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Vollständiger Abdruck der von der Fakultät für Maschinenwesen der Technischen

Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Wolfgang A. Wall
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Abstract:

An optimization algorithm for multiobjective problems with continuous and discrete

design variables is developed and investigated. Primary development goals have been

to enlarge applicability to a very broad spectrum of tasks in the field of structural

design while simultaneously providing sufficient efficiency to be viable for complex

and computationally costly problems. The algorithm is based on the concept of evo-

lutionary algorithms and features special adaptations for the simultaneous treatment

of continuous and discrete variables as well as for the handling of multiple objectives.

Core elements for increasing the efficiency are the grain-parallelization on a computer

cluster as well as the extension of the conventional evolutionary algorithm by response

surface methods. The performance of the algorithm has been evaluated by numerical

experiments with suitable mathematical test problems as well as representative struc-

tural design problems.

Kurzfassung:

Für Mehrzielprobleme mit kontinuierlichen und diskreten Variablen ist ein Optimierungs-

algorithmus entwickelt und untersucht worden. Primäre Entwicklungsziele waren die

Anwendbarkeit in einem möglichst breiten Aufgabenspektrum auf dem Gebiet des

Strukturentwurfs sowie gleichzeitig eine auch für komplexe, rechnerisch aufwendige

Probleme ausreichende Effizienz. Der Algorithmus basiert auf dem Konzept der evolu-

tionären Algorithmen und zeichnet sich durch spezielle Anpassungen für die simultane

Handhabung kontinuierlicher und diskreter Designparameter sowie mehrerer Zielfunk-

tionen aus. Kernelemente zur Effizienzsteigerung sind die Parallelisierung auf einem

Computer-Cluster sowie die Erweiterung des konventionellen evolutionären Algorith-

mus um Response-Surface-Methoden. Die Eigenschaften und Leistungsfähigkeit des

Algorithmus sind anhand numerischer Experimente mit geeigneten mathematischen

Testfunktionen sowie repräsentativen Strukturentwurfsproblemen untersucht worden.
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1 Introduction

1.1 Background

The search for better solutions is one of the essential driving elements in cultural

evolution of mankind. At all times men tried to make things better, no matter what

level they have already achieved. On the contrary stagnation has often been and still

is one of the main risks for future of a culture.

In the context of engineering or mathematics a formalized form of appearance of this

search for better solutions or even the best possible solution is known as optimiza-

tion. And here it has recently gained even more importance due to severely increased

competition resulting from shortened product cycles and globalized markets.

Whenever engineers set off designing a structure, a component, or a complex system,

a general goal is almost certainly to achieve an optimal design. The goal of an opti-

mal design is easily claimed, but the complexity of real world structures or systems

as well as their similarly complex application scenarios offer considerable objections

for realizing this goal. There are two major challenges for performing an optimization

task. The first one is to gain a thorough and complete concept of what optimality

means with respect to the considered design task. That means that all relevant as-

pects have to be reflected in the objectives and constraint formulation. Neglecting

a single relevant constraint could render the solution useless. It also means that all

relevant design parameters and load cases have to be identified. Often systems are so

complex, that this is not a simple task at all. There may be load cases that cannot be

derived from the primary task of a structure like e.g. people stepping on the structure.

Or load case are not known precisely or so numerous that only a selection can be

taken into account.

The second major challenge for an optimization task is selecting or finding a appropri-

ate optimization method. There is a huge variety of optimization methods available.

They run from stochastic methods to deterministic methods. The choice is mainly

driven by the classification of the design task.

Looking on optimization in engineering practice, especially structural optimization,

optimization is typically applied in the final phase of product design when the general

concept or configuration of a structure or system has already been defined. Structural

optimization then often means adapting ’only’ sizing parameters having no influence

on the overall concept or configuration of the design. That does not diminish the

importance of optimization. It still can make the difference between outstanding per-
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formance and a useless solution. Sometimes it is even absolutely necessary because

otherwise no feasible solution could be found at all.

Nevertheless the potential improvement is thus limited by decisions already made in

earlier development stages. It is therefore desirable to apply optimization in the early

design phase dealing with the general configuration. At present the driving forces

in the early design process are not automated optimization methods but mainly the

experience of the design team, intuition, and last not least thorough contemplation

over the design task by the responsible engineers.

What are the reasons for the current limited application of optimization in design?

Among a broad spectrum of often very specific reason two are worth to be highlighted,

which both relate to the nature of the early design stages. One is the difficulty to

transform the inherent decision structures of the early design phase into computer

executable simulation models. And the other one is the deficient generality of many

common optimization methods. As an example of a complex structure the x-ray view

of the wing box of a commercial aircraft wing is shown in figure (1.1). It gives a good

impression about the complexity of the respective design task and the associated

optimization problem.

Figure 1.1: X-ray view of the wing box of a commercial aircraft wing (picture taken

from ([Fie99]))

The design task of such a wing box includes aspects like the geometric and structural

architecture, equipment and component allocation, material selection, and the selec-

tion of certain types and numbers of structural members. Sometimes this also means

to consider a varying number of design variables, e.g. adding a new stiffening element

to a structure may also require additional design parameter for dimensioning it. Also

the decision between general structural concept like e.g. a stringer stiffened design or

a sandwich design for the skin panels may result in complete different set of design



1.1. BACKGROUND 3

variables. Similarly for each substructure an additional decision tree may unfold.

Such configuration design optimization tasks are typically characterized by an under-

lying widely branched decision tree and combinatorial problems. With respect to the

potential optimization algorithms this means that they must be capable of handling

truly discrete design variables and a varying number of design variables. Referring to

the example above for a stiffened structure there are discrete variables like the type

and number of stiffeners as well as continuous variables like the cross-section dimen-

sions of the stiffeners. Also the number of design variables changes depending on the

number and type of stringer. Most conventionally applied gradient based optimization

methods do not provide the required generality and are often already ruled out by the

presence of discrete variables.

Another aspect is that these kind of problems are mostly multiobjective and multi-

disciplinary tasks. For the example of the wing there are aerodynamical objectives,

structural objectives, and also cost objectives incorporating aspects related to mate-

rial, manufacturing and maintenance costs. Another example is the design of adaptive

structural systems, for which both structural objectives as well as objectives related

to the control system have to be pursuit. Multiple objectives are not a problem per

se, the difficulties start if the different objectives are incommensurable or conflicting

e.g. a high stiffness of a structure vs. minimal mass. The most common conflict is

the one between some performance characteristics of the structure or system and

its cost. With reference to the optimization algorithm this means that it should be

capable of handling multiple objectives. Although by employing aggregating functions

single objective algorithms can be easily adapted for this problem class, it should be

clearly stated that the preferred result for a multiobjective problem is the complete

Pareto-frontier and not only a single Pareto-optimal point. Only having the Pareto-

frontier at hand the interactions between the different objectives become apparent to

the decision maker enabling better design decisions.

Finally independent from aspects concerning optimization algorithms let quickly ad-

dress the second problem for applying optimization in the early design stage. Opti-

mization is always a twofold problem of having a suitable optimization method and,

often not so obvious, of providing a suitable optimization model. Especially in the

early design phase, when the general structural architecture is to be chosen, it is of-

ten very difficult to transform the respective decision tree or combinatorial problems

into computer executable simulation models. Often alternative structural concepts

require completely different FEM models, or with respect to e.g. manufacturing cost

models are hardly available at all. Without going into further detail it can be stated

that for this field of optimzation a considerably high effort in modelling is required,

which often keeps optimization methods from being viewed as a viable option. There-

for a compromise has to be found between applying optimization as early as possible

in the design process and the resulting costs to do this.

Concerning this work it aims at the first obstacle to provide an optimization method
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general enough to be applied in the early design phase. In the following paragraph

the goals of this work are defined explicitly.

1.2 Goals of this Work

The goal of this work has been to develop, implement and evaluate an optimization

methods that is general and flexible enough to be applicable to an utmost range of

problems. The main emphasis for this algorithms is not efficiency but generality. It

aims especially at the application at configuration problems in the early stages of the

design process and thus should correspond to the needs and requirements discussed

above.

In detail the optimization algorithm to be developed should therefore be

• applicable to nonlinear constrained optimization problems

• capable of simultaneously handling discrete and continuous design variables

• capable of handling disconnected design spaces

• capable of handling a varying number of design variables

• capable of handling multiple objectives and providing the Pareto-frontier

• efficient enough in terms of computation cost and time to be applicable to real

world engineering problems

According to these requirements currently existing algorithms are discussed and eval-

uated. In consequence it has been decided to use the concept of an evolutionary

algorithm (EA) as starting point. As stated above the algorithm to be developed

should not cause computational cost that would be prohibitive for many real world

engineering problems. EAs, though, generally suffer from high computational cost. So

further goals have been to develop perspectives to increase the efficiency. Within this

work it is therefore aimed at improving operators or developing additional features

that decrease the computational effort.

Furthermore the new algorithm is to be evaluated with suitable benchmark examples

to verify the basic functioning of specific elements and its performance. With respect

to its performance it is also to be compared to another state-of-the-art algorithm.

Finally it is to be applied to design problems from the field of lightweight structures.
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1.3 Overview of this work

In the following chapter the basics relevant for development of the Genetic Algorithm

for Multicriteria Engineering (GAME) are introduced. First the general definition of an

optimization task is introduced and an overview of existing optimization algorithms is

given. These algorithms are discussed with respect to the requirements stated above

and it is derived why an evolutionary algorithm has been chosen as the basis for

GAME. Furthermore the basics of evolutionary algorithms are introduced. As GAME

is a multiobjective algorithm also some fundamentals of multiobjective optimization

are described. Finally the basics of response surface methods are explained since those

are an integral part of GAME.

A thorough investigation on evolutionary algorithms for multiobjective optimization

has been performed. The results of this study about this relatively young field of

research are given in chapter (3). Up to date methods and representative algorithms

of the current state of art are discussed.

In chapter (4) GAME is explained in detail. The flow chart is introduced and the

specific operators are explained. Special emphasis is put on the fitness assignment,

the constraint handling, as well as the integration of the response surface methods.

Concluding some aspects with reference to implementation and parallelization are

given.

In chapter (5) specific issues concerning the performance and characteristics of GAME

are investigated by numerical experiments. With these benchmark problems it is ver-

ified if GAME meets the development goals. Among these issues are the influence of

the different algorithm parameters, the performance of the chosen constraint handling

method compared to conventional penalty function methods, the effect of the RSA

integration, and finally the overall performance compared to another prominent ex-

ample of a multiobjective EA, the Nondominated Sorting Genetic Algorithm II (NSGA

II).

In chapter (6) GAME is applied to several structural design problems. First GAME

is applied to the optimal design of actively damped beam and plate structures. Here

the optimal positioning and sizing of the piezo actuators had to be determined while

simultaneously determining different control loop parameters. The second problem is

the optimal design of a stringer stiffened plate, in which the optimal configuration

for a maximum buckling load is to be determined. The last problem is the design of

a high precision CFRP beam which is subject to structural as well as thermal loads.

Finally a summary and conclusions are given.



6 CHAPTER 1. INTRODUCTION



2 Basics

2.1 General Definition of an Optimization Task

The idea of optimization is to achieve the best possible design of a system or process

in terms of one or more criteria within the scope of given requirements and limited

resources. The criteria which serve as a measure of a design’s quality are called objec-

tives. The requirements a design has to satisfy are called constraints. The quantities

which influence or define a certain design are called design variables. The general

formulation of a optimization task is given in (2.1) :

min z = f(x), f = [f1(x), f2(x), ..., fnob
(x)]

with: x = [x1, x2, ..., xdv]

subject to:

gf(x) ≤ 0, gf = [gf1(x), gf2(x), ..., gfnic
(x)]

hf(x) = 0, hf = [hf1(x), hf2(x), ..., hfnec(x)]

xilb ≤ xi ≤ xiub
, i = 1, 2, ..., ndv, i ∈ N

(2.1)

The function or functions f(x) reflecting the functional correlation of the objectives

and the design parameters are called objective functions. Accordingly gf(x) and hf(x)

are called inequality constraint and equality constraint functions. The boundaries of

the design space lb = [xilb ] and ub = [xiub
] are known as side constraints. They

limit the allowed range of the design variables x and thus define the design space D.

Designs which satisfy all constraints are called feasible designs, those, who do not,

infeasible. All feasible solutions x form the so called feasible set Df :

Df = {xεD| gf(x ≤ 0) ∧ hf(x) = 0} (2.2)

If only one objective function exists, the problem is called a single objective problem,

if more than one objective functions exist, a multiobjective problem. For the latter

case additional aspects arise, which will be explained in chapter (2.4).

The different aspects and complexity of such an optimization task in the field of

structural optimization are illustrated for an example of a cantilever beam.
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Figure 2.1: Example: Cantilever beam subject to two load cases

The cantilever beam shown in figure (2.1) is subject to two load cases, a tip force

(F1) and a torsional moment (T1), which do not occur simultaneously.

The goal is to minimize the mass and the tip deflection of a cantilever beam that

is able to withstand the two load cases. I.e. for neither load case the maximum

bending stress σb(x) occurring anywhere in the beam should exceed the allowable

stress σp(x) of the respective material and the maximum shear stress τs(x) not the

allowable shear stress τp(x) accordingly. Furthermore its first eigenfrequency ω1 is

required to be above a certain limit ω̂.

For designing the beam different cross section cs (cs1 - box, cs2 - I-section, cs3 -

ellipse) and different materials mat (mat1 - steel, mat2 - aluminium, mat3 - quasi-

isotropic CFRP) are available. For each respective cross section the dimensions can

be varied in terms of height h, width b, as well as wall thickness t of the respective

cross section. These three variables cannot be chosen independently from each other,

e.g. the wall thickness is limited by the height and width.

In accordance with equation (2.1) the optimization task can be formulated like below:

min z = [z1, z2] = f(x) = [m(x), ut(x)]

with: x = [mat, cs, h, b, t]

subject to:

gf1(x) = σb(x) − σp(x) ≤ 0,

gf2(x) = τs(x) − τp(x) ≤ 0,

gf3(x) = ω1(x) − ω̂ ≤ 0,

gf4(x) = t − b/2 ≤ 0,

gf5(x) = t − h/2 ≤ 0,

and

1 ≤ mat ≤ 3,

1 ≤ cs ≤ 3,

0 < t, b, h.

(2.3)
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Although small, this example covers already a large part of the challenges that can

occur in structural optimization. First there are two conflicting objectives. It is in-

tuitively clear that the minimization of both objectives simultaneously will not be

possible. Thus there will be no unique solution but an set of best compromise solu-

tions, the Pareto optimal set. So this is a decision problem, for which the designer

has to perform a trade-off analysis and finally take a decision to which objective he

addresses more priority. The potential algorithms must be capable of dealing with

multiple objectives and provide the Pareto optimal set.

Among the 5 design variables the three dimensioning variables h, b, and t are con-

tinuous, but mat and cs are truly discrete. Hence this problem is a combinatorial

problem requiring the potential optimization algorithm to be capable of searching

truly discrete design spaces.

Finally objectives and constraint function both include nonlinear functions, requiring

the optimization algorithm to be able to work with nonlinearities.

Although a huge variety of optimization algorithms exist, it will become clear in the

following that this task is a considerable challenge and it is not easy to find an

algorithm satisfying all the above requirements.

2.2 Optimization Methods - Overview

The methods for solving the optimization problem defined in chapter (2.1) are var-

ious. Within this thesis and probably most common in engineering in general, an

optimization method is understood as an automated, iterative process consisting of

two main elements: a simulation model, which provides objective- and constraint

function results for a given set of design variables, and an optimization algorithm,

that provides some kind of steering logic for changing the design variables in order

to improve the solution. Generally this iterative process sets off with an arbitrarily

chosen start point or set of points. After evaluating this initial guess by employing

the simulation model, the optimization algorithm then changes the design variables

based on some internal logic. This is the essential task of the algorithm. The new

design or set of designs are again evaluated and the result is presented to some kind

of stopping criteria, which is usually a convergence criteria. If this criteria hints that

an optimum has been achieved the process is stopped, otherwise the next iteration is

started. In figure (2.2) this fundamental concept of nearly all optimization methods

is illustrated.

The availability of an simulation model is an essential prerequisite for optimization

process. In the context of optimization a decisive question for the simulation model

are the computational cost. Dependant on the chosen algorithm a large number of

evaluations is required. The resulting high computational cost can therefor be pro-

hibitive for viewing an optimization as a viable design tool at all.

The other essential part is the optimization algorithm. Although the history of mod-
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Figure 2.2: Basic flow chart for an automated, iterative optimization method

ern optimization is relatively short, approximately 30 years, a considerable amount of

optimization algorithms have been developed. There are many categories which can

be used to classify the algorithms. Two very basic perspectives from which one can

look on the variety of algorithms are the application level and the algorithm level.

Criteria on application level are e.g.:

• generality: the range of problems, an algorithm can be applied on (linear, non-

linear, unconstrained, constrained, continuous, discrete)

• efficiency: the computational cost, number of function evaluation, computation

time

• robustness and reliability: the probability, that an algorithm solves the problem

successfully in the context of slight deviations of the algorithms assumptions

Criteria on the algorithm level are e.g.:

• Usage of derivatives: derivative free methods, gradient methods, methods em-

ploying second order partial derivatives

• Usage of approximations: algorithms that work directly with objective and con-

straint functions, algorithms that work with approximation of objectives, con-

straints or derivatives

• Treatment of constraints: Integration of constraints by setting up a substitute

objective function (penalty transformation) or direct solution of the constrained

problem

• nature of the search process: deterministic, stochastic

In figure (2.3) examples of the most common representatives of optimization algo-

rithms are shown. Since most problems in engineering optimization are nonlinear,



2.2. OPTIMIZATION METHODS - OVERVIEW 11

pure linear algorithms like linear programming or the Simplex-Method are skipped.

The examples are ordered according to the following categories: sequential uncon-

strained optimization techniques, methods solving the nonlinear constrained problem

directly, methods using approximation models, and gradient free methods.

Optimization Methods

Sequential Unconstrained Optimization

Gradient Based Algorithms

Newton-Algorithm

Penalty Function Methods

Exterior Point Penalty Function Method

Barrier Function Method (BFM)

Augmented Lagrange Multiplier Method (ALMM)

Direct Methods for the Nonlinear Constrained
Optimization Problem

Method of Feasible Directions (MFD)

Generalized Reduced Gradient Methods (GRGM)

Sequential Quadratic Programming (SQP)

ApproximationMethods

Local Approxiamtion Methods

Sequential Linear Programming (SLP)

Sequential Convex Programming(SCP)

Global Approxiamtion Methods

Neural Networks

Interpolation Methods

Response Surface Methods

Gradient Free Methods

Enumeration Techniques

Complete Enumeration
Branch & Bound

Sequential Search Methods

Deterministic Methods

Stochastic Methods

MonteCarlo Search

Simulated Annealing

Evolutionary Algorithms

Genetic Algorithms
Evolutionary Strategies

Figure 2.3: Overview of the most common optimization methods

A detailed introduction to the above mentioned algorithms can be found in [BSS94],

[Van84], [Kir94], and [ea82] for the mathematical algorithms, in [Gol89] and [Rec73]

for the Evolutionary Algorithms, and in [BD87] for the Response Surface Approxima-

tion. The available algorithms are discussed in the following subsection with respect

to previously stated requirements for GAME.

2.2.1 Discussion with Respect to the Intended Field of

Application

When looking at this broad range of optimization algorithms one can notice a goal

conflict between generality and efficiency, i.e. the spectrum of problems to which the

algorithm can be applied to and the respective computational costs. And this trade-off

is directly linked to the extent the respective algorithms exploit and use information

about the design space.

The most efficient representatives like e.g. SQP exploit first and second order deriva-

tive information. This information is used to determine a priori in which search

direction to move and how far in order to create an improved solution. For this search

method it is sure that each newly created solution will be a better one. Less efficient
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algorithms like evolutionary algorithms (EAs) do not employ gradient information and

rely only on objective function values. New solutions are created stochastically, al-

though certain heuristics are used. Only after the new solution are evaluated it can

be assessed a posteriori if the new designs turn out to be an improvement or not.

Consequently a considerably higher number of trials are required.

But in order to be able to exploit higher order derivative information and thus achieve

this high efficiency, SQP and similar algorithms make higher demands on the charac-

teristics of the design space and the objective functions. E.g. for SQP the objective

and constraint functions are required to be continuously differentiable. Therefore they

cannot be applied to discrete or combinatorial problems. Also for a reliable conver-

gence to the global optimum the objective and constraint functions are required to

be convex. Furthermore ’noisy’ objective- or constraint functions may cause problems

for the proper computation of the gradients. Gradient free methods like EAs offer

relief of all these requirements and therefore are applicable to a much wider spectrum

of problems.

The goal of this thesis is to develop an optimization algorithm for application in the

early design phase namely configuration design. The specific requirements have been

posted in chapter (1.2). Although it may seem difficult to choose an algorithm that

serves as a starting point for the desired algorithm due to the huge variety of algo-

rithms, in fact it is not. One of the most dominant requirements is the capability to

handle discrete design variables, this rules out all calculus based algorithms relying

on gradient information in some way. So the choice is left to gradient free. Although

orders of magnitude less efficient, the most efficient methods among them in a rela-

tive sense are branch and bound methods and evolutionary algorithms. One essential

difference is that branch and bound is a deterministic method guaranteeing that the

global optimum will be reached whereas EAs are stochastic in nature. Thus the re-

spective solutions generally cannot be reproduced exactly and also no guarantee is

given, that the solutions are the true optimum. Therefore often the term near optimal

solutions is used.

Branch and bound methods originate from linear integer programming. Although re-

cently expansions to nonlinear problems have been developed, they rely mainly on

linearization techniques. An essential element for their working principle is that they

employ a continuous relaxation of the integer problem, i.e. the integer constraint is

dropped for the design variables and the problem is treated as an equivalent continu-

ous one. But this is not possible for truly discrete variables like e.g. material selection,

so this is an serious drawback with respect to the intended scope of applicability.

EAs do not suffer from such limitations. Concerning the design parameter space, EAs

can be adapted to any specific requirement ranging from truly discrete variables, dis-

connected search spaces to a varying number of design variables. Also they virtually

make no demands with respect to the characteristics of the objective functions. So

from the viewpoint of generality EAs are an excellent starting point for the desired

algorithm. Furthermore from an programming point of view they are of low complex-
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ity and very easy to implement.

The most serious drawback with respect to the applicability to real world problems are

the high computational costs, a characteristic common to all gradient free methods.

But in contrast to other gradient free methods like the completely stochastic Monte

Carlo search EAs offer a significantly higher efficiency, since they are only a semi-

stochastic method that features an inherent logic to direct the search. Nevertheless,

again, it has to be stated that compared to gradient based algorithms the efficiency is

orders of magnitude lower. With typical population sizes and number of generations

easily thousands of objective function evaluations are reached. Furthermore as will be

shown in chapter (5.3) the required computational cost for EAs rise with the num-

ber of design variables, a characteristic e.g. gradient based algorithms not necessarily

show. In case their gradients are computed by differential quotients, they also share

this characteristic though.

Nevertheless in conclusion evolutionary algorithms seem to be most appealing among

the gradient free methods. For the intended field of application the ability to handle

truly discrete variables is essential. Thus a lower efficiency is accepted in favor of the

gained generality. So the concept of EAs have been chosen as the basic starting point

for the development of GAME.

But keeping this major drawback in mind it is one of the important development goals

to increase the efficiency and lower the computational burden of the conventional

EA to broaden the field of potential application. This goal is pursuit by especially

adapted operators, the integration of RSA methods (chapter 4.8) and, last but not

least, the grain-parallelization of GAME on a cluster (chapter 4.11). Although grain-

parallelization does not reduce the overall computational effort (still the number of

function evaluation remains the same), it will reduce the overall computation time,

maybe the even more important criterium.

2.3 Evolutionary Algorithms

Based on the above reasoning evolutionary algorithms have been decided to be the

core element of GAME. Therefore their origin, basic working principle as well as their

two most popular representatives are introduced here in detail. Furthermore their

applicability as an optimization tool is discussed to illustrate advantages and disad-

vantages. EAs are a relatively new type of algorithm being present in the scientific

community for approximately 30 years. The first representatives of this class of search

algorithms have been Fogel’s Evolutionary Programming (EP) ([FOW66]), Rechen-

berg’s Evolutionary Strategies (ES) ([Rec73]), and Holland’s Genetic Algorithms (GA)

([Hol75]). Today a huge variety of different implementations exists. The most relevant

for optimization in the engineering context are the ES and GAs.
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2.3.1 Role Model: Natural Evolution

When trying to find an equivalent to the concept of optimization in nature, one will

quickly hit on the principle of evolution, or more popular known as ’The survival of

the fittest’ (Charles Darwin, 1859). Presented in a simplified way, the individuals in

a population, may it be animals or other organism, compete to pass their genes on

to the next generation. The fundamental thesis of evolution is that individuals which

are adapted better to the challenges of their natural environment (meant in a very

general way), will have a higher probability of reproduction. A measure of how good

an individual is adapted to its specific environmental requirements is the so called

fitness. Fitness is an aggregated measure that can be composed of very different

things and is by no means limited to pure physical strength as sometimes popularly

assumed. As various as the challenges are in nature as various the factors determining

the individuals fitness can be: e.g. the variety of food an individual is able to live on,

the ability to camouflage against potential predators, the ability to withstand germs,

viruses, or diseases, the ability to adapt to environmental changes. According to the

theory of evolution the number of offspring an individual is able to generate in its

life is dependent on its fitness. The selection of an individual as a parent is directly

dependent on its fitness.

The characteristics of an individual are stored in the genes on its chromosomes. During

reproduction two main processes are essential for the generation of the offspring:

recombination (or crossover) and mutation. The first process exchanges sections of

the chromosomes between the parents and therefore provides a mixture of the parent’s

characteristics. The second, mutation, is a pure random change of the genes and so

will result in some completely new characteristics not present in any of the parents.

Selection as well as reproduction are stochastic processes by nature. The reason,

why the average fitness is improving while the cycle of selection and reproduction

continues, is that first selection favors high fitness individuals and second high fitness

individuals have a higher probability to generate even fitter offspring.

2.3.2 Working Principle

Evolutionary algorithms now try to incorporate the principles of natural evolution and

genetics into a numerical search and optimization algorithm. In figure (2.4) the general

flowchart of an EA is given. The most striking difference to traditional optimization

methods is that EAs work with a set of design points, the population, simultaneously

and not a single design point. At the beginning an initial population is generated at

random. Based on the objective- and constraint-function values a fitness is determined

for each individual. According to a given selection scheme individuals are selected

as parents. In general these selection schemes rely on the fitness as a measure for

the probability to be selected as a parent. The offspring is generated by applying

recombination and mutation operations. Finally the next generation is set up based on
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Figure 2.4: General EA flowchart

a replacement scheme, that controls which individuals of the last generation survive

and which will be replaced by the offspring. This process is repeated until some

stopping criteria is met.

The interaction of the different operators to function as a search method for better

solutions is based on two principles: exploration and exploitation. Recombination and

mutation generate new solutions and thus promote the exploration of the design

space. Selection and replacement provide means that better solutions are favored for

reproduction and survival and thus promote the exploitation of the design space. In

the following paragraphs important aspects and the different operators are introduced

in more detail.

Design Variable Representation

In nature the ’design information’ is stored in genes using a 4 letter alphabet con-

sisting of 4 bases (Adenin, Cytosin, Guanin, Thymin). These genes are stored on

chromosomes. The place, where a gene is located on the chromosome, is called a

locus. The different values a certain gene can have are called alleles. The representa-

tion of an individual on the chromosome level is called the genotype, the real design

the phenotype. Based on this natural example the design variables in EAs are typi-

cally aggregated in so called ’strings’ as equivalents of the chromosomes. In practise,

however, these chromosome strings or chromosome vectors are nothing else but the

conventional design vector and thus are designated here also as x. Nevertheless, it

not necessarily is the original design vector. In classical genetic algorithms (GA) e.g.

a binary encoding is used following nature’s example of using a small alphabet.

Without loss of generality these strings can be assumed as line vectors, though other

representation like tree structures have been published (Koza 1992). A population

therefore is a set of vectors, which usually can be represented as a matrix. In fig-

ure (2.5) an example population of 10 individuals is plotted both as a binary and a

real-valued representation.
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Because of the chromosome encoding here a third space, the genotype space, has

to be taken into account in addition to the design space and the objective space

known from classical methods. The relation between the three spaces is illustrated

in figure (2.6). In case of real-valued representation of the design parameters the

genotype space and the design space are actually identical. Evolutionary strategies

(ES) work with real-valued strings, but recently real-valued parameter representation

is also common in GAs. The different codings reflect the different philosophies behind

the respective algorithms. GA try to closely mimic natural genetics while ES put more

emphasis on the evolutionary process in the phenotype space. Also they were originally

aimed at continuous parameter optimization.

A binary coding also means a discretization of the design space even for the continuous
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design variables. For those a desired accuracy has to be chosen. A higher accuracy

means that more bits have to be taken for the respective design variable. This results in

a longer string vector which again increases the dimensionality of the search space. In

a real coding discrete variables can be introduced as integers. This has the advantage

that only a single locus is needed independent of the resolution.

Fitness Assignment

EAs are inherently unconstrained search algorithms. The only measure taken into

account is fitness. In general fitness is a scalar measure representing the probability

of being chosen as a parent. Since better solutions should be favored, fitness should

reflect the overall quality of a certain design. A better design should have a higher

fitness. This is certainly very simple for an unconstrained single objective problem.

The problem arises in the presence of constraints. For determining fitness fiti of each

individual i both objective and constraint information have to be mapped into a scalar

measure:

fiti(xi) = fitnessfunction([f(xi), gf(xi),hf(xi)])

Because constraint handling is an essential aspect for EAs, the most common methods

will be introduced in chapter (2.3.3) in more detail. Once an aggregated scalar quality

measure is at hand the most common methods to convert this into a fitness value, i.e.

selection probability, are linear mapping, exponential mapping, or ranking methods.

Exponential mapping provides an additional mean for increasing the selection pressure,

since it increases the fitness of the better individuals in a superproportional way.

Ranking methods are based on rearranging the individuals in order from best to

worst. Thus the fitness is based only on the relative position in the ranking list, the

absolute differences in objective values are ignored. Requiring only objective- and

constraint-function values and no partial derivations for computing the fitness values

is one of the essential advantages of EAs. It is this that makes them applicable to

discrete or combinatorial problems without any problems.

Selection and Replacement

The selection operator takes care of the selection of individuals as parents. The

replacement operator is responsible for the building of the next generation, i.e. it

decides which individuals of the old generation and which of the children are chosen for

the next generation. Selection and replacement are very much like mirrored operators.

While selection generally favors the best individuals for reproduction, replacement

generally hinders the worst individuals from being passed to the next generation.

Not necessarily both operators need to regard fitness information. For the successful

working of an EA it is only necessary that one of the two operators works based

on fitness information and favors better solutions in some way. E.g. GAs employ a
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stochastic selection with a fitness based probability while the replacement operator

ignores fitness totally and simply replaces the complete population with the offspring.

In order not to loose the best ones, often a so called elitism operator is added, which

directly copies the best individuals into the next generation. Vice versa in ES, here

the selection operator ignores fitness while the replacement operator selects only the

best solutions from the former generation and the offspring for the next generation.

The two most common realizations for selection operator in GAs are the Roulette

Wheel selection and the tournament selection, which are illustrated in figure (2.7).

For the Roulette Wheel selection all individuals are assigned an arc section on a

virtual roulette wheel whose size is proportional to their fitness. So the probability

to be selected in a virtual spin of the wheel is directly proportional to the fitness.

For the tournament selection first two or more individuals are randomly chosen from

the population as participants oft the tournament disregarding their fitness values.

Then simply the one with the higher fitness is selected as a parent. The decisive

parameter is the tournament size ts, it directly controls the selection pressure towards

high fitness solutions. A low tournament size promotes population diversity but also

leads to a slower convergence.

The selection operator as well as the replacement operator play a crucial role for

successful working of the algorithm. They are the elements which are responsible that

the better individuals prevail in the course of generation and therefore that the search

process drives the population to better solutions.

Recombination

The recombination or crossover operator creates new individuals, the children, by

simply exchanging genes between the parents. Sections of the design strings are

randomly cut out at one or more positions and exchanged between the parents. This

process is illustrated for the example of a two-point-crossover (2 cuts) for a binary

coded GA in figure (2.8). For real coded EAs it works equivalently. Although not

directly obvious, in case of a binary coding crossover is in fact a mutation. Because

the binary strings can be cut anywhere, i.e. in general not a the locus where the

coding of one design variable ends, the resulting individual features design variable

values, which have not been present in neither of its parents. This has to be kept in

mind for judging the dominant role of recombination in traditional GAs.

For real-valued representations also arithmetic recombination operators are common,

e.g. children are formed by a linear combination of the parents (2.4).

parent individuals : xi,xj

child : c = axi + (1 − a)xj , a = U([0, 1]), (random number)

(2.4)

The basic reasoning behind recombination is that combining the genes of good in-

dividuals has a higher probability of generating an even better offspring. Since it
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recombines design variable settings which are already present in the current popula-

tion, recombination can be characterized as an exploiting operator. Thus it increases

convergence speed but also inherits the danger of reducing population diversity. In

general real recombination may only seem reasonable for tasks with subsystems, i.e.

groups of design variables that define more or less independent elements of the com-

plete design.

Mutation

The mutation operator changes design variables arbitrarily within the allowed design

variable domain and a certain probability distribution. Again this operator is applied

only with a certain probability. Mutation is clearly an exploring operator. It generates

designs not present in the current population and thus helps to explore the design

space. By adding new solutions to the population it also promotes population diversity.

Thus this operator is crucial for the search process.

