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Zusammenfassung

In dieser Dissertation betrachten wir zwei Modelle derististhen Mechanik, eines im
Nichtgleichgewicht und das andere im Gleichgewicht. DigbWedung zwischen den Mo-
dellen liegt in den mathematischen Methoden, die fur ihrestduchung benutzt werden.

Als erstes betrachten wir d&olynukleare Wachstumsmod@ING) in einer Raum-
dimension, das der KPZ-Universalitatsklasse angehothewdPZ fir Kardar, Parisi und
Zhang steht. Fir Wachstumsmodelle erwartet man, dass d8sgi\Wachstumszditdie
statistischen Eigenschaften nur von qualitativen Eigleaiten der Dynamik und von Sym-
metrien abhangen, aber nicht von den Details des Modell®NiG-Modell skalieren die
Hohenfluktuationen fiir grosse Wachstumszeitie t'/3 und die Korrelationslange wie
t2/3. Prahofer und Spohn haben bewiesen, dass die statistiEggmschaften einer trop-
fenformigen Oberflache vom Airy-Prozess beschrieben werB&ses Ergebnis wurde
durch die Erweiterung der Oberflache zu einen Multi-layexdell erhalten. In dieser Dis-
sertation betrachten wir den translationsinvarianteih la bestimmen den asymptoti-
schen Punktprozess an einer festen Stelle. Wir beweises, diaser Punktprozess der
Skalierung von Eigenwerten am Rand des Spektrums einetiguttrix des Gausschen
Orthogonalen Ensembles (GOE) entspricht.

Zweitens betrachten wir ein vereinfachtes Modell einerstéliecke: die3D-Ising-
Eckefur tiefe Temperaturen. Die Ecke besteht aus drei Faceatterdurch eine gerundete
Flache verbunden sind, siehe Abbildung 1.1 in der Einlgjti¥ir analysieren die Begren-
zungslinie einer der Facetten. Wenn die Kristallecke gipesthe Ausdehnung der Lange
L hat, dann haben die Fluktuationen der Begrenzungslini&dissenordnung'/3, und
die longitudinalen Korrelationen skalieren wie/3. Wir beweisen, dass die richtig skalier-
te Begrenzungslinie vom Airy-Prozess gut beschrieben.\ides ist auch der Fall fur das
“terrace-ledge-kink”-Modell (TLK) und deshalb erwartetirywdass der Airy-Prozess die
Facettenbegrenzungen fur die Modelle beschreibt, die deresalitatsklasse mit kurz-
reichweitigen Wechselwirkungen angehoren.

Obwohl die zwei Modelle physikalisch sehr unterschiedi@®ysteme beschreiben,
werden fur ihre Untersuchung ahnliche mathematische Miethdenutzt. Beide Model-
le kdbnnen auf eine Menge von sich nicht Gberkreukenden hialeyebildet werden, die
man auch als Trajektorien von Fermionen interpretieremk&ir diese Linien definiert
man einen Punktprozess. Fir die 3D-Ising-Ecke besteht emem erweiterten deter-
minantischen Punktprozess, dessen Kern gegen den eteritiry-Kern konvergiert.
Der Airy-Kern erscheint auch in der Randskalierung von DysBrownscher Bewegung
fur GUE-Zufallsmatrizen. Der Prozess fiur das PNG-Modeleis Pfaffscher Punktpro-
zess (an einer festen Stelle) und seuR-Matrixkern konvergiert gegen den der GOE
Zufallsmatrizen. In der Dissertation diskutieren wir awald Verbindung zu einigen ande-
ren Modellen: das Problem der langsten steigenden Tediplgerichtete Polymere, “last
passage percolation”, der total asymmetrische Aussqgbiozssss, zuféllige Parkettierun-
gen und 3D-Young-Diagramme.



Abstract

In this thesis we consider two models, the first belongingae-aquilibrium and the sec-
ond one to equilibrium statistical mechanics. The two me@deé connected the mathe-
matical methods used to their analysis.

The first model analyzed is thlynuclear growth mod€lPNG) in one dimension,
which belongs to the KPZ (Kardar-Parisi-Zhang) univetgaliass. For growth processes,
when the growth time is large, the statistical properties of the surface are erpeto
depend only on qualitative properties of the dynamics andymnmetries, but not on
the details of the models. In the case of the PNG, for largavrdime ¢ the surface
height fluctuations scale @§'* and the spatial correlation length #*. For boundary
conditions inducing a droplet shaped surface, it was shoyRrhofer and Spohn that
the statistics of the surface is described by the Airy precaddis result was obtained by
extending the surface line to a multi-layer model. In thigsis we consider the space-
translation invariant case and determine the limit pointpss of the multi-layer model at
fixed position. The process coincides with the edge scalieggenvalues of the Gaussian
orthogonal ensemble (GOE) of random matrices.

The second model we study is tBB-Ising cornerat zero temperature. The corner
of the crystal is composed by three facets (flat pieces) amdirrded piece interpolating
between them, see Figure 1.1 in the Introduction for antil®n. We analyze the border
line between the rounded and a flat piece. When the cornertdgfe is large, say of linear
length L, the fluctuations of the border line are of orde¥* and the spatial correlation
length scales ag?3. We prove that the (properly rescaled) border line is wedlai®ed
by the Airy process. This is also the case for the terracgdédnk (TLK) model, a simple
model used to describe surfaces close to the high symmetis; dde expect that the Airy
process describes the border of the facets in the classfatsumodels with short range
interactions.

Although the two models describe physically very differepstems, the mathemat-
ical methods employed for their investigation are similBoth models can be mapped
into some non-intersecting line ensembles, which can adsvidwed as trajectories of
fermions. One can associate some point processes to thenkeenbles. For the 3D-Ising
corner it is an extended determinantal point process, wkes®l converges to the ex-
tended Airy kernel. The Airy kernel appears also in the edgdirsg of Dyson’s Brownian
motion for GUE random matrices. The process for the PNG i#idh point process (at
fixed position) and the x 2 matrix kernel converges to the one of GOE random matrices.
In the thesis we also discuss the connection with some otbdels: the longest increas-
ing subsequence problem, directed polymers, last passagelation, totally asymmetric
exclusion process, random tiling, 3D-Young diagrams, addectly, Gaussian ensembles
of random matrices.
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Versione abbreviata

Premessa: la versione italiana dell’abstract é rivoltatibfe “comune” e non propria-
mente ai fisici e/o matematici. A quest’ultimi si consiglidebgere la versione inglese e
l'introduzione, dove il lavoro e presentato in modo piu dgliato.

In questo lavoro di dottorato studiamo due problemi di memzastatistica, il pri-
mo riguarda un modello di crescita (fuori equilibrio) e iceado descrive un sistema in
equilibrio (termodinamico).

Innanzitutto abbiamo considerato un modello che descaiedscita di una “superfi-
cie” su di un substrato unidimensionale, dunque la superéiaina linea. Si pensi ad un
materiale poroso fine, ad esempio un foglio di carta, cheevieesso a contatto con un
liquido. Con il passar del tempo il bordo tra la parte bageataella asciutta cresce global-
mente in modo regolare, pur presentando alcune irregaldnitaltre parole, se prendiamo
due campioni diversi per fare lo stesso esperimento e dasgra linea che delimita la
parte bagnata dopo un lasso di tempo uguale, vedremo piddtdeenze, fluttuazioni.
Nel nostro modello, chiamatmodello di crescita polinuclef@bbiamo posto I'attenzione
sulle proprieta statistiche della superficie in crescitane le fluttuazione sopraccitate.

Il secondo € un modello semplificato di un angolo di un cristalhiamato3D-Ising
corner. L'angolo consiste in tre facce lisce e una parta arrotandhe le interpola, vedi
Figura 1.1 a pagina 2 dell’'introduzione. Abbiamo posto |atrepattenzione sulla linea
che separa la regione arrotondata da una delle facce lis¢gu&rdata da lontano” questa
linea ha una forma ben definita, ma facendo un ingrandimest@ccorge che il dettaglio
dipende dal campione preso in considerazione. Infatti mostelle fluttuazioni, le quali,
assieme ad altre proprieta statistiche, sono state studiguesto lavoro.

Apparentemente i due modelli non hanno un granché in combmeffetti dal pun-
to di vista fisico i sistemi presi in considerazione sono maliversi. L'unica analogia
immediata € che studiamo in entrambi i casi interfacce ‘iaméhsionali”, cioe delle [i-
nee. Ciononostante una connessione esiste ed é dovutaesatiazibne matematica dei
due sistemi. Infatti, entrambi possono essere descrittirdensieme di linee che non si
intersecano. A loro volta queste linee sono reinterpretamee traiettorie di particelle su
una linea retta, le quali non vengono mai in contatto tra th.ld_a conseguenza e che
caratteristiche simili possono essere riscontrate nenthdelli analizzati. Ad esempio, le
proprieta statistiche che abbiamo riscontrato nel “3Ddgstorner” sono le stesse prece-
dentemente trovate da Prahofer e Spohn nel modello di tagsaiinucleare nel caso in
cui l'interfaccia prende la forma di una goccia.
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Chapter 1

Introduction

The title of the thesis refers to two subjects. The fesbgpe fluctuations of crystal facets
belongs to equilibrium statistical mechanics. The studigstem is a crystal and we are
interested in the fluctuations of the flat pieces of the setfaalled facets. The second,
surface growth in one dimensipis part of non-equilibrium statistical mechanics. One
considers a surface which grows above a one-dimensionatrai# due to deposition of
atoms. The two physical systems described are very differsch at first sight there is no
reason why they should share common features. However, aglMdscover and explain

in great detail in our work, the two problems are linked toteather.

A crystal in equilibrium at very low temperature consistseggtially of facets (flat
pieces) which are connected forming sharp angles. Wherethpdrature is increased,
the facets become smaller and are interpolated by some eduswtfaces of the crystal,
and eventually all the facets have disappeared. On the btret, if the temperature is
above somd’, the crystal melts. The shape of the crystal is determinedéystirface
free energy, and the solid-liquid transition by the totakflenergy. We just introduced the
termfacetto designate an intuitive quantity, but due to thermal flattins it might not
be always a well defined object. For a surface with a fixed tateon, the free energy
per unit length of a step in the surface decreases as the tatupeis increased, and
vanishes above some temperatiige In the latter case, there is no longer any mechanism
preventing the formation of extra steps, and the surfacernes rough. 7% is called
roughening temperature and depends on the orientatioe glitiace. For high-symmetry
surfaces, e.g.100) or (11 1) for a cubic lattice, the roughening temperature is larganth
the melting temperaturé,, for most materials. The situation changes for the surfaces
whose orientations are close to a high-symmetry one, caib@ohl surfaces. For example,
consider the surfac@ 0 1) and their vicinal surfaced 1 n) for largen. They consist of a
succession of0 0 1) terraces separated by steps. Those steps that are not bdistprece
have to pay an energy for each atom of the step. Whenis small enough, a vicinal
surface can be rough already at fairly low temperature coetpaith7),, i.e.,Tr < T);.

To the reader interested in the physical background we stifgyefurther details the book
Physics of Crystal Growthy Pimpinelli and Villain [73].
We are interested in the statistics of the facets’ bordetisanemperature range where



2 Introduction

Figure 1.1: Crystal corner viewed from th@ 11) direction.

they live on a mesoscopic scale, large with respect to theiatecale, but small with
respect to the macroscopic one. Therefore we consider ramopes not too small but
also (considerably) less thal}, since abovel', the facets are no longer recognizable.
In this temperature range, the facets are macroscopicatharfid well localized, but on a
microscopic scale irregularities still occur due to therfhectuations. This happens also
close to the borders of the facets, which are then not unyqiefined. Nevertheless one
can define a coarse-grained border of the facets, becauseethdarities are relevant only
on the atomic scale. Depending on the material and on thé daientations, the facets
are smooth up to some hundreds of kelvins, thus also at rompetature. Figure 1.1 is a
computer-generated image of the model we actually study/cHlled the 3D-Ising corner.
The facets are perfectly flat and their borders are easiygmzable.

We consider large crystals at equilibrium with fixed numbleatomsN. This is the
fixed volume constraint, under which there is a Gibbs measthe possible crystal con-
figurations. The equilibrium crystal shape is the expectexps under the measure. It is
determined by minimizing the surface free energy under termme constraint. The for-
mation of facets with a specific orientation depends on tleeggnof interactions between
the atoms and the structure of the crystal. Since we aressttt in the statistical proper-
ties of the (coarse-grained) border of the facets inducetdd®ibbs measure, we consider
N sufficiently large so that the border fluctuations are in a@rmediate scale between the
atomic distance and the macroscopic one. Wiebecomes very large, the width of the
fluctuations is expected to become independent of the daiaihe microscopic model
and depend only on some qualitative properties, like whiekieeinteractions have short of
long range. This is universality hypothesis. The modelsWvishow the same fluctuations



are said to be in the same universality class. For exammantidel studied in this thesis
belongs to the class of models with short range interactions

Growth processes belong to non-equilibrium statisticatima@ics, whose aim is to ex-
plain the macroscopic and mesoscopic properties from (sjnmpicroscopic laws. There
are different types of growth to be distinguished. A solidh ¢mow in a solution (or in
a vapor) and the growth depends on the concentration (oreopdrtial pressure) of the
atoms of the growing solid. Another way of growth, put at attuse in laboratories, is
molecular beam epitaxy (MBE). It consists of ejecting sengtoms (or molecules) onto
the surface under ultra-high vacuum conditions. What happe the atoms when they
reach the surface? At very low temperature they essensttlii to the location where
they arrive. At higher temperatures the atoms diffuse fohdanon the surface until meet
a preexisting step and stay there, or they meet anothessthffjtatom and stick together
forming a dimer. The mobility of a dimer is much reduced anteotatoms attach to it
forming a growing island. If the temperature is high enowughall clusters are not stable
and break up time and again. Therefore the atoms diffusétheyf meet a preexisting
step. Another phenomenon which can occur when a crystabsigg by deposition are
instabilities. For example, a diffusing atom reaching tbarxary of an island has a ten-
dency to be reflected and thus remains on the island. In thes cglands grow only when
atoms moving on a lower level attach to it. This creates aaserivhich resembles to an
ensemble of steep mountains with deep valleys. Instasldan occur also in growth from
a liquid, mainly for two-dimensional systems, in which célse shape is not convex but
lots of spikes appear. Growth occurs also in the atmosphleezemvater molecules form
hailstones or snow flakes. Let us finally note that growth @sses can include also other
phenomena, like the spread of a liquid in a porous mediumreviine growing quantity is
the wetted region, or even the spread of a fire line in a forélse border of the surface
can be one or two dimensional, or even have (on a certain)stélactal dimension. To
the reader interested in the physical background we sugigestooksPhysics of Crystal
Growthby Pimpinelli and Villain [73],Fractal Concepts in Surface Growlly Barabasi
and Stanley [15], antslands, Mounds and Atoniy Michely and Krug [63].

In our work we consider a surface growth model on a one dinb@asisubstrate. We
are interested in statistical properties of the growindesagr for large growth times. They
are expected to be independent on the details of the modelepehd uniquely on quali-
tative properties like conservation laws and symmetriegiopmenon of universality). In
particular, one can try to find the scale invariant quargjtikat is, those showing the same
guantitative law under the appropriate rescaling of spacktiane. A growth is said to
be local if the new material added to the surface dependsanlgcal properties of the
surface. A smoothening mechanism prevents the surface proaucing, for example,
spikes. This is the case of local diffusion of atoms from tighHto the low parts of the
surface. When growth is local and has a smoothening mechathe growing cluster
has a well defined interface and on the macroscopic levetaisty is deterministic, thus
it has a macroscopic limit shape. The fluctuations with resfethe mean macroscopic
shape are relevant only on a mesoscopic level. This is theradisle we are mainly in-



4 Introduction

terested in. The most studied class of local growth modefidPig universality class. In
one dimension, it is characterized by the extra requirertieitthe speed of growth as a
function of the slope of the tangent surface has a non-zet@tue. The KPZ model was
introduced by Kardar, Parisi, and Zhang where they destribeandom surface growth
by a stochastic differential equation. It is the simplestaopn for the dynamics of an
interface which includes irreversibility, nonlinearitpndomness, and locality. It contains
a Laplacian term which smoothes the surface and contrastsahroise term, and a non-
linear term, the square of the surface gradient, which edpame hills laterally. In our
thesis we study a model in the KPZ universality class in oneedgision.

Now that the class of models are explained we can come badletquestion of the
similarities between growth in one dimension and bordeetmof equilibrium crystals.
On a macroscopic level, that is for large growth titha one dimensional growing surface
having a limit shape can be parameterized by a single-vahegght function. This is
also the case of the border of a facet at equilibrium. In thergde of Figure 1.1 we
fix the coordinate axis so that the facets are in the surfads(®01), (010), (100)
directions meeting at the origin. Then the boundary of(theé1) facet is a curve in the
xy-plane described as a height function. The distance to tiggnoscales ad. if the
missing volume of the corner scaleslas On a microscopic scale we still can describe the
growing surface and the border of the facet by a height fonéfiwe do a coarse graining.
Therefore both models can be described in a similar way. @fs& this does not yet mean
that the models have any relevant statistical property mmon. For KPZ growth in one
dimension, the height fluctuation above a fixed positionesca'/? and the height at two
different points are correlated on a distance of ordér. This is exactly what happens
for the case of the 3D-Ising corner too, where the roléisftaken over byl.. Moreover,
in the growth model we consider, when initial conditionsateea growing droplet, the
height profile is described by an Airy process. This procdss describes the border
of the facet in the 3D-Ising corner! The reason of these sintigs lies in the underlying
mathematical description of the two models. In fact both at®dan be mapped into some
non-intersecting line ensembles having the same matheahatructure.

Finally a note on the structure of the thesis. Instead ofistaimmediately from the
study of the above models, we first introduce directed potgiiEhe reason is that directed
polymers are directly connected to the models, they arartkdobtween them. We begin
by describing the problem of the longest length of directelymers in a Poisson point
process. This model is directly related to the longest mireg subsequence in a random
permutation. We also present a discrete analogue, thatésted polymers o#?. This is
made in the first part of Chapter 2. The second part is devotdeetsurface growth model
we study: the polynuclear growth (PNG) model. It it knowntttiee height of the surface
is the same as the longest length of directed polymers oséooints. The PNG droplet
is obtained when the surface grows above a single spreaslangdi An important result
of Préahofer and Spohn on the PNG droplet is that the fluctongid the surface height are
described by the Airy process. We also present a discresgoveof the PNG model and



shortly discuss the question of universality. In the thiedtf Chapter 2 we consider the
model of a crystal which we actually study: the 3D-Ising @rThe border of the facets
can be expressed via the lengths of some directed polymée#s.o@ur new result is that
the fluctuations of the facet boundary are described by tine gxocess. With this result
we then discuss the question of universality of the flucturetiof the facet borders.

Chapter 3 is devoted to the explanation of the point proseggech occur in our
analysis. First we review the concept of point processel patrticular focus on deter-
minantal and Pfaffian ones. Secondly we introduce the Gamgsisembles of random
matrices, whose eigenvalues are point processes. Ofylartioterest are point processes
of top eigenvalues when the size of the matrices goes to tyifimand the distribution of
the largest eigenvalue. These point processes are alsortii@d ones of our models.
Dyson’s Brownian motion describes an evolution of the eigéres of the Gaussian en-
sembles. Starting from it we then discuss the generalizatidhe point processes when
they are subject to an evolution. In the last part of the @drape go back to the PNG and
3D-Ising corner models. We explain how they are mapped teessehof non-intersecting
line ensembles. The position of the lines form an extendéd poocess. For the 3D-Ising
corner they are an extended determinantal point processisTalso the case for the PNG
droplet and is the reason why both models are described baitligorocess. Also the
evolution of the largest eigenvalue in Dyson’s Brownian imofor hermitian matrices is
described by the Airy process. If the constraint that théaser grows only above one
island is suppressed, then the surface is statisticalhskaion invariant. This is called
the flat PNG and only its one-point distribution is known. HEpace correlations are not
yet known, but the conjecture is that it is the same as theugwal of the largest eigen-
value for Dyson’s Brownian motion in the case of symmetrid¢nmas. For fixed position,
the line ensemble of the flat PNG is a point process. Our naveing is that this point
process, in the limit of large growth time, is the same as thetprocess for fixed time of
the eigenvalues of Dyson’s Brownian motion for symmetri¢dnmas, in the limit of large
matrix size. This is a step towards the just explained caonjec

Chapter 4 contains our new result on the flat PNG as well asgigsaus derivation.
Similarly, in Chapter 5 we present our new result on the 3Dglsorner model and analyze
it. In the Appendix we include various results completing thscussions of Chapters 2
and 3.






Chapter 2

From directed polymers to polynuclear
growth model and 3D-Ising corner

2.1 Directed polymers and longest increasing subse-
quence

To describe the problem considered in this section we firgeé ha introduce the Pois-
son process. Then we define the directed polymers on Poissots pgive some known
results and connections with other problems, in particwidly the longest increasing sub-
sequence.

2.1.1 The Poisson process

Consider a Borel seb of R? which can either be bounded or unbounded. The Poisson
process orD is a point proces&?, F, P) defined as follows. Leb be a countable config-
uration of points inD. For any compact subsét of D, denote the number of points of

in B by n(B)(w). Then

Q = {w|n(B)(w) < oo,V compactB C D} (2.1)

is the set of all locally finite configurations of pointsin Let F be thes-algebra of events
on<.

Definition 2.1. APoisson procesH intensityo > 0 in D is given by setting the probability
P such that, for all compacB C D,

B k
P({n(B) = k)) = AP c-aio 2.2)
and events on disjoints subsetgdére independent: forabn € N, k4, ..., k,, € N, and

Bi,...,B, CD,if BN B; =0 fori# j, then

P(N(n(B) = k) = [TP({n(B) = ki}). (2.3)
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More generally one can fix a locally integrable intensity D — R,. Then the
Poisson process with densityz) is defined as before up to the following modification of
(2.2). Let

oB) = BI"" [ dugfa), 2.4)
B
then (2.2) is replaced by

P({n(B) = k}) = e P a(B)* k. (2.5)

2.1.2 Directed polymers on Poisson points
Point-to-point problem

We introduce a partial ordering as follows. Forr,y € R? we say thatr < y if both
coordinates of: are strictly less than those gf Consider a Poisson process with intensity
oin R2.

Definition 2.2. A directed polymer on Poisson poirgtarting atS and ending atF is a
piecewise linear path connectingS < ¢; < ... < q) < E, ¢; € w Poisson points. The
lengthl(r) of the directed polymer is the number of Poisson points visitedty

We denote bylI(S, £')(w) the set of directed polymers fros to £. The maximal
length ofr € I1(S, E)(w) is

L(S,E)(w) = max [(m). (2.6)

well(S,E)(w)

A directed polymer of maximal length is also calledximizerand the set of maximizers
is denoted byll,,..x(S, F)(w). This is thepoint-to-pointsetting because both initial and
final points are fixed. Figure 2.1 is a realization of the Rmigsrocess with intensity in
the squaré0, 15]2. The highest and lowest maximizers are visualized.

Some questions one would like to answer are:

a) What it the distribution of the maximal length?
b) How does this distribution depend on the relative posgiof S and £?
c) Where are typically located the points of the maximizers?

The answer to question b) is simple. Take as starting ppiat (0,0) and the two
following end-points,F; = (t,t) andE, = (vt,v~'t) for somey > 1. Denote byR;,
resp. R, the rectangle with opposite corne¥sand £, resp.E,. Consider the bijective
mapping® : R? — R? defined by®(z,y) = (yz,v 'y). ® preserves the distribution on
points and®(R,) = R,. Moreover, a directed polymer iR; is mapped into a directed
polymer in R,. Consequently the distribution @f(.S, E') depends only on the area of the
rectangle with opposite cornefsand E. Therefore we consides = (0,0), £ = (t, 1),
and denote the maximal length Byt) = L(S, F).
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Figure 2.1: A realization of Poisson points with density= 1 in the square of edge-
length15. The highest and lowest directed polymers of maximal leagéhshown.
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Figure 2.2: Realization of Figure 2.1 transformed fywith v = 1.25.

Question a), in thé — oo limit, was settled by Baik, Deift, and Johansson in their
already famous paper [10]. Their result reads

lim P(% < s) = F5(s) (2.7)

wherekF, is the GUE Tracy-Widom distribution [100]. In other words farget
L(t) ~ 2t + tY3Cque (2.8)

with (cur a random variablé’,-distributed. Thdength fluctuation exponent/3 in (2.8)
is denoted by.

Question ¢) has an answer in terms of ttasversal fluctuation exponefitiefined as
follows. Denote byC.,(¢) the cylinder of widtht” around the segmef, 0) — (¢, 1),

Cy(t) = {(w,y) e R*0 < w+y <2, |y — 2| < V27}. (2.9)
Consider the set of configurationssuch that all the maximizers are contained’iy{¢),

A (t) = {w e Qr C C,(t) forall m € Ty (t)(w)} (2.10)
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wherell,.. (1) (w) = hax((0,0), (£,t))(w). Then¢ is defined by
¢ = inf{y > 0| li{ginf]P(Av(t)) =1}. (2.11)

Johansson proves [44] that for this modet 2/3. Sinceé > 1/2, the directed polymers
aresuperdiffusive
The previous results; = 1/3 and{ = 2/3, implies that the scaling identity

Y=2-1 (2.12)

holds for this model. (2.12) is expected to hold in any din@ms for a large class of re-
lated models, like growing surfaces, first and directedgassage percolation. We discuss
it further in section 2.1.5 for directed last passage patam onZ<. An heuristic argu-
ment leading to the scaling relation (2.12) is the followirithe length of a typical path
from (0,0) to (z,y) is ~ 2,/zy. Hence, a maximal path fror, 0) to (¢,¢) that passes
through(t(a — 0),t(a+9)),0 < a < 1, § small, is shorter by the amount

2t\/(a+5)(a—6)+2t\/(1—a_5)(1_a+5>_tha t62

P (2.13)

which should be of the same order of the fluctuations Therefores? ~ tx~!, and
5~ ts ~ txFD/2

Point-to-line problem

A modification of the problem consists in considering theodelirected polymers starting
from (0,0) and ending in the segment of lifg = {(z,y) € R% |z + y = 2¢}. This'is
called thepoint-to-lineproblem. The fluctuation exponent is sfill= 1/3, but the fluctua-
tion of the maximal lengthl,(t), is governed by the GOE Tracy-Widom distribution [101]
Fi(s),

Lo(t) — 2t

< 2_2/3s> — Fi(s), (2.14)

thatis,Ly(t) ~ 2t 4272/3t1/3( 4o for larget, with (gor a random variablé’ -distributed.
This result follows from related problems [13, 77]: the lesgincreasing subsequence, see
Section 2.1.3, and the polynuclear growth model which isulised in Section 2.2.

For the point-to-line problem, some other questions afibe. first we discuss is about
the (non-)uniqueness of the end-point of the maximizersnsi@er the set of directed
polymers of maximal length fromy = (0,0) to U, denoted by1,,..(O, U;). For any
7 € Ihax (O, Uy), denote byE (7) € U, the closest point ofY; to the last Poisson point of
7. The question is to know whether typically the directed podys of maximal length ends
in a unique point or not. Denote hieg(w) the number of such points. Some numerical
studies indicates thakg has a distribution which is not reduced to a point mass. Fgela
2

P(deg(w) = k) ~ (¢ = 1)¢*, k>1, (2.15)
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Figure 2.3: Probability distributiondeg for ¢ = 25, 50, 100 over10® runs for eacht, and
the fit obtained fog, = 0.574.

with ¢ = 0.57440.005, i.e.,[E(deg) ~ 2.35+0.03, see Figure 2.3. We run a simulation up
to ¢t = 1000 but only overl0? runs. The average value of end points was afob- 0.1.
We then made the simulation for= 25, 50, 100 for 10° runs, and the fit of these results is
g = 0.574 + 0.005, which means that the average numbex.# + 0.03.

SinceE () is typically not unique, we investigate a second randomade: the max-
imal distance between thE(r)’s. Let 7w, resp.m_, be inll,..(O,U;) such that the
distanced(t) = |E(n;) — E(7-)| is maximal. The simulations for = 25, 50, 100 over
10° runs show the following behaviors.

1) There is a frequency aof = 42.6% + 0.5% that the end point is unique, i.e., that 0.
Therefore the distribution af has the formud(z) + p,(z).

2) For small distances;; has a limit behavior without needing to be rescaled,isee
Figure 2.4, but whed is increaseg; shows the-dependence, see Figure A.6 in Appen-
dix A.8.

3) The density, extends over an intervaél(¢*/?) and then has (super-)exponential cutoff.
Define the rescaled density(&) = pi(z = £2/3)t2/3. If we plot ¢ — t1/3p,.(€) then we
have a good collapse of the functions for different valuels sée Figures 2.5 and A.7.

Now consider the distribution af, = d/t*. The above results imply that it has a
delta peak at the origin plus a density For larget, the contributions of small distance,
2), much smaller tha®(¢2/3), sum up with the frequency and create the delta peak at
zero,a,0(¢). For the density, defing(¢) = lim,_.. t'/°p,.(€). For larget, the probability
measure: of the rescaled distaneg is

(&) =~ a5(&) + 2 f(€). (2.16)

x +— f(&) is a continuous function which has a polynomial decay at #ggrining and is
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Figure 2.4: Probability density of the distribution of the distané¢éor t = 25, 50, 100
and smalld. The fit is best fot = 50, 100 and isp = 2.2d(1 + 164%)~ 1.
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Figure 2.5: Rescaled probability density of the distribution of thetaiged for ¢t =
25, 50, 100.

followed by a (super-)exponential decay which becomes napt close t&¢ = 1. Our
data do not permit to obtain the precise power-law decaythayt indicate that is should
be~ 71,

The normalization condition implieg ~ 1 — ¢~1/3 fm f(&€)d€. Thus the weight of
the distribution is concentrated in the central peak exfmpa fraction of ordet /3. A
measure of the form (2.16) for the rescaled distaficenplies that the moments of the
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distancel are given by
E(d*) = **PB(dy) = t#8 | f(e)ekdg (2.17)
R+

for £ > 1. The simulations fot = 25, 50, 100 leads to
E(d)/t"/* ~0.55, Var(d*)/t ~ 0.23. (2.18)

We also made simulations also for larger values, afp tot = 1000, but with only 1000
runs. The results agree with (2.17) and (2.18), see Table A.1

A second question concerns the position of the branchingrettd polymers. Con-
sider for all pointsZ € U, the set of directed polymers of maximal length frém= (0, 0)
to F, I1,.x(O, E). Take two end pointdy; and E, on U; such that|E, — Ey| ~ t¥,
0 < v < 1. We say that two directed polymers andr, intersect atr € R? if z is a
Poisson point visited by both, andw,. Then the problem of last branching of directed
polymers is the following. Define the set

I(El,Eg)(w) = {IL‘ € W|E|7T1 S HmaX(O,El),’ﬂ'Q € HmaX(O,Eg),fE e m N 7T2} (219)

and letJ(E,, E,) be the closest element éf £y, E») to U,. ThenJ(FE4, E») is called
the last branching poinof directed polymers with end-points ifi; and F,. We would
like to know something about the random varialdlg”;, F»). One would expect that the
branching is governed by the transverse expoghtlf » = 2/3, the last branching point
should have a distance of orddrom U, with some distribution, on that scale, not reduced
to a point mass. On the other hand/if> 2/3 the branching will be close to the root and
if v < 2/3 the branching will be close tb;. We give a partial answer to this problem
in [30], where we prove the following estimates for the piositof J(E;, Es).

Theorem 2.3.Let F; = (t,t) and By, = E; + yt¥(—1,1) withy € R fixed.
i) For v > 2/3, there exists &'(y) < oo such that for all > 5/3 — v,

lim P({d(0. J(Ey, ) < Cy)7}) = 1. (2.20)

i) For » <2/3 andforallu < 2v —1/3 one has

lim P({d(J(E), B),Uy) < t"}) = 0. (2.21)

In particular for v = 2/3, one can choose any < 1.

Figure 2.6 shows the set of maximizers fr¢gm0) to (a part of)U, for a realization
with ¢ = 2000.
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Figure 2.6: Set of all maximizers from the origin to the lirg;. The sample uses
~ 8- 10% Poisson points, which in our units correspond te 2000 andp = 2. Only
the sectior[0, 1] x [-1/6,1/6] is shown. The picture is rotated 45 degrees.

2.1.3 Directed polymers and longest increasing subsequessc

As we will explain, the directed polymers on Poisson poistdaosely related to the follow-
ing combinatorial problem. Lefy denote the permutation group of the §eét..., N}.
For each permutation € Sy the sequencéo(1),...,0(N)) has an increasing subse-
quence of lengtht, (n4,...,nx), If 1 < ny <ny < ... < n < N. Denote byLy(o)
the length of the longest increasing subsequence for thautations. The problem of
finding the asymptotic law fof. for uniform distribution onSy is also called Ulam’s
problem (1961). Ulam conjectured [106] on the basis of Mdb#&elo simulations that
asymptoticallyE(Ly) ~ ¢v/N, that is the limitc = limy_., N~'/?E(Ly) exists. Some
other numerical analysis by Baer and Brock [9] suggested 2. The proof of the ex-
istence ofc was obtained by Hammersley [39]. Then Logan and Sheep [@ljeprthat
¢ > 2, and Vershik and Kerov [108] showed that= 2, thus settling Ulam’s problem.
Other proofs are due to Aldous and Diaconis [5], Seppaldjéeh and Johansson [41].
The proofsin [61, 108] use Young tableaux representatembglow, where an asymptotic
analysis is carried out fdixedlarge N. Another approach is used by Hammersley in [39],
where he considers the length of the permutation to be Rodistributed with mean value
N. This point of view is equivalent to the directed polymersRwmisson points. The sub-
sequent works [5, 89, 41] are also in this framework. For nuatails, see the review by
Diaconis and Aldous [6].

The next step is to analyze the fluctuations. Some Monte Garlalation of Odlyzko
and Rains (1993), see also [68], indicated that asymptiytidar(Ly) ~ co N/ with
co =~ 0.819, and alsdE(Ly) ~ 2v/N + ¢, N/ with ¢, ~ —1.758. The final answer is
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given by Baik, Deift and Johansson [10]. They proved that

lim P(Ly < 2VN + sNY0) = Fy(s), seR (2.22)
where F; is the GUE Tracy-Widom distribution. From this result it leaks thatc, =
0.8132...and¢; = —1.7711.... To obtain (2.22) they use the Poissonized version of
the problem. Instead of fixing the length of the permutatimnd’, they consider the set
S = U,>0S, and assign the probability V%" /k! that a permutation is i5;. They
first prove that (2.22) holds for this problem, and secondifam the result via a de-
Poissonization method, consisting in bounding from abacelzelow the distribution of
Ly in terms of the Poissonized one.

