is not tractable, except when the number of sites

is quite small, while two other estimation methods, namely the coding method (Besag
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(1974)) and the maximum pseudo-likelihood method (Besag (1975)), seem to be not suf-

ficiently efficient. For their application Huffer and Wu (1998) investigate a MCMC MLE

approach, which produces the likelihood function via Monte Carlo simulations. Note they

do not give any idea, how to take into consideration possible interactions between different

species. For the Gaussian CAR approach Pettitt, Weir, and Hart (2002) solve this prob-

lem by modeling the correlation between several Gaussian CAR models for each species

applied to tree biodiversity data. Also Carlin and Banerjee (2002) develop this approach

for multiple cancer survival data with 3 types of cancer.

We close our short overview on spatial modeling for binary data by mentioning a non

parametric binary regression approach, which was proposed by Kelsall and Diggle (1998)

for the analysis of spatial variation in risk of disease. The idea is to model logits through

spatially dependent intensities λ1(x) (cases) and λ2(x) (controls), where x ∈ A ⊂ R2 is

the response point location:

p(x) := P (Yi|Xi = x) =
q1λ1(x)

q1λ1(x) + q2λ2(x)
⇒ logit(p(x)) = log

(
λ1(x)

λ2(x)

)
+ c (1.2)

Kelsall and Diggle (1998) consider non parametric kernel estimators p̂h(x) for p(x), where

h denotes the corresponding bandwidth. Cross-validation is used to optimize h. While in

the Gaussian CAR approach we test the significance of the spatial effects bj, j = 1, . . . , J ,

Kelsall and Diggle (1998) construct tolerance contours, which indicate for each x whether

p̂h(x) is consistent with the proportional hazard assumption, which is given by the null

hypothesis H0 : λ1(x)
λ2(x)

= const. These are determined by generating m times new data

which are consistent with H0 but otherwise similar in distribution to the original data.

Finally, they construct new estimates p̂sim
h (x) for each of the m generating data sets. The

authors note that, since covariates are not included in (1.2), the collection of a stratified

sample of controls can be very difficult, particularly when the number of covariates is

large. Therefore they extend their model by including fixed effects utα:

logit(p(x, u)) = utα + g(x) (1.3)

This extension allows to collect a simple random sample of controls and to take into ac-

count covariates by modeling their effects within (1.3). The authors however note that

kernel regression estimation based on Model (1.3) is substantially more computer in-

tensive, so that the simpler kernel regression method, based on (1.2) will sometimes be

preferable.

In addition to spatial effects we extend our modeling of the linear predictor ηi by

cluster random effects. It allows us to obtain more flexible models and to take into ac-

count possible overdispersion caused by unobserved heterogeneity. Examples of clusters

are age groups or the household types (single, couple, with children etc.). We consider
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two approaches, namely group and individual cluster effects. The first one, which models

heterogeneity between clusters, implies the usual idea of having the same random effect

within a cluster. These random effects are usually assumed to be some realization from

the multivariate normal NK(0, σ2
cIK) with usually unknown cluster variance σ2

c . Here K

denotes the number of clusters and IK stands for the K-dimensional identity matrix. A

different choice of the variance-covariance matrix is possible.

The second approach allows for heterogeneity within a cluster, i.e. we model cluster

effects within a cluster as independent normally distributed random variables with zero

mean and a cluster specific variance. Therefore we have to estimate K cluster specific

variances instead of K cluster effects as before. Afterwards we will show how an uniden-

tifiability problem occurring in the second case can be overcome. For this hierarchical

spatial binary regression model with individual cluster effects we develop two estimating

MCMC algorithms. The first one is useful if the likelihood of the data, given covariates

and unknown parameters, can be easily computed as for binary logistic models. Markov

Chains are then generated using Metropolis-Hastings steps. The second approach, which

is particularly useful for probit model is based on latent variables, where the observed

binary responses are generated through a threshold mechanism. For latent Gaussian vari-

ables this leads to binary probit models (see for example Albert and Chib 1993). For

MCMC inference, Gaussian latent variables are considered as unknown additional “pa-

rameters” and are generated with the other parameters in a Gibbs sampling scheme. We

note that block updating for the regression parameters α and the spatial parameters b

is available in this estimating algorithm. Therefore we achieve considerably better mix-

ing than in the direct algorithm, where parameters are updated individually. This allows

us to reduce the number of iterations in the corresponding Markov chains. Further, this

method reduces the number of parameters, which require a numerically more complicated

Metropolis-Hastings step to only one.

In connection with cluster modeling we mention briefly also another approach devel-

oped by Kuhnert, Mengersen, and Smith (2002). They use clustering of observations with

similar design vectors. For forecasting they take the average response value over the corre-

sponding cluster, if responses are continuous, while in the discrete case the most frequent

value in the associated cluster is chosen. The determination of clusters is carried out using

reversible jump MCMC. A major advantage of this approach is that complex covariate

interactions can be accommodated. Kuhnert, Mengersen, and Smith (2002) note that this

method can be especially useful for small binary data sets, where data is located in sparse

areas across the study region and the observed success probability is small. In this case

the objects under investigation may be better described by smooth representations of

their covariates instead of being described solely by their geographical coordinates. For
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our large binary mobility data with many covariates and larger success probabilities, how-

ever, the computational effort which is required in this approach and known difficulties

with the change point problem in reversible jump block MCMC make this approach not

attractive. Besides this the authors seem to assume that all covariates are metric.

The renainder of the thesis is organized as follows. In Section 2 we discuss spatial effects

modeling using Gaussian CAR processes. We propose some modification of the Gaussian

CAR models developed by Pettitt, Weir, and Hart (2002), which allows to achieve an

intrinsic CAR model in the limit. Using this modification we develop in Section 3 a

hierarchical spatial binary regression model with group cluster effects, while in Section

4 we present individual cluster effects modeling. In Section 5 we present the results of a

comprehensive simulation study investigating the performance of the MCMC algorithms

developed in Sections 3 and 4 in small samples. In Section 6 we apply our approach to

data from a German mobility study. Finally Section 7 gives a discussion and presents an

outlook for further research. The appendix contains in addition to proofs of some results

presented in Chapter 2, an introduction to generalized linear models and MCMC methods.



Chapter 2

Modeling of Spatial Effects Using

Gaussian CAR Models

The most popular kind of Markov random fields (MRF) are Gaussian MRF’s (Besag and

Green 1993), or Gaussian conditional autoregressive processes (Gaussian CAR) (see for

detailed discussion Pettitt, Weir, and Hart 2002).

Let the random vector b ∈ RJ represent a Gaussian CAR process. Then its distribution

is defined through its full conditionals as follows:

bj|b−j ∼ N

(
µj +

∑

j′ 6=j

cjj′(bj′ − µj′), κj

)
, j = 1, . . . , J ,

where b−j = (b1, . . . , bj−1, bj+1, . . . , bJ)t. Here N(µ, σ2) denotes a normal distribution with

mean µ and variance σ2.

In particular, a Gaussian CAR with zero-mean has the following full conditionals:

bj|b−j ∼ N

(∑

j′ 6=j

cjj′bj′ , κj

)
. (2.1)

It is known (Besag and Green 1993), that the joint distribution of the vector b has the

form

b ∼ NJ

(
0, (IJ − C)−1M

)
, (2.2)

where C = (cjj′) with cjj = 0, j = 1, . . . , J , and M = diag(κ1, . . . , κJ). Here NJ(µ, Σ)

denotes a J-dimensional normal distribution with mean vector µ and covariance matrix Σ.

The precision matrix Q = M−1(IJ − C) consists of the elements qjj′ = − cjj′

κj
for j 6= j′

and qjj = 1
κj

. Requiring symmetry of the precision matrix gives the first restriction on the

values cjj′ and κj:
cjj′

κj

=
cj′j

κj′
. (2.3)

7
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Due to its clear smoothing interpretation (see Example 1 below) and simple parameteri-

zation, Gaussian CARs are popular for modeling spatial effects, when data are aggregated

in regions. The components of the vector b represent in this case regions, which have a

known (often not regular) neighborhood structure. Gaussian CARs can also be used as

prior distributions for spatial effects in Bayesian inference. Below we present some exam-

ples of Gaussian CARs. Further we will always assume that the neighborhood structure

occurring in an Gaussian CAR has no isolated regions or groups of regions.

Example 1: The first, probably the most common example is the intrinsic Gaussian

CAR (Besag and Green 1993). The distribution of the vector b is given as

bj|b−j ∼ N(bj,
τ 2

Nj

) , j = 1, . . . , J, and bj =

∑
j∼j′ bj′

Nj

, (2.4)

where Nj = # of neighbors of the region j, and “j ∼ j′ ” denotes contiguous regions. In

particular, we have j /∼ j.

The smoothing effect for each bj, j = 1, . . . , J , given its neighborhood is represented

here clearly by its conditional mean bj, equal to the average value over the neighborhood,

and its variance τ2

Nj
, which decreases, if the number of neighbors increases. Note, that in

contrast to the conditional mean of bj given the remaining components, the conditional

variance of the bj depends on the number of its neighbors (which can be interpreted like

the density of the regions in this area), but not on their (weighted) values. In order to

get probably a more realistic smoothing effect, the components bj′ , j′ 6= j in (2.4) can be

weighted, proportional to the joint border length, or inverse proportional to the distances

between its centers. For example, if ωjj′ denotes the joint border length between the

regions j and j′ and ωj+ =
∑

j′ ωjj′ is the length of the whole border of region j, then the

distribution of the vector b can be written through its full conditionals, as

bj|b−j ∼ N(bj,
τ 2

ωj+

) , j = 1, . . . , J and bj =

∑
j∼j′ ωjj′bj′

ωj+

. (2.5)

Since ωjj′ = ωj′j, Condition (2.3) is satisfied. According to (2.4) and (2.2) the precision

matrix of b is equal to Q0

τ2 , where

Q0 = (qjj′) =





Nj, if j = j′

−1, if j ∼ j′

0, otherwise .

(2.6)

We will show that this matrix is positive semi-definite with rank(Q0)= J − 1, therefore b

has an improper density. More precisely, we will prove that the joint distribution of the

vector b can be presented in the following form:
{

bJ ∼ const

b−J|bJ ∼ NJ−1

(
1J−1 bJ , τ 2Q−1

11

)
, Q11 − positive definite ,

(2.7)
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where 1J−1 = (1, . . . , 1)t ∈ RJ−1 and the matrix Q11 ∈ R(J−1)×(J−1) is a (positive definite)

sub matrix of Q0 in which the last row and column have been deleted, i.e.

Q0 =

(
Q11 Q12

Q21 Q22

)
.

Here we denote Q12 = (q1J , . . . , qJ−1,J)t and Q22 = qJJ . The proof of (2.7) is given in the

Appendix. Note that (2.7) does not represent a singular multivariate normal distribution.

Example 2: Pettitt, Weir, and Hart (2002) use a particular Gaussian CAR, where

bj|bj′ , j 6= j′ ∼ N

(
φ

1 + |φ|Nj

∑

j∼j′

bj′ ,
τ 2

1 + |φ|Nj

)
. (2.8)

Here the parameter φ measures the strength of the spatial dependency. There is no spatial

dependency, if φ = 0. Since maximum likelihood estimation is intractable for this model

MCMC methods have been used to estimate φ and τ 2. It was shown (Pettitt, Weir, and

Hart 2002) that a fast and simple update of φ for a Gibbs Step given the vector b and

τ 2 is available. Note that in contrast to the intrinsic CAR, the joint distribution of b

based on conditionals specified in (2.8) is a proper distribution, which leads to a proper

posterior when used as a prior distribution. This will circumvent any problems in the

Gibbs sampler arising from using an improper prior.

Example 3: For our analysis we introduce now a modified Pettitt’s CAR. The distri-

bution for b is given via its full conditionals as follows:

bj|bj′ , j 6= j′ ∼ N

(
φ

1 + |φ|Nj

∑

j∼j′

bj′ ,
(1 + |φ|)τ 2

1 + |φ|Nj

)
. (2.9)

This distribution differs from Pettitt’s CAR (2.8) by the additional term 1 + |φ| in the

numerator of the conditional variance. This modification allows us to have the intrinsic

CAR (2.4) in the limit, when φ → ∞. Further, this model has the same behavior as

Pettitt’s CAR (2.8) when φ goes to zero (no spatial dependency). Finally, all partial

correlations between bj and bi given all the other sites are also the same, as in (2.8).

Note again that in contrast to its limiting case (2.4), the joint distribution of the

modified Pettitt’s CAR (2.9) is still proper (namely multivariate normal) for any φ ∈ R.

The asymptotic behavior of the modified Pettitt’s CAR if φ → +∞ can be presented in

the following simple form, which is similar to (2.7):





bJ ∼ N (0, σ2
J(φ)) with limφ→+∞

σ2
J (φ)

τ2 φ

J

= 1

b−J|bJ ∼ NJ−1

(
µJ(φ) bJ , τ 2Σm.P

11 (φ)
)

with

limφ→+∞ µJ(φ) = 1J−1 and limφ→+∞ Σm.P
11 (φ) = Q−1

11 .

(2.10)
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The proof of (2.10) is provided in the Appendix.

In the modified Pettitt’s model we can also achieve a simple update for φ. To indicate

the dependency on φ we write now Qm.P (φ) for the precision matrix of the modified

Pettitt’s model (2.9). In particular, the corresponding likelihood function [b|φ, τ 2] is given

by (
1

2πτ 2

)J
2

|Qm.P (φ)|1/2 exp

(
− 1

2τ 2
b′Qm.P (φ)b

)
(2.11)

Therefore each update of φ requires the computation of the determinant of Qm.P (φ).

Since the latter is not analytically tractable for general sets of irregularly spaced sites, we

need some efficient fast numerical technique for calculating it. With the reparametrization

ψ = φ
1+|φ| we can apply the same procedure as in Pettitt, Weir, and Hart (2002). More

precisely, if we define the diagonal matrix

D = diag(N1 − 1, . . . , NJ − 1) and Γ = (γjj′)j,j′=1,...,J =

{
1, if j ∼ j′

0, if j ∼/ j′, j = j′
,

then Qm.P (φ) can be written in the form

Qm.P (ψ) = IJ + |ψ|D − ψΓ =





IJ − ψ(Γ − D), if ψ > 0

IJ , if ψ = 0

IJ − ψ(Γ + D), if ψ < 0 .

If (λ1, . . . , λJ) are the eigenvalues of Γ−D and (ν1, . . . , νJ) are the eigenvalues of Γ+D,

then the determinant of Qm.P (ψ) is equal to

|Qm.P (ψ)| =





∏
j(1 − ψλj), if ψ > 0

1, if ψ = 0∏
j(1 − ψνj), if ψ < 0 .

(2.12)

and can be computed quickly for any value of ψ. This result shows a noticeable advan-

tage over the general kriging model mentioned in the introduction, since the Gibbs step

for the dependency parameter δ in this model is not analytically tractable for irregular

neighborhood structures in general.



Chapter 3

Spatial Binary Regression with

Group Cluster Effects

3.1 Formulation of the Model

In this section we will present a first model for the data from the mobility study. As

written before, our response represents a binary vector Y = (Y1, . . . , Yn)t with

Yi =

{
1 if trip i used automobile

0 if trip i used public transport
, i = 1, · · · , n. (3.1)

We assume, that the Yi’s follow a Bernoulli distribution with the success probabilities pi

and that the Yi given pi are independent for i = 1, . . . , n. We model pi through their logits

as follows:

θi := log

(
pi

1 − pi

)
= xt

iα︸︷︷︸
fixed effect

+ bj(i)︸︷︷︸
random spatial effect

+ cm(i)︸︷︷︸
random cluster effect

. (3.2)

Here the design vector xi multiplied with the regression parameter vector α ∈ Rp repre-

sents the fixed effects. With the vector b = (b1, . . . , bJ) we attempt to take into consider-

ation possible random spatial effects. As sites we take J = 74 postal code areas of the city

of Munich. Therefore, the index j(i) denotes the postal code of residence of the person

who takes trip i. In order to be able to take into account possible spatial smoothness we

assume, that the bj’s arise from the modified Pettitt’s CAR (2.9).

To model heterogeneity between the clusters we allow also for random cluster effects,

which are represented by the vector c = (c1, . . . , cM). We assume that each of the M

clusters (say age groups or household types) induces a group specific random effect, which

we denote by cm,m = 1, . . . ,M , respectively. Therefore we speak of group cluster effects.

The index m(i) denotes the cluster of trip i. Finally, we assume that cm ∼ N(0, σ2
c ) i.i.d.

11
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for m = 1, . . . , M . This completes the description of Model (3.2). Figure 3.1 illustrates

the hierarchical model structure of (3.2). Note that the likelihood of the response vector Y

 b 

 Y 

 α  c 

φ τ2 σ
c
2 

Figure 3.1: Hierarchical Model Structure for Model (3.2)

is therefore proportional to

[Y| α, b, c] ∝
n∏

i=1

exp(Yi(xi
tα + bj(i) + cm(i)))

1 + exp(xi
tα + bj(i) + cm(i))

.

Finally, we remark that Model (3.2) is similar to a family of semi parametric models

for multi categorical time-space data (with time- instead cluster effects) as discussed

in Fahrmeir and Lang (2000).
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3.2 Bayesian Inference Using MCMC Methods

Markov Chain Monte Carlo (MCMC) methods allow us to draw an arbitrary large num-

ber of joint samples from the posterior distribution [α,b, c, φ, τ 2, σ2
c |Y] approximately.

With these samples we can easily make inference for these parameters using for example

estimated posterior means or density estimates of the marginal posterior. Readers unfa-

miliar with MCMC methods can for example consult Casella and George (1992) for an

introduction to the Gibbs sampler and Gilks, Richardson, and Spiegelhalter (1996) for

applications of MCMC methods. We denote further the density of a random variable X

by [X] and the conditional density of X given Y by [X|Y ].

For the Bayesian approach, we assume independent prior distributions for the fixed

effect α, the spatial parameters b given their dependence parameter φ and variance

scalar τ 2, the cluster parameters c given their random variance σ2
c and the hyperpa-

rameters φ, τ 2, σ2
c respectively. In particular, we assume

[α, b, c, φ, τ 2, σ2
c ] = [α] × [b|φ, τ 2] × [φ] × [τ 2] × [c|σ2

c ] × [σ2
c ] .

3.2.1 Regression Parameter Update

The regression parameters α can be updated jointly or individually which we discuss

now. The fact that the full conditional distribution of α is proportional to the product of

the likelihood [Y|α,b, c] and the prior [α] produces the following reduction for the joint

regression parameter update:

[α|Y,b, c, φ, τ 2, σ2
c ] = [α|Y,b, c] ∝ [Y|α,b, c] × [α]

∝
∏n

i=1
exp(Yi(xi

tα))
1+exp(xi

tα+bj(i)+cm(i))
[α] .

(3.3)

Similarly, the full conditional for an individual update of αl, l = 1, . . . , p, has the following

form:

[αl|Y,α−l,b, c, φ, τ 2, σ2
c ] ∝

n∏

i=1

exp(Yi(xilαl))

1 + exp(xi
tα + bj(i) + cm(i))

[αl] , (3.4)

where α−l = (α1, . . . , αl−1, αl+1, . . . , αp)
t. We used individual updates based on (3.4),

since a good proposal density in the needed Metropolis-Hastings (MH) step is difficult to

determine. As prior for αl, l = 1, . . . , p a normal distribution with zero-mean and large

standard deviation was taken. Since both (3.3) and (3.4) do not represent any standard

distribution, a direct Gibbs Step is therefore not available and an MH-Step is needed. As

proposal density in the rth iteration for αr
l a normal density with the mean equal to the

previous value αr−1
l and a fixed value for the standard error was chosen. The value for this

standard error was found using pilot runs. In particular, we used pilot runs to determine

standard error values which give an acceptance rate between 30-60% (as proposed in
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Bennett, Racine-Poon, and Wakefield (1996) or Besag, Green, Higdon, and Mengersen

(1995)). The pilot runs also served as “burn in” phase.

3.2.2 Spatial Parameter Update

For the prior density of the vector b we use the modified Pettitt’s conditional autoregres-

sion (2.9), which was introduced in Section 2. Since the computational effort for the joint

update of b seems to be rapidly increasing with the dimension of b, we use individual

updates here as well. For these the full conditional densities are proportional to:

[bj|Y,b−j,α, c, φ, τ 2, σ2
c ] ∝ [Y|α,b, c] × [bj|b−j,α, φ, τ 2]

∝ ∏
i:j(i)=j

exp(Yi bj)

1+exp(xi
tα+bj+cm(i))

exp

{
− 1+|φ|Nj

2 (1+|φ|)τ2

(
bj − φ

1+|φ|Nj

∑
j∼j′ bj′

)2
}

,
(3.5)

where b−j = (b1, . . . , bj−1, bj+1, . . . , bJ)t. Therefore, we also require an MH-Step for the

spatial effects b. As proposal density for bj a similar proposal density as in the regression

parameter update was used. We carried out a similar procedure with the pilot runs in

order to find a good proposal standard error for each spatial parameter bj, j = 1, . . . , J .