For binary coding mutation simply means flipping 0 to 1 or vice versa at randomly

chosen loci. Real codings allow for more sophisticated mutation operators which can

also inherit adaptive elements. In ES the mutation operator adds normally distributed

random changes with a certain standard variation (σ) to the design variables of an

individual:

x = [x1, x2, ..., xndv
], σ = [σ1, σ2, ..., σndv

],

xmut = x + N(0, σ) = [x1 + N(0, σ1), x2 + N(0, σ2), ..., xndv
+ N(0, σndv

)],

N(0, σi) : normally distributed random number

mean value : 0

standard deviation : σi, i = 1..ndv

(2.5)

Thus ES mutation favors small changes on the phenotype level, or to put it in other

terms: natura non fecit saltus - nature does not jump. The underlying reasoning is

that changing a good individual slightly has a higher chance of achieving an improve-

ment than arbitrary jumps in the design space. A drawback of this mutation operator

is that it keeps ES from being applicable to discrete problems, since it requires con-

tinuous design variables or at least quasi-continuous design variables.

The ES mutation is no static operator, several rules for adapting the standard devia-

tion σi during the evolution run have been developed. The most simple is starting with

large σi at the beginning and then let them gradually decrease over the generations.

This reflects the assumption, that at the beginning it makes sense to broadly explore

the search space and later, when the search can be assumed to have converged around
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an optimum, a smaller standard deviation allows a more accurate determination of the

optimum. A typical realization of this is a linear decrease of the standard deviation:

σi(gen) =
σingen

− σi0

ngen
(gen) + σi0 , i = 1, 2, ..., ndv (2.6)

Here σi0 is the initial standard deviation vector, σingen
the desired final standard

deviation vector. Another approach is to change the standard deviations in dependence

on the success of the search process like suggested by Schwefel ([SHF94]). Finally the

adaption of the standard deviation can itself be made a subject of the evolutionary

process. The chromosome vector is augmented by the standard deviations and so a

self adaption of the standard deviations is performed by the evolutionary process:

augmented chromosome vector : x = [x1, x2, ..., xndv
, σ1, σ2, ..., σndv

]

twofold mutation process : σmut
i = σie

(N(0,∆))

xmut
i = xi + N(0, σmut

i ), i = 1, 2, ..., ndv

xmut = [xmut
1 , ..., xmut

ndv
, σmut

1 , ..., σmut
ndv

]

(2.7)

The standard deviation ∆ for mutating the standard deviations σi is generally chosen

small. The evaluation of the offspring now serves not only the purpose to judge if the

mutation was successful but also if the currently applied standard deviation presents

a good choice. For this reason the standard deviations are mutated first and the

offspring is created with the new standard deviations. Otherwise the new standard

deviation were not applied until the next generation and a direct correlation to the

results of the current offspring is lost. Nevertheless this correlation between the quality

of the offspring and the quality of the chosen standard deviation is rather loose, since

the actual change ∆x employed for the creation of the offspring could have been

generated by many values of the standard deviations. It is still a random process.

The self adaption introduces a meta-level in the evolutionary search process. In order

to judge a certain standard deviation value as a successful rule a statistically relevant

number of ’experiments’ has to be performed. Thus a higher number of experiments,

i.e. mutations, is required compared to the standard ES. In practice this translates

to a higher number of children and population size and so means increasing the

computational cost even further. If this self adaption is really a promising approach

is investigated in chapter (5.5).

The combination of real coding and this ES mutation operator has shown to be a very

efficient search tool in comparison to a binary coding. Especially it allows substantially

smaller population sizes than binary coded EAs. For this reason it has been decided

to incorporate it in GAME. In consequence GAME also features a real coded variable

representation. Due to the presence of discrete variables in GAME it can of course

only be applied to the continuous variables.
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2.3.3 Constraint Handling in Evolutionary Algorithms

Since EA are inherently unconstrained methods additional effort is required to apply

them to constrained problems. A convincing solution similar to calculus based algo-

rithms directly solving the nonlinear constrained problem like SQP is not available up

to date. In the following the most common approaches for constraint handling are

summarized.

Lethal Factor

The most simple and naive approach is to reject all infeasible solutions, so that violated

constraints pose a kind of lethal factor. Although this approach, sometimes also called

’death penalty’, is very easy to implement, it will work only for very simple, loosely

constrained problems. It will certainly fail for highly constrained problems where a high

percentage of the population or even the complete initial population is infeasible.

Penalty Function Methods

Most popular are penalty function methods, which originally were developed for un-

constrained mathematical algorithms like gradient methods. The objective function f

and the constraint functions gf and hf are aggregated into a single function, in which

the constraints are added to the objective as a ”penalty” given by the penalty func-

tion γ. The constrained problem as given in equation (2.1) is replaced by a substitute

problem:

min ϕ(x, α) = f(x) + γ(gf(x),hf(x), α) (2.8)

I.e. if the constraints are violated the objective function value is degraded. The prob-

lem is solved for this aggregated function. Depending on the setting of α the opti-

mization will converges more or less far away from the true solution. A setting of α

causing a large penalty leads to a dominating influence of the constraints, so rather

the constraints are minimized than the objective. Thus the penalty parameter α is

adapted at each iteration for decreasing the height of the penalty in order to allow

convergence closer to the true optimum. Theoretically for infinite iteration the opti-

mization should converge to the true solution. In reality one will achieve only near

optimal solutions, which can be considered a disadvantage of this approach. The two

most common representatives are the exterior point penalty function method and the

barrier function method. The latter one requires feasible solutions, which cannot be

guaranteed in EAs. So commonly the first one is employed. A possible realization of

γ is:

γ(gf(x),hf(x), α) = α(

nic∑
i=1

min(0, gfi(x))2 +

nec∑
i=1

(hfi(x))2), α > 0 (2.9)
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As a disadvantage might be considered that when the optimization is stopped after

a finite number of iteration (which will always be the case in practise) the solution

might be an infeasible solution of the original problem.

Penalty transformation methods have the advantage that they are very general meth-

ods. One difficulty with these methods is to determine a proper penalty so that on the

one hand feasible solutions are achieved and one the other hand these solutions are

not too far from the true optimum. Certain problems can react extremely sensitive

to the choice of the proper penalty parameters.

Constraint Handling by Specially Adapted Representation and Operators

Another approach is using a special representation of the design variables and adapted

operators. One realization of this approach can be found in GENOCOP developed by

Michalewicz ([Mic99]), but his solutions requires all constraints to be linear. Here first

all linear equality constraints are eliminated resulting in an elimination of an equal

number of design variables. So part of the search space is already removed before

the search. The remaining constraints are all linear inequalities. In order to handle

these GENOCOP first starts with a completely feasible initial population, which can

either be found by sampling the design space or be provided by the user. During the

evolutionary run then especially adapted reproduction operators are applied which

alter the individuals by linear combinations, so the feasibility is ensured due to the

linearity of the constraints. But it is this restriction to linear constraints that hinders

this approach from being applicable to a broad range of problems.

Constraint Tournament Selection

Constraint tournament selection is an approach developed by Deb ([Deb00]), which is

based on the principle that feasible solutions are always superior to infeasible solutions.

In a binary tournament the following rules are applied:

1. if one solutions is feasible and the other one infeasible, the feasible solutions is

selected

2. if both solutions are feasible, the one with the better objective function is

selected,

3. if both solutions are infeasible, the one with the lower overall constraint violation

is selected

The computation of the ’overall’ constraint violation requires an aggregation of all

constraints and thus a normalization in order to avoid bias. One attractive feature of

this approach is that no penalty parameter is necessary. Furthermore this approach is

generally applicable and easy to implement.
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Multiobjective Methods

Finally there exist several approaches that try to redefine the constrained problem as

a multiobjective problem like e.g. Fonseca and Fleming ([FF98a]). As this method is

employed by GAME, a detailed description is given later in chapter (4.4).

Discussion

In order to evaluate the performance the different constraint handling methods (lethal

factor approach, penalty function approach, multiobjective approach) are compared

by numerical experiments in chapter (5.4). For the multiobjective approach the one

of Fonseca and Fleming has been selected. The constraint tournament selection has

been skipped as it basically included in Fonseca’s and Flemings’s approach. The results

showed that the multiobjective approach is the most promising one and therefore has

been selected for GAME.

2.4 Multiobjective Optimization

Multiobjective problems feature certain characteristics which differ considerably from

single objective problems. Because these special characteristics are directly employed

in the fitness assignment operator as well as in the constraint handling method of

GAME, they are described in the following in detail. In contrast to single objective

problems the quality of a design has to be compared in several dimensions, which is

the fundamental challenge of multiobjective optimization.

In practice the objectives are generally conflicting, i.e. improving one objective has

degrading effects on another objective. For this case there is no single solution rep-

resenting the minimum for all objectives simultaneously. But there exists a set of

solutions, the Pareto-optimal set, which are optimal in a wider sense. These solutions

have in common that no other solutions exist in the design space that are simul-

taneously better in all objectives. In the following section the specific definitions,

characteristics, and principles of multiobjective optimization are introduced in detail.

2.4.1 Concept of Optimality for Multiobjective Optimization

It is essential for any optimization to have a measure to discriminate between better

and worse. In the context of multiobjective optimization the concept of domination

can be used for this purpose:
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Pareto-Dominance: A design vector x1 is said to dominate a design vector x2,

x1 � x2, if and only if the corresponding objective vector z1 = f(x1) is partially less

than z2 = f(x”), z1 p < z2 , i.e.:

(∀ iε{1, .., nob} : z1i
≤ z2i

) ∧ (∃ iε{1, .., nob} : z1i
< z2i

) (2.10)

Sometimes equation (2.10) is referred to as weak Pareto-dominance. In contrast to

this strong Pareto-dominance is defined as:

(Strong)-Pareto-Dominance: A design vector x1 is said to strongly dominate a

design vector x2, x1 ≺ x2, if and only if

∀ iε{1, .., nob} : z1i
< z2i

(2.11)

Using definition (2.10) the two solution vectors z1 and z2 are indifferent to each

other, if neither z1 dominates z2 nor vice versa. To illustrate the concept of Pareto

f2

f1

min [f ,f ]1 2

a

b

c

d

e
f

g

Pareto-optimal front

feasible solutions

f D( )f

Figure 2.9: Example of a problem with 2 objective functions for illustrating the con-

cept of Pareto optimality

dominance, or simply dominance, one can take a look at the solution c in figure (2.9).

Solution c dominates the solutions d, e, and f in the upper right rectangle, whereas

solution c is dominated by the solutions a and b in the lower left rectangle. The other

solutions like e.g. g are indifferent to c.

Based on this concept of domination, an optimality criterion can be derived for multi-

objective optimization problems. Again referring to figure (2.9), one can easily ob-

serve, that there is a set of solutions, which are not dominated by any other. They are

so called non-dominated solutions and form a non-dominated front, which is indicated

by dash-dotted line.

Non-dominated design, Pareto-optimal design: A design vector x∗εDf is called

non-dominated with respect to a set X ⊆ Df , if and only if 
 ∃xεX : x ≺ x∗. If
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X = Df the design x∗ is called a Pareto-optimal design.

In figure (2.9) e.g. the solution a represents a non-dominated solution. Similarly this

can be formulated for sets of design vectors:

Non-dominated set, Pareto-optimal set: A set of designs X∗ ⊆ X ⊆ Df is called

the non-dominated set of X, if and only if ∀x∗εX∗ :
 ∃xεX : x ≺ x∗.

The fundamental goal of a multiobjective optimization is to determine the Pareto

optimal set. It is important to notice that the evaluation of a design as a non-

dominated design is a relative measure with respect to finite set of designs.

The Pareto-optimal set is also called the Pareto-front or -frontier. Going back to

figure (2.9) and assuming the gray marked area would resemble the complete set

of feasible solutions, then the solutions a and b are Pareto-optimal. The set of all

Pareto-optimal solutions forming the Pareto-frontier is marked as a dash-dotted line.

Of course the above phenomena apply only for conflicting objectives. If the objectives

are not conflicting one can easily show that the multiobjective problem degenerates to

a single-objective one. The Pareto-optimal set then comprises just a single optimum.

2.4.2 Search and Decision Making for Multiobjective

Optimization Problems

As noted above in a strict sense the solution of a multiobjective optimization prob-

lem is determining the Pareto-optimal set. Generally this Pareto-optimal set contains

an infinite number of solutions. In practice the designer has to come up with a

single design in the end and therefore has to take a decision which design is best

suited. So a multiobjective optimization problem is in contrast to a single-objective

optimization problem not only a search, but also a decision making problem. The

multiobjective optimization problem is therefore a twofold-problem: search and de-

cision making ([Hor97]). The search problem is associated to the determination of

the Pareto-optimal set, the decision making problem is associated to the problem to

decide in favor for a compromise solution, which implies a trade-off analysis between

the different objectives. For taking this decision the designer has to employ higher

level preference information.

The way how to combine this two elements can be classified into three categories

according to ([Hor97], [HM79]):

• Decision making before search (a priori methods): Based on some kind

of preference information the different objectives are aggregated in a single

objective. A decision on the relative importance of the respective objectives
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is taking prior to the search. The problem degenerates to a single-objective

problem.

• Search before decision making (a posteriori methods): The search is

performed without any preference information, all objectives are equally impor-

tant. The goal is the determination of the Pareto-optimal set. Based on some

kind of preference information the designer then takes a final decision which

compromise solution is to take. Although the Pareto-optimal frontier generally

consists of a infinite number of solutions, in practise it will only be possible to

determine a finite set of Pareto-optimal solutions with respect to computational

effort. So besides finding Pareto-optimal solutions for this category the search

process has to maintain a sufficiently diverse set of Pareto-optimal designs. This

second goal is essential for providing a profound basis for trade-off-analysis and

a final design decision.

• Decision making during search (interactive methods): During the search

process the designer can articulate and change preferences depending on the

current results of the search.

2.4.3 Traditional Approaches for Solving Multiobjective

Optimization Problems

Most classical multiobjective optimization methods fall into the first category ”prefer-

ence decision making prior search” and therefore convert the multiobjective optimiza-

tion problem into a single-objective one. The most common aggregating approach is

weighted sum approach, which is briefly introduced and discussed in the following:

Weighted Sum Approach

The weighted sum approach is the most simple and intuitive way of aggregating

multiple objectives into a single one. The composite objective function is formed as

linear combination of all objectives:

min z̄ = f̄(x) =

nob∑
i=1

wifi(x),

nob∑
i=1

wi = 1, wi ≥ 0

subject to:

gf(x) ≤ 0, gf = [gf1(x), gf2(x), ..., gfnic
(x)]

hf(x) = 0, hf = [hf1(x), hf2(x), ..., hfnec(x)]

xilb ≤ xi ≤ xiub
, i = 1, 2, ..., ndv, i ∈ N

(2.12)

The wi are the weighting factors for each objective. In figure (2.10) the approach is

demonstrated for an example of two objective functions. The feasible region of the
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Figure 2.10: Illustration of the weighted sum approach for an example with two ob-

jective functions

design space Df is plotted in the objective space. For a given choice of the weighting

factors w1 and w2 the isolines for constant z̄-values are plotted, which form straight

lines. The gradient of these isolines is determined by the ratio of the weights w1/w2.

Graphically the optimization process can be imagined as moving a straight line parallel

to the isolines towards lower z̄-values until it is tangent to the Pareto-Frontier. The

tangent point A is then the resulting optimal design.

The decision making problem here is the choice of the weights. They represent the

relative preference between the objectives, which is not always easy to determine.

Other classical methods are the constraint approach, the weighted-metric approach,

and the Benson-method.

Discussion of the Classical Methods

The biggest advantage of these methods are directly connected to the transformation

into a single-objective problem. For solving the problems the large variety of algorithms

for single-objective optimization at hand can be used without modifications. The

possibility of the using sophisticated single-objective algorithms also provides the

advantage of a high efficiency and well defined convergence properties.

Disadvantages are that generally only one Pareto-optimal solution is obtained per

optimization run. In order to obtain multiple Pareto-optimal solutions to approximate

the complete Pareto-front multiple runs with different weight settings have to be

performed. An additional difficulty here is that in general a uniformly spaced weight

vector not necessarily results in uniformly spaced solutions on the Pareto-front.

Another serious drawback is that some methods like the weighed sum approach have

considerable difficulties to obtain all Pareto-optimal solutions for non-convex objective

spaces, so it may not be possible to obtain the entire Pareto-front. In figure 2.11 on

the right an example for such a case is illustrated. The point A is clearly part of
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Figure 2.11: Illustration of potential problems with the weighted sum approach

the Pareto-front, but no choice of the weights w1 and w2 will result in A being the

minimum of the composite function f̄ .

A general drawback of these methods is that the preferences have to be articulated

prior to the search and thus without or only limited knowledge about the interaction of

the objectives. In figure 2.11 on the left an example is plotted, in which a slight shift in

weights towards the objective f1 results in a huge improvement without considerable

sacrifices in f2. But this kind of trade-off is only possible when having the complete

Pareto-front present. The choice of the weights might perfectly reflect some reasoning

about the relative importance of the objectives, but is blind to the design possibilities

that open up in awareness of the interaction between the objectives.

For this reasoning it has been decided to use an approach of the second category

’Search before decision making’ in GAME. The population based search enables an

advantageous combination of this approach with specially adapted search operators,

which are introduced in chapters (3.2.1) and (4.4).

2.5 Response Surface Approximation

Response Surface Approximations (RSA) are a method for building empirical approx-

imation models for an unknown functional correlation between the design- (or input-)

variables and the response- (or output-) variables of a process or system. RSAs are

used as an integral part of the optimization algorithm presented in this thesis in order

to increase the efficiency compared to conventional evolutionary algorithms. There-

fore this method is introduced here in detail.

In equation (2.13) the general concept is shown. f̄ is the response surface function,

x the design vector and ȳ the approximated response value.

ȳ = f̄(x),x = [xi], i = 1..ndv (2.13)
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Generally these approximation models or response surfaces (RS) are deduced from

a set of design points and their response values Ddp in equation (2.14) which are

resulting either from experiments or simulations.

Ddp = {Xdp,Ydp | Xdp =

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

...

xndp

⎤
⎥⎥⎥⎥⎥⎥⎦

,Ydp =

⎡
⎢⎢⎢⎢⎢⎢⎣

y1

y2

...

yndp

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.14)

In figure (2.12) an example is shown with two variables x1 and x2 and one response

value. On the left side the available set of design points and response values is shown,

on the right the resulting response surface is shown. How to choose these design points

and how to choose a suitable approximation model for building the RSA are the major

topics of a more general theory called Response Surface Methodology (RSM), which

e.g. is presented in [MM95]. Originally RSM is a methodology for setup and data

exploration of experiments, in [MM95] it is defined as a ”collection of statistical and

mathematical techniques useful for developing, improving, and optimizing processes”.

The RSM encompasses methods to choose the design points (design of experiments

- DOE), methods to choose suitable model functions and also methods to find the

optimal designs. The advantages of having an RSA available are obvious. The out-

come of experiments can now be predicted without actually performing a single, often

costly and time consuming experiment.

Though originally coming from the field of experiments, RSA methods are recently

also applied in the field of optimization. Although here the functional correlation be-

tween design variables and objective values is exactly known, the application of RSA

can be advantageously. The cost of optimizing a complex structure or multidisciplinary

system is mainly determined by the computational effort for evaluating the respec-

tive simulation models. If the actual evaluation of such a large simulation model is

replaced by a simple mathematical approximation model like a 2nd order polynomial

enormous time savings can be achieved. Beside saving computation costs, it is also

good to have well defined gradient information. Many problems are characterized by

noisy objective functions spoiling the successful working of gradient based optimiza-

tion algorithms. For this cases the smoothening character of the RSA is welcomed.

In the context of this work the RSA is employed for increasing the efficiency of a

multiobjective evolutionary algorithm. The set of design points for building the re-

sponse surface are constituted by the current population. Therefore no DOE methods

need to be applied and are not introduced here. Furthermore only simple 2nd order

polynomials are be employed as approximation functions. The reason for this is, that

the RSA are spanned only over small parts of the design spaces due to a cluster-

ing process (see chapter 4.8). In the following sections the basics for building these

approximation models is introduced in detail.
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Figure 2.12: Illustration of building an RSA from a set of design points for an examples

with 2 design variables x1 and x2

2.5.1 General Concept

The response value or objective function value y of a system with the ndv design

variables may be given as:

y = f(x),x = [xi], i = 1..ndv (2.15)

The true system response y may then be approximated by a RSA with the value ȳ:

y = ȳ + ε, ȳ = f̄(x),x = [xi], i = 1..ndv (2.16)

f̄ is the RSA function, ε is the approximation error. Often the design variables are

normalized for numerical reasons, which can be assumed without loss of generality.

2.5.2 Second Order Polynomial Approximation Functions

In order to built a RSA an approximation model function has to be chosen. In the

scientific literature a broad variety of model function can be found. Sometimes the

physical background of the problem is known, so an adapted model function can be

chosen. In other cases, it is aimed at an utmost generality for covering a broad range

of possibly objective functions. Here mainly polynomial or spline models are applied.

Another research direction pursued at the LLB is to optimize the choice of the model

function ([Gle04]). But the most common model function are low order polynomials

like linear functions and second order polynomials:

ȳ = β0 + β1x1 + β2x2 + . . . + βndv
xndv

= β0 +

ndv∑
i=1

βixi (2.17)

ȳ = β0 +

ndv∑
i=1

βixi +

ndv∑
i=1

ndv∑
j=i

βijxixj (2.18)
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The unknown coefficients β0, βi and βij are determined by linear regression. With

these polynomials a considerably broad spectrum of objective function classes can be

approximated sufficiently. In figure (2.13) the possible response surface shapes for RSA

using 2nd order polynomials are shown for an example with 2 design variables. In the

context of optimization having a RSA by itself does not help much. The goal is to find

the optimal design by applying an optimization method on the RSA. And here another

highly desirable advantage of using 2nd order polynomials is apparent. When using

2nd order based algorithms like SQP (Sequential Quadratic Programming, [Sch85b])

the optimization process converges in a single iteration and performs reliably.

2.5.3 Linear Regression

The approximation model in equation (2.17) basically resembles exactly the linear

regression model. The name ”linear” draws from the fact that the model is a linear

function of the unknown coefficients. Higher order models can still be treated by linear

regression by substitution of the higher order terms. As an example consider the 2nd

order polynomial model for 2 design variables:

ȳ = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 (2.19)

Let x3 = x2
1, x4 = x2

2 ,and x5 = x1x2 as well as β3 = β11, β4 = β22 ,and β5 = β12.

Of course x3, x4, and x5 are no independent variables, their are functions of x1 and

x2. This substitution is not exactly necessary, but serves a better illustration, that

the higher order model can still be solved by linear regression. Because the linear

regression a is based on a certain set of design points with fixed choices for x1 and

x2, there will be certain x3, x4, and x5. With this substitution (2.19) is turned into

a linear regression model:

ȳ = β0 + β1x1 + β2x2 + β3x3 + β4x4 + β5x5 (2.20)

The regression coefficients βk (kε[1, nrc]) are now determined in a way that the error ε

between the true response value y and the estimated on ȳ is minimized. The standard

procedure for this is called ”least squares fit”. For this the number of design points

has to be at least the number of regression coefficients: ndp > nrc. For the 2nd order

RSA model the number of regression coefficients nrc results in:

nrc = 1 + 2 ∗ ndv +
ndv!

2!(ndv − 2)!
(2.21)
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Figure 2.13: Possible response surface shapes for RSAs using 2nd order polynomials

for an example with 2 design variables x1 and x2 ([BD87])

For a set of ndp design point the data for computing the regression coefficients can

be presented as follows:

design

point no.
x1 x2 · · · xj · · · xnrc y

1 x11 x12 · · · x1j · · · x1nrc y1

2 x21 x22 · · · x2j · · · x2nrc y2

...
...

...
. . .

...
. . .

...
...

i xi1 xi2 · · · xij · · · xinrc yj

...
...

...
. . .

...
. . .

...
...

ndp xndp1 xndp2 · · · xndpj · · · xndpndv
yndp

(2.22)

The index iε[1, ndp] denotes the ith design point x and its respective response value

y, the index jε[1, nrc] denotes the jth regression coefficient. With equation (2.16)

the regression model can be written as:

yi = β0+β1xi1 +β2xi2 + . . .+βnrcxinrc +ε(i) = β0 +

nrc∑
j=1

βjxij +εi, iε[1, ndp] (2.23)
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In matrix notation the above equation (2.23) results in:

y = Xβ + ε

with:

y =

⎡
⎢⎢⎢⎢⎢⎢⎣

y(1)

y(2)

...

y(nP )

⎤
⎥⎥⎥⎥⎥⎥⎦

, ε =

⎡
⎢⎢⎢⎢⎢⎢⎣

ε(1)

ε(2)

...

ε(nP )

⎤
⎥⎥⎥⎥⎥⎥⎦

, β =

⎡
⎢⎢⎢⎢⎢⎢⎣

β0

β1

...

βnV

⎤
⎥⎥⎥⎥⎥⎥⎦

,

X =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 x1(1) x2(1) · · · xnV (1)

1 x1(2) x2(2) · · · xnV (2)

...
...

...
. . .

...

1 x1(nP ) x2(nP ) · · · xnV (nP )

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.24)

The least squares fit minimizes the sum of the error squares ε2:

L =

ndp∑
i=1

ε2
i

=

ndp∑
i=1

(
yi − β0 −

nrc∑
j=1

βjxij

)2

(2.25)

Equation (2.25) denotes in matrix notation:

L = εT ε = (y −Xβ)T (y − Xβ)

= yTy − βTXTy − yTXβ + βTXTXβ

= yTy − 2βTXTy + βTXTXβ (2.26)

For minimizing L the following equation has to be satisfied:

∂L

∂β

∣∣∣∣
b=[b0,b1,...,bnV

]T
= −2XTy + 2XTXb = 0 (2.27)

Solving this equation for the optimal regression coefficients b results in:

b = (XTX)−1XTy (2.28)

Substituting these coefficients in equation (2.18) gives the following expression for

the approximated response values ȳ:

ŷ = Xb (2.29)



2.5. RESPONSE SURFACE APPROXIMATION 35

The error between the true response values yi and the approximated ones ȳi at the

design points are called the residuals:

e = y − ŷ (2.30)
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3 Multiobjective Optimization with

Evolutionary Algorithms

The applicability to multiobjective problems is an essential goal for the development

of GAME. Since the core of GAME is an EA, the methods and possibilities to apply

EAs in multiobjective optimization have been investigated in a literature research

([PR01]). The results are summarized in this chapter.

The application of EAs in multiobjective optimization still is a relatively new and

active field of research. First the basic reasoning for applying EAs to multiobjective

problems is discussed. Then the essential adaptations of the evolutionary operators are

presented. Finally some multiobjective evolutionary algorithms (MOEAs) representing

the current state-of-the-art are introduced.

3.1 Basic Reasoning for Applying Evolutionary

Algorithms to Multiobjective Optimization

Problems

The solution of a multiobjective optimization problem consists of multiple solutions,

the Pareto-optimal set. As EAs work with set of design points, the population, anyway,

the idea to use this set of design points to search for multiple solutions simultaneously

is nearby. The basic thought is to adapt the EA in such a way that the population

converges towards the Pareto-frontier. This is illustrated in figure (3.1). In this way

an EA can determine the Pareto-frontier in a single run. This constitutes the essen-

tial advantage of applying EAs to multiobjective optimization problems. When trying

to determine the Pareto-frontier with a reasonable spacial resolution with one of the

conventional techniques (see chapter 2.4.3), numerous runs are required. So the main

disadvantage of EAs, the higher computation cost compared to e.g. gradient based

algorithms, is lessened, while keeping the advantages like being able to deal with

discrete design variables.

In order to realize this basic idea certain adaptations have to be made to the standard

EA implementation. As stated before in chapter (2.4.2) two main goals have to be

regarded for a multiobjective search: find Pareto-optimal solutions and maintain a

sufficient diversity for covering the whole Pareto-frontier.
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Figure 3.1: General concept of applying EAs to multiobjective problems: Convergence

of the population towards the Pareto-frontier

For accomplishing the first goal, the search has to be directed towards the Pareto-

frontier. The key element for driving the search in an EA is the fitness assignment, thus

this operator is the key operator to be modified. In order to have the population con-

verge towards the Pareto-frontier fitness assignment must assure that non-dominated

individuals are preferred and are assigned the same fitness.

For the second goal additional information reflecting the similarity of the solutions

has to be employed in some way. This can be integrated in the standard evolutionary

operators like fitness assignment or selection or additional elements can be added to

the standard EA.

Possible ways for these adaptations are introduced in the following section.

3.2 Key Aspects of the Adaptation for

Multiobjective Optimization Problems

3.2.1 Adaptations of Fitness Assignment and Selection

In order to have the population converge towards the Pareto-front the fitness-assignment

as well as the selection have to be modified. In his PhD-thesis ([Zit99]) Zitzler gen-

erally distinguishes three approaches:

Fitness Assignment with Switching Objectives

Within this class of fitness assignment schemes, not a constant fitness assignment

scheme is applied for the complete population over all generation. Instead for the
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selection of the parents it is switched between several substitute objective functions.

These different substitute objective functions can simply be the single objective func-

tions of the original problem or they can be built by aggregating approaches like

e.g. lexicographic ordering with randomly changing orders. The switching between

these different substitute functions can be done for every new generation. Or the

different substitute functions are applied to different subsets of the population. In

fact, taken to the extremes, for the selection of each parent of a specific genera-

tion a different substitute objective function could be applied. One example for this

kind of fitness assignment scheme is Schaffer’s Vector Evaluated Genetic Algorithm

(VEGA)([Sch85a]). At each generation the population is split into nob-subpopulations.

In each subpopulation selection is then performed according to only one single objec-

tive without considering the other ones, in each subpopulation according to a different

objective respectively. After selection the parent individuals are shuffled together again

to perform crossover and mutation in the usual way. Other examples for this class are

Fourman ([Fou85]), who proposed comparing individuals with regard to a specific or

random order of objectives, or Kursawe ([Kur91]), who suggested assigning a prob-

ability to each objective which controls whether it becomes the sorting criterion for

the next selection phase or not.

The basic thought behind all these schemes is that by repeatedly switching the ob-

jectives finally Pareto-optimal solutions are generated. Nevertheless these selection

schemes have several drawbacks. They have a bias towards ’extreme’ solutions. So-

lutions, which are rather ’compromise’ designs showing equally good performance in

several or all objectives will not survive in these fitness assignment schemes. This ef-

fect also known from genetics is called ’speciation’, i.e. within the population certain

’species’ arise which specialize in certain objectives.

Fitness Assignment with Aggregating Methods and Varying Parameters

These fitness assignment schemes are based on the traditional aggregating approaches

combining all objectives into a single scalar substitute objective function, the most

popular of which being the well known weighted sum approach as introduced in

chapter (2.4.3). For the traditional approach the weights are held constant during

the optimization run. Within this class of fitness assignment schemes the weights are

changed during the run. These changes can be done systematically or at random.

The different weights can be applied to different subsets of the population or even

each individual can be assigned different weights. Thus the optimization process aims

at different directions simultaneously. For the successful working of this approach a

proper normalization of all objectives is critical. Because this is not always possible,

this poses a drawback of this fitness assignment scheme. One example of this class

has been published by Hajela (HLGA, [HL92]), where the weights have been explicitly

included in the chromosome string.
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Fitness Assignment Based on the Concept of Pareto-Dominance

The last class of fitness assignment schemes directly employs the concept of Pareto-

domination for the fitness assignment. This concept has first been proposed by Gold-

berg in his book on genetic algorithms in 1989 ([Gol89]). Goldberg proposed a rank-

ing scheme in which all non-dominated individuals of a population are assigned rank

1. Then these individuals are temporarily removed from the population. The non-

dominated individuals of the remaining population are assigned rank 2. This proce-

dure is repeated until the complete population is ranked. In this way it is ensured that

all non-dominated individuals are assigned the highest fitness and, equally important,

the same fitness. Thus the population is directly driven towards the Pareto-frontier

and no artificial fix-ups are needed.

This fundamental concept of a Pareto based ranking scheme has been the basis and

the inspiration for many other researchers who developed similar fitness assignment

schemes for their own MOEAs. One example is the Multi-Objective Genetic Algorithm

(MOGA) developed by Fonseca and Fleming ([FF98a]). In MOGA the rank of each

individual is defined by the number of other individuals in the population by which it is

dominated. So nondominated individuals are assigned rank 0 and thus the highest fit-

ness. This approach is illustrated in figure (3.2). These Pareto based ranking schemes
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c
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min(objective1, objective 2)

0
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Figure 3.2: Pareto-Ranking of a sample population for an example problem with 2

objectives

differ fundamentally from the above mentioned methods with respect to the fact,

that fitness is determined as a relative measure. The fitness is not determined based

on absolute objective function values but on the relation between each individual and

the rest of the population. So no scaling or normalization is required. These Pareto

based fitness assignment schemes are most popular in the current development of

MOEAs. Nevertheless, in their overview on MOEAs ([FF95]) Fonseca and Fleming

stated, referring to independent publications of again Fonseca and Fleming([FF93])
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as well as Horn and Nafpliotis ([HN93]): ”Pure Pareto-EAs cannot be expected to

perform well on problems involving many competing objectives and may simply fail to

produce satisfactory solutions due to the large dimensionality and size of the trade-off

surface. As the number of actually competing objectives increases, more and more of

the search space can be expected to conform with the definition of Pareto-optimality,

which would make the theoretical problem of finding non-dominated solutions easier.

Unfortunately, in the total absence of preference information, the EA will face the im-

possible task of finding a satisfactory compromise in the dark, which can only happen

by pure chance”.

Discussion

The fitness assignment schemes that directly employ Pareto-dominance are the most

direct realization of the original idea of having the population converging against the

Pareto-front. Furthermore they guarantee that all nondominated solutions are rated

equally and do not prefer extreme solutions. Accordingly most of the state-of-the-art

MOEAs are based on this fitness assignment scheme. Thus it has been decided that

GAME also employs a Pareto-ranking based fitness assignment.