The problem of the longest increasing subsequence of leNgthequivalent to the
problem of finding the longest directed polymer frgm0) to (¢,¢) when N points are
distributed uniformly in the squaré, t]?, and the directed polymers on Poisson points is
the Poissonized version. In statistical physics the prabhth fixed N corresponds to
the canonical ensemble, the one with Poisson distributegtheto the grand canonical
ensemble, and th& — oo limit is the thermodynamical limit.

2.1.4 Young tableaux and increasing subsequences

On a more combinatorial point of view, the longest incregsnbsequence can be seen
via the Young tableaux associated to a permutation. The ¢fdahleaux are defined
as follows. Take a partitiol\ = (A, A,..., \y) Of an integerN, i.e., satisfying
A > X > .. N\ > 1andY)f A = N. A Young tableau oshape) = (\j, A, ...) is

a diagram withk rows and); cells for rowi, i = 1,..., k, where the cells are occupied
by the numberd, 2, ..., N increasingly in each row and column (or, by symmetry, de-
creasingly). The Robinson-Schensted correspondendajsciionbetween permutations
o € Sy andpairs of Young tableauX? (o), Q(c)) with N cells and the same shape. The
algorithm leading tqP (o), Q(0)) is the following [88]:

P-tableau: fori = 1to N:

Placeo () in the top row of theP-tableau as follows: a) if (i) is higher than
all numbers in the first row of th®-tableau, then append to the right of them,
b) otherwise put it at the place of the smallest higher elg¢rakthe first row

of P.

If an element was replaced in ropy take it and apply the same procedure in
rowj -+ 1.

O-tableau: fori = 1to N;

Placei in the position where a number appeared the first time atistefphe
P-tableau.
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As an illustration we show the construction of the Young ¢abix for the permutation
o=(6,2,51,4,8,7,3), whose shape i = (3,3,1,1).

v |1 2 3 4 5 6 7 8

P62 625151414814 7137
6 2 2 5125 2 5812 4 8

6 6 6 6 )

6
Q112121212 |12¢6|12¢6|12°F6
3 2 3513 5 35 7|35 7

4 4 4 4 4

8

The shapes of the Young tableaXc) and Q(o) are the same by construction. In par-
ticular, the length of the longest increasing subsequeheesguals the length of the first
row [6]

Ly(o) = A\(0). (2.23)

Thus a way to determine the asymptotic behaviof gfis via the analysis of the length
of the first row on Young tableaux. The measure)oimduced by the uniform measure
on Sy is thePlancherelmeasure: let, denote the number of Young tableaux of shape
then

_ 4
ZMEYN dl%

with Y denoting the set of partitions ¢f., ..., N}.

Finally we discuss the interpretation of alfs. Consider a Poisson process|int|?
andw a configuration withV points. Let(z;,v;),7 = 1,..., N, be the points o, where
the index is defined by the rule < z;,,, and the permutation € Sy bY yoi) < Yo(it1)-
Clearly the length of the longest increasing subsequenee 6f; (o), equals the length
of the longest directed polymer frof0, 0) to (¢, ¢) for the configurationv, which is the
A1 of P(o). The interpretation of the othey;’s follows from a theorem of Greene. Let
o€ Syand\ = (\,...,\,) beathe shape (o). Let, fork < m, a;(c) be the length
of the longest subsequencemtonsisting ofk disjoint increasing subsequences. Greene
proves [36] that

Ply(\) = A€ Yy (2.24)

In terms of directed polymers (2.25) means thats the maximal sum of the lengths of
k non-intersecting directed polymers frofth 0) to (¢,¢), where non-intersecting means
without common Poisson points.
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2.1.5 Discrete analogous of directed polymers

We describe a discrete analogous&srof the directed polymers problem, because it leads
to a discrete analogous of the polynuclear growth modeldsed in Section 2.2. Itis also
linked with the totally asymmetric exclusion process, TASE

Letw(s, ), (¢,7) € Z2 be independent geometrically distributed random vargble

P(w(i,j) =k) = (1 —-q)¢", keZ, (2.26)

with ¢ € (0,1). The directed polymers frortd, 0) to (M, N) is the set of up/right paths
7 from (0,0) to (M, N), i.e., sequences of points, jx), k = 0,..., M + N, of sites
in Zﬁ_ with (io,jg) = (0,0), (Z.M—I—N;jM—i—N) = (M, N), and (ik-l—lajk:—l—l) — (Zk,]k) €
{(1,0),(0,1)}. We denote byl v the set of directed polymers fro0, 0) to (M, N).
The length of the directed polymer is defined by the sum ofuttej) visited by the
directed polymer, and we are interested in the length ofahgédst directed polymers in
I N given by

Ly = max Z w(i, 7). (2.27)

[T} denote the set of directed polymerslin, y of maximal length. This model was
considered by Johansson in [43], where he obtained theanfimiipresults. For the asymp-
totic expected value of the length of directed polymers lowga that, for each € (0, 1)
andy > 1,

(1+\/W)2_1

1
(L _
N ( ["/NLN> 1_q

m(7,q) = lim , (2.28)
-] denotes the integer part. The fluctuations around the mdaga ase described by the
GUE Tracy-Widom distributiorf; as follows. For each € (0,1) andy > 1, ands € R,
write

B q!/6,~1/6

then
lim P(Lpyn <m(y, 9N +0(y,9)N'?s) = F(s). (2.30)

A generalization of this model consists in taking, j), (i, j) € Z2 be independent
geometrically distributed random variables with

P(w(i,j) = k) = (1 — a;b;)(a:ib;)*, keN (2.31)

with thea;’s and theb,;’s in [0, 1). The 3D-Ising corner problem introduced in Section 2.3
will be closely related to this generalization.



18 From directed polymers to polynuclear growth model and By corner

Question of universality

Consider the more general case of directed polymers whereith. random variables
w(i, 7) are positiveand have a distributiod” (not reduced to a point mass) satisfying
E(w) < oo andVar(w) < co. The random variable

L% = Lyy — w(N, N) (2.32)

is superadditive, i.ely,,,, > Ly + Lj,. The subadditive ergodic theorem ensures the
existence of the limit

*

lim L = u(0) (2.33)

N—oo N
with probability one, from which follows thdtmy ... N~ Ly x = p(0) too. Similarly,
we can consider the end-poif«) = (N — [N tan(a)], N + [N tan(«)]), with « the
angle to the diagonal (the straight line passing®y) and(N, N)). Then for some:(«),
limy_.oo N"'Lp() = p(a) a.s. too. As for the directed polymers on Poisson points, we
define the length fluctuation exponent such that

. InVar(Lp)
Xo = lim ————=
N—o0 2In N
and the lateral fluctuation exponefptas follows. LetC, be the cylinder of widthV” with
axis passing by0, 0) and P(«). Then

€0 = inf{y > O[P(r € ITE N C,) = 1. (2.35)

There are quantities, like the functigri«), that depend on the distributiafi. But
other quantities like the exponergsand y are expected to be independent of the details
of F, i.e., to beuniversalwithin a class of models. It is known that the scaling relatio
Xa = 2, — 1 is not always satisfied ifi”(av) = 0. From scaling theory and the results
of some solvable models it is known that in dimension two thversal exponents are
¢ =2/3 andy = 1/3. Assume the condition that’ exists and

p'(a) # 0. (2.36)

Then the conjecture is that, if (2.36) is satisfied, then= 2¢, — 1 holds withy, =

x = 1/3 and¢, = ¢ = 2/3 independent ofv. In the above model, (2.36) does not hold
for « = +7/4, but this is a point where (2.36) does not apply siptedoes not exist.
Fora = +7/4, ¢ = 0 because the directed polymers can not fluctuate laterakiyi,at
andy = 1/2 since the length is a sum of i.i.d. random variables. It iscieér if the
condition of finite second moment is enough or if one needssnime the existence of
exponential moments. Even in the discrete model studiesleatitere is not a rigorous
proof of ¢ = 2/3. The strategy used to proge= 2/3 for the Poisson case [44] can be
easily adapted to the discrete case, but a large deviatitonags for one of the tails is
missing.

Several attempts of proving the scaling relation (2.22)- 1 = x, have been made
over the past years with some partial but rigorous resuilesptost relevant can be found
in [65, 60, 74]. In these papers some of the rigorous resultdve modified versions af
andy.

(2.34)
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Figure 2.7: Directed polymers and TASEP. The bold line passes by thdgofiBg, the
black dots aréDg, and the numbers are th€i, 7). The right shows how the jump of a
particle is reflected bys;.

Poisson points and TASEP limits

There are two limits which are of particular interest:

a) Theg — 0 limit leads to the Poisson points case as follows. Defihe= t./0/q
and take the limiy — 0 with ¢ fixed. Thenm(vy,q)N — /o7t, ando(v,q)N'/? —
(yvAot)'/3. In particular, foro = 1 andy = 1, m(v,¢q)N — 2t ando(y, q)N'/? — /3,
compare with equation (2.7). The picture of Poisson poirth mtensity o is directly
obtained in they — 0 limit if, for fixed ¢, the lattice spacing i§/q/o.

b) The second limitig — 1, which leads to the totally asymmetric exclusion process,
TASEP [43, 78]. Let us calL(7, j) the waiting time from(0, 0) to (¢, j), and define the
domain

Dy={(i+3,5+3) € (N+3)?L(i,5) <t} (2.37)

Now rotate the picture byt /4, denote byl the image of the lattic#? and byD, the
one of D;. Letk = i — j and B, the lowest set of points i which are aboveD,, see
figure 2.7. At each time, we associate a set of random variables(t), k € Z} to each
bond(B;(k), Bi(k+1)) by settingy,(t) = 1if By(k+1)—By(k) = (1,—1) andnx(t) =0
if Bi(k+ 1) — Bi(k) = (1,1). n(t) represents the state of the sktgeit is 1 if there is
a particle att at timet and zero if it is empty. Fot = —1, the initial configuration of
particles isy,(t) = 1 for k < 0 andn,(t) = 0for £ > 0. If at timet a particle occupies site
k and is followed by an empty space, at time 1 it will be at sitek + 1 with probability
1 — ¢. Moreover each particle jumps independently. This is tsergite time TASEP with
geometrical distributed waiting times. Now consider the» 1 limit. Let the unit time
interval bel —q. Then the waiting time (i, j) = (1—q)w(4, j) is in the limit exponentially
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Figure 2.8: Graphical construction generating the surface height ftben Poisson
points.

distributed. In fact,

P(r(i,j) < s) = > Pw(ig) =t
teINNI[0,s/(1—q)]
1

- > P(w(i,j)zt’/u—q))ﬁ/jetdt. (2.38)

t'e(1—¢)NN[O0,s]

2.2 Polynuclear growth model (PNG)

The first model we consider which is related with the diregtelymers on Poisson points
is the polynuclear growth model (PNG) in one spatial dimemnsi

2.2.1 Polynuclear growth model and Poisson points

The PNG model in +1 dimension is a growth model for a one dimensional surfacéhwh
at timet and positionz is described by a height functian— h(z,t) € Z. Itis a local
random growth model. Space and time are continuous and tghthe discrete (given
in “atomic units”). First we consider the case of flat init@ndition(z,0) = 0 for all

x € R, the case of non-flat initial condition is discussed latéx.&1" > 0, then for each
configuration of Poisson points € 2 we define the height functioh(z, t)(w), (z,t) €

R x [0,T7], by the following graphical construction. Because of flatiah conditions, we
seth(z,0)(w) = 0 and we callnucleation eventthe points ofv. Each nucleation event
generates two lines, with slopel and—1 along its forward light cone. A line ends upon
crossing another line. In Figure 2.8 the dots are the nuoleatvents and the lines follow
the forward light cones. The heightz, t)(w) is then the number of lines crossed along the
straight path fron{z, 0) to (z, ¢). Sincew is locally finite, it follows thatr — h(x,t)(w),

t € [0,77, is locally bounded and the number of discontinuities isllydinite.
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The interpretation of the graphical construction in terrhg& growing surface is the
following. The surface height at positiane R and timet > 0 is h(x,t) € Z. The initial
condition ish(z,0) = 0 for all z € R. For fixed timet, consider the height profile —
h(z,t). We say that there is an up-step (of height one) #ith(x, t) = lim, h(y,t) + 1
and a down-step (of height one)aif h(z,t) = lim,, h(y,t) + 1. A nucleation event
which occurs at positiom and timet is a creation of a pair of up- and down-stepredt
time t. The up-steps move to the left with unit speed and the doepss the right with
unit speed. When a pair of up- and down-step meet, they simphge. In Figure 2.8 the
dots are the nucleation events, the lines with slefigresp.+1) are the positions of the
up-steps (resp. down-steps). In the case that the initidsiprofile is not flat, the surface
height at some later timeis obtained similarly. The only difference is the followingo
the lines generated by the Poisson points we need to addawditines starting from the
t = 0 axis with slope-1, resp.+1, if initially at = there is an up-step, resp. a down-step.
Moreover, the number of lines crossed along the straigltt fpatn (z, 0) to (x,t) is the
height differencé:(x,t) — h(x,0). Varying the density on Poisson pointsn the space,
different geometries are obtained, see below.

2.2.2 Longest directed polymers and surface height

We explain the connection between the longest directedhpedy on Poisson points and
the surface height.

The PNG droplet

The PNG droplet is obtained when the density of Poisson pagmtonstant (here we
choosep = 2) in the forward light cone of the origin and zero outside,, ifer (z,t) €
R x Ry

2 if x| <t
o) _{ 0 if 2] > ¢, (2.:39)

and the initial height profile is flat,(z,0) = 0 for x € R. The height above the origin at
timet, h(0,t), equals the number of times that we enter in a light cone whefollows
any path from(0, 0) to (0, ¢) with “speed” between-1 and+1, i.e., with absolute slope
bigger than one in thér, t) graph. Notice thak (0, ¢) depends only on the Poisson points
in the diamond{(«/,t')| |[2'| < ¢, |2'| < t — t'}. In particular, consider the paths which
enter in the light cones only at the nucleation points antdbasists in straight segments
between these points. These path arepbmmt-to-pointdirected polymers of maximal
length rotated byr/4, see Figure 2.9. Therefor€0,t) equals the length of the longest
directed polymer fronf0, 0) to (¢/+/2,t/+/2) on Poisson points wititensity two which,
by rescaling, is equal to the lengtlit) of the longest directed polymer froffi, 0) to (¢, ¢)

on Poisson points witmtensity one Thus by (2.7) the asymptotic behaviorigl, t) is

lim P (h(0,t) < 2t +t'/35) = Fy(s), (2.40)

t—o0
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h(0,1)
(t/vV2,t/v?2)

(0,0)

Figure 2.9: Height and directed polymers for the droplet geometry

with F, the GUE Tracy-Widom distribution. By invariance of the dited polymers and
Poisson process under the mappingR? — R?,

-1 -1 -1 |
(z,t) = (Hl—t — g, )t — 1)z, (2.41)
it follows that, for fixedr € (—1,1),
lim P(h(rt,t) < 2tv/1 — 72 + t1/3(1 — 72)1/55) = Fy(s). (2.42)

t—o00

For this model also the spatial correlations are known. @enghe height func-
tion at timeT, x — h(z,T). For largeT the fluctuations scales &'/ and it turns
out that the spatial correlations scales7&é®. The limit shape of the PNG droplet,
limy_o T (7T, T), is2v/1 — 72. Then the rescaled surface height is given by

€ R (&) = T3 (R(ET??) — (2T — €2T/%)). (2.43)
In [81] it is proven that, in the sense of finite dimensionakdbution,
Jim h5(€) = A(¢) (2.44)

where A is the Airy process whose precise definition and properties are given in Sec-
tion 3.3.3.

Recently Borodin and Olshanski showed [19] that the Airycess describes the space-
time correlations along argpace-likgandlight-like) path in the droplet geometry. They
work with Young diagrams. To each poifit, v) € R2, they consider the random Young
diagram (the shape of Young tableauxju, v) obtained by RSK correspondence. Then
for each space-like path iR% they construct a Markov chain which describes the evo-
lution of the Young diagranY. The case: + v = T is the one analyzed by Prahofer
and Spohn [81]. The casey = const correspond to the terrace-ledge-kink (TLK) model
which was used, together with the 3D-Ising model, to deteeminiversality for the fluc-
tuations of a crystal around the equilibrium shape, sea@e2t3.4 and [29]. Fotime-like
paths no result is known. The major difficulty lies on the latkhe Markov property.
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(t/vV2,t/V2)
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Figure 2.10: Height and directed polymers for the flat geometry

The flat PNG

With flat PNG we mean the surface obtained when the densitgiséBn points is constant
in R x R, (as before we choose= 2). In this case, since no other constraint is fixed,
the surface height(x, t) is statistically translation-invariant, thus we consider 0. The
heighth(0, t) depends only on the Poisson points in the intersection didlckwards light
cone of(0,¢) andR x R, namely in the triangld (2, )|t > 0,|2'| <t —t'}. h(0,t)
is the number of times that any path frdfh ¢) to thet = 0 axis “speed” betweenr 1 and
+1 exits a light cone. In particular, consider the paths th#ttae light cones only at the
nucleation points and that consist in straight segmentsdeet these points. Let us apply
a rotation ofr /4, see Figure 2.10. Then the rotated paths argtiet-to-line(or better
line-to-point) directed polymers of maximal length on Rois points with intensity two.
Rescaling to intensity one, we obtal0,¢) = L,(t) where L,(t) is the one of (2.14).
Thus for large,

lim P(h(0,t) < 2t + t/327%35) = [ (s), (2.45)

T—o00

with F; the GOE Tracy-Widom distribution.
For this model the spatial correlations are still unknown[28] we do a first step in
the understanding of it. We will explain it extensively incBen 3.4 and Chapter 4.

2.2.3 Discrete time version of the polynuclear growth model

We now consider a discrete time version of the polynucleawtr model. It is closely
related to the discrete version of the directed polymersdhiced in Section 2.1.5. Here
the space i& and the time iSN. We consider only flat initial conditions, i.é.(x, —1) = 0
for all x € Z. The discrete PNG model is defined by

h(z,t) = max{h(z — 1,t — 1), h(z,t — 1), h(x + 1,t — 1)} + &(x, 1), (2.46)

fort > 0, wherew(z,t) € Z, (z,t) € Z x N, are independent random variables.
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Figure 2.11: Z? and the latticeC (bold lines).z = i — j andt = i + ;.

Remark: One could also considefz,0) = 0 for all z € Z and start nucleations at
time¢ = 1, or nucleate only at semi-integer timis+ 3.

The discrete PNG can be seen directly in the framework of dmimuous PNG as
follows. Consider continuous space-time with nucleatioosurring independently only
in (z,t) € Z x N. The important difference is that the nucleations genestaigs of height
w(z,t) and not only of unit height. Therefore the picture of Figur8 Ras to be also
slightly modified. Each nucleation generaiér, ¢) lines which follow the forward light
cone. Moreover, the lines merge as follows. Let us considet n: if at some point in
space-timen lines with slope+1 meetn lines of slope—1, them first lines merge and
the remaining: — m lines with slope—1 continue.

Of particular interest is the case wherer, t) = 0 if = — ¢ is odd, in which case there
is a direct correspondence to the directed polymexs:, ) is therefore non zero in the
lattice £ (rotated byr/4), see Figure 2.11. We denote its verticesiby (x + ¢)/2 and
j = (t —x)/2. Denote alsav(i,j) = @w(i — j,i + j). We discuss the two geometries
already considered in the continuum.

The discrete PNG droplet

For the droplet geometry, the extra condition to be imposed(i,t) = 0 if |z| > ¢,
meaning thatv(z, j) = 0 fori < 0 orj < 0. The heighti(z,t), for z — ¢ even, is equal
to the length of the longest directed polymer fréio0) to ((x + ¢)/2, (t — x)/2) on the
lattice £. Some results are known in the case thét j) is a geometric random variable
with parameter;b;, i.e., P(w(i, j) = k) = (1 — a;b;)(a;:b;)*, k € Z.. In particular for
a;=b;=,/q,0<q<1,i>0,

h(z,t) = Lgye)2,(t—2)/2 (2.47)

with L the one defined in (2.27). A poifffyN],N), v > 1, N € N, in the lat-
tice £, corresponds tdz,t) = ([(y — 1)N],[(y + 1)N]). We want to knowh (77, T)
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with 7 € (—1,1). By symmetry consider € [0,1), takey = (1 — 7)/(1 + 7) and
N=T(1-7)/2=T/(1++). Then

_m(yg) 1 L+ 79)?
”(T’Q)_(Hv)_uy( . —1) (2.48)
with m(~, q) given in (2.28). Define also
A _alvg) gy ) 2
) = s T Ao gu s YT VT 2.49)

with o(v, ¢) given in (2.29). Then the asymptotics bfz,t) follows from (2.30) and
writes
lim P(h([7T),T) < u(t,q)T + &(1,q)T?s) = Fy(s). (2.50)

T—o00

Moreover, for largel’, the height is described by the Airy procedss proven by Johans-
son in [46]. He shows that, far = 0, the proces$§ given by

& kT3 (W(ERT?P,T) — pu(1,q)T) (2.51)

converges tod(¢) — €2 asT — oo, Wherer; = 2130 (1, ¢) "' andky = 230 (1, q) "1 (1 +
V2 (1 — /q)~'. The convergence is in the weak*-topology of probabilityaseres on
C([—M, M)) for an arbitrarily fixedd/ > 0, that is, for anyf € C([—M, M]), one has
limg o [}, dabe(2) f(z) = [1), de(A(E) — €)f ().

In the limit ¢ — 0 and with lattice spacing/q/ o, the continuum version of the PNG
droplet is recoveredo(the Poisson points intensity), and in the limit> 1 with unit time
equall — ¢, the TASEP is obtained, see Section 2.1.5.

Discrete flat PNG

The connection with discrete directed polymers Bhimplies that heighti(x,t), for
r — t even, is equal to the length of the longest directed polymamnfthe set (line)
{(i,75) € Lli+j=0}to((x+1t)/2,(t —x)/2) on the latticeL.

2.2.4 Recent developments on 1D polynuclear growth model

It is in [77] that Prahofer and Spohn obtained the one-pastridution function for the
surface height in both the PNG droplet and the flat PNG geadesetTheir results are
achieved by identifying the surface height with the longbstcted polymers, for which
Baik and Rains already analyzed the asymptotics [13, 12 jémt-distribution of the
height profile is obtained in [81] using a multilayer generation of the PNG, see Sec-
tion 3.4, which is also used in our analysis. The idea of thétilayer comes from the
work of Johansson on the Aztec diamond [45], where a rhomnshaped (checkerboard)
table is tiled with dominos, see Figure 2.12. On the tiling can introduce a set of lines
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Figure 2.12: A dominos tiling for an Aztec diamond with0 dominos. The border line
between the regular and the North regular tiling is the acesitéhe top line.

with initial and final points in the lower half diamond as show the figure. The only rule
is the following. In vertical dominos the lines have slopé or —1 and in the horizontal
ones the lines can only be horizontal. The dominos are &ikegsnto four types, North,
South, East, and West, depending on how the lines fill thera.nBmes are so chosen be-
cause for large tables, close to the North, South, East, asl ¥drners there is a regular
tiling of the corresponding dominos. In the central regiba tiling is “disordered”. The
border line between the regular and the disordered regidessribed by the Airy process
as proven in [47].

More recently Sasamoto and Imamura study the (discreteilhgplet PNG geometry,
which consists in allowing nucleations only in positivandxz < ¢ [40]. They prove that
the rescaled height is GUE distributed away from:the 0 axis and there is a transition
to GSE atr = 0. If extra nucleations are added at the origin with intensit 0, the
distribution above: = 0 has a transition foy = 1. Fory < 1 itis still GSE, fory = 1itis
GOE distributed, and foy > 1 the fluctuations become Gaussian because the contribution
of the nucleation at the origin dominates. The one-poirtrihistion asymptotics follows
from [13, 12] too.

A modification of the PNG droplet consists in adding sourcése@boundaries, which
means that extra nucleations with fixed (linear) densityanda_ are independently added
in the forward light cone of the origin, i.e., ifx,t) such thatxz| = ¢. This model was
introduced by Prahofer and Spohn [77, 78]. Then Baik and$amalyzed it in details [11]
with the following results. Foe,. small, the effects coming from the edges are small and
the fluctuations are still GUE distributed. On the other hahd, > 1 ora_ > 1, then
the boundary effects are dominant the fluctuations becomesstn. The cases where
a, = 1 and/ora_ = 1 are also studied and other statistics arise. Of particotarest is
whena a_ = 1for1 —a. = O(T~/?), in which case the PNG growth is stationary and
has a flat limit shape.
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2.2.5 Universality

The PNG model explained above is in thie+ 1)-dimensional KPZ universality class.
We do not enter into details, which can be found, togethen sgime discussion of higher
dimensional cases, in the thesis of Michael Prahofer [7Bafers 2 and 3, see also [79].

KPZ equation

The(d+1)-dimensional KPZ equation was introduced by Kardar, Paaigi Zhang in [48]

as a continuum description of@dimensional stochastic surface growth, which is para-
meterized by a height functidinz, ), x € RY, relative to a substrate. The KPZ equation
writes

Oh(x,t) = vy + vAR(z,t) + SA(Vh(z,t))* + n(z,t). (2.52)

v IS a deterministic growth which can be eliminated by chagdge frame of the observer.
The Laplace termvAh(z,t), v # 0, represents the surface tension, smooths the surface
and contrasts the noise terfi, ) which is assumed to be local. The surface hills expand
laterally if the non-linear term # 0.

KPZ universality class

Now let us restrict tod = 1. The conditions for a surface growth model on a one-
dimensional substrate to be in the KPZ universality clasdta following:

1) the evolution is local, i.e.h(x,t + dt) depends on the values éfy,t) only for

ly — 2| < O(a),

2) the randomness is local, i.e(x, t) andn(y, t) are not correlated in time and for same
time they are correlated onlyfiff — z| < C for someC > 0 fixed,

3) let v(u) be the growth velocity of the stationary surfakg(x,t) with fixed slope

u = 0,h, then the KPZ condition is”(u) # 0.

Some explanation on 3) are needed. Assume that a growth msoh& given, like
the PNG rules. For a finite system of sizgimpose chiral boundary conditions (periodic
up to a vertical shift) such that the surface grows with fixeeamslopeu. The height
process is also required to be ergodic, i.e., the mean ofedises ofh(x, t) on the state
space for a fixed timeand the mean over the evolution for fixecgree in the large time
limit. In the thermodynamic limit, — oo, one expects to have a unique limiting process,
h.(x,t), whose gradient is stationary in space and time. If thisesctise, them = v(u)
denotes the growth velocity @f,(x, t).

Condition 3) is the same as the condition on the curvatu@6§dn the last passage
percolation, where one can define a growing randonBset = {z € Z¢|L, < t}. Then
the mean speed of growth &f(¢) in the directiona is v(«) = 1/u(«), from which the
equivalence of the two conditions.
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The PNG model is in the KPZ universality class

The first two conditions are satisfied, because, t + dt) depends only ork(y, ) with
ly — x| < dt, and the noise is a Poisson process in space-time, thus etatyplincorre-
lated. Thus one need to verify condition 3).

Let x — h,(x,0) be a two-sided random walk of mean slopei.e., the up-steps
and down-steps, are two independent Poisson processBsvath densitiesp, andp_
satisfying the conditiop, — p_ = u. Moreover, the nucleations have to be counterbal-
anced by the annihilation, so in a time interda) oLdt = 2p,p_Ldt, i.e.,psp- = 30,
with o = 2 is the space-time density of nucleations. Next one verift the PNG evo-
lution does not modify the up- and down-steps processes.|agtestep is to determine
v(u) = O E(hy(x,t)). In an intervald¢, each up- and down-step movesdsf thus the
area undeh,,(z, t) is typically increased byp, + p_)Ldt. The annihilation and the nu-
cleation contributions compensate in average. Tthasp, + p_, and, using the previous
relations withu and, the velocity is given by

v(u) = V4 + u?. (2.53)

Thus condition 3) is satisfied which indicates that the PN@ehcs in the KPZ universal-
ity class.

2.3 3D-Ising model at zero temperature

The second model we consider that belongs to the same fratkentbe 3D-Ising corner
at zero temperature. First we explain the model, secondighee the correspondence of
the Ising corner with a particular case of the (discretegated polymers, and finally we
explain our results. The detailed analysis is then carrigdroChapter 5.

2.3.1 The model

As a very common phenomenon, crystals are faceted at safficlew temperatures with
facets joined through rounded pieces. Of course, on theiaterale the crystal surface
must be stepped. These steps meander through thermal fiangia0n a facet the steps
are regularly arranged except for small errors, whereasronraded piece the steps have
more freedom to fluctuate. Our aim is to understand the prestep statistics, where the
step bordering the crystal facet is of particular inter&stgain some insight we will study
a simplified statistical mechanics model of a cubic crydtalequilibrium shape has three
facets, each consisting of a part of one of the coordinategslaThe facets do not touch
each other and there is an interpolating rounded piece,igaesFL.1 in the Introduction.
For this model the step statistics will be analyzed in grestil In section 2.3.4 we
explain how our results relate to the predictions of uniaepsoperties of crystals with
short range step-step interactions.
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Let us first explain our model for the corner of a crystal. Thestal is assumed to
be simple cubic with lattic&?. We use lattice gas language and associate to each site
x € 73, the occupation variable, = 0, 1 with 1 standing for siter occupied by an atom
ando for sitex empty. Up to a chemical potential the binding energy of thafigoiration
nis

H(n)=J > (n,—n,)> J>0. (2.54)
|z—y|=1

We consider very low temperatures, meaning that all alloeeedigurations have the same

energy, i.e., the same number of broken bonds. To define pypmee introduce the
reference configuration™ in which only the octan¥? is occupied,

wf 1 forzeZ?,
e = { 0 forzeZ?®\Z5. (2.59)
n is an allowed configuration if for a sufficiently large baxone has
n, =n forallz € 73 \ AandH (n) — H(n™") = 0. (2.56)

The set of allowed configurations is denotedby By constructionf? is countable. To
favor a crystal corner, we introduce the fugacjty) < ¢ < 1, and assign to each € 2
the weight

q" ™, (2.57)
whereV (n) is the number of atoms removed frorif!, i.e.
Vin)= > (1-n,). (2.58)
xEZi

A configurationn € Q2 can uniquely be represented by a height funclioover Z2 .
For the column ati, j) € Z2, all sites belowh(, j), excludingh(i, j), are empty and all
sites abové(i, j) are filled.n € Q if and only if

h(i+1,5) <h(i,j), h(i,j+1) <h(i,j), h(i,j)— 0for(i,j) — co. (2.59)

By abuse of notation, the set of height functions satisff{ia$9) is also denoted k.
Forh € QletV(h) = Z(m)e%i h(i, j) be the volume irZ? belowh. Then the weight

for the heighth is ¢ ™,

There is an alternative way to describe configurations €2, which we just mention
for completeness, but will not use later on. One builds tlystef out of unit cubes and
projects its surface along tti&11)-direction, which results in a tiling of the plafi’ with
lozenges (rhombi) oriented alofig2= /3, and4x /3. With the orientation of Figure 2.13
there are three sectors of the plane corresponding to tlae aogled with —7/6 < 6 <
/2, /2 <0 < Tr/6,7r/6 < 0 < 117 /6. n € Q if and only if the tiling in each sector
becomes regular sufficiently far away from the origin.
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Figure 2.13: (a) The(111)-projection of a configuration € Q. In each of the three sec-
tors the tiling becomes regular far away from the origin. Th corresponding perfect
matching on the honeycomb lattice.

Instead of tilings, if preferred, one can also think of cavgrthe dual honeycomb
lattice by dimers such that every site is covered. In commadience this is called perfect
matching. Equivalently, to have a more statistical meatgfiavor, one can consider the
fully frustrated antiferromagnetic Ising model on a triatay lattice, i.e., for an allowed
spin configuration every triangle must have exactly two spirthe same sign. Erasing all
bonds connecting equal sign spins yields a lozenge tiling véce versa.

2.3.2 3D-Ising corner and directed polymers

Our main goal is to describe the line bordering the facet haedaunded part of the crys-
tal corner. We are therefore interested in the line h(0,7), i € Z. We now give the
connection between the 3D-Ising corner and the generializé2.31) of the directed poly-
mers onZ2 introduced in Section 2.1.5. Consider independent randamales. (7, ;),
(¢,7) € 72, geometrically distributed with mean valge?*!, ¢ € (0,1) as above:

P(w(i,j) = k) = (1= ¢ ke, (2.60)

Denote byL(i, j) the length of the longest directed polymer fr@myj) to (co, co). This
quantity is well defined becauge< 1. In fact, consider the random variablém) =

>irj>mw (i, 7). Then

— 0, m — oo. (2.61)
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Therefore when a directed polymer goes to infinity, with @bty one it only passes
a finite number of sitesi, j) with w(i,j7) > 0. By symmetryL(i,j) is also the maxi-
mal length of directed polymers from infinity t@, j), i.e., with down-left steps. From
Section 2.2.3 we know the relation between directed polgnaeid PNG growth. The
connection between directed polymers and 3D-Ising comer i

h(i,0) = L(3,0), h(0,i) = L(0,4), (2.62)

for i € Z, in law. On the other hand, there is not a simple connectiowdt L(i, ),

i,7 > 0, and the height&(i, j). The best way to explain this correspondence is via
a multilayer extension of the PNG. It is introduced in Sett®4 and in Section 3.4.2
we will derive the correspondence of the whole 3D-Young diatgs with the directed
polymers (via PNG growth) described above.

2.3.3 Bulk and edge scaling

The step statistics is studied in the limgit— 1, which means that the typical missing
volume from the corner is large, sin8& V' (h)) ~ 2¢(3)(1 — ¢) 3, ¢ the Riemann’s zeta
function. Thus it is convenient to set

1
qu_T’ T — . (2.63)

Let h denote the random height function distributed according to

1
— exp[In(1 — £)V(hy)] (2.64)
Zr
relative to the counting measure Qn 7, the normalizing partition function. For large
the heights ar€@(7T"). Thus one expects a limit shape on the sdaldn fact, as proved
in [20, 69], .
lim th([uT], [vT]) = hypa(u,v) (2.65)

T—o00

in probability. Here(u,v) € RZ and|[-] denotes the integer part. L& = {(u,v) €
R2, e "/2+e7/2 > 1}. OnD, h,, is strictly decreasing in both coordinates ang, > 0,
wheread,,, = 0 on Ri\D. The analytic form oh,,,, is given in Section 5.3. If denotes
the distance t&D = {(u,v) € R%, e %2 + ¢~/? = 1}, it follows thath,,, vanishes as
r3/2. This is the Pokrovsky-Talapov law [75].

Our interest here is to zoom to the atomic scale. There aralynwo interesting
limits. The first is the to focus in the bulk of the 3D-Ising ner, i.e., in the rounded
part. Consider a macroscopic pojmat v) € D and the local height statisti§h ([uT] +
i, vT] + 7), (i,5) € Z?}. Inthe limit T — oo, locally the height profile is planar and
one expects that the height statistics corresponds to amatiting of the plane with the
three types of lozenges from Figure 2.13, such that theivelaiction of lozenges yields
the average slop®h,,,(u,v). This property will be proven in Section 5.3 and we refer
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Figure 2.14: Zoom to the facet edge in Figure 1.1.

to it aslocal equilibrium asT — oo, locally one has a translation invariant, spatially
ergodic Gibbs measure for the lozenges with their chemmigrgials determined through
Vhya(u,v).