3.2.3 Spatial Dependence Parameter Update

The full conditional density for φ is given by

[φ|Y,α,b, c, τ 2, σ2
c ] = [φ|b, τ 2] ∝ [b|φ, τ 2] × [φ] . (3.6)

Since b|φ, τ 2 ∼ NJ

(
0, τ 2Qm.P (φ)−1

)
, the determinant of the matrix Qm.P (φ) must be

calculated for each φ−iteration. We use the reparametrization ψ = φ
1+|φ| . Since once the

eigenvalues of Γ − D and Γ + D are known, we can write the determinant of Qm.P (φ)

analytically as a function of ψ as in (2.12). Since ψ ∈ (−1, 1), it is reasonable to take a

uniform distributed prior for ψ on (−1, 1). Such a prior choice corresponds to a heavy-

tailed prior for φ, namely a Pareto distribution with the density ∼ 1
(1+|φ|)2 . This density

has no finite moments , but it is unimodal and symmetric with mode at 0. To generalize

the link between the priors for ψ and φ we note that the prior for ψ proportional to
1

(1−ψ)1−a , ψ ∈ [0, 1) corresponds to a prior for φ proportional to 1
(1+φ)1+a , φ ∈ [0, +∞). It

is a proper prior for a > 0.

The last term in the conditional [φ|b, τ 2] which depends on ψ is proportional

to exp(− 1
2τ2b

′Qm.P (ψ)b). It is easy to see, that b′Qm.P (ψ)b can be written as a sim-

ple expression of ψ, namely

b′Qm.P (ψ)b =





−ψb′(Γ − D)b + const, if ψ > 0

const, if ψ = 0

−ψb′(Γ + D)b + const, if ψ < 0

,



15

and therefore can be also calculated fast in each iteration.

As proposal distribution for the rth iteration ψr we also take a normal density with

mean equal to the previous iteration ψr−1, but now in contrast to the parameters α and

b truncated to the interval (−1, 1). To determine a good proposal standard error we use

a similar procedure with pilot runs as before. In addition, if the proposal standard error

in the pilot runs is larger as 12, we exchange the normal distribution with a uniform

distribution on the interval (-1,1) to reduce complexity.

3.2.4 Spatial Variance Parameter Update

For this update, an inverse gamma prior for τ 2 is used with density given by

[τ 2] =
1

b
(aτ )
τ Γ(aτ )(τ 2)aτ+1

exp

(
− 1

bττ 2

)
, (3.7)

where aτ > 0 and bτ > 0 are known hyperparameters. We denote this prior by τ 2 ∼ IG(aτ , bτ ).

Since the full conditional for τ 2 depends solely on b and φ we can write

[τ 2|Y,α,b, c, φ, σ2
c ] = [τ 2|b, φ] ∝ [b|φ, τ 2] × [τ 2] .

Substituting the expressions (2.11) and (3.7) into the last expression yields that the con-

ditional distribution of [τ 2|Y,α,b, c, φ, σ2
c ], is again IG(a∗

τ , b
∗
τ ) with

a∗
τ = aτ +

J

2
and b∗τ =

{
1

bτ

+
b′ Q(φ)b

2

}−1

.

For a less informative but proper prior choice, hyper parameters aτ and bτ are chosen in

such a way that IG(aτ , bτ ) is widely dispersed. When a flat improper prior for τ 2 is used

(as we have chosen) , the posterior [τ 2|b, φ] is IG(a∗
τ , b

∗
τ ) with

a∗
τ =

J

2
− 1 and b∗τ =

{
1

2
b′ Q(φ)b

}−1

.

3.2.5 Cluster Parameter Update

As discussed before in the model description the cluster effect c = (c1, . . . , cm) is taken as

a random effect with prior cm ∼ N(0, σ2
c ) for each cluster m = 1, . . . ,M, i.i.d. Both joint

and individual full conditionals for cluster parameters given the data Y and other param-

eters do not belong to any standard distribution. Therefore to update the cluster effects

we also need a MH-step. As with b and α-updates, in order to avoid small acceptance

rates we use individual updates here. The individual full conditionals can be written as

follows

[cm|Y, c−m,α,b, φ, τ 2, σ2
c ] ∝ [Y|α,b, c] × [cm|σ2

c ]

∝ ∏
i:m(i)=m

exp(Yi cm)
1+exp(xi

tα+bj(i)+cm)
exp

{
− 1

2 σ2
c
c2
m

}
, (3.8)
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where c−m = (c1, . . . , cm−1, cm+1, . . . , cM)t. Again as proposal density for the rth itera-

tion cr
m we chose a normal density with mean equal to cr−1

m from the previous iteration.

The proposal standard deviation was determined as for the α or b parameters in pilot

runs.

3.2.6 Cluster Variance Parameter Update

The full conditional density of the cluster variance parameter σ2
c has a similar form as the

spatial variance parameter τ 2, namely:

[σ2
c |Y,α,b, c, φ, τ 2] = [σ2

c |c] ∝ [c|σ2
c ] × [σ2

c ] ∝
1

(σ2
c )

M/2
exp

{
− 1

2σ2
c

c′c

}
[σ2

c ] . (3.9)

A direct Gibbs step is available by choosing as prior density an inverse gamma prior

(see (3.7)) or an improper prior for σ2
c . In particular, if σ2

c ∼ IG(ac, bc), then

σ2
c |Y,α,b, c, φ, τ 2 ∼ IG(a∗

c , b
∗
c) with

a∗
c = ac +

M

2
and b∗c =

{
1

bc

+
c′c

2

}−1

.

For an improper prior it follows that the full conditional density for σ2
c is a IG(a∗

c , b
∗
c)

density with

a∗
c =

M

2
− 1 and b∗c =

{
1

2
c′c

}−1

.

This density has a finite expectation for M ≥ 5 and a finite variance for M ≥ 7.



Chapter 4

Spatial Binary Regression with

Individual Cluster Effects

4.1 Formulation of the Model

In this chapter we introduce for our binary transport data (3.1) a more advanced model

where individual cluster effects are modeled by a normal distribution with fixed variance

inside each cluster. In particular we assume for i = 1, . . . , n:

Yi|pi ∼ Bernoulli(pi) conditionally independent with

θi := log
(

pi

1−pi

)
= xt

iα︸︷︷︸
fixed effect

+ bj(i)︸︷︷︸
random spatial effect

+ cm(i),k(i)︸ ︷︷ ︸
random cluster effect

, (4.1)

where for fixed m = 1, . . . ,M, cm,k ∼ N(0, σ2
m), k = 1, . . . , Km, i.i.d. As in

Model (3.2), M denotes the number of clusters and m(i) denotes the cluster of trip i.

Km stands for the number of trips, which belong to cluster m (i.e. K1 + . . . + KM = n)

and the index k(i) gives the number of trip i in its cluster. The modeling of the fixed effects

α = (α1, . . . , αp)
t and the spatial effects b = (b1, . . . , bJ)t remains as before. In contrast

to (3.2), the cluster effects are now not the same for each trip in cluster m, namely cm, but

random realizations cm,k, k = 1, . . . , Km from the same cluster distribution N(0, σ2
m). So

we denote now the vector of cluster effects as c = (c1,1, . . . , c1,K1 , · · · , cM,1, . . . , cM,KM
)t.

This allows for modeling heterogeneity within each cluster. In Model (4.1) we have to es-

timate in addition to the parameters α,b the cluster effect variances σ2 = (σ2
1, . . . , σ

2
M)t

instead of the cluster effects c = (c1, . . . , cM)t and their variance σ2
c for Model (3.2).

One problem with Model (4.1) is that even without an intercept term α0 the model is

unidentifiable. To understand the nature of the unidentifiability we first substitute in (4.1)

17
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the logit link function with the probit link function, i.e. we assume for i = 1, . . . , n:

Yi|pi ∼ Bernoulli(pi) conditionally independent with

pi = P{Yi = 1|xi,α, bj(i), cm(i),k(i)} = Φ(xt
iα + bj(i) + cm(i),k(i)),

(4.2)

where Φ(·) is the standard normal distribution function. We can interpret this represen-

tation of the success probabilities of binomial distributed values Yi, i = 1, . . . , n through

normally distributed latent variables Zi, i = 1, . . . , n as follows

Yi = 1|xi,α, bj(i), cm(i),k(i) ⇔ Zi ≤ 0, where

Zi = −(xt
iα + bj(i) + cm(i),k(i)) + ǫi , ǫi ∼ N(0, 1) i.i.d.

(4.3)

This is a similar representation as discussed in Albert and Chib (1993) for binary probit

models. Since cm(i),k(i) ∼ N(0, σ2
m(i)), we can also characterize the conditional distribution

of Yi given xi,α, bj(i), σ
2
m(i) by

Yi = 1|xi,α, bj(i), σ
2
m(i) ⇔ Zi ≤ 0, where

Zi = −ηi + ǫ∗i , ǫ∗i ∼ N(0, 1 + σ2
m(i)) independent and ηi = xt

iα + bj(i) .
(4.4)

Therefore we have for i = 1, . . . , n

P{Yi = 1|xi,α, bj(i), σ
2
m(i)} = P{Zi ≤ 0|xi,α, bj(i), σ

2
m(i)} = Φ


 xt

iα + bj(i)√
1 + σ2

m(i)


 . (4.5)

Equation (4.5) shows that the parameters α,b and σ2 are not jointly identifiable in Model

(4.2), since it is invariant with respect to the parameter vectors{
k × (αt,bt,

√
1 + σ2

1, . . . ,
√

1 + σ2
M )t, k ∈ R

}
. If we define now

α′ :=
α√

1 + σ2
1

, b′ :=
b√

1 + σ2
1

, σ
′2
m :=

1 + σ2
m

1 + σ2
1

, m = 2, . . . ,M, σ
′2
1 = 1, (4.6)

then the marginal distributions (4.5) of Yi|xi,α, bj(i), σ
2
m(i) from Model (4.2) will coincide

with the marginal distributions from the following model:

Yi|pi ∼ Bernoulli(pi) conditionally independent with

pi = P{Yi = 1|xi,α
′, b′j(i), σ

′2
m(i)} =





Φ
(
xt

iα
′ + b′j(i)

)
if m(i) = 1

Φ
(

xt

i
α′+b′

j(i)

σ′
m(i)

)
if m(i) = 2, . . . ,M .

(4.7)

Using (4.4) it follows, that also the joint distribution of Y = (Y1, . . . , Yn)t in both Models

(4.2) and (4.7) are equal, since

P(Y = y ∈ {0, 1}n|α,b,σ2) = P(Z ∈ ∏
i:Yi=1

(−∞, 0] × ∏
i:Yi=0

(0, +∞)|α,b,σ2)

independence in(4.4)
=

∏
i:Yi=1

P(Zi ∈ (−∞, 0]|α, bj(i), σm(i)) ×
∏

i:Yi=0

P(Zi ∈ (0, +∞)|α, bj(i), σm(i))

(4.5)
=

∏
i:Yi=1

Φ

(
xi

tα+bj(i)√
1+σ2

m(i)

)
× ∏

i:Yi=0

(
1 − Φ

(
xi

tα+bj(i)√
1+σ2

m(i)

))
(4.7)
= P(Y|α′,b′,σ2′) ,
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where Z = (Z1, . . . , Zn)t. Therefore Model (4.7) is an equivalent reparametrization of

Model (4.2). But this representation (4.7) has one parameter less and is therefore identifi-

able. We applied the MCMC algorithm developed for Model (4.7) also to a simulated data

set from the primary Model (4.2), since the joint distribution of (4.2) and (4.7) are equiv-

alent. In this case the Gibbs sampler converged around the transformed true parameter

values, namely α′ = α√
1+σ2

1

,b′ = b√
1+σ2

1

and σ2′ = σ2√
1+σ2

1

. Transformed hyperparameters

of the spatial effect b are equal to τ 2′ = τ2

1+σ2
1

and φ′ = φ. So we showed that data arising

from the quite natural but unfortunately unidentifiable Model (4.2) can be fitted by its

identifiable reparametrization (4.7). Further, Model (4.7) can also be represented using

normal latent variables:

Yi = 1|xi,α
′, b′j(i), σ

′2
m(i) ⇔ Z ′

i ≤ 0, where

Z ′
i = −η′

i + ǫ′i, ǫ′i ∼ N(0, σ
′2
m(i)) ind. and η′

i = xt
iα

′ + b′j(i) .
(4.8)

As will be shown in this chapter, the representation of success probabilities pi, i = 1, . . . , n

via latent Zi, i = 1, . . . , n, allows us in the probit case to reduce significantly the number

of variables, which need MH-updates in the MCMC algorithm. MH-updates are especially

computational expensive for probit models because of the numerical complexity of the

computations for Φ(·) in the tails of the distribution.

Note that large values of cluster parameter σ2′

m indicate the large heterogeneity within

cluster m. Such interpretation of cluster parameters follows from the reparametriza-

tion (4.6).

Another possibility to obtain identifiability in (4.2) would be still to use terms cm(i),k(i)

(as in (4.2) and in (4.3) ), but now with known variance σ
′2
1 (for example equal to 1, or

equal to 0, i.e. cm(i),k(i) = 0 for m = 1). But such an alternative has the disadvantage

that not for all σ2-values from the model (4.2) exist corresponding values σ2′ to make

the identifiable model equivalent to (4.2). So we can not avoid some additional limiting

conditions for the vector σ2 from (4.2) in this case. For example, by setting in (4.2)

σ
′2
1 = 1, the other parameters α′,b′ and σ2′

m, m = 2, . . . ,M , are determined from the

following system, which would provide equivalence between (4.2) and this approach:

m = 1 :
xt

i
α+bj(i)√

1+σ2
1

=
xt

i
α′+b′

j(i)√
1+1

m = 2, . . . ,M :
xt

i
α+bj(i)√
1+σ2

m(i)

=
xt

i
α′+b′

j(i)√
1+σ2′

m(i)

.

From here it follows immediately that σ2′

m = 21+σ2
m

1+σ2
1
− 1, m = 2, . . . ,M . However this

means for specific values of σ2
1 we might have σ2′

m < 0, which violates the non nega-

tivity of a variance parameter. Similar requirements are needed to ensure positive vari-

ances in the case when c1,k(i) = 0 (⇔ σ2
1 = 0), since then we need to define them as

σ2′

m = 1+σ2
m

1+σ2
1
− 1, m = 2, . . . ,M , which gives positive values only if σ2

1 = min
m=1,...,M

(σ2
m).
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The above discussion about probit model helps us also to understand the unidentifia-

bility of our Logit Model (4.1), since the behavior of both probit and logit link functions

is quite similar and becomes significantly different only in the tails. So we use the same

idea as for the probit case to construct an identifiable logit model, which is approximately

equivalent in distribution to (4.1). In particular we assume for i = 1, . . . , n

Yi|pi ∼ Bernoulli(pi) conditionally independent with

log
(

pi

1−pi

)
=





xt
iα

′ + b′j(i) if m(i) = 1
xt

i
α′+b′

j(i)

σ′
m(i)

if m(i) = 2, . . . ,M
,

(4.9)

where pi = P{Yi = 1|xi,α
′, b′j(i), σ

′2
m(i)} and α′,b′,σ2′ := (σ2′

1 , . . . , σ2′

M)t are defined as

in (4.6). The corresponding simulation study (see Figure 5.10) shows the convergence of

the Gibbs sampler, which also indicates identifiability of Model (4.9).

Because the original model (4.1) is not identifiable we expect a MCMC algorithm based

on (4.1), i.e. Markov chains {αr}, {br}, {σ2r}, {τ 2r}, r = 1, 2, . . . may not converge.

However, with the parameter transformation given in (4.6) we achieve the identifiable

Model (4.9) and therefore the transformed chains

{
αr

√
1 + σ2r

1

}
,

{
br

√
1 + σ2r

1

}
,

{
σ2r

√
1 + σ2r

1

}
,

{
τ 2r

1 + σ2r
1

}
, {φr} , r = 1, 2, . . . (4.10)

converge. The simulation study confirms this statement. These chains can be also used

for the parameter estimation of α′,b′,σ2′, τ 2′ , φ′ from the identifiable Model (4.9) as an

alternative to constructing a MCMC algorithm directly based on Model (4.9). Generally,

such alternative versus the common approach to simulate Markov Chains only from the

identifiably reparametrized model might be preferable if the parameter updates in the

unidentifiable model are simpler than in its identifiable analog.

We model our binary transport data (3.1) by both the Logit (4.9) and the Probit (4.7)

Models. In the probit case we develop a Gibbs sampler procedure based on latent variable

representation (4.8). An alternative MCMC algorithm uses characterization (4.7). In the

next section we develop MCMC algorithms based on (4.9), (4.7) and (4.8), respectively.
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4.2 Bayesian Inference for Hierarchical Spatial Bi-

nary Regression Models with Individual Cluster

Effects

As pointed out before, we can not carry out Bayesian inference for both the primary

Logit (4.1) or Probit (4.2) Hierarchical Spatial Binary Regression Models with Individual

Cluster Effects, since they are unidentifiable. So for a Bayesian inference of data from

(4.1) we use the approximately equivalent identifiable model (4.9) and similarly for data

from (4.2) we use the equivalent identifiable model (4.7) or its latent variable representa-

tion (4.8).

4.2.1 Bayesian Inference for Logit Model (4.9)

We begin with the logit case (4.9) since its MCMC algorithm for the Bayesian inference is

rather similar to the one described already in Section 3.2. Its hierarchical model structure

is presented in Figure 4.1. From (4.9) it follows that the likelihood of the response vector

 Y 

 b’

φ’

σ2’ α’

τ2’ 

Figure 4.1: Hierarchical Model Structure for Model (4.9)

Y is proportional to

[Y| α′, b′, σ′] ∝
n∏

i=1

exp(Yi

xi
tα′+b′

j(i)

σ′
m(i)

)

1 + exp(Yi

xi
tα′+b′

j(i)

σ′
m(i)

)
,

where σ′ := (1, σ′
2, . . . , σ

′
M)t, σ′

m :=
√

σ2′
m, m = 2, . . . ,M . We again assume independent

prior distributions for the fixed effect α′, the spatial parameters b′ given their depen-

dence parameter φ′ and the variance scalar τ 2′ and the cluster parameters σ′. Finally we
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assume independence between the hyperparameters φ′ and τ 2′ . Therefore the joint prior

distribution is given by

[α′, b′, σ′, φ′, τ 2′ ] = [α′] × [b′|φ′, τ 2′ ] × [φ′] × [τ 2′ ] × [σ′] .

The MCMC update procedure for the parameters α′ and b′ remains the same as in

Section 3.2, with the full conditionals replaced by

[α′
l|Y,α′

−l,b
′,σ′, φ′, τ 2′ ] = [α′

l|Y,α′
−l,b

′,σ′]

∝ [Y|α′,b′,σ′] [α′
l] ∝

n∏
i=1

exp(Yi
xilα

′
l

σ′
m(i)

)

1+exp(Yi

xi
tα′+b′

j(i)

σ′
m(i)

)

[α′
l]

and

[b′j|Y,b′
−j,α

′,σ′, φ′, τ 2′ ] ∝ [Y|α′,b′,σ′] [b′j|b′
−j, φ

′, τ 2′ ]

∝ ∏
i:j(i)=j

exp(Yi

b′j

σ′
m(i)

)

1+exp(
xi

tα′+b′
j

σ′
m(i)

)

exp

{
− 1+|φ′|Nj

2 (1+|φ′|)τ2′

(
b′j − φ′

1+|φ′|Nj

∑
j∼j′ b

′
j′

)2
}

.

Since the full conditionals of the spatial hyperparameters τ 2′ and φ′ given the data and

other parameters depend only on the spatial effects b′, their MCMC updates have the

same form as described in Section 3.2. We update the parameter σ′ in a similar way as

the other main parameters α′ and b′. The full conditional of σ′
m, m = 2, . . . ,M , can be

written as

[σ′
m|Y,α′,b′,σ′

−m, φ′, τ 2′ ] = [σ′
m|Y,α′,b′,σ′

−m]

∝ [Y|α′,b′,σ′] [σ′
m] ∝

n∏
i:m(i)=m

exp(Yi

xi
tα′+b′

j(i)

σ′
m

)

1+exp(Yi

xi
tα′+b′

j(i)

σ′
m

)

[σ′
m] .

It is reasonable to take a prior for σ′
m, m = 2, . . . ,M , which is distributed around 1. Such

a choice is clear from the reparametrization (4.6). According to (4.6) large deviations from

1 for some σ′
m, m = 2, . . . ,M , correspond to large values for some σ2

m, m = 1, . . . ,M ,

in the primary model (4.1), what would correspond to insignificance of the regression

and spatial effects in these clusters. In our study we use a normal distribution N(1, 1)

truncated on the interval [0.2, +∞) as prior for σ′
m, m = 2, . . . ,M .