3.2.2 Methods for Maintaining Population Diversity

In order to have a well founded basis for a trade-off analysis an MOEA should achieve

a sufficiently uniform distribution of the solutions on the Pareto-front. In the following

the main examples of methods supporting diversity are briefly introduced:

Fitness Sharing

Fitness sharing is the most commonly applied concept for maintaining diversity and

has been proposed by Goldberg and Richardson ([GR87]) in 1987. It originally aims at

establishing stable subpopulation in multi-modal single objective problems. The basic

idea is that the fitness of a certain individual is degraded if there a many very similar

individuals in the close neighborhood. The more individuals are located in the neigh-

borhood of a certain individual, the more its fitness value is degraded. An individual j

belongs to the neighborhood of an individual i if it is within a given distance, the so

called niche radius, σshare: d(i, j) < σshare. The distance metric d(i, j) is computed by

an appropriate distance measure. This distance measure can be defined in the design

variable space or, more seldom, in the objective function space. The most common

distance metric is the Euclidean distance, which again requires a proper normaliza-
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tion. The resulting shared fitness fits(xi) of an individual xi is defined as follows:

fits(i) =
fit(i)

n∑
j=1

s(d(i, j))

=
fit(i)

nc(i)
, i, jε[1, n] (3.1)

The shared fitness is equal to the original fitness divided by the niche count nc(i),

which is the sum of all sharing function values s(d(i, j)) between the individual xi

and all other individuals in the population. The sharing function reflects the similarity

between two individuals. If two individuals are further apart than a given niche radius

σshare, the sharing function value is typically zero, while within the radius the values

increase with decreasing distance. A typical realization for a sharing function is:

s(d(xi,xj)) =

⎧⎨
⎩

1 −
(

d(i,j)
σshare

)α

, d(i, j) < σshare

0, d(i, j) ≥ σshare

⎫⎬
⎭ (3.2)

Though the concept is straight forward, there are some difficulties. So a value for the

sharing radius σshare has to be determined, which is critical for the performance.

Crowding

This method was proposed by DeJong in his PhD-thesis in 1975 ([DeJ75]). In his

model he used a so called overlapping population, i.e. that only a part G, called

generation gap, is allowed to reproduce at each generation. The crowding model

aiming at preserving diversity is integrated in the replacement operator. For each

offspring to be inserted in the population, CF solutions are chosen at random from

the population (CF is called crowding factor). From these solutions the most similar

one is replaced by the offspring. Similarity is again measured by an appropriate distance

metric and can be evaluated in the design space as well as the objective space. Because

only similar individuals are replaced, dissimilar individuals have a higher chance of

survival. In this way crowding of solutions anywhere in the search space is prevented

and so diversity in the population is encouraged.

Immigration

Another method to maintain population diversity is to substitute limited parts of the

population with randomly generated new individuals. Basically these new individuals

can be considered as immigrants as they have no common roots with the current

generation. This concept of immigration has been applied e.g. by Fonseca and Fleming

([FF98a]).
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Isolation by Distance

This type of methods for maintaining diversity is based on the use of several sepa-

rated and distinct populations. These populations can evolve independently and so

globally diversity is supported. At a relatively low rate individuals are allowed to mi-

grate between the different populations. This migration basically resembles the idea

of immigration introduced above. This concept is e.g. employed by Poloni ([Pol95]).

Similar to the concept of having multiple subpopulations is having a single popula-

tion but with a specially defined spatial structure so that several niches can evolve

simultaneously. E.g. Laumanns, Rudolph, and Schwefel proposed a population which

was structured by an underlying graph, a two dimensional torus ([LRS98]).

Overspecification

Overspecification is an approach where an individual’s chromosome contains has a

redundant set of genes for each design variable, an active and an inactive set. The

active part specifies the current design, whereas the inactive part has no function.

But dependent on a specific decision logic the inactive part can become the active

one and vice versa. Basically this concept resembles the existence of dominant and

recessive alleles of diploid organisms in nature, which also feature redundant sets

of chromosomes. In nature always the dominant allele will be realized unless both

parents feature the recessive allele. Within this method of course an arbitrary logic

can be applied for switching between the active and inactive part. The inactive part

is also subject to recombination and mutation, but because the phenotype is built

only based on the active set, it is not subject to the selection process. Thus it can

evolve completely nondirectional and is not effected by e.g. genetic drift. Because

the inactive part can become the active one at any time, new individuals can appear

in the population which are not resulting from the past selection process. Thus this

method helps to maintain diversity. An example for this concept of diploidy can be

found in the MOEA proposed by Kursawe ([Kur91]).

Discussion

Among the above mentioned methods overspecification, isolation by distance and

immigration have the disadvantage that they only indirectly support the diversity on

the Pareto-frontier. They do not directly consider the current distribution of the so-

lutions. The effectivity of these methods can therefore be regarded as low. Crowding

and fitness sharing are more promising as they take into account distance information

reflecting the actual distribution. But none of the methods acts directly on the dis-

tribution of solutions on the current nondominated front. Thus it has been decided

to employ another methods that does so. This method is integrated in a specially

adapted elitism operator which will be introduced in the next section.
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3.2.3 Elitism

Elitism means that the best individuals of one generation are directly passed on to the

next generation without having to ’survive’ the stochastic selection and replacement

process. Elitism aims at avoiding loss of the best solutions due to stochastic operators

and assures a monotone convergence. In the context of multiobjective optimization

the best individuals are all non-dominated individuals. As the goal of a multiobjective

optimization is to determine the Pareto-frontier, it is obvious, that one wants to

keep all non-dominated solutions. So the need for some kind of elitism operator is

so obvious that one can wonder why first generation MOEA did not consider elitism

right from the start.

Elitism can be implemented in several ways. The most basic approach to implement

elitism in a multiobjective EA is to take all nondominated individuals and directly pass

them into the next generation. Another way is based on the replacement operator of

the ES, i.e. the old population and the offspring are merged and the n best individuals

of this union set are selected to form the next generation. Alternatively an external

archive can be used, in which all nondominated individuals are stored. The selection

pool then comprises the population and the external archive. After reproduction the

external archive is updated. The offspring is added to the archive and all members

are ranked again. Those who might have become dominated are deleted. The three

concepts are illustrated in figure (3.3). Nevertheless the first two alternatives which
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Figure 3.3: Alternatives of implementing elitism in MOEAs

are directly transferred from single-objective optimization show some drawbacks in

the context of multiobjective optimization. In contrast to single-objective problems

for which the best is only one single solution, for multiobjective problems the best,

i.e. the nondominated set, can constitute a large part of the population. For the first

alternative of copying the best directly into the next generation such a case would

mean that a large part of the new generation is already occupied and only a few new

individuals of the offspring will have the chance to be enter. This is a drawback with

respect to population diversity as well as convergence speed. For the second alternative

of building the new generation by taking the best, i.e. the nondominated, from a union



3.3. MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS - CURRENT
STATE OF THE ART 45

set of the old population and the offspring, another problem can arise. If the union set

contains more nondominated individuals than the population size, the question arises

which one to take. A random choice is an option. But recalling the goal of achieving

a widely spread Pareto-front, this option has again disadvantages, because it makes

no difference if solutions are almost equal or very different. Thus a method should

be applied that takes into account diversity information. This applies also for the last

alternative of an external archive, which has become the most popular realization

of elitism in the context of multiobjective evolutionary optimization. Generally this

external archive could store all nondominated solutions found during the evolutionary

run. But a finite size for the external archive opens the possibility of combining elitism

with the support of diversity on the Pareto-front. At some point when the number

of nondominated solutions in the archive exceeds the given limit, the question arises

which solutions to keep and which to delete. The goal of achieving a good distribution

of solutions across the Pareto-frontier forms a basis to draw these decisions. In his

PhD-thesis Zitzler ([Zit99]) controlled the size of the external set by a clustering

method. This method deletes the most similar members of the set until the desired

size is reached. By this way the external archive not only serves as a elitism operator,

but also as a method for promoting population diversity. The elitism operator in

GAME is based on this concept and uses a similar approach.

3.3 Multiobjective Evolutionary Algorithms -

Current State of the Art

In order to determine the current state-of-the-art concerning multiobjective opti-

mization with evolutionary algorithms a vast literature research has been performed

([PR01]). The goals of this literature research have been to:

• get a profound overview on work related to MOEA (past and presence)

• determine the current state-of-the-art of MOEA

As a result of the literature research in general it can be stated that applying evolu-

tionary algorithm to multiobjective optimization problems is still a young and active

field of research as can be seen in the growing number of publication per year in the

recent years (see figure 3.4).

3.3.1 Overview on the Development of Multiobjective

Evolutionary Algorithms

Several papers have been found, in which researchers tried to give a an overview

on the scope of MOEA research at different times. An early overview can be found
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Figure 3.4: Number of MOEA related publication per year (source: EMOO Repository

by C.A. Coello Coello ([Coe]), date: August 2004)

in ([FF95]) by Fonseca and Fleming, in which they discuss different approaches for

fitness assignment like aggregating approaches and Pareto-ranking based approaches.

Furthermore they show directions for future research. A more recent survey can be

found in ([Coe99a]) by Coello Coello, in which he also discusses strengths and weak-

nesses of the most popular MOEAs and describes their application. Furthermore he

gives a detailed view on future research perspectives. Also a profound source for get-

ting an overview on MOEA techniques is ([Deb02]), in which the complete field of

multiobjective optimization with evolutionary algorithms is described ranging from

basic MOP theory to applications. The most up to date resource for MOEA is un-

doubtable the excellent web repository of evolutionary multiobjective optimization

(EMOO, [Coe]). In this continuously and reliably updated online resource MOEA re-

lated publications are gathered worldwide and listed in several categories.

Based on these sources a brief review on the development of MOEA is given. The

first actual implementation of a real multiobjective EA was Schaffer’s Vector Eval-

uated Genetic Algorithm (VEGA), which he published in the mid 1980s ([Sch85a]).

Before mainly standard EA were applied with preference based fitness assignment

methods like aggregating functions (weighted-sum-approach), lexicographic ordering,

or target-vector approaches.

A major step forward in the development of MOEAs has been initiated by a proposal

by Goldberg in his book on genetic algorithms in 1989 ([Gol89], see also chapter

(3.2.1)). Goldberg proposed a fitness assignment scheme that is based on the concept

of Pareto-dominance. In his review on the current state of MOEAs ([Coe03]), Coello

Coello distinguishes two generations in the development of MOEAs. Goldberg’s pro-

posal for a Pareto based fitness assignment scheme became basically the standard for

the first generation of MOEAs. Many researchers realized different implementations

of this concept for developing MOEAs. Other representatives for this first generation

of MOEAs are the Non-dominated Sorting Genetic Algorithm (NSGA) by Srinivas

and Deb ([SD94]) and the Niched-Pareto Genetic Algorithm (NPGA) by Horn et al.



3.3. MULTIOBJECTIVE EVOLUTIONARY ALGORITHMS - CURRENT
STATE OF THE ART 47

([HNG94]). Whereas Srivinas more or less directly implemented Goldberg’s proposal,

Horn used a tournament based selection scheme, where two randomly chosen indi-

viduals compete against an also randomly chosen subset of the population (typically

10% of the population size). If one is dominated by any individual of the comparison

set and the other not, the non-dominated one wins, if both are non-dominated or

dominated, i.e. there is a tie, the winner is determined on the basis of fitness sharing.

Having a Pareto-dominance based fitness assignment scheme deals only with the first

goal of a multiobjective optimization. Even in his first sketch Goldberg already noted,

that an algorithm based on a pure implementation of this concept will face problems

if not special measures will be included to maintain a satisfactory diversity. First gen-

eration MOEA typically used niching or fitness sharing for that purpose.

The second generation of MOEAs are characterized by the introduction of elitism. As

stated in chapter (3.2.3) in practise (although by no means necessarily) the concept

of elitism for MOEAs is typically associated with the existence of an additional pop-

ulation or external set, in which all currently non-dominated individuals are stored.

As the goal of a MOEA is to determine the Pareto-frontier, one wants to keep all

nondominated solutions and does not want to loose non-dominated solutions due to

stochastic operators or even more simple due to the limits of the population size. So

as stated before it is a good question why elitism has not been used by the early

MOEAs despite the underlying logic is so clear and obvious. Typical representees of

these second generation MOEAs are e.g. the Strength Pareto Evolutionary Algorithm

(SPEA) and its improved version SPEA2 developed by Zitzler and Thiele ([Zit99]),

the Pareto Archived Evolution Strategy (PAES) by Knowles and Corne ([KC00]), the

Nondominated Sorting Genetic Algorithm II (NSGA-II) by Deb et al. ([DPAM02]), the

Niched Pareto Genetic Algorithm 2 (NPGA2) by Erickson et al. ([EMH01]). These

algorithms also represent the current state-of-the-art according to Coello Coello, who

published an overview on the current state of MOEA ([Coe03]) in 2003.

3.3.2 Determination of the Current State-Of-The-Art of

Multiobjective Evolutionary Algorithms

It is understood that there is no such thing as a ’best algorithm’ in general. Compar-

ing the performance of algorithms generally is a difficult problem. One aspect is that

the performance usually depends strongly on the problem category. So in general it

may only be possible to compare algorithms for a very specific problem class. Another

decisive aspect for comparing performance is to find suitable performance measures.

Commonly these measures include the quality of the solutions, computational ef-

fort, robustness, and reliability aspects. Though the application of these categories

to single-objective problems addressed by e.g. a gradient based algorithm is straight

forward, it is substantially more complex in case of a MOEA. First of all MOEAs are
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stochastic search algorithms, so several runs and a statistical evaluation have to be

performed in order to get meaningful results. Measuring computational effort is rather

straight forward, usually the number of objective function evaluations is taken as a

measure. Comparing the quality of the solutions of MOEAs is much more difficult.

Because the solution of a MOEA run is a set of points here comparing the results

means comparing nondominated sets.

The development of significant and valid measures for comparing nondominated sets

is still subject to ongoing research. A quality measure has to answer the questions, if

one set is better than another one and how much is it better. The quality measure

has to aggregate the information of a solution set in a few characteristic key num-

bers. Certainly aspects like the distance of solutions from the true Pareto-frontier, the

extent of coverage of the true Pareto-front, or the homogeneity of the distribution

on the front have to be considered. In literature most commonly unary measures or

combinations of such unary measures can be found. Examples are the generational dis-

tance measure ([Vel99]), which is the average distance between each nondominated

individual and the closest true Pareto-optimal vector, or the hypervolume measure

([ZT99]), which is the volume of the objective space dominated by the respective

nondominated set. In order to address the problem of comparing nondominated sets

by unary quality measures, Zitzler et al. performed an investigation of all currently

known unary quality indicators with respect to their significance ([ZLT+02]). One

of their conclusions was that in general the use of unary quality indicators is lim-

ited. Binary indicators, which are subject of ongoing research, are regarded as a more

promising alternative. In another investigation on this topic ([ZTL+02]) Zitzler et

al. came to similar results. In their conclusions it is stated that no unary measure

exists that is able to determine that one nondominated set is better than another

one. Most quality measures proposed to judge that one nondominated set is better

than another one, at best would allow to say, that one set is not worse than another

one. Furthermore it has been stated that binary quality measures would overcome

these limitations. An example of such a measure, the binary ε-quality measure, was

proposed by the authors.

Despite these difficulties to define valid quality measures, several researchers per-

formed comparisons between different MOEAs. In his PhD-thesis ([Vel99]) Veldhuizen

defined a test function suite covering a broad and relevant spectrum of aspects with

regard to multiobjective problems. Based on this test suite and a set of 6 quality cri-

teria he compared MOGA, MOMGA (proposed by Veldhuizen), NSGA, and NPGA.

Although because of the different test problems and criteria it is not easy to come to

an clear ranking, it can be stated that NSGA performed worse than the other tested

MOEAs.

Zitzler also performed a systematic comparison of several MOEAS for a set of test

problems in his PhD-thesis ([Zit99]). These test problems encompassed the multiob-

jective knapsack problem, a multiobjective travelling salesman problem as well as 6

continuous test problems. The latter ones were based on a proposal by Deb ([Deb98]),
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who identified several characteristics which may cause problems for a MOEA to have

its population successfully converging towards the Pareto-front or to maintain pop-

ulation diversity. Those features comprise multimodality, deception, isolated optima,

nonconvexity, discreteness, and non-uniformity. For each of these potential hazards a

specific test function has been constructed. Zitzler’s comparison encompassed the fol-

lowing algorithms: SPEA (Zitzler an Thiele, 1999), NSGA (Srivinas and Deb, 1994),

VEGA (Schaffer, 1985), NPGA (Hajela and Lin, 1992), HLGA (Horn, Nafpliotis, and

Goldberg, 1994), FFGA ( MOGA, Fonseca and Fleming, 1993), and a pure random

search for reference purposes. The comparison resulted in the following ranking:

1. SPEA

2. NSGA

3. VEGA

4. NPGA, HLGA

5. FFGA

Zitzler stated a clear performance gap between SPEA and NSGA as well as the remain-

ing algorithm. The comparison also emphasized the importance of elitism, since the

only MOEA directly incorporating elitism, SPEA, clearly outperformed the other ones.

Furthermore adding elitism to the other MOEAs substantially improved their perfor-

mance. Another finding of Zitzler was, that for an example of two objectives SPEA

performed better than a single-objective EA employing a weighted-sum-approach al-

though the single-objective EA required more than 100 times the computation effort

of SPEA. Zitzler took this as an indication that elitist MOEA can find better solutions

in a single run than traditional approaches in several runs. Obviously in a continuative

effort, Zitzler published another, more comprehensive version of this comparison in

collaboration with Deb ([ZDT99]), which basically confirms these findings. Again the

importance of elitism is emphasized. Also in accordance to the previous comparison

adding the elitism strategy of SPEA could significantly improve the performance of

MOEAs not featuring elitism before. Especially NSGA, augmented with elitism, was

found to equal the performance of SPEA. These findings basically led to the improved

versions NSGAII and NPGA 2.

Another performance comparison was conducted by Knowles and Corne ([KC00]), in

which they compared different versions of their PAES with NPGA and NSGA. Ad-

ditionally modified versions of NPGA and NSGA were considered, which employed

an nondominated archive and elitism. In contrast to the archive in SPEA in PAES

the members of the archive do not take part in the further selection process, the

archive serves only as a storage. For the comparison the performance assessment

method proposed by Fonseca and Fleming ([FF96]) was employed. The comparison

was performed for 6 test problems, which were Schaffer’s test functions F1, F2, and

F3 ([Sch85a]) as well as Fonseca and Fleming’s F1 ([FF95]). A fifth test function

was self-defined and as the 6th test function served the adaptive distributed database
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management problem. As a result of this comparison Knowles and Corne found that

PAES in its most basic version is a very capable MOEA. Only the improved version of

NSGA with a nondominated archive as well as elitism was slightly better with respect

to its overall performance.

3.3.3 Discussion

The review on the current state-of-the-art of MOEAs gave valuable hints for the

development of GAME. Most of these algorithms employ fitness schemes based on the

Pareto-ranking scheme proposed by Goldberg. Also the importance of elitism for the

performance of MOEAs can clearly be seen. Zitzler’s SPEA showed an elegant method

to combine elitism and the promotion of population diversity. Finally it has been

decided to employ NSGAII as a reference algorithm for evaluating the performance

of GAME. In chapter (5.7) this comparison is performed with several test functions.



4 The Genetic Algorithm for

Multicriteria Engineering

4.1 Overview

The Genetic Algorithm for Multicriteria Engineering (GAME) has been developed

based on the goals stated in chapter (1.2). These requirements ask for an optimization

algorithm that is capable of solving a very broad range of tasks, e.g. it should be able

to work simultaneously with discrete and continuous design variables, be applicable to

multiobjective problems, and last but not least feature a higher efficiency compared

to conventional EAs.

In this chapter GAME is introduced and the different implemented methods and

operators to achieve the goals are described in detail. The general flowchart of GAME

is shown in figure (4.1).

Optimization
on RSAs with SQP

GAME
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No

Result

End?
Initial-
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(Parents) (Children)
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- clustering based diversity control

G & P

Ranking
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Recombination
Fitness-

AssignmentG & P

Ranking

Figure 4.1: Flowchart of GAME

Based on a review of optimization algorithms in chapter (2.2.1) it has been decided

to use EAs as the basis for the development of GAME. So on the one hand GAME

resembles the flow chart of a conventional EA. On the other hand GAME features ad-

ditional elements like the external pool of nondominated individuals or a new branch
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with an RSA based optimization in parallel to the conventional reproduction opera-

tors. Both elements will be explained later.

One goal is the applicability of GAME to multiobjective problems. For this purpose

GAME features a special fitness assignment scheme which is based on a Pareto-

ranking method similar to the ones of NSGA ([SD94]) and MOGA ([FF98a]). This

scheme is described in chapter (4.4).

One critical aspect for EAs is the handling of constraints. In GAME the handling

of constraints is integrated in a generalized Pareto-ranking scheme, which is based

on the goals and priority approach of Fonseca and Fleming ([FF98a]). In chapter

(5.4) this constraint handling method is compared to conventional approaches like

the lethal factor approach or a penalty function method (see chapter (2.3.3)) and

proved to be superior.

When reviewing the state of the art (see chapter (3.3)), elitist EAs proved to be

significantly superior to non-elitist EAs. Thus GAME incorporates elitism. In GAME

elitism is realized by an external archive storing all nondominated individuals. Besides

working as an elitism operator the external archive also supports population diversity

and thus pursues also the second goal of a multiobjective EA of achieving a uniform

distribution of solutions on the Pareto front. This is achieved by a special update

mechanism described in chapter (4.5).

GAME is especially adapted for handling discrete and continuous design variables

simultaneously. According to their different nature, discrete and continuous design

parameters are treated differently with respect to variable coding as well as the evo-

lutionary operators. Usually when common operators for all variables are used, the

presence of discrete variables prohibits the use of continuous operators like the ES

mutation operator. A separate treatment solves this problem and allows a broader

spectrum of operators. The applied reproduction operators are introduced in chapters

(4.7.2) and (4.7.1).

Besides generality the other decisive design goal has been to increase the efficiency

and lower the computational costs of conventional EAs. One approach implemented

in GAME pursuing this goal is parallelization. Since the evaluation of all individu-

als is totally independent from each other, EAs are fortunately ideal candidates for

grain-parallelization. The respective objective function values for each individual can

be computed in parallel on different computers. In GAME this approach is realized by

employing a PC-Cluster as described in chapter (4.11). Parallelization does not lower

overall computational costs but the total computation time, maybe the even more

decisive goal.

Directly addressing the reduction of the computational cost is the augmentation of

the conventional EA flowchart with a new branch featuring an RSA based optimiza-

tion. This integration of RSA methods is one of the essential ideas realized in GAME

to increase efficiency and performance.

Optimization is all about exploration and exploitation of information about the design

space. During the evolutionary run a high number of individuals is evaluated and so a
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large amount of information about the design space is gathered. The here presented

strategy is based on the idea to further exploit this information already being at

hand.

The thought to employ RSA for this purpose origins from a simple analogy: both

EAs and RSA methods work with a set of points. While usually design of experi-

ments methods are used to choose design points for the built-up of the RSA, here

the individuals of the current and past generations are used. In this way the RSA

exploits information that is already present and causes no additional computational

costs. Once the RSAs are set up for the objectives and constraints, a SQP based

optimization is run on these RSAs. The optimal solutions found are then added to

the offspring of the conventional reproduction operators and are also evaluated. So

the approximated objective function values are replaced by the true ones. This RSA

integration is a robust process because the optima found by the RSA optimization

still have to prove their quality during the further evolution process. This compensates

for poor optima due to low quality RSA or numerically failed optimization.

While an EA sees only points in the design space, the RSA builds up knowledge

over certain areas of the design space. This spacial knowledge can be exploited by

a subsequent gradient based optimization as implemented in GAME or also by spe-

cial directional mutation operators. The reason why this RSA integration increases

efficiency is that the children originating from the RSA based optimization can be

assumed to be superior to children stemming from random operations and thus in-

crease convergence speed. A basic prerequisite for this approach to actually increase

efficiency is that the computation time of the algebraic model functions of the RSA is

significantly lower than those for the evaluation of the objective functions. But in the

context of structural optimization, in which commonly FEM models or time domain

simulations are used, this can be assumed to be the case.

One critical aspect is that GAME works with discrete and continuous variables simul-

taneously. Because RSA can only be set up for continuous or quasi-continuous design

variables, the population has to be split in subsets with consistent discrete variables

before RSA methods can be applied. The details of the RSA integration are described

in chapter (4.8). In chapter (5.6) it is verified to what extent the assumed advantages

of the RSA integration actually materialize.

Before explaining the different elements of GAME first the pseudo code of the algo-

rithms is given in the following. Due to the special implemented fitness assignment

scheme GAME does not discriminate between objective- and constraint-functions. In

the context of GAME they are subsumed under the more general term cost-functions,

designated also as f = [f , gf ,hf ]. So the evaluation of each individual i can be

rewritten as:

costi = f(xi)

The fitness assignment thus results to:

fiti = fitnessfunction(costi)])

With this definition the pseudo code reads as:
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Input: n, n̄, population size, external archive size

ngen, total number of generations

lb, ub, ds, lower bound vector, upper bound vector, vector with the discrete

step sizes for the discrete design variables

σ, vector with standard deviations (mutation operator)

g, p, goal vector, priority vector

Output: Psol, final nondominated set

Step 1: Create a random initial population Pi within the limits lb and ub. Set

t = 1, Pt = Pi, and P̄t = ∅

Step 2: Evaluate all individuals: Costt = f(Pt)

Step 3: Perform a goals and priorities based ranking:

rPt = ranking(Costt,g,p)

Step 4: Update external population:

- determine all nondominated individuals Pnd in Pt:

Pnd = {iεPt|rPt(i) = 0},
- if |P̄t| + |Pnd| < n̄: P̄t = P̄t ∪ Pnd,

- else P̄t = clustering(P̄t,Pnd)

Step 5: Form the selection pool: Psel = Pt ∪ P̄t

Compute the ranking: rPsel
= ranking(f(Psel),g,p)

Compute the fitness: fit = fitnessfunction(rPsel
)

Step 6: Select parents: Ppar = selectionfunction(fit)

Step 7: Generate children by recombination:

C = crossoverfunction(Ppar)

Step 8: Mutate children: C = mutationfunction(C)

Step 9: Built RSAs: RSAData = RSAfunction(Pt, P̄t,Costt, ¯Costt)

Step 10: Find optima of the RSAs: PRSAopt

Step 11: Evaluate the offspring:Costoffspring = f([C,PRSAopt ])

Step 12: Built the replacement pool Prep = Pt ∪ C ∪ PRSAopt ,

rrep = ranking([Costt,Costoffspring],g,p)

fitrep = fitnessfunction(rrep)

Set t=t+1 and built the next generation:

Pt = replacementfunction(Prep,fitrep)

Step 13: If t < ngen go to step 4
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4.2 Design Variable Coding

Internally GAME discriminates three categories of design variables: continuous design

variables, discrete design variables of quasi-continuous nature, and truly discrete de-

sign variables. Discrete design variables of quasi-continuous nature are such discrete

design variables which inherit some kind of internal ordering. E.g. some structural

members like pipes may only be available in certain discrete diameters, but they can

be ordered from small to large. In contrast truly discrete design variables are charac-

terized by the lack of any inherent order, e.g. a design variable representing the choice

between different material. The discrimination between these three categories is done

with respect to their handling by the reproduction operators. So each category can

be treated differently. If common operators for all variables were used, the presence

of discrete variables would prohibit the use of the continuous operators like the ES

mutation operator. A separate treatment avoids this problem. The use of specialized

reproduction operators increases the overall efficiency and convergence speed of the

algorithm. The operators are explained in detail in chapter (4.7).

For all continuous design variables a real coding is used whereas an integer repre-

sentation is used for discrete parameters. For each variable the user has to provide a

lower and an upper bound, for the discrete variables additionally the discrete step size

has to be given. Discrete variables represent a finite set, which is internally mapped

on a integer set starting from 1. The integer coding has been preferred to a binary

representation because it takes only a single locus on the chromosome string inde-

pendent of its resolution as do the continuous variables.

In the following an example of the design variable coding is shown. In a 3-dimensional

design vector x = [x1, x2, x3] may x1 be a continuous design variable within the limits

Dx1 = [−10, 10], x2 a quasi-continuous discrete variable within the limits Dx2 = [3, 5]

and a discrete step size ds2 = 0.1, and x3 a truly discrete variable within the limits

Dx3 = [1, 10] and a discrete step size ds3 = 1. On this level no differences between

quasi-continuous and truly discrete variables show up. Mapping both to their respec-

tive integer set reads as:

D′
x2 = [1, 2, ..., f loor(5−3

0.1
) + 1] = [1, 21]

D′
x3 = [1, 2, ..., f loor(10−1

1
) + 1] = [1, 10]

The chromosome string of the individual x = [2.934, 4.2, 7] would thus result to:

x′ = [2.934, 12, 7]

4.3 Generation of the Initial Population

Similar to almost all EAs the generation of the initial population in GAME is a com-

pletely random process, that generates the n desired individuals within their allowed
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bounds. This process employs an even probability distribution for the complete range.

Because wether objective nor constraint functions are taken into account the resulting

initial population can and most likely will contain infeasible solutions.

4.4 Fitness Assignment and Constraint Handling

As GAME is designed for constrained multiobjective problems the design of the fitness

assignment operator is an especially challenging task. The fitness assignment has to

provide a single scalar value reflecting the overall quality of a design. So the fitness

assignment of GAME first has to incorporate constraint information, and secondly it

has to handle multiple objectives.

Concluding from the investigations in chapter (3) Pareto-dominance ranking ap-

proaches have turned out to be the most promising methods for considering multiple

objectives. Nevertheless these approaches do not consider any constraints. For this

purpose most commonly penalty function approaches are employed although their

application in a ranking scheme is more difficult than in an aggregation approach. A

general drawback of penalty function transformations is that their performance is very

sensitive with respect to a proper choice of function type and penalty parameters.

Thus for a robust algorithm their use is not really desirable, a parameterless approach

is preferable.

In GAME therefore a modified version of the Pareto-dominance ranking approach for

constrained multiobjective problems is applied, which extends the conventional rank-

ing scheme in a very elegant way to a generalized ranking scheme which considers

objectives and constraints. This generalized ranking scheme was developed by Fon-

seca and Fleming ([FF93]) and is based on a so called goals and priorities approach

for evaluating individuals. Furthermore it offers a broad flexibility and can address a

wide range of optimization tasks. The decision for this approach is also confirmed by

the results of the numerical experiments in chapter (5.4), in which the performance

of this scheme has been compared to a penalty function scheme and the so called

’lethal factor’ scheme. The results of this comparison showed the superiority of the

generalized ranking approach.

In the following the chosen generalized ranking approach is introduced. Similar to a

conventional ranking scheme the actual fitness of one individual is still determined

by its rank. But the procedure how the rank is determined is different. First the

rank is not any more equal to the number of individuals which dominate it, but the

number of individuals which are preferable to it. If one individual is preferable to

another one is determined by a comparison based on a so called goals and priorities

approach. The proposed scheme requires the assignment of a goal and a priority to

each objective, which can be aggregated into a goal vector and a preference vector:

g = [g1, g2, ..., gnob
], p = [p1, p2, ...pnob

] The goals represent the values which have

to be attained for each objective functions, so the algorithm tries find solutions that
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satisfy (z(x) ≤ g). The priorities (integers!) represent different preference levels or

levels of importance between the respective objectives, a higher value relates to a

higher priority.

One major difference to the conventional optimization task formulation is that this

approach does not explicitly discriminate between objective and constraint functions.

So for simplicity only the term objective function will be applied in the following.

In the goals and priorities approach the difference between objective and constraint

functions are reflected by the assignment of different priority levels. Although many

possible choices exist, for a typical constrained multiobjective optimization task there

will be two priority levels. The constraints will be assigned the highest priority 2 while

the objectives will be assigned the next lower priority 1. This reflects the simple rea-

soning that the satisfaction of the constraints can be considered to be of a higher

priority than achieving a good objective function value. A good but infeasible solution

is of no use.

The choice of the goal values is also straight forward. For the constraint functions

simply the right sides of the respective inequalities can be taken as goals, whereas

the true objectives (functions to be minimized) can be assigned −∞ as goal values.

The latter choice reflects that for an objective function to be minimized no real goal

value can stated.

The goal and priority information is used for the comparison of two solutions, to

determine which one is preferable compared to the other one. To illustrate this a

comparison of two solution vectors u = f(xu) and v = f(xv) is performed in the

following. The goals and priorities can be aggregated into a modified goal vector g,

which is named preference vector :

g = [g1, g2, ..., gp] = [(g1,1, ..., g1,n1), ..., (gp,1, ..., gp,np)],

pεN+, niε[0, nob] for i = [1, ..., p],

p∑
i=1

ni = nob

In the preference vector the goal values of the objective functions are ordered in

subvectors gi according to their priority level, starting with the lowest priority level 1

up to the highest priority p. Without loss of generality the different objective functions

in f can be arranged in the same order:

f = [f1, f2, ..., fp] = [(f1,1, ..., f1,n1), ..., (fp,1, ..., fp,np)]

The same can be done for the solution vectors u and v. The subvectors gi of the

preference vector g with i = 1, ...p associate priorities i and the goals gi,ji
with

ji = 1, ..., ni to the corresponding objective function fi,ji
. Higher values of i indicate

higher priorities.

Generally each subvector ui will be such that a number kiε{0, ..., ni} of its com-

ponents meet their goals while the remaining do not. Thus, again without loss of

generality, u can be reordered so that the following applies for u and i = 1, ..., p:

∃kiε{0, ..., ni}|∀lε{1, ..., ki}, ∀mε{ki + 1, ..., ni} : (ui,l ≤ gi,l) ∧ (ui,m > gi,m)
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The first i = 1, ..., ki objectives of u meet their respective goal values, while the

other ones do not. The vectors vi and gi are then reordered in the same way as

u. For simplicity Fonseca and Fleming proposed the following notation: the first ki

components of ui, vi, and gi are denoted as u
u
�
i ,v

u
�
i , and g

u
�
i , i.e. in all subvectors ui,

vi, and gi the components are ordered according to the fact wether the respective

components of ui meet their goals or not. Correspondingly the last ni − ki compo-

nents of these vectors are denoted u
u
�
i ,v

u
�
i , and g

u
�
i . The smile (

u
�) and the frown

(
u
�) indicate the components in which u either does meet or does not meet the goals.