An even more intriguing limit is to zoom to the facet edge, efhmeans to take
(u,v) € 0D, see Figure 2.14. Since the step density vanisheéDattypically there
will be only a few steps in focus. Thus it is more natural tosider directly the crystal
step bordering the facet. By symmetry we can choose the bstep lying in the2 — 3
plane. Then the border step is given as the graph of the famcti

t— bT(t) = hT(O, t), t € N. (266)

From (2.59) we havér(t + 1) < br(t) andlim,;_., br(t) = 0. For largeT’, by is O(T),
and there is a limiting shape according to

Jim T or([rT)) = boo(7), (2.67)
where
boo(T) = —2In(1 — e /2), 7 >0. (2.68)

(2.68) tells us only the rough location of the step. For thep statistics the relevant
quantity is the size of the fluctuations &f([777]) — Tb (7). As will be shown they are

of order7T"'/3 which is very different from steps inside the rounded pietéhe crystal
which are allowed to fluctuate only &s7' [93]. On a more refined level one would like
to understand correlations, e.g., the joint height stesistt two pointg and¢’. They have

a systematic part correspondingfé..(7). Relative to it the correlation length along the
border step scales 4%8/3, which reflects that on short distances the border step likiks

a Brownian motion. Thusé,, has to be expanded including the curvature term and the
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correct scaling for the border step is
Ap(s) = T‘1/3{bT([TT+sT2/3])— (boo (7)T + b (7)sT?3 + 1017 (7)s2T5) } (2.69)

Herer > 0 is a fixed macroscopic reference point and R with s7%/3 the longitudinal
distance.s — Ar(s) is regarded as a stochastic process.itn Chapter 5 we prove the
convergence

lim Ar(s) =k A(sk/2) (2.70)

T—o00

in the sense of convergence of finite dimensional distrimsti The limit processA(s)
is the stationary Airy process. Its scale is determined leyltital curvature vias =

2.3.4 Universality of shape fluctuations of crystal shapes

Equilibrium crystal shapes typically consist of varioud ficets connected by rounded
surfaces. For a microscopically flat facet there must be amiatledge bordering the
facet. This border step could be blurred because of therra@iagions, but is clearly
visible at sufficiently low temperatures [97, 67, 66]. Whibethe interior of the rounded
piece of the crystal the step line density is of order one erstfale of the lattice constant, it
decays to zero as the edge of a high symmetry facet is apmgdalfir denotes the distance
from the facet edge, according to Pokrovsky-Talapov [78]dtep line density vanishes
as./r. Thus there is a lot of space for the border ledge to meandsharp contrast to
steps in the rounded part which are so confined by their neigtthat they fluctuate only
logarithmically [93]. Now we discuss the statistics of bardedge fluctuations. In the
3D-Ising corner model, the border ledgéis

In this section we follow the outline of our paper [29]. Fivg¢ present the terrace-
ledge-kink (TLK) model and obtain a form for the universabf the border ledge fluctua-
tions. In the TLK model spatial translation invariance ipsed, therefore it might seem
somewhat artificial, we therefore compare the result wigdD-1sing corner analyzing the
consequences of (2.70). By universality we expect our tésle valid for short-range
step-step crystal interactions. To obtain the form whiabperly distinguishes between
model-dependent and universal properties we have to redyfew notions from the ther-
modynamics of equilibrium crystal shapes [3].

TLK model

We first consider the terrace-ledge-kink (TLK) model, whedrves as a description of
a vicinal surface, i.e., a crystal cut at a small angle n&tato a high symmetry crystal
plane. The surface is made up of an array of ledges which oavti&ge run in parallel
and are separated by terraces. The ledges are not perfeatyhs and meander through
kink excitations, only constrained not to touch a neighfiptedge. One can think of these
ledges also as discrete random walks constrained not te,dres with a purely entropic
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Figure 2.15: Top lines for a TLK model with volume constraint.

repulsion. Such a line ensemble is very closely related teois Brownian motion, in
which the random walks are replaced by continuum Browniations. As discussed in
[49, 23], the location of the steps at fixed random walk tinave the same distribution
as the eigenvalues of a GUE = 2) random matrix. On this basis it is expected that
the ledge-ledge distance is governed by the GUE level sgd2B]. This prediction is
verified experimentally [26], however with deviations frgin= 2 which are attributed to
long range elastic forces mediated through the bulk of tigstat and not included in the
TLK model.

If in the TLK model one retains the lattice structure in thansverse direction and
makes the continuum approximation in the direction alomgédges, then the ledges can
be regarded as the world lines of free fermions in space-imeR [109]. The world
lines are piecewise constant and have jumps of only onedasfpacing. Consequently
the transfer matrix has a nearest neighbor hopping termrenBauli exclusion principle
guarantees entropic repulsion in the sense that ledgestaoesa.

The TLK model, in the version as just explained, has no fatilee crystalline surface
has a constant average slope. Slope variations can be edftnough avolume con-
straint For this purpose we introduce the “occupation” variablgs), |j| < N, |t| < T,
in the surface patch-N, —N +1, ..., N| x [T, T: n;(t) = 1 if there is some ledge pass-
ing through(j,¢), andn;(t) = 0 otherwise. In these variables, up to an overall constant,
the crystal volume is given by

T N
A= / ) dth_Njnj(t) (2.71)

and volume constraint means to have an ensemble of ledges WieeactionA, is kept
fixed.

Without volume constraint the transfer matrix is generdiga free fermion Hamil-
tonian with nearest neighbor hopping [109]. Imposing thé&uwee constraint grand-
canonically adds to the fermionic action the tekm' A, with a suitable Lagrange mul-
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tiplier A\=1. Thereby the nearest neighbor hopping Hamiltonian is mexdiifb

Hyp = Z ( — ajajp1 — a; a5 + 2a%a; + N aja ) (2.72)
jez.

aj, resp.a;, is the annihilation, resp. creation, operator at lattite s€ 7. They satisfy
the anticommutation relations;, a}} = d;;, {a;, a;} = 0 = {aj, a}}. In (2.72) we have
taken already the limitvV — oco. The transfer matrix ig~*#*, ¢t > 0, and in the limit
T — oo one has to compute the ground state expectationEf.orA macroscopic facet
emerges a8 — oo. In Figure 2.15 we display a typical ledge configuration foe TLK
model with volume constraint. There is no further ledge &bthe one shown and for
j — —oo ledges are perfectly flat and densely packed.

Since a ledge corresponds to a fermionic world line, the aperstep density
Ex(n;(t)) = pa(y) is independent ot and given byE,(7;(t)) = Ex(aja;) with Ey
on the right denoting the ground state expectatiorfgr By the linear potential in (2.72)
steps are suppressed for largeHence the average surface heigb(t) at(j,t), relative
to the high symmetry plane, equals

B () = = 3 Ea(n(®)). (2.73)

Ex(aja;) can be computed in terms of the Bessel functigfx) of integer orderj and its
derivativeL;(z) = d‘]] ® with the result [81]

pa(j) = Balaa;) = M Lj—14op3 (2A) Jj42ix (2X) — Lo (20) Jj—142i3(2X)) - (2.74)

where[-] denotes the integer part. For laryéhe heighth}(t) is of order\. Therefore we
rescale the lattice spacing byA. Then the macroscopic equilibrium crystal shape defined

by

heg(r,t) = Alim A hpay (ML) (2.75)
is given by
r forr < -2,
heq(r —2,t) = ¢ L(rarccos(r/2) — V4 —r?) for —2<r <2, (2.76)
O forr > 2.

Thus under volume constraint the TLK model has two facets,with slopel, the other
one with slopd), joined by a rounded piece. The upper facet edge is located-=al. It
has zero curvature. Expanding neat 0 results inheq(r, t) = —2Z(—r)*?2, consistent
with the Pokrovsky-Talapov law.

With the exact result (2.74) it becomes possible to refingegkelution. The appropri-
ate step size i3'/? lattice constants. For the step dengityj) = Ex(a}a;) close tor =0
one finds

lim A2 (A\32) = —2Ai(z)? + Al (2)?, (2.77)

A—00
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Ai the Airy function. (2.77) has the asymptotics

1
—/|z| for x — —oo, (2.78)
m

1 3/2
- exp(—4z//3) for x — oo.

Our real interest are the border ledge fluctuations. Claadyborder ledge is the top
fermionic world line which we denote by (). b,(t) takes integer values and is piecewise
constant with unit size kinks. Since, at fixedhe steps in the bulk have approximately the
same statistics as a GUE random matrix, one would expedttbatansverse fluctuations
of the border ledge equal those of the largest eigenvaludeelh, using the fermionic
transfer matrix combined with an asymptotic analysis [8if finds that

w = A7V3b (A2 3) (2.79)

converges to the Airy process in the— oo limit. Therefore the one-point distribution is
the GUE Tracy-Widom distributioss,

Jlim P(b,(0) < A\3s) = Fy(s), seR. (2.80)
In our context an experimentally more accessible quansitthe ledge wandering
E((bA(t) — bx(0))?). In the limit of large) it has been computed in [81] with the re-
sult

Var (by(t) — bx(0)) =~ A\3g(A~2/3%). (2.81)

Thus the transverse fluctuations are on the sk#fe In particular, for smalk the scaling
functiong(s) is linear ins, g(s) ~ 2|s|, indicating that for small, on the scalé’?, sepa-
rations the border ledge has random walk statistics. Onfttier diandy(s) saturates for
larges, g(s) ~ g(oo) — 2/s?, reflecting that the border ledge fluctuations are statipnar
(on the scale\?’?). For more details on the Airy process, see Section 3.3.3.

An alternative proof of the convergence of (2.79) to the Adrgcess follows from the
recent work [19]. Their proof involves Markov dynamics onuvig diagrams.

Thermodynamics

The border ledge of the TLK model and the 3D Ising corner hagesaame scaling be-
havior, which suggests the scaling to hold in greater gdiher&o obtain the form which
properly distinguishes between model-dependent and rsalvproperties we have to rely
on a few notions from the thermodynamics of equilibrium tayshapes [3]. Let us denote
by h(z, v) the height of a vicinal surface relative to the high symmegfgrence plane. We
find it convenient to measurein number of atomic layers, whereasy are measured in a
suitable macroscopic unit. Thitsis dimensionless and, y have the dimensiofiength).
Further letkgT f(u) be the surface free energy per unit projected area dependitizge
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Figure 2.16: The original coordinate axis is— y and the tangential one és — e5. The
crystal lies in the region with negative

local slopeu = V. Below the roughening transitiohhas a cone ai = 0 and for small
u behaves as

f(w) = y(0)[u] + B(O)[uf* (2.82)

with ¢ the polar angle ofx [37, 107]. Theline stiffnessy is defined throughy(0) =
v(6) ++”(0). As argued in [4], for short range surface models the Ganssiavature of
the equilibrium crystal shape has a universal jump acraestattet edge, which implies the
relation

Y(0)B(0) = /6. (2.83)

Let us denote by the Legendre transform of. If [ dzdy f(Vh(z,y)) is minimized
under the constraint of fixed volume, then the resulting légrium surface is given by
h(z,y) = ¢f(~ 1z, 0~ 'y), wherel is the Lagrange multiplier adjusted so to give the cor-
rect volume [8].h is convex downwards and has a convex facet lying inctyeplane. The
facet boundary is determined by#¢) alone. Close to the facet edges —2vprd*? with

d the normal distance to the facet edge, which definefPtieovsky-Talapov coefficient
~vpr. Under Legendre transformation the anglbecomes the angle between thaxis
and the outher normal to the facet and, correspondingly, the local curvature,, and
the distance: of a point on the edge to the origin are parametrized throbghangles.

The relationship betweepand B implies, see Appendix A.1,
ik = 2072772 (2.84)

We return to the border ledge fluctuations close to a giverealyg For this purpose it
is convenient to use a preferred axis coordinate sysieme,, see Figure 2.16, centered
at r(6p) with the e;-axis tangential and the,-axis along the inner normal to the facet.
In this frame, we denote by, = b(z;) the fluctuating border step, whete,, z,) are
the coordinate of the points in — e,. ThenE(b(x2)) = 3. (6y)«1, in approximation.
For sufficiently small|z,|, still large on the scale of the latticé(z,) is like a random
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walk and Vafb(z1) — b(0)) = o3 |21], which defines the local wandering coefficierit.
Following [3] it is natural to equate, (6)? with the inverse stiffnes$(0)~!. This implies

A KL =TYpp 071/2 (2.85)

valid for any point on the facet edge.

The general scaling form is obtained now by using the TLK nh@debenchmark.
Locally the border ledge performs a random walk with neanegghbor hopping rate,
see (2.72), thus? = 2. From (2.76) the PT coefficient igpr = 1/m+/¢ in our units.
Using these two as model-dependent parameters yieldsdhegtorm

Var (b(z1) = b(0)) ~ (mypr,1) " Pg((mypr,)P0 21/2). (2.86)

Of course, through (2.84), (2.85), any other pair of modgdehdent parameter can be
used to reexpress (2.86).

3D-Ising corner model

Within the volume-constrained TLK model we arrived at arerasting prediction for the
border ledge fluctuations. This can be compared with thdtre§the 3D-Ising corner,
where we prove that the border ledge is described by the Awggss too. Then from
(2.70) it follows, for larger’,

Var (br (7T +1t) — byp(7T)) =~ *T*3g(kT~*/t/2) (2.87)

with x = {/2b”_ (7). As we have seen, thé@11)-projection of the 3D-Ising corner gives
a lozenge tiling. The free-energy of the lozenge tiling is thgarithm of the partition
function computed in [111, 16] using Kasteleyn’s method|[F&om this it follows that

the “natural” limit shape ig (0, y) = — In(1 —e~¥), which is the half of the one computed
by the parameter’, compare with (2.68). Thus the first relation is
¢ =2T. (2.88)

Then explicit computations leads to
ki = (217 ‘o2,
o = 20(m)(1+ b (1)), (2.89)
YpPr,L = (26&(7))_1/271_1/2”_1(1+b2>o(7')2)3/4-

The termsl + ¥/_(7)? come from the particular orientation of the — ¢, axis, see (A.9)
in Appendix A.1.

2.3.5 On general macroscopic facets

In this section we discuss the macroscopic equilibriumtahyshapes, one of which is the
limit shape of the 3D-Ising corner. The macroscopic shaphviminimize the surface
free energy can be determined by the Wulff construction.afoore extended description
see [73].
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The surface tension

First we define the surface tensien Consider a macroscopic three-dimensional crystal
and a planél with normal directionu. To break the crystal into two parts along the plane
IT and create two surfaces of ardaa work W (u) is needed. The surface tensiofu)
is the surface free energy per unit area, which is then giyem(h) = W (u)/2A in the
limit of large crystals. Let be the surface of a crystal, the total free energ¥ & given

by
F= / odS (2.90)
b))

wheredS is the surface element. (2.90) assumes already that thalkas/krge (negligible
border effects) and incompressible.

Equilibrium crystal shape

Equilibrium crystal shapes results from the minimizatiéthe surface free energy. Given
the surface tension, there is a geometrical construction which leads to theusmpn-
vex crystal shape minimizing the surface free energy (updtobal scaling fixed by the
volume), the

Wulff construction: Fix the origin O, and for each directiom define the
point H on the spherical plot of given byOH = o(u)u. Construct the plane
I1,, passing byH and orthogonal tm. Then surface crystal shape is the inner
envelope of all the plands,,.

Facets in equilibrium crystal shapes appear only when tfacitension has non-
differentiable points/lines.

Random surfaces and random tilings

Now we consider a particular class of random surfaces, tbe which can be mapped to
random tilings. One example is the 3D-Ising corner desdrddeove. The surface tension
can also be computed by microscopic models, the free enexigg b- In Z with Z the
partition function. For the 3D-Ising corner, the limit sieayvas obtained already in [16]
using the mapping to the random tiling explained above, foictvthe free energy was
known [111]. Moreover, in [20] a law of large numbers is provier the microscopic
model and shown that the limit shape obtained by the Wulfstrmiection agrees using the
free energy-In Z.

Afirst variation of the rhombus tiling of Figure 2.13 consist giving different weights
to the orientations of the rhombi. In this case a new f&tshows up with normal direction
(1,1,1) as proven by Blote, Hilhorst, and Nienhuis in [17]. The boerdéthe facetF
shows the Pokrovsky-Talapov law too.

Recently Kenyon, Okounkov, and Sheffield [53] studied randairfaces which arise
as height functions of random tilings on weighted, bipatattices with periodic boundary
conditions. Among others, they shows (Theorem 5.5 in [38]) inside any of the rounded
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pieces the second derivative has constant determinarg.rdsult would imply that (2.82)
holds for these models too, thus also the PT-law.

Airy process: an open question

Consider for example the facét. Macroscopically it is flat, but on a microscopic scale
some irregularities exist. The border line between the dedrpart and the facét is not
uniquely defined. One can define it as the border of the first@saopic island without
including eventual spikes on the atomic scale. Therefguegpusome coarse graining of
order one, the different possible definitions should agfe®em the argument explained
above, the Pokrovsky-Talapov law should hold for all theefadike £'. Therefore we can
conjecture that the border line of these facets are alsaibdedcby the Airy process, but
the question remains open.



Chapter 3

Line ensembles and point processes

In this chapter we first introduce the notion of point procasd two of its classes, the
determinantal and the Pfaffian point processes. Then weadmme Gaussian ensem-
bles of random matrix theory. Their eigenvalues form sonterdgnantal/Pfaffian point
processes. An edge scaling at the border of the spectrurgeralues leads to some lim-
iting point processes which show up in our results on the §Bgl corner and on the flat
PNG. The eigenvalues of the Gaussian ensembles can be geEsitams of particles sub-
jected to some random evolution. This is known as Dyson’sMAran motion and leads
to a natural extension of the determinantal point procesthd last part of the chapter we
turn back to our models and we map them to some non-intengdatie ensembles. In the
subsequent two chapters we study the point processes dbfirtiee positions of the lines.

3.1 Point processes

3.1.1 Determinantal point processes
Definitions

A point process is a measurable mapping from a probabiliscepo a measurable
space [64]. First let us construct the probability spacenddeby.X a one-particle space,
which we take to b&k?, Z¢, or some subset of them. LEtbe the space of finite or count-
able configurations of particles i, where the particles are ordered in some natural way
andeach configuratiof = (z;), z; € X, ¢ € Z (or N if d > 1) is locally finite i.e.,

for every compact3 C X, the number ofe; € B, denotedn(B)(¢), is finite. Next we
define thes-algebra ol via the cylinder sets. For any bounded Borel BetZ X and
n>0,C8 ={¢ el n(B)) =n}isacylinder set. Then we defife as thes-algebra
generated by all cylinder sets and denotdtbg probability measure ofi’, F).

Secondly we define the measurable space gbtiret measured_et 5(X) be the Borel
o-algebra ofX. A point measure oiX is a positive measure on the spacéX, B(X))
which is a locally finite sum of Dirac measures, i.e., foe X, v(z) = >, 0(z — x;)
with z; € X, I C N, and for any bounded subsBtC X, z; € B for a finite number of
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i € 1. Then denote by, (X) the space of point measures definedvand M, (X) the
o-algebra generated by the applications- v(f) of M,(X) to N U {co} obtained when
f spanB(X).

Definition 3.1. A point process; on X is a measurable mapping frof’, 7, P) into
(M,(X), M,(X)). The probability law of this point process is the imagéPaby .

Moments of random variables (observables) can be expréssems of correlation
functions which are defined as follows.

Definition 3.2. Let i, be a reference measure on. Then-point correlation functiorof
point process ofil’, F, IP) is a locally integrable functiop™ : X™ — R, such that:

a) if 1 is absolutely continuous with respect to the Lebesgue measor any disjoint
infinitesimally small subsets;, z; + dz;|,i =1,...,n,

P({n([z;,z; +dz;)) = 1,i=1,...,n}) = p"™(zy,...,z.)p(dzy) ... p(dzy), (3.1)

wherep(dx) denotegu([z, z + dx]).
b) if 1. is supported on a discrete sets of points: for any distinatgsa:,, . . ., x,, of X,

P({n(z;)=1,i=1,...,n}) = p™(z1, ..., z)p(z1) . .. pzn). (3.2)

Obviously then-point correlation functions have to be symmetric in theguments.
The first question is to know whether thepoint correlation functions defines uniquely
the point process or not. A first sufficient condition foundRyelle, chapters 4.7 and 7
in [87], writesp™ (21, ..., x,) < ¢" a.s. for some > 0 uniformlyin (z1, ..., ,). Lenard
studied the problem again and obtained a weaker conditienus define, fod C X,

1
mit =g [ PP o)) duan) (3.3)

If for all boundedneasurable subsdt C X
Z(m?)’l/k = 00, (3.4)
k=

1

then the point process is uniquely defined [58, 91].
Sincem; <mP if A C B, then to verify (3.4) it is enough to analyze the behavior of
m for large A. In particular, forX = R it is enough to check (3.4) fad = [ M, M]
for all M € R. Remark also that no uniformity if/ is required. In terms of correlation
functions, if
P (xy, . x,) < nPet as. (3.5)

for somec > 0, then (3.4) is satisfied. There is a stronger condition ti3a) (but easy
to verify in some concrete situations [58], namély inf, ... (m)~/* > 0 for every
boundedA C X.
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The second question analyzed by Lenard [59] is to know undechwconditions a
set of locally integrable functions, : X™ — R, are correlation functions of some point
process. The first condition is tlsgmmetry condition

pn(xlu---axn> = pn(xa(l)w--uxa(n)) (36)

for all permutatiorns € S,,, which is obviously necessary. To state the second comglitio
we first have to introduce a few definitions. We denotdbthe space ofinite sequences
of pointsinX: K = J, ., X" whereX” denotes the empty sequence. A subi$et K is
compact if and only if it is of the forn#/ = (J!"_, H,, with H,, C X" compact andn > 0
finite. Consider any real valued functighon K with compact support and denote iy
the restriction off to X*. Define a real functios f onT" by

SHEO=D" D" fulwi...x,). (3.7)

k>0 i15... i,

The sum ovek is finite becausg is of compact support. Thgositivity conditionis the
following. If f : K — R is a bounded measurable function such ttgt)(¢) > 0 for all
¢ e, then

E(Sf) = Z/Xk Se(@y, . ) pu(y, .o op)dp(zr) -+ - dp(zg) >0 (3.8)

k>0

holds if p,, are correlation functiong; being the reference measure &n

Correlation functions are important in the computation xjfected values of observ-
ables. Some random variables of interest are often céfledr statisticsand are of the
form

Z f(z) (3.9)

for some real functiorf. Define the function. = 1 — e/. Then

E(ew (3 06) = E(H<1—u<xj>>)=fj<—1>”ﬁ( 3 ﬁu(xm)

j n=0 1< <gin k=1

S (_nll)n]E( 3 Hu(xjk)) (3.10)
n=0 ) 1. Fin k=1

= Z (—nll)” / A" () p™ (21, . .., x) Hu(xj)
n=0 ’ " j=1

An interesting class of point processes which will be coad in the rest of the
section are the determinantal point processes, also daitedonicsince the probability
that two points are at the same position is zero.
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Definition 3.3. A point process is calledeterminantaif the n-point correlation functions
are given by

whereK (z,y) is a kernel of an integral operatdk : L*(X, u) — L*(X, ), non-negative
and locally trace class.

The positivity is required because thepoint correlation functions are positive, and
locally trace class because each configuration is localitefifror a determinantal point
process, (3.11) in (3.10) leads to

10— ue)) = ZOO (=" N Hn \ g
n! ==
E( (1 u(xj))) / Det(K (i, ;) )1<ij<n | | w(z;)d"pu(x)

n

J n=0 j=1
= Det(1 — uK)r2(x, (3.12)
where for eachp € L?(X, p),
(@)e) = [ ul)B e g)el)nty) (3.19

The last determinant in (3.12) is callédedholm determinandf the operator. K on the
spacelL?(X, i), see also Appendix A.2. Note thaf< in (3.12) can be replaced by the
symmetrized:'/2 K u'/?, where withu'/? we mean the multiplication operator byz)'/2.

A special but important observable which can be computed FAg@dholm determinant
is thehole probability For a subseB of X the probability that it is empty is

P({n(B) = 0}) = E(H<1 - m(xm) —Det(l - Ky (314)

j
In particular for a determinantal point processlRror Z which has dast particlewhose
position is denoted by,,.., the distribution ofr ., writes

]P(l‘max S t) = ]P(TL((t, OO)) = O) = Det(]l — K)LQ((LOO)JA)' (315)

The next question is to know whether a given point proces®terthinantal or not.
Borodin (Prop. 2.2 of [18], see also Tracy and Widom for theEGidse [102]) determined
the following class of determinantal point process.

Theorem 3.4.If we have a measure of the form

1
7 Det(p; (1)) jk=1,..~v Det (v (@) j =1, vd" p(z), (3.16)
N
then it is a determinantal process with kernel

N

En(w,y) =Y i(@)[A i j05(y) (3.17)

1,j=1
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where
A=Ay Ay = /X by (1) ot dpa(t) (3.18)

Unfortunately, although an explicit formula is given, itnet always easy (feasible) to
invert the matrix4A asN — oo. A particular case is wheA = 1 in a particular basis. In
this case the kernél'y (z, y) becomes of simple form and the limiting distribution can be
analyzed.

Some important kernels: sine and Airy kernel

Letz, 2’ € R, thesine kernels defined by

sin(om(x — 2'))

Sy(x, ") = ) (3.19)

m(x —a')
with o the density of points. By rescaling,can be always be set to one, but we prefer to
keep the parameter in general. Thiey kernelwrites

Az, ') = Ai(z) AV (2") — Ai'(x) Ai(z") (3.20)

x—

where Ai(x) is the Airy function [1]. In some models appears thiscrete sine kernel
which means only that, 2’ € Z.

In Section 3.2.2 we will see that the asymptotics in the bilthe spectrum of GUE
random matrices leads to the sine kernel, and in the edgeeo$ghlctrum to the Airy
kernel.

3.1.2 Pfaffian point processes

A generalization of determinantal point process areRfadfian point processeirst we
define the Pfaffian. Letl = [A; ;]; j=1,.. on be anantisymmetrianatrix, then its Pfaffian

.....

is defined by
N
Pf(A) - Z (_1)|J| HAUQi—170'2i7 (321)
gESoN =1
02;—1<02;

whereS,y is the set of all permutations ¢fl, ..., 2/N}. Notice that the Pfaffian depends
only on the upper triangular part gf. For an antisymmetric matrix the identiByf (A)? =
Det(A) holds.

Definition 3.5. A point process i®faffianif the n-point correlation functionare given by
p(n) (l’h e 7{13'”) = Pf[K(lL‘“ xj)]i,jZl ..... ns (322)

whereK (z,y) is a2 x 2 antisymmetric matrix kernel.
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With the notation K (xz;, z;)]; j=1
matrix blocksK (;, z;) of size2 x 2.

7777

measurable spacé,, . . ., fony complex-valued functions oH andg(x y) be anantlsym-
metric kerneland define by

1
p(xlu ) 9132N) = E Det[fj(ﬂfk)]j,kzl ..... 2N Pf[é“(%’xk)]y k=1,...2N (3-23)

the density of 2 V-dimensional probability distribution ok 2" with respect tq:®?", the
product measure generated joyThe normalization constant is given by

ZQN:/ d*N u Det[f;(vx)]jh=1....on Pfle(x), Tp)]jh=1. on = (2N)! Pf[M] (3.24)
X2N

where the matriX\/ = [M; ;]; j=1

.....

M, / F(@)e(@, ) () du(@)du(y). (3.25)

The point process with measure (3.23) is Pfaffian with thesammetric kernel

K (z,y) given by
’ K _ Kl,l(xvy) Kl,Q(x7y) 3.26
(@y) = ( Koi(z,y) Kaop(z,y) ) ’ (3.26)

where .

Kii(z,y) Zi7j:1 fi(:L')M]Tilfj(y),

Kip(z,y) = i) file) M ef;) (),

Kaa(v,y) = S5 (S @M f(y),

Koo(z,y) = —e(z, y)+2” L(efi) (@) M3 (e f5) (),
provided that\/ is invertible, ande f;)(z) = [y (x,y) fi(y)du(y). M; ;! means thej, i)
component of the inverse of the math Note the order of indices iM]jil. Similarly

to the determinantal processes, the linear statistics affi&f processes is given by the
Fredholm Pfaffian of the kerné{. Letu = 1 — e/, then

T,

(3.27)

2N
]EN<eXp (> f(;cj))) - ]EN<H(1 - u(xj))) = PE(J — Ku) = /Det(1 + JKu)
j j=1
(3.28)
with the matrix kernelJ(z,y) = 0., ( 01 ) For Fredholm Pfaffian see Appen-

-1 0
dix A.2.
Finally notice that the determinantal point processesrasieided in the Pfaffian ones.

In fact if K is of the formK = € Ky
—Ky 0

determinantal with kernek. In fact,Pf(J + K) = Det(1 + Kj) in this case [82].

, then for arbitrarye the point process is
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3.2 Random matrices

3.2.1 Classical Gaussian random matrix ensembles

In this section we explain some results on the classical Samsandom matrix ensembles
which are linked with our problems. Of particular interemtdéur work are the edge statis-
tics of the eigenvalues, which lead to the Tracy-Widom thstions [103]. The standard

reference on classical random matrices is Mehta’s book [6BE reader interested in a
shorter discussion on random matrices in physics can regd [for more recent reviews

see for example [71, 72].

Gaussian Orthogonal, Unitary, Symplectic Ensembles

Usually the spectrum of an hamiltonian contains both cantm and discrete part. If we
are interested in the discrete spectrum we restrict theeHikpace to a finite subspace
where the hamiltonian is represented as a hermitian maiviereover, if there exists
some constants of motion, then the matrix is decomposedbiotks. Consider one of
these blocks, say & x N hermitian matrixH. If the only constraints are space-time
symmetries, then there are three important cases of randnces [24]

- B = 1. if the system is invariant with respect to time-inversionl @he total angular
momentum is integer or the system is rotational invaridr@ntthe matrix/ can be
takenreal symmetricSince it can be diagonalized by an orthogonal transfoonati
the corresponding random matrix ensemble is caliedogonal

- B = 2: if the system is not invariant with respect to time-invers{for example,
systems with external magnetic field), then the makfixs complex hermitian It
can be diagonalized by an unitary transformation, so théaammatrix ensemble is
calledunitary.

- [ = 4: if the system is invariant with respect to time-inversian with half-integer
total angular momentum, then the matfikis real quaternionic It can be diago-
nalized by a symplectic unitary transformation and the camanatrix ensemble is
calledsymplectiqsee Appendix A.3).

The meaning ofs will be clear at the level of the distribution of eigenvaluebhe
eigenvalues are real for all these three ensembles. Thacda&aussian ensembles are
obtained setting the probability distribution on matriess

1 2
p(H)dH = 7€ T(HI)2NQ g (3.29)
wheredH is the Lebesgue product measure on the independent elewfeAtsand 7’
is the normalization. The ensembles of random matricesriaare calledsaussian
Orthogonal(GOE), Unitary (GUE), andSymplectidGSE)Ensemble$or 5 = 1, 5 = 2,
andg = 4 respectively.
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Remark: the factot /2N in (3.29) is somewhat unusual, but it turns out to be conve-
nient for the comparison with the results on the PNG and thdsiiy corner.

The distribution (3.29) is also recovered by taking the petelent elements of as
Gaussian random variables with mean zero and variahéer the diagonal termsy/2
for the non-diagonal terms (since'T( H?) they appears twice).

Another way to obtain (3.29) is to maximize the functionaitiepy” [14]

S(p) = / p(H) In p(H)AH (3.30)

under the conditiofi(Tr(H?)/2N) = in, wheren = N + ;3N (N — 1) is the number of
independent elements of the matfik see also Appendix A.4. This is the same method
used to derive the canonical and grand-canonical measusgatistical mechanics.

Distribution of eigenvalues

One interesting quantity of random matrices is the distrdvuof eigenvalues, because
they are the energy of the system with HamiltonfAnThe probability distribution (3.29)
depends only on the eigenvalues of the matrices, reflechiagequirement that (3.29)
has to be independent of the choice of the basis used to beska physical system. This
means that (3.29) is invariant under the symmetry group grthogonal groug: = O(N)
for GOE, unitary grougs = U(N) for GUE, and unitary symplectic group = USp(2N)
for GSE.

We can diagonalizé] by a transformation of the grou, H = gAg~' for some
g € G,with A; ; = \;d; j, A; the eigenvalues aff. The infinitesimal transformation is

6H = g6H'g™', 6H' =6\ +[g7'5g, Al (3.31)

which implies that the jacobian of the change of variablenfrd to H’ is one. On the
other hand,

6Hz‘/,j = 5)\1517J + 591,]()% - )\j), 00 = gilég, (332)
then the jacobian fron/’ to (A, g) is given by[[,,_;-n [A; — \i|2. The variations{2

can be described by parameterizing the gréypand give as volume element the Haar
measurelG. It then follows thatlH = |Ay(\)[°dAdG, with d\ = [+, d\, and

An(A) = Det(NHY I &= (3.33)

hj=1 =
1<i<j<N

An(A) is called the Vandermonde determinant. Finally integoatimer the symmetry
group@, the joint probability distribution of the eigenvalues is

N
1
Psn(AL, .. An)dA - -dAy = %\AN()\)W 11 e NN, (3.34)

J=1

with Zg y the normalization constant.
Now we review some results on the distribution of eigenvainghe N — oo limit.
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Wigner semi-circle law

Denote byps v(A) the expected density of eigenvaluesiat For largeN this density
vanishes outside the intervgt2N,2N] and has a semi-circle shape (if the eigenvalues
are rescaled by/V). This is thewWigner semi-circle lawand in our setting writes

pon(N) = /1= (ANP), (3.35)

for large N, wherexr, = max{0, z}.

In [42] the global fluctuations properties of the eigenvalues is studied. Ese dor
general confining potentidl (z) (in the Gaussian ensembl&$z) = 2%/2N) so that the
weight on random matrices is ™V () and for all3 is studied. In our setting the result
is the following. For continuous functiofi: [—1,1] — R which increases at most as the
potentiall/,

2N

InE (25502 / dAps.00( V) F(A/2N) — B(f) (3.36)

—2N

asN — oo whereB(f) is an explicit quadratic functional of. Remark that no factor
1/V/N is needed.

Fluctuations in the bulk for GUE

In a recent preprint, Gustavsson considers the distributiohek-th largest eigenvalue of
GUE [38]. He proves that it — oo asN — oo (and by symmetryN — k& — oo t00),
then it converges to a normal distribution when properlgaésd. First consider such
that )\, is in the bulk. Letk = k() be chosen such tha/N — a € (0,1) asN — oc.
Let ¢ be the value such thaty (\;) = 2Nt. Then, for largeV,

ImN \Y?
~ 9N " 37
A t+(2(1_t2>) o (3.37)

with £ a random variable with normal distributia¥i(0, 1). Next he considereél such
thatk — oo asN — oo but withk /N — 0, thus still close to the edge. Then, for larye

AN_k 2N<1 - <3—7T)2/3(k/N)2/3) + ( : il )1/25 (3.38)
N ING (12m)23 (/N3 ) ¢ '

He also determines a convergence of the joint-distribiftioctions ofm eigenvalues.