4.2.2 Bayesian Inference for Probit Model (4.7)

We continue this section with the Bayes inference for the probit model. We consider first

its explicit presentation (4.7), since its hierarchical structure is the same, as for the logit

model (see Figure 4.1). The sampling is carried out for the same parameters, namely for
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α′,b′,σ′ and the hyperparameters φ′, τ 2′ . As joint prior distribution we assume the same

prior as in the logit case (4.9). The only one difference is that now the likelihood of the

response vector Y can be expressed using the probit function instead of the logit one:

[Y| α′, b′, σ′] ∝
n∏

i:Yi=1

Φ

(
xi

tα′ + b′j(i)
σ′

m(i)

)
×

n∏

i:Yi=0

(
1 − Φ

(
xi

tα′ + b′j(i)
σ′

m(i)

))
.

Therefore the full conditionals for α′,b′ and σ′ are given by

[α′
l|Y,α′

−l,b
′,σ′, φ′, τ 2′ ] = [α′

l|Y,α′
−l,b

′,σ′] ∝ [Y|α′,b′,σ′] [α′
l]

∝
n∏

i:Yi=1

Φ
(

xi
tα′+b′

j(i)

σ′
m(i)

)
×

n∏
i:Yi=0

(
1 − Φ

(
xi

tα′+b′
j(i)

σ′
m(i)

))
× [α′

l] ,

[b′j|Y,b′
−j,α

′,σ2′, φ′, τ 2′ ] ∝ [Y|α′,b′,σ2′] [b′j|b′
−j, φ

′, τ 2′ ]

∝
n∏

i:
j(i)=j

Yi=1

Φ
(

xi
tα′+b′j
σ′

m(i)

)
×

n∏
i:

j(i)=j

Yi=0

(
1 − Φ

(
xi

tα′+b′j
σ′

m(i)

))

× exp

{
− 1+|φ′|Nj

2 (1+|φ′|)τ2′

(
b′j − φ′

1+|φ′|Nj

∑
j∼j′ b

′
j′

)2
}

and

[σ′
m|Y,α′,b′,σ2′

−m, φ′, τ 2′ ] = [σ′
m|Y,α′,b′,σ2′

−m] ∝ [Y|α′,b′,σ2′] [σ′
m]

∝
n∏

i:
m(i)=m

Yi=1

Φ
(

xi
tα′+b′

j(i)

σ′
m(i)

)
×

n∏
i:

m(i)=m

Yi=0

(
1 − Φ

(
xi

tα′+b′
j(i)

σ′
m(i)

))
× [σ′

m]

respectively. The full conditionals for the spatial hyperparameters φ′ and τ 2′ remain

the same, as for the Logit Model (4.9), since they do not depend on the likelihood

[Y| α′, b′, σ2′].

As before, the MH-step is needed for the parameters b′,α′,σ2′ and φ′. But in contrast

to the logit case the MH-update is much more computational expensive for probit models.

It is slow and less precise because of the numerical complexity of the computations for

the Φ(·) values. The second problem arises by the computation of Φ(·) for large values,

since this distribution function converges to 1 much faster, than the heavy-tailed logit

distribution. For example, MATLAB is not able to distinguish (1−Φ(x)) from 0 already

for x > 8, which corresponds to a 100%-relative error. As will be shown below, such

great errors are not tolerable for the MH-procedure. To overcome this problem arising in

the MCMC-inference for the explicit representation (4.7) we need efficient MH-steps for

parameters, whose full conditionals include Φ(·)-terms, namely for b′,α′ and σ2′. Let us

consider the acceptance probability a(·, ·) in the MH-step for the regression parameter α′.

Let π(α′
l) denote the full conditional of α′

l, l = 1, . . . , p, and let α
′p
l the proposal value for

α′
l and α

′p := (α′
1, . . . , α

′
l−1, α

′p
l , α′

l+1, . . . , α
′
p)

t. Under the condition, that the transition
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probability is homogeneous, the acceptance probability a(α′
l, α

′p
l ) is given by:

a(α′
l, α

′p
l ) = min(1,

π(α
′p
l

)

π(α′
l
)
),

where

ln
π(α

′p
l

)

π(α′
l
)

=
∑

i:Yi=1

ln
Φ

(
xi

tα′+b′
j(i)

σ′
m(i)

+
xil(α

′p
l

−α′
l
)

σ′
m(i)

)

Φ

(
xi

tα′+b′
j(i)

σ′
m(i)

)

+
∑

i:Yi=0

ln
1−Φ

(
xi

tα′+b′
j(i)

σ′
m(i)

+
xil(α

′p
l

−α′
l
)

σ′
m(i)

)

1−Φ

(
xi

tα′+b′
j(i)

σ′
m(i)

) + ln
[α

′p
l

]

[α′
l
]

=
∑

i:Yi=1

ln
Φ(νp

i )

Φ(νi)
+

∑
i:Yi=0

ln
1−Φ(νp

i )

1−Φ(νi)
+ ln

[α
′p
l

]

[α′
l
]

.

Here we have set

νi :=
xi

tα′ + b′j(i)
σ′

m(i)

and νp
i :=

xi
tα

′p + b′j(i)
σ′

m(i)

= νi +
xil(α

′p
l − α′

l)

σ′
m(i)

.

Therefore ratios like
Φ(νp

i )

Φ(νi)
or

1−Φ(νp
i )

1−Φ(νi)
must be calculated with a small relative error. Since

the computation of the function Φ(·) for small to medium sized arguments is quite precise,

the simplest way to accelerate it would be to split the real axis into a sufficient number of

intervals N and to approximate Φ(x) with one of the corresponding N values of Φ. These

would be computed once at the beginning. For large absolute values of νi, ν
p
i > 7 we use

the following approximations:

lim
x→+∞

1 − Φ(x)
φ(x)

x

= 1 and lim
x→−∞

Φ(x)
φ(x)
|x|

= 1 , (4.11)

which can be proved by using the theorem of L’Hospital. In Figure 4.2 we show the

convergence picture for x ≥ 1, where MATLAB is able to compute a non zero value

for Φ(x) and φ(x) = Φ′(x). With this approximation the logarithm ln
(

1−Φ(νp
i )

1−Φ(νi)

)
for the

acceptance probability a(α′
l, α

′p
l ) requires for νi, ν

p
i > 7 the simple form

(
νi

2

2
− νp

i
2

2

)
+ln νi

νp
i

,

so we do not need to compute the function Φ(·) for large positive arguments.

When we investigated the behavior of MATLAB for negative values, we were surprised

to find out that MATLAB is able to compute function Φ(x) also for large negative values

of x, namely for x > −37. Figure 4.3 shows that this computation is precise, since for the

function φ(x)/|x| MATLAB provides a precise calculation in this interval. Therefore for

values between 7 < x < 37 we can calculate Φ(x) more precisely by Φ(x) = 1 − Φ(−x),

which is however slower as the approximative calculation (4.11).
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for x ≤ −5
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4.2.3 Bayesian Inference for Probit Model (4.7) Based on Rep-

resentation (4.8)

We consider finally the Bayes inference for the Probit Model (4.7) based on its latent

variable representation (4.8). In the hierarchical structure of (4.8) (see Figure 4.4) the

 Y 

 Z’={−Θ
i
’+ε

i
}
i=1
n  

Θ’ ={ x
i
t α’ +b’

j(i)
}n
i=1

 σ2’ 

 b’ α’ 

φ’ τ2’ 

Figure 4.4: Hierarchical Model Structure for Model (4.8)

latent variables Z ′
i’s bridge the data Y and the model parameters α′,b′ and σ2′. The

full conditionals of these parameters do not depend on the binary vector Y given the

vector Z′ = (Z ′
1, . . . , Z

′
n)t and therefore represent some standard distributions, which

do not need computational expensive MH-steps. Moreover, in contrast to the previous

models joint updates for the parameter vectors α′ and b′ are available here. Further,

the full conditional of the latent vector Z′ given the data Y and all the parameters has

also a simple form, which is suitable for the direct joint updating. More precisely, since

the latent variables Z ′
i’s are conditionally independent given η′

i, i = 1, . . . , n, we can im-

mediately reduce the joint update of [Z′|Y,α′,b′,σ2′, φ′, τ 2′ ] to the individual updates of

[Z ′
i|Y,α′,b′,σ2′, φ′, τ 2′ ] for i = 1, . . . , n. Each of these univariate conditional distributions

is equivalent to [Z ′
i|Y,α′,b′,σ2′], since given b′ the information contained in φ′ and τ 2′

has no influence on Z′. Moreover, we have [Z ′
i|Y,α′,b′,σ2′] = [Z ′

i|Yi,α
′, b′j(i), σ

2′

m(i)], i =

1, . . . , n, due again to the conditional independence. It is easy to see that these distribu-

tions are univariate truncated normal with mean −xi
tα′ − b′j(i) and variance σ2′

m(i). The

truncation interval is (−∞, 0] (or [0,∞)) when Yi = 1 (or Yi = 0). We use rejection sam-

pling for the generation of truncated univariate normal random variables in the numerical

implementation as proposed by Robert (1995).

Now let us proceed with the parameter updates. To present the joint updates for

the parameter vectors α′ and b′ we need some matrix notations. So we define a design
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matrix X of p × n dimension as X = (x1, . . . ,xn)t and assume a full column rank.

Further we define the matrix B = (bij) as a n × J spatial incidence matrix with bij = 1,

if j(i) = j and bij = 0, if j(i) 6= j. This implies that B · b′ = (b′j(1), . . . , b
′
j(n))

t. Finally let

Σ := cov(Z′|α′,b′,σ2′) = diag(σ2′

m(1), . . . , σ
2′

m(n)).

Let us consider first the regression parameter α′ update. Under prior Np (µ0, Σ0) for

α′ we immediately obtain, that its full conditional is given by

[α′|Z,b′,σ2′] ∝ [Z′|α′,b′,σ2′] [α′]

∝ exp
{
−1

2
(Z′ + X tα′ + Bb′)tΣ−1(Z′ + X tα′ + Bb′)

}
× [α′]

∝ exp
{
−1

2

(
α

′tXΣ−1X tα′ + 2α
′tXΣ−1(Z′ + Bb′) + (α′ − µ0)

tΣ−1
0 (α′ − µ0)

)}

∝ exp




−1

2


α

′t (XΣ−1X t + Σ−1
0 )︸ ︷︷ ︸

Σ−1

α′

α′ + 2α
′t (XΣ−1(Z + Bb′) − Σ−1

0 µ0)︸ ︷︷ ︸
−Σ−1

α′µα′








.

Therefore α′|Z′,b′,σ2′ ∼ Np(µα′ , Σα′) with

Σα′ =
(
XΣ−1X t + Σ−1

0

)−1
and

µα′ = −Σα′

(
XΣ−1(Z′ + Bb′) − Σ−1

0 µ0

)
.

(4.12)

For a flat improper prior of α′ (4.12) can be simplified by replacing the parameters µ0 = 0

and Σ−1
0 = 0, which gives also a proper distribution.

For the spatial parameter vector b′ its joint full conditional [b′|Y,Z′,α′,σ2′, φ′, τ 2′ ] =

[b′|Z′,α′,σ2′, φ′, τ 2′ ] can be found in a similar way as for α′. Under the J-variate nor-

mal NJ

(
0,

(
Qm.P (φ′)

)−1
)

prior for [b′|φ′, τ 2′ ], the full conditional [b′|Z′,α′,σ2′, φ′, τ 2′ ] ∝
[Z′|α′,b′,σ2′] [b′|φ′, τ 2′ ] is also J-variate normal NJ (µb′ , Σb′) with

Σb′ =
(
BtΣ−1B + 1

τ2′ Q
m.P (φ′)

)−1

and

µb′ = −Σb′BtΣ−1(Z′ + X tα′) .
(4.13)

Note that in (4.13) for each update we need to invert the J × J-dimensional precision

matrix of b′, what may be computationally very expensive, if the number of regions J

is large. Since the band structure of the precision matrix Σ−1
b′ = BtΣ−1B + 1

τ2′ Q
m.P (φ′)

coincides with the band structure of Q (note that BtΣ−1B is a diagonal matrix) and

is therefore known and stable, it might be more efficient to simulate a J-variate normal

NJ (µb′ , Σb′) vector using the Cholesky decomposition of the matrix Σb′ , which requires an

order J2 operation. It is significantly cheaper for large J , than the inversion of the matrix

Σb′ (an order J3 operation) and more stable (see Gelfand, Ravishanker, and Ecker (2000),

p.380). For a reduction of the computational effort it may be reasonable to reorder the

vector b′ in a way, which provides minimal bandwidth for its precision matrix. One method

to facilitate this is the Cuthill-McKee Algorithm (George and Liu 1981). It is implemented
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in MATLAB by the function symrcm. More precisely, the simulation algorithm using

Cholesky’s decomposition is therefore given as follows:

1. Find once at the beginning the order of b′, which provides minimal bandwidth for

its reordered prior precision matrix Qm.P
re and therefore for the reordered posterior

precision matrix Σ−1
b′

re
. Note that the subscript re indicates that the corresponding

matrix is reordered.

2. Determine the Cholesky decomposition L′L = Σ−1
b′

re
, where L is an upper triangular

matrix.

3. Generate a J-variate normal NJ

(
0, Σb′

re

)
random vector Y by solving LY = Z,

where Z ∼ NJ(0, IJ). Note that this equation can be solved fast by the Gauss

method, since the matrix L is triangular. Therefore we do not need to invert the

matrix L.

4. Solve equation Lη = −[BtΣ−1(Z′ + X tα′)]re in a similar way as in Step 3.

5. Solve equation L′µb′
re

= η.

6. Finally determine the vector bre = µb′
re

+ Y which is a realization of a J-variate

normal NJ

(
µb′

re
, Σb′

re

)
.

7. Reorder the components of bre back to achieve b.

In contrast to Model (4.9) we update here the cluster variance parameters σ2′

m, m =

2, . . . ,M , instead of σ′
m, m = 2, . . . ,M , since it can be updated directly under a suitable

choice of prior. More precisely, the individual full conditionals for σ2′

m, m = 2, . . . ,M , are

given by

[σ2′

m|Y,Z′,α′,b′,σ2′
−m, φ′, τ 2′ ] = [σ2′

m|Z′,α′,b′,σ2′
−m]

∝ [Z′|α′,b′,σ2′] [σ2′

m] ∝ 1

(σ2′
m)

Km
2

exp

{
− 1

2σ2′
m

∑
i:m(i)=m

(Z ′
i + xi

tα′ + b′j(i))
2

}
× [σ2′

m],

(4.14)

where σ2′
−m=(1, σ2′

2 , . . . , σ2′

m−1, σ
2′

m+1, σ
2′

M)t. If [σ2′

m] is IG(a0, b0) (see (3.7)), we immediately

obtain in (4.14) the IG(aσ′ , bσ′) density function, up to a constant, where

aσ′ = Km

2
+ a0 and

bσ′ =

{
1
b0

+

∑
i:m(i)=m

(Z′
i+xi

tα′+b′
j(i)

)2

2

}−1

.
(4.15)

As mentioned before in this section, it is reasonable to choose a prior for σ2′

m, m = 2, . . . ,M ,

which is distributed around 1. Therefore we took [σ2′

m] ∼ IG(3, 0.5) for m = 2, . . . ,M .

This gives E(σ2′

m) = Var(σ2′

m) = 1.
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We note finally, that the update of the spatial hyperparameters φ′ and τ 2′ remains

the same as described in Section 3.2 for Models (3.2) and (4.9). So we have only one

parameter, namely φ′, that needs a MH-step.
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Chapter 5

Simulation Studies

To investigate the performance of the MCMC algorithms for the proposed models (3.2),

(4.9) and (4.7) we conducted several simulation studies. We chose one fixed parameter

setting per model. In order to get an idea about random variability, for each model we

simulated 4 data sets, which provided us 4 posterior estimates for the corresponding

parameter vector. The simulated data sets have a similar sample size and structure as

the mobility data. Further purposes of these simulation studies are to evaluate (1) the

autocorrelation structure of the generated Markov Chains to assess the mixing of the

MCMC algorithm, and (2) the length of burn-in and other convergence issues. Below we

present the simulation study for each of the three models (3.2), (4.9) and (4.7).

5.1 Study 1: Hierarchical Spatial Binary Regression

with Group Cluster Effects

5.1.1 Setup

The simulation study based on the Logit Model (3.2) has the following mean structure:

Θi := log

(
pi

1 − pi

)
= x1iα1+x2iα2+bj(i)+cm(i), i = 1, . . . , n, j = 1, . . . , J, m = 1, . . . ,M.

We simulated n = 2100 binary responses residing in J = 70 regions arranged on a 7× 10

regular lattice (i.e. 30 observations per region) and in M = 5 clusters (i.e. 420 observations

per cluster) so, that each cluster is represented in each region with 30/5 = 6 responses.

The number of responses, the number of regions and clusters approximately corresponds

to our real mobility data. The regression effect is simulated identically for each of the

4 data sets. More precisely, we chose xi1 as categorical covariate with possible values

0 or 1 (so that in each cluster×region cell both values are represented with 6/2 = 3

31
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observations) and xi2 as continuous covariate taking cycled integer values between 1 and

23, i.e. x12 = 1, x22 = 2, . . . , x23,2 = 23, x24,2 = 1, . . .. With this choice we achieved a good

data mixing inside both regions and clusters. The true values for the regression parameters

were taken as α1 = −1 and α2 = 0.05. A graphical representation of the regression effect

x1iα1 +x2iα2 with regard to each cluster×region cell is given in Figure 5.1. We model the
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Figure 5.1: Regression Effects for Data Sets Based on Model (3.2)

spatial effects b′j, j = 1, . . . , 70, from the modified Pettitt’s Model (2.9). For the spatial

hyperparameters the values φ = 25 and τ 2 = 0.64 were chosen. With such a relatively

large value for φ a strong spatial smoothing effect is presented, since (2.9) has according

to (2.7) the intrinsic Gaussian CAR (2.4) in the limit, when φ → ∞. We chose τ 2 in such

a way that the range of the observed spatial effects is somewhat similar to the range of

the regression effects. For the neighborhood structure we chose the regular lattice 7 × 10

with a first order neighborhood dependence, i.e. the neighborhood of each region consists

from the 2-4 regions which have a joint border. The simulated spatial effects for each of

the 4 Data Sets are presented in Figure 5.2. Finally, for each data set we simulated group
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Figure 5.2: Simulated Spatial Effects for each of the 4 Data Sets Based on Model (3.2)

cluster effects c ∼ N5(0, σ
2
c ) with σ2

c = 1.

Using these hyperparameter values we first simulated the spatial effects b and the

cluster effects c for each data set and finally the binary responses using Model (3.2). The

resulting data sets are presented in Figure 5.3, where black corresponds to Y = 0, while

white to Y = 1.

Finally we used the following priors: for the regression parameters we chose α1 ∼
N(0, 1002) and α2 ∼ N(0, 102) reflecting a diffuse prior choice. According to Model (3.2)

the conditional prior for the spatial effects bj|b−j, τ
2, φ, j = 1, . . . , J , is given by the

modified Pettitt’s CAR (2.9) and the conditional prior for the cluster effects cm given σ2
c

is normal N(0, σ2
c ). For the variance hyperparameters τ 2, σ2

c we chose flat priors, while for

ψ = φ
1+φ

, ψ ∈ [0, 1) we chose as prior density [ψ] ∼ 1
(1−ψ)1−a with a = 0.5. This corresponds

to a Pareto distribution for φ = ψ
1−ψ

, φ ∈ [0, +∞), namely [φ] ∼ 1
(1+φ)1+a .
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Figure 5.3: Simulated Binary Responses for each of the 4 Data Sets Based on Model (3.2)

5.1.2 Results

MCMC calculations were implemented in MATLAB. The MCMC algorithm described in

Section 3.2 was run for 50,000 iterations with every 50th iteration recorded. These 50,000

iterations needed approximately 15 hours on a SUN workstation with CPU 600MHz and

RAM 2.56GB. As ”burn in” phase served 10 pilot runs with 300 iterations per each pilot

run, which we used to determine optimal proposal standard error values for the MH-step

(see Section 3.2). We achieved acceptance rates for the MH steps between 30%− 60% for

each parameter. The resulting trace plots (not shown) show that such a length of “burn in”

phase is enough. The autocorrelation plots (not shown) indicate, that the autocorrelations

between recorded iterations are below 0.1. Figure 5.4 shows marginal posterior density

estimates of the parameters α0, α1, ψ = φ
1+φ

, τ 2 and σ2
c from the 4 data sets, where the

vertical fat dashed lines correspond to the true parameter value. For each density curve
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its mode is also marked by a thin vertical line. From this we see that in all four cases the

true values are well inside 90% credible intervals. As mentioned before we chose for the

parameter ψ a proper prior [ψ] ∼ 1
(1−ψ)1−a with a = 0.5. One can see, that with such a

prior the parameter ψ is often overestimated in Model (3.2). If ψ is close to 1, this effect

can cause estimation for φ = ψ
1−ψ

with a large deviation from the true value. However

other simulation studies show that when using a = 1(i.e ψ ∼ Uni[0, 1]) the parameter ψ

is underestimated. We note that another simulation study, conducted using an improper

prior choice with a = −1(⇔ [φ] ∝ 1) indicates that in this case the posterior for ψ (and

for φ) is improper . Next we consider the estimated marginal posteriors for the spatial and

cluster effects. In Figure 5.5 the estimated posterior densities for Data Set 1 show that

the posterior mode estimates of the spatial and cluster effects are quite precise. The same

result is visible in comparison maps (see Figure 5.6) which compare true effects with their

estimated posterior modes. In addition to the graphical checks provided by Figure 5.4,

5.5 and 5.6 we also calculated absolute and relative errors between the true parameter

values and their posterior mode estimators. Table 5.1 contains these estimates.
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Table 5.1: Estimated Posterior Mode, Median, Mean and Quantiles for Simulation Study

1 Based on Model (3.2)
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5.2 Study 2: Hierarchical Spatial Binary Regression

with Individual Cluster Effects using Model (4.9)

5.2.1 Setup

The simulation study based on the Logit Model (4.9) has the following mean structure:

Θ′
i := log

(
pi

1 − pi

)
=

x1iα
′
1 + x2iα

′
2 + b′j(i)

σ′
m(i)

, i = 1, . . . , n, j = 1, . . . , J, m = 1, . . . ,M.

