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Instead of the great number of precepts of which logic is com-
posed, I believed that the four following would prove perfectly
sufficient for me, provided I took the firm and unwavering resol-
ution never in a single instance to fail in observing them.

The first was never to accept anything for true which I did not
clearly know to be such; that is to say, carefully to avoid pre-
cipitancy and prejudice, and to comprise nothing more in my
judgement than what was presented to my mind so clearly and
distinctly as to exclude all ground of doubt.

The second, to divide each of the difficulties under examination
into as many parts as possible, and as might be necessary for its
adequate solution.

The third, to conduct my thoughts in such order that, by com-
mencing with objects the simplest and easiest to know, I might
ascend by little and little, and, as it were, step by step, to the
knowledge of the more complex; assigning in thought a certain
order even to those objects which in their own nature do not
stand in a relation of antecedence and sequence.

And the last, in every case to make enumerations so complete,
and reviews so general, that I might be assured that nothing was
omitted.

René Descartes
Discourse on the Method of Rightly Conducting

One’s Reason and of Seeking Truth
(Part II)





Abstract

The perception of dynamic spatio-temporal patterns, the perception of mo-
tion, is a fundamental part of visual cognition. In order to understand the
principles behind these biological processes better, we analyze and construct
a representation of dynamic spatio-temporal information on different levels of
abstraction. Psychophysical experiments have shown that a spatio-temporal
memory for early vision is evident and that the processing is realized in
different representational layers of abstraction. The basic properties of this
memory structure are reflected in multi-layered neural network models which
this work is mainly about. Major architectural features of this network are
derivatives of Kohonen’s self-organizing maps (SOMs).

In order to render the system able to represent, process and predict
spatio-temporal patterns on different levels of granularity and abstraction,
the SOM’s are organized in a hierarchical manner. The model has the ad-
vantage of a self-teaching learning algorithm and stores temporal information
by local feedback in each computational layer. Prediction ability was integ-
rated by the introduction of neural associative memories.

Constraints for the neural modeling and data sets for training the neural
network are obtained by psychophysical experiments investigating human
subjects’ abilities for dealing with spatio-temporal information, and by neuro
anatomical findings in the brain of mammals.





Zusammenfassung

Das Verarbeiten von dynamischen spatio-temporalen Mustern und die Per-
zeption von Bewegung, sind ein fundamentaler Bestandteil der visuellen War-
nehmung. Um die Prinzipien auf denen Bewegungsperzeption beruht zu ver-
stehen, und um die zugrundeliegenden biologischen Prozesse zu verstehen,
haben wir die Repräsentation dynamischer spatio-temporaler Information
in verschiedenen Verarbeitungsschritten analysiert. Psychophysische Experi-
mente zeigten, dass ein spatio-temporales Gedächtnis in der frühen visuellen
Verarbeitung evident ist, und dass die Verarbeitung in verschieden granu-
laren Schichten erfolgt. Diese grundlegenden Eigenschaften eines visuellen
Gedächtnismodells werden in dieser Arbeit in einem mehrschichtigen künst-
lichen neuronalen Netz realisiert. Dieses neuronale Netz stellt zudem das
zentrale Thema dieser Dissertation dar. Die einzelnen Verarbeitungsschich-
ten wurden von Kohonens selbstorganisierenden Karten abgeleitet und bilden
den architekturelle Hauptbestandteil unseres Modells.

Wir haben eine hierarchische Strukturierung gewählt, um dem System
die Repräsentation, Verarbeitung und der Prädiktion von spatio-temporalen
Mustern auf multiplen Granularitätsebenen zu ermöglichen. Ein Vorteil hier-
archischer Modelle ist die automatische Generierung der Eingabedaten für
hierarchisch höhere, abstraktere Schichten. Die abstrakteren Schichten wer-
den faktisch in einem generativen Prozess von den feiner granularen Stu-
fen mit Trainingsinformation versorgt. Ein Kurzzeitgedächtnis wird in dem
vorgestellten System durch lokale Rückkupplungen auf Neuronenebene rea-
lisert. Prädiktion wurde durch die Integration von neuronalen associativen
Speichern ermöglicht.

Sowohl die Randbedingungen der Modellierung des neuronalen Netzes,
als auch experimentelle Trainingsdatensätze, wurden durch psychophysische
Experimente mit Versuchspersonen gewonnen und abgeleitet. Weitere Hin-
weise zur Modellierung wurden aus den Ergebnissen experimenteller Neuro-
anatomy gewonnen.
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Chapter 1

Introduction

Human beings have astonishing visual capabilities and do strongly depend on
vision as their dominant sense of perception. As we are living in a highly dy-
namic environment, it is of crucial importance to process and predict motion
of objects, including motion induced by ego-motion, fast and reliable. Motion
processing is important for generating plans and the discovery of structures
within trajectories. Motion prediction is important for aiming while hunting
and more important in urban environments for obstacle avoidance.

To realize visual perception relevant tasks, the visual system of the hu-
man brain contains various processing layers, each specialized on a distinct
task. An important field in research on the human visual system is the
investigation of motion perception, motion prediction, and how motion pro-
cessing is realized and organized in the cognition apparatus of the human
brain.

In this dissertation we want to realize a motion processing and predic-
tion system build of hierarchically structured artificial neural networks. To
provide a good model it is important to based the models foundation on
several scientific fields:

Cognitive psychology/psychphysics,
neuro-anatomy, and
machine learning, and artificial neural networks.

The goal we reach for is the definition and the construction of an artifi-
cial neural network model similar in its structure to biological brains visual
motion processing capabilities, which is able to process and predict motion
on several layers of abstraction. The question, how the human visual system
is processing dynamic spatio-temporal motion patterns is approached from a
multi-level perspective. Our model should realize information processing on
various representational stages, as psychophysical experiments showed that
the human visual system is performing its task in such a decompositional

3



4 CHAPTER 1. INTRODUCTION

fashion. Our investigations are focused on the architectural requirements of
suitable memory structures for the representation of spatio-temporal inform-
ation.

As a result, we introduce a basic spatio-temporal memory structure which
provides necessary orthogonal access to spatial and temporal properties as
already Schill and Zetzsche [SZ95] for a single processing layer. The pro-
cessing of motion paths makes it necessary to introduce multiple hierarch-
ically structured computing layers. Rendering the model capable of motion
prediction and an autonomous completion of incomplete motion paths, it is
necessary to introduce additional computational structures. We show several
ways to realize the prediction capability.

The task of motion processing and prediction is quite difficult for a tech-
nical system, as it is mandatory to handle non-linearities within motion
paths and to form compounds of motion for further –more abstract– pro-
cessing layers autonomously. A technical system should be able –like the
biological system– to generalize trajectories based on already observed data,
and to predict and complete motion paths based on already learned motion
paths. It should react robust on occlusions and all kinds of distortions.

A motion processing model should provide the ability to generate plans
and detect structures within complex motion compounds autonomously. We
further will refer to motion compound also as trajectories. Motion processing
has to be organized in a hierarchical manner, as the cognitive processing
layer is not able to process dense information. A hierarchical model is able
to compress motion data, so the cognitive layer only has to handle extracted
relevant information.

Motion prediction is important for aiming, targeting, pointing with a
finger, hand eye coordination, and more important in urban environments,
for obstacle avoidance. Catching a ball or a correct reaction to a Judo throw
would be not possible without a prediction mechanism in the human visual
system. The prediction system estimates the completion of the visual percept
provided with only a small segment of the underlying trajectory, to enable
humans to react just in time. A purely reflexive system would simply be to
slow.

Our model is intended to generate autonomously representations of mo-
tion segments on different levels of granularities. It is designed in a multi-
layered fashion, whereas the information propagation is delayed by pre-
defined time interval. This allows the generation of compound information
in hierarchically higher situated layers.

The key demands on our model are:

• Representation of motion information on several layers of abstraction,
to allow an automatic integration of simple motion atoms to more
complex motion compounds.



5

• The provision of a dynamic memory with orthogonal access to space
and time within each single processing and the complete processing
structure.

• An ability to process incomplete motion data and to automatically
generate missing subsets of a perceived motion sequence.

• To base the whole system on research results gathered in biology, psy-
chophysics, neuro-anatomy, . . . as the human visual processing system
is astonishing efficient, reliable, and fast.

Directly related to the question of how spatio-temporal information is
accessed by the human visual system is the question of what kind of features
are extracted and used by the visual system, and what kind of principal
limitations do exist in dynamic information processing. Psychophysical ex-
periments were carried out to identify these limitations. We use these lim-
itations to constrain the artificial neural network model. One experiment
for example addresses the discrimination capabilities of elementary motion
patterns. A brief summary of the experiments conducted and latest results
on these limitations will be presented in a separate section on the psycho-
physical background.

While being the main source of motivation, psychophysics is not the
only foundation we use to develop our motion processing model. Pattern
processing and prediction is a wide field providing several incarnations of
artificial neural network models. Financial forecast applications for stock
exchange markets for example are more and more dominated by artificial
neural network systems. The models proposed in this work are able to rep-
resent information in several degrees of granularity. Therefore the models
are able to generate a more abstract representation of the provided input
data themselves. This automatic process can be interpreted as some clever
kind of low-pass filtering.

Another foundation providing essential information is neuro-anatomy.
As it is not possible to simulate artificial neural network assemblies built
out of spike train neurons with a reasonable size, we had to balance the
model between biological similarity and reasonable simulation time (which
obviously includes the size of the neural assembly). Nonetheless we want
to shift the design of our model to a biological more plausible realization,
therefore we investigated improvements of the design to established models
and novel models based on Kohonens self organizing maps.

Our cognitivistic motion processing and prediction model reflects ele-
ments of inspiration and architectural design hints from philosophy, cyber-
netics, psychology, neuro-anatomy, cognitivism, behaviorism, and connec-
tionism.
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To realize the argued demands we developed several neural network struc-
tures, implemented these networks in matlab, and conducted some experi-
ments.

• We introduce an orthogonal access memory enabled self-organizing
maps based algorithm, to allow the system to store context informa-
tion already within the first processing structure in temporally ordered
fashion.

• A learning mechanism which allows the network to unfold in the begin-
ning of the training phase, to prevent twists in the network topology,
and to conserve the temporal structure of the input data.

• A prediction mechanism based on a neural hetero associative memory
simulating an indexing structure for retroinjecting lines to lower the
threshold of the next most likely to be activated neuron.

• We introduce several multi-layer models capable of the key demands.

• To benchmark our system, we develop two single layer structures for
sequence processing and automatic sequence reproduction.

• The implementation is realized in matlab, to gather empirical data on
the behavior of our newly defined networks. This implementation is
based on the somtoolbox for matlab.

Organization of the Thesis

We divide this work into several streams discussing motion processing from
various points of view, finally ending up in the central topic: Motion per-
ception and prediction realized with a subsymbolic approach.

• Chapter 2: In the next chapter we will give a short introduction and
an overview on our motion processing and prediction model.

• Chapter 3: Introduces some paradigms of perception, to give an idea
of the roots of the course of perception research.

• Chapter 4: As we want our model to foot on findings in real biology,
it is necessary to give a small introduction to the visual system in real
biological brains.

• Chapter 5: In our case, biology has not been the main source of motiv-
ation for our motion perception model, as you might notice later. The
functionality of the system is based on psychophysical experiments and
the derived results from the experiments were gathered at the Institute
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of Medical Psychology LMU Munich. The experiments and the sur-
rounding projects were funded by the DFG priority program “Spatial
Cognition”.

• Chapter 6: Processing dynamic data with artificial neural networks
needs some static neural network basics. These are discussed in chapter
6.

• Chapter 7: This chapter gives an introduction to various realizations
of short-term memories which may be added to static neural networks.

• Chapter 8: The next natural step following the last two chapters is
the combination of short-term memory and static neural networks to
form artificial neural networks capable of spatio-temporal information
processing. Chapter 8 introduces novel approaches using single-layer
models.

• Chapter 9: Provided with all these basics, we are now able to com-
bine single processing layers to multi-layer neural networks capable of
processing and predicting spatio-temporal data. First we again discuss
established models to point out the improvement we realized in our
novel approach.

• Chapter 10: As we have the definition of an artificial neural network
model capable of all our requirements, we can proceed with some ex-
periments.

• Chapter 11: Some conclusions and experimental results arising from
our work, which are discussed in this chapter.

• Chapter 12: Finally, research in the area of motion processing does not
end here. This work of course gives us some ideas what direction to go
next.
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Chapter 2

Overview of the Motion
Processing and Prediction
Model

The goal of this dissertation is as already mentioned the development of a
multi-layered self-organizing maps based model that is capable of motion
processing and motion prediction. The models realization follows ideas we
derived from several research schools. To meet the demands of these schools
we will introduce several extension to self-organizing maps as well as novel
multi-layer structures and prediction mechanisms.

The sketch in Figure 2.1 shows a simplification of the final model intro-
duced in detail later. To point out the improvements and the novelties in
our model we will now give a brief introduction to it.

Before we are able to define a perception model we have to define the
input of the system first. As input we argue for a sequence of spatio-temporal
orientations which is a temporal sequence of vectors representing the two
qualities of orientation and velocity. The stimulus might be interpreted as a
single black dot moving on a white board, or more general a non relevant or
specific background. Other visual qualities like shape and color or textures
are assumed to be already processed by different computational mechanisms
similar to the processing in the brain.

This input is represented to a self-organizing map based processing layer,
which we extended to be able to store information on neural activation events
in a temporally ordered fashion, in an orthogonal access memory. This con-
serves context information for several time steps, controlled by a damping
factor.

The temporal storage can be interpreted as a short-term memory. Every
single STORM layer has the capability of a simultaneous orthogonal access
to the spatial position of the stimulus and the temporal occurrence of it.

As we want to process temporal activation patterns in hierarchically

9
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Figure 2.1: Spatio-Temporal STORM. The first layer processes a spatio-
temporal input to an activation mapping which is propagated to the next
higher processing level after several time steps. The second STORM layer
processes compounds of state transitions of the first layer.

higher, more abstract structures we developed an extension to recurrent
self-organizing maps, which ensures the temporal ordering.

In our new STORM layer model which we developed, a currently activ-
ated neuron is set to be refractory. The neuron is taken out of the pool
of competing neurons the next few time steps. The time interval is indir-
ectly controlled by a damping factor. After the refractory period is over, the
neuron is included into the pool of competing neurons again. This processing
scheme is resulting in an ensured fixed number of active neurons.

The information we want to transport from one hierarchy level to the
next is composed by a textual concatenation of all activation values from one
computing layer. This vector is composed after a predefined time interval
based on psychophysical experimental findings –finger tapping experiment,
flicker fusion–. This scheme is resulting in an activation vector, not as sparse
as in the established models which often suffer the disadvantage of nearly
useless intermediate processing layers.

Using our STORM model it is also possible to calculate the number of
maximum possible patterns a layer is able to generate. Given the number
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of maximum patterns it is possible to taylor the size and shape of higher
processing layers.

We developed a training mechanism for temporal data which preserves
the temporal context of the training data without having the disadvantage
of badly adapted network structures.

The demand of motion prediction capability is met by the introduction
of binary hetero-associative memories as prediction memories. This well
known model acts as an indexing structure to lower the activation threshold
of the next most likely to be activated neuron. As we use a quite different
paradigm to temporal forecasting we cannot use the prediction mechanisms
of the established recurrent self-organizing maps based models, so we add
associative memories to learn the association of current activation status and
most likely activation status in the next time step.

Psychophysics and neuro-anatomy provide us with hints on several design
issues and parameter choice. The hierarchical structuring, the temporal lim-
itations of the short-term memory, and the organization of the associative
memories were guided by these disciplines. Our model is able to provide
an orthogonal access to past activation events without any additional com-
putational effort to allow context aware processing, demanded also by the
dynamic spatio-temporal memory model proposed by K. Schill and Ch. Zet-
zsche [SZ95].

The associative memories provide prediction capability and the output
of the associative predictor inherently provides a rating of the generated
output. The hierarchical structuring allows us to operate on several scales
of abstraction. Provided with enough processing layers, the model is able
to classify simple motion plans by composing prototypical motion events to
motion compounds.

Our approach goes beyond the orientation selective filters and Reichardt
detectors, to the next higher processing abilities of the human visual sys-
tem, it is a model, describing and simulating an integral part of the human
visual system and it might be the last preprocessing structure before entering
cognition.
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Chapter 3

Paradigms of Perception

We only look, but we don’t see!

Andrej Tarkowskij (russian film director, 1932-1986)

The act of perception, apperception and thinking is investigated in numerous
disciplines. In this chapter we will introduce those schools that influenced
and inspired our model finding process. We will start with the first discipline
at all to deal with the act of thinking, perception, and cognition: philosophy.

3.1 Philosophy

Philosophers were the first scientists who tried to explain active cognition,
thinking and self-awareness in a cognitive theory. Discussing all philosoph-
ical cognition theories would of course go beyond the scope of this work.
We therefore constrain the discussion on two exemplary philosophers whose
work directly influenced our development of a motion processing model.