Largest eigenvalue: Tracy-Widom distributions

The Wigner semi-circle law tells us that the largest eigkreay ... is located close to
2N. Tracy and Widom study the distribution 8f; ;. in the limit N — oo for 5 =1,2,4
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Figure 3.1: Probability densities of the Tracy-Widom distributionsgeated using [80].

with the following result [100, 101], see also their revieaper [103]. LetFj n(t) =
Ps v (Anvmax < t), thenFp(s) defined by

Fs(s) = lim Fpn(2N + sN'3) (3.39)

N—oo

exists forg = 1,2, 4. For3 = 2, itis given by

Fy(s) = exp < - / (x — s)qQ(x)d:c> (3.40)
wheregq is the unique solution of the Painlevé Il equatigh= sq + 2¢* satisfying the

asymptotic conditiony(s) ~ Ai(s) for s — oo. F; is called theGUE Tracy-Widom
distribution For = 1 the GOE Tracy-Widom distributioreads

Fi(s) =exp ( - % / q(x)dx) Fy(s)Y/? (3.41)
and for = 4 the GSE Tracy-Widom distributioreads
L[ 1/2
Fy(s/V/2) = cosh (5 q(x)dx) Fy(s)™/=. (3.42)

Remark: F,(s) can also be rewritten as a Fredholm determinant of the Aigratpr, see
Section 3.2.2, and’ (s), Fy(s) as Fredholm Pfaffians, see Section 3.2.3.
Some characteristics of these distributions are repontéaki following table.
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6| Mean | Variance| Skewness Kurtosis
1| -1.20653| 1.6078 0.293 0.165
2|-1.77109| 0.8132 0.224 0.094
4 | -2.30688| 0.5177 0.166 0.049

We remind that, if y is a random variable, then the skewness is defined by

E((x — EX))?)/E((x — E(x))?)*? and measures the degree of asymmetry of the dis-

tribution of xy. The kurtosis is defined b¥((x — E(x))*)/E((x — E(x))?)* — 3 and

measures the degree to which a distribution is flat or pedked¢rmal distribution ig).
Moreover the tails of the distributions are, for— —oo,

/ ! 1 ! ]‘
In(Fi(z)) ~ ——|z°, In(Fy(z)) ~ —EM?’, In(Fy(z)) ~ —ﬂ|\/§x|‘°’7 (3.43)
and forz — oo,

ln(F{(x)):—%xg/z, 1n(F2'(x)):—§x3/2, 1n(F;(x)):—§(\/§x)3/2. (3.44)

3.2.2 GUE eigenvalues: a determinantal process

Consider the case of x N hermitian matrices and 1&f(=) be aneven degrepolynomial
with positive leading coefficient. Define a measure on randwatrices by

1
——e” TV qpg (3.45)

ZN
with dM = [V, dM;, [li<icj<n dREM; ; dIMmM; ;. The GUE ensemble is recovered
by settingV(z) = 2?/2N. The same procedure used for the GUE case leads to the
distribution of eigenvalues

N

1 2 —V(Aj)
Z—NAN()\) ]Hle ;. (3.46)

We denote by y the point process of the eigenvalugs. . ., Ay of the random matri-
ces, i.e.,

(n(z) = Z 5z —2;), zeR. (3.47)

In particular the point process of x N GUE random matrices is denoted gyV~.

(n is a determinantal point process. For GUE random matricissishan old re-
sult of Gaudin, Mehta, and Dyson, see Chapter 5 of [62]. hét), &k = 0,1,...
be the orthogonal polynomials with respect to the weight®)dz, normalized as
Jg pi(2)pj(x)e”V®@da = §; ;. Then the eigenvalue process is determinantal with cor-

relation kernel
N—-1

Kn(z,y) = pr(a)pr(y)e 2 V@YW, (3.48)

k=0
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Using the Christoffel-Darboux formula [99], (3.48) can leavritten as

K(o,y) = 22 2X@v ) = ons@on) jovarvn, (3.49)
uy T —y

whereu,, is the leading coefficient gf,.. (3.48) can be recovered by Theorem 3.4 as fol-
lows. Let the reference measyiebe the Lebesque measure. Consider the vector space
Wy with basisB;, = {goj( ) Yi(z) = 297 e”V@/2 5 =1 ... N}, and with the scalar
product(g, f) = [ f( x)dx. After a change of baS|s (Gram -Schmidt orthonormal-
ization) one obtains an orthonormal bagis = {b;(z),7 = 1,...,N}. If we denote
by M the matrix with elementd/; . = »;(x;), then the measure (3.16)xt(M)d" z.
Let S be the basis transformation matrix froBy to B, and M be the matrix with en-
tries M, ;. = b;(x;.). ThenM = S~'M and then the measure (3.16)st M Det Sd"Vz.
Det S is a number which can be included in the normalization dnd 1 in the basis of
theb;(r) = p;_1(z)e”V@/?s,

Random matrices are therefore connected with orthogomahpmials, which are also
linked among others to the corner growth model, the PNG étppbn-colliding random
processes. For a review on these connections, see [54].

GUE kernel and its asymptotics

For GUE random matricelg (z) = z?/2N and the kerneK y is theHermite kernebiven
by

=

-1

Ky(z,y) = () pi(y)e~@HYI/AN (3.50)
0

P (@)PN-1(y) = PN A (@PN(Y) —@24y2yan
T —y ’

i

|
=

wherepy(z) = (2 N)~V4(2kEN) =1/ 2pl (2 /1/2N) with the (standard) Hermite polynomi-
als

pi(x) = ¢ dxk e (3.51)

See Appendix A.5 for more details on Hermite polynomials.

First we focus in the bulk of the spectrum. The density of migdues close tAQNa,
la| < 1,isu(a) = %\/1 — a?. The asymptotics of the Hermite polynomials (A.43) with
z = 2Na +t/u(a) leads toy Npy_p(z)e /"N ~ 7712 5in(agN + nt + ah) /7(a) for
large N, with o a constantey, = 2 — arcsin(a), andy(a) = (1 — a*)'/*. Applying this
with h = 0 andh = 1 to the kernel (3.50) we conclude that in the bulk the Hermamnk|
converges to the sine kernel,

/

1 H t !
lim —— K <2N +—_ oNa+ @) — Si(t, 1), (3.52)

N ufa)

t
u(a)’
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foranya € (—1,1).
Now we focus at the edge of the spectrami. Since the fluctuations of the largest
eigenvalues are of ordé¥'/?, the edge scaling of the point proc&$s’® is

iy (€)= N'YACETERN + NP, (3.53)
Thus the kernel of the determinantal point procgf$s® reads
KJUB(€,¢) = N'BKF (2N +ENV3 2N + ¢ N3, (3.54)

From the asymptotic (A.42) we obtajny_(z)e /"N ~ N-13 Ai (¢ + N~V3(h — 1))
for large N, wherex = 2N + £N'/3. Using this forh = 0 andh = 1 we obtain that the
limit of (3.54) asN — ~c is the Airy kernel (3.20),

lim KRR, €) = A€, €). (3.55)

From the asymptotics at the edge of the spectrum, the TradpwdistributionF;(s) is
given also by

Fg(s) = Det(]l — A)LQ((t,oo),dx) (356)
with A the Airy kernel. To be precise, the convergence of (3.55i0ktd above is uni-
formly for &, ¢ is a bounded set. To obtain (3.56) one need some uniform bfarnd

¢ — oo too. This follows from the super-exponential decaypgayth(:p)e*“/‘w for x
larger than the last maximum.

3.2.3 GOE and GSE eigenvalues: Pfaffian processes

In this section we consider the point processes of the GOEE8IH eigenvalues which
are Pfaffian point processes [92]. For example, in the GOE ttaes distribution of the
eigenvalues is given by (3.23) wih(z) = 2/~ ande(z, y) = sgn(z —y). Here we want

to describe the edge scaling of the GOE and GSE point praselsbe weight ise~" ()
instead ofe~**/2N with V an even degree polynomial with positive leading coefficient
then, by (3.23)-(3.27), the GOE and GSE eigenvalues at®#ifian point processes for

a different kernel.

GOE random matrices

We denote by {°F the point process of the eigenvalugs..., \y of a N x N GOE
random matrix, i.e.,

NOP(@) =) (x—N), z€R. (3.57)
At the edge of the spectrur@ )V, the eigenvalues are ordéf'/? apart, see (3.39). The
edge rescaled point process is then given by

nROE(E) = NYBCGOR(2N + ¢EN'3), (3.58)
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and for f a test function of compact support,

N

1§OR(f) = /}R AEFENSOR(E) = 3 F (N — 2N) /NP, (3.59)

J=1

We denote by,“©F the limit of n{°F asN — oo.
The limit point procesg“°F is characterized by its correlation functions as follows.

Let us denote bypg?)E(fl, ..., &,) then-point correlation functions of “°F, i.e., the joint
density of having eigenvalues&t . .., &,. Then

pGOE(Slu b)) = Pf[GGOE(fia fj)]z‘,j:1 ..... n (3.60)

wherePf is the Pfaffian and:“°F is the2 x 2 antisymmetric matrix kernel with elements
GG ) = [ AAAIG + NATE+ ) - (6 &) (3.61)
0

GERH(E &) = [ MNAI(G+ N AIG +A) + 5 AiG) [ dAiG - )
0 0

GETR(6,6) = —GIE%(6.6)

659°6n6) = 1 [ O [ dui -~V aile ) - (6 &)

Ai is the Airy function [1] and the notatioft; < &) means that the previous term is
repeated witht; and¢, interchanged. The GOE kernel was studied in [101]. It is not
uniquely defined, for example the one reported in [32, 40edifslightly from the one
written here, but they are equivalent because they yielddnge point process. The point
processy“©F is uniquely determined by its correlation functions, see discussion in
Section 3.1.1.

Finally let us remark that’ can be written in terms of a Fredholm Pfaffian. First we
consider theV x N matrices.

Fun(e) = E( <1—ﬂ[g,@((Aj—w)/Nl/B») (3.62)

j=1

where G§OF is the kernel of the rescaled point process®®. Then Fy(¢) =
limy_, F1 n(€) is given by

Tl

F(§) = Z ol /(m)ndnfpf[GGOE(fufj)]i,j1 ..... n (3.63)

n=0

= Pf(J — GY9F) = /Det(1 4 JGGOE)
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where J is the matrix kernel(z,y) = 0., ( _01 é ) The Fredholm Pfaffian and

determinant are on the measurable sgagex), dx), i.e.,

n

Pf(J — GEOF) = Z / )ndfl---dfnPf[GGOE(gk,fl)]kl1 (3.64)

n' S o T b k=L,
n=0
and
Det(1 — KOF) = Z nl gy -+ - dén Z Det [KE%E(&’&)}M L
n=0 : (§,00)™ i1yeyin€{1,2}

with KGOF = — JGGOE,

Remark: One can also consider insteadef(1 — K“°F) the determinanDet(1 —
KCOE) with KCOF the operator with kernelKGOF, KCOF js not trace-class on
L*((§,00),dx) & L*((£,0),dz) because it is not even Hilbert-Schmidt. Neverthe-
less it is possible to make sense of it as follow& “CF is Hilbert-Schmidt in the
spacel?((&,00),0dx) @ L*((€,00), 0~ dx) whered is any positive weight function with
0~' € L'(¢,00),dz) which grows at most polynomially at — oc. MoreoverTr (/£ GOF)
the sum of the diagonal terms is absolutely integrable. Themodified Fredholm deter-
minant is defined bpet(1 — KCOF) = ¢~ Tr(K%°") Det, (1 — K9OF) with Det, the regu-
larized determinant [34]. Thisis made in [105] where theyalty prove theV — oo con-
vergence of the kernel and of the modified Fredholm detemmjmeading thus to (3.65).

GSE random matrices

As for GOE, we denote by{°" the point process of the eigenvalugs. .., Ay of N x N
GSE random matrices, i.e.,

$P) =) 6z —X), z€R. (3.66)

j=1
The edge rescaled point process is then given by
o (€) = NYVPCRSE(2N +ENYP), (3.67)

andn®¥ is the limit of n°F asN — oc.
The limit point process;GSE is characterized by its correlation functions as follows.

Let us denote by (&1, . .. , £,) then-point correlation functions af°SZ, i.e., the joint
density of having eigenvalues@t . .., &,. Then

pggE(fla &) = PEGETV(E €0 imt (3.68)

wherePf is the Pfaffian and:“5® ™V is a2 x 2 antisymmetric matrix kernel with elements

GOV gy &) = 2Y1GE8(¢, V2, 6/V2), 0,5 € {1,2}, (3.69)
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where
G956 6) = /0 T A T ARAIE TN AE 1) — (6 — &), (3.70)

GEP(en ) = [ ANAI(E V) Al + ) - Ai(G) [ dAaiG ),
0

0
G%E(fl,&) = _G%E(&a&)

GE5P6,6) = 1 [ ANl - N ATE - ) - (6 - &)

We have chosen to writ€ “>5TW is terms of G“SF to keep more evident the analogies
and differences with the GOE kernel. The ker@&PF is the one of the point process with
last particle distribution given by, (s/v/2). The GSE kernel was studied in [101].

3.3 Extended determinantal point processes

3.3.1 Dyson’s Brownian motion

Dyson [23] noticed that the distribution of eigenvalue843.is identical to thequilibrium
probability distribution of thepositionsof NV point charges, free to move IR under the
forces deriving from the potenti&l” at inverse temperaturg with

N

1

U(ZL‘l,...,ZL‘N):— Z 1H|ZL‘Z—I']|+WZIL‘Z2 (371)
1<i<j<N 1=1

In the attempt to interpret the Coulomb gas as a dynamicésyByson considered the

positions of the particles in Brownian motion subjectedinteraction forces VU and

a frictional forcef (which fixes the rate of diffusion, or equivalently, the tiseale).
Letpn(z1,...,xyN;t) be the time-dependent probability density of finding theiplas

at positionse; at timet. py satisfies the Smoluckowski equation

oy ~=[18%n B0 (U
o2 [é 52 * 20w \om "™ (3.72)

which has as unique stationary solution (3.34) (we fixed dw@ampeters of [23] ag =
2/ anda® = BN). In other words, the seftr,, ..., zy} satisfies the set of stochastic
differential equations

with {b;(t), j =1, ..., N} a collection of N independent standard Brownian motions. We
refer to thestationary process of (3.73) as Dyson’s Brownian matidate that forg > 1
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the process is well defined because there is no crossing @ideavalues, as proved by
Rogers and Shi [86].

Moreover, Dyson showed that in term of random matrices, ithsquivalent to the
evolution of the eigenvalues when the= N + 1N (N — 1)3 independent elements of
M, {M,,n = 1,...,n}, evolve as independent Ornstein-Uhlenbeck processese Mor
precisely, letP (M, . .., M,;t) denote the time-dependent probability density of i
then

oOP [k, 0°P 1 0
o ; [70]\45 " on anr, M P)} (3.74)
with x, = 1 if M, is a diagonal term and, = 1/2 otherwise.

Let M (0) be the initial condition of a matrix evolving according ta{8). Then the

matrix distribution at time is given by

Tr(M — qM(0))?
2N(1—¢?)

P(M(t) = M)dM = Zi(l — qQ)_”/2 exp (—

) dM  (3.75)
N

with ¢ = exp(—t/2N).

For 5 = 2 Dyson’s Brownian motion, the properly rescaled largeseeuglue con-
verges to the Airy process in thé — oo limit, see Section 3.3.3.

Finally we remark that it is connected with the Calogerok®udand model in one
dimension [98]. It describes a system/@fparticles moving orR, whose Hamiltonian is

N —2
HCS:_Zaxz+ﬁ(52 ) 11 T
=1

1<k<I<N

; tw Z:L‘k (3.76)

k_l'l

Set the external potential strength.as- 1/2N. The ground stat@, has energy, = wn,
n= N+ 1N(N — 1)g and is given, without normalization, by

Qo(xy,...,28) =€~ LDV H |z, — a]%/2. (3.77)

1<k<I<N
The connection with Dyson’s Brownian motion is via the grdwstate transformation

as follows. LetX; = (z1(t),...,zn(t)) € RY be an Ito diffusion with infinitesimal
generatotl given by

Lf =-Qy (HQf), H=3iHS-E), (3.78)
for f € CZ2(RY). Some simple computations leads to
N N
1 82 B} B 1 1
— )= 3.79
;2 ;a@)axj, alz;) Zx_x 1, (3.79)
Z#J

L is the generator of a diffusioN; which satisfies (see Chapter 7 of [70])
dX; = A(X,)dt + dB; (3.80)
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with A(X;), = a(z;(t)) anddB; an N-dimensional standard Brownian motion, which is
identical to (3.73).

The careful reader has probably noticed that the system Kattiltonian (3.76) is
not well defined as soon as no domain is specified. Notice bleattamiltonian is the
same forg and2 — (3, thus considepp > 1. Let us discuss the casé = 2. Defining
the half-distance between the particles ¥y= (z, — z1)/2 and the center of mass by
Y = (.%'1 + 33'2)/2 One haST‘IQCS = Hcy + Hp with

10 192 BB-2)
Hoy = — == + 2032 Hp=——
M= Togyz TS b =Toam e

+ 2w? X2 (3.81)

The minimal domain of7$® consists in smooth functions vanishingXét= 0. In this
case, ford > 3 there is an unique self-adjoint extension because Bothk 0 and the

X = oo are in the limit point case, see Appendix to X.I of [84]. Thegnd state wave
function is (3.77) (the solution witff < —1 is notin L?(R)). Forg € [1,3), X = oo

is still in the limit point case, buX = 0 is in the circle case, thus there exists a one-
parameter family of self-adjoint extensions, but only feptof theme~t2" is a positive
kernel (see [94] for a discussion of the singularifyz?). The ground states are given by
(3.77) with g and2 — (. In particular for3 = 1 there is only one-selfadjoint extension
with positive transition kernel. A similar situation appga Dyson’s Brownian motion in

a circle [95]. For generaN we do not know rigorous results, but it is expected the same
situation of before but with thg > 3 replaced by > 2 + 2/N.

3.3.2 Extended point process
Definition

Consider a point proceg$z, 0) describing for example particles in a potential. It is natur
to considern(z,0) = > .0(z — x;(0)) as the point process at tintie= 0 and let the
particles evolve in time according to some prescribed dyosy, i.e., x(t) = D;(x(0))

with z(t) = (z1(t),22(t),...). For each timg > 0 definen(z,t) = >, d(x — z;(t)).

We say that)(x,t), t € [0,7] with T € R, is anextended point proceskfor each
fixedt € [0,7] n(z,t) is a point process. We thus exclude situations where there ca
be somewhere a condensation durjgl’] of infinitely many particles. Otherwise the
position of the particles would not be anymore a point pre@dter some time.

Remark: The evolution is not restricted to continuous tialeo discrete time evolution
are allowed.

An example of an extended point process is Dyson’s Browniatian. As we shall
see below, for3 = 2 its space-timecorrelations are given by a determinantal form with
a space-time kernel. The process is then cadddnded determinantal point procestd
the kernel is thextended kernel
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Extended Hermite kernel

Now we restrict to Dyson’s Brownian motion with= 2. (3.75) can be straightforwardly
generalized to multi-time distributions, the so-calledltrmatrix model. Let); be the
matrix at timet;. Let0 =ty < t; < ... < t,, andg; = exp(—(t;+1 — t;)/2N). Then the
multi-time measure reads

1 Tr(M3)\ 11 Tr(Mj41 — ¢;M;)?
- dMy...dM,,.  (3.82
ZNymexp( W )pr S oM, (382)

For this multi-matrix model the joint-distribution of thégenvalues reads (see e.g. [27])

_A )\ A OCO>\07+Oém 1)\,,”) D t|: k)\;“/\kJFU] d\
T N(Ao)An( He H e . N]}_[O L
(3.83)
where), = (\;), 7 =1,..., N, are the eigenvalues of the mati%,, k = 0,...,m,
1 dk
M=o k= (3.84)
—geNT Tt 1N

We consider fixed initial and final eigenvalues (or matrices)that the Vandermonde de-
terminants in (3.83) can be absorbed by the normalizatiostemt. For the same reason,
we can replacey, anda,,,_1 by v = a9 — 1/4N and~,,_1 = «a,,—1 — 1/4N without
changing the distribution. In this case it is known [27] ttie joint probability distribu-
tions of eigenvalues have a determinantal form. To obtarkdrnel, a more useful form
of (3.83) is the following. Define

o) =, alt) = grm 0 = el = g 4D = e ‘)

—y (' —t)(A24+N2) B —t) AN _ /
By y (A, X) :{ e e Vat —t)/r fort >t (3.86)

0 fort' <t.

®, » is the transition function from time to timet'. Then the joint-distribution of the
eigenvalues\,;, k=1,...,m—1,i=1,..., N, is given by

ZEV H Det [@tk Qe )] b (3.87)
m k=0
with A, and),, fixed, andZ},,, another normalization constant.

The following result of Johansson gives an explicit formidathe kernel of the ex-
tended determinantal point process with joint-distribnt{3.87). For two transition func-
tionsp and+ their convolutionis defined by

(0% 0)(zy) = /]R (@, 2 (2, 9)du(2). (3.88)
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Define, fortg < t1 < ... < t,,,

o ke ko e N(XLy), 1< g
%,tj(x,y)z{ ((ft“““ #-10;) (@) Z>§ (3.89)

The form (3.86) is chosen such thBy, ;, (1, 23) = [ P, 10 (@1, 22) Pry 4y (T2, 23)das. It
is not necessarily to include the normalization constgnt(t' — ¢)/m, but it simplifies
some computations.

Theorem 3.6(Johansson [46])Consider a measure with joint density of the form

m—1

1
= LI Detln iy (ite). 2 (i) ijmr...v (3.90)

k=0

If the configurations at time, and timet,,,, i.e.,z{ = z;(¢,) andz" = xz;(t,,) fori =
1,..., N, arefixed, then the measure (3.90) has determinantal correlatiotions with
extended kernel

N
K(ZL‘, t; :E/? t,) = —Prr (l‘, xl) + Z Pttm (l‘, :L‘zm)[A_l]iJ(ptoi’(x?v xl) (391)
ij=1

whereA = [y, (29, 27)]; j=1

-----

The only problem in using Theorem 3.6 is that one needs tatitire matrixA, and this
is not always a simple task.

Applying this theorem to the transition functidnone obtains the kernel for Dyson’s
Brownian motions = 2

ijv—l ek(tft’)/QNpk(l.)pk(y)e*($2+y2)/4N7 t>t

, (3.92)
_ ZZO:N ekt —t)/2Npk(l.)pk(y>e—(m2+y2)/4N7 t <t

Ky(z, t;2',t") = {

wherep,(z) = pll(z/V2N)(v2rN2Fk!)~1/2. The Hermite polynomialg}!(z) are given

in Appendix A.5. Since Dyson’s Brownian motion is stationaf3.92) is obtained in
the limitt, — —oo andt,, — oo. For the asymptotic analysis is convenient to mod-
ify slightly the form of the kernel. We will use the kernel defd by K1 (z,t; 2/, ') =

e~ =2 Ky (x,t; 2/, ') which gives the same correlation functions. It is called éie
tended Hermite kerneind reads

SN PN p o (@)pivan(y)e” @ HVAN g >y

N k(t—t)/2N (e 442) /AN . (3.93)
D b0 € PN+i(2)pNtr(y)e , <t

Kx(z,t: 2/, V) = {

For more details on the derivation of (3.92) see Appendix A.6
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Extended Airy kernel

An important extended kernel is the extended Airy kernelndefiby

ff)oo dX e* =) Ai(u — \) Ai(u/ — \) fors > ¢,

— AN ) Ai(u — ) Ai(u' — ) fors < (3:99
0 :

Alu, s;u',s') = {

In particular fors = s’ (3.94) is equal to (3.20).

In the limit of large N, K converges in the edge scaling limit to the extended Airy
kernel. The edge scaling is the following. Let= 2sN%3, z = 2N + uN'/3, and
similarly rescale’ andz’. Then the edge-rescaled extended Hermite kernel converges
the extended Airy kernel,

lim Nl/BKJI\{,(QN +uNY3 2sN?3: 9N + /N3, 23’N2/3) = A(u, s;u’,s'). (3.95)

N—oo

For the convergence, see Appendix A.7.

Extended GUE point process and its asymptotics

The extended GUE point process is the process which des@ymon’s Brownian motion
with g = 2. Let the eigenvalues;(t), ..., Ay(¢) evolve according to (3.73) and having
the stationary distribution &t= 0. The extended GUE point process is defined by

N

SV 1) =) 6\ (t) — ) (3.96)

j=1
and has the kernel (3.93). The edge scalingpf* is
nSVE(u, s) = NY3CGUE(2N + a N3 2uN?/3). (3.97)

In the sense of finite-dimensional distribution§*(u, s) has a limit asV — oo, which
we denote by;%VE(u, s). (3.95) implies that the kernel affVE(u, s) is the Airy kernel.

3.3.3 Airy process

The Airy process is the limiting process of the edge-restiamest eigenvalue of Dyson’s
Brownian motion with = 2. Let \(¢) < ... < Ay(¢) the eigenvalues of GUE random
matrices of Dyson’s Brownian motion. The largest eigensaly converges to the Airy
process

A(s) = lim N Y3(An(sN~%3) - 2N) (3.98)

N—oo

in the sense of joint distributions.
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The Airy process is defined by its finite-dimensional digttibn [81, 47]. For given
a,...,a, € Rands; < ... < s, € R, we definef on A = {s1,...,s,} x R by
f(55,7) = X(a;,00)(2). Then

P(A(s1) < aq,...,A(sn) < a,) = Det(1 — fl/zAfl/z)Lz(Aydnm)

with A the extended Airy kernel.

The Airy process was first introduced by Prahofer and Spohiheir work on the
PNG droplet [81]. They proved thad(t) is almost surely continuous, stationarytin
and invariant under time-reversal. Its single time disttidn is given by the GUE Tracy-
Widom distribution. In particular, for fixed,

P(A(t) >y) ~ e ¥ fory — oo,
~ e l/12 fory — —oo. (3.99)

hac]
2

Thus the Airy process is localized. Define the functidoy
Var(A(t) — A(0)) = g(t). (3.100)

From [81] we know that grows linearly for smalt and that the Airy process has long
range correlations:

_ [ 2t+0@) for |¢| small,
9te) = { g(oco) —2t72+O(t™*) for [¢| large. (3.101)
with g(oco) = 1.6264.... The coefficient2 of the correlation’s decay is determined

in [2, 110]. The Airy process has been recently investigaied a set of PDE’s [2] and
ODE’s [104] describing it are determined.

3.4 Description of the systems via line ensembles

Although physically the polynuclear growth model and thel3Ihg corner at zero temper-
ature are not connected, we have analyzed them using thersathematical framework.

The two systems are mapped to two different sets of nonsetting line ensembles. The
lines can be seen as the trajectories of particles which eaaatupy simultaneously the
same position (state), thus they are fermions. The ideai®htapping was already suc-
cessfully applied by Johansson to the Aztec diamond proldéin and by Prahofer and

Spohn to the PNG droplet [81].

3.4.1 Line ensemble for the polynuclear growth model

The surface height at tinig, « — h(z, T'), does not contain anymore the information of
the position of the Poisson points, because when two islareige, we lose information.
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Figure 3.2: RSK construction up to time=T.

Therefore the measure induced by the Poisson process oattbelgeights is not easy to
describe. A way of recording the lost information is to extéhe model to a multilayer
model. This is achieved using the Robinson-SchenstedHK{REK) construction.

We first recall briefly the construction of the PNG surfacegheii(z,t) of Sec-
tion 2.2.1. Leth(z,0) = 0 for all z € R and fix al’ > 0. Letw € Q2 be a configuration
of Poisson points ifR x [0, 7]. Each Poisson point is a nucleation event which generate
two lines, with slopet1 and—1 along its forward light cone. A line ends upon crossing
another line. Them(z,t)(w), (z,t) € R x [0,T], is the number of lines crossed along
the straight path froniz, 0) to (x, t). This construction is the levélof the RSK construc-
tion, which leads to a set of height functiohgx,t)(w), (z,t) € R x [0,T], ¢ < 0 as
follows. Att = 0 we seth,(z,0) = ¢ with ¢ = 0,—1, ..., where( denotes the level's
height. The top height is defined ly(z, t)(w) = h(z,t)(w). The meeting points of the
forward light cones generated by the pointsuadre called thannihilation eventsf level
0. h_1(x,t)(w) is constructed aB,(z, t)(w) but the nucleation events for levell are the
annihilation events of leve) andh_,(z,t)(w) + 1 equals the number of lines for level
—1 crossed fromz, 0) to (z,t). In Figure 3.2 the nucleation events of level are the
empty dots, whose forward light cones are the dotted lineging the annihilation events
of level j as the nucleation events for level- 1, the set of height functions(z, t)(w) is
defined for all¢ < 0. By construction, the number of lines of leyellong the path from
(x,0) to (z,t) is greater than the one of level- 1, for all j < 0. Therefore

hi(a,t) > hj_y(,t) + 1 (3.102)

forallz € R,t € [0,7],5 <0.
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Figure 3.3: Line ensemble fot = T for the point configuration of Figure 3.2.

Non-intersecting line ensembles fot =T

The RSK construction gives us the set of height functiphg ¢ < 0}. If we want to
look at the PNG height at fixed time, say= T, we consider the set of height functions
x — hy(x,T), £ < 0. By (3.102){h(-,T),¢ < 0} is a set of non-intersecting line
ensemble withe — ho(x,T') the surface profile at tim&'. Figure 3.3 shows this line
ensemble for the Poisson points of Figure 3.2.

Non-intersecting line ensembles for other space-time cuts

In some situations, as in our work on the flat PNG, it can be epm@nt to analyze a line
ensemble which corresponds to another cut in the space-@arsider a continuous and
piecewise differentiable path : I — R x [0,7], I C R an interval. Then the line
ensemble corresponding tq denoted by{ H,, ¢ < 0}, is given by H,(s) = he(7(s)),

s € I,¢ < 0. Itis a non-intersecting line ensemble because of (3.102).

Discrete multilayer PNG

The multilayer generalization of the discrete PNG growtd§2 is similar to the continu-
ous one. Asin Section 2.2.3 we consider the caset) = 0 for z—t odd. The nucleations
for the0™ level are simply theé)(x, t). When two islands of level+ 1 merge a{z, t), we
record the lost of information in the nucleation of le¥el,(z, t). The multilayer growth
then writes

he(z,t) = max{he(x — 1,t — 1), he(x,t — 1), he(x + 1,t — 1)} + we(z,t), (3.103)

where

~—~

wo(z,t) = (1),
we(z,t) = min{lhp1(z —1,t = 1) — hppy(x,t — 1), (3.104)
[h[.ﬁ.l(l‘ + ]_,t — 1) — hg+1(ﬂ?,t — 1)]+}, for ¢ S —]_7
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-2-10 1 2

Figure 3.4: Line ensembles for nucleations (3.105). Each height is represented by
a histogram of width one. The grey patterns indicated the magleations. In the last
figure the nucleation for level 1 comes from the dashed region.

wherez, = max{0, z}. In Figure 3.4 we show the line ensemble for nucleationsrgbye

(07 ):
(
(

Remark: If one prefers the framework with continuous spaoe; then the line ensembles

of Figure 3.4 are the ones taken at times £, ¢ = 2, andt = 3.

I -

(3.105)

)

v & &

—1
—2

1) =2, 3,
2) =0, 2, ®(2,2) =1.

)

3.4.2 Line ensemble for 3D-Ising corner

We have seen in Section 2.3.1 that the allowed configuratidgheo3D-Ising corner are
the 3D-Young diagrams. In view of Figure 2.13, it is natucatépresenh in terms of its
level lines or, equivalently, the gradient lines as drawfigure 3.5(a). In Figure 3.5(b)
the underlying lattice is distorted in such a way that thedgnat lines become “trajecto-
ries” on a square lattice. It is this latter representatidmciv will be used in the sequel.
Clearly, the surface statistics can be reconstructed frenstatistics of the line ensemble.
More importantly, the border line between rounded and2the3 facet is given directly
by the top linehy(i), i« > 0. As first noticed by Okounkov and Reshetikhin [69] the oc-
cupation number field corresponding to the line ensemblegefrE 3.5 has determinantal
correlations. In Section 5.2 we rederive their resultsgitie fermionic framework, which
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O

(b)

Figure 3.5: The gradient lines for the tiling of Figure 2.13: (a) on t{Hé1)-projection,
(b) as function of.

is a convenient starting point for our asymptotic analy$ie could have chosen to de-
scribe the 3D-Young diagrams with the level lines. In thisecawve would have obtained
the border line in thé — 2 plane directly, but by symmetry they are equivalent.

The gradient lines of Figure 3.5 are defined through

t=7—1, he(t)="h(i,j)+0(,7), (3.106)

where
Ui, ) =—(@+7—li—j[)/2 (3.107)

labels the line(s, j) € Z3. hy is increasing fot < 0 and decreasing far> 0,

he(t) < he(t+1), t<0, he(t) > he(t+1), t>0, (3.108)
with the asymptotic condition
thin he(t) = £. (3.109)

By construction the gradient lines satisfy the non-crggsonstraint
hg_l(t) < hg(t — 1), t <0, hg_l(t) < hg(t + 1), t>0. (3110)

Height configurationsh are mapped one-to-one to gradient lines satisfying (3,108)
(3.109), and (3.110).

We extendh, to piecewise constant functions @ such that the jumps are at mid-
points, i.e., at points o7, + % For a given linehy, lett,; < ... < tyue < 0 be the
left jump times with jump heights, 1, . . ., St,k(0) and let0 < bok@)+1 < -+ < Tor@)rn(e)
be the right jump times with jump heightss, ;)11 - - ., —Sek0)1n(r). The volume of the
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3D-Young diagram is simply given by the sum of the area belosvlinesh; (of course
with respect to the basis levg), that is

k(0)+n(e)
Vh) = > sujltel. (3.111)

j=1
Thus from (2.57), (2.58) follows that the weight for the licenfiguration{n,},— —1.. IS

E(€)+n (L)

I exp {1n(1 - 1/T)( > sz,j\t&j\)}. (3.112)

ez _ j=1

Connection with directed polymers

In Section 2.3.2 we anticipated that there is a connectidwd®n a discrete model of
directed polymers and the 3D-Ising corner. Now all the nigtioeeded to explain it are
introduced. The directed polymers are#h and generated by independent random vari-
ablesw(i, j), (i,7) € 72, geometrically distributed with mean valge“*!, ¢ € (0,1).
The role of the growth tim& — oo is now taken over by — 1. Let us denote by.(7, )
the length of the longest directed polymer frémj) € Z3 to the infinity. Then we want
to show that

h(i,0) = L(:,0), h(0,i) = L(0,7), >0 (3.113)

in law.

