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Prüfer der Dissertation:

1. Univ. Prof. Dr.-Ing. habil. Boris Lohmann

2. Univ. Prof. Dr. rer. nat. Angelika Bunse-Gerstner,

Universität Bremen

Die Dissertation wurde am 30.06.2005 bei der Technischen Universität München

eingereicht und durch die Fakultät für Maschinenwesen am 10.10.2005 angenommen.



Abstract

Structure Preserving Order Reduction of Large Scale Second Order Models

by Seyed Behnam Salimbahrami

This work deals with order reduction of large scale linear time-invariant systems in sec-

ond order form while preserving the second order structure. The proposed methods are

based on matching some of the characteristic parameters (moments and Markov para-

meters) of the original and reduced systems using the Krylov subspaces, knowing that

the Krylov subspaces are the main kernel of the most attractive methods to reduce large

scale systems.

Two main approaches are proposed in this dissertation. In the first method, the order

of the original second order model is reduced by applying a projection directly to the

original system. To find the projection matrices, an extension of Krylov subspace called

Second Order Krylov Subspace is defined. This generalization involves two matrices and

some starting vectors. To match the desired characteristic parameters, particular Second

Order Krylov Subspaces are used where the projection matrices are calculated using an

extension of the Arnoldi or Lanczos algorithms. In SISO case, this method matches at

most Q characteristic parameters which is less than the standard Krylov methods in state

space by which at most 2Q characteristic parameters are matched where Q is the order

of the reduced system.

In the second method, the number of matching parameters is increased up to almost

double in a cost of more computational effort. This approach consists of three steps:

(i) conversion of the second order model into state space representation. (ii) reduction

by a Krylov subspace method, preserving the second order character inside. (iii) back

conversion into a second order representation by applying a similarity transformation. In

this method at most 2Q − 1 characteristic parameters match in SISO case.

The accuracy and suitability of the proposed methods are demonstrated through different

examples of different orders and the results are compared and discussed.
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V̄,W̄ projection matrices for the reduction in second order form

Abbreviations

LTI Linear Time Invariant

TBR Truncated Balanced Realization
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Chapter 1

INTRODUCTION

Accurate modelling is a necessary part in all fields of engineering dealing with physical

systems. To achieve an accurate model, powerful computers, newly developed methods

and algorithms are necessary and modelling typically leads to or can be approximated

by an ordinary differential equation. The more complex system is and the more accurate

the model is, the higher the order of the corresponding differential equation should be.

To model a physical behaviour with a good accuracy, a high order differential equation

is unavoidable.

High order models occur in integrated circuits and micro systems [68], civil engineering,

aerospace engineering [86], earthquake engineering [58], vibration problems [33] and me-

chanical and Micro-Electro-Mechanical Systems (MEMS) [7, 14, 69] (see also [2, 5, 21])

which are used for different purposes such as analysis, design, optimization, prediction

and controller design.

1.1 Why we need order reduction

With the restrictions in numerical algorithms and digital computers, using a high order

model to solve an engineering problem is a time consuming task or may lead to an

incorrect result. In the field of control engineering, designing a controller for a high order

system is difficult and if we are able to find a solution using a modern control technique

like robust control, the controller would have an order the same as the original system

posing difficulties in controller implementation. Simulation and analysis of a high order

model is also difficult or even impossible.

In aerospace engineering, a good example is mechanical modelling of the International

Space Station (ISS). It is composed of a complex structure containing several parts. Each
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Figure 1.1: CD Player (figure from [21]).

part of this system was modelled with a system of order of several hundreds. For instance,

the structural part (part 1R of the Russian Service Module) of the international space

station has been modelled with a system of order 270 with 3 inputs and 3 outputs [21, 39].

Because of high complexity of this system, designing a controller without reducing the

order of the original model seems to be difficult or even impossible.

One well-known example in electrical engineering is the CD player [21, 36] as shown in

Figure 1.1. The most important part of this system is the optical unit (lenses, laser

diode, and photo detectors) and its actuators. The main task in this system is to control

the arm holding the optical unit to read the required track on the disk and to adjust the

position of the focusing lens to adjust the depth of the laser beam penetrating the disc.

In order to achieve this task, the system should be modelled by finite element method

(FEM) leading to a differential equation of order of few hundreds which is not very easy

to handle for the purpose of control.

In the field of MEMS, order reduction is a demanding task. In Figures 1.2 and 1.3 a high

energy MEMS actuators is shown [13, 80]. It delivers either an impulse-bit thrust or pres-

sure waves within a sub-millimeter volume of silicon, by producing a high amount of en-

ergy from an ignitable substance contained within the micro-system. The micro-thruster

fuel is ignited by passing an electric current through a poly-silicon resistor embedded in

a dielectric membrane, as shown in Figure 1.3. After the ignition phase, sustained com-

bustion takes place and forms a high-pressure, high temperature ruptures and an impulse

is imparted to the carrier frame as the gas escapes from the tank. A two-dimensional

axi-symmetric model is used for the ignition phase, which after finite element based spa-

tial discretization of the governing equations results in a linear system of 1071 ordinary
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Figure 1.2: An array of Microthrusters
(produced by T. Bechtold, university of
Freiburg).
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Figure 1.3: Microthruster structure (pro-
duced by T. Bechtold, university of
Freiburg).

−F(t)
sinV x

y

��
��
��
��
��
��
��
��

����
��
��
��
��

��
��
��
��

����

�
�
�
�

�
�
�

�
�
�

��
��
��
��

Figure 1.4: A conducting beam supported at one end with counter electrode below (pro-
duced by J. Lienemann, university of Freiburg).

differential equations.

Another example in MEMS is an electrostatically actuated beam model; see Figure 12.8.

This system is used in RF switches or filters [1, 53]. Given a simple shape, they often

can be modelled as one-dimensional beams embedded in two or three dimensional space.

This model describes a slender beam which is actuated by a voltage between the beam

and the ground electrode below. The dynamical model of this system is extracted using

FEM with an order around 16000 which is quite high, making the system hard to analyze.

In Figure 1.5, another MEMS is shown. This is the Butterfly gyro which is a vibrating

micro-mechanical gyro for use in inertial navigation applications [1, 52]. The sensor

consists of two wing pairs that are connected to a common frame by a set of beam

elements. In the excitation mode, DC-biased AC-voltages are applied to the four pairs

of small electrodes and the wings are forced to vibrate in anti-phase in the wafer plane.

As the structure rotates about the axis of sensitivity, each of the masses will be affected

by a Coriolis acceleration. This acceleration can be represented as an inertial force that
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Figure 1.5: The Butterfly Gyroscope and its finite element mesh (produced by D. Billger,
The Imego Institute, Sweden).

Modelling
High order model

Order reduction
Simulation,

optimzation, ...Low order model

Original complex
system

Figure 1.6: Order reduction for the purpose of simulation.

is applied at right angles with the external angular velocity and the direction of motion

of the mass. The Coriolis force induces an anti-phase motion of the wings out of the

wafer plane. This is the detection mode. The external angular velocity can be related

to the amplitude of the detection mode, which is measured via the large electrodes. The

structural model of the gyroscope has been done in ANSYS using quadratic tetrahedral

elements (see Figure 1.5) leading to a model of order around 35000. When planning for

and making decisions on future improvements of the Butterfly, it is of importance to

improve the efficiency of the gyro simulations. The use of model order reduction indeed

decreases runtime for repeated simulations.

A solution to simplify the preceding tasks in both fields of simulation [2] and controller

design [41, 62] is to find a low order approximation of the original high order model. The

procedure of order reduction is shown in Figure 1.6. The reduced order modelling for

simulation is done directly after the step for modelling. In controller design, one can re-

duce the original system before designing the controller or simultaneously with controller

design where the reduction is done on the controller by considering the performance of

the closed loop system; see for instance [62] and the references therein.
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Original system

Reduced system

u(t)

+

-

error

Figure 1.7: Order reduction by minimization the difference of the outputs.

1.2 Existing methods of order reduction

The main goal of the reduction is to find the best possible approximation of the output

of the original system as shown in Figure 1.7. Several methods have been proposed

for reduction of LTI systems in different fields like control engineering, micro-systems

and applied mathematics. These methods are mostly based on minimization of some

predefined error functions, deleting the less important states or matching some of the

parameters of the original and reduced systems.

1.2.1 Balancing and truncation

A well-accepted method in order reduction of LTI systems is truncated balanced real-

ization (TBR) which was first proposed by Moore [60]. TBR tries to delete the states

that contribute smaller amount of energy to the outputs and needs a lot of input energy

to change. Basic definitions in TBR are controllability and observability gramians and

Hankel singular value. Controllability gramian represents the amount of input energy to

change the states from zero to another point in the state space and observability gramian

represents the amount of energy in the output produced by an initial condition when the

input is set to zero. Hankel singular values are parameters that are defined as the square

roots of the eigenvalues of the product of two gramians.

To delete the appropriate states, a similarity transformation is applied to the original

system to transform it to a balanced form in which the controllability and observability

gramians are equal and diagonal. If the diagonal entries of the gramians are sorted, a

balanced system can be easily reduced by truncating the state space model which deletes

the states corresponding to small entries of gramians. To calculate the gramians of a
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Figure 1.8: The main steps of TBR.

system, two corresponding Lyapunov equations in the size of original model are to be

solved. Figure 1.8 illustrates the steps of reduction using TBR.

An important property of TBR is preserving stability of the original system, that is if the

original model is stable, then the reduced order model is also stable. Glover [34] proved

that there exists an error bound in order reduction using TBR. He also showed how to

find the reduced order system in a different way such that the reduction procedure is

optimal in the sense of Hankel norm which is defined as the largest Hankel singular value

of a system.

Although TBR is not optimal in any norm, it is theoretically attractive and yields to

interesting reduced order models in practice. There exist different alternatives to find

a reduced system based on TBR [16, 49, 71]; see also [72] and the references therein.

Balancing can also be done using a cross gramian approach where solving a Sylvester

equation is involved [84]. In all methods to find a TBR reduced system, solving the

Lyapunov equations (or a Sylvester equation) is a key step which is computationally

expensive and restricts the use of TBR for model reduction of large scale systems.

Several methods have been proposed to extend the range of applicability of TBR to

higher order models. In [15, 16], the parallel computation is used for an efficient calcula-

tion. Another option is to implement some algorithms that can solve large Lyapunov or

Sylvester equations approximately, leading to the so called low rank gramians. Low rank

gramians are then used for approximate balancing and truncation [40, 42, 51, 64, 65, 84].

The result of the reduction procedure by approximate TBR, depending on the iterations

to produce the approximate gramians, can be close to the exact TBR.
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Original system Choose appropriate
Krylov subspace(s)

Apply a numerical
algorithm to calculate
the projection matrix

Apply the projection
to the original

system
Reduced system

matrix-vector multiplication and LU-factorization

Figure 1.9: The main steps of Krylov subspace methods.

1.2.2 Krylov subspace methods

Today, one of the best choices in order reduction of large scale systems is moment

matching using Krylov subspaces that was first proposed in [88] and then by using nu-

merically reliable algorithms has been applied for the reduction of large scale systems

[26, 29, 30, 37, 47, 54, 55, 73, 76].

In this approach, the lower order model is obtained such that some of the first moments

(and/or Markov parameters) of the original and reduced systems are matched where

the moments are the coefficients of the Taylor series expansion of the transfer function

about a suitable point. When the expansion point tends to infinity, the coefficients are

called Markov parameters. In fact, the moments about zero represent the behaviour of

the system at low frequencies and the Markov parameters represent the high frequency

behaviour.

Such a reduced model can be calculated using Krylov subspaces by means of well-

established algorithms, Arnoldi [6], Lanczos [48] or two-sided Arnoldi [24, 78, 80], and

by applying a projection to the original system. The projection matrices are calculated

through an iterative procedure which is a great advantage and the reduced system is

found in a relatively short time compared to TBR with more numerical reliability when

dealing with high order systems. In Figure 1.9, the steps of reduction for moment match-

ing are shown that can be compared to the similar one of TBR, in Figure 1.8 where the

Lyapunov equations are to be solved.

Krylov subspace methods are actually rational Hermite interpolation as it finds a rational

approximation of a function by matching the coefficients of the Taylor series expansion

around a desired point. The maximum number of parameters that can be matched by

these methods are double the order of the reduced system which is in fact the number

of coefficients in a rational transfer function. In the case of reaching this maximum the
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reduced model is called a Padé approximation. Such an interpolation problem can also

be solved by just solving an algebraic equation which is not in general well-conditioned

compared to Krylov subspace method [2, 66, 67]. It is also possible to interpolate the

transfer function over a set of points in the complex plane [2, 22].

In Table 1.1, TBR is compared to Krylov subspace methods. As it can be seen in

the table, the Krylov subspace method is superior in numerical efficiency with cheaper

calculations but the stability of the original system may be lost and there is no general

error bound similar to TBR except under some special conditions [9, 11]. In practice, for

the medium scale systems, a Krylov subspace method does not lead to reduced systems

with better accuracy than TBR. For moment matching, computational cost of an LU

factorization of the matrix A should be added to the table which is O(N3). However,

the LU factorization is eliminated if A is triangular or becomes cheaper if A is sparse

and has some special structure (block diagonal or close to diagonal).

Table 1.1: Comparison of Krylov subspace method and TBR.

TBR Krylov subspace method

Numerical cost (flops) O(N3) O(Q2N)

Numerical reliability for large N No Yes

Accuracy of the reduced system more accurate less accurate

range of applicability
up to order up to several

few thousands ten thousands

preserving stability Yes No

Iterative method No Yes

Reliable stopping criterion Yes No

1.3 Reduction of systems in second order form

In some fields like electrical circuits and mechanical systems, modelling (for instance

by FEM) leads to a large number of second order differential equations [7, 68, 69, 82].

For instance the CD player model, electrostatic beam and the butterfly Gyro introduced

at the beginning of this chapter are in second order form. It is then advisable to con-

struct a reduced order model that approximates the behavior of the original system while
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preserving its second-order structure [12, 55, 77, 86].

An extension of balancing and truncation to reduce second order system was first intro-

duced by Meyer and Srinivasan in [59]. They have defined the so called free velocity and

zero velocity gramians for second order systems that can be calculated using the gramians

of an equivalent state space model. A balanced second order model in which the second

order gramians are diagonal and equal, is then found by applying a transformation to

the second order system.

Balancing based on free velocity and zero velocity gramians was then improved and

extended by other authors to the so called second-order balanced truncation (SOBT)

[19, 20]. The main cost of calculation in SOBT is also in calculating the gramians of an

equivalent state space model.

It is not recommended to use balancing and truncation of second order models for the

reduction of large scale systems for numerical reasons. To reduce the order of large scale

second order systems, it is required to implement more reliable and faster algorithms

and preferably iterative procedures. The first idea is of course extending the numerically

efficient algorithms like Arnoldi and Lanczos, which are used in Krylov subspace methods

as well-accepted approaches for the reduction of large scale state space models.

One of the oldest extensions of moment matching method for second order model was

proposed by Su and Craig [86] which is equivalent to a recent work in [12] where the

reduced system is found in a way different from [86]. In both papers, the Krylov subspaces

were used and the structure of the original system is preserved. However, there are some

disadvantages like matching smaller number of moments (up to 1/4) compared to the

standard Krylov subspace methods or difficulty to match the moments about nonzero

points.

Recently, in several works, it is tried to extend the Krylov subspace approach for reduced

order modeling of second order systems. In [31, 32, 50, 87], it is proposed to reduce

the equivalent state space system by applying a projection such that the structure of

the state space matrices does not change and an algorithm is given to find the desired

projection matrices. This method has difficulties to match the moments around zero

as the projection matrix becomes rank deficient because of a zero column. It is also

numerically more expensive than the methods proposed in this dissertation and matches

half number of parameters compared to the back conversion method.
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1.4 The Purpose of this thesis

In this dissertation, two different approaches are proposed for the reduction of second

order systems. In the first method, we generalize the Krylov subspace method for second

order systems using a Second Order Krylov Subspace which was first introduced in [75]

for single input-single output (SISO) systems and more investigated and generalized in

[57]. Related results were also found by other researchers independently [10].

By using this kind of Krylov subspaces, the original system is reduced by applying a

projection directly to the second order model and the method presented in [86] is modified

in different directions:

i. The projection matrix can be independent of the output equation.

i. The number of matching moments is doubled when using two-sided methods.

ii. The method is generalized to match the moments about different points.

iii. It is shown how to match the Markov parameters.

To calculate the projection matrices, modifications of the Arnoldi and Lanczos algorithms

are proposed which find orthogonal or bi-orthogonal bases for given Second Order Krylov

Subspaces and deflate the repeated vectors in the case of multiple starting vectors.

In the second approach, we try to match more moments compared to the first method

by reducing the equivalent state space equation and then recovering the second order

structure from the reduced state space system. The steps of the reduction procedure are:

i. Conversion of the second order model into a state space representation.

i. Reduction by a Krylov subspaces method, preserving the second order character

inside by matching the first Markov parameter.

ii. Back conversion into a second order representation by applying a similarity trans-

formation.
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It is shown that the first Markov parameter of a second order system is zero which is a

key point for the back conversion procedure. By the second method, maximum number

of parameters can be matched which is almost double compared to second order Krylov

methods however more calculation is needed because of reduction in a double dimension

and the back conversion procedure.

1.5 Thesis outline

This dissertation consists of 4 different parts. In the upcoming chapters of the current

part some preliminary information is given. We first introduce Krylov subspace methods

to reduce state space systems in the next chapter, then some properties of second order

models are introduced and discussed.

The second part deals with order reduction of second order systems by applying a pro-

jection directly to the original second order model. We will introduce the Second Or-

der Krylov Subspace and present the theoretical background and proofs to match the

moments about different points and Markov parameters. In Chapter 5, the necessary

numerical algorithms to calculate the projection matrices are given. We discuss the in-

variance properties of the proposed approach in Chapter 6 and generalize it to reduce

systems of higher order differential equations in Chapter 7.

The third part is about the reduction procedure by reducing the equivalent state space

and back conversion into second order form. The main idea of the procedure including

a simple method for back conversion in given in Chapter 8. In Chapter 9, we prove

that under some weak conditions, such a back conversion is possible in SISO case and

some general necessary conditions for multi-input multi-output (MIMO) systems are also

discussed. In Chapter 10, we focus on undamped second order systems and the sufficient

conditions to find the back conversion transformation in MIMO case is given. In Chapter

11, the steps of state space reduction and back conversion in SISO case are integrated

into a single algorithm to reduce the computational effort and increase the efficiency of

the method.

At the end of the report, the proposed methods are applied to different technical systems.

We consider the model of a building of order 48, the structural part of the international

space station of order 270 and model of a beam of order 15992.
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Chapter 2

ORDER REDUCTION USING

KRYLOV SUBSPACES

For the reduction of very high order systems, the methods based on Krylov subspace are

among the best choices today. They define a projection from the high dimensional space

of the original model to a lower dimensional space and vice versa and thereby define

the reduced order model with application to circuit simulation, micro-electro-mechanical

systems and more. This method was first proposed in [88] and more investigated and

modified with several others [26, 29, 30, 37, 47, 54, 55, 73, 76].

In this chapter, we discuss the reduction method by applying a projection using bases of

some particular Krylov subspaces. One aim of this chapter is reviewing the Krylov sub-

space methods including the famous algorithms used to find the reduced order matrices

matching the moments, Markov parameters or both of them.

2.1 System representation and moments

We consider the dynamical MIMO system of the form{
Eẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),
(2.1)

where E,A ∈ RN×N , B ∈ RN×m and C ∈ Rp×N are given matrices and the components

of the vector valued functions u ∈ Rm, y ∈ Rp and x ∈ RN are the inputs, outputs and

states of the system, respectively. For SISO systems, p = m = 1, the matrices B and C

change to vectors b and cT .

The transfer matrix of the system (2.1) is

H(s) = C(sE −A)−1B. (2.2)
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By assuming that A is nonsingular, the Taylor series expansion of the transfer matrix

(2.2) about zero is,

H(s) = −CA−1B− C(A−1E)A−1Bs − · · · − C(A−1E)iA−1Bsi − · · · . (2.3)

The coefficients of this series, without negative sign, are called moments according to the

following:

Definition 2.1 In system (2.1), suppose that A is nonsingular, then the i-th moment

(about zero) of this system is

mi = C(A−1E)iA−1B , i = 0, 1, · · · . (2.4)

mi is a p × m matrix in MIMO case and a scalar mi, in SISO case.

Moments can be defined about points s0 �= 0 by rewriting the transfer matrix as

H(s) = C[(s − s0)E − (A − s0E)]−1B . (2.5)

By comparing the equations (2.2) and (2.5) the moments about s0 can be computed by

substituting A by A − s0E in definition 2.1, assuming that A − s0E is nonsingular. In

fact, the moments of H(s) about s0 are the moments of H(s + s0) about zero and s0

should not be a generalized eigenvalue of the pair (E,A).

A different series results when s0 −→ ∞. By putting s = 1/ζ in (2.2) and developing the

Taylor series about ζ = 0, the series is

H(s) = CE−1Bs−1 + C(E−1A)E−1Bs−2 + . . . + C(E−1A)iE−1Bs−i + . . . , (2.6)

and its coefficients are called Markov parameters. The i-th Markov parameter is also the

value of the i-th derivative of the impulse response at time zero [46]. So, the first Markov

parameter, M0, is the impulse response at t = 0.

Definition 2.2 In system (2.1), suppose that E is nonsingular, then the i-th Markov

parameter is defined as

Mi = C(E−1A)iE−1B , i = 0, 1, · · · . (2.7)
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Moments and Markov parameters will be used to describe similarity of original and

reduced order models. In other words, moments about zero reflect the behaviour of a

system at low frequencies. When the point s0 increases, it more reflects the behaviour at

higher frequencies. This can be explained by the behaviour of the method to approximate

the poles with larger real parts as s0 increases [37] or by using orthogonal polynomials

where a real-valued transfer function is used [27, 45].

2.2 Order reduction using Krylov subspaces

In this section, order reduction by applying projections to system (2.1) is introduced.

Suitable projections are calculated from Krylov subspaces, defined in the following.

2.2.1 Krylov subspace

Definition 2.3 The Krylov subspace is defined as

KQ(Ă, b̆) = span{b̆, Ăb̆, · · · , ĂQ−1b̆}, (2.8)

where Ă ∈ R
N×N and b̆ ∈ R

N is called the starting vector. The vectors b̆, Ăb̆, · · · ,

ĂQ−1b̆ that construct the subspace are called basic vectors.

If the i-th basic vector in Krylov subspace (2.8) is a linear combination of the previous

vectors, then the next basic vectors can be written as linear combinations of the first

i − 1 vectors (this can easily be proved by pre-multiplying with Ă). Therefore, the first

independent basic vectors can be considered as a basis of a Krylov subspace.