Gottfried Wilhelm Leibniz introduced in his book Monadologie (1714)
the term of apperception as a notation for the active self-awareness, what
he also called the monad. The monad fulfills the transition of the passive
perception process to active reflected perception.
Immanuel Kant refined this concept by subdividing it into empirical and
transcendental apperception. His work Critique of Pure Reason (1781) is
introducing the Transcendental Esthetic as the foundation of perception.
Kant states that we have an external sense which gives us an idea of space
and we also have an internal sense which gives us the idea of time. Space
and time are both necessary for enlightenment. We are not able to imagine
artifacts without space and time. At the same time our senses are receptive.
Kants Kopernikal turn states that we do not recognize a thing itself but
rather its emergence. This emergence is formed and generated by ourselves

13
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through our intellect, by a kind of generative process.
However Leibniz and Kant were not the first philosophers who thought about
how the human mind might work, but the cited ideas show quite obvious
links to some schools of artificial intelligence, connectionism, and cognitive
modeling. We partially base this thesis on reactions to phenomena observed
on testing subjects doing psychophysical experiments. The hierarchically
higher processing layers of our model are provided with an input resulting
out of a generative process of the lower processing layers.

We now continue with a few sections on established paradigms of percep-
tion models which will support us on finding a reasonable motion perception
model.

3.2 Behaviorism

Behaviorism has been a reaction to the previous use of introspection as a
methodology of self analysis. On a closer look behaviorism is quite similar
to the act of perception as described in Kants work, the differences lies in
the absence of introspection.

The two main criteria of behaviorism are first, that any data should be
publicly observable thus, as mentioned, excluding introspection which is dis-
carded completely and second, that only the behavior of animals and humans
should be studied avoiding mentalistic topics such as thinking, imagination,
intentions, desires, plans, symbols, schemes, or other mental representations
completely.

In the eyes of behaviorists all psychological activity can be explained
without the need to resort to such mentalistic entities. The most important
factor in generating the behavior of individuals is the environment. Indi-
viduals are seen as passive reflectors of various forces and factors in their
environment.

General principles and methods of conditioning and reinforcement where
developed by behaviorists to explain how learning and shaping of particular
behaviors could be established. Behaviorists state that the science of be-
havior could account for a complete description of everything an individual
might be able to do, explicitly including the act of thinking which is assumed
to be a covert behavior.

The paradigm of behaviorism influenced research until the mid twentieth
century. Difficulties associated to introspectism were overcome by simply
discarding vague and weakly defined concepts like will or purpose. Beha-
viorism oriented itself on extrapolating observations of animal behavior to
human behavior. Think of Pavlovs experiments on conditioning a dog to an
acoustic stimulus to produce more salvia as a simple example. This experi-
ment was also run with human testing subjects with similar results. But as
many behaviorists ignored all discussion of important topics like language,
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problem solving, planning and imagination –which in fact is quite similar
to introspection–, they provided a huge point of attack for other research
schools. Most behaviorists not only rejected to deal with the aspects of cog-
nition they even did not tolerate cognition. Skinner, representing a quite
radical behaviorism on the other hand, allowed for cognitive aspects, in con-
trast to most other researchers. Skinners Verbal Behavior is an analysis of
speech in terms of controlling relations which include the speaker’s current
motivational state, his current stimulus circumstances, his past reinforce-
ments, and his genetic constitution. Pure behaviorism caused an opposition
to the perceived sterility of behaviorism. Skinners book Verbal Behavior
was released in 1957 [Ski57]. Two years later Naom Chomsky delivered a
review on it which went into history under the designation Demolition of
Behaviorism. This rather destructive criticism lead nearly to a total discard
of behaviorism this stasis lasted at least for ten years and still resides in the
mind of many researchers until now, whereas behaviorism contributed many
important research results like the principle of reinforcement learning.

Also in the 50’s and 60’s a debate arose for the need of a theory of
human cognition to account for complex organized behaviors such as the use
of language, playing strategic games which involve planning, or playing an
instrument. Lashley [Las51] argued for a serially ordered chain of behaviors
and dropped the paradigm of strict associative stimulus response chains. One
argument was that for example, when playing a musical instrument the time
constraints “left no time for feedback, no time for the next tone to depend
upon or in any way to reflect the course of the previous one”. Further, slips of
the tongue often anticipate words that only occur much later in a sequence.
These events, Lashley claimed, cannot possibly be explained by simple linear
A evokes B event chains. They must be planned and organized in advance,
what in fact represents an early demand on a prediction capability of the
processing system.

3.3 Cognitivism

In the late 1940s, with the invention of the first computers, numerous re-
searchers were beginning to realize that a kind of similarity between the way
a brain works and the way computers work exists. The Hixon Symposium
held in 1948 can be seen as the starting point of modern cognitive science. It
was originally designed to discuss the way the nervous system controls beha-
vior. John von Neumann held the opening talk within he made a comparison
between the human brain and electronic computers [Gar85].

To characterize cognitivism we can state that coginitivism consists of
two major components, one is of methodological nature and the other one
of theoretical nature.

Methodologically, cognitivism adopts a positivist approach and the belief
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that psychology can be –in principle– fully explained by the use of experi-
ments, measurements and the scientific method. This is also largely a reduc-
tionist goal, with the belief that individual components of mental function
the –cognitive architecture– can be identified and meaningfully understood.
The second is the belief that cognition consists of discrete, internal mental
state representations or symbols whose manipulation can be described in
terms of rules or algorithms.

Also in the late 1940s an alternate paradigm for cognition attracted sup-
port: connectionism. Cognitivism and connectionism found wide support
in parallel until the 1960s, when due to a book of Minsky and Papert con-
nectionism suffered a serious setback [MP69]. The setback lasted for about
twenty years, unless some new learning algorithms and network models were
introduced. Building computer models and running those models became
the frontmost paradigm and is still the major research program in Cognit-
ive Science, Artificial Intelligence (including Computer Vision and Machine
Learning), Cognitive Psychology and Linguistics. Computer models are de-
nominated in literature with various names –cognitivism, symbol processing
system and representationalism. We will generally stick to the term cognit-
ivism. Cognitivism was also born as a reaction against pure behaviorism.
Where behaviorism excludes the processes of the ’mind’, cognitivism con-
centrates especially on isolated mental processes.

Dreyfus & Dreyfus [DD86] stated that cognitivists supported a belief that
the human brain and digital computers have a common functional descrip-
tion, on a certain level of abstraction. They argue for the similarity of the
computational power of both systems which both can generate intelligent
behavior through symbol manipulation being programmed in a proper way.

“. . . the human brain and the digital computer, while totally dif-
ferent in structure and mechanism, have at a certain level of
abstraction a common functional description. At this level both
the human brain and the appropriately programmed digital com-
puter can be seen as two different instantiations of a single species
of device–a device that generates intelligent behavior by manip-
ulating symbols by means of formal rules.”

This view shows that both, mind and digital computers, can be interpreted as
symbol processing systems, at least in the framework of Dreyfus & Dreyfus,
which also shows the interrelationship to deduction mechanisms and logics
in philosophy. Mind and digital computers can nonetheless not be seen
as equivalent systems. The physical symbol system hypothesis discussed
by Dreyfus & Dreyfus was originally promoted by Newell & Simon [NS81].
Newell & Simon stated that:

“A physical symbols system has the necessary and sufficient means
for general intelligent action. . . . By ’necessary’ we mean that any
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system that exhibits general intelligence will prove upon analysis
to be a physical symbol system. By ’sufficient’ we mean that
any physical symbols system of sufficient size can be organized
further to exhibit general intelligence.”

Cognitivism demands a formalized representation of the real world, and looks
to logic to provide the linking mechanism. This view follows a long history
of rationalist, reductionist tradition in philosophy, going back to at least the
time of Plato. This tradition was enhanced by Descartes, who made the
assumption that all understanding required the creation and manipulation
of appropriate representations, and that these representations could be ana-
lyzed into primitive elements –naturas simplices– such that all phenomena
could be understood as complex combinations of these simple elements.

Other philosophers who made contributions include Hobbes –who made
the suggestion that the elements were formal components related by purely
syntactic operations, so that reasoning could be reduced to calculation–,
Leibniz –who posited that every human concept must be composed of com-
plex combinations of ultimate simples, and if these concepts are to apply to
the world, there must be simple features that these elements represent–, up to
Frege and Russell. Wittgenstein contributed his apotheosis of the reduction-
ism, rationalist tradition (Tractatus Logico-Philosophicus), which postulated
a pure form of this syntactic, representational view of the relationship of the
mind and a world composed of facts.

Artificial Intelligence is the continuation of this philosophical tradition.
AI attempts to determine primitive elements and logical relationships that
mirror the primitive objects and their relationships.

3.4 Cybernetics and Constructivism

The school of cybernetics was founded independently by several research-
ers. Some of them origin from physics, some of communication engineering,
maths, psychology and human biology. Some of the most important re-
searchers are Warren McCulloch, Norbert Wiener, Frank Rosenblatt, Heinz
von Förster to name a few.

Cybernetics to characterize the term, is the study of communication and
control involving regulatory feedback, in living organisms, in machines, and
in combinations of the two, for example, in sociotechnical systems. Louis
Couffignal characterized cybernetics as:

“Cybernetics is the art of ensuring the efficiency of action”

The epistemology of cybernetics is constructivism. Ernst von Glasersfeld is
one of the founders of the radical constructivism. He defined the radical
constructivism by the following two basic principles:
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• Knowledge is not passively received either through the senses or by way
of communication, but is actively built up by the cognising subject.

• The function of cognition is adaptive and serves the subject’s organ-
ization of the experiential world, not the discovery of an objective
ontological reality.

In principle radical constructivism states that every single human is con-
structing his own reality by interpreting his perceptions. So every human
is generating his own world within he is interacting and perceiving. All
processes for perception are invented independently within every living en-
tity. In our opinion this point of view is to strict, since neural anatomy has
provided us with findings which are not bound to an a single human more-as
found in each examined testing subject. It is in our opinion evident that
every reflected entity is constructing its own belief of a world, but provided
stimuli result in similar excitation patterns in every human brain.

Researchers from the biological cybernetics school try to find an informa-
tion theoretical formulation to a whole organisms, whereas neuro cybernetics
tries to find proper communication engineering based description of neuro-
logical models to explain perception phenomena.

3.5 Connectionism

Following a serious setback in the 1960s, caused partially by a massive cri-
tique of the power of perceptrons by Minsky & Papert [MP69], the connec-
tionist approach had since the early ’80s a resurgence in popularity. The
awakening in the early ’80s was partially caused by the book series “Parallel
Distributed Processing” by Rumelhart and McClelland [RM86].

Current research in connectionism concerns feed-forward style networks
(Rumelhart, Hinton & Williams ’86, Stone ’86, . . . ) Kohonens self-organizing
maps [Koh97], various recurrent networks, adaptive resonance theory (ART)
to name some but not all of the known models. Review and general ref-
erences can be found in books on artificial neural networks e.g. Haykin
[Hay94]. Some of the researchers dealing mainly with pattern processing
and pattern recognition turned in the last years to purely statistical models
like support vector machines (SVM), principal component analysis, hidden
markov models, dynamic bayesian networks or in the case of dynamic data
processing to kalman filtering or particle filtering. The turn of favor to stat-
istical methods was also caused by the fact, that neural network models are
not completely observable like in contrast SVMs, but which in fact only is
more of an artificial advantage.

Nonetheless our belief is that a cognition system capable of motion per-
ception should be as biological plausible as possible. So our choice is to stick
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to self-organizing maps. In our opinion biological systems rely on two learn-
ing mechanisms: evolutionary tuning of the population shape and spatial
structure, number of neurons and interconnection fibers and on synaptical
weight adaptation. This forces one almost to favor models like self-organizing
maps, where the choice of the neighborhood function, the mesh size can be
associated to evolutionary learning, the adaptation of the neuron mesh-grid
could be referred as the maturating part of the adaptation of the system,
and the pure weight adaptation which could be interpreted as the synaptical
adaptation.

The most common learning rule which is used within feed-forward mod-
els, error back-propagation, is of a questionable biological validity. Back-
propagation learning is based on the determination of an error difference
between the current output vector of the network and its expected output
vector. In biology we normally will not be provided with an expected output,
so we will not be provided with a final result of a task as the environment is
highly dynamic. We belief in the existence of self-organizing processes, which
allow the human brain to adapt itself to whatever statistics it is confronted
with.

A general theory of cognition should not ’design a net’ as in some localist
networks, but rather have a general structure that is able to learn for itself
–otherwise the net will only exhibit the expert knowledge built into it by
its designer. Intelligent acting is determined by motivations and purposes
within an organism, as well as successful behaviors picked up by the organism
from an ongoing external world and culture.

3.6 Computational Neuroscience

Computational Neuroscience is an interdisciplinary school of research. Fun-
damental works were published by Huxley, Hodkin, and Marr. Huxley and
Hodkin developed the voltage clamp which allowed the development of the
very first model of the action potential. David Marr concentrated on inter-
actions between neurons and suggested computational approaches on how
functional assemblies of neurons within hippocampus and neocortex interact
with each other, store and process and transmit information. Computa-
tional Neuroscience is the attempt to simulate neurons on a level which is
as exact as possible bound to biology, to understand the interrelationships
between neurons and synapses and to provide a theoretical framework for
neural processes. Especially the coding of information with spikes and the
meaning of syncronicity in spike patterns are a point of interest. A possible
statistical description of spikes can be realized with Fokker Planck equation
based models. We took computational neuroscience rather than a source of
inspiration how to trim our model further to a biologically realistic model.
At the current state of research it is not possible to simulate big popula-
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tions of neurons. Nicolas Brunel did simulations on up to a maximum of
ten neurons recently (2004). As computing power rises and better approx-
imations on spike train models arise, computational neuroscience gets more
and more interesting, but for now we have to find a path somewhere in the
middle of connectionism and computational neuroscience ever shifting the
focus more and more to the latter school. So possibly the developments of
neural computation and our attempts might converge in between the two
schools in near future. Nonetheless it should be stated that the functions
used in connectionist neural networks are the result of summing up action
potentials over time. So connectionist networks also base on spiking neurons,
only on a more coarse scale of time.

3.7 Guiding Concepts

Finally we want to summarize some ideas we want to transfer to our motion
perception model. Behaviorism and cognitivism are based on philosophical
discourses of perception we described at the very beginning of this chapter.
Cognitivism deliver the functional background and most of the constraints
applied to our system. As our model will be built from artificial neural
networks based on self-organizing maps propagating information from one
processing layer to the other, it is not fully introspectible, what makes it
similar to a behavioristic approach or speaking in the sense of Heinz von
Förster a non trivial machine. As we use self-organzing maps based layers
and neural associative memories as we will notice later, we define a kind of
connecitionist model. Neural Computation is as mentioned more of a distant
goal to reach, as we try to refine our model to fit better to real biological
findings. Also the size of simulate-able neuron population is simply to small
for our purpose. Overall we can call our attempt of inventing a motion
perception model a constructivistic approach. Cybernetics is present by the
feedback in each computational entity of our model. We will deliver a full
argumentation line in the conclusion as we have every part of the model
then.

We will now continue with some neuro-anatomical findings of the visual
system to find some structural hints on how an artificial motion processing
and prediction model could look like.



Chapter 4

Neuro-Anatomy of Visual
Perception

There are two ways to get an idea how motion perception might be realized
in the brain. One way is to present simple motion stimuli in experimental
conditions to –non human– testing subjects while doing single cell recordings
with platinum electrodes or fMRI to see which neuron patches respond to
the presented stimuli. The other way, discussed in the following chapter, is
to present testing subjects specially designed motion stimuli and measure
their reaction time or accuracy to these presented stimuli. By interpreting
the reactions it is possible to develop models. These kind of models describe
the functionality of the system of course more, as they are anatomically
reasonable.

This chapter will give a short introduction to the neuro-anatomy of the
visual system, as we have also taken it into account to develop our motion
perception model to get a biological plausible structure.

4.1 Visual Processing Stream in Cortical Areas

While cognition psychology gives us an idea of the functional entities of the
whole system, neuro-anatomy provides us with information on how areas and
neurons are interconnected with each other to form the visual processing sys-
tem. The stream of visual processing is divided into two separate pathways
with different functionality. We will mainly concentrate on the dorsal path-
way of the visual processing system, since motion perception is realized on
this processing stream. The main focus lies on the areas involved in motion
processing. A quite comprehensive description of the visual system can be
found in [RD02].
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Figure 4.1: Sketch of the location of the visual perception related structures
in the human brain.

4.1.1 The Dorsal Pathway

In the cortex [And97] motion is processed in a hierarchical fashion as illus-
trated in Figure 4.2. The first processing stage in the hierarchy consists
of simple and complex cells that are direction selective and situated in the
cortical visual area V1. Evidence suggests that directional selectivity in the
primary visual cortex is computed independently from retinal direction se-
lectivity. The direction selective cells in V1 project to the middle temporal
cortical area (MT or V5) and to V2, which also projects to MT. Directional
selectivity becomes more complex in MT; that is, cells there typically have
very large, orientation-independent receptive fields, and many will respond
best to the composite motion of a plaid, as opposed to its individual compon-
ents. From MT, the motion pathway projects to MST, wherein directional
selectivity information is further combined to produce neurons sensitive to
complex motions, such as rotation, expansion and contraction [And97]. Fun-
damentals can be found in two outstanding works of S. M. Zeki: [Zek74],
[Zek78]. The structuring of the dorsal processing stream provides us with
some constraints of the hierarchical structuring of our artificial neural net-
work model.
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Figure 4.2: Simplified overview of the visual pathway.