If u is preferable to v is now defined as follows:

A vector u = [u1, ...,up] is preferable to v = [v1, ...,vp]

with respect to a given preference vector g = [g1, ..., gp]

u ≺
g

v, if and only if :

p = 1 ⇒ (u
u
�
p p < v

u
�
p ) ∨ {(u u

�
p = v

u
�
p ) ∧ [(v

u
�
p 
≤ g

u
�
p ) ∨ (u

u
�
p p < v

u
�
p )]}

p > 1 ⇒ (u
u
�
p p < v

u
�
p ) ∨ {(u u

�
p = v

u
�
p ) ∧ [(v

u
�
p 
≤ g

u
�
p ) ∨ (u1,...,p−1 ≺

g1,...,p−1

v1,...,p−1)]}

So for deciding if u is preferable to v, both are first compared with respect to those

objective components of u with the highest priority (i = p), in which u does not

satisfy the goals, u
u
�
p , while disregarding those for which up satisfies the respective

goals, u
u
�
p . If those components of u are partially less than the respective ones of

v, u is preferable to v. In case both vectors meet all goals with this priority, or if

they violate some or all of them, but in exactly the same way, it is checked if those

components of v for which u satisfies the goals, u
u
�
p , violate the goals. If this is the

case, u is preferable to v. If this is not the case, i.e. v also satisfies the goals for

those objective in which u does, the next priority level (p − 1) is considered. This

process is continued until the lowest priority 1 is reached. On this last priority level 1

the comparison is finally decided by a classic check for Pareto dominance.

Because satisfied high priority components are left out from the comparison, vectors

which are equal in all but these components express virtually no trade-off information

given the corresponding preferences.

This comparison scheme for determining preference is parameterless and also requires

no scaling of the objectives because no aggregation of any objectives is done. The

approach is also very flexible and can be adapted to all common optimization tasks.

So for an unconstrained multiobjective optimization task the preference vector may

be set as follows: g = [g1] = [(−∞,−∞, ...,−∞)]. Only one priority level is needed

here, since all objectives are equal. The goals are all −∞, because all function are to

be minimized. For a constrained multiobjective optimization task typically two prior-

ity levels are needed. The nc constraint functions are assigned the priority 2. Their

corresponding goal values are simply the right sides of the respective inequalities. The
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true objective functions are handled as above. Thus the preference vector results to:

g = [g1, g2] = [(−∞, ...,−∞), (g2,1, g2,2, ..., g2,nc])]. This set up also encompasses a

constrained single objective optimization task. Correspondingly preference vectors for

tasks like goal programming or constraint satisfaction can be set up.

The final fitness assignment is more or less unchanged. Based on the above defined

comparison scheme for each individual the number of other individuals is determined

which are preferable to it. This number is called its rank r. Thus all nondominated

individuals of a certain generation are assigned r = 0. The ranking scheme is illus-

trated in figure (4.2) for three small example populations for a problem with two

objective functions. On the left both objectives are to be minimized and have the

f1

f 2

g=[(- - ]�� ��1 g=[(g g ]1 2 1, � g=[(g , ( ]1 1� g )2 2
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Figure 4.2: Illustration of the ranking based on the goals and priorities scheme

same priority (g = [(g1)] = [(−∞,−∞)]), in the middle both objectives are again

of the same priority but have to satisfy certain goals (g = [(g1)] = [(g1,1, g1,2)]), and

on the right both objectives have to meet certain goals but the second objective has

a higher priority than the first one (g = [(g1), (g2)] = [(g1,1), (g2,2)]).

Based on the rank the actual fitness values fiti for each individual i is computed.

In GAME the fitness values directly reflect the probability for being selected as a

parent and is therefore a value between [0, 1]. The fitness values are normalized, so

that
∑n

i=1 fiti = 1. The relation between rank and fitness can be chosen as linear or

exponential.

In conclusion the generalized ranking scheme by Fonseca and Fleming, which is em-

ployed by GAME, provides a very elegant fitness assignment method for constrained

multiobjective optimization problems. The concept of goals and priorities is charac-

terized by being a parameterless method and by offering a broad flexibility to be

adapted to nearly all commonly occurring optimization tasks. Problems with this ap-

proach might occur in the presence of a high number of constraints on the same

priority level, when a large percentage is assigned an equal rank and so no sufficient

selection pressure is generated.
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4.5 Elitism and External Population

In chapter (3) the essential role of elitism for the performance of MOEAs was empha-

sized by many researchers. In GAME elitism is realized by an finite, external archive, in

which only nondominated solutions are stored. For simplicity the term nondominated

is applied to all individuals, to which no other individual is preferable. This may not

be correct in a strict sense with respect to the original definition, but it is the logical

equivalent for the constrained task. In GAME this external archive of nondominated

solutions has two purposes. On the one hand it serves as an elitism operator by keep-

ing the nondominated solutions, on the other hand it serves a diversity preservation

tool. So it is employed in a similar way like in PAES and SPEA. The role as an elitism

operator is straight forward. As long as the maximum allowable number n̄ of individu-

als is not exceeded, simply all nondominated individuals of each generation are added

to the archive. Subsequently it is checked wether formerly nondominated individuals

of the archive now have become dominated and therefore have to be removed. In

this way the currently best are preserved for the next generation without the danger

of being sorted out by stochastic selection and replacement operators. Actually in

GAME the external archive and the population do not really resemble two separate

populations, because for the decisive steps fitness assignment and selection both sets

are merged. Basically both can be considered as a single population, in which a cer-

tain subset, the nondominated individuals, is treated differently in order to promote

elitism and population diversity.

The latter aspect is described in the following. Since the external archive is of fi-

nite size, at some point adding new nondominated solutions will exceed the given

limit. So an procedure is required to reduce the set. This process should not only re-

duce the number of individuals in the external archive, but simultaneously pursue the

second major goal in multiobjective optimization: to achieve a uniformly distributed

nondominated set. From this goal a logic for the reduction of the temporary external

population is easily derived: In order to promote diversity, delete those solutions which

are most similar to each other.

Therefore a so called clustering process is employed similar to the one in SPEA. This

clustering technique originally stems from multivariate statistical analysis to identify

groups of similar objects.

This is done by building up a binary hierarchical cluster tree. This tree basically re-

flects the similarity of the individuals in terms of some distance criterion, in most

cases the Euclidean distance. First all individuals form a single cluster by themselves,

so n̄ clusters exist. After computing the distances between all clusters, the two closest

cluster, or at this time the two closest individuals, are merged to form a new clus-

ter. Now n̄ − 1 clusters exist. Subsequently all cluster distances are recomputed. For

clusters consisting of several solutions the centroid position is taking as a reference

point for computing the distances. Again the two closest clusters are merged. This

process continues until there are only two clusters left which will finally build the last
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cluster. This process can be illustrated in a binary tree. The binary cluster tree poses

a powerful tool to reduce the nondominated set to a given number of individuals.

One simply has to cut the tree at the desired level, so that the number of clusters

equals the number of desired individuals. Afterwards the number of individuals in each

cluster has to be reduced to one. For GAME the most central individual is selected in

each cluster. In figure (4.3) an example of building such a binary hierarchical cluster

tree is shown for a problem with 2 design variables and a population of 10 individuals.

In the left figure the spatial distribution of the individuals in the two dimensional

objective space is shown. In the middle figure the respective binary hierarchical clus-

ter tree can be seen. On the bottom the first level the clustering process is shown

where each individual form a cluster. The iterative clustering process is then marked

by u-shaped lines. The height of these u-shaped lines represents the distance of the

merged cluster. For this example the external set is to be reduced to 5 individuals. So

the binary hierarchical cluster tree is cut at that level where only 5 clusters exist. In

the left figure the respective cluster numbers are shown for each individual. For finally

building the reduced set in each cluster only the most centroid element is kept and all

other are deleted. In the right figure the resulting reduced set is shown. Though the

example is extreme with respect to the very low size population and high reduction

rate, the effect of achieving a more uniform distribution can clearly be observed.

In the following the pseudo-code of the clustering procedure to update the external

archive is given:
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Figure 4.3: Illustration of the clustering procedure for reducing a sample population

from 10 to 5 individuals for a problem with 2 objective functions



62
CHAPTER 4. THE GENETIC ALGORITHM FOR MULTICRITERIA

ENGINEERING

Input: n̄, size of the external population

P̄t, external archive population

Pnd, nondominated individuals of Pt

Output: P̄t+1, updated external population

Step 1: Built a temporary external archive: P̄′ = P̄t ∪Pnd,

Step 2: Assign each solution iεP̄′ to a distinct cluster Clk, Cl =

{Cl1, Cl2, ..., Cln̄′}
Step 3: If |Cl| ≤ n̄ go to step 6, otherwise go to step 4

Step 4: Compute the cluster distances dc for all pairs of cluster.

The cluster distance between two cluster Clk and Cll is

defined as:

dc(Clk, Cll) =
1

|Clk||Cll|
∑

iεClk,jεCll

d(i, j),

where d is the normalized Euclidean distance between the

individuals i of cluster Clk and j of cluster Cll wether in

the design space or objective space

Step 5: Determine the clusters Clk and Cll, which have the min-

imal distance dc and merge them to single cluster: C =

Clk ∪ Cl. This reduces Cl by one cluster. Go to step 3

Step 6: For each cluster choose the most centroid element to repre-

sent the cluster and delete all other. The updated external

population is then formed by the individuals of all clusters:

P̄t+1 = Cl

In contrast to a conventional fitness sharing approach the approach here affects only

the nondominated individuals, while the rest of the population is left as it is. This

can be considered as a drawback, but since it addresses directly the distribution of

individuals on the nondominated front it can be considered a very efficient tool for

achieving a good distribution. Furthermore towards the end of the evolution run, it

can be expected that a large percentage of the population is part of the nondominated

front.

Though the actual clustering process is parameterless, the size of the external archive

has to be given. A too small archive can degrade the elitism effect, while a too large

archive may not support the population diversity enough. In general the external

archive will be chosen smaller than the population, typical values are n̄ ∼ 0.5...0.75n.
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4.6 Selection

The selection operators of GAME are similar to ones employed in conventional EAs.

During the selection process 2∗nc individuals are selected from the population to form

the parent pool or parent couples, Ppar = [(p11,p12); (p21,p22); ..., (pnc1,pnc2)]. The

selection is based on the individual’s fitness values. For selection GAME features two

possibilities: global stochastic remainder selection and tournament selection. The first

one is a strongly modified roulette wheel selection method, that reduces stochastic

noise. It copies the integer part of the expected number of copies of each individual

directly into the parent pool, nicopies
= floor(fiti ∗ 2 ∗ nc). Subsequently a con-

ventional roulette wheel selection is applied to fill up the parent pool to the desired

size, in which the selection probability is fiti for each individual. Afterwards the final

parent couples are randomly combined. The selection pressure for this method de-

pends strongly on the fitness distribution function wether linear or exponential. For

the tournament selection nt (tournament size) individuals are selected from the selec-

tion pool (population + external archive) at random without considering any fitness

information. Among those the one with the best fitness is chosen as a parent. This

process is repeated until the parent pool is filled up. Again the parent couples are

random combination from the selected individuals. Here the selection pressure can

be tuned by changing the tournament size. A large tournament size increases the

selection pressure.

4.7 Reproduction Operators

Besides the fitness assignment the reproduction operators, recombination and mu-

tation, are the second decisive operator block in an EA. They are responsible for

creating new solutions, the so called offspring. In general recombination basically re-

combines genes from both parents to form a new individuum. The resulting child

therefore features characteristics from both parents. Mutation is an arbitrary change

in the genes of an individuum, so the resulting child will feature characteristics that

cannot be found in either parent. In contrast to crossover mutation introduces truly

new genetic information into the genepool, whereas recombination only works with

information already present in the genepool. Therefore recombination can be consid-

ered mainly an ’exploiting’ operator, that tries to get the best out of the available

information. Mutation can be considered an ’exploring’ operator, which tries to find

better solutions by generating completely new genetic information not present in the

current genepool.

In which case more importance has to be put on which strategy strongly depends on

the problem at hand. Generally for problems, in which the structure or system to be

optimized features an internal substructuring, i.e. comprises of different subsystems

or components, recombination is an especially effective strategy. This also applies for
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truly combinatorial problems. Otherwise, if all design variables are more or less sizing

variables, pure recombination will result in a high convergence rate, but also a high

genetic drift and premature convergence. For such problems mutation is a more effec-

tive operator, since it will continuously introduce new individuals into the population.

So depending on the problem structure a balance between both strategies has to be

found.

Looking at the actual realization of recombination and mutation operators in specific

algorithms a broad range of alternatives exists. But to judge their working principle

and effectiveness, it is important to judge them in context of other algorithm specific

features like e.g. the variable coding.

Traditionally in binary coded GAs the emphasis is put on the recombination operator,

while the mutation operator is only applied at a very low rate. But taking a closer look

at the working principle of traditional one- or multi-point-crossover in binary coded

GAs, one has to state, that the effect may represent a recombination on the geno-

type level, but on the phenotype level it actually resembles a mutation. Binary strings

are cut at arbitrary positions, not regarding the borders between code sections of

the different design variables. When decoded the outcome will feature characteristics

present in none of the two parents. So the effect is similar to a mutation, an arbitrary

mutation. The offspring will most likely not reside anywhere close to its parents, since

this mutation does not favor small changes in any way. In conclusion binary coded

GA are mainly driven by mutation and not recombination though it might look vice

versa at first glance.

Mutation also is the key operator in the real coded ES, originally it has been the

only one. Here mutation is defined by adding normally distributed random changes to

the respective individual. Small changes are therefore preferred to larger ones. Fur-

thermore typically the number of children is significantly larger than the population

size in ES. So each individual will statistically have multiple children. In combination

with the ES mutation strategy this has the effect that the resulting children of each

individual will resemble several slightly changed, mutated, clones of the respective

individual residing in its neighborhood. The best of which will survive and be passed

in to the next generation in all likelihood. In this way ES mutation resembles a low

efficient hill climber, who does not know which search direction to take. So it has to

check the complete neighborhood first before it decides to move in a specific direc-

tion. Nevertheless, it is a very robust ’hill climber’ since it does not rely on gradient

information.

In conclusion mutation can be considered the key operator for generating offspring in

both GA and ES. The reason why true recombination does not seem to be existential

may be due to the fact that most optimization problems do not feature a sufficiently

complex substructure of loosely coupled subsystems. Nevertheless the application sce-

nario of GAME includes the preliminary configuration design potentially including a

complex set of subsystems, so recombination will be considered. But based on the

considerations above mutation is considered as the main operator in GAME.
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4.7.1 Recombination Operator

For the recombination operator it is discriminated between the different design variable

types. For all discrete variables a uniform crossover is applied, i.e. the resulting child

is a random recombination of its parents, each gene is taken with an equal probability

from either one of the two parents. For continuous design variables an arithmetic

crossover is applied. The resulting child is generated by a linear combination of its

parents:

Input: Ppar = [(p11,p12); ..., (pnc1,pnc2)], parents

Output: C = [c1, c2, ..., cnc], children

Step 1: For all nc couples of parents generate the children ci =

[ccont
i , cdiscr

i ] in the following way:

for the continuous subspace: {ccont
i = {xi,j |jε[1, ndv] ∧

xi,j is continuous}:
ccont

i = pcont
i1 + r(pcont

i2 − pcont
i1 ), r = U([0, 1])

for the discrete subspace: {cdiscr
i = {xi,j|jε[1, ndv] ∧

xi,j is discrete}:
cdiscr

i = [xi,j(p
discr
i,r )], r = round(s) + 1, s = U([0, 1])

4.7.2 Mutation Operator

Experiences with ES show that the combination of real coded design variables and

ES-mutation leads to higher convergence rates and also requires significantly lower

population sizes than comparable binary GAs. So mutation by adding normally dis-

tributed random changes has been the first choice for GAME. As described in chapter

(4.2) GAME employs a mixed integer/real coding for representing the design vari-

ables, so the ES-mutation can only be applied for the continuous variables. For the

discrete design variables it is discriminated between truly discrete and quasi continu-

ous discrete variables. For the latter ones also a normally distributed random change

is added, but subsequently rounded to the next possible discrete value. For truly dis-

crete variables mutation is implemented as a pure random jump within the valid set

of possible alternatives.

The most important parameter for the ES like mutation operator is the standard de-

viation σi, which has to be defined for each design variable xi. It basically determines

the scatter radius for the mutated offspring around the respective individuum. These

standard deviations can be kept constant during the complete evolution run, but it is

advantageously to adapt it by specific control laws. In the beginning a higher standard

deviation is desirable in order to have a wide spread search in the design space. In a

later stage of the evolution run a smaller standard deviation may be advantageously,
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since it can be assumed that the population has already roughly converged to the

optimum. A smaller standard deviation then concentrates the search on the optimal

region and hinders moving away again. In literature a variety of potential control laws

can be found ranging from simple linear adaptations over success dependent methods

to self-adaptive mechanisms. In GAME it has been decided to employ a simple control

laws that linearly decreases the standard deviation in dependence of the generation.

In chapter (5.5) this method has been compared to the self-adaptive method. The

results show that the chosen method is competitive and that the more sophisticated

self-adaptive method does not show significant advantages, at least in the application

scenarios considered here. The pseudo code for the mutation operator is given in the

following (regard the internal integer coding for discrete variables!):

Input: C = [xi], children

σ0,σngen , vector of the initial and final standard deviations

t, generation

lb,ub, lower and upper bounds

ds, discrete step sizes for discrete variables

Output: Cmut = [xmut
i ], mutated children

Step 1: Compute actually applied standard deviations:

σj(t) =
σngen,j−σ0,j

ngen
t + σ0,j, j = 1, 2, ..., ndv

Step 2: For all i = 1..nc children mutate the j = 1..ndv design variables xi,j :

xmut
i,j = xi,j + N(0, σj(t)), xi,j continuous:

xmut
i,j = xi,j + round(N(0,

σj(t)

dsj
)), xi,j discrete, but quasi continuous:

xmut
i,j = U([1, f loor(

ubj−lbj

dsj
) + 1]), xi,j truly discrete

4.8 Integration of Response Surface

Approximations

The basic idea of integrating RSA methods in GAME is to increase efficiency by fur-

ther exploiting the information stored in the population by means of response surface

approximations. For this purpose a new branch has been added to the conventional

EA flow chart. This new branch is basically a bypass that is installed in parallel to the

reproduction operators, as can be seen in figure (4.1). So for the next generation on

the one hand there are children resulting from the recombination/mutation process

like before, but on the other hand additional children resulting from the RSA branch.

The way the RSA branch works and how the additional children are generated is

explained in the following.
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The RSA branch consists of a two step procedure. In the first step RSAs for all

objective- and constraint functions are built up. In contrast to traditional RSA meth-

ods, that use design of experiments methods (DOE) for choosing points to built the

RSA (e.g. [Mye71]), in GAME the individuals of the current and past generations

being already at hand are used. In the second step a gradient based optimization is

run on the RSAs. The optimal solutions found are then fed back into the population,

evaluated using the real objective- and constraint functions, and the yet approximated

objective- and constraint functions values are replaced by the true ones.

The main advantage of this parallel implementation is that it is a very robust one.

Since the normal evolutionary process remains completely independent of the RSA

branch, the success of overall optimization process does not depend on the success

of the RSA based solutions. The optima found by the RSA based optimization still

have to prove their quality in the further evolution process. This compensates for poor

optima due to low quality RSA or numerically failed optimization. Even if the RSA

branch fails completely to find reasonable solutions, GAME performs still at least as

well as a conventional EA.

Though the basic reasoning for integrating is rather simple, some challenges arise for

the actual implementation since GAME works with discrete and continuous variables

simultaneously. RSAs do only work with continuous or quasi-continuous design vari-

ables. The solution strategy implemented in GAME is to split up the population in

subsets with consistent discrete variables before the RSAs can be set up. This pro-

cess is illustrated in figure (4.4). The RSAs are then built only on these continuous

subsets. If reasonable, the quasi-continuous variables can be included in the RSAs,

too. In this case the respective variables of the found solutions will be rounded to

the next feasible discrete values before adding them to the population. Depending on

the actual number of individuals residing in these corresponding continuous subsets

linear, quadratic or mixed quadratic polynomials are used as model functions for the

RSA. These low order approximation models have been chosen for several reasons.

The first one is that they, although being simple, already cover a considerable range

of possible response surface shapes. The second, even more important reason is that

gradient based optimization algorithm, like the implemented SQP, converge very fast

and reliable on these types of functions.

The distribution of the individuals used for the RSA built-up will be random to a

certain degree and thus may not be ideal for setting up a highly accurate RSAs.

Therefore it is not likely that a RSA spanning over the complete design space will

be very accurate. Nevertheless it is first tried to set up the RSAs over the whole

design space. If this produces RSAs with insufficient accuracy, an alternative strategy

is applied that tries to reach a higher accuracy by subdividing the design space into

smaller subsets and span the RSAs only over these smaller subsets. The reasoning

behind this is that there is a higher probability that simple model functions are able

to provide accurate approximations on smaller areas. Basically this concept of using

low order model functions and splitting up the design space resembles to a certain
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Figure 4.4: Flowchart of the RSA set up

extent the FEM approach. Preliminary work on how increasing the accuracy of RSA

by subdivision techniques has been done in ([Tha00]).

The procedure applied in GAME to built these subsets is basically the same clustering

process introduced in chapter (4.5) for the external archive. This time it is applied in

the design space and used to find groups of individuals with a higher similarity. Similar

to the clustering applied for the external archive first a binary hierarchical cluster tree

is set up. In order to finally determine the subsets a desired similarity level has to be

provided in order cut the cluster tree at his level. A higher desired similarity (i.e. lower

cluster distances) leads to more cluster with less individuals, a lower similarity will

lead to less subsets containing correspondingly more individuals. A lower bound for

the desired similarity is provided by the minimum number of design points a cluster

must contain, so that at least a linear approximation model can be set up. In figure

(4.5) an example of this clustering process is shown for a sample population for a

problem with one objective function and two design variables. In the upper left figure

a three-dimensional surface plot illustrates the shape of the objective function. The

dot objects represent the population. This example problem features a multimodal

objective function, which definitely cannot be approximated by the available model

functions over the complete design space. In the upper right figure the resulting binary

hierarchical cluster tree is shown. Taking a look on the distribution of individuals, the

population shows a natural distribution into three relatively separated regions. This

division is clearly reflected by the cluster tree. And expectedly the clustering process

successfully manages to split up the population in exactly this three regions. In the
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Figure 4.5: Illustration of the clustering process of the population for an example with

one objective function of two variables

lower left figure the resulting RSAs are displayed after the clustering process. It can

clearly be seen, that the clustering successfully enables the set-up of accurate RSAs

even with the chosen simple model functions. For this example a cut-off level of 0.75

of the maximum cluster distance has been applied. A general drawback of the clus-

tering procedure is that for an automatic application this cut-off level, or similarity

measure, has to be given a priori without any knowledge about the actual distribution

of design points.

In order to investigate how different choices for the cut-off level effect the perfor-

mance of the RSA based optimization, an experiment has been performed with the

above example. For each setting of the cut-off level 100 runs have been performed

with randomly generated populations. In the lower right figure the average optimum

resulting from the RSA based optimization is displayed in dependence of the relative

cut-off level (normalized by the maximum resulting cluster distance). The results ver-

ify the underlying assumption that dividing up the search space into smaller subset

provides more accurate RSA and thus better optima of the subsequent optimization.

A lower cut-off level (i.e. a higher degree of similarity) leads to a better optimum.

This trend can be observed down to a certain limit. If the cut-off level is lowered

further the resulting optima become worse again. This reveals an inherent drawback

of requiring a higher similarity of the individuals. Although the accuracy of the RSA

theoretically increases with a higher similarity, this higher similarity leads to a higher

number of cluster containing less individuals due to the finite size of the population.
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Thus beyond a certain limit the accuracy of the RSA will decrease again due to the low

number of points. At the lowest cut-off level settings a convergence of the achieved

optima can be observed. This can be addressed to the fact that the implemented

clustering procedure will always limit the subdivision to clusters containing at least

the minimum required number of points for a mixed quadratic model.

Due to the random distribution of the individuals it is hard to set up an automatic

procedure determining an optimal cut-off level. In practice settings in the range of

0.5 to 0.75 have shown the best results.

In case even after this clustering process no sufficient accuracy can be achieved, the

RSA process is quit for this subset. After all RSAs have been built, a gradient based

optimization is run on these RSAs. All objective and constraint functions of the original

problems are replaced by their respective RSA models. The optimization is performed

for every cluster of every continuous subset separately. For this purpose the MATLAB

internal SQP-algorithm fmincon is employed. Since SQP is a applicable to constrained

problems, the integration of constraints is no problem. But because SQP is a single-

objective method, multiple objectives have to be aggregated using the weighted sum

approach. In order not to aim only at a single point of the Pareto-frontier, multiple

runs are performed with different, randomly set weights. The resulting optima of all

these optimization runs are then fed back into the normal evolutionary cycle by adding

them to the offspring created by recombination and mutation.

Splitting up the design space into continuous subspaces and then further splitting up

the design space by clustering can result in a considerably high number of sets. In

the left plot in figure (4.6) the possible number of subsets is shown as a function of

the discrete variables as well as the number of discrete values the respective variable

can be assigned. The result shows a highly exponential behavior. For the cantilever

beam example there are two truly discrete variables (material, cross section type)

with 3 possible realizations each. Thus there exist 9 continuous subspaces. But for an

example with 4 discrete variables with 5 possible realizations each there exist already

625 continuous subspaces.

The number of subspaces and clusters has direct consequences on the requirements

of the populations size. In order to build up RSAs in all subspaces a sufficient number

of designs points must reside in all respective subspaces. The number of necessary

design points for building a RSA is again dependent on the model function and the

number of design variables. In figure (4.6) on the right side this is shown for linear,

quadratic, and quadratic mixed model functions. It can be seen that especially for the

mixed quadratic model the number of required design points quickly rises with the

number of design variables. For the cantilever beam example with three continuous

design variables thus for a linear model 4, for a quadratic model 7, and for a mixed

quadratic model 10 design points a required at minimum. In case of a problem with

20 design variables already 21, 41 and 231 design points are required respectively.

Assuming a uniform distribution of the design points across the design space a mini-

mum population size can be estimated by simply multiplying the possible number of
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Figure 4.6: Number of continuous subsets in dependence on the number of discrete

design variables and their number of possible values (left), required num-

ber of design points in dependence on the RSA model function and number

of design variables (right),

subspaces and the required number of design points for the respective model function.

Thus in the presence of discrete variables quickly a very large required population size

can be reached.

So employing the RSA might lead to a required population size that conflicts with

the original goal of reducing the computational costs by integrating the RSA. Unfor-

tunately this is a basically unsolvable dilemma of dimensionality.

One possible solution is to employ a larger population only in the initial generations.

In the later stages of the optimization it can be assumed that large portions of the

search space will have been ruled out as unattractive and so the number of subspaces

will decrease also. Thus only a smaller population may be sufficient then. But it may

be reasonable not to scale up the population size at all. It might also be acceptable

that the RSA branch is not applied during the first generations but only during the

later stages when the population is concentrated on a smaller part of the design

space. So in the first generations the search is mainly a classic evolutionary search.

This approach is pursued in GAME. The underlying reasoning is that it is exactly this

initial phase of the search, the quick extracting of promising subsets of the design

space, at which evolutionary search is very good. In the later phase of the search

process, when the individuals can be assumed to be already in the vicinity of the true

optima, the advantages of the RSA based optimization with respect to local search

and precise location of the optimum are especially effective.

Nevertheless, the effort for computing a high number of RSA based optimization runs

will still be relatively small. Here the advantage of using only low order model func-

tions shows. The SQP algorithm converges in only a few iterations, ideally in only

one iteration.

Another possibility of exploiting the information provided by the RSA is to use it by

EA operators. Currently under investigation is e.g. an approach approximating the fea-
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sible design space and using this information in the mutation operator for increasing

the rate of feasible offspring.

4.9 Replacement

For building the next generation the replacement operator has to decide which indi-

viduals of the current generation are kept and which are replaced by offspring or the

solutions of the RSA branch. In GAME a deterministic replacement operator similar

to the one used in ES is applied. All n individuals of the current generation Pt, the

nc children C, and the nRSA RSA based solutions PRSAopt are inserted in a com-

mon replacement pool. The new generation Pt+1 is then built by taking the n best

individuals from the pool with respect to their fitness values.

4.10 Implementation

GAME has been realized in the multi-purpose mathematics and numerical simulation

environment MATLAB. The main reasons for this is because MATLAB provides a

highly flexible and easy to use environment for realizing complex algorithms. Further-

more it offers a broad range of mathematical function library and specialized tool

boxes. Another advantage are the powerful visualization features in MATLAB.

As GAME is a research tool for evaluating the proposed optimization approach, algo-

rithm speed is not the first priority. A C++ implementation would increase the speed

significantly. But in the application environment GAME is designed for, the compu-

tation time for the objective functions, e.g. FEM models, can be assumed being at

least one order of magnitude higher. So the algorithm’s speed contributes only little

to the overall computation time.

Implementing GAME in MATLAB also requires the objective functions to be exe-

cutable in MATLAB. But since all command line executable functions can also be inte-

grated in MATLAB, this poses no real handicap. In the context of adaptive lightweight

structures many simulation models are MATLAB models anyway. Furthermore other

applications can easily be integrated in MATLAB. The only requirements are that

these applications can be executed in batch mode, work with accessible input files,

and provide well documented result files. This holds true for most of the currently

available FEM tools like e.g. ANSYS.
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4.11 Parallelization

Cutting down the total computation time by grain parallelization is essential for mak-

ing EAs a viable option for many engineering problems. Since the evaluation of the

individuals is independent from each other, the most obvious and most effective strat-

egy is to simply evaluate all individuals on different computers in parallel. Exactly this

approach is pursued in GAME and realized on a Linux-PC-cluster. In figure (4.7) the

realized approach is illustrated. The main algorithm GAME is run on the so called

master computer. The parallelization affects only the objective function evaluation

module, the rest remains unchanged. For the parallel evaluation of all individuals first

GAME
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Figure 4.7: Illustration of the realized parallelization approach in GAME for applica-

tion on PC clusters

for each one a MATLAB batch file and an associated script file are generated. The

batch file basically consists of a MATLAB script that loads the design vector of the

respective individuum into the MATLAB workspace, evaluates the objective function,

and finally saves the results to a specified file. The script file is the file actually exe-

cuted by the queueing system. Besides calling the MATLAB batch file on the assigned

node, it also takes care of the necessary file handling. It copies the MATLAB batch

file and other additional files to the proper directories on the specific node. Afterwards

it copies the result files back to the master.

After the creation of all script- and batch-files the complete job-queue is set up in a

so called dispatch file, which is basically a batch file submitting all script files to the

queueing-system. This dispatch file is then executed and the queuing system starts to

distribute the jobs on the available nodes. After all jobs are completed the resulting

cost matrix containing the objective function values is returned to the calling GAME

function.

Currently this parallelization approach is implemented on a Linux-PC-cluster using a

XPBS-queueing system (see figure (4.8)). But the chosen approach is flexible to be

adapted to other cluster systems easily. The potential performance increase by em-

ploying parallelization depends on the number of available nodes, the performance of
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Figure 4.8: Linux-cluster at the LLB

the nodes, and also on the communication costs. This communication effort is mainly

caused by the copying of the different input- and result-files. This effort increases with

the number of nodes, but also the file size has a decisive influence.

In order to evaluate the performance increase a test has been performed with an

example problem that included the evaluation of an FEM model. The evaluation of

an FEM model required approximately 30 minutes computation time on a single com-

puter. For the test a population of 250 individuals was to be evaluated. The test was

run with different numbers of nodes. In figure (4.9) the resulting overall computation

time is displayed in dependence of the number of employed nodes. The overall com-

putation time has been normalized with the time required on a single computer. It

can be seen that the performance increase is almost proportional to the number of

employed nodes. The communication effort is obviously negligible for the number of

nodes considered here. In conclusion it can be stated that the chosen parallelization

approach is an effective method to significantly reduce overall computation time.
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Figure 4.9: Illustration of the reduction in overall computation time depending on the

number of nodes for an example problem



5 Numerical Experiments

In this chapter the performance and characteristics of GAME are investigated. The

different aspects to be investigated are:

• the influence of the different algorithm parameters like population size, number

of children, and number of generations

• the performance of the chosen constraint handling method compared to con-

ventional penalty function methods

• the performance of different methods to adapt the standard deviation of the

mutation operator

• the performance of the RSA integration

• the overall performance compared to another prominent representative of a

multiobjective evolutionary algorithm, the NSGA II

Since EAs are stochastic search methods, meaningful conclusions, if a certain param-

eter setting or implemented method is better than another one, cannot be drawn

from a single run. So a statistically relevant number of runs has to be performed.

Since this will not be possible for real world test problems due to the required time,

analytical test problems have been employed for this investigation. The selected test

problems have been chosen so that a sufficient range concerning the level of diffi-

culty as well as special characteristics are covered. Furthermore such test problems

have been selected that have already been employed in benchmark studies by other

researchers so that comparisons to other publications are possible. These problems

are introduced in the following section.

5.1 Test Problems

5.1.1 Test Problem ZDT

The test problem ZDT is taken from a series of test problems designed by Zitzler,

Deb, and Thiele for benchmark tests of MOEAs ([Deb02]). These are scalable, uncon-

strained, algebraic, multiobjective problems with 2 objective functions. The complexity
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of the search can be scaled by changing the number of variables ndv and thereby vary-

ing the dimensionality of the design space. The first problem of this problem family is

used for the experiments here. It is the most simple one and features a convex Pareto

frontier. In equation (5.1) the problem statement is given:

min f1(x);

f2(x) = g(x)h(f1(x), g(x))
(5.1)

The subfunctions g and h are:

ZDT1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f1(x) = x1

g(x) = 1 + 9
ndv−1

∑ndv

i=2 xi

h(f1, g) = 1 −√f1(x)/g(x)

,

for ZDT1 : ndv = 10, xiε[0, 1]

(5.2)

For ZDT1 the global Pareto frontier is found for 0 ≤ x1 ≤ 1 and xi = 0, i =

2, ..., ndv, which corresponds to g(x) = 1.