It would be natural to do the PNG growth starting from the epiand as in the discrete
PNG growth explained above. But this does not give us thésstat of theL(:, 0) all at
the same time. Instead we do the backwards PNG growth, whevdlgstarts from the
infinity and come back to the origin. Since we want to fit in tlieyious framework of
PNG growth, we invert the time axis. Thus we define —(j + 7)/2, which then goes
from —oo to 0. Moreover, denote = (5 — 4)/2 and conside&)(z,t) = w(i,j) forz —t
even,|z| < —t, andw(z, t) = 0 otherwise. We apply the discrete PNG growth dynamics
(3.103) with initial conditions,(z, —oo) = ¢ for all x € Z, ¢ < 0. The dynamics runs up
tot = 0, see Figure 3.6 for an illustration.

Consider the set of line ensemi]é/,(j),j € Z,¢ < 0} associated to the path ex-
pressed in théz, t) coordinate axis by

v:7 — ZLXT_
k' — (k,—|k]). (3.114)

The correspondence between PNG and directed polymersesnpld, i) = Hy(7)
and L(i,0) = Hy(—i) for i > 0. Thus we need to see thal(+i) = h(0,£i). This
is obtained by proving that the gradient lines of the 3Dgstorner and the set of line
ensemblg H,, ¢ < 0} are indeed identical. First let us check that the condit{@508),
(3.109), and (3.110) are exactly satisfied{gy,, ¢ < 0}. (3.109) holds by definition of
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growth

S

A

Figure 3.6: (Backwards) PNG growth and 3D-Ising cornefi,j) € Zi andzx =
(G —i)/2t=—=(i+7)/2.

our initial conditions. For (3.108) considéeK 0, the caseé > 0 is analogous. (3.108) is
the only constraint between the heights of a level-line bsea

Hy(i) = he(i,i) = max{ho(i — 1,i — 1), hy(i,i — 1), he(i + 1,i — 1)} + &(4, )
> h(i—1,i—1) = Hy(i — 1). (3.115)

The third condition (3.110) reflects the non-intersectingstraint of the PNG growth,
he(i,) > he_1(i,1), which implies

Hg_l(i) = hg_l(i,i) < hg(Z,Z) < hg(Z —1,2— 1) = Hg(l — 1) (3116)

Next we show that the distribution of the gradient line enskerand{ /#,, ¢ < 0} coincide.
A given configuration of line§ H,(i), ¢ < 0,7 € Z} carries the weight

II q@+j+Uw@J[ (3.117)

1,520

Consider the extension ¢f,(t), ¢ < 0} fromt € Z tot € R defined by settingd,(t) =
H,(t) for t € Z and with jumps only aZ + 3. In term of RSK lines, eacly, j) € 7%
generates (i, j) pair of lines. Each RSK line originated@t j) € Z?% which moves in the
(0, —1) direction (with slope-1 in PNG picture) generates an up-jumptat —(i + %)

in some level line and each line moving in thel, 0) direction leads to a down-jump at
t = j + 1 in some level line. The weight of a couple of lines coming frony) € Z2 is
¢"*7*1 and can be divided by assigning the weight/ to each up-jump at= —(i + 3)
and the weight’*!/2 to each down-jump at= j + 3. It then follows

D (i+j+Dw(i,j) = Z/R(m(x) —O)de=> ") (Hi(i)—0),  (3.118)

4,50 £<0 0<0 i€

which is the same weight of the line ensembles for the 3Dglsiorner configurations
(3.112). Therefore the set of line ensemb|éf, ¢ < 0} is identical to the gradient lines
of the 3D-Ising corner.



Chapter 4

Analysis of the flat PNG line ensemble

This chapter is devoted to our result on the flat PNG model [E8kt we formulate our
main result and then we prove it.

4.1 Formulation of the result

We consider the line ensemble introduced in section 3.4.thiaflat PNG model at time
t = T. Itis statistically translation invariant. Define the pigimocess or¥, describing the
line ensemble at fixed position, say= 0, by

aat, | 1 ifaline passes &0, j),
(1) = { 0 if noline passes a0, j). (4.1)

The largestj such that(!l2(j) = 1 is the PNG height and from the Baik and Rains re-
sult [13] we know that it fluctuates onA/® scale aroun@7. The edge rescaled point
process is defined as follows. For any smooth test fungtiohcompact support,

M) =AM F((G —20) /(152723 (4.2)

JEZ

where the factoR~%/? is the same as in (2.45). Notice that in (4.2) there is no ptefa
to the sum. The reason is that close the points oft#t are ordefT/? apart and)i*
remains a point process in the limMiit— oc. 72t has a last particle, i.epat(¢) = 0 for
all ¢ large enough, and even in tlié— oo limit has a finite density which increases as
V—€ asé — —oo. Consequently the sumin (4.2) is effectively finite.

As our main result we prove that the point proce$s$ converges weakly to the point
process)“°F asT — cc.

Theorem 4.1. For anym € N and smooth test functions of compact supgert. ., f,.,

Jim ET(HU%at(fk)) = E(HUGOE(fk))- (4.3)
k=1 k1
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[Er refers to expectation with respect to the Poisson proceasuneg . The expected
value on the r.h.s. of (4.3) is computed via the correlatiorctions (3.60).

The result of Theorem 4.1 is a first step towards a conjectaréne® self-similar sta-
tistics of the PNG with flat initial conditions. The startio@pservation is that, as for the
PNG, also to random matrices one can introduce a line engamhblnatural way. This is
the Dyson’s Brownian motion, see Section 3.3.1. The heifgttissicsz — h(x,t) for the
PNGdropletis linked to the Airy process by

711_{20 T-1/3 (h(TTQ/B, T) —9./T2 — (TT2/3)2> — A(T), (4_4)
where the term subtracted fromis the asymptotic shape of the droplet [81]. To obtain
this result, Prahofer and Spohn consider the line ensentltééned by RSK and define
a point process like (4.1) but extended to space-time. Itdstarminantal point process
and in the edge scaling it converges,las~ oo, to the point process associated with the
extended Airy kernel. Thus they prove not only that the toye Iconverges to the Airy
process, but also that the top lines converges to the top ihByson’s Brownian motion
with 6 = 2.

One can exteng{°" of (3.58) to space-time as in (3.97), i.e., define

N
NSO (u, s) = NY3CSOP(2N + oNY2 2uN'?),  (§OF(z,t) = Z(S(z\j(t) —x) (4.5)

J=1

where(°F is the extended point process of Dyson’s Brownian motiomwit= 1. The
conjecture is that, under edge scaling, the progessh(z, T') for flat PNG is in distribu-
tion identical to the largest eigenvalue of Dyson’s Brovmmaotion with3 = 1. The result

of Theorem 4.1 makes this conjecture more plausible. Inf@chow know that, not only
h(0,T) in the limit 7" — oo and properly rescaled is GOE Tracy-Widom distributed, but
also that the complete point procegé' converges to the edge scaling of Dyson’s Brown-
ian motion withg = 1 for fixed time. Forg = 1 Dyson’s Brownian motion one expects
that under edge scaling the full stochastic process hadta Muare explicitly, one focuses
at the space-time poiri2.V, 0), rescales space by a factst/?, time by N2/3, and expects
that the statistics of the lines has a limit fdr — oo. It could be that this limit is again
Pfaffian with suitably extended kernel. But even fb+ 1 Dyson’s Brownian motion this
structure has not been unravelled.

The outline of the remainder of the chapter is the followilmgsection 4.2 we introduce
an auxiliary point process,’™, from which¢f#* can be recovered,>™ derives from the
end-points of a line ensemble with a relatively simple disiion. In section 4.3 we obtain
a formula for then-point correlation functions of ™. They are given by Pfaffians of a
2 x 2 matrix kernel. In section 4.4 we derive an explicit expresf the kernel and in
section 4.5 we analyze its edge scaling. Finally in sectiénwe first prove the same as
Theorem 4.1 for the edge scaling@f™, and secondly using it we can prove Theorem 4.1.

Appendix 4.A contains some bounds used in the asymptotigsina
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Figure 4.1: A configuration with three Poisson points in the triangle and their sym-
metric images with respect to the= 0 axis. The pathy is the bold line. On the right we
draw the top lines of the line ensemble associateg {7, (s), 5 < 0, s € [0, TV2]}.

4.2 Line ensemble

4.2.1 Line ensemble for thex symmetry

The line ensemble for flat PNG generated by RSK at time 7" is not easy to analyze
because there are non-local constraints on the line coafigus. Instead, we start consid-
ering the point procesg™. First remark that this point process depends only on thetgoi
in the triangleA, = {(z,t) € R x R4|t € [0,T],|z| < T — t}. We then consider the
Poisson points only id\ , and add their symmetric images with respect totthe( axis,
whichareinA_ = {(z,t) € RxR_|(z, —t) € A, }. We denote by’ the point process
at (0, 7") obtained by RSK construction using the Poisson points agid sgmmetric im-
ages, see Figure 4.1. To stuglf™ we consider alifferent line ensemble_et us consider
the path in space-time defined bys) = (T — s/v/2,5/v/2), s € [0, Tv/2], and construct
the line ensemblé H;(s),j < 0,s € [0,7+/2]}, as follows. The initial conditions are
H;(0) = j since the height at= 0 is zero everywhere. Every times thatrosses a RSK
line corresponding to a nucleation event of leyeld; has an up-jump. Then the point
process,’" is given by the points{Hj(T\/ﬁ),j < 0}. In Proposition 4.3 we show that
flat can be recovered bg}’™, in fact we prove that; (0, T) = 1 (H;(Tv/2) + j).

Next we have to determine the allowed line configurations ttwed distribution in-
duced by the Poisson points. This is obtained as follows. Weeithat theparticle-hole
transformation on the line ensemH&;(s), j < 0,s € [0,T+/2]} is equivalent to a par-
ticular change of symmetry in the position of the nucleatwants, and we connect with
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-
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L
L

Figure 4.2: Line ensembles fos = (245163) andéd = (361542). For the even
levels,¢ = 0, —2, we use the solid lines and for the odd levéls; —1, —3, the dashed
lines. The line ensemble ¢f(c) corresponds to the line ensemiBl&;(s),j < 0,5 €
[0, T+/2]} of Figure 4.1.

the half-droplet PNG problem studied by Sasamoto and Imard].

Young tableaux

Leto = (0(1),...,0(2N)) be a permutation of1, ..., 2N} which indicate the order in
which the Poisson points are placed in the diamandJ A _. More precisely, letz;, ;)
be the positions of the points with the index= 1, ..., N such that; + z; is increasing
with 4, ando is the permutation such that;) —z,; is increasing in too. Let us construct
the line ensembles along the patfi$0) — (0,7) and(—7,0) — (0,7). The relative
position of the steps on the line ensembles are encoded iviolveg tableauxS (o) and
T(o) constructed using Schensted’s algorithm. If ke step occurs in lingd;, then in
the Young tableau there iskain row j, see Figure 4.2.

In our case the points are symmetric with respect to thetaxi®) and we refer to it
as the symmetryg. In the case studied in [40], the points are symmetric wipeet to
the axisx = 0 and we call it the symmetryn. Consider a configuration of points with
symmetryN and leto be the corresponding permutation. The RSK constructiotslea
to the line ensembles df (o) and S(o) as shown in the left part of Figure 4.2. If we
apply the axis symmetry with respect to+ ¢t = 0, then we obtain a configuration of
points shown in the right part of Figure 4.2. The points have the symmetrys and
the corresponding permutationis obtained simply by reversing the orderagfthat is, if
o= (o(l),...,0(2N)) thens(j) = o(2N + 1 — j). By Schensted’s theorem [88],

S(5) = S(0)t, . (4.6)

Moreover, the positions of the steps in the line ensembleéf @f and.S(5) occurs at the



4.2 Line ensemble 73

Figure 4.3: Particle (solid) and hole (dashed) line ensembles for tlzangke of Fig-
ure 4.2. The particle line ensemble is the one associatddSxit), and the hole line
ensemble is the one ¢f(¢) reflected with respect to the lige= 1/2. The pairing rule
is shown by the brackets.

same positions, but of course in different line levels. Fig4.2 shows an example with
o = (24516 3), for which the Young tableaux are

(1356
S(o)<z;1 ) S()="T(c) =
6

35)

At the level of line ensemble we can apply the particle-h@dedformation, which means
that a configuration of lines is replaced by the one with juraipthe same positions and
the horizontal lines occupy the previous empty spaces,@srsim Figure 4.3. Let us start
with the line ensemble corresponding¢o), then the Young tableau for tHele line
ensemblas given byS(o)!. In fact, the information encoded ifi(o) tell us that thej™
particle has jumps at (relative) positiéi{o);x, & > 1, for j > 1. On the other hand,
the ;" hole has jumps where the particles have thi&ijump. Therefore the particle-hole
transformation is equivalent to the symmetry transfororati — 1.

Sy Ot W

Particle-hole transformation

Allowed line configurations and measure

Sasamoto and Imamura [40] study the half-droplet geometry’NG, where nucleation
events occurs symmetrically with respectte- 0, i.e., with theia symmetry. In particular,
they prove that the point processiat 0 converges to the point process of eigenvalues of
the Gaussian Symplectic Ensemble (GSE). Its correlatioations have the same Pfaffian
structure as GOE but with a different kernel. In a way the 8neemble they study is the
hole line ensemble described above, thus their edge sdalinges at the top holes, i.e., in
the region where the lowest particles are excited. Notiaettie change of focus between
particles and holes changes the statistics from GSE to GQI. differs from the case
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of the PNG droplet [81] where for both holes and particlesdtige statistics is GUE.
Although the result of [40] cannot be applied directly to g@ymmetry, some properties
derived there will be of use.

From [40] we know that for the symmetry a hole line configuration is allowed if:
a) the lines do not intersect, b) have only down-jumps, cy gaisfy thepairing rule:
HY®(TV/2) = HY (TV2) for all j > 1. This implies that for the symmetny a line
configuration{ H; } is allowed if: a) the lines do not intersect, b) have only upyps, c)
H;(T+/2) — H;(0) is evenfor eachj < 0. Moreover, there is a one-to-one correspondence
between allowed configurations and nucleation events. Tblegbility measure for the
line ensemble turns out to have a simple structure. ConBidisison points with intensity
o and symmetn. Each Poisson poirtz, t) € A, has a probability dzdt of being in
[z, x + dx] x [t,t + dt]. In the corresponding line ensemble this weight is carrietiio
jumps, therefore the measure induced by the points on adinfiguration{ &} is given
by /g ™Ps "t} times the uniform measure.

4.2.2 Flat PNG and line ensemble fom symmetry

The correspondence between the point pro¢k$sand(’™ is as follows. Let us consider
a permutatiom with Young tableawb (o) of shape A, As, ..., A\p). Let, fork < m, ax(o)
be the length of the longest subsequence consistikglafjoint increasing subsequences.

Theorem 4.2(Greene [36])) Forall k =1,...,m,
ag(o) = A+ 4 A (4.7)

The geometric interpretation is the following. Lete the permutation which corre-
sponds to some configuration of Poisson point&\in U A _. Thena, is the maximal
sum of the lengths of non-intersecting (without common points) directed polysrfeom
(0,=T)to (0, 7).

Proposition 4.3. Let 7 be a Poisson point configuration i, and let the corresponding
Young tableauS(7) have shapé), \s,...,\,,). Let7 be the configuration of points
on A, U A_ with symmetrys which is identical tor in A,. ThenS(7) has shape
(A Ay Am) = (200, 200, ..., 20).

Proof. To prove the proposition is enough to prove thgtt) = 2ax(7) fork =1,...,m.

i) ap(7) > 2ax(m): it is obvious since we can choose thealirected polymers o by
completing the ones omn by symmetry.

i) ar(7) < 2ax(m): assume it to be false. Then there existdirected polymers im\
andk in A_ such that the total length is strictly greater ti2an (7). This implies that at
least one (by symmetry both) of the setskodlirected polymers has total length strictly
greater that, (7). But this is in contradiction with the definition afy(7), therefore
ap(7) < 2ax (). O
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Since\;; = h;(0,T) — j and\,_; = H;(T\/2) — j, it follows from this proposition
that
hi(0,T) = 3(H;(TV2) + j) (4.8)

forall j <0.

4.3 Correlation functions

Non-intersecting lines can be viewed as trajectories ahif@ens in discrete spacg and
continuous timé0, 7+/2]. Let us start with a finite number of fermiorsy, which implies
that only the information in the fir&V levels in the RSK construction is retained. For any
configuration, the number of non perfectly flat lines, is aogly bounded by the number
of Poisson points id\ .. On the other hand for fixédl, the probability of having a number
of Poisson points greater thaW decreases exponentially fast fSrlarge. First we derive
an exact formula for the-point correlation function for finitéV, and then take the limit
N — oo so that, for any fixed”, each line configuration contains all the information of
the Poisson points. Finally we consider the asymptoticdogd? .

Leta} anda;, j € 7, be the creation and annihilation operator for the fermammd())
be the state without fermions. The initial state is then igivg

0

) = ] «0), (4.9)
j=—2N+1
and the final state is
0
[SE D | () (4.10)

neCy j=—2N+1

whereCy = {{no,...,n—ant+1}|n; > n;j_1,n; > 0}. Let us define the up-jump operator
as

o= ap,ax, (4.11)

keZ

which when applied offf2;,,) is actually a finite sum. Then the evolution from the initial
state(t = 0) to the final ongt = T'v/2) is given by the transfer operator

exp(Tay), T =+/20T =2T. (4.12)

The linear statistics, i.e., for a bounded functipnZ — R, is

0 Qfin 71— ara, eTer|Q,
IEN,T( I (1—g(xﬁ“))):< in] [L,ez (1 — g(y)agay,)e”** [Qin) (4.13)

j=—2N+1 ’ (Qin| HyEZ elen Qi)
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where thez™, j € {—2N +1,...,0} are the position of the fermions at tirfia,/2. Let

us denote by™ (x4, ..., x,) then-point correlation function ofY™. Then
0 (_1)71 n
EN,T( IT a- g(w?“))) => > M) [[ele). 414
j=—2N+1 n>0 T,y €7 j=1

For finite N, p™ = 0 for n > 2N.

Proposition 4.4. Let us define the matrik with entries

1 ~
b, = —=T"" —1 4.1
x,1 (l' o 2)' @(x 2)7 ( 5)

with © the Heaviside function, the antisymmetric matricesnd A

g 1+sgn(x —y)(—1)*1 —sgn(z —y)(—1)¥
T,y 2 2

sgn(z — y), (4.16)

A= ¥F,8,,P,, =[50 (4.17)

x,YEZL

Then then-point correlation function, for. € {0,...,2N}, are given by

P (xy, .. x,) = PE[K (2, Ti)liietm (4.18)

-----

whereK is a2 x 2 matrix kernel, K (z,y) = (

Kl,l(xa y) = — Z?,j:fQNJrl q)g,xA;,j q);',y
Kio(z,y) = — Z?,j:—QN-‘,—l @g,zAi_,jl [étst]j,y = —Kzi1(y, ) (4.19)
K2,1($> y) = - Z?,j:—2N+1[thSt]i,mAijjl@;}y |
Koo(m,y) = St =30 oy l® 50 [ [5";,.
When N — oo, (4.14) becomes a Fredholm PfaffiaRf(J— Kg) =
v/Det(1 — J-1Kg), whereJ = _01 é , see Section 8 of [82]. In this case, we

consider bounded functiomswith support bounded from below, so that the sum in (4.14)
is well defined. From the point of view of operators, the daieant has to be though as
defined through the modified determinant like in the case®f3BE case, see discussion
atthe end of Section 3.2.3. Finally, note thiaits invertible becausBet(A) is the partition
function of the line ensembile.

Proof. Since itis often used, we denote the ordered set{—2N+1,...,0}, and instead

7777
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{zf"}) 'n € Cy as given in (4.10), be the weight of fermions starting fronsipons

{a} = (#]")ier, 2" = 4, and ending af{zi"} = (2");cr, 2 = j + 2n;. The non-
intersection constraint implies [49] that the weight carebpressed via determinants,
U}({inn} — {l'lf,lln}> = Det[gom]i,je] (420)
with i i
Pijg = <®|aj+2nj€m1aﬂ®> = [eTmLHnj,z‘ = @j+2”.7vi' (4.21)

Taking into account the even/odd initial position of thenf@éns, (4.20) can be rewritten

as
0

w({2™} — {2'}) = Det[®;(x] Nijer [[ e(f)o(ad; ) (4.22)

=—N+1
with . e ) 1y
e(z) = # o(z) = # (4.23)

Let us denote by(z_sn 41, - - -, x) the probability that the set of end poir{ts?n,j =
—2N + 1,...,0} coincide with the se{z_sny1,...,20}. We want to show that this
probability can be written as a determinant times a Pfaff&ince thex;’s do not have to
be ordered, letr be the permutation of —2N + 1,...,0} such thate.;) < x¢41), that
is, ;) = 2, i € I. Moreover, define the matrix = [=, ;]; ;1 by settlnguw i n(j
Then

[ (25")ijer = [@i(2))]ijer Z. (4.24)
Now let us show that

0
1 eliol 1) = PilStu ulijer (4.25)

=—N+1

Since x?n <z, the components,j (i < j) of the r.h.s. matrix are given by
o(zf")e(zf"). The Pfaffian of a matrid/ = [M; ;] jes is

0
Pf(M>: Z (_1)‘0‘ H M0'2i7170'2i7 (426)
o i=—N+1
02;-1<02;

where the sum is on the permutationf {—2N + 1,...,0} with 09;_; < 09. The
identity permutation gives already l.h.s. of (4.25). Thus mave to show that all other
terms cancels pairwise. Take a permutaticssuch that(2i — 1) < 0(2j — 1) < 0(2i) <
o(25) and define the permutationf by settingo’(2j) = o(2i), 0'(2i) = o(2j), and
o'(k) = o(k) otherwise. The term of the Pfaffian coming fremando’ are identical up
to a minus sign becauge-1)°l = —(—1)I°’l. Moreover, the only permutation for which
0(2i —1) < o(2j — 1) < 0(2i) < o(2j) can not be satisfied for sonigj is the identity.
Consequently (4.25) holds.
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Finally, define the matrbdG = =*[S] , ]ijer . Replacing the definition of we
obtainG = [S;ﬁn Janlijer- Then

pl_an+1, - w0) = w({z™} — {a3"}) (4.27)
0
= Det[®;(zi")]ijer [[ e@o(2fy )
j=—N+1

= Det[®;(z;)]; jer Det(Z) PHE"[S;, , ijer Z)
= Det[®;(z))]s jer PE[S;, o Jijer

where we used the property of PfaffiaR§(='T=) = Pf(T) Det(=Z), see e.g. [96], and

Det(Z) = (—1)/7.
The probability (4.27) is of the form (3.23) with
e(x,y) =S, filr) =y (4.28)
from which follows that
Mij;=—A;  (efi)(x) = —[SPs;, (4.29)

and the kernel is given by

’ - _Kl,l(xvy) KL?(xvy)
K'(z,y) = ( Kor(z,y) —Koa(t,y) ) ) (4.30)

But K and K’ are two equivalent kernels (they give the same correlatiogtfons) since

K' = U'KU with U = i < (1) Y ) andPf[U KU = Det[U] Pf[K]. We usek instead
of K’ uniquely because another derivation of the kernel gavend we already carried
out the analysis. O

4.4 Kernel for finite T

In this section we compute the components of the kernel givéh.19). At this stage we
take the limitV. — oo. The justification of this limit is in the end of this sectiofhe first
step is to find the inverse of the matuk First we extend! to be defined for all, j € Z
by using (4.17) to all, j. Let us divide/*(Z) = (*(Z%) & (*(Z_), whereZ* = {1,2,...}
andZ_ = {0,—1,...}. The inverse ofd in (4.19) is the one in the subspal¢Z ). Let
us denote by”_ the projector orZ_ and P, the one or¥* .

Lemma 4.5. The inverse ofA in subspace/?(Z_), which can be expressed as
P (P_AP_+ P,)"'P_,is given by

[A_l]i,j — [a_le—’foc,lp_e—i“al o e—’focflp_e—i“alal]i?j (431)

Where[al]i,j = 5i,j+1 anda_1 = Ozti.
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Proof. First we rewriteA as a sum of a Toeplitz matrix plus the remainder. d.ebe the
matrix with [a.]; ; = 6; ;275 anda, = 1 — a,. Then
S = Z a2, — Z o, (4.32)
k>0 k>0

It is then easy to see that, fof(x) an even polynomial of arbitrarily high order

Velasr)ae = acVe(azr),  Velazi)a, = aoVe(asr) (4.33)
and forV,(z) an odd polynomial of arbitrarily high order
Volazi)ae = a,Vo(as1),  Volawi)a, = acVo(as). (4.34)
HenceA can be written as
A =exp(Ta_;) Z(a%kﬂao — a®+a,)(cosh(T oy ) + sinh(Tay)). (4.35)
k>0

We pull the last factor in (4.35) in front of the sum using tleenenutation relations (4.33)
and (4.34), and, after some algebraic manipulations, waobt

A=M+R (4.36)
PHQ — QNP R = L(Q + Q")(a — ), With Q@ = Y4003+ and
Let B = [ (a1 P. — P_ay)®~'. We want to prove that it is the inverse df

in the subspacé*(Z_). First notice thatB;; = 0if ¢ > 1 orj > 1, which implies
|A-B);; =[P-AP_ - BJ; j fori, j <0. Therefore, for, j <0,

[A-Blij=[(M+R)- [ Us® '], (4.37)
with
U() == O[_1P_ - P_Ozl, (438)
and, expanding/ + R, we have
[A-Bl;;, = [(eTO‘—l—Q;Q eTor 4 —QJ;Q (o — oze)> (eTa—oneTm)Lj

= [efoneTe] 4 [efertpe ] (4.39)

i,3 (2]
wherelU; = $(Q — Q")Uy andUs = £(Q + Q")(a — )Uy. The components of these
matrices are given by

1 14+ (—1)"
[Ul]n,m = 5n,m1[n§0} + §5m,0 Sgn<n - 1)#7
1 1+ (—=1)"
[Uz]n,m == i(smg#, (440)

and a simple algebraic computation leads thefdte BJ; ; = ¢, ; for 4,5 < 0. Finally,
sinceA andB are antisymmetridB - A]; ; = [A"- BY];, = [A- B];; = J; ; too. Therefore
B is the inverse ofd in the subspacé&(Z_). O
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The second step is to find an explicit expression for the Kerakements. Using the
fact that{A~'], ; of Lemma 4.5 is zero foi > 1 or j > 1, we can extend the sum over all
1,7 € 7Z and obtain

Kii(z,y) = —[@ATI®Y,,,

Kio(z, = K , ),

1,2( y) 2,1(9 ) (4.41)
K2,1(:E7y) - _[S@Ailq)t]m,ya

Kos(z,y) = S;,—[SPATI®S,,

Putt = e¢Te-To-1 We write S as in (4.32), use the commutation relations (4.33) and
(4.34), and after some straightforward algebra obtain

Ky = —WU0,
Koy = —VUYSU, — U,)V" — WU, ¥, (4.42)
K272 == St —|— SKl 13

wherel is given by (4.40), and

[Uo]mm = (5n,m—1_5m,n—1)]1[n,m§0]
114 (—1)
SUy— Uil,,, = 5%%0. (4.43)

Using these relations we obtain the kernel elements, whiehsammed up in the
following

Lemma 4.6.
K(z,y) = G(z,y) + R(x,y), (4.44)
with
Rl,l(l‘7y) = 07
1Y, o
Rl,?(x7y> = _TJerl(ZT)a
—1)* -
Ryi(z,y) = ( 2) Jy1(27),
1
Foa(w,y) = —S(wy)+sen(e )
—E———-EZLJ (27) + VS g oF 4.45
y+2m ) 9 Z 2n+z( )7 ( . )
m>1 n>1
and
Gra(,y) Z Jotn1(27) Iy (2T) + Z Jytnt1 (2T 1) Join(27), (4.46)
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. . .1
Gl )2 .%’ y Z Jern y+n( T) - Jx+1<2T) < Z Jy+2m—1(2T> - 5)7 (447)
n>1 m>1
1
Gaa(z,y) 2; Join(2T) Jyn (2T) + Jyia (27) (21 Joram—1 (2T) — 5), (4.48)
Goo(,y) = DO Jorom@D) Jyront1(2T) =D > Toroms1(2T) Jyron(2T)

m>1n>m n>1 m>n
1

2 Z Jorom(2T) + Z Jyron(2T) — 7 sen(z —y), (4.49)

m>1 n>1
whereJ,,(t) denotes the th order Bessel function.

Remark: this result could also be deduced starting fromi@eét of [82]. Now we
justify the N — oo limit. Let us first explain the idea. Denote the séts= {—2N +

,0}andL = {—N +1,...,0}. We consider the kernel's elements fary > 0.
For (i,5) € I?\ L?, the inverse ofA for finite N differs from the inverse fotV = o
only by O(e=#N) with = u(T) > 0. On the other hand, the contribution ¥, (z, y)
coming from (i, j) € (I \ L)? are exponentially small itv. Therefore, replacing the
inverse ofA for finite V with the inverse obtained in Lemma 4.5 we introduce only an
error exponentially small itv. The dependence of the kernel’'s elements\ois only via
the extension of the sums in (4.19), which limit is the one wewéd in Lemma 4.6.

In what follows we denote byl y the2/N x 2N matrix (4.17) and byd the N = oo
one.

Lemma 4.7. If we replace[A,'];; by A; ] in the kernel's elements (4.19), then fat

large enough, the error made @(e+") for some constant = x(7) > 0. The error is
uniform forz, y > 0.

Proof. Here we use some results of Appendix 4.A.1. First, we defieentatrix B by
settlng Bij = A;jfor (i,j) € I x L, andB;; = —AZjy. 1 ; oy fOF (i,7) €
x (I'\ L). Slnce[AN]” = —[An]-ant1-i—2n+1-;, DY (4.107) follows that

AvB=1-C (4.50)
for some matri>xC with ||C|| = max; ; |C; ;| < O(e #2Y). Therefore, forV large enough,

Ay'=B(1+D), D=) c* (4.51)

k>1

with ||D|| < O(e #2V) too. Thus, replacingly' with B we introduce an error in the
kernel's elements otD(NQe—WN)

If we replaceB;; with A; | also in(i,j) € L x (I'\ L) we introduce an error of
O(N?e=#3N) with 1z = mln{ul, pe/2}. This is achieved using (4.106) fox j + N/2,
and (4.104) otherwise.
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The final step is to show, using only the antisymmetrylgf that the contribution of
K . coming from(i, j) € (I'\ L)? are also exponentially small iN. For (i, j) € (I\ L)?,
it is easy to see that, uniformly in y > 0,

®,; = Ofe ™V (4.52)
(S®),; = O(e ), foroddz,
(8®),; = sinh(T)+ O(e~™™), for evenz and even,
(8®),; = cosh(T)+ O(e ™), for evenz and odd.

Therefore, the contributions fdk 1, K 2, and K, ; areO(N%e—#N) because they con-
tain at least a facta®(e~**") coming from®,; or <I>§7y. For K, there are terms without

O(e~*N), and containing onlyinh(7") and/orcosh(T). These terms cancel exactly be-
causedy' is antisymmetric. Consequently, we can simply repl&ge with A ].1 also in
(i,5) € (I'\ L)* up to an errol(N2e ), O

4.5 Edge scaling and asymptotics of the kernel

In this section we define the edge scaling of the kernel, pegome bounds on them
which will be used in the proofs of Section 4.6, and compugrth — oo limit.
The edge scaling of the kernel is defined by
G (6, 6) = TGu(RT + 4T RT +&T)
GE¥(6,&) = TYAGLRT + 4T3, 2T + &TYF)), k= (1,2),(2,1)
Gr85(6,6) = Goa2T + 6T [2T + &TY7)), (4.53)
and similarly for Ry (&1, &).

Next we compute some bounds on the kernel’'s elements sugivien possible, they
are rapidly decreasing f@g, & > 1.

Lemma 4.8. Write

1, r<0 1+ |z, x<0
() = { exp(—z/2), >0 " () = { exp(—z/2), >0 " (4.54)
_ [ @fa])? 2<0
Qo(z) = { exp(—1/2), ©>0 (4.55)

Then there is a positive constafitsuch that for largel”

‘R;%%?2<€17€2>| < CQ(&),
|RSE(6,6)] < CQ(&), (4.56)
IRFE,(6.6)] < C(u(&) + (&),
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and
|G?§%?1(§1,§2)| < CQy(61)2(E2),
G861, 6)| < cm(&)( + (%)), (4.57)
GE5 (6, &) < C(&)(1+ (&),
G555(61, &) < CL+ (&) + (&) + (&) ().

Proof. We use Lemma 4.13 and Lemma 4.14 to obtain the above estimate.
1) The bounds ohR55% (&1, &2)| and| Rys5 (€1, &)| are implied by Lemma 4.13.

2) Bound on R, (&1, &).

odee 5 1 ~
|RT%§2(§17 52)| < Z 5 Z |J[2T+(2M+§2)T1/3](2T)| + (51 — 52) (458)
MeN/T1/3
and
Z |J[2T+(2M+§2)T~1/3}(2T)| < Z |J[2T+(M+§2)T1/3](2T)|' (4.59)
MeN/T1/? MeN/T1/3
Foré&, <0,
(4.59) < > pzarrn @D+ 0 arags 1) (4.60)
ME(&a+N/T1/3)N[€2,0] MeN/T1/3

By (4.108) the first term is bounded by a constant tirfies- |£|) and by (4.109) the
second term by a constant. Rpr> 0,

459) < > s (2D)] (4.61)
Meéa+N/T1/3

which, by (4.109), is bounded by a constant times(—¢,/2). Therefore

Z ‘J[2T+(M+£2)T1/3](2T)‘ < C (&) (4.62)

MeN/T1/3

for a constant’, from which follows the d~esired bound.
3) Bound onG55, (&1, &)|. Let us definel, (t) = J,41(t) — J,(t). Then

dge ~ =\ 7
G;;i(fbfz) = 1 Z J[2T+(£1+M)T1/3](2T>J[2T+(£2+M)T1/3}(2T>

MeN/T1/3

- (&< &) (4.63)
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For largeT’, the sums are very close integrals and this time we use batimae4.13 and
Lemma 4.14, obtaining

G35 (6,6 < C / " AMQ(M + €) (M + &)
0
< c / MO, (M + €)% (M + &) (4.64)
0

for a constantC > 0. It is then easy to see that r.h.s. of (4.64) is bounded aswsl|
for & < & < 0by C(1+ |&1])% for & < 0 < & by C(1 + [&])? exp(—£2/2), and for
0 < & < & by Cexp(—£1/2) exp(—£2/2), for some other constaidt > 0. Therefore
|G (61, 62)| < CO(61)2(&).
4) Bound onG5:55,(61, &)
GeT(t%Z(flvf?) = Z J[2T+(51+M)T1/3}(2T) (T1/3J[2T+(§2+M)T1/3}(2T))
MeN/T1/3

. - ~ 1
T S anmriy@D( Y Jarigeanmve @D = 3).
MeN/T1/3

In the first sum, the term witf, is bounded by a constant and remaining sum was already
estimated in (4.62). The second term is bounded by a cortstag 2 (&;)2(&,). Using
Qo(&1) < (&) we conclude thallZ55% (&1, &)| < C (&) (1 + Qa(&).