As for the previous simulation study we again chose α′
1 = −1, α′

2 = 0.05, τ 2′ = 0.64, φ′ =

25. As true values for the cluster parameters σ′
m, m = 2, . . . ,M , we take 4 samples from

a Uni[0.75, 1.25] distribution. According to Model (4.9) we set σ′
1 = 1. In this way we got

the following true cluster parameter values: σ′ = (1, 1.2251, 0.8656, 1.0534, 0.9930)t. We

generated 4 data sets with n = 2100 binary responses using the same J = 70 regions and

M = 5 clusters. The modeling of the fixed regression effects x1iα
′
1 + x2iα

′
2, i = 1, . . . , n,

and the spatial effects bj(i), i = 1, . . . , n, remains as before. The simulated four data sets

for Model (4.9) are presented in the Figure 5.7. Prior choices for α′,b′, τ 2′ , ψ′ remain the

same, while for the prior distribution of the cluster parameters σ′
m, m = 1, . . . ,M , we

used N(1, 1) truncated on the interval [0.2, +∞].

5.2.2 Results

The corresponding MCMC algorithm is described in Section 4.2.1. Results are presented

in the same way as for simulation Study 1, i.e. Figure 5.8 gives posterior density estimates

of all parameters while Figure 5.9 presents spatial comparison maps and Table 5.2 presents

estimated posterior location measures and quantiles. Figure 5.10 presents the time plots

based on Data Set 1. Its convergence indicates identifiability of Model (4.9). In contrast

to Simulation Study 1 we note that for this model ψ′ is no longer overestimated (see

Figure 5.8).
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Figure 5.7: Simulated Binary Responses for each of the 4 Data Sets Based on Model (4.9)
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Figure 5.9: Comparison Maps for 70 Spatial Effects in Data Set 1 Based on Model (4.9)

α′

1
α′

2

0 100 200 300 400 500 600 700 800 900 1000
−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

0 100 200 300 400 500 600 700 800 900 1000
0.02

0.03

0.04

0.05

0.06

0.07

0.08

τ2
′

ψ′

0 100 200 300 400 500 600 700 800 900 1000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ′

2
σ′

3

0 200 400 600 800 1000
0.5

1

1.5

2

2.5

3

0 200 400 600 800 1000
0.4

0.6

0.8

1

1.2

1.4

0 200 400 600 800 1000
0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 200 400 600 800 1000
0.5

1

1.5

2

2.5

σ′

4
σ′

5

Figure 5.10: Trace Plots for Parameters α′, τ 2′ , ψ′,σ′ Based on Data Set 1 in Model (4.9)

(Dashed Line = True Parameter)
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True 5%- Est.Post Est.Post Est.Post 95%- True� Relative ErrorQuantile Mode Median Mean Quantile Mode ��� (True � Mode)True ���Data Set 1�01 �1:0000 �1:2366 �1:0003 �1:0000 �1:0016 �0:7854 0:0003 0:0003�02 0:0500 0:0342 0:0478 0:0478 0:0480 0:0630 0:0022 0:0443k � k for �0 1:0012 1:0014 1:0011 1:0028 0:0022 0:0022�k � k for b0 5:3139 4:6435 4:7960 4:8697 2:4015 0:4519��02 1:2251 0:9848 1:2580 1:3263 1:3420 1:7624 �0:0329 0:0269�03 0:8656 0:5932 0:8025 0:7834 0:7893 1:0220 0:0630 0:0728�04 1:0534 0:7465 1:0175 1:0099 1:0153 1:3157 0:0360 0:0341�05 0:9930 0:7989 1:0611 1:0738 1:0937 1:4535 �0:0682 0:0686k � k for �0�1 2:0846 2:0947 2:1321 2:1567 0:1049 0:0503��20 0:6400 0:3453 0:5351 0:6437 0:6781 1:1154 0:1049 0:1639 0 0:9615 0:4915 0:9491 0:8594 0:8153 0:9887 0:0124 0:0129Data Set 2�01 �1:0000 �1:4775 �1:1698 �1:1946 �1:2021 �0:9461 0:1698 0:1698�02 0:0500 0:0365 0:0504 0:0503 0:0507 0:0665 �0:0004 0:0090k � k for �0 1:0012 1:1709 1:1956 1:2032 0:1698 0:1696�k � k for b0 6:1657 5:7982 5:9475 6:0431 3:1543 0:5116��02 1:2251 1:2328 1:6214 1:7361 1:7782 2:4898 �0:3963 0:3235�03 0:8656 0:7960 1:0037 1:0616 1:0948 1:4829 �0:1381 0:1596�04 1:0534 0:8149 0:9997 1:0850 1:1033 1:4690 0:0537 0:0510�05 0:9930 0:7474 0:9861 1:0075 1:0235 1:3331 0:0069 0:0070k � k for �0�1 2:0846 2:3681 2:5166 2:5739 0:4232 0:2030��20 0:6400 0:6952 1:1680 1:2076 1:2795 2:1002 �0:5280 0:8249 0 0:9615 0:3756 0:8456 0:7312 0:7115 0:9711 0:1160 0:1206Data Set 3�01 �1:0000 �1:2170 �0:9953 �0:9826 �0:9812 �0:7546 �0:0047 0:0047�02 0:0500 0:0392 0:0509 0:0528 0:0535 0:0690 �0:0009 0:0183k � k for �0 1:0012 0:9966 0:9840 0:9826 0:0048 0:0048�k � k for b0 4:6634 3:7925 3:9088 3:9925 2:7244 0:5842��02 1:2251 0:9397 1:2818 1:3483 1:3851 1:9530 �0:0567 0:0463�03 0:8656 0:5861 0:7820 0:8084 0:8177 1:0977 0:0835 0:0965�04 1:0534 1:0675 1:4402 1:5200 1:5902 2:2758 �0:3868 0:3672�05 0:9930 0:7799 0:9758 1:0849 1:1053 1:5388 0:0172 0:0173k � k for �0�1 2:0846 2:2981 2:4411 2:5174 0:4002 0:1920��20 0:6400 0:3132 0:5232 0:6030 0:6518 1:1466 0:1168 0:1825 0 0:9615 0:2399 0:6614 0:6483 0:6302 0:9480 0:3001 0:3121Data Set 4�01 �1:0000 �1:4284 �1:1414 �1:1427 �1:1456 �0:8690 0:1414 0:1414�02 0:0500 0:0389 0:0517 0:0531 0:0540 0:0725 �0:0017 0:0347k � k for �0 1:0012 1:1426 1:1440 1:1469 0:1414 0:1413�k � k for b0 5:1904 5:1195 5:2180 5:3150 2:4346 0:4691��02 1:2251 1:1819 1:5708 1:6527 1:7049 2:4287 �0:3457 0:2822�03 0:8656 0:6944 0:8817 0:9423 0:9604 1:2887 �0:0161 0:0187�04 1:0534 0:9662 1:2622 1:3162 1:3477 1:8574 �0:2088 0:1982�05 0:9930 0:7771 1:0095 1:0483 1:0695 1:4400 �0:0165 0:0166k � k for �0�1 2:0846 2:4201 2:5398 2:6056 0:4045 0:1941��20 0:6400 0:5069 0:8575 0:9385 0:9887 1:6938 �0:2175 0:3399 0 0:9615 0:3522 0:9365 0:7647 0:7336 0:9783 0:0250 0:0260* value indi
ates kTrue � EstimatorkkTruek , where k � k is the Eu
lidian norm.
Table 5.2: Estimated Posterior Mode, Median, Mean and Quantiles for Simulation Study

2 Based on Model (4.9)
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5.3 Study 3: Hierarchical Spatial Binary Regression

with Individual Cluster Effects using Model (4.7)

5.3.1 Setup

The only difference between this model and the previous Model (4.9) is that now we use

a probit link instead of a logit one as in Model (4.9). Therefore the generation of the

data sets for this model (see Figure 5.11) is similar and uses the same parameter values
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Figure 5.11: Simulated Binary Responses for each of the 4 Data Sets Based on Model

(4.7)

α′,b′,σ′, τ 2′ , φ′ as before. However, the MCMC algorithm is based now on the utilization

of the latent variables Z ′
i, i = 1, . . . , n (for details see Section 4.2.3) which allow a direct

Gibbs step for all parameters except ψ′. Moreover, now in contrast to Model (4.9) a joint
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Figure 5.12: Estimated Marginal Posterior Densities for Parameters α′, τ 2′ , ψ′,σ2′ in

Model (4.7) (solid for Data Set 1, dashed for Data Set 2, dash-dot for Data Set 3, dotted

for Data Set 4)
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Figure 5.13: Comparison Maps for 70 Spatial Effects in Data Set 1 Based on Model (4.7)

update for α′ and b′ is possible. One further difference is that in this model we update the

parameter σ2′ instead of σ′ as before. As a prior for the parameter σ2′

m, m = 2, . . . ,M , we

use an IG(3, 0.5) distribution (with E(σ2′

m) = Var(σ2′

m) = 1), while the other parameters

have the same priors as before.

5.3.2 Results

Since the corresponding MCMC algorithm requires double computation time compared

to the previous simulation studies we run 25,000 instead of 50,000 iterations with every

25th iteration recorded. However the corresponding autocorrelation plots (not shown here)

indicate even better mixing as by the previous models. This effect is due to joint updates.

Unfortunately, the precision of the estimators in this study is not so good as before. This

holds especially for the variance parameters σ2′

m, m = 2, . . . ,M . Also for the regression

parameter α′ the estimator based on the third data set has relatively large deviations

from the corresponding true values.
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True 5%- Est.Post Est.Post Est.Post 95%- True� Relative ErrorQuantile Mode Median Mean Quantile Mode ��� (True � Mode)True ���Data Set 1�01 �1:0000 �1:1680 �0:9783 �0:9900 �0:9982 �0:8459 �0:0217 0:0217�02 0:0500 0:0426 0:0510 0:0514 0:0516 0:0616 �0:0010 0:0194k � k for �0 1:0012 0 0:9796 0:9913 0:9995 0 0:0217 0:0217�k � k for b0 5:3139 0 4:5940 4:6784 4:7389 0 1:9146 0:3603��202 1:5008 0:5538 0:8115 0:8279 0:8595 1:2995 0:6892 0:4593�203 0:7492 0:4678 0:6434 0:6887 0:7168 1:0448 0:1058 0:1413�204 1:1097 0:5934 0:8410 0:8925 0:9275 1:3238 0:2687 0:2422�205 0:9860 0:9511 1:4125 1:4498 1:4852 2:1802 �0:4264 0:4325k � k for �20 2:2399 0 1:9429 2:0144 2:0781 0 0:8604 0:3841��20 0:6400 0:3454 0:5578 0:5766 0:5962 0:9323 0:0822 0:1284 0 0:9615 0:5661 0:9638 0:8697 0:8362 0:9891 �0:0023 0:0024Data Set 2�01 �1:0000 �1:1355 �0:9484 �0:9658 �0:9697 �0:8081 �0:0516 0:0516�02 0:0500 0:0420 0:0499 0:0508 0:0512 0:0618 0:0001 0:0021k � k for �0 1:0012 0 0:9497 0:9671 0:9710 0 0:0516 0:0515�k � k for b0 5:5595 0 4:7861 4:8455 4:8880 0 2:2909 0:4121��202 1:5008 0:6130 0:8951 0:9433 0:9887 1:4696 0:6057 0:4036�203 0:7492 0:5335 0:7415 0:8003 0:8302 1:2206 0:0077 0:0103�204 1:1097 0:5112 0:6683 0:7586 0:7893 1:1798 0:4414 0:3978�205 0:9860 0:4731 0:7384 0:7231 0:7385 1:0765 0:2477 0:2512k � k for �20 2:2399 0 1:5306 1:6213 1:6838 0 0:7894 0:3524��20 0:6400 0:3233 0:4807 0:5226 0:5496 0:8484 0:1593 0:2489 0 0:9615 0:6524 0:9667 0:9003 0:8739 0:9924 �0:0052 0:0054Data Set 3�01 �1:0000 �0:9418 �0:8082 �0:8095 �0:8108 �0:6827 �0:1918 0:1918�02 0:0500 0:0274 0:0341 0:0346 0:0348 0:0432 0:0159 0:3173k � k for �0 1:0012 0 0:8089 0:8102 0:8115 0 0:1924 0:1922�k � k for b0 4:6563 0 4:0244 4:0878 4:1292 0 1:8784 0:4034��202 1:5008 0:5220 0:7748 0:7943 0:8176 1:1984 0:7260 0:4837�203 0:7492 0:2933 0:4030 0:4352 0:4529 0:6666 0:3462 0:4621�204 1:1097 0:4854 0:6971 0:7233 0:7557 1:1439 0:4126 0:3718�205 0:9860 0:5081 0:7337 0:7705 0:7986 1:1933 0:2523 0:2559k � k for �20 2:2399 0 1:3368 1:3918 1:4431 0 0:9385 0:4190��20 0:6400 0:2434 0:3637 0:4042 0:4180 0:6550 0:2763 0:4317 0 0:9615 0:6352 0:9752 0:8984 0:8710 0:9926 �0:0137 0:0142Data Set 4�01 �1:0000 �1:0670 �0:9145 �0:9241 �0:9255 �0:7878 �0:0855 0:0855�02 0:0500 0:0435 0:0527 0:0528 0:0528 0:0625 �0:0027 0:0535k � k for �0 1:0012 0 0:9160 0:9256 0:9270 0 0:0855 0:0854�k � k for b0 6:5191 0 5:9122 5:9885 6:0411 0 2:3161 0:3553��202 1:5008 0:9740 1:4046 1:5061 1:5645 2:3310 0:0961 0:0641�203 0:7492 0:3386 0:4914 0:5073 0:5178 0:7205 0:2578 0:3441�204 1:1097 0:5981 0:8296 0:8658 0:8897 1:2562 0:2801 0:2524�205 0:9860 0:8343 1:2150 1:2627 1:3016 1:9401 �0:2290 0:2323k � k for �20 2:2399 0 2:0926 2:2068 2:2806 0 0:4546 0:2029��20 0:6400 0:2955 0:4263 0:4556 0:4763 0:7303 0:2137 0:3339 0 0:9615 0:8727 0:9944 0:9686 0:9560 0:9978 �0:0329 0:0342* value indi
ates kTrue � EstimatorkkTruek , where k � k is the Eu
lidian norm.
Table 5.3: Estimated Posterior Mode, Median, Mean and Quantiles for Simulation Study

3 Based on Model (4.7)



49

5.4 Summary of Simulation Results

We summarize now briefly the main results of our simulation study. First of all, the trace

plots of the realized MCMC Chains from Models (4.9) (see Figure 5.10) and (4.7) (not

presented here) indicate identifiability. These models and the corresponding estimating

MCMC algorithms can therefore successfully be used for data from the unidentifiable

primary Logit (4.1) and Probit (4.2) Models with individual cluster effects.

The next point is to consider the random variability of the estimates. For each model we

simulated 4 data sets, which provided us with 4 posterior estimates for the corresponding

parameter vector. For Model (3.2) all 4 posterior estimates for the fixed α, spatial b

and cluster c parameters lie quite closely around the corresponding true values. The true

values are also well inside 90% credible intervals (see Figures 5.4, 5.5, 5.6 and Table 5.1).

However the spatial hyperparameter ψ, if close to 1, is often overestimated when a prior

[ψ] ∼ 1
(1−|ψ|)1−a with a = 0.5 (see Figures 5.4) and underestimated when a = 1 is chosen.

For the choice a = −1, which corresponds to an improper prior, the resulting posterior for

ψ is obviously also improper for the modified Pettitt’s CAR model. For Model (4.9) the

hyperparameter ψ is not overestimated by a prior choice of [ψ] ∼ 1
(1−|ψ|)1−a with a = 0.5,

while the estimates for the other parameters remain close to the corresponding true values

(see Figures 5.8 and 5.9 and Table 5.2). Finally for the Probit Model (4.7) the estimates

for the parameters α′,b′, τ 2′ and ψ′ are usually still sufficient, but not as precise, as for

former models. This is especially true for the cluster parameter σ2′ (see Figure 5.12, 5.13

and Table 5.3).

The MCMC estimating algorithms are fast enough so, that we were able to simulate

relatively long Markov Chains (50,000 iterations for Models (3.2), (4.9) and 25,000 it-

erations for Model (4.7)), with every 50th or 25th iteration respectively recorded. The

running time was between 10 and 15 hours. 10 pilot runs with 300 iterations per each

pilot run were used to determine optimal proposal standard error values for the MH-step

(see Section 3.2). This allows us to achieve acceptance rates between 30% − 60% for the

MH-steps. All this provided a good mixing for each model, which can also be seen from

low autocorrelations (not shown). This holds especially for Model (4.7), where the esti-

mating MCMC algorithm allows block updating and reduces the number of parameters,

whose updates require a MH-step to only one. Finally we note, that the length of the

“burn in” phase, which consists of 10 pilot runs is enough to achieve the stationary phase

of the corresponding Markov Chains (see for example Figure 5.10 for Model (4.9)).
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Chapter 6

Application: Mobility Data

6.1 Data Description

In this chapter we analyze the mobility behavior of private households in Munich. In

particular, the choice between individual and public transport options is recorded for each

trip. One central question is to identify areas of low/high utilization of public transport

after adjusting for explanatory factors such as trip, individual and household related

attributes. The goal is to find flexible statistical models which incorporate covariates

together with spatial and cluster information.

The data was collected within the study “Mobility 97” (see Zängler 2000). It was spon-

sored by the BMW AG, Munich, Germany, and conducted by the Institute “Sozialökonomie

des Haushalts” at the Munich University of Technology in collaboration with the Infratest

Burke Wirtschaftsforschung GmbH & Co, Munich. The participants of the survey are

German-speaking persons not younger then 10 years, which live in a private household in

the state of Bavaria.

In order to take into consideration seasonal fluctuations in mobility behavior of the

participants, the survey was carried out in three waves in March, June and October of

1997. Each participant reported all his or her trips conducted by public or individual

transport during a period of two or three days.

We consider part of the data which includes 1375 trips taken by 296 persons in 167

households in the city of Munich, Germany.

For each trip the binary variable of interest Y has value 1, if individual transport

(car) was used and value 0, if public transport was used. In addition to the response

Y person, household and trip related covariates were recorded. Using standard model

selection techniques for GLM’s we selected the following set of covariates as starting point

for our models. The person related covariates are age (metric), sex, personal income, car

usage (main, secondary or not user) and whether the person possesses or not a public

51
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Figure 6.1: Number of Available Trips over Postal Codes of Munich, Germany

transport net card. We retain only one household related covariate, namely household

type (single, single parent or not single). The trip related covariates are day type (work

day or weekend), day time (day or night), distance and whether the person took the trip

alone or not alone.