4.1.2 The Ventral Pathway

The ventral stream begins with visual area V1, goes through visual area V2,
then through visual area V4, and to the inferior temporal lobe. The ventral
path, also called the “What Pathway”, is associated with shape recognition
and object representation. It is also associated with the storage of long-term
memory representations. We can say that the ventral stream is only related
to static pattern processing unlike the dorsal stream, which processes also
dynamic patterns.

4.2 Visual Cortical Areas

We want to discuss the visual cortical areas in a very brief way, to give an
idea how visual processing is realized in real brains and to gather some more
constraints for our network model.
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4.2.1 Retina and Lateral Geniculate Nucleus

The retina converts and filters the incoming light stimuli into electrical action
potentials. It is composed out of approximately 6 million cones and 100
million rods, whereas cones are tuned for the perception of single colors –red,
green, blue– and fast movements but less light-sensitive than cones and rods
are more light-sensitive and responsible for the perception of luminance –
black, white– changes. Cone photo-receptors also show a temporal property.
They behave like temporal bandpass filters. The peak response of these
filters is reached at a frequency of 5Hz [Bay87], the so called flicker fusion
frequency.

The flicker fusion frequency also defines the frequency when the strongest
motion aftereffects occur [Pan74]. The existence of the flicker fusion fre-
quency is useful to know, because it allows us to constrain phsychophysical
experiments and it delivers a good hint for parameter setting and finding in
artificial neural network models.

Retinal ganglion cells and lateral geniculatie nucleus (LGN) neurons can
be subdivided into sub-populations with different spatial and temporal prop-
erties [Len80].

The LGN is a sensory nucleus situated in the thalamus of the brain which
receives its inputs from the retina and projects them retinotopicaly to area
V1. The LGN anatomical structure is subdivided into six functional layers.
Layers 1, 4 and 6 correspond to signals from the one eye; layers 2, 3 and 5
correspond to signals originating from the other eye. Layer 1 consists of M
cells, which correspond to the magnocellular (M) cells of the optic nerve of
the opposite eye, and are involved in depth or motion processing. Layers 4
and 6 of the LGN also connect to the opposite eye, but to the parvocellular
(P) cells of the optic nerve. Those P cells are sensitive to color and edges.
Layers 2, 3 and 5 of the LGN connect to the M and P cells of the optic nerve
corresponding the same side of the brain as represented in LGN. In between
the six layers are smaller cells receiving signals from the cones in the retina.
The neurons of the LGN then relay the visual stimuli to the primary visual
cortex V1.

4.2.2 Primary Visual Cortex V1

The primary visual cortex is the best studied visual area of the brain so far.
It is the part of the cerebral cortex that is responsible for processing visual
stimuli. It is the simplest, earliest cortical visual area. It is highly specialized
for processing information about static and moving objects and is excellent
in pattern recognition.

The functionally defined primary visual cortex is approximately equival-
ent to the anatomically defined striate cortex.

V1 has a well-defined map of spatial information. For example, in the
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human brain the upper bank of the calcarine sulcus responds strongly to
the lower half of visual field (below the center), and the lower bank of the
calcarine to the upper half of visual field. Conceptually, this so called ret-
inotopic mapping is a signal transformation of the visual image from the
retina to V1. The correspondence between a given location in V1 and in
the subjective visual field is very accurate: even the blind spots are mapped
into V1. Evolutionary, this correspondence is very basic and found in most
animals that possess an area similar to V1. In human and animals with a
fovea in the retina, a large portion of V1 is mapped to the small, central
portion of visual field, a phenomenon known as cortical magnification. A
technical representation of this foveal coritcal magnification can be realized
with a log-polar mapping of images. Perhaps for the purpose of accurate
spatial encoding, neurons in V1 have the smallest receptive field size of any
visual cortex regions.

Individual V1 neurons have strong tuning to a small subset of stimuli
characteristics. They respond to small changes in visual orientations, spa-
tial frequencies and colors. Furthermore, individual V1 neurons in humans
and animals with binocular vision show an ocular dominance, they are re-
sponsible for the tuning to one of the two eyes. In V1, and primary sensory
cortex in general, neurons with similar tuning properties are clustered to-
gether to so called cortical columns shown in Figure 4.3. D. H. Hubel and
T. N. Wiesel [HW77] proposed the ice-cube organization model of cortical
columns for two tuning properties: ocular dominance and orientation. How-
ever, this model cannot accommodate color, spatial frequency and many
other features to which neurons are tuned. The exact organization of all
these cortical columns within V1 still remains an important topic of current
research. It seems to be widely accepted that area V1 consists of tiled sets

Orientation
columns

Right

Left

Figure 4.3: Ice-cube organization of orientation selective cells in V1

of selective spatio-temporal filters. In the spatial domain, the functioning
of V1 can be thought of as similar to many spatially local, complex fourier
transforms. Theoretically, these filters can carry out neuronal processing
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of spatial frequency, orientation, motion, direction, speed (thus temporal
frequency), and many other spatio-temporal features.

The visual information propagated to V1 is not coded in terms of spa-
tial (or optical) imagery, but rather as the local contrast. As an example,
for an image comprising half side black and half side white, the dividing line
between black and white provides the strongest local contrast and is encoded,
while few neurons code the brightness information. As information is fur-
ther relayed to subsequent visual areas, it is coded as increasingly non-local
frequency/phase signals. Importantly, at these early stages of cortical visual
processing, spatial location of visual information is well preserved amid the
local contrast encoding.

Visual Area V2

Visual area V2 first region within the visual association area. It receives
strong feed-forward connections from V1 and sends strong connections to
V3, V4, and V5. It also sends strong feedback connections to area V1.

Anatomically, V2 is split into four quadrants, a dorsal and ventral rep-
resentation in the left and the right hemispheres. Together these four regions
provide a complete map of the visual world.

Functionally, V2 has many properties in common with V1. Cells are
tuned to simple properties such as orientation, spatial frequency, and color.
The responses of many V2 neurons are also modulated by more complex
properties, such as the orientation of illusory contours and whether the stim-
ulus is part of the figure or the ground [QdH05].

Recent research has shown that V2 cells show a small amount of atten-
tional modulation (more than V1, less than V4), are tuned for moderately
complex patterns, and may be driven by multiple orientations at different
subregions within a single receptive field.

Visual Area V3

Visual area V3 is part of the dorsal pathway, receiving inputs from V2 and
primary visual areas. V3 projects to the posterior parietal cortex.

Recent research based on fMRI recordings suggested that area V3/V3A
could play a role in the processing of global motion [BQ01].

Visual Area V4

V4 is the third cortical area in the ventral stream, receiving strong feed-
forward input from V2 and sending strong connections to the posterior in-
ferotemporal cortex (PIT). It also receives direct inputs from V1, especially
for central space. It has also weaker connections to V5 and to visual area
DP (the dorsal prelungate gyrus). V4 is the first area in the ventral stream
to show strong attentional modulation. A paper by Moran and Desimone
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[MD85] characterizing these effects was the first paper to find attention ef-
fects anywhere in the visual cortex [Zek74],[Zek78].
Like V1, V4 is tuned for orientation, spatial frequency, and color.
Unlike V1, it is tuned for object features of intermediate complexity, like
simple geometric shapes, although no one has developed a full parametric
description of the tuning space for V4. Visual area V4 is not processing
complex objects such as faces. Faces are processed in the inferotemporal
cortex. Zeki argued that the purpose of V4 was to process color informa-
tion. Work in the early 1980s proved that V4 was as directly involved in
shape recognition as earlier cortical areas. This research supported the Two
Streams hypothesis, first presented by Ungerleider and Mishkin [UM82]. Re-
cent work has shown that V4 exhibits long-term plasticity, encodes stimulus
salience, is gated by signals coming from the frontal eye fields, shows changes
in the spatial profile of its receptive fields with attention, and encodes hazard
functions.

Visual Area V5

Visual area V5 also known as area MT, is a region that appears to process
complex visual motion stimuli. It contains many neurons which are selective
to the motion of complex visual features like end-stop- and corner sensitivity.
Much work has been carried out on this region as it appears to integrate local
visual motion signals into the global motion of complex objects [MAGN85].
There is still much controversy on the exact computations carried out in
area MT [WR92]. Some research suggests that the feature motion is in fact
already available at lower levels of the visual system such as V1. Bullier
[Bul01] investigated retroinjecting lines from higher visual processing areas
including V5 to V1, providing an active blackboard which supports motion
prediction. One observable phenomena is apparent motion.

Visual Area V6

This functional area was so far only identified in monkeys and not in human
brain.

Visual Area V7

The function of area V7 is so far unknown.

Visual Area V8

Area V8 in the human brain is processing color information and is believed
to be the homologous to macaque brain area V4. It was investigated by
using fMRI by Hadjikhani et. al. in 1998 [HLD+98].
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4.3 Motion Processing Related Areas

Motion processing is as the last subsections showed not located in a singular
area. The processing is distributed along a pathway including the retina,
LGN, V1 projecting to MT and V2, V2 projecting to V3/V3A and MT
which projects to MST and MST to area 7A. We illustrate this pathway
in Figure 4.4 by indicating the areas involved in motion processing with a
grey shading. This sketch is of course not complete it only shows the most
important functional areas.

The Role of Retroinjecting Connections

The main limitation of feed-forward models is that they do not combine de-
tailed local analysis with a global percept, necessary to resolve occlusion and
lightning artifacts. It is therefore necessary to use recurrent and retroinject-
ing communication lines [Bul01].

To compute interactions between distant regions in the visual field, two
types of connections are used in the brain. Local horizontal connections and
feedback connections. The necessity of computing with high spatial pre-
cision and reaching out to distant regions in the visual field is difficult to
achieve only with horizontal connections within a single cortical area. With
local horizontal connections, each V1 and V2 neuron is limited to compu-
tations in a very local environment and it cannot participate in integration
across long distances in the visual field. Neurons in higher order areas like
MT, V4, TEO, are able to integrate information across long distances in
the visual field because of their larger receptive fields and the lower mag-
nification factors in these areas. However, the selectivity of their receptive
fields are more specialized. For neurons in higher order areas, long-distance
integration can be properly achieved through horizontal connections for a
given aspect of computation corresponding to the major selectivity of the
area like the computing of the direction of movement in area MT. Nonethe-
less, such computation is impossible when it requires combining neurons with
selectivity to different attributes like motion direction, depth, color, shape
etc. . . simultaneously.

One possible way to achieve this combination is by exchanging inform-
ation between neurons in higher order areas coding for different attributes.
However, the level of complexity of the computation and the fine grain of the
representation that is often needed are probably impossible to achieve with
the rather sparse set of such connections like for example the small number
of direct connections between higher order areas of the dorsal and ventral
stream.

Computation across long distance in the visual field is realized by retroin-
jecting the results of the computations done by neurons in higher order areas
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through feedback connections to neurons in low order areas such as V1 and
V2. Contrary to local horizontal connections, feedback connections have very
large convergence regions and can carry information from long distances in
the visual field, achieving the desired goal of integrating global information
with local and precise processing.

Areas V1 and V2 could act as active blackboards integrating in their
neuronal responses of neurons in other higher order areas that are likely to
be activated later.

The idea of retroinjection in lower order areas makes it necessary to
identify which parameters are processed first, since the results of this first
computation can be done sufficiently fast, so that the result of computations
done in higher order areas can actually influence the response of neurons
in areas V1 and V2. Because they are located close to the entry point of
visual information through the LGN it is usually assumed that neurons in the
low order areas V1 and V2 do have shorter latencies on visual stimulation
than neurons of areas located higher in the processing hierarchy. It was
shown recently that neurons in several cortical areas are activated very early.
Practically at the same time as areas V1 and V2. It is clear that there are
a number of cortical areas, such as MT, MST, the frontal eye field (FEF)
and 7a that contain neurons that are activated sufficiently early to influence
neurons in areas V1 and V2. These areas are in the parietal cortex or, in
the case of FEF, in a region of frontal cortex that is heavily interconnected
with the parietal cortex. These areas, often called the fast brain, belong to
the dorsal stream or its continuation in the frontal cortex.

The main ideas behind this organization are

1. The first activity to reach visual cortex is provided by the M channel
Figure 4.2

2. areas of the dorsal stream are activated very fast and are thus in a
position to influence the behavior of neurons in areas V1 and V2

3. caused by the low conduction time of feedback connections, results of
early computations done through the first processing pass can influence
the responses of V1 and V2 neurons just in time for the arrival of the
activity of the P stream, which is delayed by 20 ms

4. areas V1 and V2 provide general purpose representations, or active
blackboards which integrate, within their responses the computations
done at hierarchically higher levels.

5. because of the rapid activation of neurons in the dorsal stream, it is
likely that they can influence responses of neurons in the ventral stream
mainly by retroinjecting information in areas V1 and V2.

These items showed us a strong necessity for recurrent feedback in our at-
tempt to define an artificial neural network model. Bullier derived evidence
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for these retroinjecting connections by fMRI recordings he discussed in detail
in [Bul01].

4.4 What we Derive from Neuro-Anatomy

We will now briefly recapitulate on the neuro-anatomical findings and prin-
ciples we want to integrate into our artificial neural network model. The first
issue is the hierarchical organization of the system and the increasing of the
size of the receptive field the more advanced the layer is. Also the role of
retroinjection is taken into account in the development of our system.

What we can derive from this chapter is:

• An artificial neural network has to be constructed out of hierarchically
organized processing layers

• Information representation on each level should be similar to the changes
in size of the receptive field in the visual areas; the more abstract
(higher) the processing layer, the rougher the resolution

• An artificial model has to implement a short-term memory, recurrent
connections, and retroinjection connections to realize prediction abil-
ities.

• The dorsal processing stream is associated with motion, the representa-
tion of object locations, and the control of the eyes and arms, especially
when visual information is used to guide saccades or to reach for an
object. It is so to say the stream we have to look at when designing
an artificial motion perception model.
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Figure 4.4: Excerpt of the structure diagram of the macaque visual cortex.
Shaded areas play a substantial role in motion perception.
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Chapter 5

Motion Perception in Cognitive
Psychology

Within the research group this thesis has been started, several experiments
on spatio-temporal memory and motion processing were conducted. The
central question was:

What are the motion primitives and prototypical motion shapes which
are used by the visual system in order to classify and predict trajectories?

This question guided the experiments described in this psychophysics re-
lated chapter. A number of different experimental paradigms were applied, in
which the complexity of the motion stimuli used was increased successively.
The experiments started with simple kinks and curves, went further with
occluded paths, and ambiguous displays and ended with extended and very
complex trajectories. In all experiments temporal parameters were varied in
order to gain insights into memory-based processes. The empirical results
leading to a motion shape vocabulary of the visual system are transferred to
our modeling approaches. These approaches include the consideration of dif-
ferent levels of processing and representation. For the higher, more cognitive
level of spatio-temporal information processing a propositional framework
for the qualitative representation of motion information has been developed
by A. Musto [MSE+00]. It uses linguistic concepts for qualitative motion
vectors like left-turn, u-turn, loop, . . . , which are correlated to motion prim-
itives found in our experiments. This qualitative approach can be used to
describe, generalize and calculate trajectories on different levels of abstrac-
tion (described in detail in [Nih73]). However, there remains a gap between
the first visual stage of dynamic processing (realized e.g. by an orthogonal
access memory stage [SZ95]) and a linguistically coded qualitative repres-
entation of motion information on the other side.

The multi-layer neural network model introduced later is the result of
our search for a way of spatio-temporal information processing. In order
to enable the representation, processing and prediction of spatio-temporal

33
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patterns on different levels of granularity, a hierarchical network model has
been investigated which consists mainly of self-organizing map like layers
organized in a hierarchical manner.

5.1 Visual Spatio-Temporal Memory

Motion perception models which are based on dynamic concepts and capable
of processing spatio-temporal information are quite rare in vision research.
Most research was done in the field of static pattern classification. An early
motion perception model was dividing the complete system into two visual
subsystems each of the subsystems responsible for a single task. One realiz-
ation of a visual system consisting of two parts, the so called transient/sus-
tained dichotomy concept was described by Watson [Wat87]. One part of
the system, the sustained subsystem, is characterized by its slow temporal
integrating and low-pass filtering processing behavior. The second part of
the system, namely the transient subsystem simply detects changes in the
temporal domain of the provided signal which occurs if objects appear or
disappear from an observed scenery.

This rather simple model is not able to completely explain the perception
of moving objects, what motivated a refined dynamic perception model: optic
flow.