5) Bound on|G5-5, (&1, &)|. The bound is the same as 16555 (£1, &) -

6) Bound odGeTf%f‘Q(fl, &)|. The terms with the double sums are estimated applying twice
(4.62) and are then bounded by (£1)€2;(£2). The two terms with only one sum are
bounded by, (&) and, (&2) respectively, and the signum function by4. Therefore,

for some constart’ > 0, |G55(61, &) < C(1+ (&) + (&) + (&) (&), O

Finally we compute the pointwise limits of th@'s since they remains in the weak
convergence.

Lemma 4.9. For any fixedy, &,

lim G55 (&1, &) = GROP(&1, &), (4.65)

T—o00
where theG{°"’s are the ones in (3.61).

Proof. Let us considef,, & fixed. In the proof of Lemmas 4.8, we have already obtained
uniform bounds irl” for Gﬁe(&, &), so that dominated convergence applies. To obtain
the limits we use (4.133), i.e.,

Hm T3 gy e (2T) = AQ(€), (4.66)

T—o00
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and

T—o00

The limit of G55, (&1, &) follows from (4.63).
The limit of G5-55,(&1, &) leads to

* . . L. > .
/0 AAA(E +A) A& +X) — 5 Ai6) ( /0 AN Ai(& + A) — 1) (4.68)

which equalsz{9" since [[“dAAi(& + A) — 1 = — [T dAAi(& — A).
The limit of G‘ﬁ%i(&, &,) is obtained identically.
Finally, the limit of G5-55(&1, &) is given by

1 xD xD ) .
; / I [ i+ N A6+ ) — (6 - &) (4.69)

1

— Z/O dA Al(fl + )\) + Z/O d,u Al(fg + ,u) — Z Sgn(fl - §2)7

which can be written in a more compact form. Sinfead Ai(\) = 1,

/oo dAAi(G +A) = /OO dx /oo dp Ai(&; + ) Ai(& + p), (4.70)
0 0 —00
and the signum can be expressed as an integral (@f + \) Ai(& + u)
—sgn6 - &) = [ A3 [ dnAitG + 0 Al s - @7)
In fact
r.h.s. of(4.71) = / d/\/ dp Ai(N) Ai(p) sgn(A — p+ ¢) = b(() (4.72)
R R

with ¢ = & — &. For{ = 0 itis zero by symmetry. Then considér> 0, the cas€ < 0
follows by symmetry. By completeness of the Airy functions,

Tl = [ it Aitn - 0 = 50 (4.73)
Then using (4.70) and (4.71) we obtain the result. O

Remark that the GOE kernel in [40] differs slightly from theeowritten here, but they
are equivalent in the sense that they give the same coaelatnctions.

For the residual terms the limit does not exist, but existhé&even/odd positions. In
particular

) ~ 1 [ )
i 3 T 2) =5 [ ANAI(E+ ) (4.74)

T—o00
m>1
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4.6 Proof of Theorem 4.1

In this section we first prove the weak convergence of the eelggaled point process of

sym

nP™ to n°F in the T — oo limit. Secondly, using the equivalence of the point process
2™ and¢fat, we prove Theorem 4.1.

Theorem 4.10.Let us define the rescaled point process

M) =) f (e = 2T) /T ™ () (4.75)

TEZ

with T = /29T = 2T and f a smooth test function of compact support. In the limit
T — oo it converges weakly to the GOE point process, i.e., foralk N, andfi, ..., f.
smooth test functions of compact support,

Jim ET(Hﬁsym fr) ) = E(HUGOE(fk)) (4.76)
k=1

where the GOE kernel is given in 3.61.

Proof. Let fy,.. ., f, be smooth test functions of compact support ﬁnd) = fi((z —
2T)/T"/3), then

_ > A fnwm) PERL(2, 2))i =1, m (4.77)

T3 0

0 1
Li(z,y) = TY3K,(x,y), for k = (1,2),(2,1), and Ly s(x,y) = Koa(x,y). Moreover,
we define the edge scaling for the kernel elements as

whereX = ( ) andL(z,y) = (XK X')(x,y),i.e.,Li1(z,y) = T*PK 1 (x,y),

Ledge(gl, &) = Li([2T + & T3], 2T + &TY3)). (4.78)

In what follows we denote b§; = (x; — 27")/T%/%. To simplify the notations we consider
T € N, butthe same proof can be carried out without this conditieplacing for example
Z.)T'3 by (Z —2T) /T in (4.79). Then

]ET(HT/sym k ) Tm/3 Z fl 51 fm(gm) Pf[Ledge(gu 5])]@] 1,..., (479)

..... EmEZJT1/3
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Let us denot&! = [¢,7"/3]/T"/3 the “integer” discretization of;. Then

]ET(Hnsym k ) :/mdfl"'dfmfl(ff) fm(g )Pf[Ledge(fzaf )]Zj 1,...,m-

Using the definition in (4.53) we have
edge(fu &) = edge(fb §2) + Redge(§1> £2), (4.81)

therefore (4.80) consists in one term with or(i}fﬁie plus other terms which contain at
least oneRs.
First consider the contribution where ori§"2° occur. LetM; > 0 be the smallest

number such that;(z) = 0 if |z| > M, for allj = 1,...,m. We bound the product of
the f;’s by

IAGIE DI < H 1 £illoo L1 aty.00,0 (&) (4.82)

and, in the same way as in Lemma 4.12 but witf{{°replaced byG5% we conclude that

this is uniformly integrable ifT. We then apply dominated convergence and take the limit
inside the integral obtaining

lim [ d& - d&nfi(€]) - fn(&h) PEIGTFE(E €Dt m

T—o0 Rm™

= /m dgl e dfmfl(fl) fm(gm) Pf[GGOE(gm g])]z] 1,.., (483)

Next we have to show that whenever soﬁ?ﬁéje are present their contribution vanish
in the limit 7" — oco. In (4.80) we have to compute the Pfaffianfof defined by

L‘%fﬁi((n +1)/2,(1+1)/2), nodd!lodd
_ Leﬁ%(('ﬂ +1)/2,1/2), n odd [ even
ET(na l) - Lf} gel( /27 (l + 1)/2)7 n evenl Odd7 (484)
ergeg( /2,1/2), n evenl even

for 1 <n << 2m,with L3 (a,b) = L55° (&, &). The Pfaffian off7 is given by

Pf(ET) = Z (—1)‘U‘ET(O'1, 0'2) cee ET(O'Qm_l, O'Qm). (485)

J€S2m
02;—1<02;

Now we have to check that the product of residual terms doesordain twice the term
(—1)* for the samer. This is implied by Lemma 4.11.
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Let us decompose the sum in (4.79) i6 sums, depending on \lvhethgtfl/?* IS
even or odd. Denote’ = [¢;T'/3/2]2/T/3 and¢&? = ([¢TV3/2]2 + 1)/T"/3 the “even”
and “odd” discretizations of;. Then

(10 =5z 2 / gy dgn fi(€) - fm( ) PELEE(E €)1,
sl—{oe}

-----

(4.86)
With this subdivision, each term in the Pfaffian convergastmase to a well defined limit.
Moreover all the2™ integrals, including=5-5’s and/orR55’s, are uniformly bounded in
T'. By dominated convergence we can take the limit inside ttegnals.

Each time that there is B (&,, &), or Ry5, (&;,&), the integral withs; = o and
the one withs; = e only differs by sign, therefore they cancel each other. Bauke
that appearsl%engfQ(@,fj), the part including coming from the-1)* and the one with
(—1)% simplifies in the same way. Finally we consider the secont thee one including
the S and signum function. The sum ef = {o0,e} ands; = {o, e} of the terms with
—S(&T13,6,T~1/3) equals minus the ones withsgn((§; — &,)T~/%). Consequently
all the terms including at least one tirmf;fe have a contribution which vanishes in the
T — oo limit. O

Lemma 4.11. The following products do not appear in (4.85):

(a)nggg(x T )Lijfez(xk i), (b)L?z%eg(x zj )Lifeg(%%)
(C)Lerié(ﬂf )Ler%el(:U vk), (d) Ly (@i, w5) Ly (5, ) (4.87)
(€) Lyt (i, 25) 755 (w5, T

Proof. We prove it by reductio ab absurdum. We assume that the pregpear and we
obtain a contradiction. (a) appears if there exist same b andc < d with a, b, d even
andc odd, all different, such that= a/2, j = 0/2, k = (¢ + 1)/2,i = d/2. But this is
not possible sincé # a. (b) appears if there exist some< b andc < d with a, b, d even
andc odd, all different, such that= /2, j = b/2, k = (¢ +1)/2, j = d/2. But this is
not possible sincé # b. (c) appears if there exist some< b andc < d with a, b, c even
andd odd, all different, such that= /2, j = b/2,i = ¢/2, k = (d + 1)/2. But this is
not possible since # a. (d) appears if there exist some< b andc < d with a, b, c even
andd odd, all different, such that= a/2, j = b/2, j = ¢/2, k = (d + 1)/2. But this is
not possible since # b. (e) appears if there exist some< b andc < d with b, c even and
a,d odd, all different, such that= (a +1)/2, j = b/2, j = ¢/2, k = (d + 1)/2. But this
is not possible since # b. O

Lemma 4.12. There exists a constant > 0 such that
B (103" (1 aroe) ™) < CTeM™/2 ()2 (4.88)

uniformly in7".
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Proof. The m-point correlation functiomp™ (¢4, ..., &,,) is a sum of product oK%?,Ses
which contains twice everg,’s,i = 1,...,m, and only inK;"j‘,?ethe two argument can be

the same. From Lemma 4.8, for afiy &; € R,

[K5295(6,6)] < Cexp(—€1/2) exp(—£/2) (4.89)
IK29°(61,6)] < Cexp(—£61/2)

|K:er?§,e1(§1,§2)| < Cexp(—&/2)

|K355(61,6) < C.

For negativet we could replacexp(—¢&,/2) by (1 + |£|)* where appears, but for our
purpose this is not needed.
All the products inp™) (&, ..., &,,) contain at least onexp(—¢;/2) for eachi. In fact,

this holds if: K;d§§(§1,§2) is notmultlplled byK. ;df‘;(gg,&) ;dfg(@,fl) ;dgﬁ(gl,gg)
K595(62,&), and if K5095(61,&) is not multiplied byK:‘idg‘i(&,gg) This is already
provenin Lemma4.11.
Consequently,

B (™ Aao)”) = [ A6 e )
< (zm)m/Q( / Cexp(—§/2)d§>m:2m0meMm/2(2m)m/2 (4.90)
[ M,00)

uniformly in 7. The term(2m)™/? comes from the fact that the absolute value of a de-
terminant of an x n matrix with entries of absolute value not exceeding bounded by
n™/? (Hadamard bound). Finally resetting the constartas’2 the lemma is proved. O

To prove Theorem 4.1 we use Theorem 4.10, Proposition 4d3,.amma 4.12.

Proof of Theorem 4.1Let us denote by, j < 0, the position of thej*" element of¢!*
andz}"™, j <0, the position of thg™ element ofl;’". Then define; » and&>%" by

wj = 2T + &oT 32723 o™ = AT + $F(2T)'°. (4.91)

By Proposition 4.3z, — j = 3(z3" — j), which implies

sym ]
: 4.92
Let fi,..., f,, be test functions of compact support and denotédhy> 0 the minimal

value such thaf;(z) = 0if |z| > My, j=1,...,m. Then

o) - (IS sereven) s

k=1 i<0

= B Y TL e+ i/t /(21)')).

i1,0erim <0 k=1
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We bound thef,’s by their supremum times;_,, s, as in (4.82), then

|rhsof<493>\<ET(HZﬂ[ iy (€ +z/2T1/3)Hufjuoo, (4.94)

j=1 <0

and, SinCGl[ My, Mf]< sym_'_ Z/(2T)1/3) < I My ,00) (gsym_'_ Z/(ZT)I/B) > ﬂ[—vaoo) (fz%“m%
it follows that

Irh.s. 0f(4.93)| < IET<Hnsym Mfm))) 150 (4.95)
j=1

which is uniformly bounded ifi” from Lemma 4.12. Therefore by Fubini’s theorem,

ET<H”M )= Z ET(ﬂfk T +i/2T)). (4.96)

Moreover, fi (7 + i/ (21)'%) = fu(&)7) + fil&ir)in/(2T)"? for someg;, 7 €
(€ 4 i /(QT)1/3 &"7]- Therefore (4.96) equals

Z ET(ka Zy'?) ET(Hnsym fk) (4.97)

plus2™ — 1 terms which contains somg&(¢;, )i,/ (27)"/3. Finally we have to show that
these terms vanish 5 — oo. First we bound the’s and thef;’s by || fx || and|| ;||
timesIL[_Mf M- Therefore each of th&" — 1 terms is bounded by a

o [T H|zk|]ET<HIL[ v (ED)  (4.98)

kel keJ 11y im <0 kEJ

wherel and.J are subset of1,...,m} with TUJ = {1,...,m} andJ is non-empty. Let
Jo = min{iy, ..., i,}, then

Er(TT 10,00 (E7D)) = Br(1-at, 0 (35))
k=1

= Pr (5?3”} > Mf) <Pr <775Tym(]1[fo,oo)) > jo) (4.99)
. IET<|n§Ym(l[,Mf,OO))\3m> O(C3m€Mf3m/2(3m)3m/2)
B o™ - [Tz lief? ’
sinceljo| > |ix| for all k£ + 1,...,m. From (4.99) it follows that (4.98) is uniformly
bounded inT" and vanishes a8 — oo. We have then proved that, for afl, ..., f..

smooth test functions of compact support,

lim ET(Hnﬂ‘“ fy)) = Jim ET(Hnsym 0) = B(I[°(),  @.100)
k=1

the last equality being Theorem 4.10.
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4.A Appendices

4.A.1 Bounds on the inverse oA

Let us denote the finite matrit by Ay and its inverse byl '. FortheN = oo case we use
the notationsA andA~'. Letus denotd = {—2N +1,...,0}andL = {-N+1,...,0}.
Using (4.36) we have

Tk i Tl_j 1 o
Al <14 = ZZ — — =145 (4.101)
k>i 1>j Z l ‘7> 2

To obtain some properties af !, we first estimat@—faflP,e—Tal]m-.

. . T\k—i
[e—ToplP_e—Toq]i’j — Z ( ) ( ) : (4102)
max{i,j} <k<0 (k =)t (k=j)!
T2l(_:ﬁ)|i*j| Z T2l(_jﬂ)|z’fj|
N+l — i N+ li — i)
= N+ 1i— 4! k>—1nax{@j}l.(l_%|l il
- - T2 (=Tl
= ()LD - Y g
I>—max{i,j} l(l + |Z N ]|)

wherel}, is the modified Bessel functiohof orderk. From (4.102) andi + |i — j|)! >
i — j|! follows

) ) _ Tli-l Tli=il
e Pt ] < B (2T) o < e
i =gt = i = ]!

: (4.103)

which implies

ﬂFﬂ . - N
T < ey (T)er2Dli=dl, (4.104)

[455] <

for some constants, u; > 0.
The remainder sum in (4.102) is exponentially smalHmax{i, j}. In fact, forn =

—max{i, j},

le e Pe Ty = (=1) A 27|

7li—jl 2 li—j N -
‘T i (T) < |,T _"10(2T)6*H1<T>" (4.105)
11— 72— 7!

I>n

for some constant; > 0. Thus, for all(é, j) such thatnax{i, j} < —N/2,

A7} — lim A7 | < eo(T)e N2 (4.106)

m—00
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for some constant, > 0, that is, in this regioM~! is exponentially close to a Toepliz
matrix.
Forj € L, using (4.101) and (4.104), we obtain

HANAil - ]l]i,j} = Z AZ'JA;jl S Cg(T)ei/'LQN (4107)

I<—2N

with ¢3 > 0 a constant.

4.A.2 Some bounds and relation on Bessel functions
Lemma 4.13.For N > 0,

T2 T w3 (2T)| < exp(=N/2)O(1) (4.108)

uniformly inT > T;, for some constarit;.
For N < 0 it follows from a result of Landau [57], see (4.134), that

T3 Jigry ngiisy (2T)| < C (4.109)
uniformly in’T" for a constantC' > 0.

Proof. To obtain the bound we use 9.3.35 of [1], i.e., fo€ [0, 1],

V4T Ai(n2/3 i/ (n2/3
s = (1) [y Ao s
where o 23
C(z) = (3/2)% [111(1 P VT 2%) —In(z) — VI 22} . (4.111)

Inour casep = 2T+ NT'? andz = (14¢) ! withe = I NT~%3 > 0. This implies that

z € [0,1]. In this interval the functiorg(z) is positive and decreasing. The prefactor is
estimated using( (z(¢))(1 — z(e)?)'27%*® <1+ 2c for all ¢ > 0. Moreover, forz > 0,
Ai(z) < Ai(z/2) and| A (x)| < Ai(x/2). Therefore

T Ty s 2T)] < (14 32) 7 Ai(n?3¢/2)(1 + O(T /%)) (4.112)

where we also use@T)'/? < n'/3. Next we bound (4.112) separately far < 17%/3
andN > 17%/3,

Case 10 < N < 17?3 Inthis cases < 1 and, fore € [0,1/3], ((z(¢)) >  holds.
Replacingn by 27" in the Airy function we have an upper bound since it is a desirga
function, consequently

T3 Jigry v (2T)| < 2AH(N2743) (1 + O(T 7). (4.113)
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Finally it is easy to verify tha2 Ai(N2~%/3) < exp(—N/2), and obtain the bound of the
lemma.

Case 2V > 17?3, In this case > 1 andz(s) < 2. In this interval((z) > 1(In(8¢))*/?
from which follows

T3 Ty wpiss) (2T)| < (NT2)V4 AR (H(nIn(ANT?#))*?) O(1). (4.114)

Forz > 0, Ai(z) < exp(—22%?), andN > 1723 impliesN = 4NT~?/3 > 2. Conse-
guently,
T Jg v 2T)] < N4 exp(=arT(1+ N/8)0(1)

< exp(—aiT) exp(—2¢,TN)NYV*O(1)  (4.115)
with ¢; = l~n(2)/3, cy = ¢1/16. ForT > 10 andN > 2, N1/4exp(—02TN) <1, and
exp(—cT'N) < exp(—N/2) for T large enough. These two last inequalities imply

T3 Jigry nris) (2T)| < exp(—erT') exp(—N/2)O(1) (4.116)
for T large enough, and the lemma is proved. O

Lemma4.14.Forall N > 0,
Dy = T (Jgr v 40(2T) = Jigry sy (27))] < exp(—=N/2)O(1)  (4.117)

uniformly inT > T; for some constarity.
For N <0, there is a constanf’ > 0 such that

Dry < C(1+|NJ) (4.118)
uniformly inT > 1.

Proof. First we considerN > 0. Let N/ = N + T3, then we have to subtract
Jren11/3)(2T) 10 Jiop N (2T). In term ofe = LNT?/3 the difference isl/(2T).
Let us define

4¢(z(e)

1/4
q(g):(m) (14+e)7, ple) = (L+2)°¢(2(e)), (4.119)

and

fe) = (qu(jz - A(2D) ()] (4.120)

With these notations,

Soroxrm (1) = (€)+ G AlEDPHEI 00 )

+% Ai/[(QT)2/3p(€)]O(T_4/3). (4.121)
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Now we boundDr y as follows.

Case 1) Let us conside¥ € [0,37%3]. The second and the third terms are simply
bounded by their absolute value. Then

Deal < TP|fe+ 52— 1)

2/3 Q) oo »
T e s AT @O0 (4.122)

2/3 Q(x) . 2/3 43
T max ol ATIRT) (@) 0T )

The first term is bounded by

2 1 2 ’ 1
T /3)f(z-: + ﬁ) — fle)| < T3 xe[f;ff/m /() o7 (4.123)
where
i 2/3
@) < 1¢/@) PCDPEN Ly @) AT op(a)en) 2. (.12

(2T)'73

We are considering the case &f € [0, $7%/%], which corresponds te € [0,1/4]. The
functionsg, ¢/, andq - p’ behave modestly in this interval. They satisfy

q(z) € [1.22,1.26], |¢'(x)] € [0.14,0.17], |q(z)p'(x)| € [1.3,1.6] (4.125)

for z € [0,1/4]. The Airy function and its derivative are bounded as in Lenm#riB.
Therefore
|Dry| < exp(—N/2)(1+ O(T~%3)). (4.126)

Case 2) Let us consideé¥r > %T2/3. This case is simpler. We apply (4.116) and obtain the
bound

D] < T3 exp(—eiT) exp(=N/2)O(1) < exp(~N/2)O(1) (4.127)

for T' large enough.
Secondly we conside¥ < 0. For|N| > T'/3, using (4.134) we obtain

| Dy n| < C3T1/3 < c3|N]| (4.128)

for some constant; > 0. Next we considefN| < T/, SinceN is negative; > 1 and
(4.110) holds with( (=) given by [1]

2/3

C(z) = —(3/2)%3 [\/ 22 — 1 —arccos(1/2)| . (4.129)
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Recall that: = (14 ¢)~! ande = LNT~2/3. || < 1713 is very close to zero. The

estimate follows the same outline as for the case 1) foripesit. TakeT > 1, then
1

e €[—3,0]and

q(e) € [1.25,1.37], |¢'(e)| € [0.16,0.25], |q(e)p'(¢)| € [1.5,3.1]. (4.130)

The difference is that now the Airy function in not rapidlycdeasing sincey(s) < 0
and its derivative is even increasing. We use some simplad®oy Ai(z)| < 1 and
| Ai'(z)| <1+ |z| for all z, with the result

|Drn| < ea(1+ N1+ O(T %)) (4.131)

for a constant, > 0. O

Some relations involving Bessel functions

Here we give some relation on Bessel function [1] which aredus the work. Bessel
functionsJ,, are defined via the generating function by

exp (32(t —1/t)) = > _t"Ji(2), (t#0). (4.132)

keZ

Then
1. forn € N, J_,(2) = (=1)"J,(2),
2. Jo(2) + 250y Jarl(2) = 1,
3. J3(2) 425, JE(2) = 1
4. forn > 1, 37" (=1 J(2) Jan—k(2) + 23000, Ji(2) Jonsr(2) = 0.

Moreover the limit

T—o00

holds. A useful result of Landau [57] is the following:

| T (x)] < clz|™Y3, ¢=0.785...foralln € Z. (4.134)






Chapter 5

Analysis of the 3D Ising corner line
ensemble

This chapter is devoted to our results on the 3D-Ising cdBr Our main and new result
is that the line bordering a flat facet and the rounded pam ihye thermodynamic limit,

described by an Airy process. The precise statement of the mesult is explained in the
next section. The other results are precisely stated indlregponding sections.

5.1 Formulation of the main result

The line ensemble explained in Section 2.3 can be thougltg wbald lines of “fermions”
is discrete space;, € Z, and discrete time; € Z. It is then natural to introduce the
(extended) point process of occupation variablés,t), by

.« | 1 ifthereis aline passing &}, ¢),
n(j,t) = { 0 otherwise.

As explained in Section 5.2),is an extended determinantal point process. In the thermo-
dynamic limit,q = 1 — 1/T — 1, we focus at two different regions of the crystal corner.
In Section 5.4 we focus in the rounded part of the 3D-Isingnegrwhich corresponds to
the bulk of the line ensemble, i.e., where the density olliseaway both fron® and1. In
this case the kernel of the point proceds an extension of the sine kernel in the— oo
limit.

Secondly we focus at the edge, where the density of lineskasi This is discussed
in Section 5.5 where we prove that, properly rescaled, theekef  converges to the
extended Airy kernel. In Section 2.3.3 we denotedpft) = hr(0,¢) the line bordering
the2 — 3 facet and the rounded piece, and by

beo(7) = lim T ([rT]) = —2(1 — e 7/?) (5.2)

(5.1)

its limit shape. Then we defined the edge scaling;aby (2.69), i.e.,
Ap(s) = T*l/3{bT([rT + ST?3)) = (b ()T + b (7)T + LB (7)s2TY%) } (5.3)
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The convergence oferge to the extended Airy point process implies that the bordep st
statistics, properly scaled as- converges to the Airy process. The result is also used in
our discussion on the universality of the border step fluaing, see Section 2.3.4.

Theorem 5.1.Let A (s) be the border step rescaled as in (5.3) andA€t) be the Airy
process. Then for any, s;,a; € R,i=1,...,m, the limit

i PT(ﬁ{Aﬂsi) <a) = P(ﬁwsm/z) <af}) 64

with k = /20 (7) holds.

With Theorem 5.1 we prove that the stochastic proeess Ar(s) converges, ag§ —
oo, to s — k. A(sk/2) in the sense of finite dimensional distributions. Probabdally,
it would be natural to lift this theorem to the weak converggenf path measures. The
missing piece is the tightness for the sequence of stochaisicessd(s). We have not
attempted to fill this gap. The interested reader is refeiwdd7], where tightness for the
edge scaling of the Aztec diamond is proved.
Theorem 5.1 will be proven in Section 5.6. This chapter enitls &an appendix on fermi-
onic correlations which are applied to show thats an extended determinantal point
process.

5.2 Extended determinantal point process

5.2.1 Fermions

The basic tool is the transfer matrix fromto ¢t + 1, t € 7Z. A fermion is created
(resp. annihilated) at the positigne 7 by the operator; (resp.a;). The CAR alge-
bra{a},a;, j € Z} overZ is defined by the anticommutation relations

{ai;a;} =0, {aj,aj} =0, {aya} =6, (5.5)

fori,j € Z. First we considet < —1, in which case only up-steps can occur. To each unit
up-step at time we assign the weight, = ¢!/l which satisfy (3.112). The rule is that
in ajump fromi to j, j > 4, one creates additional particles at sitesvithi +1 < m < j
and annihilates particles at siteswith : < m < j — 1. E.g. if a fermionic world line
jumps from—1 to 3, one creates particles at positiang, 2, 3, and annihilates the particles
at—1,0, 1, 2. This rule ensures the non-crossing constraint (3.11@}esif two fermionic
world lines would intersect, a fermion is created twice & $hme position, which leads
to a zero contribution. The corresponding rule applieisto0 with the difference that the
jumps are downwards only.
Let us define the operators
b= aj,an (5.6)

keZ
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The transfer matrix fromto ¢ + 1 is a sum of thex-step transitiong’, as

Ttt+1)=14¢Ti+@To+ ... +q'Tp+ ..., (5.7)
where 1)
_]' " * *
K1,k

The(—1)" prefactor results from the left ordering of thganda}’s.
We would like to reexpress, in terms of products of thg’s only. Forn, m > 0 the
commutators are

bnay, = apby, + ajy,,  bpar = apby, — ag—pn, [bn,by] =0, [b_pn,b_] =0. (5.9)

These relations lead to

o= ) H<—) AR (5.10)
di,. dn>1 j=1 j
d1+2da+...=n

The Schur polynomialépx(y) } x>0 are polynomials such that

exp (Zt’“yk) = nt, y=vve.. ., (5.11)

k>1 1>0

and given explicitly by

xj

nw)= > Hg% (5.12)

LLyeeey 23121
z1+2z2+...7l

Comparing with (5.11) yields

T(t,t+1) thTl—eXp(th ) (5.13)

>0 k>1

We conclude that the transfer matrix is given by

T(t,t+1) = exp (Z q’”“/?%’“) (5.14)
k>1
fort e Z_ ={-1,-2,...}, and, by the same reasoning,
T\(t,t +1) =exp <Z qk(t“m%) (5.15)
E>1

forteZ,.
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A~

T(t,t + 1) is quadratic in the fermion operators. Hence it is the seaprahtization
of a one-particle operator acting ¢f. For easier reading second quantization is merely
indicated by a “ ", i.e., for A acting of/; we setA = I'(A) as its second quantization.
From (5.14), (5.15) we read off

gHt+1/2
T(t,t+1) =exp (Z ’ ak) (5.16)
k>1
fort € Z_, and
qk(t+1/2)
T(t,t+ 1) = exp (Z - gk) (5.17)
E>1
for t € Z, with matricesq, defined through
1 ifi—j =k,
lolis = { 0 otherwise. (5.18)

T(t,t + 1) are invertible with the,-norms

q\t+1/2|
IT(t,t+1)]| < exp (H]w) ,
B gt+1/2
IT(t,t+1)"|| < exp <1_(]T1/2) ) (5.19)

For the state at = +oco all sites inZ_ U {0} are filled, those irZ,. \ {0} are empty,
which, together with the transfer matrices (5.14), (5.1&ednines the Green'’s functions
of an imaginary time (Euclidean) Fermi field. It is inhomogeuns in space-time and
uniquely given through the two-point functidn;(¢)a;(t')). To compute it correctly one
has to employ the standard finite volume approximation. Vét festrict all world lines
to lie in the spatial interval-M, M|. Thereby the transfer matrix depends &hin the
sense that all creation and annihilation operators witkexnk| > M are set equal to zero.
The state attoo is (1,...,1,0,...,0)" which is2M + 1 long with the lastl at site0. The
projector on this state is approximated through

exp[BNa] (5.20)

in the limit 8 — oo with Ny, = 320 aza, — XM | aja,. We first compute the equal
time Green'’s function through

(a;(to)a;(to))r = (5.21)

L to—1
1 = ~ ~
= lim lim lim Tr (ef’NM [T 7wt t+ Daja; [T Tur(t,t + 1)),

M—o0 L—o00 —00
h p.M.L t=to t=—L

where the trace is over the antisymmetric Fock sp#Cewith one-particle space
U([-M, ..., M]). The products are time-ordered increasingly from righefg Wwhich is
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indicated by the superscripat the product symbdl]. Zs 5 1, is the normalizing partition
function, which is defined through the same trace wijth; replaced byl. As explained

in Appendix 5.A.1, (5.21) can be expressed in terms of onmégh@operators as the limit
M, L, 3 — oo of

to—1 L —19 -1
i thaswmons = |1+ ( I Tutet + 0 [[ T+ 1) | . 622
t=—L t=to Jst
Let P, + P_ = 1 in ¢y with P, the projection ont@., \ {0} and let
e’} to—1
Fionto) = TTT(t,t +1), %) = T T(t,t+1), (5.23)
t=to t=—00
and
mln O to [e’s)
el = ] T(t t+1), @t = TJ[ T(tt+1). (5.24)
t=—o00 t=max(0,to)

By (5.19) the infinite products are well-defined, as are theierses. The'(¢,t 4+ 1)’s
commute and no time-ordering is required. Hence

min(0,tp)— T\t+1/2|
q
Gilt) = ) Z ar = peto)a,
t=—00 r>1 r>1
q t+1/2
Gl(tO) = Z Z ZVT(tO)a—T (525)
t=max(0,tg) r>1 r>1
with /2 in(0,to) /2 (0,t0)
qr qfrmm ,to qr qrmax Jto
pr(to) = ————, (o)) = ——7— (5.26)
N R =y

In (5.22) we take limits as indicated in (5.21). Then

(a? (t0>aj (to))r = [€G|eﬁ(to)P7 (Piecright(to)ecleft(tO)Pi + P+>*1P7€Gright(t0)i|j7i . (5.27)

Let - o
=[] rtt+1), e =][TCtt+1). (5.28)
t=—o00 t=0
TheneCronlto) ¢Getlto) — oG+elG- = G- G+ and, decomposing = P_¢, @ P, (5, we have
eG:{ﬁﬂ, 6G+:{%, ” (5.29)
Thus

(aa’)™?

P_(P_ Crignt(to) o Glett(to) p + P+)—1P_ — |: 0

o O
1

(5.30)
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and, since
-1 n—1 N—1 71\ —1
o _ a 0 —a, _ | (@) —(d)7 (V)

¢ = { b lea! b } &= { 0 ()~ - (53D

we obtain
e G+ P_e~9 = P_(P_elrmlbo)eCenlto)p | p y=1p_ (5.32)

Therefore
(a3 (to)a;(to))r = [€G|en(to)e—G+P_e—G, eGright(tO)]ji ’ (5.33)

which rewrites as

(X (to)as(to)) = [eC1E0)=G10) p_c~(G1to)=G1(0)] (5.34)

VEN

The Fermi field depends dhithroughg = 1 — 1/7'. For this reason we keep the ind€x
Using the anticommutation relations (5.5) in (5.21) we indm&ly obtain

{a;(to)a;(to))r = [eGT(to)—Gl(tO)ere—(GT(to)—Gl(tO))}M ) (5.35)
Thus our final result for the equal time correlations reads
(af (fo)aj(to))r = Y [eC10m ] [emcrlonr@utto]
<0
(a;(to)al(to))r = Z [eGT(tO)_Gl(tO)}j,l [e_GT(tO)'i‘Gl(tO)]l’i‘ (5.36)
>0

To extend (5.36) to unequal times we have to go through the $iamt procedure as
before. Since the argument is in essence unchanged, theveneed to repeat. We define
the propagator from to b, a < b, through

b—1
G —T[T(t1+1), Ce® =1, G060 = 0, (5.37)
t=a
Using the identity
e~CGOt0) g GOt) Z [ec(o’to)}mkak (5.38)
keZ

fort > ¢/, the full two-point function is given by

<0

(a;()as (1)) = Z[eGT(O)—Gl(O)‘f‘G(Ovt)}jJ[G_GT(O)'FGL(O)_G(OJ,)}
>0

Ly’

L (6.39)
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5.2.2 Correlation functions

Moments of the random fielgl( 7, ¢) introduced above can be expressed through fermionic
correlations. We consider first equal time correlationse basic identity is

E{fpmw0=<ﬁﬁwmm»£ (5.40)

whereE is the expectation with respect to the normalized weighit(3). If {1, ..., j.}
are distinct, then, as explained in Appendix 5.A.2, the femt expectation is determi-
nantal and

ET(HT](]k7t)) = Det(RT(jka tﬂjht))lgk,lgna (541)
with
Rr(i,t;7,t) = (a] (t)a;(t))r- (5.42)
If coinciding arguments are admitted, then (5.41) stilldsolvith the convention
o (af(t)a;(t))r fori < j,
Re(ist; 5,t) = A \ T 5.43
rli t3,¢) {<%@%@ﬁ—@JI—WﬁWN”TfWZ>J (5.43)
(5.40) is easily extended to unequal time correlations usetonsider. disjoint space-
time points(ji, 1), ..., (jn, t,) ordered increasingly s < t, < ... < t,. Then the basic
identity is
Er ( VS tk)) = (aj, (ta)ag, (tn) -~ aj, (tr1)az, (t1))r- (5.44)
k=1
Using (5.38) the left hand side equals
Z H —G(0, tq kq . G(o,tq)}mq (ay, a, - ap, ai, )7 (5.45)
..... kn q=1
11 ..... In
Let us set (B )y
a’(t)a;(t ort >t
Rr(j,t; 5, t) = g =) 5.46
(7,65, 1) { < ()a ())Tfort<t. ( )

Then the unequal time correlations are given by

Er ( H (., tk)) = Det(Rr(jr tis Jis 1) )1<hi<n- (5.47)
k=1

The identity (5.47) has been derived from left to right. Oaa cead it also from right
to left. ThenRy is the defining kernel, resp. Green’s function, which is cd&®d to be
given and (5.47) defines the moments of some determinargeésime random field over
7. x 7.. Of course R cannot be chosen arbitrarily, since the right hand side.df7/(5must
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be moments of a probability measure. For determinantalanfields over the space
coordinate only, compare with (5.41), proper conditiongrendefining kernel have been
studied in detail [91, 90]. The space-time variant is les uderstood, see [46] for a
discussion.