Table 6.1 shows the covariates, which will be utilized in our models. There we also

give the distribution of trips classified by the variable levels. For the covariate USAGE,

note that both main and secondary users must be not younger than 18 years and must

have a driver license and a car available in the household. In addition to the main effects

we selected the following 10 interactions:

WAY ALONE:NET CARD USAGE:SEX

WAY ALONE:USAGE DISTANCE:USAGE

DAY TYPE:NET CARD USAGE:DAY TIME

SEX:DAY TIME PERSONAL INCOME:NET CARD

DISTANCE:AGE DAY TYPE:AGE

Since the MCMC algorithms presented in Sections 3 and 4 exclude an intercept, we have

to estimate 36 regression parameters. The corresponding parameter estimates ignoring
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Number of Trips Using

Variable (coding) Levels Individual Public Total

Transport Transport

DAY TYPE (d.ty.) WORK DAY 595 297 892

WEEKEND 425 58 483

HOUSEHOLD TYPE (hh.) SINGLE 156 125 281

SINGLE PARENT 84 10 94

NOT SINGLE 780 220 1000

PERSONAL INCOME (p.i.) NO INCOME (< 200 DM) 24 31 55

MIDDLE (200 − 3000 DM) 475 193 668

HIGH (> 3000 DM) 521 131 652

DISTANCE (d.) SHORT (≤ 3.5 km) 294 71 365

MIDDLE (3.6 − 21.5 km) 571 257 828

FAR (> 21.5 km) 155 27 182

WAY ALONE (w.a.) ALONE 507 267 774

NOT ALONE 513 88 601

USAGE (u.) MAIN USER 731 100 831

SECONDARY USER 213 99 312

NOT USER 76 156 232

NET CARD (n.c.) YES 235 247 482

NO 785 108 893

SEX (s.) MALE 549 172 721

FEMALE 471 183 654

DAY TIME (d.t.) DAY (6 a.m. - 9 p.m.) 905 336 1241

NIGHT (9 p.m. - 6 a.m.) 115 19 134

AGE (POLY.AGE.1 and POLY.AGE.2) metric (quadratic, normalized with Splus function poly(age,2))

T O T A L 1020 355 1375

Table 6.1: Description of Covariates
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Number Postal Number Postal Number Postal

in Figure 6.2 Code in Figure 6.2 Code in Figure 6.2 Code

1 80331 26 80805 51 81477

2 80333 27 80807 52 81479

3 80335 28 80809 53 81539

4 80336 29 80933 54 81541

5 80337 30 80935 55 81543

6 80339 31 80937 56 81545

7 80469 32 80939 57 81547

8 80538 33 80992 58 81549

9 80539 34 80993 59 81667

10 80634 35 80995 60 81669

11 80636 36 80997 61 81671

12 80637 37 80999 62 81673

13 80638 38 81241 63 81675

14 80639 39 81243 64 81677

15 80686 40 81245 65 81679

16 80687 41 81247 66 81735

17 80689 42 81249 67 81737

18 80796 43 81369 68 81739

19 80797 44 81371 69 81825

20 80798 45 81373 70 81827

21 80799 46 81375 71 81829

22 80801 47 81377 72 81925

23 80802 48 81379 73 81927

24 80803 49 81475 74 81929

25 80804 50 81476

Table 6.2: Connection of Postal Codes with Its Numeration, Used in the Models
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Figure 6.2: Enumeration of Postal Codes of Munich, Germany, Used in the Models; red:

Postal Codes Have no Data

spatial and cluster effects using a logit model, provided by the function glm() in Splus,

are given in Table 6.3.
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Value Std. Error t value

(Intercept) -3.54 0.81 -4.33

day.type.weekend 2.15 0.38 5.65

household.type.single.parent 3.60 1.05 3.41

household.type.not.single 1.04 0.24 4.28

pers.income.middle 2.38 0.68 3.49

pers.income.high 2.70 0.72 3.72

distance.middle -0.57 0.31 -1.80

distance.far 1.05 0.61 1.72

way.alone.not.alone 1.90 0.40 4.71

poly(age, 2)1 27.84 7.87 3.53

poly(age, 2)2 1.81 7.89 0.23

usage.second.user 0.70 0.61 1.14

usage.not.user -4.66 0.69 -6.73

net.card.no 4.75 0.98 4.81

sex.female 0.45 0.29 1.54

day.time.night -0.73 0.43 -1.69

way.alone.not.alone:net.card.no -2.42 0.43 -5.52

usage.second.user:sex.female -2.27 0.51 -4.41

usage.not.user:sex.female 0.43 0.56 0.77

way.alone.not.alone:usage.second.user 1.39 0.49 2.80

way.alone.not.alone:usage.not.user 2.69 0.55 4.88

distance.middle:usage.second.user -1.44 0.59 -2.43

distance.far:usage.second.user -1.97 0.91 -2.15

distance.middle:usage.not.user 1.06 0.62 1.70

distance.far:usage.not.user -1.57 1.07 -1.46

day.type.weekend:net.card.no -1.42 0.47 -3.01

usage.second.user:day.time.night 7.87 6.41 1.22

usage.not.user:day.time.night 0.27 0.95 0.29

sex.female:day.time.night 2.89 1.15 2.50

pers.income.middle:net.card.no -1.21 0.96 -1.25

pers.income.high:net.card.no -2.51 0.98 -2.55

distance.middle:poly(age, 2)1 -30.34 8.69 -3.49

distance.far:poly(age, 2)1 -0.35 13.73 -0.02

distance.middle:poly(age, 2)2 -10.46 9.09 -1.15

distance.far:poly(age, 2)2 -5.81 14.35 -0.40

day.type.weekend:poly(age, 2)1 2.06 7.52 0.27

day.type.weekend:poly(age, 2)2 -32.54 9.07 -3.58

Table 6.3: Parameter Estimates Ignoring Spatial and Cluster Effects Using a Logit Model

Applying the Function glm() in Splus
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6.2 Results

We present briefly the results for 11 models we chose. Model 1, based on Model (3.2)

includes only fixed and spatial effects. Models 2 — 5, also based on Model (3.2) include

additionally group cluster effects with different choices of clusters. For each of these 5

models 25000 MCMC iterations of the algorithm presented in Section 3.2 were run and

every 25th iteration was recorded, giving acceptable low autocorrelations (not shown).

In Models 6, 8, 10, based on Logit Model (4.9) individual cluster effects are modeled.

The algorithm for parameter estimation is given in Section 4.2.1. Finally, Models 7, 9,

11 have the same cluster choice as Models 6, 8, 10, respectively, but are based on Probit

Model (4.7) with individual cluster effects. For probit models we run 20000 iterations

(and recorded every 20th iteration) of the MCMC algorithm based on latent variable

representation (4.8), presented in Section 4.2.3. We note, that 10 pilot runs (5 pilot runs

for probit models) with 300 iterations per each pilot run, which we used to determine

optimal proposal standard error values for the MH-step (see Section 3.2), provided in

each model good acceptance rates for the MH steps between 30%−60% and, besides this,

the sufficient “burn in” phase.

As a starting point for the choice of fixed effects for each of the 11 models we used

the covariates identified in the standard logit model presented in Table 6.3. So we need to

estimate 36 regression parameters α1, . . . , α36. The intercept effect is modeled within the

spatial and cluster part. As prior distributions for α1, . . . , α36 we chose independent normal

distributions with zero mean and standard error equal to 5. We consider an interaction

as insignificant when the corresponding estimated 90% credible interval contains the zero

value for all interaction terms. If an interaction is found to be insignificant, then the

corresponding terms will be removed and the model parameters will be estimated again

using the appropriate MCMC algorithm. Continuing with this procedure we arrive at

a model where all interactions are significant. The estimated posterior modes for the

regression parameters are shown for all 11 models in Table 6.8 (main effects) and in Table

6.9 (interactions).

6.2.1 Model with only Fixed and Spatial Effects (Model 1)

As noted before, this model is based on Model (3.2). The independent binary responses

Yi ∼ Be(pi), i = 1, . . . , 1375 are modeled here as follows:

Model 1:

θi := logit(pi) = xt
iα + bj(i)

bj|bj′ , j 6= j′ ∼ N
(

φ
1+|φ|Nj

∑
j∼j′bj′ ,

(1+|φ|)τ2

1+|φ|Nj

)
, j = 1, . . . , 74 .
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Figure 6.3: Estimated Posterior Densities for Main Effects in Model 1 (Solid Line =

Estimated Posterior Mode, Dashed Line = 90% CI)

We chose as prior distribution for the spatial hyperparameter ψ = φ
1+|φ| an uniform

distribution on (−1, 1), while for the other spatial hyperparameter τ 2 we chose an non-

informative prior, i.e. [τ 2] ∝ 1. The corresponding estimated posterior densities for regres-

sion parameters are presented in Figure 6.3 (main effects) and Figure 6.4 (interactions),

respectively. Vertical solid lines indicate estimated posterior modes, while vertical dashed

lines give 90% credible intervals. For the spatial effects estimates we show on Figure 6.6

three maps with estimated posterior modes, medians and means, respectively. On the left

bottom map we show which spatial effects significantly differ from zero. Finally, we note
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Figure 6.4: Estimated Posterior Densities for Interaction Effects in Model 1 (Solid Line

= Estimated Posterior Mode, Dashed Line = 90% CI)

that spatial effects of the postal codes with no observations are insignificant.

In Figure 6.5 we present estimated posterior densities for the hyperparameters τ 2 and

ψ, respectively. Note that the spatial dependence parameter ψ is negative, which indicates

that large positive spatial effects in an area can be surrounded by negative spatial effects

and vice versa. This behavior is seen on the left bottom map of Figure 6.6.
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Figure 6.6: Estimated Spatial Effects b̂j, j = 1, . . . , 74 in Model 1.
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6.2.2 Models with Fixed, Spatial and Group Cluster Effects

(Models 2 - 5)

These logit models are based on the Model (3.2) discussed in Section 3. In particular we

consider the following setup:

Models 2 - 5:

θi := logit(pi) = xt
iα + bj(i) + cm(i)

bj|bj′ , j 6= j′ ∼ N
(

φ
1+|φ|Nj

∑
j∼j′bj′ ,

(1+|φ|)τ2

1+|φ|Nj

)
, j = 1, . . . , 74

cm ∼ N(0, σ2
c ), m = 1, . . . ,M .

For the cluster hyperparameter σ2
c we choose an inverse gamma prior distribution given

by σ2
c ∼ IG(3, 0.5), while prior choices for fixed and spatial parameters remain the same

as in Model 1. Only in Model 2, in order to avoid numerical problems (clustering around

border values -1 and 1) we chose [ψ] ∝ (1−|ψ|)0.5 instead of [ψ] ∝ 1 on the interval (−1, 1).

The posterior centrality estimates of the spatial τ 2, ψ and cluster σ2
c hyperparameters and

their 90% credible intervals are given in Table 6.6.

In Model 2 we chose as cluster groups the 74 postal codes. Therefore both structured

(bj, j = 1, . . . , 74) and unstructured (cj, j = 1, . . . , 74) spatial effects are included in

Model 2. In the Figure 6.7 we present spatial maps with estimated posterior modes and

means for the structured spatial effects bj (top row) and unstructured spatial effects cj

(middle row). In the bottom row we present modes and medians from the estimated

posterior distribution of the sum bj + cj of structured and unstructured spatial effects.

From the right column of maps it is remarkable that both structured and unstructured

effects are insignificant, while their sum is, and form a similar spatial pattern as in Model 1.

Therefore it is not surprising that the posterior density of ψ, in particular the posterior

mode estimate in Models 1 and 2 are also similar (see Figure 6.8).

In Model 3 five clusters are formed by classifying numbers of trips per household

into 5 groups, i.e. m = 1, . . . , 5. The lowest class has the highest numbers of trips, the

highest class has the fewest numbers of trips. The distribution of trips into clusters are

given in Table 6.4. In Figure 6.9 we present corresponding estimated posterior densities

of the group cluster effects cm, m = 1, . . . , 5. The cluster effect is significant (marked

with *), if its 90% credible interval does not include zero. Note that cluster effects for

households with large numbers of trips are positive and cluster effects for households with

few numbers of trips are negative.

Finally Figure 6.17 presents map with the estimated spatial effects for this model.

In Model 4 we use 12 clusters instead of 5 clusters formed by the numbers of trips

a household has taken. In Figure 6.10 we show estimated posterior densities for the cor-

responding cluster effects cm, m = 1, . . . , 12. We emphasize the similar behavior of the
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cluster effects, as mentioned before for Model 3.

The last model with group cluster effects, Model 5, has 5 clusters, formed by clas-

sifying numbers of trips per person (instead of household, as before) into 5 groups. The

distribution of trips into clusters is given in Table 6.5. We note that only the 4th and the

5th cluster effect (with fewest numbers of trips) are significant in this model. Both have

Cluster Description Total

1st Households which conducted ≥ 23 trips 275 trips

2nd Households which conducted 16 − 22 trips 296 trips

3rd Households which conducted 12 − 15 trips 250 trips

4th Households which conducted 8 − 11 trips 275 trips

5th Households which conducted ≤ 7 trips 279 trips

Table 6.4: Distribution of Trips into Clusters for Model 3

negative values, namely around −1, i.e. the probability to use public transport for the

corresponding trips is higher. We omit the corresponding density plots to save space. For

the last 2 models we also omit figures presenting maps with the estimated spatial effects
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Figure 6.9: Estimated Posterior Densities of Group Cluster Effects cm, m = 1, . . . , 5 in

Model 3. (Solid Line = Estimated Posterior Mode, Dashed Line = 90% CI)

since their spatial patterns are similar to the one of Models 1,3 or Model 2 when the

joint effect of structured and unstructured spatial components is considered. Therefore
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Figure 6.10: Estimated Posterior Densities of Group Cluster Effects cm, m = 1, . . . , 12 in

Model 4. (Solid Line = Estimated Posterior Mode, Dashed Line = 90% CI)

the posterior density of the spatial dependence parameter ψ, in particular the estimate

(the posterior mode) also remains similar (not shown for Models 3,4 and 5). This can be

seen in Table 6.6 where posterior centrality estimates and 90% credible intervals for the

hyperparameters are given.

6.2.3 Models with Fixed, Spatial and Individual Cluster Effects

(Models 6 - 11)

We assume here that natural parameters θi of the independent binary responses

Yi ∼ Be(pi), i = 1, . . . , 1375 are generated by the following model (class introduced
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Cluster Description Total

1st Persons which conducted ≥ 12 trips 309 trips

2nd Persons which conducted 9 − 11 trips 301 trips

3rd Persons which conducted 7 − 8 trips 240 trips

4th Persons which conducted 5 − 6 trips 285 trips

5th Persons which conducted ≤ 4 trips 240 trips

Table 6.5: Distribution of Trips into Clusters in Model 5

Model Parameter Mode Mean Median 90% CI

ψ −0.500 −0.271 −0.372 −0.857 0.646

2 τ2 3.628 4.777 4.313 0.981 10.335

σ2
c 0.554 0.836 0.678 0.315 1.912

ψ −0.541 −0.422 −0.446 −0.930 0.149

3 τ2 6.262 9.124 8.233 3.358 18.417

σ2
c 0.802 1.270 1.076 0.486 2.797

ψ −0.507 −0.516 −0.538 −0.954 0.031

4 τ2 6.293 8.299 7.452 3.194 16.067

σ2
c 0.880 1.272 1.122 0.589 2.398

ψ −0.874 −0.543 −0.594 −0.956 0.058

5 τ2 4.025 5.298 4.777 2.020 9.685

σ2
c 0.526 0.753 0.646 0.324 1.585

Table 6.6: Point and Interval Estimates for the Hyperparameters in Models 2 - 5 (with

Group Cluster Effects)
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in Section 4.1):

Models 6 - 11:

θi = xt
iα + bj(i) + cm(i),k(i), where θi = log

(
pi

1−pi

)
or θi = Φ−1(pi)

bj|bj′ , j 6= j′ ∼ N
(

φ
1+|φ|Nj

∑
j∼j′bj′ ,

(1+|φ|)τ2

1+|φ|Nj

)
, j = 1, . . . , 74

∀m = 1, . . . ,M : cm,k ∼ N(0, σ2
m), k = 1, . . . , Km .

Recall that for both logit and probit link functions this model is unidentifiable. Therefore

we reparametrize it (according to (4.6)) to achieve identifiability. For the probit link this

leads to Model (4.7) given by

Yi|pi ∼ Bernoulli(pi) conditionally independent with

pi = P{Yi = 1|xi,α
′, b′j(i), σ

′2
m(i)} =





Φ
(
xt

iα
′ + b′j(i)

)
if m(i) = 1

Φ
(

xt

i
α′+b′

j(i)

σ′
m(i)

)
if m(i) = 2, . . . ,M

and for the logit link to Model (4.9):

Yi|pi ∼ Bernoulli(pi) conditionally independent with

log
(

pi

1−pi

)
=





xt
iα

′ + b′j(i) if m(i) = 1
xt

i
α′+b′

j(i)

σ′
m(i)

if m(i) = 2, . . . ,M .

Models (4.9) and (4.7) contain one parameter less than the original Models (4.1) and (4.2),

respectively, and are identifiable and therefore suitable for the parameter estimation.

As before, for the spatial variance parameter we chose a flat prior [τ 2′ ] ∝ 1, while

for the spatial dependence parameter in order to avoid numerical problems (clustering

around border values -1 and 1) we take the prior distribution [ψ′] ∝ (1 − |ψ′|)0.5 instead

of ψ ∼ Uni(−1, 1), which is common choice for models with group cluster effects. In

Probit Models 7, 9, 11 the cluster parameters σ2′

2 , . . . , σ2′

M have an inverse gamma prior

distribution given by IG(3, 0.5) (with expectation and variance equal to 1). This choice

allows direct Gibbs sampling for these parameters. In Logit Models 6, 8, 10 for cluster

components we simulate Markov Chain from posterior distribution of σ′
2, . . . , σ

′
M with the

prior choice taken as normal N(1, 1) truncated to (0.2, +∞).

In Models 6 and 7 (with logit and probit link function respectively) we use 3 clusters

formed by household type. In both models we omitted this covariate as a fixed effect. In

Figure 6.11 we present estimated posterior densities for the cluster parameters σ2′

2 and

σ2′

3 . Note that σ2′

m is significantly different to σ2′

1 = 1 if 1 /∈ 90% CI for σ2′

m, which is the

case for all m ≥ 2 in Model 7.

Logit Model 8 and Probit Model 9 have the same cluster choice, as Model 3 (see

Table 6.4). Note that the fewest heterogeneity is within the group with the largest numbers
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of trips per household (see estimates of the cluster parameters σ′ for Model 8 or σ2′ for

Model 9 in Table 6.7). Five clusters in Logit Model 10 and Probit Model 11 coincide

with the cluster choice in Model 5 (see Table 6.5). Heterogeneity within the group with

the fewest numbers of trips per person (the 5th cluster) is the largest, so we observe

the similar behavior as in Models 8 and 9, where clusters are formed by numbers of

trips per household. We omit figures presenting maps with the estimated spatial effects

for Models 6 - 11 with individual cluster effects because of similarity with the former
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Figure 6.11: Estimated Posterior Densities of Individual Cluster Effects σ2′

2 , σ2′

3 in Model

7. (Solid Line = Estimated Posterior Mode, Dashed Line = 90% CI)

model classes. To save space we also do not present plots with the estimated posterior

parameter densities. The posterior centrality estimates of the spatial hyperparameters

τ 2′ , ψ′ and cluster parameters σ′
2, . . . , σ

′
M and their 90% credible intervals for Models 6

- 11 are given in Table 6.7, while estimates for the fixed effects α′ are given in Table

6.8 (main effects) and in Table 6.9 (interactions). Posterior mode estimates are marked

with *, when the corresponding parameter is insignificant, i.e. the 90% credible interval

contains zero. If all terms of some interaction effects were insignificant, the model was

reduced on this interaction and the model parameters were estimated again using the

appropriate MCMC algorithm. Those interactions are marked with “n.r.”, which stands

for ”not represented” in the model.
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Model Parameter Mode Mean Median 90% CI

6 ψ −0.468 −0.396 −0.418 −0.870 0.181

τ2′ 4.861 6.854 5.931 2.553 14.196

σ′
2 0.277 0.484 0.430 0.226 0.921

σ′
3 1.439 1.461 1.443 1.068 1.943

7 ψ −0.525 −0.408 −0.444 −0.874 0.111

τ2′ 1.685 2.283 2.095 0.903 4.418

σ2′
2 0.404 0.540 0.497 0.252 0.973

σ2′
3 1.672 1.831 1.763 1.062 2.763

8 ψ −0.410 −0.413 −0.422 −0.865 0.075

τ2′ 10.769 17.101 14.799 6.002 36.512

σ′
2 0.922 1.010 0.973 0.648 1.464

σ′
3 2.842 2.951 2.913 2.240 3.734

σ′
4 1.430 1.486 1.459 1.078 2.019

σ′
5 1.822 1.797 1.789 1.313 2.343

9 ψ −0.512 −0.382 −0.412 −0.854 0.195

τ2′ 3.588 5.380 4.678 1.817 11.032

σ2′
2 0.797 0.906 0.845 0.477 1.534

σ2′
3 5.844 6.949 6.477 3.707 11.627

σ2′
4 1.543 1.958 1.837 0.996 3.370

σ2′
5 2.743 3.174 2.953 1.600 5.474

10 ψ −0.476 −0.403 −0.439 −0.876 0.199

τ2′ 7.538 9.468 8.232 3.167 19.895

σ′
2 1.027 1.058 1.041 0.752 1.430

σ′
3 1.168 1.180 1.166 0.797 1.610

σ′
4 1.271 1.300 1.287 0.897 1.768

σ′
5 1.553 1.681 1.642 1.196 2.255

11 ψ −0.350 −0.369 −0.383 −0.867 0.2220

τ2′ 1.773 2.517 2.182 0.849 5.2690

σ2′
2 0.782 0.887 0.846 0.510 1.4190

σ2′
3 0.976 1.067 1.009 0.557 1.7630

σ2′
4 1.021 1.340 1.250 0.731 2.1950

σ2′
5 1.972 2.209 2.088 1.169 3.7700

Table 6.7: Estimated Spatial Hyperparameters and Cluster Parameters for Models 6 - 11

(with Individual Cluster Effects)