When there exist more than one starting vector, definition 2.3 is generalized to the

following form.

Definition 2.4 The block Krylov subspace is defined as

KQ(Ă, B̆) = colspan{B̆, ĂB̆, · · · , ĂQ−1B̆}, (2.9)

where Ă ∈ R
N×N and the columns of B̆ ∈ R

N×m are the starting vectors.

The block Krylov subspace with m starting vectors can be considered as a union of m

Krylov subspaces defined for each starting vector.
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2.2.2 Moment matching (SISO)

Consider a projection as follows:

x = Vxr,

V ∈ RN×Q,x ∈ RN ,xr ∈ RQ,
(2.10)

where Q < N . By applying this projection to the system (2.1) in SISO case and then

multiplying the state equation by transpose of a matrix W ∈ RN×Q, a reduced model of

order Q can be found, {
WTEVẋr = WTAVxr + WTbu,

y = cTVxr.
(2.11)

The reduced order system in state space is identified by the following matrices:

Er = WTEV , Ar = WTAV , br = WTb , cT
r = cTV. (2.12)

Now, the question is how to choose the projection matrices to find a reduced system with

a behaviour similar to the original one. In the following theorems, it is shown that bases

of suitable Krylov subspaces can be used in order reduction by projection. We consider

that Q is small enough such that all corresponding basic vectors are linearly independent.

Theorem 2.1 If the columns of the matrix V used in (2.11), form a basis for the Krylov

subspace KQ(A−1E,A−1b) and the matrix W ∈ RN×Q is chosen such that the matrix Ar

is nonsingular, then the first Q moments (about zero) of the original and reduced order

systems match.

Proof: Consider the vector,

VA−1
r br = V(WTAV)−1WTb.

The vector A−1b is in the Krylov subspace and it can be written as a linear combination

of the columns of V,

∃r0 ∈ R
Q : A−1b = Vr0.

Therefore,

(WTAV)−1WTb = (WTAV)−1WT (AA−1)b = (WTAV)−1WTAVr0 = r0.
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With this,

VA−1
r br = V(WTAV)−1WTb = Vr0 = A−1b.

Now, consider for i = 0, · · · , k, we have,

V
(
A−1

r Er

)i
A−1

r br = (A−1E)iA−1b.

For i = k + 1, we have,

V
(
A−1

r Er

)i+1
A−1

r br = VA−1
r Er

(
A−1

r Er

)i
A−1

r br

= V(WTAV)−1WTEV
(
A−1

r Er

)i
A−1

r br

= V(WTAV)−1WTE
(
A−1E

)i
A−1b

= V(WTAV)−1WTAA−1E
(
A−1E

)i
A−1b

= V(WTAV)−1WTA
(
A−1E

)i+1
A−1b. (2.13)

If i + 1 ≤ Q − 1, then the vector (A−1E)
i+1

A−1b is in the Krylov subspace and it can

be written as a linear combination of the columns of V,

∃ri+1 ∈ R
Q :

(
A−1E

)i+1
A−1b = Vri+1. (2.14)

We combine the equations (2.13) and (2.14),

V
(
A−1

r Er

)i+1
A−1

r br = V(WTAV)−1WTA
(
A−1E

)i+1
A−1b

= V(WTAV)−1WTAVri+1

= Vri+1 =
(
A−1E

)i+1
A−1b. (2.15)

As mentioned before, the proof can be continued up to i = Q − 1. Then, if we multiply

both sides of the result in (2.15) with cT , then we have definitions of moments for original

and reduced systems and the moments from zero to Q − 1 match.

The subspace KQ(A−1E,A−1b) is called input Krylov subspace and order reduction using

a basis of this subspace for projection and optionally chosen the matrix W is called a

one-sided Krylov subspace method.

Another important Krylov subspace used for moment matching is KQ(A−TET ,A−Tc)

which is called output Krylov subspace and is dual to the input Krylov subspace. By

using this duality, it is possible to choose the matrix V optionally and the matrix W as a

basis of the output Krylov subspace and the first Q moments match. It can be expressed

as the following theorem.
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Theorem 2.2 If the columns of W used in (2.11) form a basis for the output Krylov sub-

space and the matrix V is chosen such that Ar is nonsingular, then the first Q moments

of the original and reduced order systems match.

Proof: The proof of this theorem is quite similar to the proof of Theorem 2.1 but

here by induction, it is proved that for i = 0, 1, · · · , Q − 1, we have,

cT
r

(
A−1

r Er

)i+1
A−1

r WT = cT
(
A−1E

)i+1
A−1. (2.16)

We multiply the equation (2.16) from right hand side with b, and the proof is completed.

Although choosing the other projection matrix in a one-sided method is optional, a typical

choice is W = V which also has some advantages like preserving stability under some

additional conditions on the original state space model [29].

By combining the results of the preceding theorems and using both input and output

Krylov subspaces, it is possible to match more moments as in the following theorems.

Theorem 2.3 If the columns of the matrices V and W used in (2.11), form bases for the

Krylov subspaces KQ(A−1E,A−1b) and KQ(A−TET ,A−Tc), respectively, then the first

2Q moments of the original and reduced order systems match. It is assumed that A and

Ar are invertible.

Proof: According to the Theorem 2.1, the first Q moments match. Now, we write

the moments of the reduced system as follows,

mri = cT
r (A−1

r Er)
iA−1b

= cT
r (A−1

r Er)
i−Q(A−1

r Er)(A
−1
r Er)

QA−1b

= cT
r (A−1

r Er)
i−QA−1

r WTEV(A−1
r Er)

Q−1A−1b.

By using the equations (2.15) and (2.16) for i − Q = 0, · · · , Q − 1, we have,

mri = c(A−1E)i−QA−1E(A−1E)Q−1A−1b

= c(A−1E)ib = mi,

and the moments from zero to 2Q − 1 match.
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Order reduction by using both input and output Krylov subspaces for projection is called

two-sided Krylov subspace method.

These theorems were founded for matching the moments about zero. The results can be

extended to match the moments about s0 �= 0 by substituting A by A− s0E in the defi-

nition of moments and Krylov subspaces. This means that for instance in Theorem 2.3

the subspaces KQ((A−s0E)−1E, (A−s0E)−1b) and KQ((A−s0E)−TET , (A−s0E)−Tc)

are considered. The projection is then applied to the model (2.1), as described in equa-

tions (2.10) and (2.12) ( i.e. A in equation (2.12) is not substituted by A− s0E). With

s0 = 0, the reduced and original model have the same DC gain and steady state accuracy

is achieved. Small values of s0 will also find a reduced model with good approximation

of slow dynamics. An approximation of the full state vector x can be found from xr by

x̂ = Vxr.

2.2.3 Matching the Markov parameters (SISO)

Another way to determine the similarity between LTI systems, specially at high frequen-

cies, is comparing the Markov parameters. By suitably changing the starting vectors in

input and output Krylov subspaces, not only some of the moments but also some of the

Markov parameters match.

In [43] a special case for matching only the Markov parameters, called Oblique Projection,

has been introduced. Matching the Markov parameters as discussed in [43] leads to a

good approximation at high frequencies which most of the time is not desired. In the

following a general case is discussed.

Theorem 2.4 If the columns of V used in (2.11), form a basis for the Krylov subspace

KQ(A−1E, (E−1A)lA−1b) where l ∈ Z and 0 ≤ l ≤ Q and W ∈ RN×Q is chosen such

that the matrices Ar and Er are nonsingular then the first Q − l moments and the first

l Markov parameters of the original and reduced order systems match.

Proof: The Krylov subspace KQ(A−1E, (E−1A)lA−1b) can be written in two parts

as,

KQ(A−1E, (E−1A)lA−1b) = KQ−l(A
−1E,A−1b) ∪ Kl(E

−1A,b).
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By considering the first subspace, the proof for moments m0, · · · , mQ−l is clear from

Theorem 2.1. For the Markov parameters, the second subspace is used and in a similar

way as for the moments, by using induction, it is proved that for i = 0, 1, · · · , l − 1

V(E−1
r Ar)

iE−1
r br = (E−1A)iE−1b.

Then, by multiplying the left hand side with cT , the proof is completed.

By using W as a basis of the output Krylov subspace with a suitable starting vector, it

is possible to match more parameters (moments and Markov parameters) of reduced and

original models. The following theorem generalizes Theorem 2.3 to match the Markov

parameters.

Theorem 2.5 If the columns of the matrices V and W used in (2.11), form bases for

the Krylov subspaces KQ(A−1E, (E−1A)l1A−1b) and KQ(A−TET , (E−TAT )l2A−Tc) re-

spectively, where l1, l2 ∈ Z and 0 ≤ l1, l2 ≤ Q then the first 2Q − l1 − l2 moments and

the first l1 + l2 Markov parameters of the original and reduced order systems match. It is

assumed that A, E, Ar and Er are invertible.

The similarity between Theorems 2.1 and 2.3 and their generalization in Theorems 2.4

and 2.5 is that in one-sided methods the number of matched characteristic parameters

(moments and Markov parameter) of original and reduced order systems is Q and in

two-sided methods for both theorems, it is increased 2Q which is the maximum that can

be achieved.

2.2.4 MIMO systems

MIMO systems can also be reduced by using block Krylov subspaces to match some of

the moments or Markov parameters [3, 61, 79, 89]. The generalization of reduced order

model (2.11) for a system with m inputs and p outputs is{
WTEVẋr = WTAVxr + WTBu

y = CVxr

(2.17)

For this case the block Krylov subspaces KQ1(A
−1E,A−1B) and KQ2(A

−TET ,A−TCT )

are to be used. In one-sided methods, similar to Theorem 2.1, Q1 moments and in

two-sided methods Q1 + Q2 moments match.
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In MIMO case, the moments are not scalars and each moment has m · p entries. For

a system with m inputs and p outputs, each column of the matrices V and W are

responsible to match one more row or column of the moment matrices. So, by choosing

the first Q columns of the matrices V and W, it is possible to find a reduced model of

order Q. Otherwise, the order of the reduced system, chosen automatically from order

of the input and output Krylov subspaces, should be a multiple of the number of inputs

and outputs which can be unnecessarily high for non-square (m �= p) systems.

2.3 Invariance properties

In section 2.2, it was shown that using any basis of input or output Krylov subspaces for

order reduction results in moment matching property. It was proved by appropriately

changing the starting vectors of the input and output Krylov subspaces, it is possible to

match the moments and Markov parameters, simultaneously. Other degrees of freedom

in the design are:

• Choice of bases of Krylov subspaces.

• Representation and the realization of the original state space model.

These items are investigated in the following two subsections; see also [73].

2.3.1 Invariance to change of Krylov bases

As we will discuss later, calculating the basis of a given Krylov subspace needs a numer-

ically stable algorithm. Because of degrees of freedom to choose a basis, the question

arises if changing the basis may affect the reduced order system.

Theorem 2.6 The transfer matrix of the reduced order system found by a two-sided

method is independent of the particular choice of the bases V and W of the input and

output Krylov subspaces.
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Proof: Consider two reduced order models by using pairs of bases V1,W1 and

V2,W2, {
WT

1 EV1ẋr1 = WT
1 AV1xr1 + WT

1 Bu,

y = CTV1xr1,
(2.18){

WT
2 EV2ẋr2 = WT

2 AV2xr2 + WT
2 Bu,

y = CV2xr2.
(2.19)

The columns of the matrices V2 and W2 are in the input and output Krylov subspaces,

respectively. So, they can be written as a linear combination of the other bases which

are columns of the matrices V1 and W1,

∃Qv ∈ R
Q·m×Q·m,Qw ∈ R

Q·p×Q·p : V2 = V1Qv,W2 = W1Qw. (2.20)

Since V1, V2, W1 and W2 are full rank, the matrices Qv and Qw are invertible. By

substituting equations (2.20) into the equation (2.19) we find{
QT

wWT
1 EV1Qvẋr2 = QT

wWT
1 AV1Qvxr2 + QT

wWT
1 Bu,

y = CV1Qvxr2.

Qw is invertible and we can multiply both sides of the state equation by Q−T
w ,{

WT
1 EV1Qvẋr2 = WT

1 AV1Qvxr2 + WT
1 Bu

y = CV1Qvxr2

Applying the state transformation z = Qvxr2 to this system, converts it into (2.18). So,

the reduced order models (2.18) and (2.19) have the same transfer matrices.

For one-sided methods, the invariance to change of basis is not valid in general [73].

However for the case W = V, the same result exists as in the following corollary.

Corollary 2.1 The transfer matrix of the reduced order system found by a one-sided

method with W = V is independent of the particular choice of the bases V or W.

2.3.2 Invariance to representation and realization

Different representations and realizations of the same original model may lead to different

reduced order systems which is undesired in most applications. Changing the realization
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means applying a similarity transformation and changing the representation means multi-

plying the state equation by a nonsingular matrix. As shown in [73], a two-sided method

finds a reduced order model whose transfer matrix depends only on the input-output

behaviour of the original model not its realization or representation.

Theorem 2.7 In order reduction based on projection using a two-sided method, changing

the representation or realization of the original system does not change the input-output

behaviour of the reduced order model.

In one-sided methods with W = V, the reduced order model and its transfer matrix

changes when the representation or realization of the original model changes. In applica-

tion, this can be an essential disadvantage, since it makes results depending on how the

original system is modelled.

2.4 Computational aspects

In most application related models, the basic vectors used in the definition of Krylov

subspaces tend to be almost linearly dependent even for moderate values of N and Q.

So, they should not be used in numerical computations. Instead, there exist other suitable

bases that can be applied in order reduction as explained in the following.

2.4.1 Arnoldi algorithm

In one-sided methods, the most popular algorithm is the Arnoldi algorithm which

finds an orthonormal basis for a Krylov subspace [6, 28]. Consider the Krylov subspace

KQ(Ă, b̆). The Arnoldi algorithm finds a set of normalized vectors that are orthogonal

to each other,

VT
QVQ = I, (2.21)

where the columns of the matrix V form a basis for the given Krylov subspace. In the

following algorithm, in each step one more vector orthogonal to all other previous vectors

is constructed and then it is normalized to have length one. In a general case, when Q is

not small enough, it can happen that not all of the basic vectors are linearly independent.
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In SISO case, this breaks the loop however, in MIMO case, linearly dependent vectors

must be deleted during the iterations (deflation) [23, 24].

Algorithm 2.1 Arnoldi algorithm with deflation using modified Gram-Schmidt:

0. Start: Delete all linearly dependent starting vectors to find m1 independent starting

vectors for the given Krylov subspace then set

v1 =
b1

‖b1‖2
.

where b1 is the first starting vector after deleting the dependent starting vectors.

1. For j = 2, 3, · · · , do,

(a) Calculating the next vector: If j ≤ m1 the next vector is the j-th starting

vector. Otherwise, the next vector is

rj = Ăvj−m1.

(b) Orthogonalization: Set v̂j = rj then for i=1 to j-1 do:

hi,j−1 = v̂T
j vi (2.22)

v̂j = v̂j − hi,j−1vi.

(c) Normalization: If v̂j �= 01, the i-th column is

hj,j−1 = ‖v̂j‖2 , vj =
v̂j

hj,j−1
.

and increase j and go to step (1a).

(d) Deflation: Reduce m1 to m1 − 1 and if m1 is nonzero go to the next step and

if m1 is zero break the loop.

(e) go to step (1a) without increasing j.

In the Algorithm 2.1, if v̂i �= 0, then the first i basic vectors are linearly independent

because v1, · · · , v̂i span the same space as the first i basic vectors. If v̂i = 0, then the

1In practice we check if ‖v̂j‖2 > ε where ε ∈ R+ is a small number
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i-th basic vector is a linear combination of the previous basic vectors. Therefore, from

this step on, the corresponding starting vector should be deleted. In finite precision

mathematics, we check if the vectors are small.

Arnoldi algorithm, not only finds an orthonormal basis VQ for the given Krylov subspace,

but also if no deflation occurs, in step j, we have,

B̆ =
[

v1 · · · vm

]
⎡
⎢⎢⎢⎢⎣

‖b1‖2 h11 · · · h1m

0 h21 · · · h2,m

...
...

. . .
...

0 0 · · · hmm

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Hs

, (2.23)

Ă
[

v1 · · · vj

]
︸ ︷︷ ︸

Vj

=
[

v1 · · · vj

]
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1,m+1 · · · h1,j−m · · · h1,m+j−1

...
...

...
...

hm,m+1 · · · hm,j−m · · · hm,m+j−1

hm+1,,m+1 · · · hm+1,j−m · · · hm+1,m+j−1

...
. . .

...
...

...

0 · · · hj,j−m · · · hj,m+j−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Hj

+

[
vj+1 · · · vj+m

]
⎡
⎢⎢⎢⎢⎣

0 · · · 0 hj+1,j−m+1 hj+1,j−m+2 · · · hj+1,m+j−1

0 · · · 0 0 hj+2,j−m+2 · · · hj+2,m+j−1

...
...

...
...

...
. . .

...

0 · · · 0 0 0 · · · hj+m,m+j−1

⎤
⎥⎥⎥⎥⎦ , (2.24)

where the entries of the matrix Hj are produced by the algorithm. In the case of deflation

in step k, the number of nonzero entries of Hj under the diagonal decreases. From

equations (2.23) and (2.24) and by using the orthogonality of the vectors vi to each

other, we can conclude,

VT
j B̆ =

[
Hs

0

]
︸ ︷︷ ︸

Hm

, (2.25)

VT
j ĂVj = Hj. (2.26)
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In the SISO case with a single starting vector, Hj is an upper Hessenberg matrix where

all elements under the diagonal except for the sub-diagonal entries are zero and Hm is a

multiple of the first unit vector.

The equation (2.25), is helpful to find the reduced order system by a one-sided method

in a simpler way. In moment matching using input Krylov subspace, if we consider that

the original system is multiplied by A−1 before applying the projection and the Arnoldi

algorithm is run for Q + m iterations, then Er = HQ, Ar = I and Br = Hm that can

directly be calculated from the Algorithm 2.1. However, the reduced order system can

also be found by applying a projection to the original system (2.11) (with W = V) and

the chosen characteristic parameters match but the reduced order model can be different

from the one found by using HQ and Hm.

2.4.2 Lanczos algorithm

In two-sided methods, the Lanczos algorithm can be used to find the projection matrices.

The classical Lanczos algorithm [26, 48] generates two sequences of basis vectors which

span the Krylov subspaces KQ(Ă, b̆) and KQ(ĂT , c̆) and are orthogonal to each other,

WT
QVQ = I. (2.27)

Algorithm 2.2 The classical Lanczos algorithm:

1. Set

v1 =
b̆√
|c̆T b̆|

, w1 =
c̆

−
√

|c̆T b̆|

and set v0 = w0 = 0, β1 = 0, δ1 = 0.
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2. For j = 1, 2, · · · do:

αj = wT
j Ăvj ,

v̂ = Ăvj − αjvj − δjvj−1,

ŵ = ĂTwj − αjwj − δjwj−1,

δj+1 =
√
|v̂T ŵ|,

βj+1 =
v̂T ŵ

δj+1

,

vj+1 =
v̂

βj+1
,

wj+1 =
ŵ

δj+1
.

The property of the Lanczos Algorithm 2.2 is,

b̆ =v1

√
|c̆T b̆|, (2.28)

c̆ = − w1

√
|c̆T b̆|, (2.29)

Ă
[

v1 · · · vj

]
︸ ︷︷ ︸

Vj

=
[

v1 · · · vj

]
⎡
⎢⎢⎢⎢⎢⎢⎣

α1 β2 0 · · · 0

δ2 α2 β3 · · · 0
...

. . .
. . .

. . .
...

0 · · · δj−1 αj−1 βj

0 · · · 0 δj αj

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Tj

+δj+1vj+1e
T
Q,

(2.30)

ĂT
[

w1 · · · wj

]
︸ ︷︷ ︸

Wj

=
[

w1 · · · wj

]
⎡
⎢⎢⎢⎢⎢⎢⎣

α1 δ2 0 · · · 0

β2 α2 δ3 · · · 0
...

. . .
. . .

. . .
...

0 · · · βj−1 αj−1 δj

0 · · · 0 βj αj

⎤
⎥⎥⎥⎥⎥⎥⎦+

βj+1wj+1e
T
Q, (2.31)

where the entries of the tridiagonal matrix Tj are produced by the algorithm. From

equations (2.28-2.30) and by using the bi-orthogonality property, we can conclude,

WT
j b̆ =

√
|c̆T b̆|e1 (2.32)

c̆TVj = −
√

|c̆T b̆|eT
1 (2.33)

WT
j ĂVj = Tj. (2.34)
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The Lanczos Algorithm 2.2 can be used for moment matching of SISO systems if the

state equation is considered to be multiplied by A−1 first and the Krylov subspaces

KQ(A−1E,A−1b) and KQ(ETA−T , c) are considered. The reduced system is then,⎧⎨
⎩ TQẋ = x +

√
|c̆T b̆|e1u,

y = −
√

|c̆T b̆|eT
1 x.

(2.35)

The standard Lanczos algorithm is not only limited to the Krylov subspaces with one

starting vector but also suffers from break down when v̂T ŵ = 0 and loss of bi-orthogonality

by increasing the iterations that can limit the usage of the algorithm. If a break down oc-

curs, then the algorithm can not be continued. This problem makes Lanczos weaker than

Arnoldi. To avoid the loss of bi-orthogonality, re-orthogonalization must be used [17]. In

[3], the Lanczos algorithm is generalized to MIMO case; see also [61]. In the following,

we present the Lanczos algorithm with full orthogonalization that can be applied to any

pair of Krylov subspaces allowing us to use the algorithm for the original representation

of systems without multiplying by A−1 [74]. In the following algorithm, we consider

the Krylov subspaces, KQ1(Ă, B̆) and KQ2(Â, ĈT ) where Ă, Â ∈ Rn×n, B̆ ∈ Rn×m and

Ĉ ∈ Rp×n.

Algorithm 2.3 Lanczos algorithm with deflation and full orthogonalization:

0. Start: Delete all linearly dependent starting vectors to find m1 and p1 independent

starting vectors, b̆1, · · · , b̆m1 and ĉ1, · · · , ĉp1, for input and output Krylov subspaces,

respectively.

1. Set

v1 =
b̆1√
|ĉT

1 b̆1|
, w1 =

ĉ1

−
√

|ĉT
1 b̆1|

2. For j = 2, 3, · · · do.

(a) Calculating the next vector: For the input Krylov subspace, if j ≤ m1 then

rj = b̆j. Otherwise, the next vectors is computed as follows,

rj = Ăvj−m1.
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For the output Krylov subspace, if j ≤ p1 then lj = ĉj. Otherwise, the next

vector is

lj = Âwj−p1.