Optic Flow is characterized by the displacement of each single point of a
scene between two sampling events. So the spatial distance between a single
observed point at time t and at time t + ∆t generates one single optic flow
vector. The sum of all these difference vectors define the motion vector field
characterizing the optic flow. So we can say that the field assigns to each
spatial point of every sampling event in time a velocity vector. Computa-
tionally the calculation is a simple value comparison of two points in time
and space. Reichardt investigated the flies nervous system to find the mech-
anisms responsible for processing motion. To process changes in a dynamic
scenery e.g. the fly uses a quite simple realization of a motion detector, the
so called Reichardt detector [PR73]. Figure 5.1 shows the simplest possible
detector which is able to detect motion in a single direction. This simple
Reichardt detector uses two spatially displaced inputs provided by retinal
photo-receptors to calculate a response. If a stimulus is applied to the first
and after a appropriate delay to the second input receptor, the two signals
traveling to the detector arrive simultaneously and are summed up to the
excitation. The more synchronously the signals arrive the higher the excit-
ation and the higher the output of the detector. It is quite easy to define
more sophisticated detectors by combining the inputs by inhibitory lines. A
detector capable to react to two opponent stimuli with an inverted output
signal is shown in Figure 5.2. Motion detection in a 2D environment de-
mands a model called orientation selective filter Figure 5.3. Higher order
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motion approximations were investigated e.g. by Glünder [Glü90], Nomura
& Miike, [NM91], and Zetzsche& Barth [ZB91]. Optic flow vector fields are
not more than the temporal and the spatial property of a provided input
signal and therefore nothing more than the “spatio-temporal orientation”.

∑

Input 1 Input 2

delay

Stimulus

Motion
Detected

Figure 5.1: Reichardt Detector sensitiv to a single direction

Figure 5.2: Generalized Reichardt Dectector

Common to the before introduced approaches is what Schill and Zetzsche call
a collinear concept of the representation of time and space [SZ95]. In the
models discussed above the internal representation of the spatio-temporal
input is a modified projection of the input signal. The temporal properties
of the external and internal signal are preserved. Due to the fact, that the
systems do some kind of processing like filtering, an additional delay is pos-
sible. Regarding one single moment of time –one sampling event– the only
internally available property in the system is a local-momentary signal like
velocity. The introduced collinear concept of the representation of time is
not providing a direct access past system states. To illustrate why the access
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It might be advantageous to have a square root or other

compressive nonlinearity following the sum-of-squares stage,

in order to keep the outputs within a reasonable range (cf. the

research of Pantle and Sekuler28 on the motion aftereffect).

Such a monotone transformation would not affect the basic

properties of the motion-extraction process but could have      

an effect on the performance observed in various tasks, such     

as the accuracy with which changes in speed and contrast     

could  be  judged.

Energy  was extracted  in Fig. 9a  by using  the standard  trick

Fig. 9. a, Two linear filters, whose responses are 90 deg out of phase,
form a quadrature  pair. If their responses are squared and summed, the
resulting signal gives a phase-independent measure of local motion
energy (within a given spatial-frequency band). The filters shown here
resemble spatiotemporally oriented Gabor functions. To approximate
such functions, a number of separable filters b-e, which are shifted in-
phase and time, can be summed to form f.

of squaring the outputs of two filtes that are 90 deg out of

phase, i.e., that form a quadrature pair. In the case of Gabor

functions, this was done by simply using the sine and cosine

versions of the same filter (which are effectively in quadra-

ture). We now consider how similar results can be achieved

with more-realistic filters.

6.  PHYSIOLOGICALLY PLAUSIBLE FILTERS

Watson and Ahumada8 have described how spatiotemporally

oriented filters can be constructed by adding together the

outputs of two separable filters with appropriate spatiotem-

poral characteristics. The principle can be extended to in-   

clude a wide variety of filter combinations; the main thing i s

to create spatiotemporal orientation. Figures 9b-9f show how

one can create a spatiotemporally oriented filter by summing

the outputs of four separable filters, which are identical except

for a shift in receptive-field center and a temporal delay. (The

spatial impulse responses are Gabor functions, and the tem-

poral impulse responses are multistage low-pass filters with    

a small amount of inhibition.) An approximate quadrature

partner for this filter can be constructed by using an odd-

asymmetric spatial Gabor function; or (for a cruder approxi-

mation) one can simply shift the filter spatially by about 90

deg  of  phase.

A single separable filter can never be directionally selective,

and the minimum that one can get away with is a sum of two

separable filters. Unless these filters are carefully designed,

the resulting tuning will fall short of the ideal.8

There is a particularly elegant way of using separable pairs

to construct quadrature pairs tuned for both directions, as i s

shown in Fig. 10. We start with two spatial impulse responses

(Fig. 10a) and two temporal impulse responses (Fig. 10b). In

this case, the spatial impulse responses have been chosen as

second and third derivatives of Gaussians, and the temporal

impulse responses are based on linear filters of the form

f(t) = (kt)nexp(-ktt)[1/n! - (kt)2/(n + 2)!],                   (1)

where n takes the values of 3 and 5. There is nothing magical

about these particular functions, but they serve as plausible

approximations to filters inferred psychophysically.30

Now there are four possible ways to combine the two spatial

and two temporal filters into separable spatiotemporal filters;

let us make all four. These are shown across the top of Fig.

10c. By taking appropriate sums and differences, we can

construct the four oriented filters shown across the bottom       

of Fig. 10c. Two are oriented for leftward motion and two for

rightward motion. The two members of each pair are ap-    

proximately 90 deg out of phase with each other. When their

outputs are squared and summed, the resulting signal provides    

a fairly good measure of the motion energy falling in the range

of frequencies for which this detector system is tuned.

Figure 11 shows the spatiotemporal energy spectrum of a

motion unit of the sort just described, sensitive to leftward

motion. The system extracts energy in the two blobs that lie

along a diagonal through the origin; spectral energy along this

diagonal corresponds to motion at a given velocity.

The spectrum is not quite so clean as that which could be

achieved by summing filters with more-ideal properties or by

summing a greater number of separable filters. But the filter

will do much the same job in extracting motion energy within

its spatiotemporal-frequency band.

Figure 5.3: Two linear motion filters from a quadrature pair with a peek
response at 90◦ out of phase [AB85]

to past states induce a problem for motion perception we will first have a
look on the structural requirements for a static spatial pattern processing
system. Obviously the recognition of spatial patterns cannot sufficiently be
based on a single local property like the local orientation at a spatial pos-
ition, since a combination of several local properties is necessary to form a
single spatial pattern. So the task of spatial pattern recognition is based on
the combination of single local spatial orientations to a static pattern. To
realize this processing ability it is necessary to have an instance which has
access to spatial features from different locations and to several time steps.
The technical realization of the instance which combines those different loc-
ations could be realized by the famous grandmother cell or for example by
a neural assembly. The temporal properties demand a memory structure.
Independent to the distinct realization of the combination instance for the
spatial properties it can be stated, that this instance has to have full access
to various spatial features from various locations.

In contrast to the temporal domain, spatial properties can be mapped
quite easily by interconnecting nerve fibers carrying signals from the retina
to the “processing” areas simultaneously.

5.2 Dynamic Spatio-Temporal Memory

Motion queues with larger complexity like the previously mentioned stimuli
need a more sophisticated motion processing model. The main question is,
how human beings perceive spatio-temporal structures. Structures of the
complexity like figures in figure skating, throws in Judo, the characterist-
ics in the way a person walks [Joh75], the recognition of long complicated
dynamic gestures as in sign language, or dealing with phenomena arising
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Figure 5.4: Comparison of a collinear representation, shown on the left hand
side, and the orthogonal representation of a spatio-temporal input on the
right hand side.

through ego-motion in environments densely occupied with obstacles or ob-
serving moving objects: occlusion or in other words discontinuities. Imagine
a bird flying behind a tree. Trying to track the birds trajectory, our visual
system is able to estimate the point of reappearance after the occlusion.
This is necessary because of the insufficient speed of occulomotoric system
to search for the stimuli after the occlusion again. Also aiming for a moving
target makes it necessary to predict the trajectory of the target. Handling
occlusions of course can only be realized with a system capable of predict-
ing and approximating motion of objects without any externally provided
stimuli.

Detectors like the Reichardt-Detector shown in Figure 5.2 or ensembles
of orientation-selective wavelet patches can model the spatial domain of the
spatio-temporal memory. In the temporal domain the case is a different one.
Because of the necessity of an access to past elements of an observed motion
path, to classify the motion correctly and to estimate correct predictions,
Schill and Zetzsche [SZ95] introduced an orthogonal-access memory. This
memory renders the system able to access various past motion atoms sim-
ultaneously with no computational effort. The necessity of such a temporal
short-term memory gets clear, if the system has to process motion paths and
the input stimulus is characterized by direction and velocity. The system is
only able to classify motion, if it is integrating past motion atoms –we define
a motion atom consisting of direction and velocity– to a motion segment.

In the spatial domain, access can basically be realized by interconnecting
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nerve fibers, providing information exchange channels. Access to the tem-
poral domain, however, requires the transport of information across time
which can only be provided by a distinct operation, the storage of informa-
tion. The required array of storage elements can be called a memory. Since
we want to deal with the perception of dynamic scenes, with the extraction
of information from space and time, the memory has to be a spatio-temporal
memory.

This memory must not necessarily correspond with a single spatially
restricted area of the brain and realized by a specific class of neural elements.
It is also possible that the memory is distributed around multiple visual
processing areas interconnected with each other massively. The distributed
processing of motion information and especially the massive interconnection
between those motion processing areas in the brain were recently investigated
in neuro-anatomy by J. Bullier [Bul01].

In this thesis we construct a system associating a spatio-temporal memory
on an artificial neural network definition but avoiding a pure spike based
model realization, in order to deliver a system with applicable computing
complexity and still keeping the demands of the model fulfilled. The basic
concept of the dynamic memory is the mapping of time to physical proper-
ties reflected in an artificial neural network model. Time and the memory
state of the system must be accessible simultaneously.

To defend the statement that the concept of simultaneous access not only
holds for some special assumption Zetzsche and Schill argued that, unless
it might be easier to construct a sequential processing system like a stand-
ard computer equipped with a camera subsystem, it is missing simply the
orthogonal access. The access problem might be solved by the provision of
a memory structure storing some of the last incoming visual information
frames. This additional memory supports the hypothesis of an orthogonal
access memory as this memory enables the mapping of the incoming inform-
ation stream into a spatially distributed representation. By integrating such
a memory it is only shown that the presence of it is quite convenient but
it is so far not shown that it is really necessary. Using the concept of a
state machine, you can think of a system which receives input in sequential
order and propagates –like a shift register– each new occurring frame into a
state. States are subsequently changed as the result of the input. It seems
that with this state machine definition the necessity for a mapping of the
sequential information into a spatial memory gets obsolete. But state ma-
chines are inherently different to systems that provide a direct mapping with
direct information access. Nonetheless they are only another solution to the
access problem with the the main differences, that they are more indirect.
The information about past events is encoded into the states of the sys-
tem, whereas state refers to a different metaphor for a spatially distributed
activation pattern.
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5.3 Psychophysic Experimental Results

The development of the hierarchical neural network model has also been
guided by experimental research and investigations on the representation
of spatio-temporal structures on early visual processing levels, related to
the concept of ultra short-term memory done in our research group at the
Institute of Medical Psychology.

In all experiments described below human test subjects were sitting in a
semi-darkened room in front of a computer display (CRT with 100Hz refresh
frequency) at a viewing distance of about one meter. As stimulus they saw
a black dot moving on a white screen along an invisible path. The setup met
real-time capability.

Discrimination of Changing Direction

In the first series of experiments the ability of the visual system to dis-
criminate simple motion trajectories is measured. The stimulus is sketched
in Figure 5.5. In each trial a pair of such trajectories was presented sub-
sequently. The subjects’ task was to decide whether there was a greater
change in the direction of the motion in the first or in the second stimulus
pair and to indicate this by pressing one of two buttons. The stimuli were
arbitrarily rotated –also within the trials– to prevent the subject from using
additional cues, like external reference points.

Figure 5.5: Direction discrimination of straight and curved trajectories

Under all conditions the main result was a slight increase in performance
up to several hundred msec stimulus duration, followed by a widely invariant
performance up to 2.5 sec. This is surprising since the visual impression of
a motion that lasts of only a few hundred msec is very different from one
lasting 2.5 seconds, a result which is of course taken into account in the
neural network model introduced later. The probability of correct decisions
was in the range between nearly chance and almost perfect performance.
As expected, the more the trajectories differed in curvature the better the
performance. A less accurate processing with continuously varying direction
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of motion could be observed in comparison to trajectories with an abrupt
change in direction. This task-dependent accuracy defines appropriate para-
meter values and constraints for our neural network model.

Neither relatively fast movements nor long durations have an influence
on subjects’ sensitivity. This invariance is supported by the experiments
on direction and curvature discrimination discussed in [ESR+00]. These ex-
periments with curved motion paths also showed that the discrimination
performance was significantly different –better– when corresponding static
versions of the dynamic stimuli were used. Therefore the observed invariance
can neither be explained by motion-selective mechanisms nor by the assump-
tion of static internal representations in the form of spatial trajectories of
the dynamic stimuli.

An analysis of the experimental results on this memory stage has re-
vealed inconsistencies arising with the dominant views of how information
is represented and stored on this stage. Introducing a memory structure
which provides basic requirements for the processing of spatio-temporal in-
formation resolves these inconsistencies. The key feature of the memory
structure is the provision of an orthogonal access structure which is achieved
by mapping external time and its internal representation, temporal structure
into locally distributed activities. This mapping enables a parallel access to
a whole sequence of recently past visual inputs by higher level processing
stages which is called an orthogonal access memory (OAM) following [SZ95].

Given this spatio-temporal structure one important question is what are
the abilities and limitations of the human visual system. To investigate
this question various psychophysical experiments to the processing of spatio-
temporal information on different time scales were carried out by E. Eisen-
kolb and F. Röhrbein [ESR+00] [RSB+03]. Human subject performance to
spatial and temporal stimulus properties has been measured in a number of
different experimental designs and with stimuli ranging from simple straight
dot movements up to more complex motion paths with higher-order shapes
like loops or kinks.

One series of experiments for example addressed the ability of the visual
system to discriminate orientations of straight and curved trajectories both
induced by moving dots like sketched in Figure 5.5. The visual system shows
a clearly better discrimination performance in case of the induced straight
trajectories. The orientation classes obtained are used to determine the clas-
sification power of the neural network model. In order to compare dynamic
information processing with the static one always the static versions of the
moving stimuli was devised. The results suggest that static and dynamic
information is processed differently, which is in contrast to the view that
simple dynamic patterns are processed by static mechanisms.

In the latest experiments on the generalization performance in depend-
ency on temporal constraints were investigated with the stimuli shown in
Figure 5.9. The results will give us hints on the design of the levels of ab-
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straction of our neural network model as e.g. given by the number of the
processing layers and the granularity with which spatio-temporal informa-
tion is processed in the model. The experimental design is based on a pilot
study in which subjects have to reproduce a complex trajectory shape on
a touch screen. The results of the pilot study indicated evidence for the
existence of a number of prototypical shapes used by the visual system to
classify a trajectory.

Curvature Discrimination

The experiments on direction discrimination didn’t exhibit any influence of
a temporal separation on the discriminability of simple motion paths. In
order to test the inter stimulus interval invariance Eisenkolb et. al. devised
another experiment. Instead of direction discrimination the discrimination
ability of human subjects on curved trajectories has been investigated. In

d

d=0 pixel d=5 pixel d=10 pixel d=15 pixel d=20 pixel

Figure 5.6: Curvature classes for discrimination experiments

the experiments the performance of the test subjects decreased as the degree
of curvature was increased. A temporal separation up to 400 msec does not
result in an impairment of inner availability of the motion paths. All subjects
showed, partly diverging, strategies to cope with the discrimination task.

No memory effect caused by temporal separation could be observed in
the experiments presented above. While in the experiments to direction
discrimination the explanation for a missing memory effect is that processing
occurs too fast for a capacity limitation to become manifest, here a trade off
effect can be observed, as subjects tend to dedicate more attention to the
second path to the disadvantage of the first path.

Occluded Spatio-Temporal Patterns

To gain further information about the processing of static vs. dynamic pat-
terns an experimental paradigm called the Dynamic Poggendorff Stimulus as
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shown in Figure 5.7 was developed. A second motivation has been that vis-
ion often occurs under circumstances of occlusion. In this sense the dynamic
poggendorff stimuli serves as a spatio-temporal completion task. Spatio-
temporal binding is one of the most puzzling problems both in psychophysical
research and robot vision. The testing subjects saw a single black dot moving
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Figure 5.7: The Poggendorff Illusion

along an invisible straight oblique line. The middle segment of the motion
path was occluded by a vertical bar dividing it into two visible segments.
This setup is a dynamic version of the Poggendorff illusion. The subjects
were instructed to adjust the position where the moving dot reappeared in
order to bring both visible segments into alignment. The parameters which
where varied are: the dot velocity, the width of the occluding bar and the
filling texture of the occluding bar. All permutations of the conditions where
tested.
The filling mode has no influence on the alignment error at all. An occluding
bar leads to a positive alignment error, in analogy to the static Poggendorff
experiment. Increasing the bar width leads to an increase of the alignment
error by a factor of 2.3. Increasing the dot velocity leads to a decrease of the
alignment error by 0.9.
It is an interesting result that the presence of an occluding bar leads to a
systematic positive alignment error. The dynamic Poggendorff illusion thus
clearly suggests a qualitative analogy between static and dynamic processing
modes. Research reported in [EZM+98] on the other hand suggests a drastic-
ally quantitative difference of the processing of static and dynamic stimuli.
It is also likely that the task employed involves memory based mechanisms
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important for prediction of courses of motion. What on the other hand does
by no means explain why there is a dynamical Poggendorff illusion.