69

Main Effect Model
1 2 3 4 5 6 7 8 9 10 11

DAY TYPE

WEEKEND 1.44 2.21 2.46 2.52 2.11 2.25 1.19 3.32 1.70 2.78 1.29

HOUSEHOLD

SINGLE.PARENT 1.61 3.15 3.42 2.92 3.31 n. r. n. r. 4.24 2.62 3.65 2.17

NOT.SINGLE 0.70 0.68 0.25* 0.27* 0.90 n. r. n. r. 0.85* 0.40* 0.96 0.44

PERSONAL INCOME

MIDDLE 0.41* 0.48* 1.63 1.41 0.71* 1.06 0.58 1.62 0.80 0.64* 0.37*

HIGH 0.25* 0.42* 1.27 1.14 0.12* 0.76 0.35* 1.46 0.56 0.24* 0.05*

DISTANCE

MIDDLE −0.96 −1.15 −1.06 −1.17 −1.05 −1.29 −0.61 −1.90 −1.04 −1.16 −0.59

FAR 0.32* 0.81* 0.98* 0.83* 0.97* 1.21* 0.64* 0.78* 0.65* 0.85* 0.33*

WAY ALONE

NOT.ALONE 1.82 2.09 2.07 2.30 1.93 2.17 1.36 3.21 1.76 2.30 1.20

AGE

POLY.AGE.1 16.80 8.73 11.64 11.53 9.95 6.11 5.57 7.97 8.82 9.81 7.46

POLY.AGE.2 −13.07 −8.96 −9.03 −8.64 −9.67 −8.93 −7.85 −9.69 −8.65 −7.63 −8.03

USAGE

SECOND.USER 0.38* 1.09* 1.27 1.16* 0.88* 1.11 0.73 1.23* 0.51* 1.51 0.80

NOT.USER −3.87 −6.41 −6.52 −6.52 −5.90 −6.38 −3.63 −9.99 −5.39 −7.44 −3.95

NET CARD

NO 2.07 2.67 3.03 3.32 2.72 2.78 1.70 3.90 2.28 3.11 1.64

SEX

FEMALE 0.28* 0.16* −0.19* −0.47* 0.10* 0.30* 0.11* −0.48* −0.20* 0.01* −0.05*

DAY TIME

NIGHT −0.58* −1.02 −1.12 −1.29 −1.13 −1.19 −0.63 −1.99 −1.08 −1.30 −0.64

Table 6.8: Posterior Mode Estimates for Main Effect Parameters
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Interaction Model
1 2 3 4 5 6 7 8 9 10 11

WAY ALONE:NET CARD

NOT.ALONE:NO −1.86 −2.39 −2.37 −2.76 −2.37 −2.54 −1.54 −3.10 −1.69 −2.53 −1.48

USAGE:SEX

SECOND.USER:FEMALE −1.70 −2.13 −2.07 −1.81 −2.01 −2.30 −1.45 −2.80 −1.73 −2.50 −1.22

NOT.USER:FEMALE −0.20* 0.66* 0.58* 0.79* 0.40* 0.26* 0.22* 1.39* 0.62* 0.80* 0.62*

WAY ALONE:USAGE

NOT.ALONE:SECOND.USER 0.79 1.21 0.80 0.76* 1.22 1.09 0.62 1.20* 0.66* 1.32 0.77

NOT.ALONE:NOT.USER 1.75 3.65 4.19 3.76 3.41 4.35 2.30 5.08 3.06 4.22 2.03

DISTANCE:USAGE

MIDDLE:SECOND.USER −0.68* −1.03 −1.39 −0.97 −1.19 −1.31 −0.74 −1.44* −0.52* −1.54 −0.87

FAR:SECOND.USER −1.02 −2.25 −2.12 −1.72 −2.22 −2.73 −1.52 −2.41 −1.52 −3.61 −1.62

MIDDLE:NOT.USER 0.95 1.68 1.52 1.64 1.27 1.20 0.63 2.47 1.66 1.53 0.89

FAR:NOT.USER −1.19 −1.19* −1.55* −2.01 −1.51* −2.31 −1.27 −2.68 −1.93 −1.94 −1.15

DAY TYPE:NET CARD

WEEKEND:NO n. r. −0.91 −1.23 −1.23 −1.07 −0.82* −0.50* −1.51 −0.83 −1.25 −0.45

USAGE:DAY TIME

SECOND.USER:NIGHT 1.32 5.01 5.22 6.63 5.71 5.07 3.53 6.17 4.53 5.67 4.96

NOT.USER:NIGHT −0.06* 0.31* 0.45* 0.38* 0.26* 0.32* 0.56* 0.72* 0.69* 0.68* 0.59*

SEX:DAY TIME

FEMALE:NIGHT 1.70 2.88 3.36 3.55 3.49 3.02 1.11 2.94 1.65 3.30 1.22

PERSONAL INCOME:

NET CARD

MIDDLE:NO n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.

HIGH: NO n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.

DISTANCE:AGE

MIDDLE:POLY.AGE.1 −12.93 n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.

FAR:POLY.AGE.1 −0.09* n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.

MIDDLE:POLY.AGE.2 −2.41* n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.

FAR:POLY.AGE.2 0.76* n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.

DAY TYPE:AGE

WEEKEND:POLY.AGE.1 n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.

WEEKEND:POLY.AGE.2 n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r. n. r.

Table 6.9: Posterior Mode Estimates for Interaction Parameters
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6.3 Model Comparison

In this section we would like to compare the goodness of fit for the proposed 11 models

with regard to their spatial effects. For this goal we choose as measure D the sum of

weighted squared residuals over all postal codes of Munich defined by

D(Y) :=
74∑

j=1

nj(p
empir
j − pestim

j )2 , (6.1)

where nj := number of trips in the jth postal code. Empirical probabilities p
empir
j are

equal to p
empir
j := 1

nj
Σi:j(i)=jYi, and the posterior probability estimates pestim

j are based

on the MCMC run, and equal the mean value over R iterations:

pestim
j :=

1

nj ∗ R

∑

i:j(i)=j

R∑

r=1

h−1(ηir), (6.2)

where h(·) is logit (for Models 1 - 5, 6, 8, 10) or probit (for Models 7, 9, 11) link function,

and

ηir =





xt
iαr + bj(i),r for Model 1

xt
iαr + bj(i),r + cm(i),r for Models 2-5

xt

i
α′

r+b′
j(i),r

σ′
m(i),r

for Models 6-11 .

In Table 6.10 we present value D for all 11 models. According to Table 6.10 the best

Model 1 2 3 4 5 6 7 8 9 10 11

D 2.35 1.23 0.95 1.02 1.44 1.9 1.7 3.25 2.88 1.84 1.72

Table 6.10: Model Fit Comparison with Regard to Spatial Probabilities

fit with regard to spatial probabilities has Model 3 (with group cluster effects). For this

model we present a color map with estimated spatial probabilities over postal codes of

Munich (see Figure 6.12, bottom map), which coincides quite well with the map showing

the empirical spatial probabilities (see Figure 6.12, top map). This indicates graphically

that Model 3 has a reasonably good fit of the data with respect to the spatial resolution.

Recall that we presented in Figure 6.1 the map with the number of available trips over

postal codes of Munich.
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Figure 6.12: Top Map: Observed Probabilities of Individual Transport Use by Postal Codes

in Munich, Germany; Bottom Map: Posterior Mean Probability Estimates of Individual

Transport Use by Postal Codes in Munich, Germany for Model 3
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6.4 Model Interpretation

After model fitting and model selection one is interested in what can be learned about

the transport behavior. For this we now investigate the implications of Model 3, which

exhibits the best goodness of fit (see Table 6.10) with regard to individual transport

probabilities. First we will estimate these probabilities when individual or combinations

of two covariates change. The remaining covariates in the model are set to their “most

usual values”, corresponding to the modus for categorical covariates and median values

for quantitative covariates. These “most usual values” are presented in Table 6.11 and

are derived from Table 6.1. The only quantitative covariate AGE has a median age of

42 years. Since the effect of age is modeled quadratically, we use the numerical more

stable orthogonal parameterization POLY.AGE.1 and POLY.AGE.2 for the linear

and quadratic effect respectively. Since Model 3 includes spatial effects we have to specify

a postal code for which we estimate these probabilities. We have chosen postal code area

81377 (see Table 6.2 and Figure 6.2 for exact location), since this postal code area has a

large observed number of trips (see Figure 6.1) and the smallest 90% credible interval for

its spatial effect. Finally Model 3 contains group cluster effects with regard to the number

of trips a household has taken. Since each cluster group contains the similar number

of individual trips, for our investigations we chose the last, i.e. the 5th cluster group

corresponding to households with ≤ 7 trips (see Table 6.4), which has the smallest 90%

credible interval for its cluster effect c5. Posterior mean estimates for individual transport

probabilities for a fixed covariate vector x for Postal code 81377 (corresponding to b47 and

the 5th group cluster can be calculated as

pmean(x) :=
1

R − B

R∑

r=B+1

pr(x) =
1

R − B

R∑

r=B+1

(
exp(xtα̂r + b̂47,r + ĉ5,r)

1 + exp(xtα̂r + b̂47,r + ĉ5,r)

)
, (6.3)

where α̂r, b̂47,r and ĉ5,r are the rth MCMC estimate of α, b47 and c5 respectively. Here R

is the total number of MCMC iterations and B is the burn-in. We can also determine 90%

credible bounds which are defined as 5% and 95% quantiles of the sample {pr(x)}R
r=B+1.

For “the most usual” trip, which is associated with postal code 81377 and 5th cluster

group, the estimated posterior mean probability for taking individual transport is equal

to 0.7.

Figure 6.13 gives the estimated posterior mean probability together with 90% credible

bounds for choosing individual transport as age changes in Postal code area 81377 and

trips associated with the 5th group cluster when the remaining covariates are set to their

“most usual value” given in Table 6.11. It is not very surprising that the probability

of using a car increases rapidly to an age of about 35 years, remains reasonably stable

between 35 years and 65 years and decreases slowly after the 65 years. Young people have
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Variable Category Value

DAY TYPE WORK DAY 1

WEEKEND 0

HOUSEHOLD TYPE SINGLE 0

SINGLE PARENT 0

NOT SINGLE 1

PERSONAL INCOME (p.i.) NO INCOME (< 200 DM) 0

MIDDLE (200 − 3000 DM) 1

HIGH (> 3000 DM) 0

DISTANCE (d.) SHORT (≤ 3.5 km) 0

MIDDLE (3.6 − 21.5 km) 1

FAR (> 21.5 km) 0

WAY ALONE (w.a.) ALONE 1

NOT ALONE 0

USAGE (u.) MAIN USER 1

SECONDARY USER 0

NOT USER 0

NET CARD (n.c.) YES 0

NO 1

SEX (s.) MALE 1

FEMALE 0

DAY TIME (d.t.) DAY (6 a.m. - 9 p.m.) 1

NIGHT (9 p.m. - 6 a.m.) 0

AGE POLY.AGE.1 −0.0028648 (42 years)

POLY.AGE.2 −0.0220355

Table 6.11: Design Vector of the Trip Chosen for the Interpretation of Fixed Effects
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Figure 6.13: Estimated posterior mean probabilities for using an individual transport in

Postal code area 81377 and 5th cluster group for different AGE, while other covariates

are set as in Table 6.11 (dotted lines correspond to 90% credible bounds)

a lower probability to possess a car, while the older people might prefer public transport

options.

Note that we can interpret the effect of age directly, since no interaction terms include

age. For almost all other covariate effects we have to consider covariate combinations

corresponding to interaction terms. In particular note that Model 3 includes 7 interac-

tion terms. In order to interpret effects of the categorical covariates we plot for each of

the 7 interactions the estimated posterior mean probabilities (6.3) for using individual

transport. We consider now briefly each of the 7 plots in Figures 6.14, 6.15 and 6.16. We

expect that people With Net Card will use public transport more often. The top plot of

Figure 6.14 confirms our expectation. However, the estimated probability to take a car for

the persons With Net Card increases, if this person travels Not Alone. This effect might

arise from comfort reasons, if a passenger offers his car, or from costs reasons, if not all

passengers have a net card.

In contrast to the covariate WAY ALONE the covariate DAY TYPE seems to have

less interaction with the covariate NET CARD, when the top panel of Figure 6.14 is
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Figure 6.14: Estimated posterior mean probabilities for using an individual transport in

Postal code area 81377 and 5th cluster group for different combinations of the covariates

which form the interaction, while other covariates are set as in Table 6.11;

Top: WAY ALONE:NET CARD; Middle: DAY TYPE:NET CARD; Bottom: SEX:DAY

TIME (dotted lines correspond to 90% credible bounds)
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Figure 6.15: Estimated posterior mean probabilities for using an individual transport in

Postal code area 81377 and 5th cluster group for different combinations of the covariates

which form the interaction, while other covariates are set as in Table 6.11;

Top: USAGE:SEX; Middle: USAGE:WAY ALONE; Bottom: USAGE:DAY.TIME (dotted

lines correspond to 90% credible bounds)
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compared to the middle panel of Figure 6.14. Further the estimated probability to take a

trip using individual transport for a person With Net Card increases from Work Day to

Weekend similarly as from travelers Alone to Not Alone.

The bottom plot of Figure 6.14 shows strong interaction between the covariates SEX

and DAY TIME. During Day (6 a.m. - 9 p.m.) both Males and Females use public

transport with similar probability. At Night (9 p.m. - 6 a.m.) this probability decreases for

Males. This might reflect the avoidance of car usage after alcohol consumption. However

it rapidly increases for Females almost up to 1. An explanation might be that women are

afraid to use public transport at night because of low usage and deserted stops.

The covariate USAGE is involved with the next 4 interactions effects considered.

The corresponding plots are presented in Figures 6.15 and 6.16. The “dominant” profile

curve of the transport choice, which corresponds to “the most usual” trip for 3 different

categories of USAGE are Male on the top panel of Figure 6.15, Alone on the middle

panel of Figure 6.15, Day on the bottom panel of Figure 6.15 and Middle Distance on

Figure 6.16.

The top panel of Figure 6.15 shows the estimated posterior mean probabilities for

different USAGE and SEX combinations. As expected, the probability to take individual

transport decreases for Not Users almost down to 0. The profile curve for Female differs

from the profile curve for Male only for Secondary Users, where this probability for Females

is only about half that of Males. This shows that Males are much more likely to use the

car when they are secondary users compared to Females. Further, both Male Main Users

and Secondary Users use the car in about 70% of their trips.

We consider now the 6 subgroups formed by the levels of USAGE and WAY ALONE

(see middle panel of Figure 6.15). The estimated probability to use public transport for

Not Alone increases slightly from Main User to Secondary User, but remains close to the

one for Alone. The profile curve for Not Alone differs significantly from the profile curve

for Alone only for Not Users. This is not surprising since a Not User traveling alone has

zero probability using a car.

If we consider the different USAGE and DAY TIME combinations (the bottom

panel of Figure 6.15) we see that during Day time there is no difference between Main

Users and Secondary Users, while during Night time Secondary Users nearly always use

individual transport. Note that we consider Male users here, since there are more Male

than Female users in this data set. This is consistent with bottom panel of Figure 6.14,

when averaged over usage.

Figure 6.16 shows the estimated probabilities for different USAGE and DISTANCE

combinations. It is remarkable that for Main Users and Secondary Users both profile

curves for Short Distance (≤ 3.5km) and Far Distance (> 21.5km) lie significantly higher
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Figure 6.16: Estimated posterior mean probabilities for using an individual transport in

Postal code area 81377 and 5th cluster group for different USAGE and DISTANCE

combinations, while other covariates are set as in Table 6.11 (dotted lines correspond to

90% credible bounds)

than the profile curve for Middle Distance and are close to 1. For the high individual

transport probability for Far Distance trips, the sparse suburban railway net, compared

to the road net, might be responsible, as well as the high ticket costs and shorter travel

duration. In contrast, the most Short Distance trips are within the city. Therefore the in-

terpretation of the above-average high probability to use a car in this case is not so simple.

We continue now this section with the interpretation of spatial effects. There are 24

postal codes whose 90% credible intervals do not include zero and therefore are significant

(see bottom right panel of Figure 6.17). 17 of them have a significant negative spatial effect

and are indicated by a blue color. This shows that the probability of taking individual

transport regardless of the covariate and group effects is reduced. In contrast 7 postal code

areas have significant positive spatial effects, showing that the probability of individual

transport increases. These postal code areas are indicated by a red color. We expect that

the interpretation of the spatial effects is connected with the subway (U-Bahn) net and
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suburban railway (S-Bahn) net. Table 6.12 confirms our assumption in general. The left

column shows the numbers of postal code areas, which have U- or S-stops inside. The

with U- or S-stops without U- or S-stops

90% CI over 0 2 5

90% CI below 0 11 6

Table 6.12: Interpretation of Spatial Effects in Context of Presence/Absence of the U-or

S- Stops inside of postal codes

right column contains the numbers of postal code areas without stops. There are only 24

postal codes with the significant spatial effects under consideration. The estimated odds

ratio is 2·6
11·5 ≈ 0.22, which is clearly below 1 (the 90% confidence interval is [0.044, 1.091])

which confirms that presence of U- and S-stops are connected with negative spatial effects

and therefore reduces probability to use a car and vice versa. While there is a general

dependency between significant spatial effect and the presence of the U+S-net in this

postal areas, some areas do not follow this pattern (see Table 6.13). For their exact

with U- or S-stops without U- or S-stops

but 90% CI over 0 but 90% CI below 0

80333 80999

81476 80634

80797

81243

80689

81373

Table 6.13: Untypical Postal Code Areas

locations see Table 6.2 and Figure 6.2. These areas should therefore be of special interest

to the city planners, which seek to improve the public transport net, since these areas

indicate areas of low/high public transport usage even after adjustment of trip, person

and household specific effects.

We also note that the estimate of the spatial dependency parameter ψ̂ ≈ −0.5 is

negative. This can be explained by the specific form of S- and U-Bahn net, whose lines

run from the center to suburbs like a star. Since the sign of the spatial effects correlates

with the presence/absence of the U-or S- stops, it is not surprising, that especially far

from the center the neighboring postal codes have often spatial effects with opposite signs.
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Figure 6.17: Estimated Spatial Effects b̂j, j = 1, . . . , 74 in Model 3.

Finally we mention that cluster effects for households with large numbers of trips are

positive and cluster effects for households with few numbers of trips are negative (see

Table 6.4 and Figure 6.9). This corresponds that households with high mobility needs to

use a car more often than households with low mobility needs.
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Chapter 7

Discussion: Summary and Outlook

7.1 Summary

In this thesis we developed hierarchical binary spatial regression models with group (3.2)

and individual (4.9 and 4.7) cluster effects. Both models allow for joint adjustment of

covariate, spatial and cluster effects. This provides a method for identifying areas of

low/high utilization of public transport after adjusting for cluster and explanatory factors

such as trip, individual and household attributes.

The models we developed are based on the Bayesian approach. For parameter esti-

mation MCMC algorithms were used. We modeled spatial effects using Gaussian CAR

models which we introduced and discussed in Section 2. Such spatial priors allow us to

take into consideration possible spatial dependence such as spatial smoothing. In contrast

to the widely used geostatistical Gaussian kriging approach (see Diggle, Tawn, and Moy-

eed 1998), Gaussian CAR models allow for fast individual updating of spatial effects in a

Gibbs sampler scheme. Moreover with CAR models we avoid also the difficult updating

of the covariance hyperparameters in general kriging especially if the number of spatial

locations is large.

For our models we modified the Pettitt CAR process, which was introduced in Pettitt,

Weir, and Hart (2002). Our modification (2.9) still has all nice properties of the Pettitt

CAR models: proper joint distributions, a similar interpretation of parameters, the same

conditional correlations and, the most important, it allows to apply a similar method

for fast updating of the spatial hyperparameters (see Section 2). But in contrast to the

Pettitt CAR model our modification includes in the limit a specific intrinsic CAR model

(2.4), which is often used in the modeling smoothing effect. We investigated the asymp-

totic behavior of the joint distribution of the modified Pettitt CAR model (see 2.10) and

compared it with the joint distribution of intrinsic CAR model, which we interpreted in

Section 2 (see 2.7).
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The usage of CAR distributions for the modeling of spatial effects in our application

requires to determine the neighboorhood structure of the 74 postal code areas of Munich.

For this goal we first created a data set, which contains the polygon coordinates for each

postal code area. Next we wrote a fast program which creates the neighborhood matrix

using this data set. Two postal code areas are evaluated as neighbors if its polygons have

at least one joint line. Figure 7.1 shows the program output for 74 postal code areas of

Munich (for their exact locations see Table 6.2 and Figure 6.2). The right panel presents
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Figure 7.1: Left: Neighborhood Matrix of 74 Postal Code Areas of Munich; Right: Neigh-

borhood Matrix after Reordering of Postal Code Areas which Minimizes Its Bandwidth

the neighborhood structure of postal code areas after their optimal reordering which

minimizes the bandwidth of the neighborhood matrix. This is important for Bayesian

inference for Probit Model (4.7) with individual cluster effects (see Section 4.2.3). This

reordering can be accomplished in MATLAB by the function symrcm.