5.1.2 Test Problem OSY

This problem proposed by Osyczka and Kundu ([OK95]) is a constrained test problem.

It is a problem with 6 design variables and has two objective and 6 constraint functions.

The major challenge of this problem is that it is relatively severely constrained with

varying active constraints along the Pareto front.

min f1(x) = −(25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2);

f2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6;

subject to : c1(x) = x1 + x2 − 2 ≥ 0;

c2(x) = 6 − x1 − x2 ≥ 0;

c3(x) = 2 − x2 + x1 ≥ 0;

c4(x) = 2 − x1 + 3x2 ≥ 0;

c5(x) = 4 − (x3 − 3)2 − x4 ≥ 0;

c6(x) = (x5 − 3)2 + x6 − 4 ≥ 0;

0 ≤ x1, x2, x6 ≤ 10, 1 ≤ x3, x5 ≤ 5, 0 ≤ x4 ≤ 6

(5.3)
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This problem has also been applied as a single objective problem employing only

objective function f1 and turning f2 into an additional constraint (f2 ≤ 100). The

true optimum for this problem is xopt = [5 1 5 0 5 4.899] and yields an objective

function value of f(x) = −274 with constraints c1, c3, and c5 being active.

5.1.3 Test Problem TNK

The test problem TNK by Tanaka ([Tan95]), also taken from [Deb02], has two contin-

uous design variables (x1, x2ε[−π, π]), two objective functions, and two constraints:

min f1(x) = x1;

f2(x) = x2;

subject to : c1(x) = x2
1 + x2

2 − 1 − 0.1 cos(16 arctan(x1/x2)) ≥ 0;

c2(x) = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

(5.4)

This problem features a disconnected Pareto front and the difficulty that all Pareto

optimal solutions are placed on a nonlinear constraint. This problem has also been

applied as a single objective problem employing only objective function f1 and turning

f2 into an additional constraint (f2 ≤ 0.9). The true optimum for this problem is

xopt = [0.4632 0.9] and yields an objective function value of f(x) = 0.4632 with

constraints c1 and f2 being active.

5.1.4 Test Problem CTP1

The scalable test problem CTP1 designed by Deb ([Deb02]) is part of a test problem

series for which the constraints were especially designed to interfere with the Pareto

front of the unconstrained problem. The different test problems introduce different

kinds of difficulties near the Pareto front. For CTP1 each constraint cuts away certain

parts of the unconstrained frontier and therefore becomes part of the Pareto front

itself. The difficulty for the optimizer here is that for each part of the constrained

Pareto front the solutions are required to exactly meet the respective constraint. Since

each constraint is a nonlinear function of the design variables it will be difficult for

the algorithm to discover and maintain such solutions on a nonlinear boundary. The

problem is scalable in terms of the number of design variables and the number of

constraints. With an increasing number of constraints the difficulty will also rise.

min f1(xI) = f1(xI);

f2(x) = g(xII) exp(−f1(xI)/g(xII));

subject to : c1(x) = f2(x) − aj exp(−bjf1(xI)) ≥ 0; j = 1, .., nic

(5.5)
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Here x = [xI , xII ] and f1(xI) and g(xII) can be any multivariate function. The num-

ber of inequality constraints can be varied. The constants aj and bj are determined

via a special formula:

- set j = 0, aj = bj = 1, ∆ = 1/(nic + 1), and α = 1;

- calculate β = ajexp(−bjα);

- calculate aj+1 = (aj + β)/2 and bj+1 = −1/αln(β/aj+1);

- set α = α + ∆ and j = j + 1.

For the test here the functions f1 and g have been chosen as:

f1(x) = x1

g(x) = 1 + 9
ndv−1

∑ndv

i=2 xi

(5.6)

Again, a single objective version has also been used in which the second objective

function has been turned into an additional constraint (f2 ≤ 1). The true optimum for

this problem is xopt = [0.001, 0, 0, 0, 0.0016, 0, ..., 0] and yields an objective function

value of f(x) = 0.001 with constraint c1 being active.

5.1.5 Test Problem Cantilever Beam

As a more realistic structural optimization test problem the optimization of a can-

tilever beam has been chosen, which is illustrated in figure (5.1). This 2[m] long

beam is subject to a tip force F = 100000[N ]. The optimization task is to minimize

h

b

t

cross section 1

l

F

h

b

t

cross section 2

w

Figure 5.1: Example: cantilever beam
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the mass and the end deflection while satisfying constraints with respect to strength,

stability constraints (lateral buckling/buckling) and the first eigenfrequency:

min : m(x),

wl(x),

x = [cs, mat, h, b, t]

subject to : σmaxMises
(x) ≤ σallow.(x2),

M(x)
Ml.buckl.,crit

≤ 1,

σ(x)
σbuckl.,crit

≤ 1

ω1(x) ≥ ωmin

(5.7)

The design variables encompass two truly discrete variables (cross-section type cs

(I- or box-profile [1,2]) and material mat (steel, aluminum, titanium [1,2,3])) and

three continuous variables (width bε[0.020, 0.200][m], height hε[0.020, 0.200][m], and

sheet thickness tε[0.001, 0.020][mm] of the profile). The maximum allowable stress

is dependent on the chosen material (x(2)). The eigenfrequency is required to be

above 10[Hz]. The cantilever beam problem has also been used as a single objective

problem minimizing only the mass and turning the tip deflection into an additional

constraint (wl(x) ≤ wmax = 0.05m). The true optimum for this problem is xopt =

[1, 2, 0.121, 0.200, 0.001] and yields an objective function value of f(x) = 2.335 with

constraint wl(x) being active.

5.2 Performance Measures

For the performance assessment of algorithms appropriate performance measures have

to be defined. In general this can be a quite challenging task. For the study here

three main categories have been employed: the quality of the achieved optimum, the

computational cost for achieving this optimum, and the probability of achieving this

optimum. The last one is especially important for evolutionary algorithms since they

are stochastic methods.

5.2.1 Measures for the Quality of the Optimum

For judging the quality of the achieved optimum two cases have to be distinguished:

single objective and multiobjective problems. Judging the quality of a single objective

problem is straight forward: the feasible solution with the smaller objective function

value is the better one. Judging the result of a multiobjective optimization is signif-

icantly more difficult and challenging. The result of a multiobjective optimization is
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the Pareto-optimal set, or at least the final nondominated set. So for evaluating the

performance sets have to be compared instead of single solutions. These solution sets

consist of a finite number of solutions with a considerably spread in terms of closeness

to the true Pareto-frontier, distribution across the front, and also the extent of cov-

erage of the true Pareto-front. General criteria for judging these nondominated sets

are easily formulated, e.g. how close the solutions are to the true Pareto frontier and

how well they are distributed across the front. But the transformation in numerical

measures is quite challenging. It can be quickly seen that it is impossible to develop

a single, meaningful, scalar measure reflecting the absolute quality of a solution set.

This fails already for the simple case of a set, whose solution are very close to the

true Pareto-frontier but cover only a small part of the true front, and another set,

whose solutions are a little more away from the true front but cover it almost uni-

formly. It is impossible to say which one is better. The judging of the solutions sets of

a multiobjective problem is a multiobjective problem itself. So at least two aspects,

closeness to the front and the distribution, have to be considered. With respect to

the first criteria another substantial obstacle is that the true Pareto front is generally

not known. Several researchers tried to develop measures. Within the scope of the

studies here the following three measures have been applied: hypervolume, spacing,

and set coverage metric. These are defined in the following:

• Hypervolume:

Hypervolume HV is a measure that calculates the volume in the objective space

which is covered by the members of the nondominated set P̄. This measure has

been introduced first by Zitzler ([ZT98]). For each solution iεP̄ a hypercube vi

is constructed using a reference point W and the solution i as diagonal corner

points. The reference point W can simply be defined by constructing a vector

of the worst objective function values. The hypervolume then is the union all

hypercubes: HV = volume(U
|P̄|
i=1vi). In figure (5.2) this measure is illustrated

for an example with two objective functions.

f1

f 2

current nondomiated set

objective space

Pareto-front

W

hypervolume HV

Figure 5.2: Illustration of computing the hypervolume for an example problem with

two objectives
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As can be seen a nondominated set closer to the true Pareto front corresponds

to a higher hypervolume value. Also a more uniform distribution will lead to a

higher hypervolume value. In conclusion the hypervolume can be regarded as a

measure of how close the nondominated set is to the true Pareto front. Since

this metric is sensitive to the scaling of the objectives, commonly the objectives

are normalized prior to the computing of the measure.

• Spacing:

The spacing measure was proposed by Schott ([Sch95]) and is a measure for

judging the distribution of the solutions on the Pareto front. The spacing mea-

sure S is defined as follows:

S =
√

1
|P̄|
∑|P̄|

i=1 (di − d̄),

di = min
kεP̄∧k �=i

∑nob

m=1 |f i
m − fk

m|,

d̄ =
∑|P̄|

i=1 di/|P̄|

(5.8)

The measure uses the relative distance between two consecutive solutions on

the nondominated front. The distances di are the minimum values of the sum of

the absolute difference in the objective function values between the ith solution

and any other solution in the nondominated set. It has to be noted, that this is

not the Euclidean distance between the respective two solutions. The spacing

measure S is the standard deviation of those distances di. If the solutions are

more or less uniformly spaced on the nondominated front the spacing measure

S will be very small. A smaller value of S is therefore better. The spacing

measure S reflects only the distribution of the solutions on the front, but not

the extent of the spread of the solutions. Like the hypervolume this measure

is sensitive to the scaling of the objectives and therefore prior normalization is

essential.

• Set Coverage Metric:

This measure was propossed by Zitzler ([Zit99]) and compares two solutions sets

P̄1 and P̄2 by directly employing the concept of domination. The set coverage

metric SCM(P̄1, P̄2) computes the percentage of solutions in P̄2 which are

weakly dominated by solutions in P̄1:

SCM(P̄1, P̄2) =
|{iεP̄2|∃jεP̄1 : j � i|

|P̄2| (5.9)

If all members of P̄2 are weakly dominated by P̄1, SCM(P̄1, P̄2) = 1. Vice

versa SCM(P̄1, P̄2) = 0, if no members of P̄2 are weakly dominated by P̄1. It

has to be noted, that domination is no symmetric operator, so SCM(P̄1, P̄2)

is not generally equal to 1 − SCM(P̄1, P̄2). So it is necessary to compute

both. SCM is no absolute measure, it is only useful for directly comparing two

solution sets.
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For a comprehensive comparison of two set, all three measures have to be considered.

Evolutionary algorithms are stochastic algorithms. So the results are not exactly re-

producible. Thus a statistically sufficient number of experiments has to be conducted

in order to draw meaningful conclusions about the performance of a certain param-

eter setting or a certain operator. Within this study the resulting mean values of

the respective metrics are taken for judging the quality of the achieved optimum or

nondominated sets. For judging the probability of reaching these values the standard

deviation is chosen. This metric gives valuable information if the results show a large

amount of scattering and therefore how likely the results of a sample run will be at

the expected performance level.

5.2.2 Measures for the Computational Costs

GAME is developed for the design optimization of structures or structural systems.

In most cases the computing of the objectives and constraints therefore will include

the evaluation of complex simulation models like FEM models. In comparison with

computational costs for these models the costs of the internal computations of GAME

will be orders of magnitude lower. The overall computation cost will be dominated by

the costs for the objective function evaluations, the algorithm specific computation

costs can be neglected. With sufficient accuracy the overall computation cost are

therefore directly proportional to the number of objective function evaluations. For

the studies here therefore the number of objective function evaluations is taken as a

measure for the computational costs.

5.3 Influence of Different GAME Parameters on

the Performance

The most important parameters for an evolutionary algorithm like GAME are the

population size (n), the number of generations (ngen), and the number of children per

generation (nc) or better the ratio between the number of children and the populations

size (rcp = nc/n). This ratio basically determines the selections pressure SP if an

ES-replacement operator is used, as is it the case for GAME. All these parameters

directly determine the computation costs. So it is an interesting question how certain

choices for these parameters relate to the performance of the search, how they relate

to certain problem characteristics like the dimensionality of the design space, and

if there are optimal settings with respect to efficiency. This is investigated in the

following numerical experiments with different test problems.

Since the effects of these three parameters on the performance are wether independent

nor linear, a three dimensional grid of test settings would have to be evaluated for

determining the complete interdependency of the three parameters. Due to time
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constraints this was not possible. Instead it has been decided to vary each parameter

around a certain reference configuration. This basically resembles a sensitivity analysis.

It is clear that this approach provides only a limited insight in contrast to a full scale

study, but, as can be seen later, provides sufficient information for drawing basic

conclusion on how to choose these parameters.

The experiments have been conducted with the single objective configurations of the

test problems TNK, OSY, and CTP1 as well as with multiobjective test problem ZDT.

For CTP1 three configuration have been used with 10, 15, and 20 design variables.

This has been done to investigate the dependency between the computational cost for

a certain performance level and the dimensionality of the design space. The number

of constraints has been set to 20. For ZDT a configuration with 10 design variables

has been used.

In the following sections the setup of the experiments is introduced, the results are

presented and discussed.

5.3.1 Experiment Configuration

For investigating their influence the three parameters population size (n), the number

of generations (ngen), and the ration (nc/n) have been varied around a reference con-

figuration. The reference configuration as well as the configurations of the respective

experiments are shown in table (5.1).

setup for experiments varying : reference
configuration population

size ratio rcp
number of 
generations

population size n 100 10,20,...,300 100 100

ratio rcp 3 3 1,2,...,10 3

number of children nc 300 30,60,...,900 100,200,...,1000 300

number of generations ngen 20 20 20 5,10,...,50

Table 5.1: Setup for the experiments varying the different parameters

In each experiment only the respective parameter has been changed, all other param-

eters have been kept constant. To single out the effect of increasing the population

size it has also been decided to keep the ratio nc/n constant as an potentially de-

cisive parameter for the convergence behavior. Thus the number of children grows

with population size. For the different configurations of the CTP1 test problem the

population size has been varied only up to 200 individuals due to computational
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costs. For the experiments varying the ratio rcp there are two parameters potentially

to be varied. For the experiments here the population size has been kept constant

(n = 100) and the number of children has been adapted according to the chosen

ratio: (nc = rcp ∗n). For each configuration 100 experiments have been performed in

order to achieve statistically meaningful results.

5.3.2 Experiment Results

Experiment Results - Influence of the Population Size

First the results for the experiments with single objective test problems are shown

in the figures (5.3), (5.4), and (5.5). For all three single objective test problems the

results are displayed in the following pattern: on the left the mean value (�) of the

achieved optima is shown in dependence of the population size, in the middle the

mean value of the generation at which the optimum has been found, and on the right

the absolute best optimum, which has been achieved with respective population size.

For CTP1 additionally the standard deviations (σ) of the achieved optima and the

generations at which they have been found are displayed.
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Figure 5.5: Experiment results for varying the population size for CTP1

The results for the multiobjective test problem ZDT are shown in the following figures.

In figure (5.6) the mean value (left) as well as the standard deviation (right) of the

hypervolume measure is plotted as a function of the population size. Similarly in

figure (5.7) the mean value (left) and the standard deviation (right) of the spacing

measure is plotted in dependence of the population size. For comparing the results

between two different population sizes ni and nj with the set coverage metric first

the SMC has been computed for all pairs of solutions sets for the two respective

population sizes, SMC(P̄ni,k, P̄nj,l), SMC(P̄nj ,l, P̄ni,k), k, lε[1, 100]. Then for all

those SMC values the respective mean values are computed: ¯SMC(P̄ni
, P̄nj

) and
¯SMC(P̄nj

, P̄ni
). This computation is performed for all possible combinations of

population sizes, for which experiments have been performed. In figure (5.8) the

resulting mean values ¯SMC are displayed in a matrix pattern. On the left side the

values of ¯SMC(P̄ni
, P̄nj

) are displayed, on the right side the values of the respective

permuted sets ¯SMC(P̄nj
, P̄ni

). The values are color coded employing the color bar at

the right side of each figure. In both figures the y-axis corresponds to the population

size ni and the x-axis to the population size nj .
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Figure 5.6: Hypervolume measure results for varying the population size (mean value

(�) and standard deviation (σ)) for ZDT
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Figure 5.7: Spacing measure results for varying the population size (mean value (�)

and standard deviation (σ)) for ZDT
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Figure 5.8: Set coverage measure results for varying the popu-

lation size ¯SMC(P̄population size i, P̄population size j) and
¯SMC(P̄population size j , P̄population size i) for ZDT



5.3. INFLUENCE OF DIFFERENT GAME PARAMETERS ON THE
PERFORMANCE 87

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
Sample Pareto−fronts for ZDT

f
1

f 2

population size 10
population size 100
population size 300
true Pareto front
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viduals for ZDT

To get an impression how the results for different population sizes relate to actual

differences in nondominated frontiers three typical fronts are displayed for the pop-

ulations with 10, 100, and 300 individuals in figure (5.9). The sample fronts reflect

clearly the results of the hypervolume metric. The front for a population size of 100

clearly dominates the one for a population size of 10 as could be expected from the

results of the hypervolume metric. And also expectedly the front for 300 individuals

is not significantly better than the one for 100. Both are already very close to the

true Pareto frontier.

The results of the experiments varying selection pressure and the number of genera-

tions are displayed in exactly the same way, so no further comments are given.
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Experiment Results - Influence of the Ratio rcp
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Figure 5.10: Experiment results for varying the ratio rcp for TNK
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Figure 5.11: Experiment results for varying the ratio rcp for OSY

0 5 10
0

0.2

0.4

0.6

0.8

1

r
cp

f

Best solution

0 5 10
0

5

10

15

20

r
cp

ge
ne

ra
tio

n

Convergence in generation

0 5 10
0

0.2

0.4

0.6

0.8

1

r
cp

f

Best solution of all experiments

∅ 10DV
∅ 15DV
∅ 20DV
σ 10DV
σ 15DV
σ 20DV

∅ 10DV
∅ 15DV
∅ 20DV
σ 10DV
σ 15DV
σ 20DV

10DV
15DV
20DV

Figure 5.12: Experiment results for varying the ratio rcp for CTP1
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Figure 5.13: Hypervolume measure results for varying the ratio rcp (mean value (�)

and standard deviation (σ)) for ZDT
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Figure 5.14: Spacing measure results for varying the ratio rcp (mean value (�) and

standard deviation (σ)) for ZDT
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Figure 5.15: Set coverage measure results for varying the ratio rcp

¯SMC(P̄rcp i, P̄rcp j) and ¯SMC(P̄rcp j , P̄rcp i) for ZDT
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Experiment Results - Influence of the Number of Generations
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Figure 5.16: Experiment results for varying the number of generations for TNK
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Figure 5.17: Experiment results for varying the number of generations for OSY
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Figure 5.18: Experiment results for varying the number of generations for CTP1
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Figure 5.19: Hypervolume measure results for varying the number of generations

(mean value (�) and standard deviation (σ)) for ZDT
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Figure 5.20: Spacing measure results for varying the number of generations (mean

value (�) and standard deviation (σ)) for ZDT
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Figure 5.21: Set coverage measure results for varying the number of generations
¯SMC(P̄ngen i, P̄ngen j) and ¯SMC(P̄ngen j, P̄ngen i) for ZDT
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5.3.3 Discussion

Experiments Varying the Population Size

Increasing the population size leads to better solutions. This is the most obvious

finding and can be observed for all test problems. Of course, there is a definite limit

for these improvements, the true optimum or true Pareto front. Accordingly for all

performance measures a convergence or at least a convergence tendency for a higher

population size can be found.

Since increasing the population size means a more massive search process in the de-

sign space and a more dense sampling of the design space, this characteristics that

a larger population provides better results could be expected. On the other hand a

larger population increases the computational costs, so the most interesting question

is how large should the population be to provide satisfying results.

In order to find an answer several other important factors have to be considered.

One is definitely the dimensionality of the design space. For a given population size

a design space with more dimensions is more sparsely populated than one with less

dimensions. For the two variable problem TNK the solutions do not improve signifi-

cantly with population sizes above 200 individuals, for the six variable problem OSY

above roundabout 250 individuals. The interaction between the dimensionality of the

the design space, the population size, and the performance can directly be seen for

the different configurations of CTP1. Convergence for the 10 variable configuration

can be observed for a population size of about 100, for the 15 variable version for a

population size of about 200, and for the 20 variable version no convergence at all

could be observed within the limits of considered population sizes. For a population

size of 200 the average best solution for the 10 variable version is 15 times better

than the one for the 15 variable version and 114 times better than the one for the 20

variable version.

Being aware of the fact that only a few examples have been investigated, nevertheless

this is a strong hind that a very strong interdependency between the dimensionality

of problem, the population size, and the quality of the achieved solution exists. If

the same performance as for the 10 variable CTP1 problem and a population size

of 20 is desired for the 15 or 20 variable CTP1 problem, the population has to be

increased to 60 or even 140 individuals. Thus an increase in problem dimensionality

of 1.5 respectively 2 requires an increase in population size by a factor of 3 or 7 for

equivalent performance. This can be considered as a surprisingly high value. Although

this may be an extreme example the results show that the computational effort for

an EA based optimization is dependent on the design space dimensionality. This is

an unappreciated characteristic which may become a disqualifying factor for the ap-

plication of EAs for very high dimensional problems.

In addition to achieving better solutions also the standard deviation of the results is

significantly reduced by increasing the population size. Again this is confirmed by the
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results for all test problems. So the search process becomes less stochastic and more

reliable.

When looking at the influence of the population size on the generation in which the

best solution is found the conclusions are not that clear. For TNK and OSY this

number seems to be nearly independent of the population size and stays almost con-

stant. For the different CTP1 configurations increasing the population size clearly

leads to an earlier finding of the optimum. This tendency is the stronger the more the

respective configuration has already reached a convergence with respect to quality

of the achieved solution. So for the 10 variable configuration the strongest decrease

can be observed. From this it may can be concluded that increasing the population

will first lead to improved solutions. After the quality of the achieved solutions has

converged sufficiently against the true optima further increasing the population size

will then lead to an earlier finding of the optima.

The above findings are also confirmed by the results of the experiments for the mul-

tiobjective ZDT problem. The desired solution of a multiobjective problem is the true

Pareto front, i.e. generally an infinite number of points. If a multiobjective problem is

solved with an evolutionary algorithm this front can only be approximated by a finite

set of points, the population. It can therefore be expected that a larger population is

likely to perform better. And this is clearly reflected by the results of the experiments.

All performance measures show better results with an increasing population. Again

the limit for this improvement is the true Pareto front, so a convergence can be ob-

served. This applies for the hypervolume metric as well as for the spacing measure.

The reason why the spacing measure improves with a growing population is not only

due to a more massive search but mainly due to the fact that the applied diversity

preservation method (clustering, see chapter 4.5) works significantly better with a

higher number of individuals.

Experiments Varying the Ratio rcp

Within these experiments increasing the ratio rcp means increasing the number of

children. Therefore the number of individuals taking part in the search process is in-

creased and consequently the computational costs. This might seem to be similar to

increasing the population size. But one major difference is that increasing the number

of children means that the search is still performed on the same basis (population

size). Although more individuals are present, these individuals are actually children

of the same parents. That means that the search does not become broader in the

design space but more intense. Nevertheless this more intense search can be expected

to better exploit the search space and thus find better optima.

The results confirm this expectation for all test problems. The performance improve-

ment is especially strong in the lower rcp range and towards higher values of rcp a

convergence can be observed.

Due to the intensified search a quicker finding of the optimum could be expected, but
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this can only be observed for the CTP1 test problem with 10 and 15 design variables.

For the TNK and OSY test problems no correlation can be observed, the value stays

more or less constant. Similar as for increasing the population size increasing rcp will

primarily lead to better solution. Only after a convergence is reached there, increasing

rcp will lead to a quicker finding of the optimum.

The danger of premature convergence or being trapped in local optima for higher

rcp could not be observed. Even when tested with functions offering multiple local

optima (not presented here) this tendency could not be observed. This shows that

the diversity preservation method implemented in GAME does work well and com-

pensates for the potential tendency of premature convergence.

Increasing rcp means increasing the computational costs. So one has to find a trade

off between improving the solutions and the resulting costs for that. Based on all

experiments in conclusion choosing a choice of rcp = 5 might be a good compromise.

The major part of the potential improvement is already achieved up to this value.

This can be seen for the results of the single objective problems as well as for the

multiobjective problem ZDT. For ZDT the results of the hypervolume, spacing, and

set coverage metric support this choice. For the latter metric the percentage of the

dominated solutions stays almost constant for rcp values higher than SP = 5.

Experiments Varying the Number of Generations

For the last parameter, the number of generations, it can also be stated that higher

values leads to the finding of better solutions for all test problems. With more genera-

tions the evolutionary search has more time to explore the design space, so this result

complies with the expectations. Also expectedly a convergence of this improvements

can be observed as the results approach the true optima. The number of generations

at which this convergence occurs is problem dependent. One parameter for this is the

dimensionality of the search space as can be seen for the different configurations of

the CTP1 test problem. The convergence for 10 design variables occurs already at

about 20 generations, while for the configurations with 15 and 20 design variables it

occurs at about 45 and 50 generations respectively.

Since a similar convergence behavior could be observed in all experiments one might

suppose that checking the improvement from generation to generation would be a

viable stopping criteria for the evolution. But one has to be aware that the results

plotted here are statistical mean values of 100 experiments. For a single instance the

best solution can be constant for several generations and then starts improving again.

A stopping of the search if no improvement with respect to the previous generation

has been achieved inherits a high risk of prematurely stopping the search far away

from the true optimum. Observing the improvement process for a certain period of

generations is a more reasonable approach, but still this number of generations has

to be chosen arbitrarily.
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Conclusions of the Parameter Studies

The most prominent conclusion drawn from the experiments reconfirms a universal

truth: the more (computational) effort is invested, the better the results will be. In-

creasing each one of the three parameters increases the computational costs, and in

each case the results became better. Since the true optimum or Pareto front poses

the limit for this improvement process, a convergence of this improvement process

can be observed for all three parameters. So the second conclusion is that increasing

the parameters beyond a certain value will lead only to increased cost, but not to

substantially better results.

The first conclusion is comprehensible but unsatisfactory, because it does not answer

the question how to choose these parameters in practise. The second one also offers

no help because the values at which the convergence occurs are generally unknown.

In practise computational resources are limited in most cases, so e.g. the time budget

only allows for a certain number of function evaluations. So the essential question

is how to choose these parameters to achieve the best possible results with respect

to given computational resources. Answering this question is very difficult since it is

highly dependent on the dimensionality of the search space, the number of constraints,

and most important the characteristic of the problem (e.g. convexity, multi-modality,

degree of nonlinearity). So even in the above examples it could be observed that for

the test problem CTP1 with 10 design variables and 20 constraints a smaller popu-

lation size was sufficient then for the problem OSY with only 6 design variables and

6 constraints.

Since no direct rules can be deducted for choosing the parameters, it is tried to

at least deduce some hinds for choosing them. Because the above experiments are

basically a sensitivity analysis like study around one single reference configuration

(n = 100, rcp = 3, ngen = 20), it is reasonable to evaluate the results with respect

to the question to which parameter the performance is most sensitive in relation to

the invested additional computational costs, i.e. by increasing which parameter the

performance is improved most with respect to the additional cost. For doing so the

results of the above experiments are plotted against a common scale: the number

of objective function evaluation as a measure for the computational costs. In figure

(5.22) this is shown for the test problems TNK and OSY, in figure (5.23) for the dif-

ferent configuration of CTP1 and in figure (5.24) for the multiobjective test problem

ZDT. The plots reveal that at least for these test problems the performance is nearly

only dependent on the number of function evaluations and almost independent of the

parameter by which the additional computational effort is caused. It can be seen that

for the test problems OSY, TNK, and ZDT it does not make any significant differ-

ence which parameter is increased. No matter by which parameter the computation

costs are increased, the achieved optimum improves nearly in the same way. For the

test problem CTP1 these findings are basically confirmed, but here the performance

seems to be more sensitive to changes in the number of generations than to changes
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Figure 5.22: Performance vs. computational effort for the test problems TNK and

OSY with respect to varying population size, rcp, and the number of

generations

in population size or selection pressure. And this advantage of letting the evolution

run over more generations increases for configurations with more variables as can

be seen for the configurations with 15 and 20 design variables. One explanation for

this might be that for this problem good solutions are found in such a way that a

particular individuum has to evolve along certain constraint borders by mutation. A

process that needs time.

As a final investigation on this topic GAME has been used on a meta level to optimize

its own parameters with respect to maximize performance and minimize computa-

tional costs. As test problem CTP1 has been chosen with a 15 design variable config-

uration. The design variables are the population size, the ratio rcp, and the number

of generations. The objectives have been the number of function evaluations and the

average best solutions of 50 runs:

min z = f(x), f(x) = [number of function evaluations(x), z∗(x)]

with: x = [n, rcp, ngen]

with:

z∗(x) = �(z∗i (x)); i = 1, 2, ..., 50; z∗i (x) best feasible solution of the problem CTP1

5 ≤ n ≤ 300

1 ≤ rcp ≤ 10

5 ≤ ngen ≤ 50

In figure (5.25) the results of this optimization are shown as a Pareto plot of the

average best solution z∗ versus the number of function evaluations.
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Figure 5.23: Performance vs. computational effort for the test problem CTP1 with

10, 15, and 20 design variables with respect to varying population size,

rcp, and the number of generations
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Figure 5.24: Performance vs. computational effort for the test problem ZDT with

respect to varying population size, rcp, and the number of generations
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Figure 5.25: Pareto plot: average best solution vs. computation cost for CTP1

The Pareto front has almost a kink like shape. It shows that it is possible to improve

the expected best solution down to values around 0.01 with relatively little additional

costs. But to improve further one has to invest substantially more computational

effort. With respect to the small potential of further improvement it makes no sense

to invest more than roughly 15.000 function evaluations. This will lead to an ex-

pected solution of around z∗ = 0.005. To reach the true optimum of 0.001 one has

to invest at minimum 40.000 function evaluation, a surprisingly high number. This

reveals again one of the major drawbacks of EAs: the weakness to determine the true

optimum in the final search phase.

In table (5.2) it is shown how these Pareto optimal solutions relate to the design

variables. In the table the solutions are sorted in an descending order according to the

average solution quality z∗ and therefore an ascending number of function evaluations.

The data in table (5.2) gives answer to the question how the additional computa-

tion cost relate to the respective choices of the design variables. In accordance with

the prior simulation results for CTP1 it can be seen that increasing the number of

generations is obviously a very efficient parameter for achieving better results. For

all Pareto optimal solutions the value for the number of generations has been driven
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population size selection pressure number of generations number of function evaluations best solution ( )

7 1 50 350 0,575

29 1 50 1450 0,374

35 1 46 1610 0,299

36 1 50 1800 0,240

38 1 50 1900 0,212

22 2 49 2134 0,209

44 1 50 2200 0,200

5 9 50 2210 0,195

15 3 50 2220 0,174

45 1 50 2250 0,143

51 1 50 2550 0,108

29 2 50 2871 0,103

58 1 50 2900 0,100

59 1 50 2950 0,089

60 1 50 3000 0,083

33 2 48 3135 0,079

63 1 50 3150 0,071

37 2 50 3663 0,065

74 1 50 3700 0,063

39 2 49 3783 0,051

78 1 50 3900 0,049

41 2 49 3977 0,039

43 2 50 4257 0,031

47 2 50 4653 0,027

56 2 50 5544 0,020

116 1 50 5800 0,020

120 1 50 6000 0,018

43 3 50 6364 0,018

133 1 50 6650 0,015

49 3 50 7252 0,014

81 2 50 8019 0,013

41 4 50 8077 0,013

44 4 50 8668 0,011

188 1 50 9400 0,011

195 1 50 9750 0,009

68 3 50 10064 0,008

300 1 42 12600 0,008

300 1 50 15000 0,005

191 2 50 18909 0,005

211 2 50 20889 0,004

103 5 48 24308 0,003

200 3 50 29600 0,003

119 7 47 38437 0,002

300 3 48 42600 0,001

228 5 49 54948 0,001

153 10 46 69003 0,001

212 7 50 72928 0,001

271 6 49 78319 0,001

273 6 49 78897 0,001

Table 5.2: Design variable and objective function data for the Pareto optimal solutions
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up to the upper limit. So the increase of the computation costs is reflected mainly

in the values of the population size and the selection pressure. For both parameters

some spreading can be observed, a clear relationship can not be determined. E.g. a

solution level of 0.020 can be reached with a population size of n = 56 and a rcp = 2

as well as with n = 116 and rcp = 1. This finding is also in accordance with those

of the prior experiments. The achieved performance is primarily dependent on the

invested computational effort and relatively robust with respect to how this given

effort translates into an actual choice of the specific parameters. Nevertheless, it is

interesting to see, that the actual values for the selection pressure are mainly at the

lower bound of the possible range, most often even as low as one.

So in conclusion these findings are very interesting and encouraging because they

show that the performance is not extremely sensitive to a proper choice of the pa-

rameters. So the potential user does not have to spent much effort on wondering how

to transform a limited available computational resource into proper choices for n, rcp,

and ngen. A somewhat reasonable choice will work without being at risk of spoiling

performance significantly. The above findings also suggests that a higher number of

generation should be favored over population size and selection pressure. Also they

hint that lower values of selection pressure do not endanger the efficiency of the

evolutionary search.

5.4 Comparison of Different Approaches for

Constraint Handling

EAs are inherently unconstrained optimization methods, which evaluate candidate

solutions only by one scalar measure: fitness. So the constraint handling is an es-

sential challenge for the development of an EA. In GAME constraints are treated as

additional objectives and aggregated in the fitness value via the goals and priorities

approach (see chapter4.4).