(b) Orthogonalization: Set v̂j = rj and ŵj = lj then for i = 1, · · · , j − 1 do:

h̆i,j−1v̂
T
j wi , ĥi,j−1 = ŵT

j vi,

v̂j = v̂j − h̆i,j−1vi , ŵj = ŵj − ĥi,j−1wi.

(c) Normalization: If v̂T
i ŵi �= 0 (or not very small in practice) then

vj =
v̂j√
|ŵT

j v̂j |
, wj =

ŵj

−
√

|ŵT
j v̂j |

increase i and go to step (2a).

(d) Deflation: If v̂j = 0 (or very small in practice), reduce m1 to m1 − 1 and if

m1 is zero break the loop.

If ŵj = 0 (or very small in practice), reduce p1 to p1−1 and if p1 is zero break

the loop.

(e) Increasing j and go to step (2a).

Similar to the Arnoldi algorithm, for the case that no deflation occurs, we have,

B̆ =
[

v1 · · · vm

]
⎡
⎢⎢⎢⎢⎢⎣

√
|ĉT

1 b̆1| h̆11 · · · h̆1m

0 h̆21 · · · h̆2,m

...
...

. . .
...

0 0 · · · h̆mm

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H̆s

, (2.36)



Chapter 2: Order Reduction using Krylov Subspaces 30

Ă
[

v1 · · · vj

]
︸ ︷︷ ︸

Vj

=
[

v1 · · · vj

]
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h̆1,m+1 · · · h̆1,j−m · · · h̆1,m+j−1

...
...

...
...

h̆m,m+1 · · · h̆m,j−m · · · h̆m,m+j−1

h̆m+1,,m+1 · · · h̆m+1,j−m · · · h̆m+1,m+j−1

...
. . .

...
...

...

0 · · · h̆j,j−m · · · h̆j,m+j−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H̆j

+

[
vj+1 · · · vj+m

]
⎡
⎢⎢⎢⎢⎣

0 · · · 0 h̆j+1,j−m+1 h̆j+1,j−m+2 · · · h̆j+1,m+j−1

0 · · · 0 0 h̆j+2,j−m+2 · · · h̆j+2,m+j−1

...
...

...
...

...
. . .

...

0 · · · 0 0 0 · · · h̆j+m,m+j−1

⎤
⎥⎥⎥⎥⎦ , (2.37)

where the entries of the matrix H̆j are produced by the algorithm. In the case of deflation

in step k, the number of nonzero entries of H̆j under the diagonal decreases. From

equations (2.36) and (2.37) and by using the bi-orthogonality of the columns of Vj and

Wj to each other, we can conclude,

WT
j B̆ =

[
H̆s

0

]
︸ ︷︷ ︸

H̆m

, (2.38)

WT
j ĂVj = H̆j. (2.39)

Another property is VT
j ÂWj = Ĥj where the entries of Ĥj are also produced in the

algorithm.

In the SISO case, the Lanczos Algorithm 2.3 leads to upper Hessenberg matrices compared

to the tridiagonal matrix in (2.32) as a result of the standard Lanczos algorithm. However,

the Algorithm 2.3 can directly be applied to input and output Krylov subspaces and the

reduced order system is then found by applying the projection as in (2.11).

If we apply the Algorithm 2.3 to the input and output Krylov subspaces to match the

moments, considering that the original system is multiplied with A−1, the reduced model

of order Q can be identified as, Er = H̆Q, Ar = I, Br = H̆m and C = ĤT
m. Such reduced

system will have the same transfer function as the one found by applying a projection as

in (2.17) which is a property of two-sided methods.
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2.4.3 Two-sided Arnoldi algorithm

Subsequently, we introduce the two-sided Arnoldi algorithm to find the bases necessary

for projection and calculating the reduced order model [24, 79, 80]. This method in

comparison to Lanczos is numerically more stable and easier to implement. The algorithm

comprises the following steps:

Algorithm 2.4 Two-sided Arnoldi algorithm:

0. Choose the appropriate input and output Krylov subspaces for the given system, e.g.

KQ(A−1E,A−1B) and KQ(A−TET ,A−TCT ).

1. Apply Arnoldi Algorithm 2.1 to the input Krylov subspace to find VQ.

2. Apply Arnoldi Algorithm 2.1 to the output Krylov subspace to find WQ.

3. Find the reduced order model by applying the projection as in (2.11).

Compared to the Lanczos algorithm, two-sided Arnoldi does not suffer from break down

that occurs in Lanczos. The other difference is that in Lanczos algorithm, the two set

of bases are bi-orthogonal, however in the two-sided Arnoldi algorithm, each basis is

orthonormal,

VTV = I and WTW = I.

However, both algorithms lead to reduced systems with the same transfer functions.

2.4.4 Numerical remarks

In order reduction of system (2.1) based on moment matching, the matrix A−1E and

A−TET are very important. So, the inverse of the large matrix A seems to be necessary.

Calculating this inverse and then use it in the Algorithm 2.1 is not recommended for

numerical reasons. In order to find the vector t = A−1Evi−1 in the iterations of a

numerical algorithm, it is better to solve the linear equation At = Evi−1 for t in each

iteration to avoid numerical errors and to save time. In this way, a total of Q sets of

linear equations are solved, whereas the calculation of A−1 would require solving a set of

N such equations.
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There exist many methods that can solve linear equations and find an exact or approxi-

mate solution. One of the best methods to find an exact solution is using LU-factorization

[35] and then solve two triangular linear equations by Gaussian elimination. Using this

method in each iteration leads to a slow algorithm while the most time consuming part

is finding the LU factorization of the large matrix. The remedy is finding the LU factor-

ization of the matrix A at the beginning and then solve only triangular linear equations

in each iteration 2. In this case, time is saved and the result is obtained very fast.

2.5 Passive systems and stability

An important property to be preserved in order reduction is stability or passivity of

the original system. In using Krylov subspace methods to reduce the order of a stable

large scale model, there is no general guarantee to find a stable reduced model. There

exists a guarantee only for some types of systems which are related to passive systems

[8, 28, 63]. However, stability of the reduced system can be recovered by post processing

to remove the unstable poles if the reduced system is unstable, mostly by using the

restarted Arnoldi and Lanczos algorithms; see for instance [36, 44, 85]. In the restarted

algorithms instead of the moments matching, some of the parameters called modified

moments match without any direct connection to the behavior of the system. A concept

related to the passivity is positive realness as defined in the following; see also [70, 83]

and the references therein.

Definition 2.5 A square (m = p) transfer matrix H(s) : C 
→ (Cm×m ∪∞) is positive

real if

1. H(s) has no pole in right half complex plain.

2. H(s∗) = (H(s))∗ for all s ∈ C.

3. Re
(
wHH(s)w

) ≥ 0 for all s ∈ C with Res > 0 and w ∈ Cm.

2In MATLAB, instead of the command A\V(:,i-1), the command [L,U]=LU(A) must be added to the
beginning of the algorithm and in each iteration the command U\(L\V(:,i-1)) can be used to solve
triangular linear equations.
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where (.)∗ denotes conjugate complex and (.)H denotes hermitian which is complex con-

jugate of transpose of a complex matrix.

In the definition of positive realness, the first condition is stability and the second con-

dition is always true for a real transfer matrix. The third condition for SISO case means

that the Nyquist diagram of the system does not go through the left half complex plain.

It can be proved that any linear dynamical system is passive if, and only if its transfer

matrix is positive real; see [28] and the references therein. As mentioned in [28], the

following lemma provides sufficient conditions for the system (2.1) to be passive.

Lemma 2.1 In system (2.1), if A + AT � 0, E = ET 
 0 and C = BT , then the

corresponding transfer matrix H(s) is positive real and therefore, it is passive.

F 
 0 for a symmetric matrix F ∈ RN×N denotes that F is nonnegative definite; i.e.

xTFx ≥ 0 for every x ∈ RN . It should be mentioned that if the conditions in Lemma

2.1 are satisfied then the system is passive but passivity is a property of the transfer

matrix not its realization and if a system is passive, then the conditions of this lemma

are not necessarily true. Because any passive system is necessarily stable, by using the

conditions of Lemma 2.1 without considering the output equation, necessary conditions

for stability can be derived.

Corollary 2.2 The system (2.1) is stable, if A + AT � 0 and E = ET 
 0.

Lemma 2.2 If F ∈ R
N×N is positive (negative) definite and V ∈ R

N×Q is a full rank

matrix, then the matrix VTFV is positive (negative) definite.

Proof: Consider the vector w ∈ RQ,

wTVT︸ ︷︷ ︸
w̃T

F Vw︸︷︷︸
w̃

= w̃TFw̃ > (<)0,

where w̃ ∈ RN .

Lemma 2.2 is also true when the matrix F is semi-definite. This lemma is helpful to

keep the stability properties as in Corollary 2.2 in the reduced system calculated by a

one-sided projection.
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Theorem 2.8 In the system (2.1), if A + AT � 0 and E = ET 
 0, then the reduced

model (2.11) using a one-sided method with the choice W = V, is stable and furthermore,

the transfer matrix H(s) = BTV
(
sVTEV − VTAV

)−1
VTB is passive.

Therefore, for certain passive (stable) systems, one-sided methods find passive (stable)

reduced models.

2.6 Conclusion

In this chapter, we presented the order reduction using Krylov subspaces with an overview

on corresponding numerical algorithms. We showed how a large scale systems can be

reduced by applying a projection while matching some of the first moments and Markov

parameters of the original and reduced order systems.

The invariance properties of the Krylov methods were also investigated. The results of

our invariance properties are summarized in Table 2.1. The one-sided methods based

on input Krylov subspace possess the weakest invariance properties, i.e. the transfer

matrix of the resulting reduced order model depends on how the designer wrote down

the equations for the original model. Reduced order models using a two-sided method

not only match more moments, but also its input-output behaviour is independent of the

realization and representation of the original system. In fact, the result of a two-sided

method only depends on the transfer matrix of the original model (and on Q and s0).

However, the one-sided method, under certain conditions can guarantee a stable reduced

model [29], whereas the two-sided method can lead to unstable reduced models.

To find such projection matrices, a numerically reliable algorithm is necessary and the

Arnoldi algorithm was presented for one-sided methods and Lanczos and two-sided Arnoldi

for two-sided methods. It is also presented how to simplify the procedure to find the re-

duced order system using the properties of the Arnoldi and Lanczos algorithms.

To stop the iterations of the Arnoldi and two-sided Arnoldi algorithms a stopping criterion

has been presented in [79, 80] that can be used to find a suitable order for a reduced

model. This measure which is based on the angle of the new vector before normalization

and the hyper space spanned by all previous vectors is calculated in each iteration and

there is no need to break the loop.



Chapter 2: Order Reduction using Krylov Subspaces 35

Table 2.1: Invariance properties of Krylov subspace methods and its effect on the reduced
order model

Method Subspace Used Number of matching Change of Basis

Parameters (SISO)

One-sided

- Input Krylov Q Parameters Transfer matrix

- W = V is unchanged

- output Krylov Q Parameters Transfer matrix

- V = W is unchanged

Two-sided
- output Krylov 2Q Parameters Transfer matrix

- Input Krylov is unchanged

Method Subspace Used Change of Change of

Representation Realization

One-sided

- Input Krylov Transfer matrix Transfer matrix

- W = V changes changes

- output Krylov Transfer matrix Transfer matrix

- V = W changes changes

Two-sided
- output Krylov Transfer matrix Transfer matrix

- Input Krylov is unchanged is unchanged

It should also be noted that for MIMO case, where the moments and Markov parameters

are matrices, there are some more degrees of freedom that can be helpful to find better

results. In [79], a selection procedure is proposed. This selection procedure which can be

used in the Arnoldi or two-sided Arnoldi algorithm, improves the approximation com-

pared to the common block Arnoldi algorithm, by investigating dominance measures for

rows and columns of the transfer matrix in each iteration. Optionally, the designer can

manipulate this selection and thereby specify higher number of matching moments for

certain rows and columns of the transfer matrix.
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Chapter 3

SYSTEMS OF SECOND ORDER FORM

Second order systems are sets of second order differential equations. In this chapter,

by introducing the second order model, we review some related preliminaries to be used

later. It is explained how to find an equivalent state space equation and calculate the

moments or Markov parameters of such systems.

3.1 Second order models

The high-order models considered in this paper are assumed to be given in the form,{
Mz̈(t) + Dż(t) + Kz(t) = Gu(t),

y(t) = Lz(t),
(3.1)

with n second order differential equations, m inputs and p outputs. The total order of the

system is N = 2n and the matrices M, D and K are called mass, damping and stiffness

matrices, respectively. If D = 0, then the second order system is undamped.

Equivalently, the model (3.1) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
F 0

0 M

]
︸ ︷︷ ︸

E

[
ż(t)

z̈(t)

]
︸ ︷︷ ︸

ẋ

=

[
0 F

−K −D

]
︸ ︷︷ ︸

A

[
z(t)

ż(t)

]
︸ ︷︷ ︸

x

+

[
0

G

]
︸ ︷︷ ︸

B

u(t),

y(t) =
[

L 0
]

︸ ︷︷ ︸
C

[
z(t)

ż(t)

]
,

with N first order differential equations where F ∈ Rn×n is a nonsingular matrix. The

choice of F is optional and has no effect on the upcoming facts and results. For simplicity,

one may choose F = I. However, by knowing that for most of the systems in many fields
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of engineering, the mass, damping and stiffness matrices are symmetric and even positive

definite, for the case that K is nonsingular, it is recommended to transform a state space

model as,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
−K 0

0 M

]
︸ ︷︷ ︸

E

[
ż(t)

z̈(t)

]
︸ ︷︷ ︸

ẋ

=

[
0 −K

−K −D

]
︸ ︷︷ ︸

A

[
z(t)

ż(t)

]
︸ ︷︷ ︸

x

+

[
0

G

]
︸ ︷︷ ︸

B

u(t),

y(t) =
[

L 0
]

︸ ︷︷ ︸
C

[
z(t)

ż(t)

]
.

(3.2)

In this case, symmetry and definiteness of M and K are automatically transferred into

E and symmetry of K and D are automatically transferred into A; i.e. if M, −K are

symmetric and positive (semi-)definite and −D is symmetric, then A is symmetric and

E is symmetric and positive (semi-)definite. One may also use F = K which has some

advantages to find a stable reduced order model although it does not lead to a symmetric

A if D and K are symmetric.

A second order model can also be transformed into state space as,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
0 F

M D

]
︸ ︷︷ ︸

E

[
z̈(t)

ż(t)

]
︸ ︷︷ ︸

ẋ

=

[
F 0

0 −K

]
︸ ︷︷ ︸

A

[
ż(t)

z(t)

]
︸ ︷︷ ︸

x

+

[
0

G

]
︸ ︷︷ ︸

B

u(t),

y(t) =
[

0 L
]

︸ ︷︷ ︸
C

[
ż(t)

z(t)

]
,

(3.3)

which is equivalent to (3.2) and F ∈ Rn×n is nonsingular. A common choice for F in this

case can be identity matrix or M even if M is singular, that changes the realization into,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
0 M

M D

]
︸ ︷︷ ︸

E

[
z̈(t)

ż(t)

]
︸ ︷︷ ︸

ẋ

=

[
M 0

0 −K

]
︸ ︷︷ ︸

A

[
ż(t)

z(t)

]
︸ ︷︷ ︸

x

+

[
0

G

]
︸ ︷︷ ︸

B

u(t),

y(t) =
[

0 L
]

︸ ︷︷ ︸
C

[
ż(t)

z(t)

]
,

(3.4)
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3.2 Moments and Markov parameters of Second order systems

If we consider the realization (3.2), the matrix A is invertible if and only if K is nonsin-

gular. Because,

A−1 =

[
0 −K

−K −D

]−1

=

[
K−1DK−1 −K−1

−K−1 0

]
. (3.5)

As we saw in Chapter 2, to match the moments about zero, invertibility of A is necessary

which changes to invertibility of K for second order systems. However, this condition

drops when moments about a nonzero point are to be matched.

Because the transfer matrices of two systems (3.2) and (3.4) are the same, they have the

same moments. Although M−1 appears in the inverse of A in (3.4), it will disappear in

the definition of moments as we will see in the following. Therefore, the only condition to

calculate the moments of a second order system is the invertibility of the stiffness matrix

K.

By considering that K is nonsingular, the i-th moment (about zero) of the system (3.1)

is,

mi =
[

L 0
]⎛
⎝[

0 −K

−K −D

]−1 [ −K 0

0 M

]⎞⎠i [
0 −K

−K −D

]−1 [
0

G

]

=
[

L 0
]([

K−1DK−1 −K−1

−K−1 0

][
−K 0

0 M

])i [
K−1DK−1 −K−1

−K−1 0

][
0

G

]

=
[

L 0
] [

−K−1D −K−1M

I 0

]i [ −K−1G

0

]
. (3.6)

By knowing that C (A−1E)
i
A−1B = CA−1

(
EA−1

)i
B and using the realization (3.4),

an equivalent equation to (3.6) is,

mi =
[

0 −LK−1
] [

0 −MK−1

I −DK−1

]i [
0

G

]
. (3.7)

For the Markov parameters, the invertibility of the matrix E is necessary. If the state

space system (3.2) is considered to check invertibility of E, both matrices M and K must
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be invertible. But if we consider the realization (3.4) then,

E−1 =

[
0 M

M D

]−1

=

[
−M−1DM−1 M−1

M−1 0

]
. (3.8)

and the only condition is non-singularity of M.

By considering that M is nonsingular, the Markov parameters of the second order system

(3.1) can be calculated using state space model (3.2) as follows,

Mi =
[

L 0
]⎛
⎝[

−K 0

0 M

]−1 [
0 −K

−K −D

]⎞⎠i [
−K 0

0 M

]−1 [
0

G

]

=
[

L 0
] [

0 I

−M−1K −M−1D

]i [
0

M−1G

]
. (3.9)

Again by using the relationship C (E−1A)
i
E−1B = CE−1

(
AE−1

)i
B and the realization

(3.4), we can show that,

Mi =
[

0 LM−1
] [

−DM−1 I

−KM−1 0

]i [
G

0

]
. (3.10)

It should be noted that the first Markov parameter, M0 for second order systems is

zero because of the structure of the state space matrices. In fact, for SISO systems, the

Markov parameters define the relative degree. If the first k Markov parameters of a SISO

system are zero, its relative degree is k + 1 which is for second order systems at least 2

and M0 = 0 [46].

3.3 Undamped systems

A second order system is undamped if the damping matrix D is zero. In this case, the

equivalent state space equation is,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
0 M

M 0

]
︸ ︷︷ ︸

E

[
z̈(t)

ż(t)

]
︸ ︷︷ ︸

ẋ

=

[
M 0

0 −K

]
︸ ︷︷ ︸

A

[
ż(t)

z(t)

]
︸ ︷︷ ︸

x

+

[
0

G

]
︸ ︷︷ ︸

B

u(t),

y(t) =
[

0 L
]

︸ ︷︷ ︸
C

[
ż(t)

z(t)

]
.

(3.11)
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Lemma 3.1 Considering that M and K are nonsingular, for every undamped second

order system (i.e. D = 0), the Markov parameters M0,M2, · · · and the moments

m1,m3, · · · are zero.

Proof: Because of the structure of the matrix C, to prove the lemma, it is enough

to show that for an undamped system (3.11), for every value of i ∈ Z, the lower block of

the matrix (E−1A)2iE−1B is zero. We can simply show that,

E−1B =

[
M−1G

0

]
, A−1E =

[
0 M−1

K−1 0

]
, E−1A =

[
0 M−1K

I 0

]
.

For i = 0, the claim is clear. Now, consider for i = j > 0, the upper part of the matrix

(E−1A)2iE−1B is zero, then,

(E−1A)2jE−1B =

[
R̄

0

]
=⇒

(E−1A)2(j+1)E−1B = (E−1A)2

[
R̄

0

]

=

[
0 M−1K

I 0

][
0 M−1K

I 0

][
R̄

0

]

=

[
M−1K 0

0 M−1K

][
M−1R̄

0

]
=

[
M−1KR̄

0

]
,

and the theorem for i = j + 1 is also true. For the case that i < 0, the proof is quite

similar and it should be proved that if the claim is true for i = j · · · ,−1, it is also true

for j = i − 1.

3.4 Passivity of second order systems

A square second order system (3.1) with a full rank matrix G is not passive. In fact, any

square positive real system has a relative degree 1 [70, 83]. To show this fact, first we

mention the so called Kalmann-Yakubovich Lemma [83].

Lemma 3.2 The system (2.1) is positive real if and only if, there exist a positive definite
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matrix P and a positive semi-definite matrix Q such that,

ATP + PA = −Q (3.12)

PB = CT (3.13)

Lemma 3.3 If the system (2.1) is positive real and B is full rank, then the first Markov

parameter is positive definite.

Proof: We use Lemma 3.2 and multiply equation (3.13) from left hand side with BT ,

BTPB = BTCT = MT
0 � 0.

By considering the equivalent state space system (3.2) or (3.4) of the second order model

(3.1), the matrix B is full rank if and only if G is full rank. By knowing that the first

Markov parameter of a second order system is zero, the system (3.1) is not passive. In

the SISO case, if the relative degree of the second order system (3.1) is 2, then at high

frequencies, the Nyquist diagram goes to zero with an angle equal to 180 degrees which

means that the Nyquist diagram does not remain in the right half plane for all values of

ω that violates the third condition of definition 2.5.

Consider the shifted transfer matrix of the system (3.1), H(s + s0) = LT [s2M+

s(2s0M + D) + (s2
0M + s0D + K)]

−1
G, where 0 ≤ s0 ∈ R and s2

0M+s0D+K is invert-

ible (s0 = 0 if K is invertible). We rewrite this system in state space as,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
s2
0M + s0D + K 0

0 M

]
︸ ︷︷ ︸

E

[
ż

z̈

]
︸ ︷︷ ︸

ẋ

=

[
0 s2

0M + s0D + K

−s2
0M − s0D −K −2s0M −D

]
︸ ︷︷ ︸

A

[
z

ż

]
︸ ︷︷ ︸

x

+

[
0

G

]
︸ ︷︷ ︸

B

u,

y =
[

LT 0
]

︸ ︷︷ ︸
C

[
z

ż

]
.

(3.14)

Theorem 3.1 The shifted second order system H(s+s0) is stable if s0 ≥ 0, D = DT 
 0,

M = MT 
 0 and K = KT 
 0.



Chapter 3: Systems of Second Order Form 42

Proof: We consider the realization (3.14) and apply Corollary 2.2. It is clear that

under the assumptions of the theorem E = ET 
 0. For the other condition, knowing

that the matrices D,M and K are symmetric, we have,

A + AT =

[
0 0

0 −4s0M− 2D

]
.