In addition to spatial effects we extended the binary regression model by cluster ran-

dom effects. The first approach (Section 3) models heterogeneity between clusters. This

is realized by the Logit Model (3.2) defined as

θi := log
(

pi

1−pi

)
= xt

iα︸︷︷︸
fixed effect

+ bj(i)︸︷︷︸
random spatial effect

+ cm(i)︸︷︷︸
random cluster effect

,

cm ∼ N(0, σ2
c ) i.i.d., m = 1. . . . ,M.

It assumes as usual that all members of a cluster have the same random effect. In Section

4 we developed also an approach, which models heterogeneity within a cluster. This is
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realized in Model (4.1) given by:

θi := log
(

pi

1−pi

)
= xt

iα︸︷︷︸
fixed effect

+ bj(i)︸︷︷︸
random spatial effect

+ cm(i),k(i)︸ ︷︷ ︸
random cluster effect

,

cmk ∼ N(0, σ2
m) i.i.d., m = 1. . . . ,M.

The cluster effects within a cluster are modeled here as independent normally distributed

random variables with zero mean and a cluster specific variance. We call this approach

individual cluster effect modeling. The non identifiability problem, which arises here,

was solved for Probit Model (4.2) using reparametrization (4.6), which results in the

identifiable equivalent Model (4.7). We applied the same idea for the Logit Model (4.1),

which led us to Model (4.9). This model has one parameter less, compared to Model (4.1):

θi := log

(
pi

1 − pi

)
=





xt
iα

′ + b′j(i) if m(i) = 1
xt

i
α′+b′

j(i)

σ′
m(i)

if m(i) = 2, . . . ,M .

The simulation study presented in Section 5 indicated its identifiability. We mention here

again that large values of the cluster parameter σ2′

m indicate a large heterogeneity within

cluster m. This interpretation of the cluster parameters follows from reparametrization

(4.6). If the numbers of observations in clusters differ strongly, we recommend to denote

the cluster with the largest number of observations as the first cluster when the individual

cluster approach is to be used.

For the hierarchical spatial binary regression Logit (4.9) and Probit (4.7) Models

with individual cluster effects we developed two MCMC algorithms for parameter es-

timation (Section 4.2.). The first one is direct and the second one is based on latent

variables. The first algorithm is useful if the likelihood of the data, given covariates and

unknown parameters, can be easily computed as in binary logistic models. Markov Chains

are then generated using Metropolis-Hastings steps. But in contrast to the logit case the

Metropolis-Hastings update step is computationally much more expensive for probit mod-

els. It is slow and less precise because of the numerical complexity of the computations

for the values of Φ(·). This arises from the computation of Φ(·) for large values, since

this distribution function converges to 1 much faster, than the more heavy-tailed logit

distribution. We proposed a method how to overcome this problem in Section 4.2.2. The

implementation of this method for the direct MCMC algorithm for Probit Model (4.7) is

still under preparation and will be investigated in the future. The second approach, which

is particularly useful for probit models, is based on latent variables, where the observed

binary responses are generated by a threshold mechanism. For latent Gaussian variables

this leads to binary probit models as discussed for example in Albert and Chib (1993).

In particular, for our Probit Model (4.7) this leads to the latent variables representation
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(4.8). For MCMC inference, Gaussian latent variables are considered as unknown addi-

tional “parameters” and are generated with the other parameters in a Gibbs sampling

scheme. We note again that block updating for regression parameter α and spatial pa-

rameter b is available in this estimating algorithm. Therefore we achieved considerably

better mixing than in the direct algorithm, where parameters are updated individually.

This allowed us to reduce the number of iterations in the corresponding Markov chains.

Furthermore, this method reduces the number of parameters, which require a numerically

more complicated Metropolis-Hastings step, to only one. The corresponding MCMC algo-

rithm is developed in Section 4.2.3. We finally note, that Holmes and Knorr-Held (2003)

give new ideas on how to use latent variables in a logit model. These ideas might yield a

new MCMC algorithm for Models (4.9) and (3.2).

The final remark with regard to the applicability of the MCMC algorithms in this thesis

is as follows. Since the original Model (4.1) is not identifiable we expect that a MCMC

algorithm based on (4.1), i.e. Markov chains {αr}, {br}, {σ2r}, {τ 2r}, r = 1, 2, . . . may

not converge. However, with the parameter transformation given in (4.6) we achieve the

identifiable Model (4.9) and therefore we expect the transformed chains

{
αr

√
1 + σ2r

1

}
,

{
br

√
1 + σ2r

1

}
,

{
σ2r

√
1 + σ2r

1

}
,

{
τ 2r

1 + σ2r
1

}
, {φr} , r = 1, 2, . . .

to converge. The simulation study for Model (4.1) supported this conjecture. These chains

can be also used for the parameter estimation of α′,b′,σ2′, τ 2′ , φ′ from the identifiable

Model (4.9) as an alternative to constructing a MCMC algorithm directly based on Model

(4.9). Generally, such alternatives compared to the common approach to simulate Markov

Chains only from the identifiably reparametrized model might be preferable if parameter

updates in the unidentifiable model are simpler than in its identifiable analog.

All 3 Models (3.2), (4.9) and (4.7) were successfully applied to data from the Munich

mobility study. The starting set of covariates for the fixed effects in our models we selected

using standard model selection techniques for GLM’s such as partial deviance tests. The

results are presented in Section 6. A goodness of fit assessment for each model with regard

to their spatial effects was carried out in Section 6.3.
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7.2 Outlook

We now want to consider the following extensions to our models:

- Modeling of spatial/cluster interactions;

- Modeling of simultaneous heterogeneity within and between clusters.

Some first ideas on how to approach these questions will be discussed in the following 2

subsections.

7.2.1 Modeling of Spatial/Cluster Interactions

The first important question we consider is how to allow for a possible interaction between

spatial and cluster effects. We propose two possibilities to do this. The first one uses a

general linear kriging approach (Diggle, Tawn, and Moyeed 1998). As already noted in the

introduction, this approach is appropriate for data collected at specified point locations.

But we can apply this idea also for data regions (whose number J is constant and does

not depend on the number of observations n). Here we model the vector of spatial effects

b = (b1, . . . , bJ)t as a realization of some Gaussian stationary process B with zero mean

instead as a realization from the CAR process.

To take into consideration an interaction between spatial and cluster effects we pro-

pose to define a Gaussian stationary process G with zero mean at the locations gjm, j =

1, . . . , J, m = 1, . . . ,M . Here the location gjm is a vector with spatial and cluster com-

ponents: gjm = (sj, rm)t. For example the spatial component can be defined by the coor-

dinates of the region center. Cluster components can be metric (for example, scored age

levels if clusters represent age groups), or categorical. Then the predictor can be modeled

as follows (compare with (3.2)):

θi := log

(
pi

1 − pi

)
= xt

iα︸︷︷︸
fixed effect

+ G(gj(i),m(i))︸ ︷︷ ︸
spatial and cluster effect

. (7.1)

A similar idea about defining locations is used in Kuhnert, Mengersen, and Smith (2002),

who collect in clusters similar design vectors of observations. But the authors seem to

assume that all covariates are metric. For a discussion on how to choose an appropriate

distance metric they refer to Kaufman and Rousseeuw (1990). We can define the distance

between two locations h(gjm, gj′m′) for example as follows:

h2(gjm, gj′m′) = h2
s(sj, sj′) + q · h2

r(rm, rm′) , (7.2)

where hs, hr stands for distances in the spatial and in a finite cluster space, respectively,

and q is a known weight coefficient. To define a stationary Gaussian process G we need to
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choose a covariance function σ2
g · ρ(h; δ), where ρ(·; ·) denotes the correlation function of

the process G, and δ stands for the correlation parameter vector. In the introduction we

mentioned the estimation problem of correlation parameter δ in kriging models without

interaction when the number of regions is large. Including interaction as in (7.1) increases

the number of region/cluster combinations, thus the method will not be feasible for even

a medium number of regions and a large number of clusters. A second problem with

this approach is how to interpret the absence of interaction between spatial and cluster

effects. One possible solution is to require a splitting of process G(gjm) in a sum of two

independent zero mean stationary Gaussian processes S(sj) and R(rm) for some value of

parameter δ∗ when no interaction is present. For this assume, that processes S and R

have covariation functions, denoted by σ2
s ·ρs(hs) and σ2

r ·ρr(hr), respectively. For δ∗ must

hold:

σ2
g · ρ(h(gjm, gj′m′); δ∗) = cov(G(gjm), G(gg′m′)) = cov(S(sj) + R(rm), S(sj′) + R(rm′))

= σ2
s · ρs(hs(sj, sj′)) + σ2

r · ρr(hr(rm, rm′)).

If sj = sj′ , rm = rm′ we obtain σ2
g = σ2

s + σ2
r . So a splitting of process G(gjm) in a sum

of two independent stationary Gaussian processes with zero mean is possible only if the

choice of correlation function ρ(h; δ) allows for some δ∗ the following representation:

ρ(h(hs, hr); δ
∗) = βρs(hs) + (1 − β)ρr(hr) , for some β ∈ (0, 1) . (7.3)

At the moment it is unclear if there exist such correlation functions which satisfy (7.3).

As an alternative approach we suggest to use multivariate CAR models mentioned for

example by Pettitt, Weir, and Hart (2002). The multivariate CAR model is a model

for b = (b1, . . . ,bJ)
t, where the components bj = (bj1, . . . , bjM)t, j = 1, . . . , J are

M−dimensional vectors instead of scalars, as before. The joint distribution of the vector

b is defined as follows:

b = (b1, . . . ,bJ)
t ∼ NJ×M

(
0, τ 2(Q−1 ⊗ V )

)
, V =




1 ρ · · · ρ

ρ 1
...

...
. . . ρ

ρ · · · ρ 1




∈ R
M×M ,

(7.4)

where A⊗B stands for Kronecker product of matrix A =




a11 . . . a1J

...
. . .

...

aJ1 . . . aJJ


 and matrix B

given by

A ⊗ B =




a11 · B . . . a1J · B
...

. . .
...

aJ1 · B . . . aJJ · B


 .
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In particular for the multivariate modified Pettitt CAR, the conditional distribution is

given then as follows (compare with (2.9)):

bj|bj′ , j 6= j′ ∼ NM




φ

1 + |φ|Nj

∑

j∼j′

bj′ ,
(1 + |φ|)τ 2

1 + |φ|Nj




1 ρ · · · ρ

ρ 1
...

...
. . . ρ

ρ · · · ρ 1







.

The parameter ρ measures the strength of the cluster dependence. If ρ = 0 then all

M components of vector bj are iid. As before, the parameter φ measures the strength

of the spatial dependence. If φ = 0 then the vectors bj, j = 1, . . . , J are independent

and normally distributed with mean zero and covariance matrix τ 2V . Further interesting

properties of the multivariate CAR model can be found in Pettitt, Weir, and Hart (2002).

The authors use multivariate Gaussian CAR models for a data augmentation approach.

In their application the binary data concerns the presence or absence of two tree varieties

represented at 469 sites. Since the presence of these two kinds of trees can depend on each

other, the authors model this data using a multivariate CAR model with J = 469 and

M = 2 by a threshold mechanism. Further, Carlin and Banerjee (2002) use multivariate

Gaussian CAR models in generalized linear mixed models, namely for spatial survival

data analysis, where the Gaussian variable enters in the linear predictor. Here M stands

also for the number of types of observations, namely types of cancer, whose presence can

depend on each other. We now propose to apply the multivariate Gaussian CARs in a

new way, namely for modeling spatial-cluster interactions. More precisely, we propose to

model spatial and cluster effects jointly as some multivariate CAR. As usually, J denotes

the number of regions, while M stands for the number of clusters. Then logits are modeled

as follows (compare with (3.2)):

θi := log

(
pi

1 − pi

)
= xt

iα︸︷︷︸
fixed effect

+ bj(i),m(i)︸ ︷︷ ︸
spatial and cluster effect

,

where b = (b1, . . . ,bJ)
t, bj = (bj1, . . . , bjM)t, j = 1, . . . , J is modeled as a realization of

the multivariate CAR (7.4). In this model we have to estimate one additional parameter

ρ, which measures strength of a space-cluster interaction. The absence of interaction

is indicated by ρ = 0. In this case the M vectors (b1m, . . . , bJm)t, m = 1, . . . ,M are

independent identically distributed Gaussian CAR models.

Note that this principle can be used to interpret the absence of the spatial-cluster

interaction also for the general kriging approach (7.1). This means that no interaction

is present if there is no correlation between G(gjm) and G(gj′m′) for m 6= m′ while

(G(g1m), . . . , G(gJm)t, m = 1, . . . ,M are independent and identically Gaussian distributed
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with distance metric

h2(gjm, gj′m′) = h2
s(sj, sj′),

which is independent of m. This can be achieved from (7.2) when q is large and ρ(h, δ) = 0

if h > R (for some fixed R). This means we have to allow to estimate q together with

correlation parameters δ. It is an open problem how to do this.

An important advantage of the multivariate CAR approach compared to general krig-

ing approach is fast and easy updating for all variance-covariance parameters, namely

τ 2, φ and ρ even in large dimensions.

Finally we show how to interpret the modeled interaction present in the multivariate

CAR model (7.4) as a product of spatial and cluster effects. By this we mean that the

distribution of the multivariate Gaussian CAR vector b with the variance-covariance

matrix τ 2(Q−1 ⊗ V ) has the same mean and covariance matrix as the random vector

B := (B11, . . . , BJM)t with components

Bjm = Bj · Am,

where Bj, j = 1, . . . , J and Am,m = 1, . . . ,M are independent random vectors. Here

(B1, . . . , BJ)t ∼ NJ(0, τ 2Q−1) is a Gaussian CAR and

A := (A1, . . . , AM)t has zero mean and covariance V.

If in addition for the vector A the following distribution is chosen:

P (Am = 1) = P (Am = −1) = 1
2
,

P (Am′ = 1|Am = 1) = P (Am′ = −1|Am = −1) = 1+ρ
2

,

P (Am′ = 1|Am = −1) = P (Am′ = −1|Am = 1) = 1−ρ
2

,

then the components Bjm, j = 1, . . . , J, m = 1, . . . ,M have the same distribution as the

corresponding spatial-cluster effects bjm, i.e. they are also normal with the same mean

and variance. However their joint distributions are different.

7.2.2 Modeling of Simultaneous Heterogeneity within and be-

tween Clusters

In this thesis we first considered the model with group cluster effects, Model (3.2), which

implements heterogeneity between clusters:

Yi|pi ∼ Bernoulli(pi) conditionally independent with

θi := log
(

pi

1−pi

)
= xt

iα︸︷︷︸
fixed effect

+ bj(i)︸︷︷︸
random spatial effect

+ cm(i)︸︷︷︸
random cluster effect

, cm ∼ N(0, σ2
c ) .
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Next we introduced the model with individual cluster effects, Model (4.1) (and further we

developed its identifiable representation, Model (4.9)), which implements heterogeneity

within clusters:

θi := log

(
pi

1 − pi

)
= xt

iα︸︷︷︸
fixed effect

+ bj(i)︸︷︷︸
random spatial effect

+ cm(i),k(i)︸ ︷︷ ︸
random cluster effect

, cmk ∼ N(0, σ2
m) .

A natural proposal would be to unite these two approaches, in order to be able to model

both heterogeneity between and within clusters:

θi := log

(
pi

1 − pi

)
= xt

iα︸︷︷︸
fixed effect

+ bj(i)︸︷︷︸
random spatial effect

+ cm(i),k(i)︸ ︷︷ ︸
random cluster effect

, cmk ∼ N(cm, σ2
m) .

We only note here, that this proposed model is also unidentifiable and we need to find a

similar identifiable representation, as for Model (4.1).
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A Proofs of Some Results in Chapter 2

Proof of (2.7) To show (2.7), first note that from (2.6) it follows immediately that

Q12 = −Q111J−1 and Q22 = −Qt
211J−1, which implies

Q−1
11 Q12 = −1J−1 and (A.1)

Q22 = Q21(Q
−1
11 Q12) . (A.2)

Further, since the neighborhood structure has no isolated regions or groups of regions,

the matrix Q11 is clearly positive definite as a symmetric diagonally dominant matrix

(see Theorem 12.2.16 in Graybill (1983)). Therefore the rank of the positive semi-definite

matrix Q0 is equal to J − 1. We can write now the density of b as

[b] ∝ exp(− 1
2τ2b

tQ0b)

= exp{− 1
2τ2 [b−J

t Q11 b−J + bJQ21b−J + b−J
t Q12bJ + bJQ22bJ ]}

(A.2)
= exp{− 1

2τ2 [b−J + (Q11)
−1Q12 bJ ]t Q11 [b−J + (Q11)

−1Q12 bJ ]}
(A.1)
= exp{− 1

2τ2 [b−J − 1J−1bJ ]t Q11 [b−J − 1J−1bJ ]} · 1
∝ [b−J|bJ ] · [bJ ] .

This implies (2.7).

Proof of (2.10)

To show (2.10), we first note that simple direct computations from (2.2) and compar-

ison with (2.6) lead us for φ ≥ 0 to the following equality for the precision matrix of the

modified Pettitt’s CAR, denoted by 1
τ2 Qm.P :

Qm.P = ψQ0 + (1 − ψ)IJ , where ψ =
φ

1 + φ
.

If we write the variance matrix of the modified Pettitt’s Gaussian CAR as

τ 2Σm.P = τ 2(Qm.P )−1 = τ 2

(
Σm.P

11 Σm.P
12

Σm.P
21 Σm.P

22

)
and Qm.P =

(
Qm.P

11 Qm.P
12

Qm.P
21 Qm.P

22

)
,
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where τ 2Σm.P
11 ∈ R(J−1)×(J−1) denotes the covariance matrix of the vector b−J, then the

variance of bJ , σ2
J(ψ) = τ 2Σm.P

22 can be written (see Rao 1973, p.33) as follows:

σ2
J(ψ) = τ 2(Qm.P

22 − Qm.P
21 (Qm.P

11 )−1 Qm.P
12 )−1

= τ 2 (ψQ22 + (1 − ψ) − ψQ21(ψQ11 + (1 − ψ)IJ−1)
−1ψQ12)

−1
.

From (A.2) it follows that Σm.P
22 → +∞, if ψ → 1. To proof the first equation of the

(2.10) we must show that

φ−1Σm.P
22 → 1

J
, if φ → +∞ .

So,

φ−1Σm.P
22 = φ−1 (ψQ22 + (1 − ψ) − ψQ21(ψQ11 + (1 − ψ)IJ−1)

−1ψQ12)
−1 ψ= φ

1+φ

=

=
1
φ

Q22+ 1
φ
−Q21(Q11+ 1

φ
IJ−1)−1Q12

1+φ
φ

x:= 1
φ

= x(1+x)
Q22+x−Q21(Q11+xIJ−1)−1Q12

.

limφ→∞
Σm.P

22

φ
= limx→∞

x(1+x)
Q22+x−Q21(Q11+xIJ−1)−1Q12

Th. of L’Hospital
=

= limx→∞
1+2x

1+Q21(Q11+xIJ−1)−2Q12
= 1

1+(Q21Q−1
11 )(Q−1

11 Q12)

A.1
= 1

1+(J−1)
= 1

J
.

The conditional mean of b−J given bJ can be written (see Anderson 1958) as:

µJ(ψ) = Σm.P
12 (Σm.P

22 )−1bJ ,

what again can be written in terms of Qm.P (Rao 1973, p.33) as

µJ(ψ) = −(Qm.P
11 )−1Qm.P

12 bJ

Thus the second equation of the (2.10) follows immediately from (A.1) and the fact, that

Qm.P → Q0, if φ → + ∞, in particular limφ→+∞ Σm.P
11 (φ) = Q−1

11 , since the matrices

involved are positive definite.
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B Generalized Linear Models (GLM’s)

There is considerable literature available discussing GLM’s. A standard reference for all

types of GLM’s is the book by McCullagh and Nelder (1989). Generalized linear models

are, as the name says, a generalization of linear models based on the normal distribution.

This generalization consists of two parts:

First, other distributions than the normal distribution for the response variable can be

used, as long as they belong to the class of exponential family densities. Second, the mean

is not directly modeled, but a transformation of it. This is facilitated by using special

link functions. So, the observations Yi|xi, i = 1, . . . , n are assumed to be conditionally

independent with a density p(yi|xi) from the exponential family. Here the design vector

xi ∈ Rp describes covariates which are used to explain the response Yi. Recall that the

density p(yi) of a random variable Yi belongs to the exponential family, if it has a form

p(yi|θi, φ) = p(yi) = exp

(
yiθi − b(θi)

φ
+ c(yi, φ)

)
, (B.1)

where

- θi = θ(µi) is called the natural or canonical parameter. It is a monotonic function

of the expected value µi of Yi, i.e. µi := E(Yi);

- φ is a dispersion parameter, which might be known or unknown;

- b(·) and c(·) are known functions which determine the given distribution. Given a

density of the form (B.1) it can be shown that

b′(θi) = E(Yi) = µi

φ · b′′(θi) = var(Yi)
(B.2)

To the exponential family belong almost all standard distributions such as normal, bi-

nomial, Poisson and Gamma. To construct a density for the Yi|xi the linear predictor

ηi := xi
′β is linked with the expected value µi = E(Yi|xi) via a monotonic response

function h(ηi):

µi = h(ηi) = h(xt
iβ) ∀i = 1, . . . , n,

where β := (β0, . . . , βp)
t is a unknown regression parameter vector. The aim in model

fitting is to replace the data Y := (Y1, . . . , Yn)t with a set of fitted values Ŷ derived from

a model. The number of included parameters p + 1 is very important. Three different

types of models can be considered. First of all we have the “zero model”. In that model

no parameters are included, except the intercept term β0. Its disadvantage is that it is
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too simple and therefore often does not model the relationship between Y and X :=

(x1, . . . ,xn)t realistically. On the other side, there is the “saturated” or “full model”. In

this case as many parameters are included in the model as observations are available, i.e

p + 1 = n. If the number of parameters increases, the mean vector µ := (µ1, . . . , µn)t

is represented more and more realistically, up to the saturated model, where µ is fitted

perfectly. But on the other hand, the saturated model is unsuitable for forecasting since

it provides no data structure explanation. Therefore we need to take into consideration a

third class of models, which have more parameters than the zero model, but less than the

saturated model.