Spatio-Temporal Prototypes

The experiment on spatio-temporal prototypes addressed the issue of mo-
tion prototypes presenting complex motion trajectories. The investigations
on complex motion started with a piloting study (described in detail in
[RSB+03]) in which subjects had to reproduce a complex motion shape on a
touch-screen (Figure 5.8) by sketching the trajectory with one finger on the
surface of the touch-screen. No visual feedback was provided. Examining

the history. Surprisingly, only one subject shows this behaviour, most of them nearly 
always report having seen a straight movement. When looking at the reaction times 
however, even this group seem to be effected by the kind of motion history, in that 
there is a performance decrease of approximately 400 msec (condition 1 vs. condition 
3/4/5). 

The RT differences for the second group are more pronounced (most notably in 
condition 2), but the impairment in the first group can perhaps be explained by a 
subthreshold ambiguity. These remarkable interindividual differences are interesting, 
and more subjects have to be recruited because it is quite unlikely that there is a sharp 
dichotomic distribution. Up to now there is evidence, that the perceptual switching 
depends on the spatio-temporal memory span. Maybe, only the last few hundered 
msec determine the perceived movement and therefore further experiments with 
smaller SOA are planned. 

2.4 Spatio-temporal prototypes 

In this experiment we have addressed the issue of motion prototypes presenting even 
more extended and complex motion trajectories as in the former studies. Starting 
point was a pilot study (described in detail in [9]), in which subjects had to reproduce 
a complex motion shape on a touch screen. 

Fig. 10. Reproduction task with presented path (top row) and subjects’ versions (below). 

 
The results (see Fig. 10) showed, that accuracy is mainly determined by features of 
the motion paths and thus point towards the existence of prototypical shapes like 
loops and kinks used by the visual systems to classify a trajectory or a part of it. This 
encouraged us to start an experiment with stimuli that are simple enough to allow for 
quantitative results and complex enough so that conclusion about prototypes can still 
be drawn. Especially suited are the classes of stimuli, which can be described as 

template

SB

EO

PB

AM

KN

6.0 sec 3.2 sec 5.7 sec2.6 sec

Figure 5.8: Trajectory reproduction task. The top line shows the templates.
The stimulus is the black dot moving along the sketched trajectory. Each
other line a single subjects reproduction, by drawing the trajectory with a
finger. The path was not visible neither in the template case nor in the
reproduction phase.

the stimuli and the reproduced trajectories in [RSB+03] it can be derived
that accuracy is mainly determined by implicit features of the motion paths.
These implicit features point towards the existence of prototypical motion
shapes. Encouraged by the results from the piloting study, an experiment
with stimuli simple enough to allow for quantitative results and complex
enough, so that conclusions about the existence of prototypes can still be
drawn, was conducted. Stimuli which can be described as a sequences of
qualitative motion vectors (QMVs) [MSE+00] seem to be especially suited
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Figure 5.9: Trajectories of QMV stimuli

for such an experiment. Several trajectories used in the experiments are
shown in Figure 5.9. They consist of 16 segments of constant length. Two of
these restricted trajectories where presented as a first pair and after a short
pause another two as a second pair (Figure 5.9). The subjects’ task was to
indicate whether there was a difference in the dot movement presented in
the first pair, or in second pair. The experiment consists of two types of
trajectories. The first class has a prototypical motion shape the second none
(Figure 5.9). Whereas the prototypical shape in the first class is the quasi
circular part of the trajectory.

The main result of the QMV experiment is that the discrimination per-
formance strongly depends on the existence of motion prototypes. Looking
at the results for the second stimulus type, which is the one without a motion
prototype, supports the idea of prototype processing. Testing the stimulus
of the second class, which has no prototypical element and the same amount
of motion changes, results in a very poor discrimination performance. For
this class of stimuli only the third variation labeled test 3 in Figure 5.9 leads
to a performance comparable to the first stimulus class. This can be ex-
plained as the modified stimulus contains a zigzag-movement which might
be processed also as a prototypical element. In order to reveal more elements
of this shape vocabulary experiments with a number of supposed prototypes
could be investigated. This experimental framework might also be extended
to address explicitly the processing on different time scales and on several
spatial granularities, e.g. by systematically varying the moving time, number
of segments, and possible orientations. But as such experiments where not
done so far, we are forced to take a different school into account to gather
hints for the construction of our model.

5.4 What we Derive for our Model

Since the spatio-temporal memory is one essential concept of this thesis, it
deserves a recapitulation of our arguments on a slightly different level.
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If information should be detected or identified by some computational struc-
ture, this structure must have access to necessary information. Just as the
recognition of a static spatial pattern needs to be based on access to several
spatial locations of the image, the processing of spatio-temporal patterns
requires access to several spatio-temporal locations (locations in space as-
sociated with time steps). This access can only be obtained, if at a given
time step in external physical time a physical representation of the presen-
ted events exists which occurred during some recent period. The required
representation can be called a dynamic spatio-temporal memory. The basic
function of this memory is the mapping of time into space. In contrast to
the collinear concept, this constitutes an orthogonal concept of the repres-
entation of time. It is only possible by a memory with orthogonal access,
rendering a system capable to extract information about the spatio-temporal
structure of its environment. The experiments not only came up with im-
portant constraints for our neural network model. They also provided us
with hints and proof of concept about the structure of the model.

• Processing in different granularities was proven by the experiments on
spatio-temporal prototypes.

• How information is transported from one layer to the next higher pro-
cessing layer is realized by a kind of temporal sub-sampling.

• The Dynamic Poggendorff illusion constrained the prediction capabil-
ities.

• All experiments provided temporal constraints.

• The necessity of an orthogonal access memory in our model was sup-
ported by the experiments.
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Chapter 6

Neural Networks for Static
Patterns

Before we can take the next step to discuss sequence processing models,
we have to introduce some static pattern processing models. These models
are the foundations of the multi-layer model for spatio-temporal sequence
processing introduced later.

6.1 Multilayer Perceptron

The first class of neural networks introduced in this work is the multilayer
perceptron (MLP) with its well known error back-propagation learning al-
gorithm introduced by Rumelhart, Hinton and Williams (1986). It can be
said that this algorithm has redeemed the research in this area from a long
stasis inferred by a book of Minsky and Papert [MP69]. As the name of
the model describes, MLPs consists of several layers of perceptrons. The
first layer is a set of sensory units also called input layer, followed by one or
more hidden layers of computational nodes. The output is also formed by
a layer of computational nodes. One important limitation is the character
of the transfer function of the hidden and output layer. This function has
to be nonlinear, otherwise the operations between the layers would degen-
erate to a simple dot product, and the multi-layer network would only have
the computing capability of a single layer network, restricting the class of
problems solvable with the network to linear separable problems. Often a
sigmoidal function is used as activation function. A MLP consists of three
major elements:

• A nonlinear activation function e.g.:

σ(x) =
1

1 + exp(−x)
(6.1)

whereas σ(x) denotes the activation function applied to the input x

47
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• One or more hidden layers excluding the input and output layer

• Fully inter-connection of the neurons

Error back-propagation is working with two processing phases. In the first
phase a pair of training sample and associated output vectors are presented
to the network. Then the error (e.g. the euclidian distance) between actual
output and training signal is calculated. In the second step, the mapping
error is propagated back through the network while adapting the weight
vectors of the passed neurons by a gradient descent algorithm. The rate of
adaptation is a decreasing function of time. Several precautions have to be
looked at, for example local minima and learning rate.

3

2

1

4

n

y

z

z

z

z

z

Figure 6.1: Structure of a multi-layer perceptron network

As you can find a description of back-propagation in every good lecture
book and as we do not introduce any novelties to back-propagation based
MLPs we will refer the interested reader to textbooks like [Hay94] or [Roj96].

6.2 Self-Organizing Maps

Self-organization as a biological optimization process was realized through
several algorithms. Most attention however was addressed to Kohonen’s
proposition of an discrete approximation of the biological process of self-
organization. Kohonen’s self-organizing maps (SOMs) as a computational
technique turned out to be useful for a wide range of applications. The
SOM algorithm is quite efficient, due to the lack of the necessity of iterative
excitation level determination which is replaced by a single operation max-
imum detection or a single operation euclidean distance calculation, on the
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other hand this simplification brings us away from biology; we will get back
to this point later on as we want to make our motion perception model more
realistic.

A neuro-physiological background of self-organizing maps are the sen-
sorial maps of the human cortex. If we look at the sensory cortex, spatial
closely situated receptors project to closely spatial organized cortical areas.
The mapping of the somato-sensory system is often illustrated with a homun-
culus like in Figure 6.2. So one can state that the topological representation
is preserved. Despite of the fact, that the cortex containing 104 synapses
per neuron is massively interconnected, the brain reacts to external stimuli
always with a local activity which can be seen as an argument for the win-
ner take all scheme used within the SOM algorithm. With modern imaging
technology it is possible to assign these local activities to functional areas.
The cortex can be subdivided in several functional areas. The visual cortex
is one of the functional areas. These properties show, in our opinion, that
SOM like models provide a good abstraction of single layers of real brains.

Figure 6.2: Somato-sensory and Motor Homunculus (W. Penfield)

6.2.1 Maximum Maps

The original definition of Kohonen’s algorithm has many similarities to the
biological model it was based on. The organizing structure of a SOM can
be defined by a two-dimensional lattice with neurons placed on its junction
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x(n) Binary input/training vector n
X Training set

yi(n) output neuron i
yb(n) output best matching neuron

r two dimensional position vector
wi Weight vector neuron i

Nib(n) Neighborhood function
γ(n) Learning rate
|| · || Euclidian distance

Table 6.1: Symbols Self-Organizing Maps

points. Other structures like a torus are also possible but will only result
in better network performance, if the generative process of the statistic of
the available training vectors will form a torus like distribution. Therefore
and due to the fact that the brain is not torus shaped we will discard these
structures here. In some cases a neighborhood of six neurons –hexagonal
neighborhood lattice vs. rectangular– will result in better network perform-
ance, again it depends on the statistics of the provided data. The neurons
are defined by their two-dimensional position vector ri ∈ A which determines
the position on the lattice, and a weight vector wi with the same dimension
like the input/training vector.

The output value yi of each neuron, the excitation function is determined
by the product of input value xj with each neurons weight vector wi similar
to traditional feed-forward networks:

yi(n) =
∑

j

xj(n)wi (6.2)

This is done iteratively for every input vector. The best responding neuron
is determined by the search for the maximum activated neuron:

yb = max
i

(yi) (6.3)

The weight adaptation in the maximum map is constrained by the learning
gain γ(n) which is a decreasing function of time supplying values between
[0 : 1]

wi(n + 1) =
wi(n) + γ(n)Ni,b(n)x(n)
||wi(n) + γ(n)Nib(n)x(n)||

(6.4)

and a neighborhood kernel Nib centered by the winning neuron. The simplest
form of a neighborhood kernel is the bubble neighborhood. Neurons within
the neighboring range are adapted equally strong, neurons to far away are
not adapted at all.
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Nib =
{

1 : i ∈ Nb(n)
0 : otherwise

(6.5)

A gaussian neighborhood kernel is very common, too:

Nib(n) = exp
(
−||ri − rb(n)||22

2σ(n)2

)
(6.6)

The training algorithm is unsupervised. Randomly chosen p-dimensional
input vectors x(n) are drawn out of the set X and repeatedly presented to
the net. The weights are adapted with the above defined weight adaption
rule after the presentation of each input pattern. This is done for all input
patterns several times, while the learning rate γ(n) and the neighborhood
Nib(n) decrease with every training iteration.

Finally, the major disadvantage of maximum maps is the slow conver-
gence and the huge amount of training cycles to achieve a good mapping of
the input values to the self-organizing map.

6.2.2 Minimum Maps

This variant was proposed first by Ritter and Kohonen [RK86]. It introduced
a different neuron concept referring the maximum map model. The minimum
maps is searching for the minimum difference between input and weight
representation. The training algorithm of the minimal map is of course
again based on an unsupervised scheme. Randomly chosen p-dimensional
input vectors x(n) are drawn out of the input data set X and presented to
the net. The adaptation of the neurons’ weight vectors wi(n) at training
step n to the input depends on their euclidian distance || · ||p to the current
input vector x(n). The output of a neuron is yi(n):

yi(n) = ||x(n)− wi(n)||p (6.7)

One of the neurons having the smallest distance to x(n) at iteration step n
is called best matching neuron, its distance is denoted by yb(n).

yb(n) = ||x(n)− wb(n)||p
= mini∈M {||x(n)− wi(n)||p} (6.8)

To generate a topology preserving representation of the input vectors, sim-
ilar input vectors have to be represented by neurons with a similar weight
vector. Therefor a neighborhood function is introduced. The adaptation
of the weights wi(n) of the neurons addressed by the position vector ri in
the neighborhood of the best matching neuron at position rb(n) decreases
according to the neighborhood function:

Nib(n) = exp
(
−||ri − rb(n)||22

2σ(n)2

)
(6.9)
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σ(n) is used to reduce the region around rb in which the adaptation is strong.
|| · ||2 is the distance defined on the two-dimensional SOM lattice. It is also
possible to use other neighborhood kernels like a cut gauss kernel or a simple
bubble function. Now having detected the relevant neuron patch, we have
to move the selected weights towards the given input stimulus. Figure 6.3
shows a final weight distribution after training the map. One can easily see
that similar values are located in similar areas. The weights of the neurons

Figure 6.3: Distribution of weight values in a SOM layer.

are adapted for learning step (n + 1) through:

wi(n + 1) = wi(n)γ(n)Nib(n)((x(n)− wi(n)) (6.10)

whereas the value of the adaptation is dependent on the neighborhood kernel
and learning rate. By varying γ(n) from 0 ≤ γ(n) ≤ 1 we can regulate how
far the weight vectors are moved in one adaptation step towards to the
current input vector. It should be emphasized, that this adaptation phase is
not dependent on an error measure like input value output value distance –
the system is unsupervised. Usually adaption is done for a predefined number
of iterations.
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Algorithm 1 General SOM training algorithm
Set starting value γ(n), σ2(n)
Create neuron population mesh grid
Random initialization of neuron weights
Randomize Input Data
for (n= 0:max_trainiteration) do

for (j = 0:number_inputvectors) do
for i = 0:M do

yi = ||x(n)− wi(n)||
end for
yb = mini ||x(n)− wi(n)||
wi(n + 1) = wi(n)γ(n)Nib(n)((x(n)− wi(n))

end for
end for

6.3 Neural Associative Memory

Associative Memories are effective and robust storage structures. We can
subdivide the known models in two main categories. One class, the Lin-
ear Associative Memory (LAM), is processing scalar valued vectors and is
trained by a gradient descent based algorithm. The binary value processing
models are trained by a so called clipped hebbian learning rule. This one-
shot learning scheme is very efficient. Further differences can be found in the
behavior on the provided test data. The LAM reacts with an approximative
answer to a noisy signal, whereas the BAM acts like a pattern completion
mechanism, filtering the noise of the signal.

x Binary input vector
y Binary output vector
t Binary training vector
w Weight
µ Enumerator pattern pairs
M Number of pattern pairs
n input vector dim./ number of input neurons
k output/training vector dimension

Table 6.2: Symbol definitions: Neural Associative Memory

6.3.1 Linear Associative Memory

Given a set of pattern pairs (xµ, yµ) with µ = 1, 2, . . . ,M .... we want
to establish a good mapping of xµ → tµ within a linear hetero associative
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memory. A linear hetero associative memory is defined by a layer of n
linear neurons which perceive an k dimensional real valued vector x ∈ IRk

as input and an output determined by yj = zj
∑k

i=1 xicij . For the sake of
completeness: an auto associator learns the mapping of two identical vectors
(x(t) → x(t)) and is used for pattern completion. Obviously it is the aim to
adapt the weights cij in a way that minimizes the difference between output
y ∈ IRn and training signal or input t ∈ IRn of the network. This difference
can be described by the quadratic distance measure

Z(C) =
M∑

µ=1

n∑
j=1

(xµ
j − yµ

j )2 = min . (6.11)

which can be minimized by the following delta rule:

∆cij =
µ∑

i=1

(yµ
j − xµ

j )xµ
i (6.12)

It is also possible to determine the optimal connection matrix C for the
objective function analytically through the partial deviations:

∂Z

∂cqr
= 2

M∑
µ=1

(xµ
r − yµ

r ) = 0 (6.13)

In the later introduced spatio-temporal processing model, linear neural asso-
ciative memory networks are not suitable. The fact that the linear associative
memory has a approximative response to a given distorted input makes this
model unsuitable for our purpose. Therefore we skip to the hetero associ-
ative memories for binary patterns. These memory structures have a more
classifier, pattern completion like behavior.

6.3.2 Hetero Associative Memory for Binary Patterns

Through the approximative response of a linear neural associative memory,
the output of the associative memory is inaccurate. If we want to get an exact
answer to a e.g. signal with gaussian noise, or if we want signal completion
behavior, the appropriate model is a binary hetero neural associative memory
introduced below in this section.