This matrix is negative semi-definite if M and D are positive semi-definite.

Lemma 3.4 The second order system (3.1),

a. has no pole in the right half complex plane, if D = DT 
 0, M = MT 
 0 and

K = KT 
 0.

b. is stable, if D + DT 
 0, M = MT 
 0 and K = KT � 0.

Proof: In part (a), based on Theorem 3.1, for every positive number s0, the system

H(s+s0) is stable. By considering that the system remains stable when s0 tends to zero,

then H(s) should not have any pole in the right half complex plain.

For part (b), we choose s0 = 0 in the realization (3.14) and apply Corollary 2.2. The

proof is similar to Theorem 3.1.

The preceding results will be used in order reduction while preserving stability of the

original model.
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Chapter 4

REDUCTION OF SECOND ORDER SYSTEMS US-

ING SECOND ORDER KRYLOV SUBSPACES

In Chapter 2, it was explained how to reduce large scale systems in state space. In this

chapter, we generalize the Krylov subspace method to reduce the second order models

such that the second order structure is preserved.

The idea is to reduce second order models by applying a projection. To this end, the

definition of the standard Krylov subspace is extended to the so called Second Order

Krylov Subspace which was first introduced in [75] and is used to find the projection

matrices and matching the moments and more investigated and generalized in [57].

Alternatives to this method have been proposed by other authors in [32, 87] where a

structured projection is applied to the equivalent state space model preserving the struc-

ture of the state space matrices. These approaches match the same number of moments

as the second order Krylov methods, however all calculations and applying the projection

are done in state space which is in general numerically more expensive compared to the

method of this chapter. There is also a difficulty to match the moments around zero as

the projection matrix for this case includes a zero column.

4.1 Second Order Krylov Subspaces

We define the Second Order Krylov Subspaces such that they are helpful to calculate the

moments or Markov parameters by a recursive procedure and to find appropriate reduced

order systems in the sense of moment and Markov parameter matching.
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Definition 4.1 The Second Order Krylov Subspace is defined as,

Kq1(A1,A2,G1) = colspan{P0,P1, · · · ,Pq1−1}, (4.1)

where {
P0 = G1 , P1 = A1P0

Pi = A1Pi−1 + A2Pi−2, i = 2, 3, · · · (4.2)

and A1,A2 ∈ Rn×n,G1 ∈ Rn×m are constant matrices. The columns of G1 are called the

starting vectors and the matrices Pi are called basic blocks.

Definition 4.2 The Second Order Krylov Subspaces Kq1(−K−1D,−K−1M,−K−1G) and

Kq2(−K−TDT ,−K−TMT ,−K−TLT ) are called the input and output Second Order Krylov

Subspaces for the system (3.1), respectively.

There is a connection between the second order and standard Krylov subspaces. If we

simplify the recursion (4.2) into,[
Pi

Pi−1

]
=

[
A1 A2

I 0

][
Pi−1

Pi−2

]
. (4.3)

where Pi = 0 for i < 0, then the basic blocks of the Second Order Krylov Subspace

Kq(A1,A2,G1) are the upper half of the Krylov subspace Kq(Ã, B̃), where

Ã =

[
A1 A2

I 0

]
, B̃ =

[
G1

0

]
. (4.4)

In fact, the basic blocks of the subspace Kq(Ã, B̃) are,[
P0

0

]
,

[
P1

P0

]
,

[
P2

P1

]
, · · · ,

[
Pq

Pq−1

]
.

Using this relation, the input Krylov subspace Kq1(−K−1D,−K−1M,−K−1G) span the

same space as the upper half of the standard Krylov subspace,

Kq1(

[
−K−1D −K−1M

I 0

]
,

[
−K−1G

0

]
)

= Kq1(

[
−K−1D −K−1M

I 0

]
,

[
−K−1G

0

]
)

= Kq1(

[
0 −K

−K −D

]−1 [ −K 0

0 M

]
,

[
0 −K

−K −D

]−1 [
0

G

]
)

= Kq1(A
−1E,A−1B),
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where E, A and B are given in (3.2). In a similar way, it is possible to show that

the output Second Order Krylov Subspace span the same space as the upper half of

the Krylov subspace Kq2(A
−TET ,A−TC). This provides us the connection between the

standard and second order input and output Krylov subspaces.

To use the input and output Second Order Krylov Subspaces in order reduction by

moment matching, we first prove a direct connection between these subspace and the

moments of a second order system.

Lemma 4.1 Consider the input and output Second Order Krylov Subspaces for the sys-

tem (3.1) with corresponding basic blocks Pi and P̃i, respectively. Then,

mi = LPi = P̃T
i G, i = 0, 1, · · · .

Proof: By using the connection between the standard and Second Order Krylov

Subspace, we have[
Pi

Pi−1

]
=

[
−K−1D −K−1M

I 0

]i [ −K−1G

0

]
,

for i = 0, 1, · · · and P−1 = 0. By comparing this result with the equations (3.6), it can

easily be concluded that mi = LPi. To show that mi = P̃T
i G, transpose of the equation

(3.7) for the definition of the moments is used in a similar way.

4.2 The reduction theorems

As mentioned before, in this chapter, we find the reduced order model by applying a

projection directly to the second order model. Consider a projection as follows,

z = V̄zr, V̄ ∈ Rn×q, z ∈ Rq, zr ∈ Rq, (4.5)

where q < n. By applying this projection to the system (3.1) and then multiplying the

state equation by the transpose of a matrix W̄ ∈ Rn×q, a reduced model of order Q = 2q

is found, {
W̄TMV̄z̈r + W̄TDV̄żr + W̄TKV̄zr = W̄TGu,

y = LV̄zr.
(4.6)
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Therefore, the reduced model is identified by the matrices,

Mr = W̄TMV̄ , Dr = W̄TDV̄ , Kr = W̄TKV̄,

Gr = W̄TG , Lr = LV̄.

Obviously, such a reduction procedure preserves the structure of the original second order

model (3.1)! We transform the reduced second order system (4.6) into state space using

the formulation (3.2),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
0 W̄TMV̄

W̄TMV̄ W̄TDV̄

]
︸ ︷︷ ︸

Er

[
z̈

ż

]
︸ ︷︷ ︸

ẋr

=

[
W̄TMV̄ 0

0 −W̄TKV̄

]
︸ ︷︷ ︸

Ar

[
ż

z

]
︸ ︷︷ ︸

xr

+

[
0

W̄TG

]
︸ ︷︷ ︸

Br

u,

y =
[

0 LV̄
]

︸ ︷︷ ︸
Cr

[
ż

z

]
,

(4.7)

Therefore, the reduced state space matrices can be calculated by applying the projection,

Ṽ =

[
V̄ 0

0 V̄

]
, W̃ =

[
W̄ 0

0 W̄

]
, (4.8)

to the state space model (3.2) that is equivalent to the second order model (3.1).

For the choice of V̄ and W̄, the Second Order Krylov Subspaces are used, as described by

the following theorems. For moment matching about zero, we consider that K−1 exists.

Theorem 4.1 If the columns of the matrix V̄ used in (4.6) form a basis for the in-

put Second Order Krylov Subspace Kq1(−K−1D,−K−1M,−K−1G) and the matrix W̄ is

chosen such that the matrix Kr is nonsingular, then the first q1 moments (the moments

from m0 to mq1−1) of the original and reduced models match.

Proof: Consider the matrices{
Pr0 = −K−1

r Gr , Pr1 = K−1
r DrK

−1
r Gr

Pri = −K−1
r DrPr(i−1) −K−1

r MrPr(i−2)
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By using Lemma 4.1, we just prove that Pi = V̄Pri for i = 0, · · · , q1 − 1 where Pi and

Pri are the i-th basic blocks of the input Second Order Krylov Subspace for the original

and reduced order models, respectively. For the first basic block we have,

V̄Pr0 = −V̄K
−1
r Gr = −V̄(W̄TKV̄)−1W̄TG

= V̄(W̄TKV̄)−1W̄TK(−K−1G)

= V̄(W̄TKV̄)−1W̄TKP0.

The matrix P0 is in the Second Order Krylov Subspace and there exists R0 ∈ Rq×m such

that P0 = V̄R0. Therefore,

V̄Pr0 = V̄(W̄TKV̄)−1W̄TKV̄R0 = V̄R0 = P0. (4.9)

In the next step, the result in equation (4.9) is used and then,

V̄Pr1 = −V̄(W̄TKV̄)−1W̄TDV̄Pr0

= −V̄(W̄TKV̄)−1W̄TDP0

= V̄(W̄TKV̄)−1W̄TK(−K−1DP0)

= V̄(W̄TKV̄)−1W̄TKP1.

The matrix P1 is in the Second Order Krylov Subspace and can be written as P1 = V̄R1

for an R1 ∈ Rq×m. Thus,

V̄Pr1 = V̄(W̄TKV̄)−1W̄TKV̄R1 = V̄R1 = P1. (4.10)

Now consider that the statement is true until i = j−1, i.e. Pi = V̄Pri for i = 0, · · · , j−1.

By using the results for i = j − 2 and i = j − 1, for i = j we have,

V̄Prj = V̄
[−(W̄TKV̄)−1W̄TDV̄Pr(j−1) − (W̄TKV̄)−1W̄TMV̄Pr(j−2)

]
= V̄

[−(W̄TKV̄)−1W̄TDPj−1 − (W̄TKV̄)−1W̄TMPj−2

]
= V̄

[−(W̄TKV̄)−1W̄TKK−1DPj−1 − (W̄TKV̄)−1W̄TKK−1MPj−2

]
= V̄(W̄TKV̄)−1W̄TK

(−K−1DPj−1 − K−1MPj−2

)
= V̄(W̄TKV̄)−1W̄TKPj.

The matrix Pj is in the Second Order Krylov Subspace and can be written as Pj = V̄Rj

for an Rj ∈ Rq×m. Thus,

V̄Prj = V̄(W̄TKV̄)−1W̄TKV̄rj = V̄rj = Pj,

and by induction, it is proved that Pi = V̄Pri for i = 0, · · · , q1 − 1. For i = q1, because

the matrix Pq1 is not in the Second Order Krylov Subspace, the proof fails. Now, by

using Lemma 4.1 the proof is completed.
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To find the reduced order model, the matrix V̄ is calculated using a numerical algorithm

as will be discussed later, and for instance W̄ = V̄ can be chosen.

In the SISO case, the result of Theorem 4.1 has some similarities to the results in [86] but

it is independent of the output of the system. This fact is important for increasing the

number of matching moments (by Theorem 4.2) compared to [86]. Also, Theorem 4.1 is

more straightforward and only uses the state equations, similar to the standard Krylov

subspace methods in state space in Chapter 2.

A dual formulation of Theorem 4.1 is:

Corollary 4.1 If the columns of the matrix W̄ used in (4.6) form a basis for the output

Second Order Krylov Subspace and V̄ is chosen such that Kr is nonsingular, then the

first q2 moments of the original and reduced order systems match.

By using both, input and output Second Order Krylov Subspaces, it is possible to match

more moments and to find better approximations of the original large scale system:

Theorem 4.2 If the columns of the matrices V̄ and W̄ used in (4.6), form bases for the

second order input and output Krylov subspaces, respectively, both with the same rank,

then the first q1 + q2 moments of the original and reduced order systems match. It is

assumed that K and Kr are invertible.

Proof: To prove this theorem, we use the definition (3.6) of the moments and the

projection matrices (4.8) in state space. According to Theorem 4.1, independent of the

definition of the output equation, the first q1 moments match,

(A−1E)iA−1B = V(A−1
r Er)

iA−1
r Br, i = 0 · · · q1 − 1. (4.11)

And based on corollary 4.1 and dual to equation (4.11), we have

C(A−1E)iA−1 = Cr(A
−1
r Er)

iA−1
r WT , i = 0 · · · q2 − 1. (4.12)

The matrices A, E and C are defined in system (3.2) and the matrices Ar, Er and Cr

are defined in (4.7). We factorize the moments of the original model into two parts,

mi = C(A−1E)i−q1A−1 × E× (
A−1E

)q1−1
A−1B,
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for i > q1 − 1. By using the equations (4.11) and (4.12), for i = q1, · · · , q1 + q2 − 1 we

have,

mi = CT
r (A−1

r Er)
i−q1A−1

r WTEV(A−1
r Er)

q1−1A−1
r Br.

WTEV = Er and then mi = mri where i = 0, · · · , q1 + q2 − 1.

A reduction procedure using only one Second Order Krylov Subspace is called a one-sided

method and when using two Second Order Krylov Subspaces, it is called a two-sided

method.

4.2.1 Symmetric systems

Modelling of many systems leads to second order models with symmetric mass, damping

and stiffness matrices. This special case reduces the cost of calculation in finding a

reduced order approximation.

Consider that,

MT = M, DT = D, KT = K, LT = G.

The input and output Second Order Krylov Subspaces for such models are equal. There-

fore, if we apply a one-sided method with W̄ = V̄, then double number of moments

match.

Theorem 4.3 If MT = M, DT = D, KT = K, LT = G and the columns of the matrix

V̄ used in (4.6), form a basis for the input Second Order Krylov Subspace and we choose

W̄ = V̄, then the first 2q1 moments of the original and reduced order systems match. It

is assumed that K and Kr are invertible.

In fact, for symmetric systems, it is possible to match 2q1 moments with half the numerical

cost compared to Theorem 4.2.

4.3 Rational interpolation

By matching the moments about zero, the behavior of the original and reduced systems

are close to each other at low frequencies. To approximate the behavior at higher fre-
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quencies, the moments about s0 �= 0 can be matched, which can also be done by applying

a projection to the original model (3.1).

The transfer function of the system (3.1) by direct Laplace transform is H(s) = L(s2M+

sD + K)−1G. The moments of H(s) about s0 are equal to the moments of the following

system about zero,

H(s + s0) = L
(
(s + s0)

2M + (s + s0)D + K
)−1

G

= L
(
s2M + s(D + 2s0M) + (K + s0D + s2

0M)
)−1

G,

By using (3.6), the moments of H(s + s0) are calculated by substituting the matrix K

by K + s0D + s2
0M and the matrix D by D + 2s0M in the definition of the moments

about zero, which are the moments of the system (3.1) about s0. Therefore, to match

the moments about s0, the same substitution as in the moments should be done in the

definition of the input and output Second Order Krylov Subspaces; i.e. the subspaces

Kq1(−(K+s0D+s2
0M)−1(D+2s0M),−(K+s0D+s2

0M)−1M,−(K+s0D+s2
0M)−1G) and

Kq1(−(K+s0D+s2
0M)−T (D+2s0M)T ,−(K+s0D+s2

0M)−TMT ,−(K+s0D+s2
0M)−TLT )

are considered and then by finding the corresponding bases as projection matrices, the

reduced order system is found. In this case the condition on non-singularity of K is

substituted by non-singularity of K + s0D + s2
0M. In other words, s0 should not be a

quadratic eigenvalue of (K,D,M).

This result can also be generalized to match the moments about different points s1, · · · , sk

by considering k different Second Order Krylov Subspaces and finding a projection matrix

whose columns form a bases of the union of the given subspaces.

Theorem 4.4 If the matrix V̄ used in (4.6) is chosen such that,

l⋃
i=1

Kqi

(−(K + siD + s2
i M)−1(D + 2siM),−(K + siD + s2

i M)−1M

,−(K + siD + s2
i M)−1G

) ⊆ colspan(V̄)

with an optional full rank matrix W (e.g. W = V), then the first qi moments about

si for i = 1, · · · , l of the original and reduced models match. We consider that si for

i = 1, · · · , l, is not a quadratic eigenvalue of the triples (K,D,M) and (Kr,Dr,Mr).

Proof: To prove this theorem, we should consider each subspace separately and apply

Theorem 4.1 for l times.
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Theorem 4.5 If the matrices V̄ and W̄ used in (4.6) are chosen such that,

l1⋃
i=1

Kqi

(−(K + siD + s2
i M)−1(D + 2siM),−(K + siD + s2

i M)−1M

,−(K + siD + s2
i M)−1G

) ⊆ colspan(V̄),
l2⋃

i=l1+1

Kqi

(−(K + siD + s2
i M)−T (D + 2siM)T ,−(K + siD + s2

i M)−T MT

,−(K + siD + s2
i M)−TLT

) ⊆ colspan(W̄),

then the first qi moments about si for i = 1, · · · , l2 of the original and reduced models

match. We consider that si for i = 1, · · · , l2, is not a quadratic eigenvalue of the triples

(K,D,M) and (Kr,Dr,Mr).

With a two-sided method more number of characteristic parameters match. In Theorem

4.5, if si = sj for i �= j, then qi + qj moments about si match.

4.4 Matching the Markov parameters

To approximate the system behaviour at high frequencies, one can reduce the original

system through matching the Markov parameters. If the matrix M is nonsingular then

the Second Order Krylov Subspaces Kq1(−M−1K,−M−1D,M−1G) and Kq2(−M−TKT ,

−M−T DT ,M−TLT ) are used to match the Markov parameters. First, we show the rela-

tionship between these subspaces and the Markov parameters.

Lemma 4.2 If Pi and P̃i are basic blocks of the Second Order Krylov Subspaces

Kq1(−M−1K,−M−1D,M−1G) and Kq2(−M−T KT ,−M−TDT ,M−TLT ) for the system

(3.1) then,

Mi = LPi−1 = P̃T
i−1G, i = 1, 2, · · · .

Proof: The basic blocks of Kq1(−M−1K,−M−1D,M−1G) are,[
Pi−1

Pi

]
=

[
0 I

−M−1K −M−1D

]i [
0

M−1G

]
,



Chapter 4: Order Reduction using Second Order Krylov Subspaces 53

for i = 0, 1, · · · and P−1 = 0. By comparing this result with the equations (3.9), it can

easily be concluded that Mi = LPi−1. To show that Mi = P̃T
i−1G, transpose of the

equation (3.10) for the definition of the Markov parameters is used in a similar way.

A difference between lemmas 4.1 and 4.2 is the index of the basic blocks. Because for

every second order system M0 = 0, there is a shift in the index of the basic vectors and

the Markov parameter. In matching the Markov parameters by applying a projection

to the second order model, the first Markov parameter remains zero (it automatically

matches) and only other parameters are to be matched.

Theorem 4.6 If the columns of the matrix V̄ used in (4.6) form a basis for the Second

Order Krylov Subspace Kq1(−M−1K,−M−1D,M−1G) and the matrix W̄ is chosen such

that the matrix Mr is nonsingular, then the first q1 Markov parameters (the Markov

parameters from M1 to Mq1) of the original and reduced models match.

Proof: Consider the matrices{
Pr0 = M−1

r Gr , Pr1 = −M−1
r KrM

−1
r Gr

Pri = −M−1
r KrPr(i−1) − M−1

r DrPr(i−2)

By using Lemma 4.2, we just prove that Pi = V̄Pri for i = 0, · · · , q1 − 1 where Pi

and Pri are the i-th basic blocks of the Second Order Krylov Subspaces Kq1(−M−1K,

−M−1D,M−1G) and Kq1(−M−1
r Kr,−M−1

r Dr,M
−1
r Gr), respectively. For the first basic

vector we have,

V̄Pr0 = V̄M
−1
r Gr = V̄(W̄TMV̄)−1W̄TG

= V̄(W̄TMV̄)−1W̄TM(M−1G)

= V̄(W̄TMV̄)−1W̄TMP0.

The matrix P0 is in the Second Order Krylov Subspace and there exists R0 ∈ R
q×m such

that P0 = V̄R0. Therefore,

V̄Pr0 = V̄(W̄TMV̄)−1W̄TMV̄R0 = V̄R0 = P0. (4.13)

In the next step, the result in equation (4.13) is used and then,

V̄Pr1 = −V̄(W̄TMV̄)−1W̄TKV̄Pr0

= −V̄(W̄TMV̄)−1W̄TKP0

= V̄(W̄TMV̄)−1W̄TM(−M−1KP0)

= V̄(W̄TMV̄)−1W̄TMP1.
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The matrix P1 is in the Second Order Krylov Subspace and can be written as P1 = V̄R1

for an R1 ∈ Rq×m. Thus,

V̄Pr1 = V̄(W̄TMV̄)−1W̄TMV̄R1 = V̄R1 = P1. (4.14)

Now consider that the statement is true until i = j−1, i.e. Pi = V̄Pri for i = 0, · · · , j−1.

By using the results for i = j − 2 and i = j − 1, for i = j we have,

V̄Prj = V̄
[−(W̄TMV̄)−1W̄TKV̄Pr(j−1) − (W̄TMV̄)−1W̄TDV̄Pr(j−2)

]
= V̄

[−(W̄TMV̄)−1W̄TKPj−1 − (W̄TMV̄)−1W̄TDPj−2

]
= V̄

[−(W̄TMV̄)−1W̄TMM−1KPj−1 − (W̄TMV̄)−1W̄TMM−1DPj−2

]
= V̄(W̄TMV̄)−1W̄TM

(−M−1KPj−1 − M−1DPj−2

)
= V̄(W̄TMV̄)−1W̄TMPj .

The matrix Pj is in the Second Order Krylov Subspace and can be written as Pj = V̄Rj

for an Rj ∈ R
q×m. Thus,

V̄Prj = V̄(W̄TMV̄)−1W̄TMV̄Rj = V̄Rj = Pj,

and by induction, it is proved that Pi = V̄Pri for i = 0, · · · , q1 − 1. For i = q1, because

the matrix Pq1 is not in the given order Krylov subspace, the proof fails. Now, by using

Lemma 4.2 the proof is completed.

Similar to the moment matching, by using two Second Order Krylov Subspaces, it is

possible to match more Markov parameters as in the following theorem.

Theorem 4.7 If the columns of the matrices V̄ and W̄ used in (4.6), form bases for

the Second Order Krylov Subspaces Kq1(−M−1K,−M−1D,M−1G) and Kq2(−M−TKT ,

−M−T DT ,M−TLT ), respectively, both with the same rank, then the first q1 + q2 Markov

parameters of the original and reduced order systems match. It is assumed that M and

Mr are invertible.

If we combine the Krylov subspaces used to match the moments and Markov parameters

then some of the first moments and Markov parameters match, simultaneously. For the

one-sided method the condition is,

Kq1

(−K−1D,−K−1M,−K−1G
)⋃

Kq2

(−M−1K,−M−1D,M−1G
) ⊆ colspan(V̄)

and the first q1 moments and q2 Markov parameters match. The result can be extended

to two-sided method in a similar way.
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4.5 Guarantied stability

By considering the sufficient conditions for stability of second order systems, extracted

in section 3.4, in the following theorems, we present the sufficient conditions to find a

stable reduced system by applying a projection to second order systems.