In general penalty function approaches (see chapter 2.3.3) are most common for

constraint handling in EAs ([Coe02],[Coe99b]). Another common and most simple

approach is the so called ’lethal-factor’ or ’death penalty’ approach, which simply

rejects all infeasible solutions. In order to evaluate the performance of the constraint

handling approach of GAME, it has been compared to these two common represen-
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tatives. For the penalty function the one published in ([JH94]), which is defined as

(nomenclature according to equation 2.1):

fit(x) = f(x) + (Cgen)αSV C(β,x),

with C, α, β user supplied constants and SV C(β,x) defined as :

SV C(β,x) =

nic∑
i=1

Dβ
i (x) +

nec∑
j=1

Dj(x),

with

Di(x) =

⎧⎨
⎩ 0 gi(x) ≤ 0

|gi(x)| gi(x) > 0
1 ≤ i ≤ nic

Dj(x) =

⎧⎨
⎩ 0 −ε ≤ hj(x) ≤ ε

|hj(x)| {(hj(x) < −ε) ∨ (hj(x) > ε)}
1 ≤ j ≤ nec

(5.10)

According to the authors the user supplied constants have been set to C = 0.5,

α = 2, and β = 2. The above penalty function is a dynamic penalty function, since

the penalty increases with the generation number gen.

5.4.1 Experiment Configuration

For the comparison the test problems OSY, CTP1, and the cantilever beam have been

used. Again for the ease of a simpler comparison of the results the single objective

versions of the test problems have been employed for this comparison. The CTP1

problem has been applied in two configurations: 10 variables and 10 constraints, and

30 variables and 50 constraints. The criterium for judging the respective constraint

handling methods has been the quality of the best feasible solution in the final popula-

tion. The configuration for the experiments is given in table (5.3). The only element

of the algorithm that changes is the constraint handling method. All components

of the algorithm have been kept unchanged. For each method 100 runs have been

performed.

configuration

population size n 20 (CTP1: 200) 

ratio rcp 4

number of children nc 80 (CTP1: 800) 

number of generations ngen 20

Table 5.3: Setup for the experiments varying the different parameters
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5.4.2 Experiment Results

In table (5.4) the results are listed. In contrast to barrier function methods penalty

function methods may result in infeasible solutions close to the true optimum. This

is typically the case if they are applied with gradient based search methods. But

when applied in EAs this drawback is compensated by the scattering characteristic

of the mutation operator. So in the population there will be both infeasible and

feasible solutions near the true optimum. For the evaluation of the performance of

each constraint handling method the best feasible solution in the final generation is

selected, although in the case of the penalty function method there may be better

solutions in terms of the aggregate objective function. For each constraint handling

method the mean value ∅ of the best feasible solution found as well as the respective

standard deviation σ for all 100 experiments are shown. Additionally the percentage

of feasible solutions in the final population is given.

5.4.3 Discussion

The constraint handling method implemented in GAME (goals and priorities ap-

proach) proves to perform better than the two alternatives for all experiments. For

the cantilever beam the average value for the best feasible solution in GAME is about

13% better than the one provided by the dynamic penalty method and about 18%

better than the one of the lethal-factor method. The standard deviation of the solu-

tions found by GAME is in neither case higher than the one of the two alternatives and

is in each case below 6%. For the test problem OSY GAME also clearly outperforms

the penalty function approaches. An interesting detail is that here the lethal-factor

achieves a better result than the dynamic penalty. On the other hand the lethal-

factor shows a very low percentage of feasible solutions. This reflects the underlying

logic of the lethal-factor approach. The low percentage of feasible solutions for the

lethal-factor reconfirms that this method basically supports the ’lucky punch’ and

not systematically favors solutions with a less severe constraint violation. The high

percentage of feasible solutions for the dynamic penalty shows a homogeneous popu-

lation, but obviously the penalty was not strong enough to force the best ones close

enough to the feasible region. This coincides with the inherent logic of the dynamic

penalty function approach, that has the solutions converging from the infeasible side

of the constraint boundary. For the more complex problem CTP1 again the goals and

priorities approach shows the best results. For the first configuration GAME reaches

a solution, which is nearly 60% better than the one of the dynamic penalty approach.

The lethal-factor approach fails completely to find feasible solutions. For the second

configuration with 50 constraints only GAME finds feasible solutions, both penalty

approaches fail. After increasing the population size to 1000, the number of children

to 4000, and the number of generation to 30 the dynamic penalty approach was finally

able to find feasible solutions. But even with this significantly higher computational
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test function GAME dynamic penalty lethal factor 

OSY -237.4 -165.0 -210.8

17.4 92.9 33.8

% feas. 87 86 11

CTP1(10/10) 0.0047 0.0117 NaN

0.0168 0.0011 NaN

% feas. 100 100 0

CTP1(30/50) 0.3918 NaN NaN

0.0816 NaN NaN

% feas. 100 0 0

Beam 8.938 10.316 11.013

0.508 0.571 0.254

% feas. 100 100 100

Table 5.4: Table with the results of the constraint handling experiments
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effort the average optimum was still of relatively low quality (0.4521).

In conclusion the experiments show that the implemented constraint handling method

in GAME clearly outperforms the considered penalty approaches. The logic behind

the goals and priorities approach to concentrate the search on feasibility first seems

to pay off here.

It has to be stated, that here only two typical examples of penalty function approaches

have been considered. There exists a broad variety of other implementations, which

may perform better. A better tuning of the penalty parameters may also have shown

better results. But on the other hand this is maybe the most significant advantage of

the goals and priorities approach implemented in GAME, that it does not depend on

any user supplied parameters.

5.5 Influence of the Standard Deviation Adaptation

Mutation is the central reproduction operator in GAME. For all continuous or quasi-

continuous design variables an ES based mutation is applied adding normally dis-

tributed random changes to the respective variables. The standard deviation of the

applied normal distribution can be changed according to different laws during the evo-

lution run (see chapter 2.3.2). In GAME a linear decreasing adaptation is implemented.

In this section it is investigated how this implementation performs in comparison to

a more advanced technique, the self-adaptation of the standard deviation.

5.5.1 Experiment Configuration

For comparing the different methods of adapting the standard deviation experiments

have been performed with the single-objective versions of the test problems TNK,

OSY, and CTP1 (10 design variable version) as well as with multiobjective test prob-

lem ZDT (10 design variable version). The population size has been set to n = 100,

the number of children to nc = 300, and the number of generations to ngen = 20. The

different adaptation methods have been implemented as defined in equation (2.6) for

the linear adaption and in equation (2.7) for the self-adaptation. For each method

100 runs have been performed.

5.5.2 Experiment Results

In table (5.5) the results for the single objective test problems are listed, in table (5.6)

the results for the multiobjective test problem ZDT.
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test problem optimum linear adaption selfadaption

Ø 0.4637 0.4638
TNK

0.0002 0.0003

Ø -261.9369 -260.6831
OSY

8.5926 7.5400

Ø 0.0052 0.0057
CTP1

0.0192 0.0138

Table 5.5: Mean values (�) and standard deviations (σ) for the achieved optima

of the test problems TNK, OSY, and CTP1 for the different standard

deviation adaptation methods

criteria linear adaption selfadaption

Ø 0.9632 0.9633
hypervolume (HV) 

0.001 0.001

Ø 0.0073 0.0074
spacing (SP) 

0.0011 0.0010

SCM(Plinear,Pselfadaption) SCM(Pselfadaption,Plinear,)

set coverage metric (SCM) Ø 0.2028 0.2250

Table 5.6: Mean values (�) and standard deviations (σ) for the different multiobjec-

tive criteria (HV, SP, SCM) of the test problems ZDT for the different

standard deviation adaptation methods

5.5.3 Discussion

The most obvious conclusion of all results is that employing a self-adapting technique

for the standard deviation of the mutation operator shows no advantages in compar-

ison to a simple linear self adaptation. Within stochastic errors the results are nearly

identical. There are three likely reasons for this. The first one refers to the general

working principle of the self-adaptation. The self-adaptation technique is an indirect

method, the quality of a certain standard deviation is not judged directly, but by the

evolutionary success of the resulting individuals. But due to the stochastic nature of

the mutation a good individual not necessarily is the result of a good choice for the

standard deviation. Although with a lower probability a good individual can also be

generated with a bad choice for the standard deviation. So the self adapting process



106 CHAPTER 5. NUMERICAL EXPERIMENTS

is a feedback loop that relies on statistical evidence. This can only work if a signifi-

cantly large number of offspring is produced with the same or comparable setting of

the standard deviation. With a selection pressure of three this prerequisite is given to

some extent, but still the performance is not better than the one of a simple linear

adaptation law as the experiments show.

Another reason is that it is doubtful if complicated adaptation techniques are neces-

sary at all. Because this implies that in different areas of the design space different

choices for the standard deviation are advantageous. Though theoretical comprehen-

sible in practise the relevance might be overrated as these experiments show.

Finally the simple linearly decreasing adaptation of the standard deviation is a very

effective adaptation law, because it reflects the concept of convergence: A widespread

search at the beginning when the solutions can be assumed to be far away from the

optimum and an exploration of the design space is required to single out promising

areas, and a more focussed search towards the end of the optimization run when the

solutions can be assumed to be close to the optimum.

In conclusion the chosen linear adaptation method for varying the standard deviation

of mutation operator has performed well in comparison with a more sophisticated

adaptation law.

5.6 Performance of the Integration of Response

Surface Methods

The main goal for integrating RSA methods has been to further exploit the infor-

mation about the design space available during the evolution and thus increase the

performance and efficiency of the evolutionary algorithm. So on the one hand this

aims at achieving better solutions and on the other hand at decreasing the compu-

tational effort for reaching a given solution quality in comparison with a standard

EA.

5.6.1 Experiment Configuration

In order to verify if these goals are reached, experiments with several test problems,

single- and multiobjective, have been performed. For comparing the performance

effects of the RSA integration GAME has been applied with and without the RSA.

In order to evaluate the efficiency increase the experiments have been performed for

different population sizes. The test problems for the single-objective problems are the

respective versions of TNK, OSY, CTP1, and the cantilever beam. For the CTP1

test problem a configuration with 10 design variables and 20 constraints has been

chosen. For the multiobjective problems the test problems ZDT, TNK, OSY, CTP1,

and the cantilever beam have been employed. In table (5.7) the configurations of the
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respective experiments are shown. To reduce the computational effort the experiments

for the configurations with the RSA branch have been limited to the population size

at which a clear picture about the effect of the RSA application could be drawn.

Again for each configuration 100 experiments have been conducted.

configuration

population size n 20,40,...,200

ratio rcp 3

number of children nc 60,120,...,600

number of generations ngen 20

Table 5.7: Configuration of the experiments evaluating the influence of the RSA in-

tegration

5.6.2 Experiment Results

In figures (5.26), (5.27), (5.28), and (5.29) the results for the single objective test

problems are displayed. The results are displayed in the same way as defined in chapter

(5.3.2).
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Figure 5.26: Experiment results for test problem TNK
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Figure 5.27: Experiment results for test problem OSY
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Figure 5.28: Experiment results for test problem CTP1
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Figure 5.29: Experiment results for the cantilever test problem

The results of the multiobjective test problems are basically displayed the same way

as described in chapter (5.3.2) with the exception of the set coverage metric. Here

first for a certain population size ni the solutions sets P̄RSA
ni,l

of all experiments

with the RSA and P̄ni,k of all experiments without the RSA have been compared:
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SMC(P̄ni,k, P̄
RSA
ni,l

), SMC(P̄RSA
ni,l

, P̄ni,k), k, lε[1, 100]. Then for all those SMC val-

ues the respective mean values are computed: ¯SMC(P̄ni
, P̄RSA

ni
) and ¯SMC(P̄RSA

ni
, P̄ni

).

These mean values are then plotted in dependence of the population size ni. The re-

sults of the unconstrained multiobjective test problem ZDT are shown in figures (5.30)

and (5.31). The results for the constrained multiobjective test problems TNK, OSY,

CTP1, and the cantilever beam are displayed in the figures (5.32), (5.33), (5.34),

(5.35), (5.36), and (5.37).
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Figure 5.30: Hypervolume and spacing results for the test problem ZDT
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Figure 5.32: Hypervolume and spacing results for the test problem TNK
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Figure 5.34: Hypervolume and spacing results for the test problem OSY



5.6. PERFORMANCE OF THE INTEGRATION OF RESPONSE
SURFACE METHODS 111

20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1
Setcoverage−Metric SCM(set X, set Y) (∅ − values)

population size

S
C

M

∅ SCM(without RSA, with RSA)
∅ SCM(with RSA, without RSA)

Figure 5.35: Set coverage metric results ( ¯SMC(P̄ni
, P̄RSA

ni
), ¯SMC(P̄RSA

ni
, P̄ni

)) for

the test problem OSY

0 50 100 150 200
0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6
Hypervolume (∅)

n

hy
pe

rv
ol

um
e 

(∅
)

0 50 100 150 200
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Spacing (∅ − Euclidean)

population size

sp
ac

in
g 

(∅
)

∅
∅ with RSA

∅
∅ with RSA

Figure 5.36: Hypervolume and spacing results for the test problem CTP1
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Figure 5.38: Hypervolume and spacing results for the cantilever beam test problem
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5.6.3 Discussion

The results for assessing the effects of integrating RSA methods in GAME are am-

biguous. For some problems the RSA integration has led to substantial performance

improvements while for other hardly any changes could be observed. The potential

performance increase is obviously highly dependent on the problem character and

ranges from an enormous improvement to no improvement at all.

Results for the Single-Objective Problems

Since the optimization algorithm applied for the RSA based optimization (fmincon,

a SQP implementation in MATLAB) is a single-objective algorithm, the biggest im-

provements can be expected for the single-objective problems.
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Reviewing the different results it can be seen that the RSA integaration improves

the expected value for the best solution, it improves the overall best solution of all

runs for a certain configuration, and it leads to an earlier finding of the respective

optimum. But to which extent these positive effects happen varies significantly and

is strongly dependent on the characteristics of the respective test problem on the one

hand and on the other hand on the population size.

From the experiments varying the population size it could be seen that a growing

population size leads to improved solutions, which finally converge against the true

optimum. Thus the potential improvement by the RSA integration decreases with a

growing population size. This is clearly reflected in the results.

Besides finding better solutions the other main objective for integrating the RSA has

been to lower the computational costs. Thus most interesting are the improvements

for lower population sizes. And exactly here the largest improvements can be seen.

While the test problems TNK and the cantilever beam show only small improve-

ments, for the problems OSY and CTP1 large improvements could be achieved. In

figure (5.40) the relative improvements of the expected optimum by applying the

RSA is displayed in dependency of the population size.
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Figure 5.40: Relative improvement of the expected value for the best solution due to

the RSA integration

For TNK and the cantilever beam only improvements less than five percent can be

seen. But for OSY improvements larger than 10% and for CTP1 even larger than 90%

are achieved. Furthermore for the test problem OSY the true optimum (f1 = −274) is

reached from a population size as low as 40 on upwards not only as a single event but

nearly always. It has to be noted that without employing the RSA solutions similarly

close to the true optimum are not reached at all within the simulated spectrum of

population sizes. Even for the highest simulated population size of 300 the average

optimum without the RSA is still 5% worse than the one for a population size of

100 with the RSA. Taking into account that without employing the RSA branch the

average optimum improves only slowly with an increasing population size, it can be
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assumed that a significantly larger population size must be applied to reach similarly

good results as with the RSA. Furthermore the optima are found approximately 2

generations earlier. So very conservatively speaking at least a reduction of 88% in

computational cost could be reached for the test problem OSY by applying the RSA.

So the potential of the RSA integration to improve the performance and reduce the

computational cost is clearly verified here.

An even greater improvement can be observed for the test problem CTP1. Here the

true optimum (f1 = 0.001) is reached in almost all cases even for the lowest pop-

ulation size of 20, from a population size from 80 on upwards the true optimum is

reached in fact in all runs. And for the lower population sizes the optimum is found

at least 6 generations earlier. The advantages diminish expectedly with growing pop-

ulation sizes. But the important point is that by employing the RSA lower population

sizes can be chosen and still the same or even better solutions can be achieved as

for much larger population sizes without using the RSA. In order to match the per-

formance of GAME with the RSA for the lowest population size (n = 20) at least

a population size of n = 140 is necessary for GAME without the RSA. In this case

the integration of the RSA leads to a reduction of more than 85% in computational

costs.

The overall improvements for the test problem TNK and the cantilever beam are

much less impressive. One reason for this is that potential improvement is rather

limited in both cases. This is even the case for the lowest population size because

GAME already manages to perform quite well without the RSA. For n = 20 GAME

without the RSA manages to achieve a best solution not further away from the true

optimum as 1.2% for TNK or 1.7% for the cantilever beam respectively.

Nevertheless it can be observed that especially for lower population sizes the RSA

helps to come closer to the true optimum of the TNK problem, the same applies for

the cantilever problem. And although the absolute differences are small it has to be

stated that even for the highest simulated population size n = 200 GAME without

the RSA actually never reaches the level that GAME with the RSA already achieves

for n = 20. So here also reduction in computational cost of at least 90% is possible.

For the cantilever beam the potential savings are lower, but still about 50%. Here

a population size of n = 80 for GAME without the RSA is required to match the

performance of GAME with the RSA and n = 40. For this test problem with 2 truly

discrete variables another effect can be observed. Due to the presence of 9 continu-

ous subspaces, the population size n = 20 has not been sufficient for building up the

RSAs in all those subspaces. Since there are three continuous variables statistically at

least 90 individuals are necessary to build up RSA with a mixed quadratic model in

all subspaces, 63 and 40 for pure quadratic or linear models respectively. In practise

it can be seen that n = 40 are sufficient for using the RSA branch, as of course not

all subspaces are present during the whole run.

Concerning the discrete design variables it can be seen, that they play a major role only

in the first generations. The best possible combination is found quite soon. In the left
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plot of figure (5.41) the average generation, in which the best possible combination

(I-profile, aluminum) has been found, is plotted in dependency of the population size.

In average the best combination has been found by GAME within only 2 generations.
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Figure 5.41: Convergence characteristic for the discrete design parameters of the can-

tilever beam

Additionally in the right plot of figure (5.41) the average shares of the different

possible choices for the cross section and material are plotted in dependency of the

generation number. It shows that even those choices for cross section and material

not part of the optimal combination are present within the population until the end.

So other combination can still produce competitive results. Also it can be seen that

it takes much longer for GAME to reach a steady state equilibrium of shares for a

discrete variable with three possible values (material) than for a discrete variable with

only two ones (cross-section).

In addition to the limited potential of improvement e.g. in case of TNK, the small

performance improvement by employing the RSA is also due to two other reasons:

the suitability of the mixed quadratic model of the RSA to fit the actual objective-

and constraint functions and the difficulty of the applied optimization algorithm with

certain objective- and constraint function characteristics. The algorithm used for the

RSA based optimization is fmincon, a MATLAB implementation of the SQP method

([Sch85b]). The test problem TNK features a nonconvex and very ’bumpy’ constraint

function involving a trigonometric expression, which constitutes a substantial problem

for fmincon. Even if directly applied to the original TNK problem and not relying on

possibly inaccurate approximations, fmincon fails in nearly 60% to converge success-

fully, if started from random initial design vectors. So the expected success ratio for

the RSA based optimization is less than 50% anyway. An additional problem is the dif-

ficulty to built up accurate RSA for this constraint function with the employed mixed

quadratic model functions. In figure (5.42) different plots show the performance of

the RSA based optimization for sample runs with n = 60 for the test problems TNK

and OSY respectively.
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Figure 5.42: Performance assessment of the RSA integration for a sample run of the

problem TNK (left) and OSY (right): convergence plot for f1 (top),

approximation error (RMS) for the different cost functions (middle),

number of successful children (bottom)

On the top a convergence plot over the generations is plotted showing the distribution

of the respective populations for the objective function f1. Especially marked are the

feasible individuals, the RSA based offspring (feasible and non feasible), and the cur-

rently best feasible solution. In the middle the approximation error for the respective

RSA functions for the different objective and constraint functions are shown. On the

bottom the number of all offspring and RSA based offspring individuals are plotted

which posed a new best solution at their generation. Comparing the RMS error for

the RSAs between TNK and OSY it can clearly be seen that the error for the second
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constraint of TNK is orders of magnitude higher than for all other functions. The

employed clustering procedure is successfully able to reduce this error but not down

to an comparable level. As a consequence the RSA based children are more successful

for OSY than for TNK. For OSY the RSA based offspring individuals set a new best

solution level three times. The first time being the most important, because there the

RSA based child poses a very significant improvement. For TNK RSA based children

are only once successful to set a new best solution and this is near the end of the

evolutionary run with a relatively small improvement. So the TNK example shows

some limitations of the chosen implementation of the RSA branch. One reason for

this, the inherent difficulty of gradient based algorithms to handle nonconvex multi-

modal functions, cannot be changed. But for building sufficiently accurate RSA the

chosen mixed quadratic models are obviously not adequate for certain problems. For

compensating the limited abilities of the chosen simple model function a clustering

approach subdividing the design space has been chosen (see chapter 4.8). With this

approach the accuracy of the RSAs can be successfully increased, but there may still

be problems, for which this strategy is not sufficient enough as can be seen for TNK.

Results for the Multiobjective Problems

Before discussing the results for the multiobjective test problems a difference to the

single objective problems has to be discussed. Since the RSA based optimization

uses the single objective fmincon-algorithm, for the multiobjective case the objectives

have to be aggregated into a single objective substitute function. For this purpose

the weighted sum approach is applied. But as a consequence, if the RSA based opti-

mization run is successful, only a single point is added to the current nondominated

frontier. But as the frontier consists of many points, the overall result cannot be

expected to be influenced as strongly as for the single objective problems. In order to

lessen this disadvantage, multiple fmincon-runs with different random weight settings

are performed, so that multiple points are added to the population based on the RSA

branch in each generation. For GAME the number of fmincon-runs per RSA model

is chosen to be twice the number of objectives. The clustering procedure can further

increase the total number. Nevertheless the ratio of the number of individuals coming

from the RSA branch and the total number of children will still be relatively small,

especially for higher population sizes. Typically it will be less than 10%.

However, also for the multiobjective test problems improvements can be observed. In

figure (5.43) the relative improvement in terms of the hypervolume measure can be

seen. The results are ambivalent again. While for the test problems ZDT, OSY and

CTP1 significant improvements can be observed, basically no improvements could

be achieved for the test problems TNK and the cantilever beam. With respect to

the results of the single-objective experiments and considering the above reasoning

this could be expected. The major reasons are in the first place the limited potential

for improvements since GAME without the RSA branch already performs quite well.
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Figure 5.43: Relative improvement of the expected value for the hypervolume measure

due to the RSA integration

And secondly for TNK again the problems of the applied SQP optimization algorithm

with the nonconvexity of the test function are prohibitive for achieving substantial

improvements. For the TNK example even degradations in terms of hypervolume can

be observed. But due to the parallel implementation of the RSA branch there is no

comprehensible reason why GAME with the RSA should perform worse than with-

out it. The reason for this partial degradation can therefore rather be addressed to

stochastic variation and some inherent characteristics of the hypervolume metric. For

smooth continuous fronts it provides a suitable measure, while for disconnected, local,

or non smooth fronts like for the test problems TNK and OSY, it can lead to large

jumps if fronts are only partially covered.

Substantial improvements though can be achieved for the test problems ZDT and

CTP1. The biggest improvements are found at lower population sizes: for n = 20 im-

provements of 2% for ZDT and 12% for CTP1 are achieved. The advantages decrease

slowly towards higher population sizes. This behavior can be expected, because on the

one hand the performance of a conventional EA without the RSA branch improves

with a increasing population size (see chapter 5.3.2) as it becomes more and more

a ’brute force’ search. And on the other hand there is a definite upper limit for the

hypervolume, the true Pareto frontier.

An improvement of only 2% in hypervolume for test problem ZDT may seem rather

small but it has to be kept in mind that the hypervolume measure is highly dependent

on the reference points used. In figure (5.44) two sample solution fronts are shown

for a population size n = 20 with a hypervolume of HV = 0.9546 (with RSA) and

HV = 0.9251 (without RSA) to demonstrate the difference of even low improve-

ments in hypervolume measure for this test problem. A substantial improvement can

be seen. This finding is also supported by the results for the set coverage metric

(SCM). For n = 20 almost 80% of the solutions from optimizations without RSA

branch are dominated by solutions from optimizations with the RSA branch, while

vice versa only approximately 5% do so.

To a lower but still significant level this applies also for the results for CTP1. Here
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the solutions determined with the RSA dominate up to 10% of the solution achieved

without the RSA while vice versa this applies only for less than 2%.

To illustrate the performance of the RSA integration some RSA related measures as

well as convergence plots are displayed for a sample run with the lowest population

size n = 20 in figures (5.46) and (5.47). For the approximation error (RMS values)

of the RSA functions only the first 4 functions are labelled due to the lack of space.

Although the RSA for the second objective function shows a considerable error of up

to 1E−3 the resulting RSA based optimization runs are highly successful. This can be

seen in the number of successful children generated by the RSA branch, i.e. children

that become part of the nondominated frontier in their respective generation. As can

be seen in the right plot of figure (5.46) the RSA based children make up the largest

part of the successful children. This can also be seen in the convergence plots in

figure (5.47). In the right plot the situation at the end of generation 4 is plotted.

Here the RSA based children not only pose the complete successful offspring, they

also introduce a significant improvement with respect to the last generation. Also

in the left plot, which shows all generations, the RSA based offspring makes up a

considerable part of the final nondominated frontier. As a reference for judging the

quality of the final nondominated front, the true Pareto frontier for the unconstrained

problem is given.

The spacing results are nearly identical, so the quality of the fronts is basically the

same. In conclusion for these two test problems substantial improvements are achieved

by the application of the RSA branch. These improvements can be used for reducing

the computational cost while keeping the the quality level of the results. E.g. for the

test problem ZDT it requires only a population size of n = 120 with the RSA to

achieve a comparable solution quality as for a population size of n = 200 without the

RSA. So here a reduction in computational cost of 40% is possible.

For the test problem OSY the integration of the RSA also shows substantial improve-

ments. In contrast to the single objective case here a population size of n = 20 is
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Figure 5.46: Performance assessment of the RSA integration for a sample run of the

problem CTP1 (left: RSA error(RMS) of the different functions, right:

number of successful children)
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Figure 5.47: Convergence plot for a sample run of the test problem CTP1 (left: all

generations, right: up to generation 4)
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no sufficient basis for creating successful RSA based offspring. Only from n = 40

on upwards advantages are visible. The results of the set coverage metric also re-

flect these improvements, although there they are smaller. For n = 40 the solutions

achieved with the RSA dominate 10% of the solutions achieved without it, while vice

versa only less than 2% do so. Thus there is no dominant superiority of the solutions

achieved with the RSA. The reason for this alleged contradiction between the rela-

tively large improvement in hypervolume and the marginal superiority in terms of the

set coverage metric can be seen in figure (5.45), in which two sample fronts of the

test problem OSY are displayed for a population size of n = 60. Due to the piecewise

character of the Pareto front it can happen easily that not all parts are covered by

solutions, especially because some parts are significantly easier to find than others.

For this sample run all solutions achieved without the RSA lie on the two lower right

pieces of the front. Also most of the solution gained with the RSA do so. But with

the help of the RSA a few solutions on more distant parts of the front could be deter-

mined. Because their number is relatively low this does not lead to a large advantage

in the set coverage metric but increases the hypervolume considerably. However, the

application of the RSA achieves the determination of solutions on hard to find parts

of the frontier. Finally to illustrate the performance of the RSA integration during

the search process for this problem again some performance measures of RSA as well

as convergence plots are given in figure (5.48) and (5.49). As can be seen in the left

plot in figure (5.48) the RSAs generally have a sufficient accuracy, only for certain

generations like e.g. 5 and 12 high RMS errors can be observed. This coincides well

with the fact that for those generation none of the resulting RSA based children has

been successful. But for other generations the contribution of the RSA branch have

been highly successful like e.g. for generation 4 where all successful children were

contributed by the RSA branch. To see the improvement of the population by these

respective children in the right convergence plot in figure (5.49) the situation at the

end of this generation for is shown. The RSA based offspring improves the limits of

the nondominated frontier significantly. Also for the last generation, shown in the

left plot, one can see that the RSA based offspring contributes successfully to the

nondominated frontier. In contrast to the test problems ZDT or CTP1 for OSY the

advantage of applying the RSA is not so much the potential reduction of computa-

tional costs but the improvement of the achieved solutions.

Concluding it can be stated that the RSA integration in GAME successfully showed

the potential to improve the solution quality as well as to increase the efficiency

in comparison with conventional EAs. The chosen approach to use relatively simple

model functions and built up RSAs only over smaller subsets of the design space in

order to achieve sufficiently accurate approximations has also shown to work. Nev-

ertheless the clustering approach also has its limits as the TNK example showed.

Another problem with the RSA implementation that has been revealed during these

experiments is due to the interaction with the chosen constraint handling in GAME.

The applied SQP algorithms of course determines solutions on constraint borders.
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Figure 5.48: Performance assessment of the RSA integration for a sample run of the

problem OSY (left: RSA error(RMS) of the different functions, right:

number of successful children)
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Figure 5.49: Convergence plot for a sample run of the test problem OSY (left: all

generations, right: up to generation 4)
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But due to the approximation errors of the RSAs the resulting optima are sometimes

slightly infeasible when evaluated with the true constraint functions. The goals and

priority approach discriminates sharply between feasible and infeasible solutions and

thus assigns them a bad fitness. In order to solve this problem, all temporary solutions

at each iteration of the SQP optimization are stored. In case the resulting optimum

is infeasible a back-tracing procedure is performed on the search path and the last

feasible solution is selected. The disadvantage of this procedure is that it requires

additional objective function evaluations.

But summing up, the goals to improve the efficiency of conventional EAs as well as

the solution quality by the integration of the RSA mehtods has been verified with

these experiments.

5.7 Performance Comparison - GAME vs. NSGAII

In order to evaluate the performance of GAME with reference to other contemporary

multiobjective evolutionary algorithms, it has been compared with the NSGAII algo-

rithm ([DPAM02]). This algorithm has performed well in several benchmark compar-

isons and along with SPEA can be regarded as a representative of the state-of-the-art.

5.7.1 Experiment Configuration

Like before the comparison encompasses experiments with the single- as well as multi-

objective configurations of the problems TNK, OSY, CTP1, ZDT, and the cantilever

beam. In table (5.8) the configuration for the respective experiments are shown. For

each configuration 50 runs have been performed. With respect to the implementation

of NSGAII it has to be noted, that for the design variable representation and the re-

configuration

population size n 100

ratio rcp 1

number of children nc 100

number of generations ngen 50

probability for recombination pr 0.2

probability for mutation pm 0.9

initial standard deviation for mutation 0 0.2 (ub-lb) 

Table 5.8: Configuration of the experiments for the performance comparison between

GAME and NSGAII
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production operators (recombination and mutation) the same ones as in GAME have

been used, since in literature no detailed description could be found. So the NSGAII

implementation used in this comparison is a real coded one. The decisive elements of

the fitness assignment, selection and replacement operators have been implemented

exactly according to [DAPM00]. Since in NSGAII the number of offspring matches

the population size, GAME is also run with a corresponding configuration. So both

algorithm are run with the same computational costs.

5.7.2 Experiment Results

In table (5.9) the results for experiments with the single-objective configurations of the

respective test problems are summarized, in table (5.10) the results for experiments

with the multiobjective problems.

For the comparison of nondominated solutions sets of GAME and NSGAII with the

set coverage metric (SCM), the solution set of each GAME run has been compared

with each NSGAII run: SCM(P̄GAME,i, P̄NSGAII,j), SCM(P̄NSGAII,j, P̄GAME,i),

i, jε[1, 50]. The SCM results for all these combinations are displayed figure (5.50) for

all test problems. The corresponding mean values are listed in table (5.10).

5.7.3 Discussion

As can be seen in table (5.9) GAME performs better than NSGAII for all single

objective test problems. For the test problems TNK and the cantilever beam the

advantages with respect to the expected best solution are small with 1.1% and 0.4%,

but for the problems OSY and CTP1 significant advantages with 6.4% and more

than 90% can be observed. Furthermore with respect to the absolute best optimum

found in all 50 runs, GAME proved the potential to reach the true optimum of

the respective problems while for NSGAII the absolute best solutions are quite a

distance away from the true optimum. This applies especially for OSY and CTP1.

The reasons for the better performance of GAME can be directly addressed to the

best solution generation in which the best solution 
was found 

best solution of 
all runs 

(Ø) ( ) (Ø) ( )
GAME 0.4640 5.8216e-004 22.3 0.9 0.4633TNK NSGAII 0.4692 0.0032 23.2 1.9 0.4647
GAME -266.0477 15.0051 21.3 3.9 -274.0000OSY NSGAII -250.1085 6.8367 24.1 2.5 -263.2893
GAME 0.0019 0.0038 8.3 10.8 0.0010CTP1 NSGAII 0.0824 0.0340 47.1 2.3 0.0235
GAME 2.3348 0.0002 35.3 6.4 2.3346Cantilever NSGAII 2.3416 0.0091 36.9 11.9 2.3349

Table 5.9: Results for the single-objective test problems for the GAME and NSGAII
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Figure 5.50: Comparison of the solution sets of GAME and NSGAII in

terms of the set coverage metric for the test problems ZDT,

TNK, OSY, CTP1, and the cantilever beam. The values of

SCM(P̄GAME,i, P̄NSGAII,j), SCM(P̄NSGAII,j, P̄GAME,i), i, jε[1, 50]

are plotted versus the cumulative combination number
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hypervolume spacing set coverage metric 

(Ø) ( ) (Ø) ( ) SCM(GAME,NSGAII) SCM(NSGAII,GAME) 
GAME 0.6539 0.0011 0.0047 0.0008 0.8933ZDT NSGAII 0.6538 0.0339 0.0127 0.0027 0.0323
GAME 0.2971 0.0077 0.0118 0.0023 0.3651TNK NSGAII 0.2898 0.0164 0.0119 0.0038 0.1031
GAME 0.7988 0.0994 0.0224 0.0252 0.9725OSY NSGAII 0.7037 0.0229 0.0489 0.0273 0.0031
GAME 0.5645 0.0031 0.0127 0.0021 0.9611CTP1 NSGAII 0.4849 0.0347 0.0392 0.0092 0.0022
GAME 0.9808 0.0001 0.0326 0.0069 0.1868Cantilever NSGAII 0.9167 0.0353 0.0199 0.0299 0.0073

Table 5.10: Results for the multiobjective test problems for GAME and NSGAII

RSA implementation as can be seen in the previous section (5.6). For the test problem

CTP1 GAME reaches its final optimum significantly earlier than NSGAII. Although

showing a large standard deviation in average the best solution is found more than

30 generation earlier by GAME than by NSGAII. So for this example a reduction in

computational cost of more than 80% is possible. For the other example problems

the difference is less impressive, but a tendency can be observed that GAME finds

its optimum approximately at least one generation earlier and thus achieves saving in

computational cost of up to 5%.