The determinantal property is preserved under limits. Tihwsugh bulk and edge
scaling further determinantal space-time random fieldsb&ilencountered below. One of
them is ovelZ x Z with equal-time given through the sine-kernel. The othewesrZ x R
with equal-time given through the Airy kernel.

5.3 Limitshape

On the macroscopic scale, in the linffit— oo, the random field;(j, t) becomes deter-
ministic with a profile given by

1 for ¢ <b_ (1),
p(¢,7) =4 Larccos (cosh(r/2) — e F11/2/2)  for b (1) < <beo(r), (5.48)
0 for (> boo(7),
with
beo(r) = —2In(1+ e 72) bo(7) = —2In(1 — e 7/2). (5.49)

More precisely, for all continuous test functiofis R? — R with compact support
Jim Z FGIT.T05i0) = [ dcdmalc, (¢ (5.50)

almost surely. (5.50) assumes more spatial averaging teadea. In fact, it suffices to
choose a test function whose support on the scale of thedativerges a8’ — oo and to
properly normalize.

As a consequence of (5.50) the limit (2.65) holtig, can be read off from (5.48) and
is given in parametric form through

|0 for (u,v) € R3 \ D,
Pima(11,v) = { S+ — [r]) + () for (u,v) € D, (5-51)
wherer = v — u and where (u, v) is the unique solutiog of the equation
1 C / /
sov == [ ¢ ac ¢ (552)

in the interval[b (7), bo(7)]. While the limit (5.50) has been established by Okounkov
and Reshetikhin [69], compare also with Section 5.4, theterce of the limit shape has
been proved before by Cerf and Kenyon [20]. Instead of (2164y used the fixed volume
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constraint/ (h) = 2¢r(3)T3, resp.V (h) < 2(r(3)T?, with (g the Riemann zeta function.
They write the limit shapé), as a set oRR?, in the parametric representation

So ={2(f(a,b,¢) —Ina, f(a,b,c) —Inb, f(a,b,c) —Inc)|a,b,c >0} (5.53)

with
1 27 2 ) )
fla,b,c) = —/ du/ dvIn(a + be™ + ce'). (5.54)
42 [, 0

Herea, b, c denote the weights for the three orientations of the lozergelf (a, b, ¢) is
the corresponding free energy per unit area for the lozelgg of the plane. As expected
from the equivalence of ensembles, the shapes given by)(&ril (5.53) are identical.
This can be seen as follows. Let= (z1, 22, z3) represent a point on the limit shape.
We comparez, — z; and zz — z; (resp.zz — z3) for zo > 2, (resp.z; < z;) for the
parametrizations (5.51) and (5.53). Thisleadste 1,b = e /2, ¢ = e~ /2 for z, > 2
andtob = 1,a = e I"1/2, ¢ = e=</2 for 2, < 2. Since (5.54) is symmetric i, b, ¢, one
verifies that indeed

/C (1—p(¢,7))d¢" = 2f(1,e711/2 e=¢/2) 1 ¢. (5.55)

21In(1+e—I71/2)

According to (5.51)ima = 0 onR% \ D. Close to the edge the height vanishes with
the power3 /2. E.g. in the directiom = v — u one has

2
Punal7, T) = 3 cosh(r/4)m=121/443/2 (5.56)

with r the distance to the edge. TBE2 power is known as Pokrovsky-Talapov law [75].

A limit shape theorem is a law of large numbers. It is avadaddso for related tiling
models. A famous case is the Aztec diamond [21]. Cohn, LaaserPropp [22] consider
the 3D-Young diagrams constrained to the kaX x SN x yvN with a, 5,7 ~ O(1)
and compute the limit shape a5 — oo. In the line-ensemble representation their model
corresponds tg = 1 with the boundary conditions that at= —a/V, 5N all lattices sites
are occupied except for those in the interMah N|. [22] computed the line density and
from it the limit shape. Two or higher order point functiorre aot studied. From our
representation we see that higher order correlation fonstare determinantal even in this
case. However the computation of the two-point function @ercomplicated, since one
cannot rely any more on an expression like (5.34). For aflifstrther limit shape theorems
we refer to the survey [51].

The limit shape can be determined through minimizing the@mpate macroscopic
free energy functional. The input is the microscopic swf@nsion at given slopéh. For
example in th¢111)-frame the surface tension,;1)(V) is given by (5.54), where, b, c
are defined through the prescribed surfaceMilt o,y has been computed in [50, 111,
16]. Correspondingly there is a surface tension in(tie )-frame, denoted by 1) (V).
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To obtain the free energ§ for some macroscopic height profikeover a bounded
domainB3, one argues thdt is made up of little planar pieces, each one of them having
the surface tension at the corresponding local slope. Apanyields

F(h) :/Bdudva(om)(Vh(u,v)). (5.57)

In our case we havB = RR?, h is decreasing in both variables such thét, v) = 0 for
(u,v) — oo, andV(h) = [,dudv h(u,v). The minimizer of7, under these constraints
andV'(h) = 2(g(3), is hma from (5.51). Equivalently one could minimiz&(h) + V (h).

Probabilistically, 7 (h) + V' (k) can be viewed as a large deviation functional in the
sense that in the limif’ — oo, with respect to the normalized probabilify¢" ™,

Pr (T~ he([uT), pT]) ~ h) = O (e*TQ<f<h>+v<h>*ﬂhma)*V(hma») (5.58)

for given macroscopic height profile[20].

Expanding (5.58) to quadratic orderdh = h — hy, yields a heuristic formula for the
covariance of the Gaussian shape fluctuations. In spistdteportional tq —92 — 92) !,
hence like a massless Gaussian field. This implies in péaticiinat on the macroscopic
scale shape fluctuations are small, of order only. Gaussian fluctuations are proved for
the Aztec diamond in [45] and for domino tilings of a Tempegae polyomino in [52].

The limit shape theorem (5.48) implies that also the bortlgp fas a deterministic
limit. We state a result, which is stronger than what couldlbduced from (5.48) and
which follows by the transfer matrix techniques to be expddiin Section 5.5.

Theorem 5.2. Let b be the border step as defined in (2.66). Then forany0, ¢ > 0,
0 <u_ <uy <ooonehas

lm P (|7 br([uT]) — boo(u)| > T3 u_ <u<uy) =0. (5.59)

T—o00

5.4 Bulk scaling, local equilibrium

For local equilibrium we zoom to a poify, 79)7 with b (79) < (o < bo(70) at average
densityp = p(¢o, 7o), which means to consider the random field

2™ (5,t) = n([GT] + J, [T] +1) (5.60)

with (4,¢t) € 7Z* and| ] denoting the integer part. Properly speaking we should keep
the reference point(y, 7o) in our notation. Since it is fixed throughout, we suppress it
for simplicity. In the limitT — oo, n2"%(j,¢) becomes stationary. Then at fixgdone

has to fill the Fermi states up to the densityvhich implies that,2¥(;, ¢), ¢ fixed, is

a determinantal point process @nas defined through the discrete sine-kernel. Only at
7o = 0, the inhomogeneity of the underlyingfield can still be seen, which, of course, is
an artifact of our coordinate system. In tfiel 1)-projection the line, = 0 would be just
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like any other local slope with a corresponding stationasyritbution of lozenges. The
caser, = 0 can also be treated. For simplicity we omit it and require- 0.
Let us define the kerné (4, ¢; 5/, t') by

S(j,t; 45, t) = sgu(t — 1) /(dkexp [ik(j' — §) + (' —t)In(1 — e"™2e")] (5.61)
I

27T t,t,)
for o > 0 and

_ 3
St 1) = W/dkexp [ik(j' — j) — (t' — ) In(1 — e P2%)]  (5.62)
™ I(tt")

for 7, < 0, where
n | [=mp,mp], if t >,
I(t.t) = { [mp, 21 — mwpl, if t <,

andsgn(t —t') = 1,if t > ¢/, andsgn(t — t') = —1, if t < t'. In particular at equal times

(it t) = w (5.63)

which is the sine-kernelS depends on the reference poigs, 70). In the particular case
of equal times the dependence is only through the local tensi

Theorem 5.3.In the sense of convergence of local distributions we have
Jim g™ (j, 1) = (1), (5.64)

For 7o > 0, n°"¢(4,t) is the determinantal space-time random field with definingdde
(5.61) and forry < 0 the one with the kernel (5.62).

Remark: Theorem 5.3 is identical to Theorem 2 of [69]. We use here tagml rep-
resentation for the defining kern&l; which differs somewhat from the one of [69] and
which turns out to be convenient in the context of the edgkrara

Proof. We consider the casg > 0 only, sincer, < 0 follows by symmetry. Let us set
Br(j, t; §',1') = D9 Ry ([T + 4, [1oT] + 5 [GT] + 5, [T] + 1), (5.65)

where Ry is defined in (5.46) and(j) = j|m| 7 In(1 — 1/7")/2. The determinant in
(5.47) does not change under similarity transformatioparticular not under multiplying
by es()=9(w)  Therefore

ET(Hn%Mk(jk,tk)) — Det(Br it i )<kt (5.66)
k=1
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and we need to prove that pointwise
lim Br(j, 655, t') = G, t: 5, 0). (5.67)

First consider > ¢'. Forr, > 0 we takeT large enough so that7 + ¢ > 0 (this
simplifies (5.72) below). Using (5.47) we obtain

Byt f.t) = ool (5.68)
« Z [eGT(ToT)_GL(ToT""t)] [GGL(ToT‘H,)_GT(ToT)}

1<0

CoT+j,l LGoT+j""

An explicit expression for the matrix elements of the tworpdunctions can be found
using the translation invariance of the one-particle ojpesa In Fourier representation
they are given by

[exp <Zaroz,«)] = % / 1 exp(—ik(n —m)) exp (Zareik’") dk  (5.69)

rez reZ

for o, € R. Then using (5.69) and changihgto —/, we have

e
Br(j.t;j',t) = Z —eg(j / dke? BT gpalkt) o =ik(CoT i) o =ikl
>0 T Jen
e_g(j,) m / 7 S -/ S
> 5 / dk/efa(k )Tefgoq(k )t )ezk (CoT+j )ezk l’ (570)
™ —T
where p
qT ikr T — —ikr
o(k) = (1—q)271 (e — g/ ik (5.71)
= r(l=q")
and o .
¢ =4") ra—q) —ikr
welk,t) = — g (5.72)
0= 2 )

To study the asymptotic of integrals as (5.70) we considerctimplexk plane and
regard the integration in (5.70) as being along the realffim@ —7 to 7. Such aline inte-
gral can be deformed to another péathvith the same endpoints. The complex integration
alongC will be denoted by/,, dk - - -. In the particular case when the path is on the real

line, say froma to b, the integral will be denoted bﬂf dk---.

Let us consider the following four pathg = —7m — 7, &1(p) = —7 +ip — ™ + ip,
o = —m — —m+ip,andé; = T+ ip — 7w with 0 < p < 7y. The factors in (5.70) are
integrals along,. Their integration contour can be deformed frggto &, o &; o &3 without
changing the integrals, since the integrands are holonmrptoreover the integrals ofy
and¢; cancel exactly because of periodicity of the integrands.thafesform the integral
in k into the integral alond; (/) and the one ik’ into the integral along; (¢ + <), with
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0 <e<xlandfd = —7TIn(1 —1/T)/2. 6 is chosen such that the exponentially large
function inT passes through the critical point®ofk’). Consequently we have

(=9
Br(j,t;51) = L ” / dk’ / dle(@R)=oWNT giGoT (K =F)
€1(0) €1(0+¢)

x Pat)=ea W #) ik J'=kj) (] _ ik =kK))=1 (5 73)
AsT — oo we obtain
efr70/2
(k) = 2i — sin((k — iro/2)r) + O(1/T). (5.74)
T

Therefore the terms that increase or decrease expongrtiall in (5.73) are£' (k) and
—E(K"), where

—r70/2
=2i Z sin((k —i10/2)r) — i(ok. (5.75)
r>1
The critical points ofF/ (k) are
—Co+70/2
+ k. +i10/2, k.= arccos (cosh(To/Z) - T) c R. (5.76)

ForIm(k) = 79/2, Re(E(k)) = (oy70/2, the analysis oRe(E(k)) for k close to the line
Im(k) = 79/2 shows that, foRe(E(k)) € [—m, —k.]Ulk., 7], it decreases when increasing
Im(k) and, forRe(E(k)) € [—k., k.|, it decreases when decreasing k).

Next we transform the integral into a sum of three terms, thst fivo vanish as
T — oo and the third one gives the final result, see Figure 5.1. We ffigvk'dk - - - =
[;, dk'dk- -+ [ dE'dk---+ [, dk'dk---, where the integrand is the one of (5.73). Let
us compute the three integrals separately. For the integratong/s, first we integrate
out k£ taking the residuum dt = £’. Then changing the variable to= k' — i6 we obtain

/dk;’dk;...: _/ dzePa(zHi0.0)—pq(2+i0,t") iz (5" =) (5.77)
I3

The asymptotic ofp,(z + 0, t) is

o(z,t) = lirri 0 (2 +i6,1) = —tIn(1 — e ™/2e7%), (5.78)
q—)

The integrals alond; and/; are treated in the same way. Let us estimate, e.g., the one
along/;. First we integrate ik. The integral| [dk--- | , such that the integration avoids
the two arcs of circle of radiusaround the critical points (see Figure 5.1), is bounded by
O (e=*T/(€T)) for somea > 0. O (e~**/T) comes from integrating”®” andO (1/¢)
because the minimum ok — %’| equalss. The integration through the two arcs around
the critical points is bounded kg (e**” /(¢T")) for somea’ > 0, because the integrand is
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Im Im
,,,,,,,,,,, S . § =
. . Iy LT , ‘,/\,/’ 1
Im +
‘ >‘|‘< Im
. | |
L4 /77];‘ =) ]3 k g
- ‘ *o/\ Iy
| A
‘Re € :
‘ ‘Re

Figure 5.1: Deformation of integration paths. The original integrdbray Iy, is de-
formed to the sum of integrals alorg, >, and/s. k is integrated along the dashed lines
andk’ along the solid lines. The full dots are the critical points¢k).

at most of0 (e <" /£) for somea’ > 0 and the length of the path of integratior(¥1 /7).
We choose therefore= 1/T, so that| [ dk---| < O(1). The integration irk’ gives an
extra-factorO(1/7T), and

lim [ dk'dk---=0. (5.79)

T—o00 I

Summarizing for > ¢/, we have proved that,
pT

: . . 1 zt—t") _iz(j'—j
TlglgoBT(j,t;j',t') = %/ dze?Zt=t) 0" =), (5.80)

_pr
wherep = k./m andy(z,t) as given in (5.78). In particular far= ¢, ¢(z,t — t') = 0,
which implies (5.63). The cage< ¢’ is treated in a similar way, leading to
li Bo(it: i t) = 1 27r—p7rd p(z,t—t") iz(3'—7) (5 81)
TE;I;O T(]7 VAR )—_ﬂ o ze e : '

Therefore

T—o00

lim ]ET(HU%UIk(jmtk)) = Det(S(jk, tw; Jis 1) )1<ki<m
k=1

= ([T Gt (5:82)

k=1
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The proof forr, < 0 is identical. 0

(5.80), (5.81) define a space-time homogeneous Fermi fielgsi€ally it corresponds
to fermions on the lattic& in their ground state at densityand with kinetic energy

Ekin(k) — ln(l _ €7|T0‘/27’L'ksgnT0). (583)

Exin is complex reflecting that the fermions have a drift.

The moments (5.82) define a probability measBreon the lozenge tilings of the
plane, where the relative fraction of their type dependsherréference pointy, 7o). Py,
is a Gibbs measure in the sense that its conditional expesagatisfy the DLR equations.
We refer to [33] of how DLR equations are adjusted in the caraésurface modelsP,, is
translation invariant with a definite fraction of each tygdéozenges.P, is even spatially
mixing, since truncated correlations decay to zero. Onddavwexpect thaiP, is the unique
Gibbs measure with these properties. A proof would reqhia¢ the same limit measure
P, is obtained when other boundary conditions are imposedxed fiozenge chemical
potentials. To our knowledge, only for the surface modaligttiin [33] such a uniqueness
property has been established.

5.5 Edge scaling

For the edge scaling one zooms at a macroscopic point lyiagtigxon the border of the
facet, i.e., at(y, 70)T with {, = b, (7). For simplicity we sety, > 0. 7y < 0 follows by
symmetry. Since at the edge the step density is zero, onelwssider a scale coarser
than the one for the bulk scaling in Section 5.4. From ourystfdhe PNG droplet we
know already that the longitudinal scale7i$/® and the transversal scaleZid/3. On that
scale the curvature of, cannot be neglected. Therefore the correct referencegaiat

t(s) = [rT + sT*?, (5.84)
J(r,s) = [beo(0)T + bl (70)sT*? + %bgo(TO)SQTl/B + T3],

Note that(r, s) € R?. The discrete lattice disappears under edge scaling. lathreviate

a1 = bo(r) = —2In(l —e™/2),
ay = =W (1) = e ™2/(1—e /), (5.85)
3 = bgo(To) = €_TO/2/2<1 — €_T0/2)2.

Then the edge-scaled random field reads
19 (r, 5) = T3 ([onT — asT?? + Lags®TV3 + 0TV [T + sTY?]).  (5.86)

The prefactofl/? is the volume element for'/3. Properly speaking we should keep the
reference timey. Since it is fixed throughout, we suppress it in our notation.
Sincen$'¢ is determinantal, so must be its limit. For the PNG dropledamedge

scaling the limitis the Airy random field and, by universglih our model the steps close
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to the facet edge should have the same statistics in thelimit co. The Airy field is
determinantal in space-time with Green'’s function

KAY(r 5,77 8') = sgn(s’ — s) / AN O(A(s — )M Ai(r — X) Ai(r' — \), (5.87)
R

where the step functiofi(s) = 0, if s < 0, andf(s) = 1, if s > 0. The Airy field is
stationary in time. In particular, the equal time correas are given through the Airy
kernel

0
KAY(r g7 s) = / dAAi(r — X) Ai(r’ — \) (5.88)

= L (A AV() — AIG) AT ().

r—r

Theorem 5.4. Under edge scaling (5.86) the correlation functions have fibllowing

limit,
jll_r& ]ET(H'nedge Tk, Sk ) = E(g (m’lnA“y <T—:, gsk>> ) (5.89)

uniformly forr, in a bounded set. Here = /207 (7y). In particular for the process

058 (f,s) = [daf(x)n;'(z,s), smeared over continuous test functighs R — R

with compact support, one has

hm nedge(f, s) = /dxf(/m)nAiry(x, sk/2) (5.90)

in the sense of the convergence of joint finite-dimensiois#libutions.

To prove Theorem 5.4 one only has to establish that under scijang (5.46) con-
verges to (5.87). We define the rescaled kernel (5.46) as

679(7‘78)

Kr(r,s;r', ) = TR (j(r, ), 4(s); § (', ), 1(s) (5.91)

=905

whereg(r,s) = —j(r,s)(7oT In(1 — 1/T)/2 + sT*3In(1 — 1/T)/2) and Ry (j, t; j', ')
from (5.46).

Proposition 5.5. The edge-scaled kernel (5.91) converges to the Airy kernel

lim Kp(r,s;r',s') = s L KAY (T ro lis') (5.92)

T—o0 K 2 )

uniformly forr, " in bounded sets.
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Granted Proposition 5.5 we establish Theorem 5.4.
Proof of Theorem 5.4rom (5.47) and (5.86) it follows that

ET(H n%dge(rk, Sk)) Det (Tl/BRT( (’I’k, Sk) t(sk);j('r’l, Sl), t<sl)>)1§k,l§m . (593)
k=1

This determinant does not change when multiplied by thefact/(*)+90"+") and there-
fore

ET(H?’} dge Tkv Sk ) = Det(KT(rk, Sk T, Sl))lgk,lgm- (594)

Note thaty(r, s) diverges a§” — oo. On the other hand

i _ Ty K _ ; Tk K 7"1 K
E ( 1. Airy (_ v )) — Det ( lKAlry (_ — Sk = )) )
<IH S K 28k A K 28k K QSl 1<k,i<m

(5.95)
Theorem 5.4 thus follows from (5.92).

We turn to the proof of Proposition 5.5. As bounded set we figulghout a centered
box B c R?, where the dimensioi depends on the context.

Proof of Proposition 5.5Let us first consides, > s;. By definition of K'r (79, s2;71, $1),
(5.39), (5.69), and (5.46), we have

e 9(r1:51)

Kp(rg, s9;71,81) = TY3 %
T( 2:92; 11 1) e—9(r2,s2)
_ —ikn 1 _—ikn
X E 2 / dke ikj(r1,s1 elkl62n>1(ﬂne )62"21 Pne (596)
T
<0
1 , ik’ i o ik
1 _ik’j(r2,s —zkl— e M —ppe ) — e
x o= dk J(r2,s2) o >n>1(tn n e~ Ln>1%n :
—7

where, = ¢"2/n(1 — ¢*), vp = png™™%, andyi = v, (1 — ¢"7*"*). As in Section 5.4
we regard the integrals in (5.96) as complex line integrats@se the notation explained
below (5.72).

The integrands in (5.96) are holomorphic away fréine C|Re(k) = 0, [Im(k —
iT0/2)| > 10/2} and the straight path from = to = can be deformed provided no singu-
larities are touched. In our choice the deformed path hasthiraight lines, the first one
from —x to —7w +i5;(T), the second one from~ +i3;(T) to m +i3;(T'), and the last one
from = + if;(T') to = with 3; € (0,7), see Figure 5.2. To be precise, the path along the
real line touches &t = 0 the starting point of a branch cut of the term in the exporménti
but still the integral remains unchanged by the above dedtion. Since the integrands
are2r-periodic along the real axis, the first and the last integrahcels exactly3, (7') is
determined such that the terms in the exponential are pumalginary. We obtain

B,(T) = —% (T In(1 — 1/T) + nTha(1 - 1/T)), i=1,2. (5.97)
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Im
70
e =

Figure 5.2: Deformation of the integration path. The original integfedm —x to =, is
deformed along the integral on the dashed path.

We also definé = LT'/3. Then the summation goes overc 7-'/3(Z_ U {0}) and

e—9(ri,s1) 1/3
KT(T27 $2;71, 31) = mll—ﬁz Z Jl 627 (5-98)

LeT~V/3(7Z_ u{o})

Ji(L) = / e tki(rsn) gk LT oy [QZZun sin(kn)e A1 }dk (5.100)

- n>1

<72(L) — / eik:/j(rg,sg)e—ik;/LTl/S exp [ _ 9 Z [in Sin(k/n)e—ﬁg(T)n:| dx’.

n>1
Finally definingJ;(L) = T*/3J;(L), we have
Kr(ra, s2;71,81) = Z (47T2T1/3) ahleam 51)(1+O(T71))J1(L)J2(L)- (5.101)
LeT—1/3(Z_u{0})
For the case, < s; the resultis

Kr(ra, s2;r1,81) = — Z (4T3 Leallsm 51)(1+O(T_1))J1(L)J2(L). (5.102)

LET~1/3(24\{0})

Now we proceed as follows. First we prove that7as- oo, J;(L) — 2 Ai (Z=L)
for L € B, by using the steepest descend curve for the term which @nexyially small
in T'. Secondly we consider separately< s; ands, > s;. In the latter case, for large,
we need the steepest descend curve for the whole integrdnedsaime strategy has been
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used in [35]. In the case, < s, for large L, the steepest descend curve does not exist
anymore. On the other hand the teem"(*1—52) serves as a convergence factor and we
only need to find bounds for thg(L).

Convergence forL in a bounded set

Let L € B. The integral/;(L) is written as

Ji(L) =T'3 / " T (b) kLT “dk, (5.103)
where ’
Vr7(k) = —ik T j(ry, s1) + 2i ; Tne_ﬂl” sin(kn). (5.104)
We make a saddle point approximation by using a curve whartsrhallk, is very close
to the steepest descend curveddk), where

w(k) = lim LT + gy (k))/T (5.105)
and the convergence is uniform for, v, L) € B. For the limit we obtain
U(k) = vo(k) + 2ikIn (1 — e /%), (5.106)
where
—nTo/2

e

Yo(k) =) 2isin(kn) (5.107)

n>1
In particulary (k) is holomorphic inC \ {k = z + iy € C|z = 0, |y| > 7/2} and the
whole integrand i2m-periodic along the real axis.

Instead of integrating along the straight path — = we integrate along' = {k =
r+iy,y = — |x| /v/3}, see Figure 5.3. Far small this path is almost at steepest descend.
The real part of)(k) reaches its maximum &t = 0. To evaluate the errors far away
from zero we prove that the real partotk) is strictly decreasing fofz| increasing. By
symmetry we consider only € [0, 7]. A simple computation gives

n?

dﬁif) = —(i+1/V3) In(Q) (5.108)
i N = =
_ (1 _ eszr:v —T0 2)(1 _ efixfx —T0 2)
Q= E=E (5.109)
and
 cosh(7p/2) — cosh(z/v/3) cos(x)
Re@ = 2 sinh2(70/4) ’
ImQ _ sin(z) sinh(z/v/3) ' (5.110)

2 sinh?(7y/4)
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Y }77/6 Re

Figure 5.3: Deformation of the integration path. The path frerr to 7 is deformed
into C plus the dashed ones.

Using thatcosh(z/v/3) cos(z) < 1 and is maximal atrt = 0, we haveReQ(x) >
ReQ(0) = 1, the inequality being strict it # 0. ObviouslyIm@ < 0. Therefore

dw(k) _—L n (&} 2 m 2 arctan(ilm (&}
Re( i )— A ((ReQ)? + (InQ)) + arctan(im@/ReQ) <0 (5111)

for all x € [0,7] and for all7y, € (0,00). The inequality is strict ifz # 0. Since
dRe(w(t) — Re (%(k)) and by (5.111)Rev)(k) is maximal atk = 0, ¥(0) = 0, and is

dz T
strictly decreasing fofz| increasing.

Let us fixe, 0 < ¢ < 1, and letC. be the part ofC with z € [—¢,¢]. Then the
contribution at/; (L) coming fromC'\ C. is exponentially small if".

Lemma 5.6. For somej > 0,

(L) =0 (e7T) + 13 / eV (BT LT g (5.112)

5

Proof. Let C" be the part of” with z € [¢, 7] andC- the one with: € [—, —¢]. For
x > ¢, Reyp(k) < Rey(0) — 25 < 0 for suitables = §(¢) > 0. In addition

Ui (k)T + ik LT = (k)T + O (L — )T + ,7%%) . (5.113)
Then

‘ / €¢1,T(k)T€ikLT1/3dk ‘ < e~ T /7T ie(Re¢(k)—5)T60((L—Tl)Tl/3+S1T2/3)dx. (5114)
o SEVE]
For (L, sy, ) € B, the integral on the right side is uniformly bounded andefene

‘ / oY1 ()T ik LT3 4. ‘ iy (e—éT) . (5.115)
ct

Similarly for the integral ann@g. O
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Lemma 5.7. Uniformly for (L, r, s;) € BB, one has

J(L)=0 (") +0(T'7*) + 2% Ai (“ ; L) (5.116)

for large T, with k = /2as.

Proof. By Lemma 5.6 we have to evaluate the contribution of the naleongC’.. Fork
close to0 we have

2
U1 (k)T 4 ik LT3 = —gmgk?’T — ikTY3(ry — L) (5.117)
+ O (stk + siK*T%* + k°T) .

Let C be the part o with = € [0,¢] andC; the one withw € [~¢,0]. Then |, --- =

fc+ st fc_ ---. We consider explicitly only one of the two integrals, the@at being
evaluated in the same fashion,

T1/3/ ewLT(k)T—l—ikLTl/?’dk
ct
B Tl/g/ o= 33k’ T ,—ikTV/3(r1—L) JO(s3h+s1K* T3 +k5T) 41, (5.118)
ct
- Tl/g/ 67%mskBTe*ile/B(”*L)dk—l—El(L).
cf

The error term is the integral alordg™ with integrand
T1/3p §iask®T ,—ikT*/3(r1~L) (eo(s§k+slk3T2/3+k5T) —1) (5.119)

_ T1/3e—%iangTe—ik:Tl/S(rl—L)e(’)(s%k+51k3T2/3+k5T)O (s%k: + 31k3T2/3 4 k:5T).

The term in the exponential is 2iazk3T'(1 + x1) — ikT"/3(r1 — L)(1 + x2), wherex;
andy, can be made arbitrarily small by takiagsmall enoughy; is bounded). With the
change of variable = £7"/3 we obtain

1 ‘ |
e~ isealli)Z =il =020 (22 4 5,2% 4+ °T71%) dz. (5.120)

E1<L> == T1/3 T1/3CE+

Remark that at the boundary of the integration, the real gfatie integrand behaves as
e~ 55’ This integral is uniformly bounded ifi for (L, r, s;) € B. The same holds for
the integral orC. Consequentlys; (L) = O (T~1/3).

Next we extend the integration fromC. to —aT'/3(1,cos(r/6)) and
7T'3(1, — cos(n/6)), obtaining the pathD;. In this way we add an error of
O (e=©T) with §'(c) ~ 3. Similarly we can complete the path upto= £N7T"/3,

y = —NzT'3/\/3 by straight lines. The integral is equal to the integratioonf
—N7T3 to NxT'/3, since the function i&€7T"/3 periodic in the real direction and the
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error added by completing the integral is exponentiallylsmar’, for all N. Therefore
we may take the limitv — oc.
Finally we obtain (5.116), since

/ e—z‘%ang—z‘z(m—L)dZ — 2—7T Al (7"1 _ L) (5121)

K K

[e.o]

with k = /2as. O

Convergence ofKr(rq, 9571, 51) With s9 < s

Lemma 5.8. Uniformly for (r;) € B,i =1, 2,

o — L — L\ dL
lim Kr(rg, s9;71,81) = —/ e3l(s2=51) A (7"1 ) Ai (TQ ) —  (5.122)
0 K

T—o00 K K

with Kk = ¥/2as.

Proof. Since(ry,ry) € B, let us setl, such thatly < 2(|ry| + |ro| + 1) for all ry, 7.
Ky can be transformed into an integral adding an e@qfl"~'/%). Let us fix anc with
0 <e< 1 Then

Lo e~ LX eT?/3 o LX
—KT(TQ,SQ;ThSl) = / Jl(L)JQ(L) A2 dL‘l—/ Jl(L)JQ(L) 5 dL
0 s Lo 4
00 efLX 173
+ / J(L)o(L)= AL + O (T71%) (5.123)
eT2/3 s

with X = 1(s; — s2)(1 + O(1/T)) > 0. Since|J;(L)| < T3, i = 1,2, the third term
is bounded by™?/3e—<7**X /X — 0 asT — oo. By Lemma 5.7 the first term converges,
uniformly for (u;, s;) € B, to

LO —_— L - L $2—S1 ]_
/ Ai (“ ) Ai (L ) et —dL (5.124)
0 K K K
as’T — oo.

We consider the second term. We have already establishgubitigsvise convergence
of J;(L) to 2 Ai (“=£). If we obtain that for large’, |.J;(L)| < G with a constanty
independent of;, s; and L € [Lg,<T?%], then by dominated convergence

eT?/3 o0 . _ L L(s2—s1)
L L
lim [ Jy(L)Jo(L)e " XdL = / Ai (“ )Ai (7’2 )62 dL (5.125)
0 L

T—oo | K K K2

0

uniformly for (r;) € B. This property is proven in the following lemma. O

Lemma 5.9. For L € [Lo,eT%?], |J;(L)| < G with the constan& independent of;, r;,
and L, provided0) < ¢ < 1 andT large enough.
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Proof. The exponential terms in (5.103) are purely imaginaryifoeal. Let us set

YI() = SGRLT™5 4 4, 7(K)), (5.126)

then

Ji(L) =T / eI, (5.127)

—T

In particular fork close to0,

Ui (k) = —§a3k3 (1 +0 (k2+31T_1/3)) —k(ry — L)T23 (1 o) (s%T‘lB)) .
_ (5.128)
Since(r, — L)T~%/* ~ O(c) at most, we seL = (L — r,)T~%/. 4{(k) has two local
extrema att-k (L) with

L) =VIe (140 (L+sT717)) (5.129)

andcy = (2as3)~'/2. Moreover for|k| > 2k(L ) Yi(k) is strictly decreasing.J;(L) =
f:r cee = Zi:l fIi -+- wherel; = [, —200\/7, I, = [—200\/2, 0], Iz = [0,200\/2],
andl; = [2¢q \/f, 7). The integrals alond, andl, are evaluated similarly and so are the
integrals along/, and /3. We present in detail only the integration alohgand/,. Let

= \/f Then

u(r)

/ =T / eV OT q — T1/3 / flu)e™ du (5.130)
Iy 2coy

u(2co7y)

whereu = ¢ (k) and f(u) = % Integrating by parts we obtain

e /“(”) dfwe (5.131)

u(2co7y) u(2co7) du i

T

-3 [ €
T13/14 = ()

Fork € I, with |k| < e follows from (5.128) thati“ < 0 and jkij > (. Fork > ¢,

du ~ 1+e ™ —2e /2 cos(k) _13
=L ( B + O (s, T717). (5.132)
Then fork € Iywithk > ¢, 9 < 0andL¥ > 0. Therefore®™ = —(du)=3du where

% <0and fikg > 0 for every point in/y. Thusd’;u“) does not change sign alorig and

‘/f ‘ TL (Lf (w(m)] + | f (u(2c07))]) - (5.133)
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Using (5.132), forl" sufficiently large,
|f(u(m))] = [2In(1 - ™) —2In(1+e ™) +42+ 0 (slT’l/B) | -
< (1= ™) —n(1+e™?)| 7 =Gy, (5.134)

provideds small enough (which implies sufficiently small). The second term is bounded
by

1+ O (P + 5T/

| f(u(2co7))| = ( 2 ) <2/ (5.135)

for e small ands; € B. Therefore we have, uniformly ifr,, s;) € B,

26, 2 2G4 2
ol = o< < ) 5.136
/] s =i A e B

Next we estimate* Jr, ‘ :
2co7y c2y
/ =T / ¢t gl = 73 / eI (5.137)
I3 0 —cC17

wherey(k) = ¢! (k — k(L)), ¢; = co(1+ O(7)) ande, = ¢o(1 4+ O(y)). Let us define
the pathsfo {k =20 : —c1y — ey}, & = {k = —c17e™™,0 1 0 — 7/4},

={k = ez —cy — ek & = {k = e, o - /4 — 0}. Then
f13 =Jo = Zzzl Je, -+ The integrals along, and¢; are estimated in the same
way.