Theorem 4.8 Let the system (3.1) be reduced by a one-sided method as in theorems 4.1,

4.4 and 4.6 with W = V. The reduced order model,

a. has no pole in the right half complex plane, if D = DT 
 0, M = MT 
 0 and

K = KT 
 0.

b. is stable, if D + DT 
 0, M = MT 
 0 and K = KT � 0.

Proof: By using the assumptions of the theorem and the reduced matrices

Mr = VTMV, Kr = VTKV, Dr = VTDV,

by using Lemma 2.2, it can be verified that Dr = DT
r 
 0, Mr = MT

r 
 0 and Kr =

KT
r 
 0 (or � 0 in part (b)) and the proof is completed by applying Lemma 3.4 to the

reduced system.

The main difference in the two parts of the theorem is in the condition on K. In fact

if K is invertible or equivalently if the original system has no pole at zero, then under

some conditions a one-sided method preserves stability of the original system. Otherwise,

we have sufficient conditions under which the reduced system has no pole in the right

half complex plane but the system may have repeated poles on the imaginary axis. The

symmetry and positive semi-definiteness of the matrices as in the preceding theorems are

satisfied for a lot of systems in circuit simulation and MEMS.

4.6 Conclusion and comparison

In this chapter, by generalizing the definition of Krylov subspaces, the well-known method

of reduction of large scale systems based on moment (or Markov parameter) matching
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has been applied for the reduction of second order models, resulting in reduced systems

having the same structure as the original one. Preserving the structure is achieved by

calculating the reduced system through a projection to the original second order model.

The advantages of the proposed approach can be highlighted as follows:

• Compared to the method proposed in [86], twice the number of moments match.

• The method can easily be applied to match the moments about different points.

• Because the projection is directly applied to the second order model, some struc-

tures of the original matrices are preserved: undamped systems are approximated

by undamped systems and one-sided methods preserves symmetry and definiteness

of the matrices.

• Under some conditions, one-sided methods preserve stability of the original system.
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Chapter 5

NUMERICAL ALGORITHMS

In the previous chapter, the conditions on the projection matrices to match the moments

or Markov parameters were investigated. In this chapter, it is explained how to calculate

such projection matrices. We extend the famous Arnoldi and Lanczos algorithms to

calculate the desired bases.

5.1 Second order Arnoldi algorithm

Here, we extend the Arnoldi Algorithm 2.1 to find a basis for a given Second Order Krylov

Subspace. Consider the Second Order Krylov Subspace Kq(D̆, M̆, Ğ) with m starting

vectors. The algorithm given below finds an orthonormal basis for this subspace, i.e.

V̄T V̄ = I, and the columns of the matrix V̄ form a basis for the given subspace. The

algorithm is valid for multiple starting vectors and by deflation, the vectors that can be

spanned by the previous vectors are deleted.

Algorithm 5.1 Second order Arnoldi algorithm

0. (a) Delete all linearly dependent starting vectors to get m1 linearly independent

vectors.

(b) Set

v̄1 =
g1

‖g1‖2
.

where g1 is the first starting vector after deleting the dependent starting vectors

and set l1 = 0 for l1 ∈ Rn.

1. For i = 2, 3, · · · , do,
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(a) Calculating the next vector: if i ≤ m1 then set v̂i as the i-th starting vector

and l̂i = 0. Otherwise, set

v̂i = D̆v̄i−m1 + M̆li−m1 , l̂i = v̄i−m1.

(b) Orthogonalization: For j=1 to i-1 do,

h = v̂T
i v̄j , v̂i = v̂i − hv̄j , l̂i = l̂i − hlj.

(c) Deflation: If v̂i �= 0 then go to (1d).

Else, if l̂i �= 0 then v̄i = 0 and go to (1e).

Else, m1 = m1 − 1 and go to (1a) (but go to step (2) if m1 = 0).

(d) Normalization: v̄i = v̂i

‖v̂i‖2
and li = l̂i

‖v̂i‖2
.

(e) Increase i and go to step (1a).

2. Delete the zero columns of the matrix V̄ produced by deflation process.

To show that the Algorithm 5.1 produces the required basis for a given subspace, we

simplify step (1a) to [
v̂i

l̂i

]
=

[
D̆ M̆

I 0

]
︸ ︷︷ ︸

Ã

[
v̄i−m1

li−m1

]
.

From the definition 4.1, the basis of Kq(D̆, M̆, Ğ) is the upper half of the Krylov sub-

space Kq(Ã, B̃), where the lower half of B̃ is zero and the upper half is Ğ. Referring

to the Arnoldi Algorithm 2.1, the Algorithm 5.1, is quite similar with the changes in

orthogonalization and normalization to make the vectors v̄i orthonormal.

For deflation, it is checked if the new vector is a linear combination of the previous ones

which is done in step (1c). If only v̂i is expanded by v̄1, · · · , v̄i−1 (it is identified by

v̂i = 0), then the vector li should not be deleted to be used in the next iteration. In this

case, v̄i is substituted by zero (which is deleted at the end). If both vectors v̂i and l̂i are

expanded by v̄1, · · · , v̄i−1 and l1, · · · , li−1, respectively then the algorithm deletes both

vectors. In finite precision mathematics, the vectors should not be compared with zero

but with a small number. In fact, in step (1c), v̂i = 0 and l̂i = 0 should be substituted

with ‖v̂i‖2 < ε and ‖̂li‖2 < ε, respectively where ε is a small positive number.
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The second order Arnoldi algorithm not only works with the original matrices of the

second order model, but also it produces an orthogonal projection matrix. In moment

matching by means of the Second Order Krylov Subspaces, the Algorithm 5.1, needs

just an LU-factorization of the matrix K. Compared to the standard algorithms in state

space which use the LU-factorization of A of double dimension, the cost of computation

is reduced up to a factor of 8. Furthermore, the Algorithm 5.1 takes advantage of the

structures of the original matrices like symmetry, block diagonality or triangularity, pro-

duced by modeling (which happens quite often in finite element modeling) making the

LU-factorization cheaper.

The moments of the MIMO system (3.1) are p × m matrices mi, where each column is

related to an input and each row is related to an output of the system. In Algorithm 5.1,

the order of the reduced system is independent of the number of starting vectors which

is a great advantage specially when the system has a high number of inputs or outputs.

If j columns of the matrix V̄ (or W̄) are related to the k-th input (or output), then the

k-th column (or row) of the moment matrix matches up to at least the j − 1-st moment.

To calculate the projection matrices to match the moments about several point as pre-

sented in theorems 4.4 and 4.5, an extension of the second order Arnoldi algorithm can

be used. The algorithm should be run l times to match the moments about l distinct

points considering all previous vectors for orthogonalization.

5.2 Two-sided methods and second order Lanczos algorithm

In this section, the Lanczos algorithm [48] is modified to find a pair of bases for a given

pair of Second Order Krylov Subspaces to be used in two-sided methods. Consider the

Second Order Krylov Subspaces Kq1(D̆, M̆, Ğ) and Kq2(D̂, M̂, L̂) with m and p starting

vectors. The algorithm given below finds bi-orthogonal bases for these subspaces; i.e.

W̄T V̄ = Δ, where Δ is a diagonal matrix and the columns of the matrices V̄ and W̄

form bases for the given subspaces. Similar to the second order Arnoldi algorithm, the

algorithm uses deflation and is valid for multiple starting vectors.

Algorithm 5.2 Second order Lanczos algorithm

0. Start: Delete all linearly dependent starting vectors to get m1 and p1 independent
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starting vectors, ğ1, · · · , ğm1 and l̂1, · · · , l̂p1, for input and output Krylov subspaces,

respectively.

1. Set

v̄1 =
ğ1

‖ĝ1‖ , w̄1 =
l̂1

‖̂l1‖

2. Set hi = 0 for hi ∈ Rn and i = 1, · · · , m1.

3. Set ti = 0 for ti ∈ Rn and i = 1, · · · , p1.

4. For i = 2, 3, · · · do.

(a) Calculating the next vector: For the input Krylov subspace, if i ≤ m1 then

v̂i = ği. Otherwise, the next vectors is computed as follows,

v̂i = D̆v̄i−m1 + M̆hi−m1 , ĥi = v̄i−m1 .

For the output Krylov subspace, if i ≤ p1 then ŵi = l̂i. Otherwise, the next

vector is

ŵi = D̂w̄i−p1 + M̂ti−p1, t̂i = w̄i−p1.

(b) Orthogonalization: For j = 1, · · · , i − 1 do:

a = v̂T
j w̄i , b = ŵT

j v̄i,

v̂j = v̂j − av̄i , ŵj = ŵj − bw̄i

ĥj = ĥj − ahi , t̂j = t̂j − bti..

(c) Deflation on V̄: If v̂i �= 0 then v̄i = v̂i

‖v̂i‖2
and hi = ĥi

‖v̂i‖2
.

Else, if ĥi �= 0 then v̄i = 0 and go to step (4d).

Else, m1 = m1 − 1 and go to step (4a) (but go to step (5) if m1 = 0).

(d) Deflation on W̄: If ŵi �= 0 then w̄i = ŵi

‖ŵi‖2
and ti = t̂i

‖ŵi‖2
.

Else, if t̂i �= 0 then w̄i = 0 and go to step (4e).

Else, p1 = p1 − 1 and go to step (4a) (but go to step (5) if p1 = 0).

(e) Increase i and go to step (4a).

5. Delete the zero columns of the matrices V̄ and W̄ produced by deflation process.
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The discussion about deflation is quite similar to the second order Arnoldi algorithm.

A point in the case of deflation is that if for instance both vectors v̂i, ĥi are zero, the

algorithm calculates not only the new v̂i, ĥi but also it repeats the calculation of ŵi, t̂i

which is not necessary. In this case, we can define a flag that becomes true, if such a

deflation occurs and in the next iteration, only v̂i, ĥi are calculated. The same solution

can be used if ŵi and t̂i are zero.

Similar to the second order Arnoldi algorithm, in finite precision mathematics, in steps

(4c) and (4d) of the algorithm, we should check if the norm of the vectors are very small.

If we would like to have a pair of projection matrices with the property W̄T V̄ = I,

then we can easily apply the following algorithm after the Lanczos Algorithm 5.2 if Δ is

invertible.

Algorithm 5.3 Bi-normalization of the projection matrices

For i = 1, 2, · · · do.

1. Normalization: Set

v̄i =
v̄i√
|w̄T

i v̄i|
, w̄i =

w̄i

−
√

|w̄T
i v̄i|

2. Increase i and go to step (1).

If the part of deflation is neglected in Algorithm 5.2, for example when dealing with SISO

systems, then Algorithms 5.2 and 5.3 can easily be integrated into a single algorithm.

Otherwise combining the two algorithms is complicated.

The advantage of having bi-orthonormal projection matrices is that if one of the original

mass, damping or stiffness matrices are identity, this property is automatically preserved

in the reduced order system.

5.2.1 Two-sided second order Arnoldi

Like the two-sided Arnoldi algorithm in state space as discussed in section 2.4.3, in two-

sided methods, the second order Arnoldi algorithm can be used twice to calculate the
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projection matrices. To do so, we apply the Algorithm 5.2 first for the input Second

Order Krylov Subspace and then for the output Second Order Krylov Subspace, and the

matrices V̄ and W̄ are found. The resulting reduction scheme can be called a two-sided

second order Arnoldi method.

The difference of the two-sided second order Arnoldi algorithm to the second order Lanc-

zos algorithm is that the projection matrices are orthogonal V̄T V̄ = I,W̄TW̄ = I while

in the Lanczos algorithm the projection matrices are bi-orthogonal W̄T V̄ = Δ.

In the next chapter, it is shown that the transfer function of the reduced systems found by

the two-sided second order Arnoldi and the second order Lanczos algorithms are exactly

the same.

5.3 Conclusion and comparison

In this chapter, the standard algorithms of Krylov subspace methods, Arnoldi, Lanc-

zos and two-sided Arnoldi algorithms were extended to calculate bases of Second Order

Krylov Subspaces to calculate the projection matrices to reduce the order of second order

models.

Compared to the state space methods, half number of iterations is needed to reduce to the

same order and to match the moments about s0, the proposed algorithms uses a cheaper

calculation via doing the calculation in the size of the second order model and using only

an LU-factorization of the matrix K + s0D + s2
0M (compared to the LU-factorization of

A − s0E).
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Chapter 6

INVARIANCE PROPERTIES

In Chapter 4, the conditions on the projection matrices were discussed in order to match

some of the characteristic parameters of the original and reduced system. It was shown

that using any basis of Second Order Krylov Subspaces as projection matrices leads us

to the reduced systems with desired properties. In this chapter, first the effect of the

choice of bases on input-output behaviour of the reduced order system is investigated.

We also discuss if changing the realization or representation of the original model affects

the transfer function of the reduced system.

6.1 Invariance to change of bases

There can be several ways to calculate the basis for a given subspace. In order reduction

using Krylov subspaces, the main question is what are the effects of changing the basis

on input-output behaviour of the reduced order system. This question is answered by

the following theorems.

Theorem 6.1 The transfer function of the reduced order system found by a one-sided

reduction method in theorems 4.1, 4.4 and 4.6 with W̄ = V̄, is independent of the

particular choice of the bases V̄.

Proof: Consider two reduced order models by using bases V̄1 and V̄2 of the same

subspace. The reduced order models are{
V̄T

1 MV̄1z̈r1 + V̄T
1 DV̄1żr1 + V̄T

1 KV̄1zr1 = V̄T
1 Gu,

y = LV̄1zr1,
(6.1){

V̄T
2 MV̄2z̈r2 + V̄T

2 DV̄2żr2 + V̄T
2 KV̄2zr2 = V̄T

2 Gu,

y = LV̄2zr2,
(6.2)
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Because the columns of the matrix V̄2 are in the given subspace, they can be written as

a linear combination of the other bases which are columns of the matrix V̄1,

∃Q ∈ R
q×q : V̄2 = V̄1Q. (6.3)

Since V̄1 and V̄2 are full rank, the matrix Q is invertible. By substituting the equation

(6.3) into the equation (6.2), we find{
QT V̄T

1 MV̄1Qz̈r2 + QT V̄T
1 DV̄1Qżr2 + QT V̄T

1 KV̄1Qzr2 = QT V̄T
1 Gu,

y = LV̄1Qzr2,

Now, if we multiply the state equation with Q−T and apply the state transformation

zr1 = Qzr2, the reduced system (6.1) is found. This says that the transfer function of

reduced systems (6.1) and (6.2) are the same.

Based on the result of Theorem 6.1, the transfer function of the reduced system does

not depend on the numerical algorithm used to calculate the projection matrix. In fact,

any easy to calculate basis of the Second Order Krylov Subspace can freely be chosen

to calculate the reduce order system. Similar result can be proved for the two-sided

methods:

Theorem 6.2 The transfer function of the reduced order system found by a two-sided

reduction method as in theorems 4.2, 4.5 and 4.7, is independent of the particular choice

of the bases V̄ and W̄.

Proof: Consider two reduced order models by using bases V̄1,W̄1 and V̄2,W̄2. The

reduced order models are{
W̄T

1 MV̄1z̈r1 + W̄T
1 DV̄1żr1 + W̄T

1 KV̄1zr1 = W̄T
1 Gu,

y = LV̄1zr1,
(6.4){

W̄T
2 MV̄2z̈r2 + W̄T

2 DV̄2żr2 + W̄T
2 KV̄2zr2 = W̄T

2 Gu,

y = LV̄2zr2,
(6.5)

Similar to the proof of Theorem 6.1, we have,

∃Qv,Qw ∈ R
q×q : V̄2 = V̄1Qv,W̄2 = W̄1Qw, (6.6)

where the matrices Qv and Qw are invertible. By substituting equations (6.6) into equa-

tion (6.5) we find{
QT

wW̄T
1 MV̄1Qvz̈r2 + QT

wW̄T
1 DV̄1Qv żr2 + QT

wW̄T
1 KV̄1Qvzr2 = QT

wW̄T
1 Gu,

y = LV̄1Qvzr2,
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Now, if we multiply the state equation with Q−T
w and apply the state transformation

zr1 = Qvzr2, the reduced system (6.4) is found. This says that the transfer function of

reduced systems (6.4) and (6.5) are the same.

The main result of Theorem 6.2 is that any two-sided method like second order Lanczos

and two-sided second order Arnoldi algorithms as explained in section 5.2 leads to the

reduced systems with the same transfer functions.

6.2 Invariance to representation and realization

The effect of different modelling of a single system on the input-output behaviour of the

reduced order model is important as it is desired to achieve reduced systems with the

same transfer function, if the transfer function of the original system does not change.

First, we check if the transfer function of the reduced system changes when the state

equation of the original model is multiplied with a constant invertible matrix (change of

representation).

Theorem 6.3 In order reduction based on projection using a two-sided method as men-

tioned in theorems 4.2, 4.5 and 4.7, changing the representation of the original system

does not change the input-output behaviour of the reduced order model.

Proof: Consider two different representations of an original system{
Mz̈ + Dż + Kz = Gu,

y = Lz,
(6.7){

TMz̈ + TDż + TKz = TGu,

y = Lz,
(6.8)

where T is an invertible matrix. For reducing the representation (6.8), the input Second

Order Krylov Subspace is

Kq1(−(TK)−1TD,−(TK)−1TM,−(TK)−1TG) = Kq1(−K−1D,−K−1M,−K−1G),

which is equal to the input Second Order Krylov Subspace of the representation (6.7).

The output Second Order Krylov Subspace for the representation (6.8) is,

Kq2(−(TK)−T (TD)T ,−(TK)−T (TM)T ,−(TK)−TLT ) =

Kq2(−T−TK−TDTTT ,−T−TK−TMT TT ,−T−TK−TLT ).
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The basic blocks of this subspace are,{
P̃0 = −T−T K−TLT , P̃1 = −T−TK−TDTTTP0 = T−TK−TDTK−TLT

P̃i = −T−TK−TDTTT P̃i−1 − T−TK−TMT TT P̃i−2, i = 2, 3, · · · (6.9)

The basic blocks of the output Second Order Krylov Subspace of representation (6.7)

are, {
P0 = −K−TLT , P1 = K−TDTP0

Pi = −K−T DTPi−1 −K−TMTPi−2, i = 2, 3, · · · (6.10)

By induction, we prove that P̃i = T−TPi for i = 1, 2, · · · . By comparing equations (6.9)

and (6.10), it is clear that P̃0 = T−TP0 and P̃1 = T−TP1. Now, consider this relation is

true for i = 1, 2, · · · , j − 1. For i = j, we have,

P̃j = −T−TK−TDTTT P̃j−1 − T−TK−TMT TT P̃j−2

= −T−TK−TDTTTT−TPj−1 − T−TK−TMT TTT−TPj−2

= −T−TK−TDTPj−1 − T−TK−TMT Pj−2

= T−T
(−K−TDTPj−1 − K−TMTPj−2

)
= T−TPj.

According to Theorem 6.2, we can choose any bases of the Krylov subspaces. So, we

choose the basic blocks for projection. Therefore for both representations, V̄ is the same

because the input Krylov subspace is independent of representation. If the other matrix

for representation (6.7) is W̄, for representation (6.8), it is T−TW̄. Thus, the reduced

systems of the representations (6.7) and (6.8) are,{
W̄TMV̄z̈r + W̄TDV̄żr + W̄TKV̄zr = W̄TGu,

y = LV̄zr,{
W̄TT−1TMV̄z̈r + W̄TT−1TDV̄żr + W̄TT−1TKV̄zr = W̄TT−1TGu,

y = LV̄zr,

and it is clear that the two realizations are exactly the same.

Therefore, before applying a two-sided reduction methods, we can multiply the state

equation with an invertible matrix without any change on the transfer function of the

reduced system. In one-sided methods using input Second Order Krylov Subspace, a

related theorem is not valid, although the corresponding subspace is independent of the

representation. In this case the reduced order system after changing the representation
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is, {
V̄TTMV̄z̈ + W̄TTDV̄ż + W̄TTKV̄z = W̄TTGu,

y = LV̄z,

where the effect of T is not removed after reduction and reduced systems with different

transfer function are achieved. In application, this can be an essential disadvantage, since

it makes results depending on the representation.

Another important property to be investigated is the effect of realization of the original

system on the reduced order system.

Theorem 6.4 In two-sided second order Krylov method as in theorems 4.2, 4.5 and 4.7,

changing the realization of the original system does not change the input-output behaviour

of the reduced order model.

Proof: Consider two realizations of the original system using an invertible matrix T,{
Mz̈ + Dż + Kz = Gu,

y = Lz,
(6.11){

MT¨̃z + DT˙̃z + KTz̃ = Gu,

y = LTz̃,
(6.12)

Because the two-sided method is independent of the representation, we can use the repre-

sentation in equation (6.12). For the realization (6.12), the output Second Order Krylov

Subspace is

Kq2(−(KT)−T (DT)T ,−(KT)−T (MT)T ,−(KT)−T (LT)T ) =

Kq2(−K−TDT ,−K−TMT ,−K−TLT ),

which is equal to the output Second Order Krylov Subspace of the realization (6.11).

The input Second Order Krylov Subspace for the realization (6.12) is,

Kq1(−(KT)−1DT,−(KT)−1MT,−(KT)−1G) =

Kq1(−T−1K−1DT,−T−1K−1MT,−T−1K−1G),

The basic blocks of this subspace are,{
P̃0 = −T−1K−1G , P̃1 = −T−1K−1DTP0 = −T−1K−1DK−1G

P̃i = −T−1K−1DTP̃i−1 − T−1K−1MTP̃i−2, i = 2, 3, · · · (6.13)
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The basic blocks of the input Second Order Krylov Subspace of realization (6.11) is,{
P0 = −K−1G , P1 = −K−1DP0

Pi = −K−1DPi−1 −K−1MPi−2, i = 2, 3, · · · (6.14)

By induction, we prove that P̃i = T−1Pi for i = 1, 2, · · · . By comparing equations (6.13)

and (6.14), it is clear that P̃0 = T−1P0 and P̃1 = T−1P1. Now, consider this relation is

true for i = 1, 2, · · · , j − 1. For i = j, we have,

P̃j = −T−1K−1DTP̃i−1 − T−1K−1MTP̃i−2

= −T−1K−1DTT−1Pi−1 − T−1K−1MTT−1Pi−2

= T−1
(−K−1D−1Pi−1 −K−1M−1Pi−2

)
= T−1Pj.