The results for the multiobjective configurations of the test problems agree with the

ones of the single objective ones. GAME performs better than NSGAII for all test

problems. The only test example where NSGAII can almost match the performance

of GAME is the unconstrained multiobjective problem ZDT. Here the mean value of

the hypervolume of the solutions sets generated by GAME and NSGAII are nearly

identical. But although the advantages are small, the solutions generated by GAME

in average dominate more than 90% of the NSGAII solutions while only less than 4%

do vice versa. In figure (5.51) this is illustrated by the plot of the final nondominated

sets of sample runs of GAME and NSGAII. With respect to the results of the spacing

measure GAME also achieves a better distribution of the solutions across the Pareto

front in average. This finding is also reflected by the sample fronts.

The most impressive advantages can again be observed for the test problems OSY

and CTP1. Here improvements in hypervolume of 13% and 16% respectively have

been achieved, while simultaneously the quality of the spacing has been improved by

54% and 67% respectively. Consequently the result of the comparison in terms of

the set coverage metric is unambiguous: in average more than 90% of the NSGAII

solutions are dominated by GAME solutions, while only far less than 1% do vice versa.

For these two problems GAME clearly outperforms NSGAII. To get an impression of

how typical nondominated frontiers achieved by GAME and NSGAII look like for these

two problems, in figure (5.51) the solutions sets for two sample runs are plotted. The

superiority of the GAME solutions is clearly visible. Also a much better spread of the

solutions is achieved by GAME. The lower number of NSGAII solutions are due to
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the fact that in final population of the NSGAII run still approximately 75% of the

solutions are infeasible, while the final population of GAME is completely feasible.

The constraint handling of GAME proves to be significantly more efficient for these

problems.

For the other problems the advantages are smaller but still significant. For the test

problem TNK GAME seems to be better able to manage the complex, disrupted

shape of the true Pareto frontier and draws its main adavantages from being able to

cover a larger part of the front in average. The same applies for the test problem of

the cantilever beam for which GAME is able to cover a significantly larger spectrum

of Pareto-optimal solutions than NSGAII. NSGAII continuously produces solutions

only on a relatively small section of the complete Pareto front, although the most

interesting part of the front. The significant differences in the size of the covered

sections of the Pareto-front also explain the erratic results for the comparison of the

respective solutions sets. To illustrate these differences in figure (5.51) representative

solution sets for GAME and NSGAII are plotted for two sample runs. Also for these

test problems GAME shows to be able to maintain a better spread of the solutions.

In conclusion GAME has proven to perform better than NSGAII for all considered

test problems experiments. Only for the unconstrained example ZDT GAME and

NSGAII show nearly an equal performance. This hints that not only the integration

of RSA functionalities but also the constrained handling in GAME is responsible for

the performance advantages. For these experiments GAME and NSGAII have been

allowed exactly the same number of function evaluations. Thus the main question of

this comparison has been which algorithm achieves the better results with a given

budget of computational costs. According to the findings in chapter (5.3) the quality

of the solutions for GAME without the RSA integration is directly dependent on

the invested computational cost. So it can be deduced that for a given quality level

of solutions GAME can be run with lower population sizes than NSGAII and thus

achieves equivalently savings in computational costs.

So the results of these experiments indicate that at least within the spectrum of the

considered test problems the development goals of GAME to increase the performance

and efficiency of conventional EAs have successfully been achieved. Of course it is

difficult to generalize the results of this comparison, but these experiments establish

a good basis for the assumption that GAME is at least able to keep up with current

state-of-the-art multiobjective evolutionary algorithms.
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Figure 5.51: Solution sets of sample GAME and NSGAII runs for all test problems



6 Applications

During the work on this thesis GAME has been applied to several design problems.

Some are presented in this chapter. First GAME is applied to the optimal design of

actively damped structures. For a beam and a plate the optimal positioning and sizing

of piezo actuators and simultaneously different control parameters are to be deter-

mined . The second problem is the optimal design of a stringer stiffened plate. Here

the type, number, and sizing of the stringer are to be determined. The final problem

is the design of a high precision CFRP beam which is subject to structural as well

as thermal loads. Preliminary versions of GAME have also been successfully applied

in other projects like the optimization of an electric motor in collaboration with the

German Aerospace Center (DLR) ([Mül01]), the design of a space based reflect-array

antenna ([Baj04]), or the configuration optimization of satellite structures ([PLB04]).

6.1 Optimization of a Beam and a Plate Structure

with Active Damping by Piezo Actuators

One strategy to satisfy the steadily rising demands on lightweight structures with

respect to improved static and dynamic behavior is the development of adaptive or

smart structures. Adaptive structures can be defined as structures with integrated

actuators and sensors as well as a controller. With suitable control laws the static and

dynamic behavior of the structure can be modified and improved.

6.1.1 Problem Statement

One field of adaptive structures is the active damping of lightweight structures, in

which it is tried to increase the damping and lower the vibration amplitudes. The two

problems discussed here have been part of a research project in this field ([LLMB00]).

The subjects of this research are a simply supported beam and a clamped plate with

collocated pairs of piezoceramic patches as sensor and actuators. In figure (6.1) the

two structures are shown. The dimensions of the sample structures are given in table

(6.1). The sensor patches act as strain rate sensors while the actuator patches work

as bending actuators. The control law is the direct velocity feedback ([Bal79]). In

figure (6.2) this control strategy is illustrated by a flowchart.
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piezo-patches

beam plate

piezo-patches

Figure 6.1: Actively damped beam and plate structure with piezoceramic patches

beam plate

length (l)[m] 0.3 0.42

width (w)[m] 0.033 0.48

thickness (t) [m] 0.001 0.001

thickness piezo (tp)[m] 0.0003 0.0003

Table 6.1: Specifications of the sample structures

Structure
Sensors

Actuators Gain

-+

PaPaHPs
T

Ps

Hx

f(t) x

Ps
T x

Figure 6.2: Block diagram for an actively damped structure with direct velocity feed-

back
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Pa and Ps are the influence matrices of the actuator and sensor patches, H the gain

matrix of the controller, F are external forces, and x the state vector. For direct

velocity feedback the voltage applied to the actuator patches and thus the applied

bending moment is directly proportional to the strain rate of the sensor patches. This

control law resembles basically the working principle of velocity dependent viscous

damping. The governing equations are given in equation (6.1):

Structure : Mẍ + Dẋ + Kx = f(t) + Pau

Sensor : y = PT
s ẋ

Controller : u = −Hy

(6.1)

The equations for the closed loop system are:

Mẍ + (D + PaHPT
s )ẋ + Kx = f(t) + Pau

y = PT
s ẋ

(6.2)

Each pair of sensor and actuator patch form a independent control loop and thus

the employed control concept belongs to the group of decentralized low authority

controller. The collocation of sensor and actor provides a theoretically guaranteed

stability of the control loop.

The design task for the beam and the plate is to determine the number, position-

ing, size, and feedback gains for the actuators so that the damping of the first two

eigenmodes is maximized while keeping the total size of all applied patches as small

as possible. For the plate structure the problem has also been solved with a gradi-

ent based optimization algorithm for comparing the performance. For this purpose

the fmincon algorithm, an SQP implementation provided by MATLAB, has been em-

ployed.

6.1.2 Modelling

For the beam and the plate FEM models are used with beam elements and shell

elements respectively. The beam is meshed with 60 elements which provides a spatial

resolution of 0.005m for the actuator placement and sizing. The plate is meshed with

42 elements in x-direction and 48 in y-direction resulting in a spatial resolution of

0.001m. The chosen actuator patch size of 4x4 nodes thus correlates to an area of

0.000016m2. The FEM model of the plate is shown in figure (6.3), in which the mode

shapes of the first two Eigenmodes are displayed. The simulation of the complete

control loop has been performed in Matlab. For simulating the characteristics of the

closed loop system the system equations (6.2) have been transformed into a state

space representation with modal coordinates:

ż = Az + Bu

y = Cz + Du.
(6.3)
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Figure 6.3: Mode shapes of the first two Eigenmodes of the plate FEM model

The state vector z = [qT , q̇T ]T consists of the modal displacements and velocities.

For the closed loop system the system-matrix A results to:

A =

⎡
⎣ 0 I

−diag{ω2
s,i} −ΦT PaHPT

s Φ − diag{2ζs,iωs,i}

⎤
⎦ (6.4)

Here ωs,i and ζs,i are the eigenfrequencies and the modal damping of the structure.

The modal damping ζi of the closed loop system can be computed from the roots of

the system matrix A. For the simulation model in both cases the first 25 eigenmodes

have been considered. For the modelling of the piezo patch actuators and sensors

simplified concentrated force and moment models have been applied. In figure (6.4)

this is illustrated for the beam. Details for the derivation of these models can be

obtained from ([Loc01]).
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Figure 6.4: Actuator models for the piezo patches
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6.1.3 Optimization Task

The objective functions are the damping of the first two eigenmodes (ζ1, ζ2) and the

total area of all applied piezo patches (ltotal, Atotal). The constraints originate mainly

from geometrical issues: the patches have to stay on the structure and they must not

overlap. Additionally the total area of all actuator is restricted to be below a certain

allowed limit.

For the beam the design variables are the number of actuators (nact), their position

(xi) and size (lx,i) as well as the feedback gains (hi). For the plate the task is little

different, here a fixed size actuator patch is given as the basis and the number of

patches (nact), their position (lx,i, ly,i), and the respective feedback gains (hi) are to

be determined.

The most common models in structural mechanics are FEM models. In order to

develop an optimization strategy that features the generality to be applied to a broad

spectrum of tasks, the beam and the plate have been modelled as FEM models.

Because the positioning of the piezo patches is part of the optimization task, there

is the need to modify the FEM model according to the chosen positions of the piezo

patches. In principle there are two possibilities. One is to allow continuous changes

for position and size of the piezo patches and remesh the FEM model each time.

The other one is to allow only discrete changes of the piezo patches according to

the given FEM mesh. In this case the mesh can be maintained and the piezo can

be attached to the already existing nodes. Within this project ([LLMB00], [Loc01])

it has been decided to use the second approach. The direct consequence is that the

design variables for positioning and sizing the actuators become discrete variables. To

allow reasonable smooth changes the mesh is required to be sufficiently fine. Since

the piezos can be positioned only on the existing nodes, the positioning coordinates

and sizes are counted in the number of nodes from the origin or the number of nodes

the patch is spanned over respectively. The number of actuators is also a discrete

variable while the feedback gains are continuous.

An additional characteristic of this problem is that the number of positioning and

sizing variables depends on the number of actuators, so the optimization algorithm it

has to deal with a varying number of design variables. For the coding of the variables

in GAME this has been addressed in the following way: Each chromosome or design

vector contains the maximum possible number of variables. Additionally each set of

variables describing a single actuator is augmented by a so called activating gene.

This gene can be either 1 or 0 signaling whether the respective actuator is actually

present or not. These activating genes are controlled by a so called steering gene, in

this case the number of actuators nact. The first nact activating genes are set to 1,

the rest to 0. In figure (6.5) this approach is illustrated. The optimization problem
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actuator 1

....x1 x2 x3l1 l2 l3

nact

2 0/1 0/1 0/1

steering gene

activating genes (0-not present, 1-present)

actuator 2 actuator 3

Figure 6.5: Approach for handling a varying number of design variables

can be formulated for the beam as follows:

min z = [−ζ1,−ζ2, ltotal], ltotal =
nact∑
i=1

li

with: x = [nact, xi, li], iε[1, nact]

subject to:

g1(x) ≤ 0, g1((x) =
nact∑
i=1

nact∑
j=i+1

Aoverlap(i, j),

g2(x) ≤ 0, ≤ 0, g1((x) =

nact∑
i=1

Atrespassing(i),

g3(x) =
nact∑
i=1

li ≤ lmax,

and

1 ≤ nact ≤ nact,max,

0 ≤ xi ≤ nnodes,x,

0 ≤ li ≤ lmax,

0 ≤ hi ≤ hmax

(6.5)

In equation (6.5) Aoverlap(i, j) is the overlapping are between the piezo patches i and

j, Atrespassing(i) the area of patch i trespassing the borders of the structure. The

maximum allowed total actuator size is lmax, this is also the limit for the size of a

single actuator. The x-position is limited by the maximum node number nnodes,x in

x-direction which corresponds to the length of the beam. The number of actuators is

limited to be between 1 and nact,max. Since in this problem only the first two modes

are to be damped, this number has been set to nact,max = 2. Finally the feedback

gain is also limited by an upper limit hmax.

So in conclusion this is a constrained multiobjective problem with three objective

functions and three constraint functions. The problem features also a mixed contin-
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uous/discrete design space with a varying dimension.

In equation (6.6) the optimization problem for the plate is formulated accordingly:

min z = [−ζ1,−ζ2, Atotal], Atotal =
nact∑
i=1

Aact, Aact = const.

with: x = [nact, xi, yi], iε[1, nact]

subject to:

g1(x) ≤ 0, g1((x) =
nact∑
i=1

nact∑
j=i+1

Aoverlap(i, j),

g2(x) ≤ 0, ≤ 0, g1((x) =

nact∑
i=1

Atrespassing(i),

and

1 ≤ nact ≤ nact,max,

0 ≤ xi ≤ nnodes,x,

0 ≤ yi ≤ nnodes,y,

0 ≤ hi ≤ hmax

(6.6)

The major difference to the beam example is on the one hand that the positioning

is a two dimensional task now and on the other hand that the actuator size is no

design variable anymore but set to a fixed value (Aact = 16). The maximum number

of actuators has been set to nact,max = 12. Additionally a symmetry constraint has

been imposed, so that actually the number of actuators could be chosen from the set

nactε[1, 6].

6.1.4 Optimization Run and Results

Configuration Setup of GAME

The configuration of GAME for the two optimizations tasks is shown in table (6.2). For

the plate optimization a larger population has been chosen since the two dimensional

positioning task features as larger design space.

Configuration for the Optimization of the Plate with a Gradient Based

Algorithm

Due to the presence of discrete design variables a gradient based algorithm cannot

be applied without special adaptations. As the number of actuators is a truly discrete

variable it is impossible to include it in an optimization with a gradient based algo-

rithm. The only possibility is to run the algorithm repeatedly with different settings
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configuration
beam

configuration
plate

population size n 200 300

ratio rcp 3 3

number of children nc 600 900

number of generations ngen 20 20

probability for recombination pr 0.2 0.2

probability for mutation pm 1 1

initial standard deviation for mutation 0 0.3 (ub-lb) 0.3 (ub-lb) 

Table 6.2: Configuration of GAME for the optimization runs

for the number of actuators. This has been done for 2, 4, 6, and 8 actuators. By

eliminating the number of actuators from the design variable vector consequently the

total actuator area is eliminated as objective function, reducing the task to a two

objective problem. The positioning of the actuators is basically a continuous variable,

that is discrete only because of the FEM mesh. But in order to make it continuous, the

damping for actuator positions that do not coincide with the nodes have to computed.

For this purpose an interpolation method has been implemented, that first computes

the damping for the next possible actuator positions that do coincide with the mesh

and than derives the damping value for the desired position by linear interpolation. In

figure (6.6) this process is illustrated. This method implies that additional objective

function evaluations have to be performed. Depending on the number of actuators

this can be a substantial increase of the computational costs. Since a gradient based

algorithm works only with a single objective function the two objectives have been ag-

gregated using the weighted sum approach: f(x) = w1ζ1 +w2ζ2. In order to compare

the performance with the results of GAME three weight settings have been chosen:

w1 = [w1 = 1, w2 = 0], w2 = [w1 = 0, w2 = 1], and w3 = [w1 = 0.5, w2 = 0.5].

The first setting w1 aims solely at the maximum damping of mode 1, the second

w2 at the maximum damping of mode 2, and the third w3 constitutes a compromise

setting putting equal priority on both modes. As the performance of a gradient based

algorithm may strongly depend on the initial vector, each setting has been run with

5 different start vectors.

Results for the Beam

In figure (6.7) the solutions for the beam optimization are displayed in a 3D trade-off

plot. The x- and y-axis correspond to the achieved damping ratios ζ1 and ζ2 while the

z-axis corresponds to the total actuator area ltotal. In addition the three axis-parallel

projections on the x-y-plane, the x-z-plane, and the y-z-plane are shown. The displayed
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Figure 6.6: Interpolation method for computing the damping for actuator positions

not coinciding with FEM mesh
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Figure 6.7: Trade-off plot of the solutions for the actively damped beam
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meshed surface is only an optical help to visualize the non-dominated surface. It

can be seen that a large Pareto-optimal surface has been achieved. Furthermore an

almost uniform spread of the solutions across can be observed. This shows that the

clustering approach used for maintaining population diversity has worked very well for

this problem and the resulting nondominated surface offers a good basis for trade-off

analyses.

Concerning the interpretation of the results, the results coincide with the intuitive

expectation that larger actuator sizes achieve higher damping ratios. Independently

from the weighting between the modes 1 and 2 the achievable damping is directly

proportional to the applied actuator size. In figure (6.8) sample solutions are plotted

to illustrate the actual sizing and positioning of the actuators. In the left column

solutions with a large large total actuator size (Atotal = 11) are plotted, in the right

column for a small total actuator size (Atotal = 4). The two solutions in the first

row are solutions for a maximum damping of mode 1, in the middle row for an equal

damping of mode 1 and 2, and in the bottom row solutions for a maximum damping

of mode 2. Additionally the mode shapes of the first three eigenmodes are shown.
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Figure 6.8: Sample nondominated solutions: solutions for a large total actuator size

(Atotal = 11, left column) and a small total actuator size (Atotal = 4,

right column): maximum damping of mode 1 (top), equal priorities for

the damping of mode 1 and 2 (middle), maximum damping of mode 2

(bottom)

In general the positioning of the actuators is plausible with respect of the target mode

or modes and the mode shapes. So e.g. to achieve the maximum damping for mode

2 the actuator is placed at the maximum curvature of mode 2.

In the following first the results for a large total actuator size (left column, Atotal = 11)

are discussed. It is interesting to see that for the maximum damping of mode 1 a

solution with two actuators, that are both some distance away from the maximum
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curvature, is preferred to a solution with a single actuator of the same total size

exactly in the middle. This could be observed for several runs. Obviously a central

actuator does not offer a significant advantage over two slightly separated actuators

with respect to mode 1. But a solution with two actuators additionally offers some

damping for mode 2, so it is preferred. If a maximum damping of mode 2 is desired

the opposite effect can be observed. Here a single actuator placed at the maximum

curvature is the preferred solution. In this case the separation makes no sense because

here a single actuator at this position still provides a considerable damping of mode

1. No surprise is the positioning for the compromise between the damping of mode 1

and 2. Here a two actuator solution is preferred where both actuators are placed at

the respective maximum curvature of each mode.

Looking now at the solutions for a total actuator size of Atotal = 4 (right column),

for all cases a single actuator solution is preferred. The preferred positions are the

respective positions of maximum curvature if the maximum damping for mode 1 or 2

is desired. If a compromise solution between the damping of mode 1 and 2 is desired

the actuator is exactly placed at the theoretically best compromise position. So in

conclusion the positioning of the actuators by GAME coincide well with common

sense. Besides these ’extreme’ solutions, it has to be noted that the nearly uniform

spacing of the solutions across the nondominated frontier provides an excellent basis

to find solutions for any priority setting.

For the 100 final nondominated solutions a total number of 11600 objective function

evaluations had to be invested. This means an computational effort of 314 objective

function calls per solution point.

Results for the Plate

In figure (6.9) the solutions for the plate optimization are displayed in a 3D trade-

off plot in a similar way as for the beam. In addition to the solutions determined

by GAME also the solutions achieved by the fmincon runs are shown. Again a large

nondominated surface could be achieved, but in comparison to the beam results the

spreading of the solutions is worse. One obvious reason for this is that third objective

function, the total actuator area, is only dependent on the number of actuators, since

the actuator size is chosen fix. So in consequence there are only six discrete possible

values for this objective. But one can also notice that there are more and better

distributed solutions for a lower number of actuators. This can be explained by the

increased difficulties to find feasible solutions for higher number of actuators without

any overlapping.

Nevertheless, the results still form a good basis for a trade-off analysis. Expectedly a

larger total actuator size, i.e. a higher number of actuators, leads to higher damping

ratios. But this time the gain of damping ration is not any more directly proportional

to the increase in total actuator size. A convergence can be observed. This holds

especially for the damping of mode 2, where a clear convergence can be seen at a
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Figure 6.9: Trade-off plot of the solutions for the actively damped plate
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number of nact = 8 actuators. More actuators do not achieve a higher damping ratio.

The reason for this effect can addressed to the mode shapes of mode 1 and 2. Mode

1 is the first bending mode of the single-sided clamped plate while mode 2 is the

first torsion mode. For the torsion mode the best positions are at the outer borders

of the plate close to the support. But there is only limited space. If this space is filled

up, additional actuators can only be placed in less advantageous positions, which

obviously are not effective enough for increasing the damping ratio further. These

findings are illustrated in figure (6.10). In this figure sample solutions are plotted for

2, 4, 6, 8, and 10 actuators for a maximum damping of mode 2.
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Figure 6.10: Sample solutions for placing 2, 4, 6, 8, and 10 actuators for maximum

damping of mode 2

Another effect of the mode shapes is that the optimal actuator positions for mode

1 and 2 are partly identical. For mode 1 the most promising area is the complete

border along the support. So positions near the outer border and close to the support

are good for both modes. This can also be seen in the ζ1-ζ2-trade-off plot in figure

(6.9), where the nondominated frontier is comparably small indicating the lack of

larger conflicts between the two objectives. One consequence of this is that for a low

number of actuators the optimal compromise solution for equal damping of mode 1

and 2 is identical to the optimal solution for a maximum damping of mode 2. This can

be seen in figure (6.11), in which two compromise solutions for 2 and 12 actuators

are shown. In the compromise solutions with 12 actuators one can notice a clear split

of tasks: some actuators are mainly responsible for the damping of mode 1, while the

other ones are aiming mainly at mode 2.

When looking only at the maximum damping of mode 1 a similar convergence with

increasing actuator size can be observed as for mode 2. This effect is not as severe

as for mode 2, since there is more space available and the effectivity of positions
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Figure 6.11: Sample solutions for placing 2 and 12 actuators if equal priority is put

on mode 1 and 2
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Figure 6.12: Sample solutions for placing 2 and 12 actuators for maximum damping

of mode 1

slightly away from the support border does not decrease so dramatically as for the

torsion mode. In figure (6.12) two sample solutions with a low number of actuators

(nact = 2) and a high number (nact = 12) are shown for maximum damping of mode

1. Again it shows that for only two actuators the optimal solutions for mode 1 and

2 are identical. For (nact = 12) the actuators are expectedly simply lined up close to

the support.

With respect to the solutions achieved by fmincon it can be observed that they gen-

erally perform worse than the solutions of GAME. Only for the lowest total actuator

size, i.e. two actuators, equally good solutions are determined. Towards higher total

actuator sizes an increasing performance gap can be observed. The reason for this

can directly be addressed to the search logic of the gradient based algorithm. Fmin-

con will wether move the actuators in the direction of the largest objective function

improvement or, in case a constraint is violated, along the constraint border in the

direction in which the objective improves. If the objective does not improve in any di-

rection along the respective constraint border, the algorithm assumes that an at least

local optimum has been found. But it is exactly this logic that is doomed to failure

for the positioning task. In figure (6.13) this is illustrated for two sample solutions of

GAME and fmincon for a maximum damping of mode 1 with 6 actuators. The GAME

solutions achieve an damping ratio of ζ1 = 0.17, whereas the fmincon solution only

reaches ζ1 = 0.11. The fmincon dilemma is perfectly illustrated here. A better result

could be reached by moving the outer two actuators closer to the left border, so

the gradient based search direction points towards the border. But in this direction

the two respective actuators hit on the ones already there. And moving parallel to
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Figure 6.13: Sample solution for placing 6 actuators for maximum damping of mode

1 by GAME (left) and fmincon (right)

this constraint border, i.e. parallel to the plate’s support border, also achieves no im-

provement. Thus the search terminates. For the search logic of fmincon it is absolutely

impossible to move the actuators around the other ones. Here the stochastic mutation

operator of GAME has decisive advantages. Furthermore for unknown reason fmincon

is not able to move the other outer two actuators closer to the border. This may be

due to the approximation technique used for making the discrete positioning variable

continuous and its effect on the gradient computation, but it could not definitely be

explained. However, also the GAME solutions show deficits typical for EAs. Due to

its stochastic search strategy and because it is simply stopped after a certain number

of generation the solutions are still a little away from the true optimum, which would

be having all 6 actuators along the border. Because of this inherent characteristic of

EAs, it is generally only claimed that EAs reach near-optimal solutions. Nevertheless,

GAME achieves significantly better solutions than fmincon. It is also interesting to

see that the setting of the weights according to some priority a priori does not nec-

essarily lead to the best solution with respect to the chosen priority. So e.g. the best

solutions for the damping of mode 1 and 2 are not achieved by the weight settings

laying all priority on the respective mode but by the compromise weight setting w3.

This can be explained with this setting allowing better search direction with fewer

insolvable constraint conflict like in the above example. This also demonstrates again

the difficulty of setting priorities a priori.

In conclusion it can be said that GAME has been successful in solving this positioning

problem. The achieved Pareto optimal solutions are sufficiently well distributed to

provide a good basis for a final design decision. Furthermore the solutions determined

by GAME perform better than the solutions achieved by fmincon. But they also reflect

a general drawback of EA that the solutions are only ’near’ optimal.
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6.2 Optimization of a Stringer Stiffened Plate

In this application example a stringer stiffened plate under axial compression load is

to be optimized with respect to buckling load and mass. In contrast to conventional

sizing optimizations a complete configuration optimization of the stiffened structure

is to be performed encompassing material selection and decisions on the type and

number of stringer. With this example the potential of applying GAME to configura-

tion optimization problems of lightweight structures is demonstrated. As this is mainly

an academic example the scope of load cases has been limited to a single buckling

load case. Preliminary work on this problem has also been performed in ([Kip03]).

6.2.1 Optimization Task

In figure (6.14) the problem is illustrated. A stringer stiffened plate is subject to

a compression load. The plate (length pl = 0.8m, width pw = 0.6m) is simply

supported at all sides. The objective functions of this task are the buckling load Fb

and the mass of the plate pm. While the first one is to be maximized the latter

one is to be minimized. The design variables are the plate thickness pt, the material

of the plate and stringer pmat, the number of stringer sn, the type of the stringer

stype, the height and thickness of the web of the respective stringer swh and swt, and

depending on the stringer type the widths and thickness of the flange sfw and sft.

With respect to the material four choices are at hand: aluminum, steel, titanium, and

an quasi-isotropic CFRP. For this being an academic design problem it is sufficient to

use only representative data for the respective materials which is given in table (6.3).

Of course there do exist alloys for each of the chosen materials which have other

and maybe better properties. The only constraint in this problems is that the static

stresses in plate or stringers due to the buckling force must not exceed the maximum

F

F

Type 1

Type 2

Type 3

Stringer:

Figure 6.14: Stringer stiffened plate under compression load
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property aluminum steel titanium CFRP

E [N/m2] 70000E6 210000E6 110000E6 69000E6

  [kg/m3] 2700 7800 4900 1600

allow   [N/m2] 400E6 1200E6 1100E6 550E6

Table 6.3: Representative material properties

allowable stress of the chosen material. Concerning the type of the stringer, they can

be I-, L- or T-shaped. The optimization problem can be stated as follows:

min z(x) = [pm(x),−Fb(x)],

with: x = [pt, pmat, sn, stype, swh, swt, sfw, sft],

subject to:

g1(x) ≤ 0, g1(x) = σmax,Mises(x) − σallow(pmat),

and

0.0005[m] ≤ pt ≤ 0.01[m],

1 ≤ pmat ≤ 4,

0 ≤ sn ≤ 10,

1 ≤ stype ≤ 3

0.001[m] ≤ swh ≤ 0.05[m]

0.0005[m] ≤ swt ≤ 0.01[m]

0.001[m] ≤ sfw ≤ 0.02[m]

0.0005[m] ≤ sft ≤ 0.01[m]

(6.7)

The design variables for the material pmat and the stringer type stype are truly dis-

crete, the number of the stringer sn is a quasi-continuous discrete variable, and finally

the sizing parameters for the plate and stringers are continuous design variables. Fur-

thermore the number of design variables varies in dependence on the chosen type of

stringer. So in conclusion the problem can be characterized as mixed discrete/contin-

uous constrained multiobjective problem.

6.2.2 Modelling

For the determination of the buckling load an FEM model has been developed, which

is shown in figure (6.15). The buckling load is computed with the Eigenvalue buckling

analysis. Since this optimization problem is primarily an academic demonstration, this
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Figure 6.15: FEM model of the stringer stiffened plate

method is sufficient. A more precise determination of the buckling load via a nonlin-

ear buckling analysis is not necessary. In a subsequent static analysis the previously

determined buckling load is applied to the structure in order to check if this load

leads to stresses higher than the allowed limits of the specific material.

6.2.3 Optimization Run and Results

The configuration of GAME for the optimization task is shown in table (6.4).

GAME configuration

population size n 200

ratio rcp 2

number of children nc 400

number of generations ngen 20

probability for recombination pr 0.2

probability for mutation pm 1

initial standard deviation for mutation 0 0.3 (ub-lb) 

Table 6.4: Configuration of GAME
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This setting results in an overall computational effort of 7800 objective function

evaluation. Since the size of the final nondominated population has been set to 100

individuals, this results in an effort of 78 objective function evaluation per solution

point. This effort is comparable to a gradient based optimization given that finite

differences are used for the gradient computation.

The trade-off plot of buckling load vs. mass is shown in figure (6.16). The achieved

buckling load is plotted in negative direction since GAME minimizes objectives. The

solutions are marked according to the chosen material.
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Figure 6.16: Trade-off plot of buckling load vs. mass for the stringer stiffened plate

The resulting Pareto-frontier is disconnected and consists of basically three parts.

These parts correspond exactly to the material selection. The Pareto-optimal solutions

for lower loads consist of CFRP. After exceeding a certain load level the nondominated

solutions then all use titanium. Simultaneously a significant jump in mass can be

observed. The same phenomenon can be observed again, although not so strong,

for the change between titanium and steel solutions. On the first glance this seems

striking, since it could be expected that the material with the best specific properties

will be exclusively chosen for all Pareto-optimal and thus most efficient solutions.

In order to explain the reasons for this alleged contradiction, the relation between

the different design variables and the objectives is investigated. In figure (6.17) the

distribution of specific settings for the design variables in dependence of the achieved

buckling load is shown for all solutions of the Pareto-optimal set. Since the Pareto-

optimal solutions form an ordered set an additional consideration of the dependency

on mass is redundant. What characteristics can be expected from solutions achieving

a high buckling load? For such solutions the first buckling mode should be the global
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Figure 6.17: Distribution of the design variable values in dependence of the achieved

buckling load for all Pareto-optimal solutions
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one, no local buckling should occur prior to the first global mode. The critical load

for the first global buckling mode is mainly dependent on the geometrical moment

of inertia. So the solutions should reflect ’mass’-efficient ways for reaching a high

geometric moment of inertia. Furthermore the structure should not fail statically

prior to reaching the critical buckling load, so an appropriate cross-section area must

be ensured.

For achieving a given buckling load there is definitely no one-to-one mapping to

a certain setting of the design variables. The same buckling load can be reached by

different combinations of the design variables. Certain deficiencies with respect to one

variable can be compensated by a certain choice of another variable. Nevertheless,

the sensitivity of the buckling load to certain design variables is significantly higher

than to other ones.

This is reflected in the Pareto-optimal set. As can be seen in the plots the stringer

height sh is definitely the most efficient parameter to achieve a high buckling load

with a minimum mass penalty. Already solutions for the lowest load level show stringer

height settings at the upper boundary of 0.05m. Since the height of the stringers on

the one hand contributes most to the geometrical moment of inertia of the web and

on the other hand pushes the neutral axis away from the plate and thus increases

the Steiner-part of of the plate, it agrees with common sense that efficient solutions

necessarily feature a maximum stringer height. That the stringer height can actually

be set to the upper boundary even for a small stringer thickness shows that within

the given height range the stringers are relatively insensitive to local buckling.

The next important design variables for increasing the overall geometrical moment of

inertia are the flange thickness sft and the plate thickness pt, acting as a lower flange.

Since the plate has a considerably higher cross-section area than the stringer flanges

it will have a higher influence on both mass and buckling load. And this theoretical

reasoning is clearly reflected by the solutions of the Pareto-optimal set. Although

showing some small spread the stringer flange thickness of the solutions is quickly

found to be close to its upper boundary with an increasing buckling load. The plate

thickness increases only gradually with the rising buckling load though. Furthermore it

shows a very strong, almost one-to-one coupling to the buckling load, whereas other

parameters have a considerable spread. This shows that the plate thickness takes the

part of the predominant trade-off parameter between mass and buckling load in this

load range.