. A
T1/3/ eI L = Tl/g/ e EOT e~ (1 4+ O(7))dep (5.138)
&1 0

and therefore
~ /4 _
‘Tl/g/ eiw(k)Tdkl < 2T1/3700/ e TIm@k@)) qp, (5.139)
&1 0

Sinced (k(¢)) = ¥(0) + 2" (0)k(0)2(1 + 61 () with 6, () — 0 ase — 0 andk(y)* =
v (14 O(v))e %%, one has

Iy (k(p)) = —%J”(U)(k(@f(l +02())cg* (1 + O(v)) sin(2¢p) (5.140)

with §(p) — 0 ase — 0. Moreover, for: small enoughsin(2¢)(1+6d2())(1+O(7)) >
. From this it follows

L~ 7.(-/4 2 //
‘T”g / e“”’ﬂTdkl < 2rapy / O (5.141)
&1 0

o] - 1/3
S 2T1/3CO’}// eTC(%’YleH(O)(p/zdgp _ 4T /AC/O’Y )
0 Tcgy? |w~<0>\
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We compute)” (0) = —2ycy* (1+ O (2 + s:T~/3)). Therefore fors, € BandT large
enough,

— 4 4

T3 / e“”(k)Tdk‘ < < . 5.142
o ST =T (5142

Next we need to evaluate the integral algag
T1/3/ PR qJe — TL/3—im/4 T (0) /Cﬂ oIV (0)2?/2(14+0(2)) 4. (5.143)

&2 —c1y

Then for sufficiently smalb,
&2 —c1y

< T3 / TV O28/4 0 < T3 / e~ T/ dy (5.144)

ViVe T
VL —r VLo —r .
Thus we have, uniformly fog; € B and7" large enough,

g Na
/‘ STo—m) " VLo—n (5.145)

ThereforeJ;(L) is bounded by
4G 20 2

25 + + VT
T (LO - Ti) \4/ 20(3([/0 — Ti)

SinceLy—r; > 2andX > 0, it follows thatJ; (L).J>(L)e~1¥ is bounded by an integrable
function on[Ly, eT?%/%] for 0 < ¢ < 1 andT large enough. O

| Ji(L)| < (5.146)

Convergence ofKr(rq, so;71, $1) With s9 > s
Lemma 5.10. Uniformly for (s;,r;) € B,i = 1,2,

o — L — L\ dL
lim Kop(rg, s9;71,81) = / ezls2751) Aj <T1 ) Ai <T2 ) — (5.147)
K

T—o0 — oo K KR

with k = /2as.

Proof. Let us setl, such thatly > 2(|r1| + |re| + 1) for all (r1,r2) € B. Then the sum
in K can be approximated by an integral at the expense of an@r(@r'/?). Let us fix
£,0<e < 1. Then

0 oLX ~Lo oLX
Kp(rg, s2571,81) = / J1(L)J2(L)4—7T2dL+/ Ji(L)Jy(L)—dL

—Lo eT2/3 477'2

—eT?/3 oL X
- / JU(L) (L) dL + O (773, (5.148)
_ i

o0
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with X = 1(s2 — 31)(1 + O(1/T)) > 0. The convergence of the first term has already
been proved. Let us sét= —(L — r1)T~%/3. In the remainder of the proof we set

V(k) = T 1(k) — kL. (5.149)

First consider. > e
Ji(L) =TY? / W4, (5.150)

With the change of variable = ¢ (k), f(u) = %% and integration by parts, we have

24)() d/w)
Jo(L)| < T3 a |
|Ji(L)| < T kelomwm) | du

(5.151)

W) (duy-sdly ) du) g (5.132) with L replaced by

df(u)
To compute‘ = ") e

—L. ltis easy then to see that uniformly fer € B, maxjcy(—r),u ()] ‘ df(u) ‘ <G L}
for G; = 2/(sinh(7/2)e)? < oo. Then for a suitable constaﬁtg < 00,

|J1(L)| < Ga(ry — L)~ (5.152)
The same holds far,, therefore the third term in (5.148) is bounded by
—eT2/3 2
G3
dL, 5.153
L. @i (6:159)

which is convergent foi” finite and vanishes fdf" — oo.
Finally we conside < L < . Let us set3 = y/2(cosh(ry/2) — 1). We integrate

overC = {k =z +iy(x),y(zr) = —/y(0)% + x2/3}, with iy (0) the stationary point of

¥(-, L), see Figure 5.4y(0) = —ﬁﬁ +0 <Z3/2> andC'is almost the steepest descend

curve forz small. This path has the property that the real patt(@f) is strictly decreasing
as|z| increases and

D(iy(0)) = —%ﬁim (1 +0 <s§T—1/3 + Z)) . (5.154)

We divide the integral in the part witlr| < £ and the remainder,

J (L) =13 / BT qf = T1/3 / VBT qf = 7/3 / e"®TAk 4+ Ey(L), (5.155)
-7 C

€

where

EQ(L) — T1/3/ ew(k)Tdk -0 (675Tew(33=0)T) =0 <€7 3/3(7'1 L) 3/2> (5 156)
C\C:

We then need to integrate only closexte= 0. We first establish some propertiesyafk)
for z = 0.
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Figure 5.4. Deformation of the integration path. The path fremr to 7 is deformed
into C plus the dashed ones.

Lemma 5.11.
i) w0, D) = 3L+ 0 (D24 DPRT ),
i) d”’ffzz) lk=iyo)y = 0,
i11) d?gg;,i) ki) = _%\GJF ) (Z " \/fslT*1/3) | (5.157)
iv) d%dg%’z) lk=iy0) = —%i +0 (E + 81T_1/3) )

Proof. i) follows from Equation (5.154) and ii) becauke= iy(0) is a stationary point of
(-, ). iv) follows from (5.117) becauszn; = 1/42. Finally letA = v/Z. Then

d &k, L) d*(k, L) dk

= — 5.158

d\  dk? dk? dA ( )

and evaluating at = iy(0) and\ = 0 we obtain iii). O
With these properties

Ji (L) — Ey(L) =T / VBT (5.159)

€

e E A B e

" O(E(k—iy(0)>2T+ﬁ(k—z‘yw))Q51T2/3+E<k—z‘y<0>)3T+(k—z‘y<0>)351T2/3+(k—z‘y<0>)4T)
e .

Lety = /r, — L, thenV/T = AT~/3, Letk! = k — iy(0), then the integration is along
Cé =C. + ny(O)

Ji(L) — E3(L) = e357360(75T2/3+735%T1/3>T1/3/ Qe BRETH =T
Ce

x explO (VKT + ysi T3 + B3T3 + k25, T*% + k*'T)].  (5.160)



124 Analysis of the 3D Ising corner line ensemble

SinceL can be made arbitrarily small, faf € B the exponent of the term in the integral
can be written as

" 2m2/3 3
- Ek T?3(1 4 x1) — S—BQk T(1 4+ xa2), (5.161)

where they; can be made as small as desired by choosisgiall enough. After the
change of variabléT"'/? = ~ the integral becomes

/ dze~ 3700 ~ g (14x2), (5.162)

The integration is taken along a contour, symmetric witlpeesto the imaginary axis and
such that forRe(z) > 0, argz) € [—x/6,0]. This implies that the integral is uniformly
bounded.

Replacing the term in front of the integral (5.160) by one,&hror can be estimated as

e_%ﬂ,yfi (60(75/1"72/34»735%71*1/3) . 1> ’ (5.163)

since the integral in (5.160) is bounded. HoK ¢,
(ry — L2723 4 (ry — L3T7Y3 < (ry — L)% + (r; — L)V/=. (5.164)
As a consequence
o267 <60(v5T—2/3+v38%T‘”3) _ 1) < 0O (e 27 (ST 23 4 73s§T‘1/3)>
< 0 <T*1/3e*5(’"1*”3/ ) . (5.165)

After this step we can also remove the error inside the iald§r160). As in the case of
L € B, the removal of this error leads to an additional errof’of/? with the prefactor
e~ 3B(ri—L)*/? . Consequently we have obtained

Jl(L) = eiﬁ(hL)s/Q/ dze—%ﬁe—uﬁzs_'_o(T,l/ge,%ﬁ(rlfL)S/z)

C/Tl/S
+ O (T Bt 4 O (9o on=tr) (5.166)
Next we change to the variable= w + i(3y/r; — L. The integral becomes
/ ¢ e’ -Dwg,, (5.167)
CLT3+if
Finally completing the contour of the integration such tiaoes to infinity in the
directions argw) = ¢4 with ¢, = —7/6 andp_ = —57/6 leads to an exponentially

small error. Using tha2a; = 1/3%, the main term goes téf— Ai (%) Since the errors
are integrable i, and go to zero 8§ — oo, we obtain, fors, > sy,

0 —L — L\ dL
lim Kop(ra, s9;71,81) = / e3L(s2=51) Aj (L> Ai (TQ ) d—2 (5.168)
T—o00 oo K K

R

with k = /2as. O
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With the change of variable = L/x, (5.168) is rewritten as

0
lim Kp(rg, se;ri,s1) = /{_1/ e3A(s2=s1)R A (E — /\> Ai (— — )\) dA

T—o00 00 I K

e (95 1 ’;sl> (5.169)

5.6 Proofof Theorem5.1

Now we have all the elements to prove our main theorem.

Proof of Theorem 5.1Let f; be the indicator function ofa;, c0). Then (5.4) corresponds
to

i PT(ﬂ{nedge(fi,s» —0p) =r( é{n’*w/n, s5/2)=0)). (6170)

We choose: large enough and splft = f + ¢* with f¢ the indicator function ofa;, al
andg“ the one of(a, c0). Then

(ﬂ{ne“g‘m $)=0}) - PT(ﬂ{ne"ge(f:, 5 =0)) ] <

< Z]PT( edee(pa o) > 1). (5.171)
The term
PT(ﬂ{ne“ge Foss) = 0}) (5.172)
converges to
p( (Yo ./ = 0)) (5.173)

which yields the right hand side of (5.4) as— oc.
The terms in the sum of the right hand side of (5.171) are bed gy

Pr (n;dge(ga, i) > 1) < Erp <77;dge(ga, sz)> = /00 Er <n§dge( Z)) dr.  (5.174)

From (5.101), _
Er (n%dge(n 3@')) = /O —5Ji(=L)*dL. (5.175)

472
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J1(—L) isindeed a function of+ L, which asymptotics has been studied already- for.
large, but bounded by + L < T3, with the result (5.166). Therefore the integrals in
(5.174), (5.175) converge for+ L < eT?%/3.

Next consider + L > T?%3. Let L = (r + L)T~2?/3. With the change of variable
u = (k) and integrating twice by parts, we obtain

2¢(m) d¥(u)
Ji(=L)| < T3 ma; ‘ 5.176
(=L)< T2 kelplomum) | &b ( )
Similarly as for (5.152) we have,
A% (u) ~

ma <G L2, 5.177
Kl (—m) ()] | N B (5.177)

for a suitable constarit; < oo, which yields
|Ji(—=L)| < Gy(r+ L)2T71/3 (5.178)

for some constant, < co. Therefore the integrals in (5.174), (5.175) have a baufd)
uniform in7" which vanishes ag — oo

5.A  Appendix: fermionic correlations

5.A.1 Two-point function

Let A = > ruez Ariaya be the second quantization of the one-particle matrixit is
assumed that~4 is trace class anBet(1 + ) # 0 (see [85], Chap. XIIl). We use the

identities L L
e aret = Z aj [0, e “taet = Z [e];.5a;. (5.179)
jEZ. jEZ.
Then
1 7 1 7
(afa;) = 7 Tr(e “aja;) = Z 7 Tr(a[e™],.e " a;) (5.180)
nezZ
= > e Mni(—(aha) + 6im) = [0 — Y (anag)e M,
nez neZ
and
> {anl + e Mniag) = [0 (5.181)
nez

Finally multiplying this expression by",_,, [(1 + e~*)~']; . we obtain

(ama;) = [(1+ €)™ im. (5.182)
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5.A.2 Proof of (5.41)-(5.43)

We prove recursively that

(a,aj, -+~ a; a;,) = Det(R(ix, ji))1<ki<n, (5.183)
where
-y | (a}ay) if k<I,
R(ig, ji) = { —<Zjlai;> — (5.184)

Then, taking, = j, for all &, the result (5.41)-(5.43) is obtained. For= 1 the formula
holds by definition. Suppose the formula (5.183) has beabkshed for some, i.e.

<a’;k10“jl> <a’z<1 a’j2> U <a’;(1 a]n)
—(a '2a;k1 az;a .2 “ .. a/;kga 'n
(ai,aj, -~ aj a;,) = < ! b .J> < .] > (5.185)
—(az,a;) —(aja;,) -+ {a} aj,)

We will need one more expression for - ) such that in the first pairs the annihilation
operator precedes the creation operator,

* * % * _
(ajai ---aja; ai  aj,., ...a; aj) =

kT lk+1
_<a’j1 a;:) U <a;‘k1ajk> <a;‘k1ajk+1> e <0J;‘k1ajn>
_ (_ k _<a’jka”?1> T _<a’]k a:@> <a">;ka'jk+1> T <a’z<ka’]n>
= ( 1) * * * *
_<ajk+1ai1> U _<ajk+1aik> <az‘k+1ajk+1> e <az‘k+1ajn>
—{aj,ai) o —aa;)  —laai ) 0 (e ag,)

(5.186)
Let us prove this formula. Fdr = 0, it agrees with (5.185). Suppose it to be true for some
k. Let us then prove that the formula (5.186) holdsior 1,

* * * * _
<aj1ai1 e ajk+laik+1aik+2ajk+2 tt alna]n> -
—_— . * CECEY - * * - * .
= —(a;,a;, ORGR N .a; aj,) (5.187)

*

* * *
+ 5’ik+1vjk+1 <a’j1 (P 'ajkazkaik+2ajk+2 e 'a’ina’jn>'

Using the expression (5.186) and considering the expawusithre determinant in the: +
1) column (or row), it is easy to see that (5.187) correspongstoua factor of—1,
to the expression (5.186) but with the diagonal tefm a;, ,, replaced by-ay, ,,a;, ...
Therefore (5.186) holds fdr + 1, too.
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Now we prove (5.185) for. + 1 by using (5.185) for, and (5.186) for andk < n,

]_ —~
* * pr— 7A * - CECEY * .
(ataj, - .ain+1ajn+1) =7 Tr(e”“aja ain+1ajn+1)
1 —~
I —A —A * ES
- E[e ]m7q Tr(e gy« + 'ain+1ajn+1am>
meZ
— —A * *
== e Mg (ahag, -l a5,,) (5.188)
meZ
n+1
* * *
+ : : Jp q a]l 22 e ajp—laipaip+1ajp+1 tee a’in+1ajn+1>

+ [e_A]th <CL NP azn+1ajn+1>'
We take the term with the sum over € Z together with the first one and multiply the
whole expression by ., [(1 + e~*)~'],;, to obtain

(aha5, - af, a5,,,) = (afa;,)aka, - al a;,,,) (5.189)

in41 JIn+1 tnt1 Jn+l
n+1

z : * * x % *
+ <ai1ajp><aj1ai2 T ajpflaipaip-uajwl s ain+1ajn+l>’

Using (5.185) and (5.186) for terms we see that this last expression is nothing else than
the expansion with respect to the first row of (5.185) witbubstituted by + 1.



Appendix

A.1 Equilibrium crystal shape geometry
As illustrated in Figure A.5, we define
r=x0+06, y=yo+ f(x9)d—¢ (A1)

and
i':l'—l'o, g:y_yo (A2)
If 2(6,5) = —§’7pT€3/2, then

- 2 foNe -~
2(7,7) = —§7PT(f (20)T — 9)3/2- (A.3)
Letp, = 0.2, p, = 0,2, andd the angle between theaxis and the outher normal to the
facet. Thenf'(zq) = — ctan@. The surface profile and the free-energy density (surface
tension) per unit projected are the Legendre transform dtieeather [3]
Hz,y) = Lf(@/Cy0),  f(perpy) = (2 = 2pa — ypy). (A.4)
Close to the flat surface, some algebra leads to
f(Ipl) =~(0)Ip| + B(0)[pf’ (A.5)
with © .
ctan(0)xo — Yo
0) = , B(9) = . A.6
7(6) , /—1+ctan(0)2 (0) 3072,,(1 + ctan(6)2)3/2 (A.6)
Definingr = f"(x) it follows that 92 = (1 + ctan()?)x~ and 92 = — ctan(d)(1 +
ctan(6)?)k~!. The stiffnessy is then
. Y 1 + ctan(6)?)3/?
30) = 4(0) +'(0) = THROD T (A7)
therefore
- 1 w2
FO)BO) = —— = — (A.8)



130 Analysis of the 3D Ising corner line ensemble

Figure A.5: The facet in the: — y plane goes into the rounded surface in the negative

where the last equality in (A.7) comes from thermodynamids {rr, x, ands? are the
PT coefficient, the second derivative of the border line,thedocal wandering coefficient
in the (z,y, z) coordinate axis. The change of coordinate fromy) to (e, e;) leads to
the PT coefficient, the curvature, and the local wanderirgffeent in the orthogonal
coordinate axisypr, |, k1, ando? namely

k1(0) = r(1+ctan()?)32,
VPT,L(H) = ’}/pT(l -+ ctan(9)2)3/4, (Ag)
o2(0) = o*(1+ctan()*) 2

A.2 Fredholm determinant and Fredholm Pfaffian

A.2.1 Preliminaries

These notions are taken from [83], Chapter VI. tébe a separable Hilbert space. De-
note by £L(H) the set of all bounded linear operator frafhto H. Let {p,}>2, be an
orthonormal basis of{. Then, for any positive operatot € L(H), thetraceis defined
by Tr(A) = Z;.Lozl((pna Apy).

An operatorA € L(H) is calledtrace classif and only if Tr(|A|) < oo, where
|A| = VA*A.

An operatord € L('H) is calledHilbert-Schmidiif and only if Tr(A*A) < co. These
operators can be expressed via an integral kernel(ej:) be a measurable space and
H = L*(M, ). ThenA € L(H) is Hilbert-Schmidt if and only if there is a function (the



A.2 Fredholm determinant and Fredholm Pfaffian 131

kernel) K € L*(M x M, u ® ) with

(Af)(x) = /M K (2, 9)f(4)du(y). (A.10)

Moreover,|A[l3 = [, | K (z, y)*du(z)du(y).
The notions in the following part are taken from [85], Chay@8I. Let H be an Hilbert
space, thelk)" H is defined as the vector space of multilinear functional&{offior given

1y EH, 1@ @ 0, € X" H by
(1@ @@n)((m, -5 mm)) = (P1,m) -+ (P ) (A.11)
forany(n,...,n,) € H x --- x ‘H. The inner-product is defined by
(1@ @) @ @) = (P1,m) -~ (Pns 1) (A.12)
and for any operatod € £(H) there is an operatdr,,(A) € L(Q" H) with
Lo(A) (o1 @ -+ Q) = Ap1 ® - - - @ Agy. (A.13)

It satisfies[',,(AB) = T',,(A)T',(B).
Next we consider the antisymmetric subspac&pfH, denoted by\" H. LetS,, de-

note the permutation group ¢f, ..., n}, thenA\" H is the space spanned by the elements
1
NN =—= > (=1 p,0) & - @ Qo). A.14
®1 ® maesn( ) Po(1) Po(n) ( )

The operatoi’,,(A) restricted to/\" H is denoted by\"(A).

A.2.2 Fredholm determinant
Determinant of a trace class operator

If the Hilbert spaceH has finite dimensiom, then\"(A) is the operator multiplication
by Det(A) (the usual determinant). The Fredholm determinant extérelaotion of de-
terminant to infinite dimensional Hilbert spaces. For at# class operator$ acting on

a finite-dimensional space with dimension, one can see that

Det(1 + A) = Zn:Tr (/\k(A)), (A.15)

where the ternk = 0 is by definition set to bé. In the case diff = oo, Det(1 + A) is
defined by (A.15) withm replaced withbo. The sum converges becauéeés trace class.

In particular, consider the case of an integral operatotios L*(M, ) given by a
kernel K, i.e.,

(Af)(x) = /M K (2, 9)f (y)dpu(y). (A.16)
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If Aistrace class and the kern&lis continuous, then

Tr (/\n<A)) = i /M" Det (K(xlv xj))lgidgndlu(xl) te du(xn) (A17)

T nl

The determinant (A.15) then writes
=1
Det(1+ A) = Z ﬁ/ Det, (K(x%xj))lgi,jgnd/l(xl) cedp(xy). (A.18)
n*O . n
(A.18) is called Fredholm determinant @h= L*(M, ).

Determinant of a kernel

The Fredholm determinant can also be defined for a kekhelithout passing by the
operators, as explained e.g. in [7]. L@, ) be a measure space andr) be a positive
continuous function o/ such thatl/A(z) € L*(M, ). We say that a measurable set
S C M x M isthinif for all zg,yo € M the sets

{z € M|(z,y) € S}, {x € M|(xo,y) €S}, {xre Ml|x,z)eS} (A.19)

are ofu-measure zero. A thick subset df x M is defined as the complement of a thin
subset.
A function K (z,y) on M x M is akernelif:
1) K(z,y) is measurable,
2) for some thick open subsetC M x M, K(x,y) is continuous o/,
3) 1K |4 = $up(e.yyenrnr A(@)A(y)| K (2, )| < oc.
The class of kernels form a vector space with the nprm 4.
For any kernelK (z, y) andn > 0 define

Bu(8) = [ dun) - o) Dot (51,2 (A.20)
andAy(K) = 1. One can show that
/ dp(a1) - - dpa(an) [Det[K (25, 27)]i jor..nl < O K502 (A.21)

with a constantC' > 0 (depending o). ThusA, (K) is well-defined and the Fredholm
determinant attaced to the kerrz€lis defined by

A(K) = i VA (), (A.22)

n!

n=0
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A.2.3 Fredholm Pfaffian

As for the Fredholm determinant, also the Fredholm Pfaffiaa kernel is defined via
series. Consider a kerneRax 2 matrix kernelX’ on a measurable spac&/, ;1). Assume
that K is antisymmetrici.e., K (z,y) = —K*(y, z). This means

K1,2(:E7y) = _KQ,I(yv ZL‘), Ki,i(xv y) = _Ki,i(yv :E) = 07 1= 17 2. (A23)
Define another kernel as the2 x 2 matrix
I(z.y) = 6., < 01 ) . (A.24)
YL -1 0
The Fredholm Pfaffian is defined in Rains’s paper [82]. Derote [ J >~ , M", let

S = {x,...,z,} C I" and denote by<'(S) = [K(z;, ;)] .- Then, sincek’ is
antisymmetric,

Pf[(J—I—K)(S)] = Pf [J(ZL‘Z,ZL‘j) +K(xi"rj)]i,j:1 ..... n (A25)
= Z PEK(S")] = Z Z Pf [K<xikvxiz)]l,k=1 ..... m
s'cS m=0 i1%... im
The Fredholm Pfaffian on the measurable spddey.) is defined by
Pf(J+ K) = / PE(K(S))du(S) (A.26)
Scr
=1
= Z ] / dp(zy) ... du(x,) PEK (x4, xj)]z‘,jzl _____ .
n:O . n
It is also shown that the connection with the Fredholm deiteaint is
Pf(J + K)* = Det(1 — JK). (A.27)

A.3 Real quaternionic matrices

A quaternion is a linear combination of the basis quatemien = 1, ey, e, e3}, which
satisfye? = e2 = €2 = —1 andejese; = —1. A N x N quaternionic matrixQ is then
Q = Q° + Q'e; + Q%ey + Q%es3 With Q* someN x N matrices. The quaternion of basis
e, can be represented as< 2 matricesé,,

. 10 . t 0 . 0 1 . 0 1
60:<01)7 61:<0_Z-)7 62:<_1 0)7 63:<20)(A28)

Therefore theV x N matrixQ can be represented by2& x 2N matrix (). A quaternion
is calledreal if the coefficients of) are real:qJ‘.fk eR,u=0,...,3,5,k=1,...,N. The
guaternion conjugatef a quaterniory = gy + gi1e1 + €2 + g3e3 IS

4 = qo — q1€1 — G262 — g3€3, (A.29)
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thecomplex conjugatef ¢ is
q" = q + qier + gsea + gzes, (A.30)

and theHermite conjugatés

T = J" = q; — qier — gyea — gses. (A.31)

q
For real quaternion the modulus@fs given by|q|> = ¢ = q7 = @2 + & + ¢ + ¢2.

Consider the N x 2N representatiory) of a quaternion matrix) with elements); x,

j,k =1,...,N. The operations on) reflect toQ as follows. The transposition gives
(QT);x = —eagy ;es, the Hermitian conjugatiof’); » = (q¢x,)', and the time reversal
Q%) = e2(QT)j 065" = Gy

An hermitian matrixQ" = @, which is at the same time quaternionic real must satisfy
q}k = ik = k. thereforeq;{k must form a real symmetric matrix alqgk real antisym-
metric matrices fop, = 1, 2, 3. Consequently the number of independent variables of such
matrices isV +4N(N —1)/2 = N(2N —1).

A 2N x 2N real quaternionic matrix) is diagonalized by a unitary matriX such
that UU® = URU = 1. These matrices compose a group, tiniary symplectigroup
USp(2N). Each eigenvalue af is twice degenerate and each couple corresponds to an
eigenvalue of) (Kramers degeneracy).

A.4 Gaussian ensembles via variational principle

LetS(p) = — [ p(H)Inp(H)dH be the entropy for the joint distribution function on ran-
dom matriceg. We want to maximizeS(p) under the constrairt’ = [ p(H) Tr(H?*)dH

be fixed and the constraint of the normalization. IEt= —In(A) — 1 and A be the
Lagrange multiplier, i.e.,

S(p) = — / p(H) Inp(H)dH — A( / p(H) Te(H?)dH — C)
t(In A+ 1)( / p(H)dH — 1). (A.32)

Let py be the distribution which maximizg(p), then at first order inp, 55 (pg) = S(po +
dp) — S(po) =0, i.e.,
—1—1In(py) = ATr(H?*) +InA+1=0, (A.33)

which impliesp(H) = Aexp(—ATr(H?)). The normalization condition fixes the value
of A,

Al = / e MU = a(N). (A.34)
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The second constraint writes

1 _ 2 1 da(/\)
= —— [ Te(H?)e M UHIdH = ——— : A
= / H(H)e d a(n) dx (A-35)
Let us estimate()\). With the change of variabl& = H+/)\, we obtain
a(\) = A2 / e” XX (A.36)

wheren is the dimension of the space where the integral is made,the.number of
independent elements of the matrix. The integral eMerbeing finite and independent of
A, it follows that

da(X) —n
and finallyA = 55. Since we wani = 1/2N, it follows that
1
C =nN, n:N—FéﬁN(N—l). (A.38)

A.5 Hermite polynomials

The Hermite polynomial$p}'} are orthogonal with respect to the weight” onR, i.e.,

0 . 2, |0 if k+#1,
They satisfy the recursion relations
p(I){(x) = 1,
pi(z) = 2, (A.40)

pli;l(x) = 2952?2—1(37) —2(k — 1)29113—2(1’)7 k> 2,

thus the leading coefficient @f'(x) is u; = 2*. Another representation of Hermite poly-

nomials is
H 1132 dk —332

An asymptotics of Hermite polynomial relevant for our puspas the following [99]. For
= (2n+ 1)Y/2 — 271/2n=1/6¢ + bounded,

e~ 2pll(z) = (2m) /4272 ()22 (Ai(t) + O(n %), (A.42)

and forz = (2n + 1)/2 cos ), with ) € (0, 7),

a2/ ()21 o/l 1y, 3 .
) = T Ve (Sm (g + 3) in(20) = 20) 4+ 3| + O<"(A>43-)

In all these formulas th&-terms hold uniformly.
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A.6 Kernel for g = 2 Dyson’s Brownian motion

First of all we develop the transition functicin defined in (3.86) in terms of orthogonal
polynomials involving the Hermite polynomiaid’. Let us define

Fo(x) = (V2r N2FED "2 p (2 /v/2N e /4N (A.44)
then, fort’ > t,
O, (z, 2') Z filx gt —t)*. (A.45)

Consider, < t; <ty < t3Witht; —t, > 1andt;—t, > 1. Denote byQ, = e~ (1 —1)/2N
q = e~ 1271)/2N gndQ, = e~ (3=1)/2N \We want the expression of the kernel in the limit
tg — —oo andtz — oo, i.e.,Q; — 0 and@, — 0.

First we deriveK y (z, to; 2, t1). We can write it as product of matrices as follows. Let

u:[fl(l‘)QZQ]zZO ..... 009 [fz( )]3:% ........ 01\0[7—17
= [f5(=)Q11=0...c0: Lz[wmﬁ% ........ N-1, (A46)

The N x N matrix to be inverted writest = LDR and the kerneKy = uRA'Lu.
Dividing the indices as follows0, ..., 00} = {0,..., N -1} U{N, ..., 0o} we write the
matrices as blocks. The indéxefers to the sef0, ..., N — 1} and the index to the set
{N, ..., 00}, explicitly

Ky = [wi w)[Riy Roil'A7' L1y Liol[vn vl
D 0

A = [Liy L) | ! [Rin Raal” (A-47)
0 Doy

The inverse ofA can be well approximated b8 = R;;D;L;;. The inverseD,
obviously exists.L; ; and R, ; are also invertible provided that both the initial posison
2? and the final positions? are distinct. In fact their determinants are Vandermonde
determinants. A simple computation show® = 1 + 1Q2qO(1), O(1) meaning a
matrix with coefficients of order one. Thus™! = B(1 + Q1Q2qO(1)). Then

Ky = (u1Ry1+ U2R2,1)RJ%DHLH(1 + Q1Q29O0(1))(Ly,1v1 + L1 v2)
= wDjvi(1+ O(Q1Q2q)) + w1 D1 Li1(1 + Q1Q2qO(1)) L1sv, (A.48)
_'_UQRQJR;&(]I -+ QlQQQO(l))Di%UQ + Ug - - - Di%’l}g. (A49)
Since
wDry = [folx) fi(z)(Q2q)" -+ fno1(2)(Q2q)V ] (A.50)

and

vy = QY [fn() fnia(@)Qs -] (A.51)
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the second term is of ord€),. Similarly the third term is of ordef),. The fourth term is
of order,()». Thus in the limitQ); — 0 and(), — 0 the kernel is

N-1
Ky(x,ty; 2/, th) = wDrjor = fula) frla)g™". (A.52)
k=0

The derivation formula forKy(x,t;;2’,t2) is deduced in an analogous way. To
obtain the term with the double sum we need only to remark ithahis caseD =

.....

oo N-1 oo
Ky(w,t;al ) = =Y ful@) fila)gd" + D ful@) fila')g* = = filz) fila)q".
k=0 k=0 k=N
(A53)

A.7 Convergence of the extended Hermite kernel to the
extended Airy kernel

Recently new bounds on the Hermite polynomials are obtdnyeldrasikov [55]. They
implies
C2/ANE2 ) > 1,

c "0 (A.54)

max(|py’ (z/ V2N)[e=/*) < {
for some constar@’ > 0.
With this estimate we obtain that the rescaled Hermite Kesneniformly bounded in
the spatial arguments.

Lemma A.12.
A;im N'YBKH(z = 2N +uNY3 2sN?3,y = aN + o' N3 25’ N?/3) = A(u, v;u',v')
(A.55)
uniformly inu, v’ € R.
Proof. First we want to show that
NYVBKR(z = 2N +uNY3 2sN?3,y = 2N + o' N3 25 N?/3) (A.56)

is uniformly bounded in:, v’ € R for N large enough. Consider first the case s’ =
As > 0. Then

(A.56) = Z eAsk:N*l/SNl/gp%_‘_k(l'/\/W)e PANDH (4 /\/IN)e VAN
k=N

V2r N2N+E(N + k)!
= i et N (#/V2N)e VPR Y/ VEN)e v /AN
oo \/WQN""‘“NUB(N_}_HNU?,)!

kel
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wherel = {—N,...,—1YN~/3, This last sum can be written as an integral of a func-
tion fy(u, v, As) which is constant on intervals of widtN—1/2. If we prove that| fy|
is bounded by an integrable function, then by dominated em@®nce we can exchange
the limit and the integral. (A.43) implies that this fungticonverges pointwise to the
integrand of the extended Airy kernel. Thus the limit will the desired one.

In what follow theC; are positive constant which do not dependon’. Using (A.54)
we obtain

1 KkAs n72/3 1
[(A.56)] < 0+02W;e N (S =TT
7N1/3 7N_1/3
< C-'-Cg/ d/@@ﬂAle/w—'—Cg/ d/@@nAs(l _N71/3>71/6
_N2/3 _N1/3
ele/sAs 1— ele/sAs
< C+ N8 - o (A.57)
with J = {-N +1,..., -1} N~1/3,

In the case\s < 0 is similar. In the same way we get

1
1+ KN-1/3)1/6

1 KRAS
|(A.56)] < @WZQ ANz/s(

KEL

(A.58)

with L = N-1/3N., m
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A.8 Numerical analysis
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Figure A.6: Probability density of the distribution of the distan¢éor ¢ = 25, 50, 100.
The fitisp = 2.2d(1 + 16d?)~! ~ 0.14/d.
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Figure A.7: Rescaled probability density of the distribution of thetaliged for ¢t =
25,50, 100.
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t | E(deg) | E(d)/t'? | Var(d(t))/t
25 2.42 | 0.57+0.027| 0.244+ 0.018
50 2.43 | 0.52+ 0.028| 0.22+ 0.022
100 | 2.38 | 0.57+0.034| 0.26+ 0.027
150 2.43 | 0.56+ 0.033| 0.20+ 0.022
200 2.36 | 0.54+0.036| 0.224+ 0.026
300 2.48 | 0.56+ 0.039| 0.224+ 0.028
400 2.31 | 0.52+ 0.040| 0.224+ 0.029
500 2.41 | 0.51+0.039| 0.194+ 0.026
600 | 2.48 | 0.61+ 0.047| 0.26+ 0.034
700 | 2.42 | 0.57+0.045| 0.23+ 0.032
800 2.36 | 0.60+ 0.050| 0.274+ 0.043

1000 | 2.37 | 0.544+0.049| 0.24+ 0.037
Mean| 2.40 0.56 0.23

Table A.1: Results of the simulations for different valuestand 1000 runs each.

0.7F T T T T T
0.6} J[ J( } =
SRS i w
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B(d)/#3 ——
Ar =
0 Var(d)/t ------
03F 7 1 -
N ; T - X N T |
0.2 _ﬁXTXX 77777 S ]
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0.1_ 1 | | | | I
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Figure A.8: Mean and variance for values blp to 1000. For eachthe simulation
consists in 1000 runs.
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