According to Theorem 6.2, we can choose any bases of the Krylov subspaces. So, we

choose the basic blocks for projection. With this choice, for both realizations, W̄ is the

same because the output Krylov subspace is independent of realization. If the other

matrix for the realization (6.11) is V̄, for the realization (6.12), it is T−1V̄. Thus, the

reduced systems of the realizations (6.11) and (6.12) are,{
W̄TMV̄z̈r + W̄TDV̄żr + W̄TKV̄zr = W̄TGu,

y = LV̄zr,{
W̄TMV̄T

−1
T¨̃zr + W̄TDV̄T

−1
T˙̃zr + W̄TKV̄T

−1
Tz̃r = W̄TGu,

y = LV̄T
−1

Tz̃r,

and it is clear that the two realizations are exactly the same.

In both theorems 6.3 and 6.4, a particular pair of bases is used for the proof leading to

the same realization. In practice, by using the same numerical algorithm, reduced order

systems with different realizations but the same transfer function are found.

If a one-sided method is applied, changing the realization of the original model changes

the transfer function of the reduced order model. By a one-sided method, the reduced

order model of the realization (6.12) is,{
V̄TT−TMV̄¨̃zr + V̄TT−TDV̄˙̃zr + V̄TT−TKV̄z̃r = V̄TT−TGu,

y = LV̄z̃r,

which is in general different from the reduced order model of the realization (6.11).
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Table 6.1: Invariance properties of Second Order Krylov subspace methods and its effect
on the reduced order model

Method Subspace Used Number of matching Change of Basis

Parameters (SISO)

One-sided

- Input Krylov q Parameters Transfer function

- W̄ = V̄ is unchanged

- output Krylov q Parameters Transfer function

- V̄ = W̄ is unchanged

Two-sided
- output Krylov 2q Parameters Transfer function

- Input Krylov is unchanged

Method Subspace Used Change of Change of

Representation Realization

One-sided

- Input Krylov Transfer function Transfer function

- W̄ = V̄ changes changes

- output Krylov Transfer function Transfer function

- V̄ = W̄ changes changes

Two-sided
- output Krylov Transfer function Transfer function

- Input Krylov is unchanged is unchanged

6.3 Conclusion

In this chapter, the invariance properties of the Second Order Krylov methods were in-

vestigated. The results of our invariance properties are summarized in Table 6.1. Similar

to the state space Krylov methods, the one-sided methods possess the weakest invari-

ance properties. Reduced order models using two-sided methods not only match more

moments, but also their input-output behaviour is independent of the realization and

representation of the original system.
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Chapter 7

GENERALIZATION TO R-TH ORDER MODELS

The Krylov subspace methods can be generalized to reduce sets of differential equations

of orders higher than 2 [32]. We generalize second order Krylov subspace methods to

reduce a large set of R-th order differential equations by applying the projection directly

to the original system and extend the definition of Krylov subspaces to higher orders; see

also [38] for more discussions and alternatives.

Consider the system of the form,{
ARz(R)(t) + AR−1z

(R−1)(t) + · · ·+ A0z = Gu(t),

y(t) = Lz(t),
(7.1)

with r, R-th order differential equations, m inputs and p outputs. The order of the

system (7.1) is N = R · r.
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Equivalently, the model (7.1) can be rewritten in state space as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

F1 0 · · · 0 0

0 F2 · · · 0 0
...

...
. . .

...
...

0 0 · · · FR−1 0

0 0 · · · 0 AR

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
E

⎡
⎢⎢⎢⎢⎢⎢⎣

ż

z̈
...

z(R−1)

zR

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ẋ

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 F1 · · · 0 0

0 0
. . . 0 0

...
...

. . .
. . .

...

0 0 · · · 0 FR−1

−A0 −A1 · · · −AR−2 −AR−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
A

⎡
⎢⎢⎢⎢⎢⎢⎣

z

ż
...

z(R−2)

z(R−1)

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
x

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

G

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
B

u,

y =
[

L 0 · · · 0 0
]

︸ ︷︷ ︸
C

⎡
⎢⎢⎢⎢⎢⎢⎣

z

ż
...

z(R−2)

z(R−1)

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

where Fi ∈ RR×R are invertible matrices for i = 1, · · ·R − 1.

The i-th moment (about zero) of the system (7.1) is,

mi =

⎡
⎢⎢⎢⎢⎣

LT

0
...

0

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

−A−1
0 A1 · · · −A−1

0 AR−1 −A−1
0 AR

I
... 0 0

...
. . .

...
...

0 · · · I 0

⎤
⎥⎥⎥⎥⎦

i ⎡
⎢⎢⎢⎢⎣

−A−1
0 G

0
...

0

⎤
⎥⎥⎥⎥⎦ (7.2)

Definition 7.1 The R-th order Krylov subspace is defined as,

Kq1(Ã1, · · · , ÃR,B1) = colspan{P0,P1, · · · ,Pq1−1}, (7.3)

where {
P0 = B1 , Pi = 0 for i < 0

Pi = A1Pi−1 + · · · + ARPi−R, i = 1, 2, · · · (7.4)

and Ai ∈ Rr×r,B1 ∈ Rr×m are constant matrices.
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To match the moments of an R-th order model, the matrix A0 should be invertible. By

this assumption, the subspaces Kq1(−A−1
0 A1, · · · ,−A−1

0 AR,−A−1
0 G) and

Kq2(−A−T
0 AT

1 , · · · ,−A−T
0 AT

R,−A−T
0 LT ) are used for moment matching that are called

the input and output R-th order Krylov subspaces for the system (7.1).

Lemma 7.1 Consider the input and output R-th order Krylov subspaces for the system

(7.1) with corresponding basic blocks Pi and P̃i, respectively. Then,

mi = LPi = P̃T
i G, i = 0, 1, · · · .

By applying a projection directly to the system (7.1), a reduced model with the same

structure can be found,{
W̄TARV̄z

(R)
r + · · ·+ W̄TA1V̄żr + W̄TA0V̄zr = W̄TGu(t),

y(t) = LV̄zr(t).
(7.5)

For choosing V̄ and W̄ the R-th order Krylov-subspaces are used, as described by the

following theorems. The proofs are quite similar to the second order case.

Theorem 7.1 If the columns of the matrix V̄ in (7.5), form a basis for the input R-th

order Krylov subspace and W̄ is chosen such that W̄TA0V̄ is nonsingular, then the first

q1 moments of the original and reduced order models match.

Theorem 7.2 If the columns of the matrix V̄ and W̄ used in (7.5), form bases for the

input and output R-th order Krylov subspaces, respectively, both with the same rank, then

the first q1 + q2 moments of the original and reduced order systems match. It is assumed

that A0 and W̄TA0V̄ are invertible.
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Chapter 8

REDUCTION OF SECOND ORDER SYSTEMS

BY BACK CONVERSION

A disadvantage of Second Order Krylov methods is that they match smaller number of

moments compared to the state space methods. In order to match more characteristic

parameters, in this chapter, we propose a method based on reducing in state space and

back conversion into second order form where a maximum number of parameters match;

up to double compared to the Second Order Krylov Subspace method.

In this method, the second order system is first converted into a state space model (i.e. a

set of first order differential equations) and then its order is reduced by applying Krylov-

subspace methods as described in chapter 2. However, in doing so, the reduced-order

system will be of the first-order type as well, making a physical interpretation difficult.

The idea is to convert the reduced state space model back into the second order form to

recover the original structure.

One of the methods proposed in [59], was based on applying the standard balancing and

truncation to the equivalent state space model and then convert it back to the second

order structure using a similarity transformation. The disadvantage of using the approach

proposed in [59] is that the output equation of the final second order model is in general

a linear combination of the second order state vector and its derivative, which is different

from the structure of the original second order system (3.1).

As we showed in Chapter 3, the first Markov parameter of the second order system (3.1)

is zero. This can be used as a key point to convert a state space model into second order

form such that the output equation has the same structure as the original system.

In [55, 56, 75], we showed that by matching the first Markov parameter and a number

of moments, the reduced order system can be transformed into second order form. This



Chapter 8: Reduction of Second Order Systems by Back Conversion 75

method has been extended to MIMO case in [77] and a different way to calculate the

back transforming procedure has been proposed in [18].

8.1 Reduction by matching the moments and the first Markov

parameter

As mentioned before, when the method of Chapter 2 is applied to the state space model

(2.1), it destroys the second order structure but can match the maximum number of

moments using a two-sided method. The idea to is to calculate a reduced model from

the state space model (2.1) and then convert this model to a second order representation.

This conversion requires the characteristic property of the second order type system which

is M0 = 0.

Consider the state space system,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
I 0

0 M

]
︸ ︷︷ ︸

E

[
ż

z̈

]
︸ ︷︷ ︸

ẋ

=

[
0 I

−K −D

]
︸ ︷︷ ︸

A

[
z

ż

]
︸ ︷︷ ︸

x

+

[
0

G

]
︸ ︷︷ ︸

B

u,

y =
[

L 0
]

︸ ︷︷ ︸
C

[
z

ż

]
.

(8.1)

which is equivalent to the second order system (3.1). As mentioned in Chapter 2, a

Krylov subspace method can be applied to reduce the system (8.1) to match the first

Markov parameter together with some of the moments [76, 88] resulting in,⎧⎪⎪⎨
⎪⎪⎩

WTEV︸ ︷︷ ︸
Er

ẋr = WTAV︸ ︷︷ ︸
Ar

xr + WTB︸ ︷︷ ︸
Br

u,

y = CV︸︷︷︸
Cr

xr.
(8.2)

In the following, we remind two related theorems in one and two-sided methods.

Theorem 8.1 If the columns of V used in (8.2), form a basis for the Krylov subspace

KQ1(A
−1E,E−1B) and the matrix W is chosen such that the matrices Ar and Er are

nonsingular, then the first Q1−1 moments and the first Markov parameter of the original

and reduced order systems match.
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We typically choose W = V.

Theorem 8.2 If the columns of the matrices V and W used in (8.2), form bases for

Krylov subspaces KQ1(A
−1E,E−1B) and KQ2(A

−TET ,A−TCT ), respectively, both with

the same rank, then the first Q1 + Q2 − 1 moments and the first Markov parameter of

the original and reduced order systems match. It is assumed that A, E, Ar and Er are

nonsingular.

An alternative to Theorem 8.2 is using the Krylov subspaces KQ1(A
−1E,A−1B) and

KQ2(A
−TET ,E−TCT ). To match the moments about s0, we should simply substitute the

matrix A with A − s0E in the Krylov subspaces. To find the projection matrices based

on Theorems 8.1 and 8.2, the standard algorithms in section 2.4 can be applied.

Because the first Markov parameter of a second order model is zero, by matching the

first Markov parameter, it remains zero in the reduced order model.

8.2 Conversion into second order type model

In the following, we show how a Q-th order (Q is even) state space model with the

property M0 = 0 can be converted into a second order representation (3.1) with q = Q
2

second order differential equations.

Without loss of generality, we consider that the matrix Er in (8.1) is the identity matrix

(if not, we can multiply the state equation by E−1
r ), and the state space model to be

converted to second order form is,{
ẋr = Arxr + Bru,

y = Crx.
(8.3)

The first Markov-parameter is assumed to be zero,

M0 = CrBr = 0. (8.4)

Now, we introduce a vector zr defined as

zr = Czxr, (8.5)

with Cz =

[
Cr

R

]
, (8.6)
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where the matrix R ∈ R
(q−p)×Q is chosen such that the matrix Cz is full row rank and

RBr = 0. This can be achieved by constructing a sequence of linear independent vectors

in the Kernel of Br. In section 8.2.1, there is an option how to find R.

In fact, the variable zr is an extended output such that the resulting system with output

zr is observable and the first Markov parameter remains zero. The vector zr is intended

to become the vector of variables of the reduced second order system, we are looking for.

From the definition (8.5), we find the time derivative

żr = Czẋr = CzArxr + CzBru = CzArxr. (8.7)

Therefore, (with (8.5) and (8.7)), the relation between the state vector xr and zr, żr is,[
zr

żr

]
=

[
Cz

CzAr

]
xr. (8.8)

This defines the similarity transformation xr = Txt where,

T =

[
Cz

CzAr

]−1

,xt =

[
zr

żr

]
, (8.9)

assuming that the matrix T exists. A necessary condition is that the matrix

[
Cr

CrAr

]
is

full rank which is true for observable systems. A sufficient condition for the SISO case is

that the system (8.3) is controllable that will be discussed later, but for the MIMO case,

a sufficient condition is not known, yet. Examples show that probably almost always

such a matrix T exists.

Applying this transformation to the system (8.3) leads to,{
ẋt = T−1ArTxt + T−1Bru,

y = CrTxt.
(8.10)

Now, we show that this model is in the form (8.1) and by comparison can directly be

converted into the representation (3.1), and the matrices Mr, Dr, Kr, Gr and Lr are

found. Considering the facts that,

T−1 =

[
Cz

CzAr

]
, CzT =

[
I 0

]
(8.11)

CzArT =
[

0 I
]

, CzBr = 0, (8.12)
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the system (8.10) can be rewritten as follows,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
I 0

0 I

][
żr

z̈r

]
=

[
CzArT

CzA
2
rT

][
zr

żr

]
+

[
CzBr

CzArBr

]
u,

y = CrT

[
zr

żr

]
.

By using equations (8.12), we have,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
I 0

0 Mr

][
żr

z̈r

]
=

[
0 I

−Kr −Dr

][
zr

żr

]
+

[
0

Gr

]
u,

y =
[

Lr 0
] [

zr

żr

]
.

where,

Mr = I , Gr = CzArBr ,
[
−Kr −Dr

]
= CzA

2
rT. (8.13)

The output equation in (8.10), y = CrTxt, simplifies to y =
[

I 0 · · · 0
]
xt, because

Cr is the upper block of T−1. Thereby, we conclude

Lr =
[

I 0 · · · 0
]
. (8.14)

which determines all parameters of the reduced model of second order type,{
Mrz̈r + Drżr + Krzr = Gru,

y = Lrzr.

So, the sufficient conditions for a state space model to be converted to a second order

type model are

• The first Markov parameter is zero.

• The order Q of the system is even.

• The (fictitious) output vector, zr, can be defined such that the matrix T from (8.9)

exists.
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8.2.1 Finding R in equation (8.6)

One way to find the matrix R in equation (8.6) is to find the vectors that are orthogonal

to the columns of the matrices Br and CT
r . Here we use the QR-factorization [35] to find

the matrix R.

Consider the QR-factorization of the matrix,

[
Br CT

r

]
Q×(m+p)

= Q

⎡
⎢⎢⎢⎢⎣

R11 R12

0 R22

...
...

0 0

⎤
⎥⎥⎥⎥⎦ .

Based on the properties of the QR-factorization, the matrix Q is orthogonal. Now, we

have,

0 =
[

0(n−(m+p))×(m+p) In−(m+p)

]
QTQ

⎡
⎢⎢⎢⎢⎣

R11 R12

0 R22

...
...

0 0

⎤
⎥⎥⎥⎥⎦ = R1

[
Br CT

r

]
,

where R1 is the Q − (m + p) last columns of the matrix Q. Therefore Q − (m + p)

vectors are found that are orthogonal to the columns of Br. Because of orthogonality of

the matrix R1 to CT
r , all columns of R1 are linearly independent of the rows of Cr. Any

q − p rows of the matrix R1 can be chosen as the rows of the matrix R.

So, the steps of reducing second order type models are:

1. Convert the original second order model into the state space representation.

2. Apply an order reduction method as described in Chapter 2, to match the first

Markov parameter (which equals zero) and some of the moments; choose an even

order Q. The reduced model is then converted to the state space representation

(8.3) by multiplying by E−1
r .

3. Convert the reduced order state space model into a second order type model by

first constructing a matrix Cz as in equation (8.6), and then calculating the trans-

formation matrix T from (8.9). Finally, the matrices Mr, Dr, Kr, Gr and Lr of

the reduced model of type (3.1) are computed from equations (8.13) and (8.14).
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Different from the approach in [59], in the second order reduced model, the same as in

the original system, the output does not depend on derivative of the second order state

vector. This can be done by keeping the first Markov parameter equal to zero.

8.3 Numerical issues

In order reduction of the state space system equivalent to the second order system (3.1)

as described in section 2, it seems to be a need of calculating the LU-factorization of

the matrices A and E of dimension N = 2n. Calculating these factorizations and then

using them in the Arnoldi or Lanczos algorithm to find the projection matrices is not

recommended for numerical reasons but, it is better to consider the structure of these

matrices as described subsequently.

From (11.8) we observe that,

E−1 =

[
I 0

0 M

]−1

=

[
I 0

0 M−1

]

A−1 =

[
0 I

−K −D

]−1

=

[
−K−1D −K−1

I 0

]
. (8.15)

Now, the starting vectors of the input Krylov subspace are,[
0

Γ

]
=

[
I 0

0 M

]−1 [
0

G

]
=

[
0

M−1G

]
.

Therefore, the set of linear equations MΓ = G must be solved. For the other vectors to

be calculated in each iteration, we have,

v̂j =

[
v̂1j

v̂2j

]
=

[
0 I

−K −D

]−1 [
I 0

0 M

][
v1(j−m)

v2(j−m)

]

=

[
−K−1

(
Dv1(j−m) + Mv2(j−m)

)
v1(j−m)

]
,

and only the linear equation Kv̂1j = − (
Dv1(j−m) + Mv2(j−m)

)
must be solved in each

iteration.

In this way finding the LU -factorizations of the matrices K and M is necessary. This

is done only once and before starting the iterations so that within the iterations, only

triangular linear equations are to be solved (which is very fast and accurate).
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The steps of finding the matrix V as a basis of the Krylov subspace KQ(A−1E,

E−1B) for the system (3.2) by Arnoldi algorithm are shown in the following algorithm:

Algorithm 8.1 Arnoldi algorithm for second order systems

0. Start: Delete all linearly dependent columns of G to find G1 with m1 independent

columns.

1. Calculate the LU factorizations M = LMUM and K = LKUK .

2. Solve two sets of triangular equations LM (UMΓ) = G1.

3. Set v1 = 1
‖γ1‖2

[
0

γ1

]
where γ1 is the first column of Γ.

4. For j = 2, 3, · · · , do,

(a) Calculating the next vector: If j ≤ m1 the next vector is v̂j =

[
0

γj

]
.

Else, solve two triangular equations LK(UK v̂1j) = − (
Dv1(j−m1) + Mv2(j−m1)

)
and set v̂j =

[
v̂1j

v1(j−m1)

]
.

(b) Orthogonalization: For i=1 to j-1 do,

hi,j−1 = v̂T
j vi , v̂j = v̂j − hi,j−1vi.

(c) Normalization: If v̂j is zero, reduce m1 to m1 − 1 and if m1 is nonzero go to

step (4a) and if m1 is zero break the loop. Else, if v̂j �= 0 the j-th column of

V is

hj,j−1 = ‖v̂j‖2 , vj =
v̂j

hj,j−1
.

(d) Increase j and go to step (4a).

In a two-sided method using the Lanczos algorithm, similar changes can be helpful to

reduce the numerical effort. By considering the Krylov subspaces KQ1(A
−1
1 E1,A

−1
1 B)

and KQ2(A
−T
1 ET

1 ,E−T
1 C), the LU -factorization of M is not necessary making reduction

procedure cheaper.
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8.4 Matching the moments about s0 �= 0

As discussed in Chapter 2, the moments of a state space model about a point s0 �= 0,

can also be matched by applying a projection to the original state space model. This is

normally done by substituting the matrix A with A−s0E in the definition of the Krylov

subspaces. Such a substitution changes the structure of the matrices of a second order

model and the Algorithm 2.1 can not be helpful anymore.

As discussed in section 4.3, by substituting the matrix K by K + s0D + s2
0M and the

matrix D by D+ 2s0M in the definition of the moments about zero, the moments about

s0 is found. To match the moments about s0, the same substitution as in the moments

should be done in the definition of input and output Krylov subspaces as in the following

algorithm:

Algorithm 8.2 Algorithm to match the moments about s0

1. Set

E =

[
I 0

0 M

]
,A =

[
0 I

−K − s0D − s2
0M −D − 2s0M

]

B =

[
0

G

]
,C =

[
L 0

]

2. Apply the algorithm 2.1 to find the matrix V using the structure of the state space

matrices in step 1.

3. Find the state space reduced system as follows,

Er = VTEV,Ar = VTAV + s0Er,br = VTb, cT
r = cTV

The advantage of the Algorithm 8.2 is that the structure of the matrices E,A is preserved

and the Algorithm 2.1 can be applied by cheaper calculation compared to the standard

algorithms without considering the structure of the original system.
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8.5 Conclusion

In this chapter, a new method in order reduction of large scale second order models

was introduced, resulting in reduced systems having the same structure as the original

model. We reduced the equivalent state space system to match the first Markov parameter

(which is zero for second order models) and some of the first moments. The second order

structure is then recovered by applying a similarity transformation.

This method matches a maximum number of parameters (with the first Markov para-

meter among them) which is doubled compared to the method of part II. By knowing

that the most expensive part of the numerical algorithms to calculate the projection

matrices is the LU -factorization, the numerical effort of second order Krylov subspace

and back conversion by a two-sided method is very close to each other where only the

LU -factorization of the matrix K is necessary while in the back conversion method based

on only input Krylov subspace the LU -factorization of the matrices K and M should

be calculated. However, to reduce the original model to the same order, the number of

iterations in the back conversion method is double the second order Krylov method.

Because the back conversion procedure does not have any influence on stability of the

system, the conditions to preserve stability of a second order system using the method

proposed in this chapter is the same as the conditions in section 4.5 when a one-sided

method with the choice W = V is applied.
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Chapter 9

EXISTENCE OF THE TRANSFORMATION

MATRIX

In this chapter we investigate the conditions to find a similarity transformation matrix

T to transform the system, {
Erẋr = Arxr + Bru,

y = Crxr,
(9.1)

of an even order, into second order form,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
żr

z̈r

]
=

[
0 I

−Kr −Dr

][
zr

żr

]
+

[
0

Gr

]
u,

y =
[

Lr 0
] [

zr

żr

]
.

(9.2)

First, we discuss some of the necessary conditions and then we find the sufficient condi-

tions for SISO case.

9.1 The necessary conditions

In the following, some necessary conditions for the existence of the transformation matrix

is given. The most important difference between a general state space model and the one

models a second order behaviour is the notion of Markov parameter as formulated in the

following Lemma.

Lemma 9.1 For every MIMO system (9.1), if CrBr �= 0 then, there is no nonsingular

matrix T to transform it into (9.2).
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Proof: If such a transformation exists by considering system (9.2) there is the fol-

lowing contradiction,

0 =
[

Lr 0
] [

0

Gr

]
=

[
Lr 0

] (
T−1T

) [
0

Gr

]

=
([

Lr 0
]
T−1

)(
T

[
0

Gr

])
= CrBr �= 0.