The binary pattern processing neural associative memory is based on the
Steinbuch learning matrix Figure 6.4 which was not defined as a neural net
originally. Steinbuchs learning matrix takes two patterns x and y which are
encoded as binary vectors. Storing a pattern can be realized in two ways.
One way to change the entries is to increment the value cij of the matrix
each time xi = yj = 1 holds. The second way is to set the matrix once to
1. This scheme is referred as clipped learning rule. A similar learning rule is
also used for the associative memory introduced below.
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Figure 6.4: Steinbuchs’ Learning Matrix

For processing binary patterns we assume that: xµ ∈ {0, 1}k and yµ ∈
{0, 1}n. Like in the preceding definition of a linear associative memory, the
input vector xµ is associated to the proper output vector yµ to learn an as-
sociation. In case of performing a data retrieval with a given xµ as input,
the network should provide yµ as the output. This method of storing an as-
sociation of two different vectors is called hetero association. The conditions
for the patterns are: xµ 6= yµ for a single µ. The memory consist of a single
layer network with n threshold neurons. Each neurons j is computing its
dendritic potential to the input x ∈ {0, 1}k

xj =
k∑

i=1

cijx
(y)
i (6.14)

and compares these with its threshold value θj . The neurons output is then
determined by:

yi =
{

1 : xj ≥ θj

0 : xj < θj
(6.15)

Most scenarios use fixed threshold values θj = θ for all neurons j. In our
prediction memory we use an adaptive threshold handling. The threshold is
decreased until an output can be retrieved.

In contrast to other neural network models, associative memories are
trained with a one shot learning scheme. The learning rule is more like the
storage of the input/output vector association in a matrix. Adaptation of
the synaptic weights is done by the hebbian learning rule:

∆cij = x
(y)
i µx

(y+1)
j (6.16)
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The synaptic connections are calculated by:

cij =
M∑

µ=1

xµ
i yµ

j (6.17)

The learning rate is due to the fact that this is a one shot learning scheme,
set to 1. In contrast to the additive learning rule above, we use the so called
clipped learning rule. The difference is simply the limitation of the synaptic
connections to a predefined interval with F : IR → IR.

cij = F

 M∑
µ=1

xµ
i yµ

j

 (6.18)

In this case F is defined as a constrained, monotone growing function. For
example:

F (x) =


x : x ∈ [a, b]
a : x < a
b : x > b

(6.19)

By constraining the additive hebbian learning rule to the range {0, 1} one
gets the clipped learning rule:

cij = min
(∑M

µ=1 xµ
i yµ

j

)
= maxµ xµ

i yµ
j (6.20)

Whereas the calculation of the dendritic potential to the provided input x
and the threshold rule for the determination of the output values yi simply
keep the same as described above in Eq. (6.14) and Eq. (6.15) respectively.

As we need a pattern completion behavior and no approximative behavior
of the associative memory we use a hetero binary neural associative memory.
The most puzzling point in using this associative memory is in our opinion
the right choice of the input and the output encoding, or in our case better
named with transcoding. As we want to use the associative memory to
represent an indexing structure for retroinjecting connections based on the
activation level of several neurons, we have to develop a transformation of
real valued activation values to a proper binary representation. We will come
back to the transcoding in place.



Chapter 7

Short-Term Memory in
Artificial Neural Networks

Mike Mozer reviewed a collection of possible realizations of a short-term
memory for neural networks in [WG94]. The specification of memory models
is not complete, whereas the principle how a possible short-term memory
realization is often based on one of the introduced filter mechanisms borrowed
from adaptive filter theory and signal processing theory. A wider range of
adaptive filters and their detailed discussion can be found in [Hay02]. First
we should define the term short-term memory:

Definition: A short-term memory is storing the occurrence of an event in a
real valued symbol. This symbol might be manipulated over the time to shape
the temporal distance to the occurrence of the stored event.

We want to realize short-term memory by a recurrent mathematical activ-
ation description which is time-dependent. A short-term memory is char-
acterized by its output behavior to an excitation with a standardized input
value of 1 within the next following time steps. The next sections will intro-
duce some functions we want to refer as memory kernels, followed by a short
discussion on the properties of memories.

short-term memory generic predictorx(t) y(t)

Figure 7.1: The most abstract definition of a system capable of temporal
prediction. x(t) is the actual input of the system at time step t whereas y(t)
denotes the prediction of the system given a sequence of past input values:
x(1) . . . x(t)
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Figure 7.2: Memory kernel functions: (a) tapped delay-line memory with
ω = 10. (b) exponential trace memory with α = 0.8. (c) gamma trace
function with ω = 6 and α = 0.4.

7.1 Tapped Delay-Line Memory

A simple way to form a memory is a shift register or in other words a queue-
like buffer, which stores in an ordered fashion the n last inputs. This kind
of memory is if often labeled tapped delay-line model, as the buffer can be
formed by a series of delay lines Figure 7.3. In some papers it is also re-
ferred as delay space embedding and defines the basis of statistical autore-
gressive models. Tapped delay-line memories are quite common in temporal
processing artificial neural networks. Dynamic self-organizing maps are for
example a neural network model utilizing tapped delay line memory. We will
introduce dynamic self-organizing maps as an example for tapped delay-line
memories later.

Tapped delay-line memories Figure 7.2(a) have a predefined capacity of
time steps which can be stored in its structure. Given a sequence x1(1) . . . xn(t)
consisting of a total of ω elements, these memories generate a state repres-
entation, where xi(t) = x(t− i + 1).

We can extend this model simply by introducing a nonuniform sampling
rate of past values by specifying delays which are adaptable such that xi(t) =
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Figure 7.3: Tapped Delay-Line Memory

x(t − ωi), ωi defines the integer-valued delay which is associated with each
component i.

To provide a basis for a comparison between the memory models intro-
duced in this chapter, it is necessary to present another formalism for char-
acterizing the delay-line memory which is broad enough to allow an easier
comparison with the other forms of memories we discuss later on. Assuming
each xi(t) is a convolution of the input sequence with the kernel function ci:

xi(t) =
t∑

τ=1

ci(t− τ)x(τ), (7.1)

for delay-line memories we use:

ci(t) =
{

1 , if t = ωi;
0 , otherwise. (7.2)

Figure 7.2 illustrates the output of some kernel functions. Through the
substitution of different kernel functions, we obtain the forms of memories
we will discuss in the next sections.

7.2 Exponential Memory

The functional core of an exponential trace memory is defined by the kernel
function

ci(t) = (1− αi)αt
i, (7.3)

whereas αi is defined within the interval [−1, 1] Figure 7.2(b). This form
of memory has been studied by a wide variety of researches with the focus
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on artificial neural networks, but its origin is adaptive filter theory. The
exponential trace memory is the simples possible definition of an infinite im-
pulse response filter (IIR). In contrast to the tapped delay-line memory, the
exponential trace memory has a soft exponentially vanishing of activation.
Tapped delay-line memories simply drop to off after they where activated in
the preceding time step. Assuming every neuron in a population is defined
to have an exponential decay memory. The neurons in this network can then
generate a temporally ordered activation pattern. More recent inputs will
always have greater activation strength than temporally more distant inputs.

The response of exponential trace memories xi can be computed incre-
mentally by:

xi(t) = (1− αi)xi(t) + µixi(t− 1) (7.4)

with the boundary condition xi(0) = 0. Analogue to the delay-line memory,
the exponential trace memory consists of Ω state vectors (x1(t), x2(t), x3(t),
. . . xΩ(t)). The αi controls the steepness of the exponential trace and there-
fore indirectly the capacity of the memory.

7.3 Gamma Memory

Before we go on describing the gamma memory, we have to define a character-
ization of memories Depth and resolution following [dVP92] and [PdVdO93].
Whereas depth refers to how far into the past the memory stores informa-
tion relative to the memory size. Resolution refers to the degree to which
information referring a singular element of the input sequence is preserved.

Low-depth memories only hold recent information whereas high-depth
memories are able to hold information distant in the past.

High-resolution memories are able to reconstruct the actual element of
the input sequence, whereas a low-resolution memory stores more coarse
information about the sequence.

Referring to these characterizations of memories, the delay-line memory
realizes a low depth with high resolution, and the exponential-trace memory
is high depth but low resolution.

The continuous time definition of the gamma memory kernel is defined
by a gamma density function as the name gamma memory already suggests.
Although the original definition of the gamma memory from Principe et.al.
primarily deals with continuous time dynamics, it is obviously possible to
provide a discrete equivalent of the gamma density function, namely the
negative binomial. We can use the negative binomial as a discrete-time
replacement to form a discrete-time gamma memory:

ci(t) =
{ (

t
ωi

)
(1− αi)ωi+1αt−ωi

i if t ≥ ωi;
0 if t < ωi.

(7.5)
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ωi is again an integer delay factor and αi is defined in the interval [0, 1]. Fig.
7.2(c) shows the output of an exemplary gamma kernel function. Setting
γi = 0, the gamma kernel collapses to an exponential-trace kernel. Pushing
the limit of αi to 0, simplifies the gamma-kernel to a delay-line kernel. In
signal theory an alternate name for gamma filters is used: adaline. A quite
excessive description can be found in [Hay02].

Like the exponential-trace kernel, the convolution of the gamma kernel
with the provided input sequence can be computed in a incrementally fash-
ion. However, to compute xi given α and ω, denominated as xα,ω, it is also
necessary to compute xα,j for j = 0 . . . ω − 1. The recursive form of the
equation is

xα,j(t) = (1− α)xα,j−1(t− 1) + αxα,j(t− 1) (7.6)

with the boundary conditions

xα,−1(t) = x(t + 1) ∀t ≥ 0, and (7.7)
xα,j(0) = 0 ∀j ≥ 0. (7.8)

The largest possible ω denoted by Ω must be provided by the memory de-
signer. Ω+1 : xα,0, . . . xα,Ω defines the total number of possible state vectors.
Having Ω fixed, the tradeoff between resolution and depth is achieved by trig-
gering α. Large α results in a high-depth, low-resolution memory; a small α
yields low-depth, high-resolution memory.

Each set of Ω + 1 state vectors bound to a given α forms a gamma
family. A gamma memory can consist of many such families, with family i
characterized by αi and Ωi. This leads to a large and quite complex state
representation. If we have some assumptions about the application domain it
is possible to reduce the state representation, e.g., the subset {xαi,Ωi}. This
can be seen as a direct extension to the exponential trace memory, which
is of the form Ωi = 0∀i. The gamma memory provides us a more realistic
onset behavior of the activation of a neuron. Its shape is much more similar
to a realistic activation potential due to the fact, that the activation value
does not jump directly to its maximum. In biology the activation potential
is generated by a ion exchange process through ion specific channels. The
channels need of course some time to open also the ion exchange has a
small inherent delay. These properties make the gamma memory a bit more
biological plausible.

These three memory models discussed until now, are of course not the
only thinkable models.

7.4 Various Memory Realizations

Any kernel function generates a distinct memory form. A Gaussian kernel for
examples can also be used to realize a symmetric memory around a defined
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point in time which defines the point of maximum activation. The gamma
memory and its special cases are useful because it is possible to compute
their resulting activation by an incremental update procedure. Gaussian
memories on the other hand require recursive evaluation of the convolution
of the kernel with the input sequence at every subsequent time step. This
class of convolutions has same disadvantages in computation time and space.

Radford Neal has suggested a class of polynomial kernels that are defined
over a fixed interval of time starting at a fixed point in the past; i.e.,

ci(t) = ci(t) =
{ ∑Ω

j=0 αijt
j , if t−i ≤ t ≤ t+i ;

0 , otherwise.
(7.9)

He developed an incremental update rule for gamma memories based
on the above kernel. The number of memory state vectors, Ω, determines
the order of the polynomial. Update time is independent of the interval
width t+i − t−i . This kernel could be an incremental replacement for gamma
memories, but it is unexplored so far. For any memory kernel function, c,
which can be expressed as a weighted sum of gamma kernels,

c(t) =
Ω∑

j=0

qjcα,j(t). (7.10)

Where qj are the weighting coefficients, the resulting memory can be ex-
pressed in terms of the gamma memory state vectors:

xt =
Ω∑

j=0

qjxα,j . (7.11)

de Vries and Principe (1991) show that the gamma kernels form a basis set,
meaning that, for an arbitrary kernel function c that decays exponentially to
0 as τ →∞, there exists a value of Ω and a set of coefficients {qj} such that
Eq. 7.10 holds. This result is easy to see for the case of delay kernels, but
one can see from this simple case that the required computation amounts
essentially to convolute a complex kernel with the input sequence at each
time step is not of great practical utility.

On the other hand gamma memories combined with artificial stochastic-
ally spiking neurons model a biological more plausible onset behavior of the
activation as the full depolarization of the neurons membrane to release a
spike needs also some time. The combination of stochastically spiking neur-
ons with a gamma memory might be of advantage in temporal sequence
processing.
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7.5 Contents of Short-Term Memory

Having described the form of the short-term memory, we should now discuss
what the content looks like. Although the memory must hold information
pertaining to the input sequence, it does not have to be a memory of the
raw input sequence, as assumed previously. The memory encoding process
can include an additional step in which the input sequence, x(1) . . . x(t),
is transformed into a new representation x′(1) . . . x′(t), and it is this trans-
formed representation that is stored in the memory. Thus, the xis are defined
in terms of x′, not x. This transformation is a filtering of the input sequence.
In this section we will follow the memory classification of M. Mozer [WG94].

The case considered in previous sections is an identity transformation,

x′(τ) = x(τ). (7.12)

Memories utilizing this transformation will be called input or I memories.
Models in the neural net literature make use of three other classes of trans-
formation. First, there is a transformation of the input by a nonlinear vector
function f ,

x′(τ) = f(x(τ)). (7.13)

This transformation results in a transformed input or TI memory. Generally
f is the standard neural net activation function, which computes a weighted
sum of the input elements and passes it through a sigmoidal nonlinearity:

fw(v) =
1

1 + e−w·v . (7.14)

Second, the nonlinear transformation can be performed over not only the
current input but also the current internal memory state:

x′(τ) = f(x(τ), x1(τ), . . . , xΩ(τ)). (7.15)

This leads to a transformed input state or shorter TIS memory. Such memor-
ies can be implemented in a recurrent neural net architecture in which xi

and x′ correspond to activities in two layers of hidden units.
Third, for autopredictive tasks in which the target output, p(τ), is a

one-step prediction of the input; i.e.,

p(τ) = x(τ + 1), (7.16)

one can consider an alternative content to the memory. Rather than holding
the actual sequence value, the preceding prediction can be used instead:

x′(τ) = p(τ − 1). (7.17)
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Mozer named this transformation an output or O memory. Of course, TO and
TOS memories can be constructed by analogy to the TI and TIS memories,
suggesting a characterization of memory content along two subdimensions,
one being the transformation applied and the other being whether the trans-
formation is applied to the input or previous output. Since it does not make
a great deal of sense to ignore input sequence information when it is avail-
able, I will include in the category of output memories those that combine
input and output information, e.g., by taking a difference between input and
output, x(τ +1)−p(τ), or by using the input information when it is available,
such as during training, and the output information otherwise.

7.6 Memory Adaptability

Mozer also discussed the possibility of implementing adaptability in short-
term memories. In our scenario an adaptability of the neurons short-term
memory is simply not necessary. Nonetheless the possibility should be dis-
cussed within a view short sentences.

All so far introduced memory definitions are static, due to their pre-
defined and fixed feedback parameters. To render a static memory adaptive,
it is necessary to make various parameters like {αi},{Ωi}, and the w of Eq.
(7.14) and Eq. (7.15) adaptable.

As stated before, if the parameters are fixed in advance, the memory
can be called static as the memory state, {xi(t)}, is a predetermined fixed
function of the input sequence, x(1) . . . x(t). The task of an artificial neural
network is to make the best predictions possible based on the given fixed
representation of the input sequence history. Enabling an artificial neural
network to control memory parameters, allows the memory representation
being adaptive. By adjusting the memory parameters, the neural net delim-
its the capacity of the memory autonomously. This indirectly alters what
aspects of the input data are taken into account for making predictions. The
introduction of an adaptive memory is twofold. On the one hand side the
system gets the benefit of a more accurate representation of the sequence,
and on the other hand the system must also learn the characteristics of the
memory.

In our search for an artificial neural network model, supplying the com-
putational ability of the former defined orthogonal access memory, we de-
cided to use an exponential trace memory being the instance which supplies
an ultra short-term memory on the single neuron level. The next chapter
shows several possibilities to introduce temporal memory structures to self-
organizing maps. Two of the here introduced memory models are used in
SOMs so far. A static memory is sufficient for the realization of the ortho-
gonal access memory as Schill and Zetzsche proposed. As the static memory
is sufficient, we will stick to this subset of memory models.



Chapter 8

Temporal Single Layer
Networks

Before we can start defining our novel multi-layer model we first have to
review some temporal enabled Kohonen style networks and much more im-
portant, we define some extended temporal processing self-organizing maps
meeting our demands in the multi-layer application.