And it is also the plate thickness that the striking switch in material selection can

be explained with. For a certain buckling load the plate thickness hits the upper

boundary of 0.01m. At this point a complete change of the governing constraint

happens. Although the buckling load could be further increased by adjusting the

other parameters not being at their respective boundaries, the resulting increase of the

cross-section area is not sufficient enough to have the structure statically bearing the

increased load. The CFRP configurations run into the limit of the maximum allowable

static stress for CFRP σallow,CFRP . This is illustrated in figure (6.18), in which the
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maximum Mises stress σmax,Mises for each solution is plotted in dependence of the

buckling load. So now the problem is no longer driven by stability but by strength.

Now not anymore the specific stiffness is governing the configuration of the solutions,

but the absolute strength. Among the materials offering a higher absolute strength,

steel and titanium, the latter one has a higher specific strength. So now the material

titanium becomes the material of choice for efficient solutions, although imposing

a significantly increase in mass. Of course, it is possible to design CFRP plates for

these buckling loads with less mass, but not within the given boundaries of the design

variables. Within this given boundaries configurations with a higher buckling load

can only be achieved by switching to titanium. The same process can be observed

at higher buckling loads for the change from titanium solutions to steel solutions.

Aluminum solutions are not among the Pareto optimal set. This can be explained

by the fact that in the regime, where the specific stiffness is decisive, aluminum is

inferior to CFRP, and in the regime, in which absolute strength becomes decisive, it

is inferior to steel and titanium. As stated before the considered material properties

for this academic problem are representative values. For certain alloys with different

properties there may as well be Pareto-optimal solutions with aluminum.

Concerning the other design variables no such tight coupling to the buckling load can

be observed as for pt and sh. They all show some spread, indicating that within the

set of efficient solutions the same quality can be reached by different combinations of

them. Nevertheless certain trends can be observed. Expectedly most sizing variables

show a tendency to rise with an increasing load level. The additional material built

in corresponds to the required higher buckling stiffness and strength. Concerning the

other discrete variables, the number of stringers sn and the stringer type stype, it can

be observed that the number of stringers generally rises with an increasing buckling

load. But most frequently the Pareto-optimal solutions have 4-6 stringer, a choice

being in the middle of the allowed range. Obviously a larger number of stringer does

not offer significant advantages. For lower loads all three stringer types are present,

whereas for higher loads the stringer types with a flange are preferred. The reason for

this is that the flange offers a higher bending stiffness and also increases the critical

load for local buckling significantly. For the highest loads most frequently T-shaped

stringers are chosen. For a given overall width of the flange the T-shaped stringer has

a higher local buckling load for the flange than the L-shaped stringer since the free

length of the flange is only half of that of the L-shaped stringer. Nevertheless these

are only tendencies, respective deficiencies can be compensated by increasing other

variables like the stringer thickness: Surprisingly, or not surprisingly, a solution with

I-shaped stringers achieves the highest buckling load.

As mentioned before the optimization of stringer stiffened plate structures is a typical

task in the field of lightweight structure design and thus has been addressed many

times. In order to judge the quality of the solutions achieved by GAME, they have

been compared to results by other researchers published in literature. In ([Wie96]) a

thorough investigation of the optimal design of stiffened lightweight structures can
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Figure 6.18: Maximum Mises stress σmax,Mises of the Pareto-optimal solutions in de-

pendence of the buckling load

be found. Wiedemann establishes certain characteristic values with that the quality of

a certain configuration can be characterized independently of load level and material

properties. For the stringer stiffened plate these are α = st/pt, the quotient of stringer

and plate thickness, and β = sh/(pw/(sn +1)), the ratio between stringer height and

the distance between the stringers. For the stinger stiffened plate with homogeneous

materials and the given support condition in ([Wie96], chapter 4.3.3.3) the following

optimal values for these characteristic values can be found: α ≈ 0.4−0.5, β ≈ 0.1. For

the Pareto-optimal solutions the α and β values have been computed and the results

are plotted in figure (6.19) in dependence of the buckling load. It can be seen that the

solutions found by GAME almost all feature β values close to 0.1 and thus comply
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Figure 6.19: Characteristic values α and β for the Pareto-optimal set
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with optimality condition claimed by Wiedemann. The α values show considerably

more spread but nevertheless are mainly within the interval [0.4, 0.6] and thus close

to the optimal value. Wiedemann states also that the optimum is relatively insensitive

to variation in α, which could be a reason for the observed spread. These findings

show that GAME has successfully been able to find truly optimal configurations.

In conclusion GAME manages successfully to handle the combinatorial problem of

selecting the material, the number of stringer, and the type of stringer. The resulting

disconnected Pareto-frontier reveals the switch from a stiffness driven problem to

a strength driven problem and thus provides good insight for the designer to the

inner problem structure. One of the important findings is that the optimal material

selection depends on the buckling load level aimed at. Finally in order to judge the

quality of the solutions they have been compared with results from literature. The

results achieved by GAME proved to be close to optimal solutions and thus verified

that GAME has been successfully able to find optimal configurations.

6.3 Optimization of a High Precision Beam

For the assembly of circuit boards fast and high precision positioning systems are

employed. One important aspect for the design of such systems is the dimensional

stability with respect to static, dynamic and thermal loads in order to ensure the

required high positioning accuracy at high feed rates. Especially the thermal stability

is of interest since high displacements due to operational thermal loads require a

frequent re-calibration of the system causing a stop of production.

Within a project in collaboration with an industrial partner the aluminum beam of

the y-axis of such a 3-axes portal positioning system was to be replaced with an

optimized design made from Carbon Fiber Reinforced Plastic (CFRP). The y-axis

is shown in figure (6.20). In the following the y-axis is described in detail and the

load cases as well as the goals and requirements are introduced. In order to judge the

improvements achieved by the optimization the performance of the original aluminum

design is computed as a reference. Before the actual formulation of the optimization

task first some preliminary thoughts about the design task are discussed. Finally the

optimization is performed and the results are discussed.

6.3.1 Description of the Y-Axis Beam

The base structure of the y-axis consists of a beam with a box profile. On this beam

two rails are mounted by screws. On these rails again a carriage with the end effector

moves driven by a linear motor. While the primary part of this motor is mounted on

the carriage, the secondary part consisting of a segmentized magnet is screwed to the

beam.
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Figure 6.20: Y-axis of a 3-axes portal positioning system

6.3.2 Load Cases

The primary loads for the design are the static gravity load and a non uniform tem-

perature load due to heating by the linear motor. Furthermore the y-axis is subject to

acceleration loads due to the maneuvering during operation. The different loads are

described in the following sections.

Static Load (LC1)

The static loads on the beam consist of the gravity load of its own mass as well as

the gravity loads of the rails, the secondary part of the linear motor, and the carriage

including the masses of the primary part, of the linear motor, and of the end-effector.

The mass of the beam is dependent on its design, the respective masses of all other

components are fixed and listed in table (6.5).

In figure (6.21) the positions of these loads are illustrated. The bending and torsion

moments induced by the gravity loads depend on the position of the carriage. The

worst case imposing the maximum leverages and thus largest moments is the center

position, so this position is used as the design case.

end effector (Fz1) 5 [kg]

carriage + primary part of the linear motor (Fz2) 1.3 [kg]

rails (2*Fz3) 2*0.56 [kg]

secondary part of the linear motor (Fz4) 11.58 [kg]

Table 6.5: Component masses
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Figure 6.21: Static loads on the y-axis beam (gravity loads)

Thermal Loads (LC2)

The main source for the thermal loads is the operational temperature of the linear

motor. By different heat transfer mechanism (conduction, convection, and radiation)

this causes a heating up of the rails and the front side of the beam and thus a non

uniform temperature load on the beam. Due to the lack of operational data only a

simplified operational temperature distribution has been available, which is listed in

table (6.6).

It has to be stated that this strongly simplified temperature distribution may not be

particularly well suited to predict precisely the operational thermal displacements, but

serves well as a comparison standard with respect to the reference design.

Dynamic Loads (LC3, LC4)

During operation the complete y-axis is accelerated in x-direction with up to 20m/s2.

Furthermore the carriage including all attached components is accelerated along the

rails in y-direction with up to 20m/s2. The resulting acceleration loads on the beam

are dependent on the position of the carriage. But for both load cases the worst case

ambient temperature 20 [◦C]

temperature of the rails 35 [◦C]

temperature of the beam front side 25 [◦C]

temperature of the rest of the beam 20 [◦C]

Table 6.6: Temperature load case
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is the center position of the carriage because it leads to the maximum leverages and

longest load paths. For this reason this position is chosen as the design case.

6.3.3 Goals and Requirements

The goal of this design task was to improve the overall performance with respect

to static and dynamic response behavior, thermal stability, and mass by substituting

aluminum by carbon fiber composite material. Special emphasis was put on mass and

thermal stability.

Detailed informations on the requirements have only been available for the static loads

and are listed in table (6.7). As measures for the bending and torsion deformations the

y- and z-displacement of the center line of the two rails are employed (u
(LC1)
x,r , u

(LC1)
z,r )

as well as the twist angle ϕ
(LC1)
rp of the rail plane.

Since no information on the requirements for the thermal displacements and the

dynamic response behavior has been available, the respective results of the original

design have been used as a reference. So the minimum requirements are that the

CFRP design is not worse than the original design with respect to any of these load

cases.

6.3.4 Modelling

For simulating the behavior of the y-axis a FEM model has been set up using the FEM

program ANSYS. For the beam layered shell elements (shell99) have been used since

they allow an explicit modelling of the laminate lay-up. The FEM model is shown in

figure (6.22). The rails are modelled by beam elements (beam44). As a consequence

only a substitute material and no detailed laminate can be used for the rail material.

Since the secondary part of the linear motor is segmented and the segments are

connected to the beam point-wise, there is no direct influence on the bending or

torsional stiffness of the beam. Also due to the segmentation there is no influence on

the thermal deformation of the beam. The only influence on the response behavior

of the beam is based on its mass. So for the modelling of the secondary part of

the linear motor point mass elements reproducing the inertia loads are sufficient. The

same applies for the modelling of the carriage and the end-effector. All the point mass

elements are positioned according to their center of gravity location and connected by

maximum bending displacement in z-direction u
(LC1)
z,r 10.0E−6 [m]

maximum bending displacement in x-direction u
(LC1)
x,r 10.0E−6 [m]

maximum torsion deformation in x-z-plane ϕLC1
rp 25.0E−6 [rad]

Table 6.7: Maximum allowed static displacements



156 CHAPTER 6. APPLICATIONS

Figure 6.22: FEM model of the y-axis beam

highly stiff link elements having no mass. As stated before the carriage is positioned

in the center position in order to induce the maximum possible bending and torsion

loads.

The bottom of the beam is clamped on the left side over a length of 150mm, the

same applies for the right side with the exception that this end is allowed to move

freely in y-direction.

6.3.5 Reference Design

The aluminum beam used as reference design has identical outer dimensions and a wall

thickness of 8mm. In table (6.8) the results of the reference design for the different

load cases are shown. For the gravity load case LC1 the x- and z-deformations (u
(LC1)
x,r ,

u
(LC1)
z,r ) are well below the requirements, while the twist angle (ϕ

(LC1)
rp ) is close to the

limit. As stated before no specific requirements have been available for the other

load cases. Nevertheless, it can be stated that they lead to displacements which are

considerably higher than the ones of the static load case. The thermal loads cause to

the largest deformations.

max(ux,r)[1E
−6m] max(uz,r)[1E

−6m] max(ϕrp)[1E
−6RAD]

LC1 1.7 -2.3 25

LC2 -40 22.7 -425

LC3,LC4 20 -5 220

Table 6.8: Results for the reference design for the different load cases
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6.3.6 Preliminary Design Considerations

The design problem at hand is mainly a material substitution problem. As the cross-

section of the beam remains unchanged the main task is to determine the laminate

lay-up. For this the layer materials, the number of layers , and their orientation angles

have to be chosen. Concerning the material selection a high modulus fiber is desir-

able with respect to elastic displacements and a fiber with a low CTE with respect

to thermal distortion. Additionally criteria with respect to availability, costs and pro-

cessability have to be considered. As a compromise solution the fiber M40J has been

selected. The material data for a single layer with fiber volume fraction νf = 60% is

given in table (6.9).

Since the results for the reference design revealed that the displacements due to the

static loads are mainly caused by a shear deformations of the cross section itself, it

has been decided to consider additional bulkhead walls for stiffening the cross section

(see figure 6.22). These bulkheads are only subject to shear loads so their lay-up is

restricted to [∓45◦]S. For the design the number of bulkheads as well as the respec-

tive number of layers remain to be determined.

Concerning the goals related to the mechanical response behavior the design task

resembles the classical task of maximizing bending and torsional stiffness while simul-

taneously minimizing mass. The goals of minimizing thermal deformation is somewhat

different. The thermal deformation has two sources: the non-uniform temperature dis-

tribution and the difference in coefficients of thermal expansion (CTE) between the

beam and rail materials. The latter source resembles a kind of ’bi-metal’ effect. To

fight the first cause a material with a CTE as low as possible is desirable. To fight the

second cause it is desirable to have the same materials or CTE in both components.

Unfortunately the materials of the rails (steel) and the material of the respective sub-

structure (CFRP [0◦/90◦]S) could not be changed. So it remains an open question to

the optimization to determine if it is more advantageous to employ a laminate with

E1 225E9 [N/m2]

E2 7.5E9 [N/m2]

G12 4.7E9 [N/m2]

ν12 0.26

ρ 1600 [kg/m3]

α1 -0.7E-6 [1/K]

α2 45E-6 [1/K]

νf 60 [%]

Table 6.9: Material properties for M40J
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a CTE as low as possible or a CTE close the one of the rails. Also it can be expected

that an optimal design for minimizing the thermal deformation will not be identical

to a design for optimal stiffness. If this conflict is really significant will also be a result

of the optimization task.

Concerning manufacturing it has been decided that the beam will be built by wrapping

prepregs around a solid kernel made from foam. As a consequence of this manufac-

turing method all walls will have the same laminate lay-up. Also due to manufac-

turing reasons the orientation angles of the wall laminate have been restricted to

[0◦, 90◦,±45◦].

6.3.7 Optimization Task

For setting up the optimization task several options are possible. The most naive ap-

proach would be to minimize all three displacement measures (x- and z-displacement

of the rail center line and twist angle of the rail plane) for all four load cases as well

as the mass. This would result in a problem with 13 objectives. But because of the

inherent and substantial difficulty of interpreting a 13 dimensional Pareto-front, it is

questionable if such an approach is really reasonable. But also besides these prac-

tical objections it is questionable if such a problem formulation is really necessary.

The fundamental justification for a multiobjective problem is that all objectives are

conflicting. But not all of these performance measures are conflicting. E.g. although

the z-displacements for the gravity load and the x-displacements for the acceleration

in x-direction reflect bending stiffness with respect to different axes, the response

behavior is directly coupled by the design variables. Due to the wrapping technique

applied for the manufacturing all walls have the same lay-up, i.e. the bending stiff-

ness in z-direction is directly coupled to the bending stiffness in x-direction. A design

increasing the bending stiffness in z-direction will also increase the bending stiffness

in x-direction, so a separate consideration makes no sense. As the bending stiffness in

z-direction is already considered in the static load case, there is basically no conflict

between the minimizing the displacements for the static load case and the accelera-

tion load cases. All other deformation mechanism as torsion or shear are also induced

by the gravity loads. So the deformations due to acceleration loads do not need to

be considered as separate objective functions.

As stated before it is unknown if there is significant conflict between a design for

minimum static deformations and minimum thermal deformations. So based on these

considerations it has been decided to formulate the objective functions based on the

static and thermal load cases skipping the acceleration load cases as they are inher-

ently included.

The performance requirements have been formulated as separate x- z-, and ϕ defor-

mations. In contrast to this it has been decided to use the overall displacement of the

end effector (primary part) as the basis for the formulations of the objective functions.

The overall displacement of the end effector is an aggregate measure integrating all
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deformation mechanisms. Since the essential design goal for the y-axis is the accu-

racy of the positioning of the end effector, its overall displacement is also the most

relevant measure. So based on this reasoning there are three objective functions: the

overall displacement of the end effector due to the static loads u
(LC1)
t,ee , the overall

displacement due to the thermal loads u
(LC2)
t,ee , and the mass m.

To ensure that only solutions are considered that will at least meet the performance of

the reference design with respect to all load cases, the respective response measures

of the reference design have been applied as constraints. So the optimization task

reads as follows:

min z(x) = [m, u
(LC1)
t,ee (x), u

(LC2)
t,ee (x)]

with: x = [n0◦ , n90◦ , n±45◦ , nbh, n±45◦(bh)]

subject to:

g1(x) = max(u
(LC1)
x,r ) − max(u

(LC1,ref)
x,r ) ≤ 0,

g2(x) = max(u
(LC1)
z,r ) − max(u

(LC1,ref)
z,r ) ≤ 0,

g3(x) = max(ϕ
(LC1)
rp ) − max(ϕ

(LC1,ref)
rp ) ≤ 0,

g4(x) = max(u
(LC2)
x,r ) − max(u

(LC2,ref)
x,r ) ≤ 0,

g5(x) = max(u
(LC2)
z,r ) − max(u

(LC2,ref)
z,r ) ≤ 0,

g6(x) = max(ϕ
(LC2)
rp ) − max(ϕ

(LC2,ref)
rp ) ≤ 0,

g7(x) = max(u
(LC3)
x,r ) − max(u

(LC3,ref)
x,r ) ≤ 0,

g8(x) = max(u
(LC3)
z,r ) − max(u

(LC3,ref)
z,r ) ≤ 0,

g9(x) = max(ϕ
(LC3)
rp ) − max(ϕ

(LC3,ref)
rp ) ≤ 0,

g10(x) = max(u
(LC4)
x,r ) − max(u

(LC4,ref)
x,r ) ≤ 0,

g11(x) = max(u
(LC4)
z,r ) − max(u

(LC4,ref)
z,r ) ≤ 0,

g12(x) = max(ϕ
(LC4)
rp ) − max(ϕ

(LC4,ref)
rp ) ≤ 0,

and

1 ≤ n0◦ ≤ 20,

1 ≤ n90◦ ≤ 20,

1 ≤ n±45◦ ≤ 10,

1 ≤ nbh ≤ 10,

1 ≤ n±45◦(bh) ≤ 20,

(6.8)

The design variables are the number of layers in 0◦-direction (n0◦), in 90◦-direction

(n90◦), in ±45◦-direction (n±45◦), the number of bulkhead walls (nbh), and the number

of ±45◦-layers for the bulkhead walls (n±45◦(bh)). All design variables are discrete. The
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optimization task is thus a discrete constrained multiobjective problem with three

objectives functions.

6.3.8 Optimization Run and Results

Configuration of GAME

The configuration of GAME for this task is shown in table (6.10). These settings

cause an overall computational effort of 3900 objective function evaluation. Since the

size of the final nondominated population has been set to 60 individuals, this results

in an effort of 65 objective function evaluation per solution point. Again the effort

per solution point is in the same range as for a gradient based optimization given

that finite differences are used for the gradient computation.

Results

The trade-off plot of the nondominated solution set for the three objective functions is

shown in figure (6.23). The crescent like form of the Pareto-optimal surface shows two

things. First it reflects the classical conflict between static displacements and mass.

In the m-u
(LC1)
t,ee -plane a perfectly shaped frontier is formed. The second conclusion is

that the conflict between the thermal deformation on the ones side and the static de-

formation and mass on the other side is obviously nearly insignificant. The extension

of the Pareto-surface in the u
(LC2)
t,ee -direction is only small, the solutions gather almost

only in the m-u(LC1)
t,ee -plane. So it can be deduced that there is no general conflict

between designing a laminate for low static deformations and designing one for low

thermal deformations. This can also be seen in the u
(LC1)
t,ee -u

(LC2)
t,ee -projection, in which

no classical front is built up. Here solutions with the lowest static deformations are

almost identical to the ones with the lowest thermal deformations. For the design

this is advantageous because now only a trade-off decision between mass and static

deformations has to be drawn.

To see the relevance of the different design variables with respect to the perfor-

mance, the distribution of their values has been plotted in dependence of the static

and thermal deformation in figure (6.24) for all nondominated solutions. The only

significant correlation can be observed between the number of ±45◦ layers and the

static deformation. For low static deformations a high number of ±45◦ layers is ob-

viously necessary. This reconfirms that the predominant deformation mechanisms are

the torsion and shear deformation of the cross section. A higher number of 0◦- or

90◦-layers for the wall laminate or ±45◦-layers for the bulkhead laminate is advanta-

geous to achieve small static deformations, as the increased relative frequency shows.

But since there exist solutions with a relatively low number of layers achieving equiv-

alently small deformations, a higher number of layers with these orientations is not
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configuration CFRP beam 

population size n 100

ratio rcp 2

number of children nc 200

number of generations ngen 20

probability for recombination pr 0.2

probability for mutation pm 1

initial standard deviation for mutation 0 0.3 (ub-lb) 

Table 6.10: Configuration of GAME

0

20

40 0
2

4
6

8

x 10
−6

0

2

4

6

x 10
−6

u
t,ee
(LC1) [m]mass [kg]

u t,e
e

(L
C

2)
 [m

]

0 10 20 30 40
1

2

3

4

5

6

7
x 10

−6

mass [kg]

u t,e
e

(L
C

1)
 [m

]

0 10 20 30 40
0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−6

u t,e
e

(L
C

2)
 [m

]

mass [kg]

1 2 3 4 5 6 7

x 10
−6

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 10

−6

u t,e
e

(L
C

2)
 [m

]

u
t,ee
(LC1) [m]

Figure 6.23: Trade-off plot m vs. u
(LC1)
t,ee vs. u

(LC2)
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necessarily needed.

The plots reveal that most of the design variables are of alternative nature: deficien-

cies due to the setting of one variable can be compensated by the certain settings

of another one. So e.g. a lower number of bulkhead walls can be compensated by

thicker bulkheads walls or more ±45◦ layers in the wall laminate.

Significant correlation between a single variable and the thermal deformations cannot

be observed. Again here the overall composition of all design variables seems to be

decisive. To see the relevance of the resulting CTE values of the wall laminate the α1

and α2 values are plotted in dependence of the corresponding thermal deformation in

figure (6.25). In this figure also the dependency of α1 on α2 is shown.
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Figure 6.25: Dependency of the thermal deformation u
(LC2)
t,ee on the CTE values α1

and α2 of the wall laminate and the dependency of α1 on α2

As could be expected it is not possible to have low values for α1 and α2 simultaneously.

A low α1 will result in a high α2 and vice versa. Concerning the correlation between

α1 or α2 and the resulting thermal deformation u
(LC2)
t,ee it can be stated that very

low or even negative α1 does not lead to a low thermal displacement of the end

effector. More promising are α1 values close to 1E − 6[1/K] and consequently α2

values in the same region. Alternatively low settings of α2 do also achieve low thermal

displacements. Values of α1 close to 1E − 6[1/K] make sense because the effective

CTE of the rails and their substructure is 1.23E − 6[1/K]. So the ’bi-metal’ effect

between the rails and the beam is minimized.

Final Design Decision

Due to the lack of a significant conflict between thermal and static displacements the

only trade-off decision has to be drawn between mass and static deformation. In figure

(6.26) again the Pareto optimal solutions are plotted in two projections (m-u
(LC1)
t,ee )

and (u
(LC1)
t,ee -u

(LC2)
t,ee ). Since the reference aluminum solutions has a weight of 13.4kg
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only solutions up to 20kg are displayed. Additionally a color coding of the mass has

been introduced to see the mass dependency also in the second projection.
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Figure 6.26: Trade-off plots: m vs. u
(LC1)
t,ee and u

(LC1)
t,ee vs. u

(LC2)
t,ee )

In both plots the reference solution and the finally chosen design are marked. When

looking at the trade-off plots with respect to the thermal deformation it is obvious

that all solutions present a substantial improvement in comparison with the refer-

ence solution. With respect to the trade-off between mass and static deformation a

compromise solution has been selected that offers approximately equal relative im-

provements in terms of mass and displacement. The reason why exactly this solution

has been selected and not one of the neighboring ones, is that this solution features

an almost isotropic laminate lay-up. This has the advantage of being more robust

against other, possible unforeseen, loads not considered in the original specifications.

The configuration of the chosen design is presented in table (6.11). In figure (6.27)

a contour plot of the total nodal displacements of the finally chosen CFRP design is

shown for the static load case.

In table (6.12) all performance measures for the chosen CFRP design and the refer-

ence design as well as the achieved improvements are listed. The overall improvements

with respect to the reference design are impressive.

design variable value

n0◦ 4

n90◦ 3

n±45◦ 4

nbh 9

n±45◦(bh) 7

Table 6.11: Laminate lay-up of the final design
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Figure 6.27: Contour plot of the total nodal displacements of the final CFRP design

for the load case LC1

performance measure reference design CFRP design improvement

mass [kg] 13.44 8.17 -39.2%

u
(LC1)
t,ee [1E−6m] 4.223 2.466 -41.6%

u
(LC2)
t,ee [1E−6m] 25.769 1.327 -94,8%

max(u
(LC1)
x,r ) [1E−6m] 1.172 0.160 -86.3%

max(u
(LC1)
z,r ) [1E−6m] 2.326 1.812 -22.1%

max(ϕ
(LC1)
rp ) [1E−6RAD] 25.065 8.924 -64,4%

max(u
(LC2)
x,r ) [1E−6m] 48.634 3.991 -91.8%

max(u
(LC2)
z,r ) [1E−6m] 22.744 0.630 -97.2%

max(ϕ
(LC2)
rp ) [1E−6RAD] 427.050 4.767 -98.9%

max(u
(LC3)
x,r ) [1E−6m] 18.650 4.356 -76.6%

max(u
(LC3)
z,r ) [1E−6m] 4.860 1.997 -58.9%

max(ϕ
(LC3)
rp ) [1E−6RAD] 222.340 9.659 -95.6%

max(u
(LC4)
x,r ) [1E−6m] 2.020 0.509 -74,8%

max(u
(LC4)
x,r ) [1E−6m] 2.468 1.954 -20,8%

max(ϕ
(LC4)
rp ) [1E−6RAD] 28.027 8.990 -67,9%

Table 6.12: Comparison between the chosen CFRP design and the aluminum reference

design
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7 Summary and Conclusions

In this thesis an optimization algorithm has been developed. The central goals for this

algorithm have been that it is general enough to be applicable to an utmost range

of optimization problems in the field of structural design while simultaneously being

efficient enough not to be ruled out for complex problems due to excessive compu-

tational costs. The applicability of the algorithm encompasses nonlinear constrained

problems, multiobjective problems as well as combinatorial problems with both dis-

crete and continuous design variables.

The algorithm that has been named GAME (Genetic Algorithm for Multicriteria En-

gineering) is based on the concept of evolutionary algorithms (EA). EAs have been

selected as the basis because they provide the required generality as they are appli-

cable to virtually any kind of problem. Especially the handling of discrete variables is

possible. Based on a thorough review of existing evolutionary optimization techniques

on the one hand selected and well proven methods and techniques are recombined

in a new and advantageous way in GAME. On the other hand GAME features new

techniques. Here the essential innovation is the integration of response surface meth-

ods in the standard evolutionary algorithm for increasing performance and efficiency.

For the adaptation to multiobjective problems a specialized fitness assignment scheme

is implemented in GAME. The fundamental idea of this fitness assignment scheme

is to have the population converge to the Pareto-frontier. The implemented scheme

directly employs the concept of Pareto-dominance for the fitness assignment and

belongs to the class of Pareto-ranking methods first proposed by Goldberg. Among

existing representatives of these methods it has been decided to implement the goals

and priorities based approach proposed by Fonseca and Fleming in GAME. The es-

sential advantage of this approach is that it simultaneously includes the handling of

constraints. So this generalized ranking scheme not only addresses the handling of

multiple objectives but also another crucial aspect in EAs, the handling of constraints,

in a very elegant, parameterless way.

It is shown by numerical experiments with different test problems that this integrated

constraint handling method is superior to commonly applied penalty function methods

or the simple rejection of all infeasible solutions. It is also shown by numerical exper-

iments that the implemented ranking scheme successfully achieves the convergence

of the population to the Pareto-frontier or the close vicinity of the Pareto frontier.

Furthermore employing such a scheme offers the advantage of inherently increasing

the efficiency of GAME, or EAs in general, for multiobjective problems. Applied to
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multiobjective problems conventional mathematical algorithms are forced to use ag-

gregating methods like the weighted sum approach and thus produce only a single

solution per run. In order to determine the same number of Pareto-optimal solutions

as GAME does in a single run, multiple runs would have to be performed. So es-

pecially if gradients have to be computed by finite difference methods the overall

computational cost can reach approximately the same level.

The review on existing algorithms has revealed a clear superiority of algorithms with

elitism operators. In GAME elitism is realized by an external archive of finite size in

which all nondominated solutions are stored. This external pool also serves a second

important task, the preservation of diversity among the nondominated solutions. If

the number of nondominated solutions exceeds a given size an intelligent replacement

procedure is applied eliminating the most similar individuals and thus promoting di-

versity among the nondominated solutions. This replacement procedure is based on a

clustering method similar to the one proposed by Zitzler. The most attractive charac-

teristic in comparison to conventional niching techniques is that it is a parameterless

method. The successful functioning of this approach is validated by the results of

numerical experiments.

GAME uses a real representation for continuous variables and an integer one for

discrete variables. In order to improve the search characteristics continuous and dis-

crete variables are also treated differently by the reproduction operators. The separate

treatment allows continuous recombination and mutation operators although discrete

variables are present. So the mutation operator of the evolutionary strategies is ap-

plied in GAME for the continuous variables, which is substantially more effective than

comparable binary operators. It allows for reduced population sizes and thus reduced

computational costs.

The most important aspect for the practical applicability of GAME has been the re-

duction of the high computational cost of conventional EAs. For this purpose two key

elements are implemented in GAME. The first one is the grain-parallelization of the

objective- and constraint function evaluation for all individuals. This parallelization

strategy is based on the EA specific characteristic that the evaluation of each individ-

ual is independent. This approach does not reduce computational costs directly, but,

maybe even more important, the overall computation time. The grain-parallelization

is realized on a PC-cluster. The potential of this approach to cut down total compu-

tation time is based on the assumption that the evaluation of the individuals takes

orders of magnitude more time than internal computations of the algorithm. For the

intended field of application in structural optimization this assumption can generally

be considered as given. Tests with example problems involving typical FEM compu-

tations of several minutes show that the overall time reduction is nearly proportional

to the number of employed computers in the cluster.

The second essential element to increase the efficiency is augmentation of the con-
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ventional EA by response surface approximation methods (RSA). The basic idea is to

further exploit the knowledge about the design space that has already been gathered

by the current and past generations. This idea has been realized in GAME by setting

up an RSA branch in parallel to the standard reproduction operators. On this branch

first RSAs are built for all objective- and constraint functions using the individu-

als of the current and past generations. Subsequently a gradient based optimization

(SQP-algorithm) is run on these RSAs and the resulting solutions are fed back to

the population. As RSAs are continuous methods the presence of discrete variables in

GAME poses a special challenge. So prior to the RSA built-up the population is split

into continuous subsets with consistent discrete variable settings. For the RSAs only

low order model function are used. In order to still achieve a sufficient accuracy of the

RSAs, the RSAs are not spanned over the complete design space, but over smaller,

more homogeneous parts of the design space. The technique for this subdividing is

again based on special clustering methods.

The performance of the RSA integration has been verified by numerical experiments

including single- and multiobjective test problems. The results confirm significant

performance increases and thus show the potential of this method. Improvements for

single-objective problems are higher than for multi-objective problems. It could be

shown that in order to reach a similar solution quality the RSA integration allows for

a reduction of the population size of up to 80%. So it could be verified that the RSA

integration in EAs is a strategy for increasing the efficiency. The experiments also

revealed that the success of the RSA branch is strongly dependent on the achieved

accuracy of the RSAs. The implemented subdivision technique by clustering proved

its ability to increase the accuracy of the RSAs. But this approach has its natural

limits. So subdivision can only work down to a certain minimum cluster size includ-

ing the minimum number of required points for the RSA built-up. But for certain

function characteristics this may still not provide the required accuracy. Further work

may concentrate on the optimal interaction between the RSA based optimization and

the evolutionary process. Here the optimal selection of design points for building the

RSAs in order to increase the accuracy of the RSAs may be a topic of interest.

Numerical experiments have also been performed to investigate the general char-

acteristics of GAME. One aspect has been the optimal choice of certain algorithm

parameters like the population size, the number of children, and the number of gener-

ations. The results reveal that the required computational effort for reaching a certain

solution quality depends on the dimension of the design space as well as on the charac-

teristics of the objective functions. More design variables or a more difficult objective

function require a higher population size and thus lead to higher computational costs.

It could be shown that this unfavorable characteristic of all EAs can be compensated

partly by the RSA integration, although not for all problems. Concerning the optimal

choice of population size, number of children, and number of generations the exper-

iments indicate that the performance of GAME is relatively robust with respect to

certain choices for the respective parameters. The quality of the achieved solutions
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is primarily depended on the total computational cost, independent of wether the

number of function evaluations is increased by a larger population, more children, or

a more generations.

GAME is also compared to another state-of-the-art multiobjective EA, the Nondomi-

nated Sorting Genetic Algorithm II published by Deb. For the spectrum of the chosen

test problems GAME has been able to achieve better results. Although it is difficult

to generalize these findings the results indicate that GAME is at least competitive in

comparison to other state-of-the-art algorithms in multiobjective evolutionary opti-

mization.

Finally by the successful application of GAME to different optimization tasks in the

field of structural design its applicability to actual engineering problems is demon-

strated.
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[SHF94] E. Schöneburg, F. Heinzmann, and S. Feddersen. Genetische Algorithmen

und Evolutionsstrategien. Addison-Wesley, 1994.

[SSH96] J. Sobieszczanski-Sobieski and R. T. Haftka. Multidisciplinary aerospace

optimization: Survey of recent developments. 34th AIAA Aerospace Sci-

ences Meeting and Exhibit, AIAA 96-0711, 1996.

[Tan95] M. Tanaka. GA-based decision support system for multi-criteria optimiza-

tion. In Proceedings of the International Conference on Systems, Man and

Cybernetics, volume 2, pages 1556–1561, 1995.

[Tha00] J. Thalhauser. Anwendung der Response Surface Methode zur Berech-
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