In Lemma 9.1, as we know CrBr is the first Markov parameter of the system (9.1). In

fact, the first Markov parameter of every second order system of the form (9.2) is zero

and this is a necessary condition for the existence of T. If the first Markov parameter

is nonzero, then the output of the transformed system in second order form depends on

the derivative of the states and the structure of CrT =
[

0 Lr

]
can not be achieved.

Theorem 9.1 For every MIMO system (9.1), if Cr is full rank and

[
Cr

CrAr

]
is singu-

lar, then there is no nonsingular matrix T to transform the system into (9.2).

Proof: Consider that

[
Cr

CrAr

]
is singular and such a transformation T exists. We

have

CrT =
[

Lr 0
]

=⇒ Cr =
[

Lr 0
] [

T1

T2

]
︸ ︷︷ ︸

T−1

= LrT1.

From the other side we have the relation,

T−1ArT =

[
0 I

−Kr −Dr

]
=⇒ T−1Ar =

[
0 I

−Kr −Dr

]
T−1 =⇒[

T1

T2

]
Ar =

[
0 I

−Kr −Dr

][
T1

T2

]
=⇒[

T1Ar

T2Ar

]
=

[
T2

−KrT1 − DrT2

]
=⇒

T1Ar = T2 =⇒ T−1 =

[
T1

T1Ar

]
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Because T−1 is nonsingular, its multiplication with the full rank matrix

[
Lr 0

0 Lr

]
should be full rank but,[

Lr 0

0 Lr

]
T−1 =

[
LrT1

LrT1Ar

]
=

[
Cr

CrAr

]

which is not full rank by the assumption and such a nonsingular matrix T does not

exist.

The assumption of Theorem 9.1 for MIMO case can be checked easily and for SISO

systems, observability guaranties this necessary condition.

Corollary 9.1 For every SISO system,{
ẋr = Arxr + bru,

y = cT
r xr,

(9.3)

if

[
cT

r

cT
r Ar

]
is singular and cr �= 0 then there is no nonsingular matrix T to transform

it into second order form.

The following theorem is dual to Theorem 9.2, related to the matrix Br and controllability.

Theorem 9.2 For every MIMO system (9.1), if Br is full rank and
[

Br ArBr

]
is

singular, then there is no nonsingular matrix T to transform it into (9.2).

Proof: Consider that
[

Br ArBr

]
is singular and such a transformation T exists.

We have

T−1Br =

[
0

Gr

]
=⇒ Br =

[
T1 T2

]
︸ ︷︷ ︸

T

[
0

Gr

]
=⇒ Br = T2Gr.

From the other side, we have,

ArBr = T(T−1ArT)T−1Br =
[

T1 T2

] [
0 I

−Kr −Dr

][
0

P

]
= T1Gr −T2DrGr
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Now, multiplication of the full rank matrix

[
0 Gr

Gr 0

]
with every invertible matrix

should be full rank,

T

[
I 0

Dr I

][
0 Gr

Gr 0

]
=

[
T1 T2

] [
0 Gr

Gr −DrGr

]

=
[

T2Gr T1Gr − T2DrGr

]
=

[
Br ArBr

]
which is not full rank by the assumption and such a nonsingular matrix T does not

exist.

Corollary 9.2 For every SISO system (9.3), if
[

br Arbr

]
is singular and br �= 0

then there is no nonsingular matrix T to achieve the structure in (9.2).

For the SISO systems, if the state space model is minimal, then the conditions of the

Theorems 9.1 and 9.2 are automatically satisfied.

9.2 Sufficient conditions for SISO case

In this section, we investigate the sufficient conditions for the existence of a similarity

transformation by which a state space SISO model can be transformed to a set of second

order differential equations. We consider the SISO system, (9.3) of even order Q where

the first Markov parameter is zero. We study the possibility of transforming this system

to a second order system.

Theorem 9.3 For every controllable SISO system (9.3) with cT
r br = 0, there exists a

nonsingular matrix of the form,

T =

⎡
⎢⎢⎢⎣

cT
r

R

cT
r Ar

RAr

⎤
⎥⎥⎥⎦ ,

such that Rbr = 0.
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Proof: Because the system is controllable, without loss of generality, we just consider

that the system is in controller canonical form [46],⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎢⎢⎣

ẋr1

ẋr2

...

ẋrQ−1

ẋrQ

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−ar0 −ar1 ar2 · · · −arQ−1

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

xr1

xr2

...

xrQ−1

xrQ

⎤
⎥⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎣

0

0
...

0

1

⎤
⎥⎥⎥⎥⎥⎥⎦u,

y =
[

cr1 cr2 · · · crQ−1 crQ

]
xr,

(9.4)

Now, consider the last nonzero element of the vector cr is crk; i.e.

cT
r =

[
cr1 · · · crk 0 · · · 0

]
where crk �= 0. (9.5)

Because cT
r br = 0, with the structure of br we have crQ = 0 and therefore k < Q. We

search for the vectors ri for i = 1, · · · , q − 1 that are orthogonal to br such that the

matrix,

T̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cT
r

cT
r Ar

rT
1

rT
1 Ar

...

rT
n−1

rT
n−1Ar

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

is full rank, where q = Q
2
. By interchanging the rows of the matrix T̄, the matrix T is

found. To be orthogonal to br, it is sufficient to have zero in the last entry and by using

the structure of the matrix Ar, the entries of rT are shifted to right when multiplied by

Ar. In the following, we construct the matrix T̄ in two cases:
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First, consider the value of k is odd. The matrix T̄ can be chosen as,

T̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cr1 cr2 · · · crk−1 crk 0 0 · · · 0

0 cr1 · · · crk−2 crk−1 crk 0 · · · 0

1 0 · · · 0 0 0 0 · · · 0

0 1 · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
...

...
...

0 0 · · · 1 0 0 0 · · · 0

0 0 · · · 0 0 0 1 · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 · · · 0 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9.6)

The matrix T̄ is square and by knowing that crk �= 0, it is obvious that the rows are

linearly independent and T̄ is full rank.

If the value of k is even, the matrix T̄ can be chosen as,

T̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cr1 cr2 · · · crk−2 crk−1 crk 0 0 0 · · · 0

0 cr1 · · · crk−3 crk−2 crk−1 crk 0 0 · · · 0

1 0 · · · 0 0 0 0 0 0 · · · 0

0 1 · · · 0 0 0 0 0 0 · · · 0
...

...
. . .

...
...

...
...

...
...

...
...

0 0 · · · 1 0 0 0 0 0 · · · 0

0 0 · · · 0 α 0 1 0 0 · · · 0

0 0 · · · 0 0 α 0 1 0 · · · 0

0 0 · · · 0 0 0 0 0 1 · · · 0
...

...
...

...
...

...
...

...
...

. . .
...

0 0 · · · 0 0 0 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9.7)

The value of α should be chosen such that αc2
rk �= crk−2crk−c2

rk−1. Again, the matrix T̄ is

square and by knowing that crk �= 0, it is obvious that the rows are linearly independent

and T̄ is full rank.

Consider the similarity transformation (8.9). According to Theorem 9.3, such a trans-

formation exists if the system is controllable. This condition is satisfied for all reduced

system because the first step of reduction is finding a minimal system and a reduced

system found by a Krylov subspace method using input Krylov subspace is controllable.

So, the sufficient conditions for a SISO state space model to be converted to a second

order type model are:
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• The system is controllable.

• The first Markov parameter is zero.

• The order of the system is even.

An alternative proof can be found in [38] where instead of a controller canonical form an

upper Hessenberg matrix is considered leading to the same result.
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Chapter 10

UNDAMPED SECOND ORDER MODEL

A second order system is undamped if the damping matrix D is zero. This point is

interesting because, some technical systems of second order form are undamped and it is

worthy to discuss this issue in order reduction.

10.1 Reducing undamped systems

From the result of Lemma 3.1, if an undamped system is reduced in state space by

moment (or Markov parameter) matching, then half of the matched moments ( or Markov

parameters) of the reduced order model are zero. With this property back transforming

the reduced order model into second order form becomes simpler as stated in the following

theorem.

Theorem 10.1 Consider the reduced system,{
ẋr = Arxr + Bru,

y = Crxr.

of an even order Q = 2q. If this system is observable and the parameters Ml,Ml−2,

· · · ,M0,m1,m3, · · · ,mQ−l−3 for an even value of l are zero, then the matrix Cz in
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equation (8.9) can be chosen as,

Cz = Q

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cr

CrA
l
r

CrA
l−2
r

...

CrA
2
r

CrA
−2
r

CrA
−4
r

...

CrA
l−Q+2
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (10.1)

where Q ∈ Rq×q is any nonsingular matrix.

Proof: The first property is orthogonality to Br,

CzBr = Q

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cr

CrA
l
r

CrA
l−2
r

...

CrA
2
r

CrA
−2
r

CrA
−4
r

...

CrA
l−Q+2
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Br = Q

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CrBr

CrA
l
rBr

CrA
l−2
r Br

...

CrA
2
rBr

CrA
−2
r Br

CrA
−4
r Br

...

CrA
l−Q+2
r Br

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Q

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M0

Ml

Ml−2

...

M2

m1

m3

...

mQ−l−3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0.
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Therefore, the rows of Cz are in the null space of Br. The only condition is that the

matrix T is full rank,

T =

[
Cz

CzAr

]
=

[
Q 0

0 Q

]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Cr

CrA
l
r

CrA
l−2
r

...

CrA
2
r

CrA
−2
r

CrA
−4
r

...

CrA
l−Q+2
r

CrAr

CrA
l+1
r

CrA
l−1
r

...

CrA
3
r

CrA
−1
r

CrA
−3
r

...

CrA
l−Q+3
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Because Q is invertible, the rank of T, depends only on the second part which by rear-

ranging the rows and multiplying with the nonsingular matrix AQ−l−2
r can be transformed

to the observability matrix. Therefore, if the system is observable, the matrix T is full

rank and the proof is completed.

Corollary 10.1 If an undamped system is reduced to an observable system of order Q =

2q, by matching some of the first moments and Markov parameters such that the first

Markov parameter is matched and the total number of matched parameters is at least

Q then, there exists a nonsingular matrix which transforms the reduced system into the

second order form (3.1).
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10.2 Calculating the transformation matrix

According to Theorem 10.1, the rows of the matrix Cz should form a basis for the

subspace,

S =
{

CT
r ,

(
AT

r

)2
CT

r , · · · ,
(
AT

r

)l−2
CT

r ,
(
AT

r

)l
CT

r ,(
AT

r

)−2
CT

r ,
(
AT

r

)−4
CT

r , · · · ,
(
AT

r

)l−Q+2
CT

r

}
.
(10.2)

The subspace S can be rewritten as,

S =
{

CT
r ,

(
AT

r

)2
CT

r , · · · ,
(
AT

r

)l−2
CT

r ,
(
AT

r

)l
CT

r

}
⋃{ (

AT
r

)−2
CT

r ,
(
AT

r

)−4
, · · · ,

(
AT

r

)l−Q+2
CT

r

}
=K l

2
+1

((
AT

r

)2
,CT

r

)⋃
KQ−l

2
−1

((
AT

r

)−2
,
(
AT

r

)−2
CT

r

)
. (10.3)

To calculate the corresponding basis, the Arnoldi Algorithm 2.1 can be applied to two

Krylov subspaces and calculate the matrix Cz.

If the value of l is small as it is common in order reduction, then two subspaces in (10.3)

can be integrated into a single Krylov subspace by rewriting the equation (10.2) as

S =
{ (

AT
r

)l
CT

r

(
AT

r

)l−2
CT

r , · · · ,
(
AT

r

)2
CT

r , CT
r , · · · ,

(
AT

r

)l−Q+2
CT

r

}
=KQ

2

((
AT

r

)−2
,
(
AT

r

)l
CT

r

)
. (10.4)

For instance if we match only the first Markov parameter to reduce an undamped system,

the Arnoldi Algorithm 2.1 should be applied to the Krylov subspace KQ
2

((
AT

r

)−2
,CT

r

)
,

to find the matrix Cz.

If the value of Q − l is small which happens when more number Markov parameters are

matched, then the Krylov subspace KQ
2

((
AT

r

)2
,
(
AT

r

)l−Q+2
CT

r

)
is to be considered.

10.3 Conclusion

Order reduction of undamped second order system by back conversion has been inves-

tigated. We showed that for undamped systems, if the number of matching Markov

parameters is larger than or equal to the order of the reduced system then there is a

guarantee for the existence of the transformation matrix.
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By knowing that, in state space Krylov subspace method, the number of matching para-

meters is at least Q, this fact not only proves the existence of the transformation matrix,

but also a numerical reliable way using the Arnoldi algorithm is concluded to calculate

the matrix Cz which is the only unknown part of the transformation matrix.
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Chapter 11

AN INTEGRATED STATE SPACE AND BACK CON-

VERSION PROCEDURE, (SISO CASE)

The state space reduced system by moment matching using Arnoldi (or Lanczos) algo-

rithm has a special structure, including an upper Hessenberg (or a tridiagonal matrix) as

a coefficient of ẋr directly calculated from the algorithm. However, in the first step of the

proposed approach by back conversion, because of matching the first Markov parameter,

the reduced state space model can only be calculated by applying a projection and the

special structure of the reduced system as in equations (2.25), (2.26) and (2.35) is de-

stroyed. Furthermore, there was a lack of good numerical algorithms for back conversion

into second order form.

In this chapter, by considering SISO systems, first we modify the Arnoldi algorithm such

that the first Markov parameter is matched and the structure in the matrices of the

reduced system is preserved; see also [81]. The proposed algorithms directly calculate

the matrices of the reduced state equation. Then, by using this structure in the reduced

system, a numerical procedure is proposed to find a transformation matrix which trans-

forms the state space system into a second order form. This procedure not only suggests

a numerically reliable procedure to compute the transformation matrix, but also extracts

sufficient conditions for the possibility of the back conversion into second order form.

11.1 One-sided Krylov subspace methods

Consider the Arnoldi Algorithm 2.1 applied to reduce the SISO system,{
Eẋ = Ax + bu

y = cTx,
(11.1)
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based on moment matching. As discussed in section 2.4.1, the reduced order system in

SISO case can be written in the special form,{
HQẋr = xr + ‖A−1b‖2e1u,

y = cTVQxr,
(11.2)

where e1 is the first unit vector and HQ is calculated directly from the Arnoldi algorithm.

To match the first Markov parameter and maximum number of moments, we consider

the Krylov subspace KQ(A−1E,E−1b) for the reduction of system (11.1). In this case,

the Arnoldi Algorithm 2.1 finds the orthonormal matrix VQ and the reduced system can

be found only by applying the projection xr = VQx and the first Markov parameter

and Q − 1 moments match. In fact, because of changing the starting vector of the

Krylov subspace, the reduced order model can not be written in the form (11.2) using

the Hessenberg matrix HQ calculated directly from the Arnoldi algorithm and br is not

a multiple of the first unit vector e1. To achieve the reduced system (11.2), we modify

the Arnoldi algorithm into Algorithm 11.1.

Algorithm 11.1 Modified Arnoldi algorithm

1. Apply the standard Arnoldi Algorithm 8.1 to the Krylov subspace KQ−1(A
−1E,

A−1b) to produce VQ−1, HQ−2 and hQ−1,Q−2.

2. Find the normalized vector vQ = α0E
−1b+

∑Q−1
i=1 αivi using modified Gram-Schmidt

procedure [35] such that vT
QVQ−1 = 0.

3. Find the normalized vector vQ+1 using modified Gram-Schmidt procedure such that

A−1EvQ−1 =
∑Q+1

i=1 hi,Q−1vi and vT
Q+1VQ = 0.
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4. Calculate the Q-th column of the matrix HQ as follows,⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1,Q

h2,Q

...

hQ−2,Q

hQ−1,Q

hQ,Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0‖A−1b‖2 + αQ−1h1,Q−1

αQ−1h2,Q−1

...

αQ−1hQ−2,Q−1

αQ−1hQ−1,Q−1

αQ−1hQ,Q−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

+

⎡
⎢⎣ HQ−2

0 · · · 0 hQ−1,Q−2

0 · · · 0 0

⎤
⎥⎦

⎡
⎢⎢⎢⎢⎣

α1

α2

...

αQ−2

⎤
⎥⎥⎥⎥⎦ . (11.3)

In this algorithm, because v1 = 1
‖A−1b‖2

A−1b and VQ is orthonormal, we have,

VT
QA−1b = VT

Qv1‖A−1b‖2 = ‖A−1b‖2e1.

From the other side, because the Arnoldi algorithm is applied to calculate the first Q− 1

vectors, we have,

A−1EVQ−2 = VQ−2HQ−2 + hQ−1,Q−2vQ−1e
T
Q−2.

By calculating vQ and vQ+1 in steps 2 and 3, we have,

A−1EvQ = α0A
−1EE−1b + A−1EVQ−2

⎡
⎢⎣ α1

...

αQ−2

⎤
⎥⎦ + αQ−1A

−1EvQ−1

= α0A
−1b + VQ−2(HQ−2 + hQ−1,Q−2vQ−1e

T
Q−2)

⎡
⎢⎣ α1

...

αQ−2

⎤
⎥⎦ + αQ−1

Q+1∑
i=1

hi,Q−1vi. (11.4)

By knowing that A−1b = v1‖A−1b‖2, equation (11.4) can be rewritten as,

A−1EvQ = VQ

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

α0‖A−1b‖2 + αQ−1h1,Q−1

αQ−1h2,Q−1

...

αQ−1hQ,Q−1

⎤
⎥⎥⎥⎥⎦

+

⎡
⎢⎣ HQ−2

0 · · · 0 hQ−1,Q−2

0 · · · 0 0

⎤
⎥⎦

⎡
⎢⎣ α1

...

αQ−2

⎤
⎥⎦
⎞
⎟⎠ + αQ−1hQ,Q−1vQ+1e

T
Q.

(11.5)
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The value inside the parentheses in (11.5) is the Q-th column of HQ calculated in (11.3).

Now, if we combine the results of steps 1 and 3 of the Algorithm 11.1 with equation

(11.5) we conclude,

A−1E
[

v1 · · · vQ

]
=

[
A−1EVQ−2 A−1EvQ−1 A−1EvQ

]

=
[

v1 · · · vQ+1

]
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

HQ−2

h1,Q−1

...

h1,Q

...

0 · · · 0 hQ−1,Q−2 hQ−1,Q−1 hQ−1,Q

0 · · · 0 0 hQ,Q−1 hQ,Q

0 · · · 0 0 hQ+1,Q−1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
H̄

.

The matrix HQ = VT
QA−1EVQ is calculated by deleting the last row of the matrix H̄.

All entries of the matrix HQ can directly be calculated from the Algorithm 11.1.

After calculating the projection matrix VQ by applying the Algorithm 11.1, the reduced

order model is of the form (11.2) which matches the first Markov parameter and q − 1

first moments with the original system.

11.2 Two-sided Krylov subspace methods

In two-side methods, by applying the Lanczos algorithm to the Krylov subspaces

KQ(A−1E,A−1b) and KQ(ETA−T ,ATE−Tc), it is possible to match the first Markov

parameter and the first 2Q − 1 first moments. The reduced order model is of the form,{
TQẋr = xr + sign(cTE−1b)

√|cTE−1b|e1u,

y = cTVQxr,
(11.6)

where the matrix TQ is tridiagonal. The difference to the reduced system found by

moment matching as in equation (2.35) is that cTVQ is not a multiple of the first unit

vector. To achieve exactly the same structure as the standard Lanczos algorithm to

match the moments, the algorithm should be changed to first consider the basic vector c

and then at the end add the vector ATE−Tc similar to the modification in the Arnoldi

algorithm however, for the upcoming procedure in reducing second order systems, the

structure in (11.6) is enough which is an special case of the form found in (11.2).
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11.3 Reduction of second order systems

We consider the second order system,{
Mz̈ + Dż + Kz = gu,

y = lTz, .
(11.7)

that can be transformed into state space as,⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
0 I

M D

]
︸ ︷︷ ︸

E

[
z̈

ż

]
︸ ︷︷ ︸

ẋ

=

[
I 0

0 −K

]
︸ ︷︷ ︸

A

[
ż

z

]
︸ ︷︷ ︸

x

+

[
0

g

]
︸ ︷︷ ︸

b

u,

y =
[

0 lT
]

︸ ︷︷ ︸
cT

[
ż

z

]
.

(11.8)

We also consider that the matrices K and M are nonsingular. By this assumption, the

matrices E and A become nonsingular and therefore, the method proposed in the Chapter

8 to match the moments and Markov parameters can be applied to reduce system (11.8).

For the reduction of second order systems, first we reduce the equivalent state space

equation (11.8) using Algorithm 11.1 while the first Markov parameter of the reduced

system is zero by matching with the one of the original system. Then, the reduced order

system (11.2) is transformed into the second order form (11.8) by applying a similarity

transformation as explained in the following. Because the state space system (11.6) is a

special case of (11.2), we only consider the general case which is valid for the reduced

order models found by both one sided method as in Algorithm 11.1 and two-sided method

as in section 11.2.

To calculate the transformation matrix, consider that the first nonzero entry of r = cT
r H−1

Q

is rk. Because cT
r H−1

Q br = 0 (this is the first Markov parameter of reduced system) and

br is a multiple of the first unit vector, k > 1. We construct the transformation matrix

for two different cases. First consider k is an even number. Then, we construct the

matrix S ∈ R
Q×Q

2 as,

S =
[

H−T
Q cr e2 e4 · · · ek−2 ek+2 · · · eQ

]
.

Because cT
r H−1

Q b = 0, the first row of S is zero and ST br = 0. The transformation matrix
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T is constructed as,

T−1 =

[
ST

ST HQ

]
. (11.9)

If we interchange the rows of T−1 then,

T̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT
2 HQ

eT
2

eT
4 HQ

eT
4
...

eT
k−2HQ

eT
k−2

cT
r H−1

Q HQ

cT
r H−1

Q

eT
k+2HQ

eT
k+2
...

eT
QHQ

eT
Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hT
2

eT
2

hT
4

eT
4
...

hT
k−2

eT
k−2

cT
r

cT
r H−1

Q

hT
k+2

eT
k+2
...

hT
Q

eT
Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where hT
j is the j-th row of the matrix HQ. Because the matrix HQ is upper Hessenberg,

the first j − 2 entries of hj are zero and the matrix T̄ is upper triangular whose diagonal

entries are one or the sub-diagonal entries of even rows of HQ, except for the k − 1-st

row with rkhk,k−1 and k-th row with rk as,

T̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h2,1 ∗ · · · ∗ ∗ ∗ ∗ · · · ∗
0 1 · · · 0 0 0 0 · · · 0
...

...
. . .

...
...

...
...

...
...

0 0 · · · hk,k−1rk ∗ ∗ ∗ · · · ∗
0 0 · · · 0 rk ∗ ∗ · · · ∗
0 0 · · · 0 0 hk+2,k+1 ∗ · · · ∗
0 0 · · · 0 0 0 1 · · · 0
...