8.1 SARDNET

SARDNET [JM95] is a SOM variant for phoneme processing and repres-
entation. Its structure and learning algorithm is identical with standard
SOM. The difference lies in the activation scheme of a single neuron. The
best matching neuron –yet determined by its euclidian distance to the in-
put vector– is activated by setting its activation level to 1.0 and it is also
withdrawn from the pool of competitive neurons for the rest of the learning
period. This causes one neuron to react to exact one phoneme transition.
The activation of a single neuron is damped similar to the recurrent SOM
neuron.

Learning is realized exactly like in SOM without any recurrent feedback
of the neurons activation into the weight adaptation. In contrast to RSOM,
SARDNET generates a pure state transition mapping whereas each trans-
ition has no relation to past transitions. One single neurons weight vector
in RSOM is in contrast based on the combination of state transition of past
events. Through the damping of the activation values SARDNET establishes
a temporally ordered representation of the presented input, but each win-
ning neuron is also taken out of the pool of competing neurons completely.
By taking neurons out of the competition the generalization ability of the
network is weakened. These points of critique motivated us to stick with
RSOM derived neurons and to apply a nonlinearity to the RSOM neurons
which we will introduce after a brief look on dynamic self-organizing maps.

65
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8.2 Hierarchical Dynamic Self-Organizing Maps

The authors of the original paper on Dynamic Self-Organizing Maps (D-
SOM) [PS96] developed their model to provide an intelligent system with
the ability of processing patterns over time. Temporal pattern processing
can be achieved by providing a short-term memory –like the ones introduced
in the last chapter– so that different configurations of events can be persist-
ent for a short period of time. In D-SOM, short-term memory is provided
by leaky integrators forming a preprocessing layer in a self-organizing sys-
tem. These leaky integrators are quite similar to the first temporal memory
model, Tapped Delay-Line Memory. The described model exhibits a task,
the authors of the original paper called compositionally.

„. . . it has the ability to extract and construct progressively com-
plex and structured associations in an hierarchical manner, start-
ing with basic and primitive (temporal) elements . . . ”.

An important feature of the D-SOM model is the use of temporal correlations
to express dynamic bindings. Privitera and Shastri introduced the D-SOM
in the context of a multi-layer processing model [PS96] for visual stimulus
processing.

η Learning rate
Pi(t) Membrane potential
ui(·) Input activation function

x(t) ∈ IRK Inputvector
Acti(t) Set of the activated taps

τi Time constant of neuron i
uij Activation function of the j-th tap of the i-th neuron

yi ∈ IRQ Output weight second layer
ω ∈ IRK Weight vector

Table 8.1: Symbol definitions DSOM

Weight adaption in D-SOM is learned by a classical Hebbian learning
rule:

∆ωi(x) = η(x− ωi)ui(x) (8.1)

where x denotes the input vector, ωi the weight, and ui the activation func-
tion. D-SOM also provides a dimension reduction mechanism. Each element
of the map is associated with a second weight vector yi. Whereas yi ∈ IRQ

and K > Q. So each input vector x is associated to a y applying the following
yet again Hebbian learning rule:

∆yi(x,y) = η(y − yi)ui(x) (8.2)
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The activation function is given by:

ui(x) = Ui(x) =
G(‖x− ωi‖)∑
j G(‖x− ωj‖)

(8.3)

Whereas G(·) is a gaussian function with fixed variance of σ:

G(‖x− ω‖) = exp
(
‖x− ω‖2

σ2

)
(8.4)

In the D-SOM model, the activation of an element in the map is represented
by the membrane potential Pi(t) which in turn is a function of the input
activation function ui(x(t)) which measures the degree of match between
the elements weight vector and the temporal input vector x(t). Pi(t) takes
also into account the dynamic properties of the biological membrane of a cell
which can be approximated by a generic RC-circiut.

∂Pi

∂t
= −Pi(t)

αi
+ ui(x(t)) (8.5)

The membrane potential of an element is correlated with the temporal evol-
ution of its input and the element can not only analyze a static input vector
x, it can also perform a temporal integration of the function ui(x(t)). If this
temporal integration depends on the occurrence of certain spatio-temporal
features/sub-events in the evolving temporal input, then the activation of
the element indicates the occurrence of an external event composed of these
sub-events. Thus one can view each element as a recognizer of a complex
event.

Each element consists a set of sub-elements which are called taps Fig-
ure 8.1. Each of which represents different distinct points in the temporal
evolution of the input vector. Specifically, if an element recognizes an event
composed of m temporal features, it consists of m taps. If the input vector is
k-dimensional, ε(t) ∈ IRk then, each tap is characterized by a weight vector
ω ∈ IRk. At each time instance, the input vector x(t) is processed by all the
taps and the membrane potential of the element is evaluated based on the
tap outputs:

dPi

dt
= −Pi(t)

τi
+

∑
j∈Acti(t)

uij(x(t)) (8.6)

where, uij(x(t)) is the activation function of the j-th taps of the i-th neuron
and τi is the time constant of the neuron.

The term Acti(t) describes the set of active taps of the i-th neuron at a
distinct time step. As soon as the activation function of a tap drops below
a predefined threshold it is inhibited and excluded from the set of active
taps. Different elements may have different activation strategies for taps.
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The initial state of the taps can be active or inactive. In other cases, taps
may become active one at a time, and hence respond to temporal features
occurring in a specific order. This is realized by connecting the taps in a
sequence as shown in Figure 8.1. Notice that taps are represented also by
neurons, tap1, . . . , tapm, that read a common input vector. Initially only the
first tap is enabled. When an enabled tap receives a matching input signal,
it crosses its threshold and fires, enables its successor tap, and at the same
time inhibits itself thereby entering a refractory state.

The ni− th neuron integrates the tap output and maintains a continuous
potential. This neuron eventually fires if all the taps have been activated by
the temporal input. The time constant τi facilitates the delay limit between
two sequential temporal features recognizing and the short term memory of
the integrating neuron.

The learning of tap weights is done with a traditional Hebbian learning
rule. Finally, the firing of a neuron is defined by:

x(t) =
{

yi if Ai(t) = 1 and Pi(t) = minj:Aj(t)=1,Pj(t)>Λ(t) Pj(t)
0 if ∀iAi(t) = 0

(8.7)

Ai(t) is the total inhibition of the element which equals 1 this holds only
if all the taps of the element have been matched during the analysis of the
input sequence and 0 otherwise. yi is the output weight vector of the referred
element. Λ(t) is a common threshold function. Though having some of the

m

i

yi

Z(t)

tap
+ ++

− − −K

Σ

1 tap2 tap

n

Figure 8.1: Structure of a partitioned leaky integrator neuron

properties we need to process spatio-temporal information, the model fits not
all demands. The temporal aspect and an orthogonal access as described in
[SZ95] are not taken into account. This model also does not meet the demand
of a prediction functionality which is realized in the human visual processing
system and very important for motion processing in natural environments.
Nevertheless this model gives some good design ideas for the later introduced
model.
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8.3 Recurrent Self-Organizing Maps

There are several ways to integrate time into a SOM-like network. One is the
introduction of a shift register like structure discussed in the section above,
another in our opinion the most biological way, is the damped feedback of
the neurons output to its input as illustrated in Figure 8.2. We focus on the
recurrent Self-Organizing Map (RSOM) like discussed by Koskela [KVHK98]
because of the similarity to the organization in the visual cortex of the human
brain.

x(t) Input vector at time step
yi(t) Output of neuron i at step t
yb(t) best matching neuron
wi(t) weight vector of neuron i at step t

α damping factor
γ learning rate

Nib neighborhood function
θs Significance threshold

Table 8.2: Symbol definitions RSOM

In contrast to the original intention behind the RSOM algorithm we are
interested in the activation pattern a sequence of input values is evoking on
a RSOM layer. This pattern is the information representation which in-
companies spatial and temporal knowledge that can be further processed in
a hierarchically higher processing level.

To implement time in the SOM model introduced earlier we consider the
input values x(t) being a sequence of values dependent on time t and add
a feedback loop to each SOM neuron. This loop feeds after a delay of one
time-step the activation of each neuron back to its input while being damped
by the factor α, 0 < α ≤ 1. Figure 8.2 shows the signal flow diagram of a
single RSOM neuron. The output of a recurrent neuron is a combination of

x(t)

(t)−w

−1
z

1−α

α

y(t)

Figure 8.2: Signal flow diagram of a RSOM neuron

the damped output of the last time step, with the current output:

yi(t) = (1− α)yi(t− 1) + α(x(t)− wi(t)) (8.8)
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Thus we do not calculate the distance between input vector and weight
vector, the best matching neuron b at time step t is the output vector with
the smallest norm:

yb(t) = min
i
{||yi(t)||p} (8.9)

The temporal behavior of a neuron is determined by its response h(k) for all
k ≥ 0 to one single input of maximal size, at time 01. As only the recurrent
feedback Figure 8.2 is relevant for the temporal behavior of the neuron, wi(t)
is neglected. A normalized input is applied by setting the input value at time
step t = 0:x(0) = 1. At every other time steps t 6= 0 the input is x(t) = 0.
The resulting response h(k) is the so called system response

t = 0 : h(0) = (1− α) · 0 + α · 1 = α

t = 1 : h(1) = (1− α) · α + α · 0 = (1− α) · α
t = 2 : h(2) = (1− α)2 · α + α · 0 = (1− α)2 · α
t = 3 : h(3) = (1− α)3 · α + α · 0 = (1− α)3 · α

...
...

...
t = k : h(k) = α(1− α)k (8.10)

1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

Figure 8.3: System response ↑ α = 0.4 : → t

As we can see, a recurrent neuron reacts with a discretized exponential
decrease of its output to being activated Figure 8.3. The decreasing output
values of all neurons are molding a temporally ordered output pattern, as
sketched in Figure 8.4. Through this pattern we can access the spatial and
the temporal properties simultaneously what we call an orthogonal input
access. The demand of an orthogonal memory access was one key topic
of the dynamic spatio-temporal memory model of K. Schill and C. Zetzsche
[SZ95] we used as a foundation to develop our model. The weight adaptation

1For signal theory background see [PRLN92].
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Figure 8.4: Activation trace of a single STRSOM Layer

is extended by replacing the simple distance measure by the recurrent output
calculation in Eq. (8.8)

wi(t + 1) = wi(t) + γ(t)Nib(t)yi(t) (8.11)

To enable the initial SOM network for temporal processing the weight ad-
aptation scheme also has to be changed to address temporal processing. In
Eq. (8.11) the common euclidian distance is replaced by yi(t) which holds
the recurrently damped activation of past states of each neuron.

Training a non-recurrent SOM is done by random sampling of an input
vector out of the training set and moving the best matching neuron and its
spatial neighboring neurons, selected with an neighborhood kernel, in direc-
tion to the supplied input vector. Drawing the input vectors randomly out
of the training set prevents the system from poor adaptation, a twisted net
would for example lead to low generalization ability of the trained network.
As mentioned above, using a RSOM model we can process temporal inform-
ation. To do so, the ordering of the input values is of crucial importance and
holds a very important part of the information we want to process. A simple
random draw of input values to prevent poor adaptation is therefore not
possible any more. We will now introduce our novel data handling method
for the weight adaptation.

By dividing the input data into subsets –which we call subsequences– it is
possible to realize good training results and to preserve the temporal struc-
ture of the input data without having problems with a bad generalization
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Figure 8.5: Subsequence Learning

performance of the network. We use the system response and a predefined
threshold to determine the length of a subsequence.

Definition: Let us state that a neuron with a remaining activation level of
5% of its original activation holds no relevant information for the processing
any more. We will refer to the number of time steps necessary for the activ-
ation to drop below 5% as the event horizon of a neuron. The threshold of
5% is denominated with θs.

We use this threshold θs to calculate the subsequence length by apply-
ing the system response of a neuron. Within each of the subsequences the
temporal ordering of the input vectors is assured. To ensure that all input
values are processed, a permutation of the index vector enumerating the in-
put vectors is generated. The permuted index is defining the entry point of
each subsequences in a pseudo random fashion as illustrated in Figure 8.5.
This scheme of choosing the input vector prevents the system from bad ad-
aptation and also preserves the temporal context of the input. It is sufficient
to use this scheme in the first ten percent of training cycles, as the unfolding
of the network is done in the very early training phase.
The RSOM algorithm described in [KVHK98] was originally introduced for
the purpose of time series prediction. This kind of prediction was realized by
extrapolating the direction in which the last winning neuron was pointing
to. This behavior is not necessary for our intention. We are using the de-
cayed feedback of the neurons to let the network form a temporally ordered
activation pattern of past winning neurons. The next chapter introduces
our multi-layer model based on RSOM networks, but we will introduce some
novel single layer SOM networks first.
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8.4 Strict Temporally Ordered Map

Taking the properties of the RSOM algorithm into account, it becomes ob-
vious that a temporally ordered activation pattern is not assured at every
processing time step. The reason for this lies in the way the activation level
of each neuron is calculated. Basing the activation calculation mainly on
the euclidian distance it gets possible, that the stimulus’ distance to its best
matching neurons weight vector is rather big and the last winner neurons
activation could have still a higher activation level then the winner neuron
of the current time step. The error is not only in the temporal domain it is
very likely also spatial, because the direction of last winning neurons weight
vector is not necessarily similar to the actual winning neurons weight vector.

To realize a strict temporally ordered map (STORM) it is necessary to
calculate a dendritic excitation, based on the distance of the weight vector
to the input vector and an axonal part similar to the spike of a biological
neuron. If the excitation of the neuron is higher than a predefined threshold
and the neuron is not inhibited due to a former activation, it is generating a
standard spike. The axonal part is identical to the RSOM neuron in Figure
8.2. Obviously this assures a strict temporally ordering of the activation
pattern in the map. The best matching neuron yb to the presented input
is determined again by the minimum vector length found by applying Eq.
(9.2). We call the best matching unit the strongest excited neuron, as the
input matches best to the neurons weight.

yb = min(|yi|) (8.12)

After finding the strongest excited neurons and generating a sorted index
vector of the neurons excitation, a standardized activation value is assigned
to the first non-refractory unit. All other activation values are damped by
the factor (1− α). The activation value is determined through:

zb(t) = 1.0 (8.13)
zi6=b(t) = zi6=b(t− 1)(1− α)

By applying an unified activation to the first non refractory neuron, we
establish a nonlinear projection from the input to the output of the neuron.
Calculating the activation in this way ensures a strict temporally ordering
of the firing state of the neurons. The result of this scheme is an activation
pattern of all neurons whereas the level of activation also codes it temporal
occurrence in the past.

The period within a neuron is stated refractory is determined with the
system response and the significance threshold θs.

kθ = mink|θs ≥ α(1− α)k (8.14)
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Creating a strict temporal ordered mapping is crucial for the further tem-
poral processing we want to realize in the later introduced multi-layer net-
work.

Excitationx(t) +

-w(t) t-1

+ y(t)
α

1 − α

BMU 
Selector

1

t-1

Activation

1 − α

Figure 8.6: STORM Neuron with separated excitation and activation

8.5 SARDSTORM

To investigate the performance of our new STORM algorithm we defined
another flavor of STORM with respect to SARDNET. We believe that the
recurrent weight adaption is of crucial importance for sequence processing.
SARDNET is a network definition which has non recurrent weight adap-
tion combined with an exponential decaying activation of the neurons. Only
the fact of removing an once activated neuron from the pool of compet-
ing neurons does not fit our attempt of a comparison. We therefore define
SARDSTORM a model, which is a mixture of SARDNET and STORM.

The weight adaptation is identical to the definition of the standard SOM
network. A once selected best matching neuron gets an standardized activ-
ation value which is decreasing exponentially. Within an predefined interval
the neuron is stated as refractory and therefore withdrawn from the compet-
ition unless the activation falls the significance threshold.
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Algorithm 2 Common training loop
γ = 0.5;
σ2 = 2.0;
init(Layers);
random_init(wi(t)n);
permuted_index = generate_perm_index(number_of_trainsamples);
for i = 0 to trainiterations do

for t = 0 to number_trainset_entries do
if STORM then

STORM_train(permuted_index(t));
end if
if SARDSTORM then

SARDSTORM_train(permuted_index(t));
end if
if stRSOM then

stRSOM_train(permuted_index(t));
end if

end for
end for

Algorithm 4 SARDSTORM_train(index)
ks = calculate_subsequencelength(α, θs);
for t = 0 to kθ do

for i = 0 to numberofneurons do
yi(t) = (1− α)yi(t− 1) + α(x(t)− wi)
activationsi = (1− α) · activations {damp old activations}

end for
bmu_index=sort(y,ascend)
repeat

b=bmu_index(i)
i + +

until activations(ybmu_index(i)) ≤ θs

set winning neuron refractory
for i = 0 to numberofneurons do

wi(t + 1) = wi(t) + γ(t)Nib(t)(x(t)−wi) {standard weight adaption}
end for
activations(yb(t)) = 1.0

end for

We use this model only to show the difference between the processing
of single state transitions and multiple state transitions in the experimental
chapter.
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Algorithm 3 STORM_train(index)
kθ = calculate_subsequencelength(α, θs);
for t = 0 to ks do

for i = 0 to numberofneurons do
yi(t) = (1− α)yi(t− 1) + α(x(t)− wi)
activationsi = (1− α) · activations {damping of old activations}

end for
bmu_index=sort(y,ascend)
repeat

b=bmu_index(i)
i + +

until activations(ybmu_index(i)) ≤ θs

set winning neuron refractory
for i = 0 to numberofneurons do

wi(t + 1) = wi(t) + γ(t)Nib(t)yi(t) {recurrent weight adaption}
end for
activations(yb(t)) = 1.0

end for

8.6 Stochastic Spiking RSOM

In this section we will do a small step towards a slightly more biological
plausible neuron definition. STORM neurons already have some extension
to make the activation reaction more like in real neurons: the refractory
period and the nonlinear separation of the excitation and the activation of
each neuron. To complete the changes to the neurons we introduce stochastic
spiking neurons and a neighborhood function which is basically gaussian, but
used for the adaptation of the spike probability.