If ηi = θi, i.e. h(ηi) = θ−1(ηi), then h(·) is called the canonical response function.

The inverse function g = h−1 is called link function. The link function corresponding to

ηi = θi is called the canonical link function. For the binomial distribution the canonical

link function is the logit function defined by

logit(pi) := log

(
pi

1 − pi

)

The classical parameter estimation procedure is based on the Maximum Likelihood ap-

proach. For this we consider maximization of the loglikelihood function L(β) which is

given as

L(β) := log p(Y; β) = log
∏n

i=1 p(Yi; β) =
∑n

i=1 log p(Yi; β) =
∑n

i=1 Li(β), where

Li(β)
(B.1)∝ Yiθi−b(θi)

φ
+ log(c(Yi, φ)).

(B.3)

Note that we can disregard the term log(c(Yi, φ)), since it does not depend on β. Next

we define the score function s(β) as the vector of derivatives of the loglikelihood:

s(β) :=
∂l(β)

∂β
=

∑n
i=1

∂Li(β)

∂β
=

∑n
i=1 si(β), where

si(β) :=
∂Li(β)

∂β
=

∂Li(β)

∂θi
· ∂θi

∂µi
· ∂µi

∂ηi
· ∂ηi

∂β

(B.3),(B.2)
= 1

φ
(Yi − h(xi

tβ)) · 1
b′′(θi)

· h′(ηi) · xi.

(B.4)

The solution of the system s(β) = 0 is called the ML solution. When this solution is

the global maximum it is the maximum likelihood estimator, β̂ML.

The (expected) Fisher information matrix F (β) :=
∑n

i=1 Fi(β), which is needed in the

asymptotic distribution of β̂ML, is defined as the covariance matrix of the score vector

s(β). Under regularity conditions F (β) can be calculated alternatively as the expected

value of the observed Fisher information matrix Fobs(β), where

Fobs(β) := −∂2L(β)

∂β∂βt .
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To calculate the individual Fisher information Fi(β) of the ith observation note that

F (β) = cov s(β)
Es(β)=0

=
n∑

i=1

E(si(β) · st
i(β))

(B.4),(B.2)⇒ Fi(β) =
1

φ

[h′(ηi)]
2

b′′(θi)
· xi · xi

t.

For the canonical response function (i.e. ηi = θi) due to (B.2) we obtain simple expressions

for the score vector and the Fisher information matrix:

s(β) = 1
φ

∑n
i=1(Yi − h(xi

tβ)) · xi

F (β) = 1
φ

∑n
i=1 h′(xi

tβ) · xi · xi
t.

Note that for the canonical response function the differentiation of the s(β) eliminates

the random terms involving Yi so that F := E(Fobs) = Fobs in this case.

The important result for the maximum likelihood estimation in GLM’s is that under

regularity conditions asymptotically holds (McCullagh and Nelder 1989, appendix S.4 d.):

β̂ML ∼ Np+1(β, F−1(β̂ML)). (B.5)

In particular, the diagonal elements of the matrix F−1(β̂ML) can be used therefore for

constructing of confidence intervals for βj, j = 0, . . . , p. These are used for testing the

significance of βj. If the (1−α)100% confidence interval for βj includes zero, βj is assumed

to be non-significant at level α. This test is called the Wald test for GLM’s. Another

possibility to test parameter significance is to use the so-called likelihood quotient or

partial deviance test. Define the deviance statistic D as

D := −2
(
L(β̂ML) − L(β̃ML)

)
,

where L(β̃ML) denotes the maximum log likelihood in the full model. Let d be the deviance

of a reduced model with parameter vector βr := (β1, . . . , βpr
)t, where pr < p. Under the

hypothesis, that parameters (βpr+1, . . . , βp)
t = 0, the value

d − D

has asymptotically χ2 distribution with p− pr degrees of freedom (McCullagh and Nelder

1989, Section 5.5 a.). The deviance D can also be used for testing of goodness of the

model. Under the hypothesis, that chosen model is true, we have asymptotically

D ∼ χ2

with g − p degrees of freedom , where g is number of the observation groups with equal

design vectors. Note that we can apply this residual deviance test only if the binary data

can be grouped to form binomial response data (Collett 2002, Section 3.8.2). With this

result we close our short introduction in the generalized linear models.
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C Bayesian Inference and Markov Chain Monte Carlo

(MCMC) Methods

Good advanced introduction to Bayesian Inference and MCMC methods is given for ex-

ample in Chib (2001) and in Gamerman (1997).

C.1 Bayesian Inference

In contrast to the classical or frequentist approach the Bayesian approach considers pa-

rameters are considered as random quantities, which will be updated in the presence of

the observed data. In particular, let β := (β0, . . . , βp)
t the parameter vector and let p(β)

its density or probability function, which express our uncertainty about the parameter

β before sampling the data. This distribution is called the prior distribution. We now

observe a random sample Y = (Y1, . . . , Yn)t with joint density or probability function

p(Y; β). Further we assume that Yi, i = 1, . . . , n are conditionally independent given the

parameter β. If we consider p(Y; β) as a function of the parameter β for given Y, we

speak of the likelihood. In particular we denote the likelihood by

l(β) := p(Y; β).

Since the observations Y contain information about β, we update our knowledge about

β by considering the conditional distribution of β given Y. This distribution is called the

posterior distribution and expresses our uncertainty about β after taking into account

the data. It can be calculated by Bayes’ theorem, i.e.

p(β|Y) =
p(Y; β)p(β)

p(Y)
=

p(Y; β)p(β)∫
p(Y; β)p(β)dβ

. (C.1)

Since p(Y) does not depend on β, we can write

p(β|Y) ∝ l(β) × p(β). (C.2)

A prior distribution with p(β) ∝ 1 is called non-informative. It is not a proper prior if the

parameter space for β is not bounded. In this case we have
∫

p(β)dβ = ∞. The usage of

such non-informative priors has to be done with care to insure that the resulting posterior

is proper. For example for binary models we found that by using an improper prior there

exist a few extremal states of data Y, which cause an improper posterior. Once the

posterior distribution is determined, the main location measure such as posterior mode

β̂Bayes can be used for parameter estimation of β. Note that when a non-informative

prior p(β) ∝ 1 is used the posterior mode estimate formally coincides (by (C.2)) with the

maximum likelihood estimate β̂ML. The classical approach uses confidence intervals as
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interval estimates for β, while the Bayesian inference uses credible intervals. A 100(1−α)%

credible interval for a scalar β is given by

C with

∫

C

p(β|Y)dβ = 1 − α.

This can be interpreted that the posterior probability β falling into the interval C is 1−α.

Such an easy interpretation cannot be made for confidence intervals.

If a future observation Y ∗ needs to be predicted using the data Y, the Bayesian ap-

proach uses the predictive distribution, which is the conditional distribution of Y ∗ given Y.

If Y ∗ and Y are conditionally independent given β, then the predictive distribution is

given by

p(Y ∗|Y) =

∫
p(Y ∗|β)p(β|Y)dβ.

Posterior calculations in (C.1) are tractable, in particular if one considers conjugate

prior distributions. Assume that the data Y arises from a class of parametric distributions

which we call M . A class of prior distributions P is conjugate to an observational model

M if for every prior p ∈ P and for any observational distribution l ∈ M , the posterior

distribution p(·|Y) is also an element of P . Table C.1 presents some examples of conjugate

Bayesian models. However in more complex situations it will often not be possible to get an

Prior Likelihood Posterior

Normal (with known variance) Normal Normal

Beta Binomial Beta

Dirichlet Multinomial Dirichlet

Gamma Poisson Gamma

Table C.1: Examples of Conjugate Bayesian Models

analytically closed expression for the posterior distribution, since the normalizing constant

p(Y) defined in (C.1) of the posterior distribution requires a possibly high dimensional

integration. In particular, sometimes it is useful to consider an additional probabilistic

structure for the parameter β. In this case we speak about hierarchical models. Model (3.2)

is a good example for a hierarchical model. Figure 3.1 presents its hierarchical structure.

In this example the prior distribution is specified in two stages and the parameters τ 2, φ

and σ2
c are called hyperparameters.

To overcome the analytic intractability MCMC methods are widely used. The idea

behind these methods is simple and extremely general. In order to sample from a given

probability distribution that is referred to as the target distribution, a suitable Markov

chain is constructed with the property that its (limiting) distribution is the target dis-

tribution. Further, MCMC methods allow the parameter space to include for example
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missing data or even a model class choice. Finally, sometimes the target distribution is

the posterior distribution of the parameters augmented by latent data, in which case the

MCMC scheme operates on a space that is also considerably larger than the parameter

space. This strategy is called data augmentation and is applied for Model 4.7 (see Section

4.2.3).

Depending on the specific problem, Markov chains can be constructed by using the

Metropolis-Hastings algorithm, the Gibbs sampling method, or hybrid mixtures of these

two algorithms.

Before we will present these two algorithms, we will recall some important definitions

and results from the theory of Markov chains.

C.2 Markov Chains

An advanced introduction to Markov chains with general state space can be found in

Meyn and Tweedie (1993), Nummelin (1984) and Tierney (1996).

Let F be some σ-algebra of a state space S. A Markov Chain X over (S, F ) with index

space T = N ∪ {0} is a process Xn, n = 0, 1, . . ., where given the present state, past and

future states are independent, i.e.

P (Xn+1 ∈ A|Xn = x,Xn−1 ∈ An−1, . . . , X0 ∈ A0) = P (Xn+1 ∈ A|Xn = x) (C.3)

for all sets A0, . . . , An−1 ∈ F . If the probabilities in (C.3) do not depend on n, we say that

the Markov chain is homogeneous. In this case a transition function or kernel P (h, x,A) :=

P (Xn+h ∈ A|Xn = x) must satisfy the following conditions:

(i) ∀x ∈ S : P (x, ·) is a probability distribution over (S, F );

(ii) ∀A ∈ F : the function P (·, A) is measurable;

(iii) ∀s, t ∈ N, x ∈ S, A ∈ F : P (s + t, x, A) =
∫

S
P (t, y, A)P (s, x, dy)

(Kolmogorov-Chapman condition).

Here P (x,A) is defined by P (x,A) := P (1, x, A) = P (Xn+1 ∈ A|Xn = x). The Kolmogorov-

Chapman condition can be written in operator notation as

P s+t = P s · P t. (C.4)

If S is a discrete space with d states s1, . . . , sd, than the transition function is given as

matrix P ∈ Rd×d, where Pij = P (Xn+1 = si|Xn = sj). In this case condition (C.4)

corresponds to matrix multiplication.
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A probability distribution π over (S, F ) is called P -invariant or P -stationary, if

∀x ∈ S,A ∈ F :

∫

S

P (x,A)π(dx) = π(A), (C.5)

or, in the operator notation:

πP = π.

The meaning of the invariance is clear: if we choose π as the initial distribution, i.e.

P (X0 ∈ A) = π(A), then all Xn have the distribution π; the Markov Chain X is stationary.

A probability distribution π over (S, F ) is called P -reversible, if

∀x, y ∈ S : π(dx)P (x, dy) = π(dy)P (y, dx). (C.6)

The reversibility means that with initial distribution π the sequences (X0, X1) and (X1, X0)

have the same distribution. Using induction it follows that this statement holds even for

sequences (X0, X1, . . . , Xn) and (Xn, Xn−1, . . . , X0) ∀n ∈ N, i.e. the time direction does

not play any role. Integration of (C.6) over A × S shows that the reversible distribution

is invariant. The inverse statement does not hold in general.

A transition kernel P is called irreducible, if there exists some probability distribution

ψ over (S, F ) such that

∀x ∈ S, ∀A ∈ F with ψ(A) > 0 :
∞∑

k=1

P k(x,A) > 0. (C.7)

The irreducibility induces that the probability for the Markov chain X to reach A ∈ F

such, that ψ(A) > 0 is positive from any state x ∈ S. Irreducibility is required for showing

that the invariant distribution is unique and that the following law of large numbers for

Markov chains holds:

Proposition C.1 Let P be a irreducible transition kernel with the invariant distribution

π. Than π is the unique invariant distribution and

P

(
1

n + 1

n∑

t=0

f(Xt) →
∫

f(x)π(dx), n → ∞|X0 = x

)
= 1

for π-almost all x ∈ S and all f with
∫
|f(x)|π(dx) < ∞.

For the proof see for example p.49 of Guttorp (1995).

MCMC methods allows us to compute
∫

f(x)π(dx) using recursive simulation of

Xn+1|Xn = x ∼ P (x, ·) such that 1
R−B

∑R
t=B+1 f(Xt) approximates the integral one

is interested in. For this we need 3 conditions:
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(i) P is irreducible;

(ii) π is P -invariant;

(iii) Simulation from P (x, ·) is simple for each x ∈ S.

Often instead of checking condition (ii), condition (ii’): π is reversible for P is easier to

verify. Recall that (ii’) implies (ii).

C.3 Metropolis-Hastings (MH) Algorithm

The MH algorithm allows us to construct a transition kernel P , which is irreducible and

reversible with respect to the probability distribution π. It is easy to show directly the

following proposition:

Proposition C.2 Let π be absolutely continuous with respect to some measure µ and let

q(x, y) > 0 be a transition kernel (measurable with
∫

q(x, y)µ(dy) = 1 ∀x ∈ S). Then the

following transition kernel P is π-irreducible and π-reversible:

P (x,A) =
∫

A
q(x, y)a(x, y)µ(dy) + 1A(x)

(∫
S

q(x, y)(1 − a(x, y))µ(dy)
)
,

with a(x, y) = min
(
1, π(y)q(y,x)

π(x)q(x,y)

)
.

(C.8)

According to condition (iii) in the last algorithm choose the transition kernel q such that

simulation from q(x, ·) is simple for each x ∈ S. Note that

P (x, x) =

∫

S

q(x, y)(1 − a(x, y))µ(dy) > 0

implies that P (x, S) = 1. The MH algorithm to generate a Markov chain β(j), j = 0, 1, . . .

with stationary distribution π(β) := p(β|Y ) can now be described as follows:

(1) Set the iteration counter to j = 1 and specify an initial value β(0);

(2) Generate a candidate value β from density q(β(j−1), ·);

(3) Accept β with the probability a(β(j−1),β) given in (C.8). If β is accepted, move the

Markov chain to β(j) := β, else β(j) := β(j−1) and the Markov chain does not move;

(4) Change counter j to j + 1 and return to Step (2) until convergence is reached.

We call the transition kernel q(·, ·) the proposal kernel and the function a(·, ·) the accep-

tance probability. We speak about convergence in step (4) since the initial value β(0) does

not come from the P -invariant distribution π. Until convergence to stationary distribution
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π is reached, the chain is in the so-called burn in phase. Its length B ∈ N depends on the

choice of the initial value and on the mixing rate of the Markov chain.

One should observe that the target density π appears as a ratio in the acceptance

probability a(·, ·) and therefore the algorithm can be implemented without knowledge of

the normalizing constant of π(·). Different proposal densities give rise to specific versions of

the MH algorithm, each with the correct invariant distribution π. One family of candidate-

generating densities, which is very popular in applications and which we used in our

MCMC algorithms, is given by symmetric kernels q(x, y) = q(|x − y|). The candidate y

is thus drawn according to the process y = x + ξ, where ξ follows the distribution q(·).
One has to be careful, however, in setting the variance of ξ; if it is too large it is possible

that the chain may remain stuck at a particular value for many iterations while if it is

too small the chain will tend to make small moves and move inefficiently through the

support of the target distribution. Both circumstances will tend to generate draws that

are highly serially correlated, which is undesirable. Finally note that when q is symmetric,

the acceptance probability a(x, y) of a move is only determined by the ratio π(y)/π(x).

C.4 Gibbs Sampler

An elementary introduction to another MCMC method, Gibbs sampling, is provided by

Casella and George (1992). In this algorithm all parameters are grouped into g blocks

(β1, . . . ,βg) and each block is sampled according to the full conditional distribution of

block βk, k = 1, . . . , g, defined as the conditional distribution under π of βk given all other

blocks β−k := (β1, . . . ,βk−1,βk+1, . . . ,βg) and denoted as π(βk|β−k). Derivation of the

full conditional distributions is usually quite simple since, by Bayes theorem, π(βk|β−k) ∝
π(β). In addition, the powerful device of data augmentation, due to Tanner and Wong

(1987), in which latent or auxiliary variables are artificially introduced into the sampling, is

often used to simplify the derivation and sampling from the full conditional distributions.

As already mentioned, we apply the data augmentation approach in MCMC algorithm

for Model (4.7) (see Section 4.2.3). The Gibbs sampling algorithm can now be described

as follows:

(1) Set the iteration counter to j = 1 and specify an initial value β(0) = (β
(0)
1 , . . . ,β(0)

g )t;

(2) Obtain a new value β(j) = (β
(j)
1 , . . . ,β(j)

g )t through successive generation of values

(2.1) β
(j)
1 ∼ π(β1|β(j−1)

2 , . . . ,β(j−1)
g )

(2.2) β
(j)
2 ∼ π(β2|β(j)

1 ,β
(j−1)
3 , . . . ,β(j−1)

g )
...

(2.g) β(j)
g ∼ π(βg|β(j)

1 , . . . ,β
(j)
g−1);
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(3) Change counter j to j + 1 and return to step (2) until convergence is reached.

It is clear that the Gibbs sampler defines a homogeneous Markov chain. Its transition

kernel is given by

P (β(j−1),β(j)) =

g∏

k=1

π(β
(j)
k |β(j)

1 , . . . ,β
(j)
k−1,β

(j−1)
k+1 , . . . ,β(j−1)

g ). (C.9)

The Gibbs sampler scheme is a special case of the MH method (see for example Chib

(2001)). The connection to the MH algorithm can be seen by setting in Step (2.k) (k =

1, . . . , g) of the Gibbs sampling algorithm the proposal transition probability qk(β,β′) as:

qk(β,β′) = π(β′
k|β−k) · δβ−k

(β′
−k), (C.10)

where δx(·) denotes the Dirac function, defined by:

∫
f(u)δx(u)du = f(x).

The right side of (C.10) is further equal to

π(β1, . . . ,βk−1,β
′
k,βk+1, . . . ,βg)∫

β′
k

π(β1, . . . ,βk−1,β
′
k,βk+1, . . . ,βg)dβ′

k

· δβ−k
(β′

−k).

Then the acceptance probability is given by

a(β,β′) = min

(
1,

π(β
′
)

π(β)

π(β
′

1,...,β
′

k−1,β
k
,β

′

k+1,...,β
′

g
)

π(β1,...,β
k−1,β

′

k
,β

k+1,...,β
g
)
·

·
∫

βk
π(β1,...,β

k−1,β
′

k
,β

k+1,...,β
g
)dβ

k
∫

β′
k

π(β
′

1,...,β
′

k−1,β
k
,β

′

k+1,...,β
′

g
)dβ

′

k

·
δβ′

−k
(β−k

)

δβ−k
(β

′

−k
)

)
β

′

−k
=β−k
= 1.

Thus, the Gibbs sampler algorithm is a special case of the MH algorithm, which shows

that the corresponding Markov chain is stationary in the limit with distribution π. Note

that often one cannot generate observations from all full conditionals, even when simple

blocks are used. In this case we can generate the kth block βk using a MH step within the

Gibbs sampler scheme. This was done in each of our MCMC algorithms, for example, by ψ-

updating step. Such an MCMC algorithm is called a hybrid MCMC algorithm. Following

from the MH-representation of the Gibbs sampler the hybrid MCMC procedure can be

presented then as a complex MH algorithm and convergence to the stationary distribution

π still holds.

So far nothing has been said on how to form the components of the vector β. A first

choice might be to use scalar components. However high correlation among components

leads to slow convergence of the Gibbs sampler and inefficient moving through the support
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of the target distribution. So it might be preferable to update highly correlated compo-

nents jointly. In general, one can advise to use as large blocks as possible in the Gibbs

sampler. This means to block components in such a way that it is easy to sample from

the full conditional for this block. Note that if it is possible to block all components into

a single block, then this means that it is easy to sample from the posterior distribution

directly and a Gibbs sampler is no longer needed.
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