...
...

...
...

...
...

. . .
...

0 0 · · · 0 0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Therefore, T−1 is full rank if all sub-diagonal entries of even rows of HQ are nonzero.
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If k is odd, then the matrix S is constructed as

S =
[

cr e2 e4 · · · ek−1 + βek+1 ek+3 · · · eQ

]
,

where β is a parameter. Again ST br = 0 and the transformation matrix T is constructed

using (11.9). To show that T is full rank, we interchange the rows as follows,

T̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eT
2 HQ

eT
2

eT
4 HQ

eT
4
...

(ek−1 + rek+1)
THQ

eT
k−1 + βeT

k+1

cT
r H−1

Q HQ

cT
r HQ

eT
k+3HQ

eT
k+3
...

eT
QHQ

eT
Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hT
2

eT
2

hT
4

eT
4
...

hT
k−1 + rhT

k+1

eT
k−1 + βeT

k+1

cT
r

cT
r HQ

hT
k+2

eT
k+2
...

hT
Q

eT
Q

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h2,1 ∗ · · · ∗ ∗ ∗ ∗ ∗ · · ·
0 1 · · · 0 0 0 0 0 · · ·
...

...
. . .

...
...

...
...

...
...

0 0 · · · hk,k−1 ∗ ∗ ∗ ∗ · · ·
0 0 · · · 0 1 0 β 0 · · ·
0 0 · · · 0 α1 α2 α3 ∗ · · ·
0 0 · · · 0 0 rk rk+1 ∗ · · ·
0 0 · · · 0 0 0 0 hk+2,k+1 · · ·
...

...
...

...
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where α1 = rkhk,k−1, α2 = rkhk,k + rk+1hk+1,k, α3 = rkhk,k+1 + rk+1hk+1,k+1

+ rk+2hk+2,k+2. If β �= 1
α1

(
α3 − rk+1

rk
α2

)
is chosen and the sub-diagonal entries of HQ

at even rows are nonzero then the matrix T̄ is full rank, knowing that α1 �= 0 because

hk,k−1, rk are assumed to be nonzero.
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Now, consider the similarity transformation xr = Txt is applied to the system (11.2),{
T−1HQTẋt = xt + T−1bru,

y = cT
r Txt.

(11.10)

Considering the facts that,

T−1 =

[
ST

ST HQ

]
, STT =

[
I 0

]
, (11.11)

STHQT =
[

0 I
]

, STb = 0, (11.12)

the system (11.10) can be rewritten as follows,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
ST HQT

ST H2
QT

][
ẋ1

ẋ2

]
=

[
x1

x2

]
+

[
ST br

STHQbr

]
u,

y = cT
r T

[
x1

x2

]
.

which is equivalent to,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
0 I

Mr Dr

][
ẋ1

ẋ2

]
=

[
I 0

0 −Kr

][
x1

x2

]
+

[
0

gr

]
u,

y =
[

0 lTr

] [
x1

x2

]
.

(11.13)

where,

Kr = −I, gr = ST HQbr,
[

Mr Dr

]
= STH2

QT. (11.14)

The output equation in (11.10), y = cT
r Txt, is simplified to y = eQ

2
+1xt, because cT

r is

the first line of STHQ in T−1. Thereby, we conclude

lTr =
[

1 0 · · · 0
]
. (11.15)

Because, in system (11.13), ẋ2 = x1 by defining zr = x1 the state space equation (11.13)

is equivalent to second order system,{
Mrz̈r + Drżr + Krzr = gru,

y = lTr zr.
(11.16)

We conclude the results of the back conversion procedure as the following theorem:
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Theorem 11.1 The sufficient conditions for a state space model of the form (11.2) to

be converted to a second order type model are: the first Markov parameter is zero, the

order of the system is even, HQ is full rank and its sub-diagonal entries at even rows are

nonzero.

Lemma 11.1 Consider the Hessenberg matrix HQ in system (11.2) is full rank. The

system (11.2) is controllable if and only if all sub-diagonal entries of HQ are nonzero.

Proof: The Kalman controllability matrix of system (11.2) is

C =
[

br, H−1
Q br, · · · , H−Q+1

Q br

]
= H−Q+1

Q

[
HQ−1

q br, HQ−2
Q br, · · · , br

]
︸ ︷︷ ︸

CH

,

where br is a multiple of the first unit vector. Because HQ is nonsingular, the system

(11.2) is controllable if and only if the matrix CH is full rank. If we change the sequence

of the columns of CH to

Ct =
[

br, HQbr, · · · , HQ−1
Q br

]
,

then using the structure of HQ and br, the matrix Ct is an upper triangular matrix whose

diagonal entries are the sub-diagonal entries of the matrix HQ. Therefore, CH is full rank

(or the system is controllable) if all sub-diagonal entries of HQ are nonzero and vice versa.

By using Lemma 11.1, if a system is controllable then the third condition of Theorem 11.1

is fulfilled which confirms the result of section 9.2. If a two-sided method using Lanczos

is applied as explained in section 11.2, then the matrix HQ becomes tridiagonal which is

a special case of Hessenberg form and all steps of back conversion to second order form

are quite similar.

So, the steps of reducing second order type models are:

1. Apply Algorithm 11.1 (or Lanczos as explained in section 11.2) to find a reduced

system of the form (11.2) (using Lanczos HQ is substituted by TQ).

2. Calculate the matrix S as explained in this section and T using (11.9).
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3. calculate the state space matrices of the reduced second order system (11.16) using

equations (11.14) and (11.15).

11.3.1 Matching the moments about s0

To match the moments about s0 �= 0, it is normally sufficient to substitute A with

A − s0E in the corresponding Krylov subspaces. To deal with second order systems,

we do the substitution as step 1 of the Algorithm 8.2 and then apply Algorithm 11.1

or the Lanczos algorithm. Then, the moments of the reduced system (11.2) or (11.6)

about zero are matched with the moments of the original system about s0. Therefore,

after transforming such a reduced order model into second order form (11.16) the reduced

matrices should be modified as follows,

Ms0 = Mr,

Ds0 = Dr − 2s0Mr,

Ks0 = Kr − s0Dr − s2
0Mr,

and the matrices Ms0, Ds0 and Ks0 define the final reduced second order system.

11.4 Conclusion

In this chapter, a modified Arnoldi algorithm is proposed to reduce a state space equation

matching the first Markov parameter which is zero for second order models and some of

the first moments. The structure of the reduced state space matrices found by applying

the modified Arnoldi algorithm is the same as the one by moment matching in standard

Arnoldi algorithm.

The structure in the reduced state space matrices found by the proposed algorithm is used

to calculate a similarity transformation to transform the reduced system into a second

order form.

It was also explained how to use the method to match the moments about other points and

how to increase the number of matching parameters by applying the Lanczos algorithm.

In the part for back conversion, a difference to the method in Chapter 8 is that the

numerical way is straightforward without any preliminary calculation on the state space
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reduced system like multiplying with E−1. The other variation is that in Chapter 8, the

matrix E is considered to be identity but here the matrix A is identity.
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Chapter 12

TECHNICAL EXAMPLES

In order to illustrate the suitability of the methods proposed in this dissertation, in

this chapter, we apply them to different technical systems. Three different methods are

considered to be applied for order reduction:

• Method 1: Applying a projection directly to the second order model using the

Second Order Krylov Subspaces as proposed in part II.

• Method 2: Find an equivalent state space model and find a state space reduced

model using a Krylov subspace method by matching the moments together with

the first Markov parameter and then calculate the equivalent second order system

by a back conversion procedure as proposed in part III.

• Method 3: Find an equivalent state space model and find a state space reduced

model using a Krylov subspace method by matching only the moments (and not

preserving the second order structure) as in Chapter 2.

All three methods are applied in two different cases: one-sided and two-sided. In all

reduced order models, the best value of s0 is chosen to reduce the error. For the systems

considered in this chapter, the highest value leading to a stable reduced system is chosen

in order to find the best possible result. To compare the results, we consider different

types of error functions. For relatively small systems, we calculate the relative error

defined as:

H∞error norm =
‖H(s) − Hr(s)‖∞

‖H(s)‖∞ ,

H2error norm =
‖H(s) − Hr(s)‖2

‖H(s)‖2
,

where ‖.‖∞, ‖.‖2, H(s) and Hr(s) are H∞ norm, H2 norm, the transfer function of the

original and reduced systems, respectively.
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12.1 Building model

As the first example, we consider a relatively low order system which is the model of

a building (the Los Angeles University Hospital) with 8 floors each having 3 degrees of

freedom, namely displacement in x and y directions, and rotation1 [4, 21]. Hence, we

have 24 variables in second order form (order N = 48 in state space) with one input and

one output. We reduce the system to order Q = 14 in state space and q = 7 in the second

order form.

In Table 12.1, the relative errors of reduced systems are shown. In Figures 12.1 and 12.2,

bode diagram of the original and reduced order models with one-sided and two-sided

methods are compared to each other. In Figure 12.3, the step response of the original

and reduced systems by two-sided methods are illustrated where all systems have very

close responses.

Table 12.1: Relative errors in reducing the building model.

Method H2 relative error norm H∞ relative error norm s0

One-sided

Method 1 0.1196 0.0860 0

Method 2 0.0780 0.0655 2.9

Method 3 0.0850 0.0758 1.9

Two-sided

Method 1 0.1195 0.0861 0.1

Method 2 0.0766 0.0625 2.3

Method 3 0.0762 0.0604 3

From Table 12.1 and Figures 12.1 and 12.2, the best reduced order model is from method

3 which matches more moments, however destroys the second order structure. Methods 1

and 2, both preserve the second order structure. This can be seen from the bode diagram

at high frequencies, where the gain of the reduced systems by methods 1 and 2 have

the same slope as the original system, differing 20 dB/dec from the one by method 3.

Because method 2 matches more moments than method 1, it has a better performance at

medium frequencies. As expected the two-sided methods have led to better results than

the one-sided methods.

1The model is available online at http://www.win.tue.nl/niconet/NIC2/benchmodred.html.
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Figure 12.1: Bode diagram of the building model and reduced systems using one-sided
methods.
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Figure 12.2: Bode diagram of the building model and reduced systems using two-sided
methods.
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12.2 International space station

As the second example, we consider the International Space Station (ISS) model2 [4,

21, 39]. It is composed of a complex structure containing several parts. Each part of

this system was modelled with a system of order of several hundreds. For instance, the

structural part (part 1R of the Russian Service Module) of the international space station

has been modelled with a system of order 270 with 3 inputs and 3 outputs (a second order

model of dimension n = 135). The original system is reduced to order Q = 30 in state

space and q = 15 in second order form.

In Table 12.2 the norm of the error systems are shown with the frequency responses as

in Figures 12.4 and 12.5 where the largest singular values of the original and reduced

systems are shown.

Table 12.2: Relative errors in reducing the ISS model.

Method H2 relative error norm H∞ relative error norm s0

One-sided

Method 1 0.0608 0.0097 0.05

Method 2 0.0411 0.0089 0.4

Method 3 0.0437 0.0089 0.4

Two-sided

Method 1 0.0619 0.0095 0.05

Method 2 0.0500 0.0093 0.051

Method 3 0.0500 0.0094 0.0025

The same as in the previous example, the worst result is for method 1 while accuracy

of methods 2 and 3 are very close to each other. Because of preserving the structure,

methods 1 and 2 have led to better approximations at high frequencies that can be seen in

the frequency responses. However, at medium frequencies, methods 2 and 3 are closer to

the original system. For this system, the value of s0 for one-sided and two-sided methods

are different, because the same values of s0 in two-sided methods lead to unstable reduced

systems. Because of larger s0 in one-sided methods, their reduced systems have better

accuracy than two-sided methods although less number of moments match.

The same results can be concluded from the step responses, in Figures 12.6 and 12.7.

2The model is available online at http://www.win.tue.nl/niconet/NIC2/benchmodred.html
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Figure 12.4: The largest singular values of the original and order 15 reduced model of
ISS using one-sided methods.

However, method 2, in one-sided methods, performs a little bit worse than two other

methods while in the two-sided methods method 1 is the worst as expected.

12.3 Application to a beam model

The system we consider in this section is a beam model which is a typical structure whose

generic layout corresponds to atomic force microscopy tips and gas sensors as well as radio

frequency switches and filters3. Given a simple shape, they often can be modelled as one-

dimensional beams embedded in two or three dimensional space. This model describes a

slender beam which is actuated by a voltage between the beam and the ground electrode

below; see Figure 12.8. On the beam, at least three degrees of freedom per node have to

be considered. On the ground electrode, all spatial degrees of freedom are fixed, so only

charge has to be considered.

Based on the finite element discretization presented in [90], an interactive matrix genera-

3The model can be downloaded from Oberwolfach Model Reduction Benchmark Collection available
online at http://www.imtek.uni-freiburg.de/simulation/benchmark/
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Figure 12.8: A conducting beam supported at one end with counter electrode below.

tor has been created. After modelling of the beam, a set of differential-algebraic equations

in second order form is found where the damping matrix is calculated as a linear com-

bination of the mass matrix M and the stiffness matrix K. The input of the system is

the voltage applied between the beam and the counter electrode and the output is the

displacement of the nodes typically the node at the end of the beam. A typical input

to this system is a step function; periodic on/off switching is also possible. The reduced

model should thus both represent the step response as well as the possible influence of

higher order harmonics. Details of the implementation are available in [53].

Two types of model are considered to be reduced by the proposed methods: an undamped

model (D = 0) and a lightly damped model, both of order N = 15992 with n = 7996 sec-

ond order differential equations. The original models are reduced to different orders. By

reducing the original systems to higher orders, better approximation at higher frequency

can be achieved. Because the norm of the error system and frequency response for such

high order models can not be calculated by the algorithms implemented in MATLAB, we

compare the frequency response of the reduced models with a higher order reduced sys-

tem. For a better comparison, we also extract the highest frequency fmax, up to which

the frequency response of the lower order model is almost the same as the one of the

higher order reduced model.

The undamped model is symmetric, however the matrices M, D and K are not positive

definite. Therefore, the one-sided and two-sided methods leads to the same results. It

should be noted that the reduced system of the undamped model by method 1 leads to an

undamped system! For this system, the first Markov parameter of the reduced systems

by method 3 is very small making the back conversion possible and the results are very

close to the method 2. There fore only two sets of reduced systems are compared for the

undamped beam model.

In Table 12.3, the maximum frequency that the reduced system is accurate is given. These

results can be compared to the Figures 12.9 and 12.10 where the frequency response of
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Table 12.3: Maximum accurate frequency fmax compared to the reduced system of order
100 for the undamped system.

Method order Q s0 fmax (Rad/sec.)

One-sided

Method 1

6 1 4.3 × 103

10 103 1.7 × 104

20 104 6 × 104

Method 2,3

6 0 5.3 × 103

10 0 1.8 × 104

20 0 6.2 × 104

some of the reduced systems are plotted. Because of preserving the second order structure,

the slope of the bode plots at high frequencies is −40dB/dec.. The state space method

performs better (but not much better) than the second order Krylov method.

To achieve a good approximation of step response, order 6 performs well and after this

order, the step response remains almost unchanged. The results can be seen in Figure

12.11 where the step responses of the reduced systems are very close to each other.

The lightly damped model is not symmetric, because we use the point at 0.75 of length

of the beam to its end as the output node. In one-sided and two-sided cases, method 2

by back conversion leads to unstable reduced system if the order is less than 8 and 20,

respectively. In Table 12.4, the maximum frequency that the reduced system is accurate

is given. These result can be compared to the Figures 12.12, 12.13, 12.14, 12.15, 12.16 and

12.17 where the frequency response of some of the reduced systems are plotted. Similar

to the undamped model, by going to higher orders better accuracy at higher frequencies

can be achieved.

For this system, although the method 3 does not theoretically preserve the second order

structure, the first Markov parameter of reduced systems found by this method are small

and their frequency responses at high frequency has −40dB/dec. slope up to very high

frequencies. However, the frequency responses of the reduced system by method 2 tend

the one of the system of order 48 at high frequencies, different from method 3.

Method 2 and 3 do not lead to better results compared to method 1. For some orders,

method 1 has a better approximation because of using a larger value of s0.
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Figure 12.9: Bode diagram of the reduced systems of the undamped model using a second
order Krylov method.

Figure 12.18 show the step response of the reduced systems by one-sided methods. The

step response of the reduced systems of order 6 by method 1 and 3 have a good approx-

imation while method 2 needs at least order 8 because of losing stability. However, all

step responses are almost the same.

12.4 Conclusion

In this chapter, the proposed methods have been applied to three different systems of low,

medium and high orders and the results are discussed. The results show that the state

space method usually leads to better approximation however the structure is destroyed

and the result is not much different from the back conversion approach whereas the

second order Krylov methods lead to worse results because of matching less number of

moments. The reduced systems with the same structure as the original model (method

1 and 2) have a better approximation at high frequencies with the slope of −40dB/dec..

Another parameter that paly an important role is s0. Different values of s0 lead to differ-

ent results and they can be important to find a stable reduced system. Therefore, finding
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Figure 12.10: Bode diagram of the reduced systems of the undamped model using a state
space method.

a stable reduced system is a restriction to choose s0 and for some cases as experienced

in the preceding examples, method 1 may lead to better results although less number of

moments match.
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Figure 12.11: Step Response of the reduced systems of the undamped model.
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Figure 12.12: Bode diagram of the reduced systems of the damped model using a one-
sided second order Krylov method.
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Table 12.4: Maximum accurate frequency fmax compared to the reduced system of order
48 for the damped system.

Method order Q s0 fmax (Rad/sec.)

One-sided

Method 1

6 0 4.3 × 103

10 2 × 103 1.3 × 104

20 1.5 × 104 5.5 × 104

Method 2

8 0 5.1 × 103

10 0 1.2 × 104

20 0 6.5 × 104

Method 3

6 0 4.3 × 103

10 0 1.5 × 104

20 0 6.5 × 104

two-sided

Method 1

6 1e3 4.1 × 103

10 4 × 103 2.6 × 104

20 6 × 104 5.5 × 104

Method 2

6 - unstable

10 - unstable

20 0 6.5 × 104

Method 3

6 0 4.1 × 103

10 0 3.0 × 104

20 0 6.5 × 104
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Figure 12.13: Bode diagram of the reduced systems of the damped model using a one-
sided back conversion method.
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Figure 12.14: Bode diagram of the reduced systems of the damped model using a one-
sided state space method.
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Figure 12.15: Bode diagram of the reduced systems of the damped model using a two-
sided second order Krylov method.

−150

−100

−50

0

M
ag

ni
tu

de
 (

dB
)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

−900

−720

−540

−360

−180

0

P
ha

se
 (

de
g)

Order 48
Order 20

Bode Diagram

Frequency  (rad/sec)

Figure 12.16: Bode diagram of the reduced systems of the damped model using a two-
sided back conversion method.
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Figure 12.17: Bode diagram of the reduced systems of the damped model using a two-
sided state space method.
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Chapter 13

CONCLUSION AND DISCUSSION

In this dissertation, we have proposed two different methods to reduce systems of second

order form such that the second order structure is preserved. To avoid numerical problems

and in order to apply the reduction methods to large scale systems, the Krylov subspace

reduction approach has been used.

In the first method, by generalizing the definition of Krylov subspaces to second order

Krylov subspace, the well-known method of reduction of large scale systems based on

moment (or Markov parameter) matching has been generalized to reduce second order

models. Preserving the structure is achieved by applying a projection to the original

second order model. The advantages of the proposed approach can be highlighted as

follows:

• The method proposed in [86] has been modified and the number of matching para-

meters has been increased up to double.

• The method has been generalized to match the Markov parameters or moments

about different points.

• The proposed method preserves some structures of the original matrices: undamped

systems are approximated by undamped systems and one-sided methods preserves

symmetry and definiteness of the mass, damping and stiffness matrices.

• Under some conditions, one-sided methods preserve stability of the original system.

• Calculating the projection matrices in the size of original second order model makes

the numerical calculation cheaper and simpler.
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To calculate the projection matrices, the Arnoldi and Lanczos algorithms have been

generalized to the so called second order Arnoldi and second order Lanczos algorithms.

We have also generalized the second order Krylov subspaces to reduce a large number of

high order differential equations.

Despite the advantages of second order Krylov subspace method, compared to the state

space reduction methods, this method matches half number of parameters if we reduce

the original system to the same order. To improve the results found by the first approach

and in order to increase the number of matching parameters, we have proposed the second

method based on reduction in state space and back conversion to second order form.

In the second approach, we showed that if we reduce the equivalent state space model

while matching the first Markov parameter, then the reduced order model can be con-

verted into second order form calculating the mass, damping and stiffness matrices. The

sufficient conditions for the back conversion procedure in SISO case and for MIMO un-

damped models have been presented however, there is no proof for the existence of back

conversion transformation in MIMO case.

For undamped models, a numerical algorithm has been presented to back convert the

state space model into second order form which avoids numerical problems. For SISO

systems, we have integrated the reduction and back conversion procedures by modifying

the Arnoldi algorithm and taking advantage of the structure of the reduced state space

system.

In comparison to the first approach, the back conversion method matches almost double

number of characteristic parameters while using double number of iterations to reduce to

the same order. The most expensive part of the algorithms is the LU-factorization. In the

second order Krylov methods and two-sided back conversion, only one LU-factorization of

K should be calculated in moment matching while the one-sided back conversion method

needs 2 LU-factorizations of M and K; see Table 13.1. By considering the structure of

the state space matrices, the cost of computation of back conversion method using the

Lanczos algorithm is very close to the second order Krylov method.

In practice, each method may have some advantages over the other, specially by changing

the point around which the moments match or losing stability by one of the methods.

The results of this dissertation can be generalized to match the coefficients of the Laguerre
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Table 13.1: Comparison of the reduction approaches to reduce to order Q = 2q

Method One/two-sided iterations LU-factorization matching moments

direct projection
One-sided q K q

Two-sided q K 2q

back conversion
One-sided 2q K,M 2q − 1

Two-sided 2q K 4q − 1

series expansion instead of the Taylor series which is an alternative to moment matching

approach [25].
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Louvain, 2004.

[88] C. D. Villemagne and R. E. Skelton. Model Reduction using a Projection Formula-

tion. Int. J. Control, 46:2141–2169, 1987.

[89] J. Wang and T. Nguyen. Extended Krylov subspace Method for Reduced Order

Analysis of Linear Circuits with Multiple sources. In Proc. 37th Design Automation

Conference, pages 247–252, Los Angeles, CA, June 2000.

[90] W. Jr. Weaver, S. P. Timoshenko, and D. H. Young. Vibration problems in engi-

neering. John Wiley, New York, 5th edition, 1990.