To integrate a stochastic spiking activation behavior into a RSOM neuron
we keep the euclidian distance measure between input data and weight vector
to determine the dendritic potential, but replace the activation calculus by
a probability distribution footing on the euclidean input/output distance.

Θ Threshold function
ts Time at which neuron spiked
p Probability of spike
Fβ Fermi function

Table 8.3: Additional Symbols for Stochastic Spiking RSOM
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yi(t + 1) = (1− α) · yi(t) + α · |x(t)− wi(t)| (8.15)

zi(t) =
{

1 : with prob. p = f(yi(t)−Θ(t− ts))
0 : other

(8.16)

With f : IR → [0, 1] defining a monotone, growing function, e.g. the
fermi function Fβ(y) = 1/(1 + exp(−βy)) with β > 0. Θ is defined by
a monotonically decreasing threshold function with Θ : IR+ → IR+. The
probability p of a new spike appearing is proportional to the length of a
simulation step δt. For constant Θ the spiking neuron degenerates to a simple
threshold neuron. By choosing the heaviside function for f the stochastic
neuron becomes a deterministic spiking neuron.

The weight adaption is identical to the previous definition Eq. (8.8), but
the interpretation of the neighborhood function is slightly different. Nor-
mally the gaussian neighborhood is altering the width of how much the
weight vectors in the surrounding of the winner neuron are adapted towards
the input datum. Here the activation is a transformed value based on the
distance, but expressed by a probability measure. By decreasing the dis-
tance between input and weight the probability of a released spike increases.
The gaussian neighborhood function is shaping the spike release probability
around the winning neuron.

Further investigations on this model are still necessary an will be ad-
dressed in future work.
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Chapter 9

Multi-Layer Spatio-Temporal
Information Processing Models

To link the results of the psychophysical experiments describing a macro-
scopic view of the systems capability, and the neuro-anatomical findings
which deliver a microscopic view of the motion perception abilities of the
visual system with artificial neural networks based on Kohonens self-organizing
maps [Koh97], we introduce a novel approach of a multi-layer neural network
in this chapter. The view on the model introduced in this chapter is related
to a view on the visual system, we intend to call mesoskopic. We will provide
a model that has the key processing capabilities of the biological system for
a reasonable cost of computing, we will not define the network structure
exactly like the so far examined natural visual system of the macaque brain.

We start with some established models we examined in the process of
model finding. All of the discussed established models fulfill our demands
only partially. The capabilities which are not met are addressed and dis-
cussed in place. All models –for example– don’t meet the demand of an or-
thogonal access to space and time to name only the major point of critique.
Due to the fact, that within this thesis we intend to develop a biologically in-
spired model we will stick to the artificial neural networks used in our model
therefore discarding Dynamic Bayesian Networks, Hidden Markov Modells
or Kalman/Particle Filter ensembles.

We restrict ourself to a short statement on statistical models to allow to
point out some similarities between the neural network models we introduce
and statistical models. Looking at self-organizing maps from the statistical
point of view you might argue that a SOM layer neurons fit to a provided
input could be modeled by a conditioned probability. So to say the neuron
gets activated if the probability that the input is similar to the value a neuron
is representing. Using such a scheme would lead to a model based an normal
distributions. Making a step towards recurrent normal distributions we get
to Kalman filters or in a discretized environment to particle filters. Also

79
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dynamic bayesian networks could give a proper representation of state space
formulations. We discarded those models not only because of the fact, that
they are not biological plausible. They also lack key properties we want to
realize in our model. Some issues are the orthogonal access to space and
time at each time step, prediction capability which goes further than simple
extrapolation, to allow a context switch within prediction phase.

We will now continue with the introduction of some established multi-
layer Kohonen based neural network models to provide some background
before we continue with our new models Spatio-Temporal RSOM and spatio-
temporal STORM.

9.1 Recurrent Kohonen Self-Organization in
Natural Language Processing

This two-layer model based on self-organizing maps, was introduced by J.C.
Scholtes [Sch91]. The central point of this model is the system’s ability to
process state transitions within the higher more abstract processing layer.
This ability is realized by the feedback of the output of the most abstract
layer to the input of the first processing layer. The model was intended for

SOM 1

Input Output Second Layer

SOM 2

Output Second Layer

Dimensionality Reduction

Figure 9.1: Recurrent Kohonen Self-Organization in Natural Language Pro-
cessing
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natural language processing. It was one early multi-layered approaches using
Self-Organizing maps for context aware sequential data processing. Com-
pared to the demands we have for a motion processing system “Recurrent
Kohonen Self-Organization in Natural Language Processing” lacks predic-
tion capability and even more important, it does not provide any orthogonal
access memory or even any short-term memory. The dimensionality reduc-
tion realized with a predefined heuristic, between the two processing layers
also prevents an orthogonal access to space and time for information derived
from the first processing layer also in the higher processing levels.

9.2 Adaptive Resonance Theory

Although generally classified as a neural network, Adaptive Resonance The-
ory (ART) is sufficiently eclectic that it warrants a separate discussion. The
original theory of ART networks was proposed by Stephen Grossberg [Gro86],
and implemented by Carpenter and Grossberg [CG87].

An ART network performs an unsupervised batch clustering of input
data. Given a set of input patterns, an ART network attempts to separate
the data into clusters of similar patterns. An ART network consists of two
processing layers –nodes–, which form an iterative feedback loop. The first
layer acts as short-term memory; the second layer represents a cluster in
the set of input patterns and contains the node prototype representing the
centre of the cluster.

The number of nodes in the second layer is allowed to change as required,
in order to represent the input patterns best. The creation of nodes in the
second layer is controlled by a parameter ρ known as the vigilance of the
network. This parameter determines the granularity of the clusters repres-
ented by the second map, by acting as a threshold on the similarity between
clusters represented by nodes.

The resonance in ART occurs in the iterative feedback loop between the
two processing layers, when output between the two layers are within some
threshold of similarity –that is, the output vector F1 → F2 is similar to the
output vector F2 → F1–. The selection of a winning node in an ART network
utilizes this resonance. Presentation of an input pattern activates the nodes
in the first layer, which propagates the input vector through a set of fully
connected weights to the second layer. This activates the nodes in the second
layer, and the node with the highest inputs initiates a feedback loop with
the first layer. This alters the values of the nodes in the first layer, which
in turn alters the second layer, and son on. This process terminates when
a node in the second layer places the network in a resonant state; this node
is then labeled as the winning node. If no node can be found to place the
network in a resonant state, the networks adds a new node to the network,
and declares this new node to be the winner.
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There are a large number of variations based on the ART concept. For
example:

• ART2 allows the clustering of analogue input vectors

• ART3 adds bias to the search process

• ARTMAP uses a pair of ART networks to create a network capable of
supervised learning

To name only a small subset of all ART like models. Each of these net-
works are based on the same basic principles defined by the original ART
network. As a result, ART based architectures, regardless of the specific
implementation, tend to suffer from some common problems. As a result of
the Winner-Take-All competitive nature of ART networks, they are prone
to local minima in the search space. They are also prone to over-fitting,
especially in the presence of noisy data. They are also potentially sensitive
to the order of presentation of input vectors, which is in fact the biggest
disadvantage in temporal processing.

Just as with neural networks, ART networks can be easily applied to
continuous learning problems. The naïve approach of continuously present-
ing new training data will result in a network which continuously adds new
information to the network. However, just as with standard neural networks,
ART networks are prone to plasticity problems. Over time, the network will
tend to drift away from concept representations which are not reinforced
through training.

This plasticity issue has been addressed in variants of ART. One of these
variants IFOSART, maintains the learning rate of the network as a whole
above a given threshold, while allowing the learning rate of individual neur-
ons decay to a stable minimum. The decay in individual neuron learning
rate, new nodes can be added to the system as required.

ART architectures have proven themselves to be good unsupervised (in
the case of ARTMAP of course supervised) classifiers for general learning
problems. They are also well suited to continuous problems, and have been
successfully used for this purpose in a number of situations, but they are
everything else than easy to handle. Many papers in natural language pro-
cessing are mainly on finding proper parameters for the used ART networks.
The biggest disadvantage of ART, at least in our opinion, is the missing
topology conservation a network needs to generate a retinotopic mapping of
the input data into the state space.

9.3 Learning and Processing Sequences (LAPS)

Adaptive Behavior Cognition (ABC) introduced in the PhD. thesis of G.
Briscoe [Bri97] is a quite general attempt of an artificial model that is able
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to simulate a part of the cognition apparatus of the human brain. He cre-
ated a neural network model that combined three schools into one cognition
model: Behaviorism, Cognitivism and Connectionism. ABC in its complete
realization is more a proof of concept than an applicable model, it com-
bines visual/auditive perception with motor control by several instances of
self-organizing maps, connected in a proper way.

Only the functional core of ABC, Learning and Processing Sequences
(LAPS), was analyzed through simulations in full scale and more deeply by
the author, and also integrated into an automated mapping support system.
It is sufficient to discuss LAPS as this part of ABC describes the functional
core, lacking only multi-modal interactions.

Input Vector

SOM 1

SOM 2

Lin. Activation SOM1

Lin. Activation

Lin. Activation SOM2

Predicted next Input

Context Loop

Feed Forward Net

Linearization of Activation Values

Linearization of Activation Values

Prediction Loop

Figure 9.2: Learning and Processing Sequences

LAPS itself is as mentioned already a multi-layer model, built out of
two SOM layers and an additional feed-forward network, which realizes pre-
diction capability Figure 9.2. As this model uses no recurrent neurons like
RSOM or a shift register like structure in D-SOM, one single processing layer
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has no short-term memory. The temporal memory is realized by a textual
concatenation of the state description of the first SOM layer with the state
description of the second layer. One can say that the input presented to the
second layer consists of something like state transitions.

The state description of a single SOM layer ys(t) with n neurons is de-
rived by the enumeration of all neurons scalar activation values yi(t) to form
a single vector. We will refer to this kind of transformation as linearization
later on.

ys(t) = y1(t), y2(t), y3(t), . . . yn(t) (9.1)

By concatenating the state description of the first and the second layer
y<1>

s (t− 1)⊕ y<2>
s (t) the input to the second processing SOM is generated

on the fly. As easily can be seen, the second processing layer is generating a
state transition mapping from a compound of earlier stages to the moment-
ary activation description of the first processing layer. In this case the first
layer acts like a preprocessing filtering stage to transform the provided input
value to an activation mapping, which again can be described as a low-pass
filtering of the input signal.

With its feed-forward network LAPS realizes a direct input-value pre-
diction. The additional feed-forward network connected to the second pro-
cessing layer learns an association of the current state description of the
second SOM-layer to the next upcoming input value which will be presented
to the first processing layer.

LAPS predicts what phenomena is likely to occur next and not how
the state description of the first processing layer will look like in the next
future time step. LAPS is able to generate sequences if provided with a view
starting input values.

Critics to address our demands arise from the fact that the system has,
like Scholtes’ network, no short-term memory with any orthogonal access to
space and time in on single processing layer stage. Prediction capability is
implemented but in a not very biological way.

9.4 Spatio-Temporal RSOM

So far all introduced models addressed either spatial or temporal information
processing capabilities.

LAPS learns single state-like representations in the first processing layer,
and state transitions within the second layer. The first layer has as stated
above no short-term memory on the single neuron level and is thus not cap-
able to store contextual information over several time steps in the higher pro-
cessing layer. This lack of processing power brings up several ideas on extend-
ing the so far introduced models. The next step is to introduce short-term
memory capabilities to each layer, what we have done in the spatio-temporal
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RSOM model. Based on LAPS and the RSOM algorithm we developed a
motion-perception model that is able to classify and predict spatio-temporal
sequence information and at the same time to provide an orthogonal access
memory demanded by Schill and Zetzsche [SZ95]. The boundary conditions
of the model and several design issues were constrained by our main aim, the
simulation of the behavior of the visual-motion processing area (area MT or
V5) of the human brain other design issues where provided by the results
of the psychophysical experiments discussed in the related chapter earlier.
These investigations lead to some publications on spatio-temporal processing
structures [BKRB00], [RSB+03], and [BB03].

Representation of State Transitions

α(1−   )y(t−1)

α(1−   )y(t−1)

�
�
�
�

� �
� �

�
�

� �
� �
� �
� �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

t=1 t=2 t=3 t=4

RSOM n (n>1)

RSOM 1

Decayed
Feedback

Decayed
Feedback

Activation Function

Activation Function

Orthogonal Input Access

Input x(t)

Vectorized Activation Matrix at (t)

Vectorized Activation Matrix at (t)

Scales of Represent.

Possible additional

Prediction Loop (for Sequence Generation)

Layers for different

Output Vector

Feed−Forward

learned

Figure 9.3: Spatio-Temporal RSOM

The complete structure of the model is shown in Figure 9.3. The RSOM
layers are handled by the standard algorithm described above, apart from the
output of the neurons. Since we try to base the model on biological findings,
the maximum activation normalized by the dimension d of the weight vectors
is calculated to simulate a biological neurons’ output:

yi(t) = (1− α)yi(t− 1) + α · exp
(
−||x(t)− wi||

σ2 · d

)
(9.2)
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The best matching neuron yb is determined by the maximum activation:

yb = max(yi) (9.3)

To address multi-layer processing, information has to be passed from one
processing layer to the next one. The input for the higher order network
layer z(t) is generated by combining all calculated activations (yi(t)) of the
neurons of the first map to one long vector through textual concatenation.

z(t) = y1(t)⊕ y2(t)⊕ y3(t)⊕ . . .⊕ ym(t) (9.4)

This successive generative process is bound by the system response of the
RSOM neurons, which is controlled by the feedback parameter α. The closer
α gets to 0, the longer the time interval the system “delays” the information
propagation to the higher order processing layer. By setting the delay to sev-
eral time steps, RSOM generates an internal activation pattern represented
by the activation states of past innervated neurons.

Let us propose, that if the activation value of a past winning neuron
falls below five percent of the original activation value, the neuron has no
influence to overall processing any more, so to say no significant information.
The time span between the initial activation of a neuron and its activation
falling below this threshold delimits inherently the number of input vectors
composing a subsequence and is tuned by the parameter α Eq. (9.2).

The time interval between two generated input-vectors for an auxiliary
processing layer is delimited indirectly by the system response Eq. (8.10) of
each neuron. As we want to preserve the temporal structure –the context– of
the input-data we have to choose the time span shorter than the subsequence
length. This ensures an overlapping of the subsequences and therefore the
complete sequence representation stays well-defined. The above introduced
elements of the model limits its capability to classification tasks. We extend
the model by adding an alternate network structure responsible for predic-
tion. This prediction extension allows two forecasting mechanisms: one-step
prediction and dreaming/open prediction. The prediction structure of the
first of the multi-layer models we introduce in our work is realized simply
by a feed-forward net. This prediction network is trained with the standard
back-propagation [Hay94] algorithm to learn an association of the current
activation pattern of the second RSOM layer z(t) Eq. (9.4) with the next
upcoming input vector x(t + 1) of the first RSOM layer.

The RSOM is an unsupervised trained network whereas the feed-forward
net connected to the second processing RSOM layer is self-trained through
the system states of second layer. Through the fact that the training input
of the feed-forward net is provided on the fly by a generative process of the
preceding layers, we name the training scheme of the feed-forward network
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Algorithm 5 Spatio-Temporal RSOM training algorithm
Establish initial value of γ, σ2

Initialize Layer1, Layer2
Init neurons feed-forward net
input dim = number of neurons layer2 output dim=input dim Layer 1
Random initialization of neuron weights all layers
for i = 0 to trainiteration do

for j = 0 to number_trainset_entries do
RSOM_train Layer1

end for
end for
generate_input for Layer2 respecting event horizon Layer1
for i = 0 to trainiteration_layer2 do

for j = 0 to number_generated_entries do
RSOM_train Layer1

end for
end for
generate input for feed forward net
for i = 0 to trainiteration_feedforward do

for j = 0 to number_generated_entries_prediction do
FeedForward_train

end for
end for

semi-supervised. By the introduction of additional RSOM layers, it is pos-
sible to generate representations for more coarse time scales. As a result
we can represent motion primitives, like “left-turn”, “u-turn”, “right-turn” or
whole motion plans by the activation of one neuron in the highest processing
layer.

9.5 Spatio-Temporal STORM

Not very pleased with the fact that the feed-forward network, used for pre-
diction in the model introduced in the last chapter, is not very likely the
realization of the prediction mechanism in a real brain and also not being
very efficient in terms of learning and computing time, motivates the devel-
opment of an alternate new prediction mechanism [Bai05].

We argue for an indexing structure which stores recurrent connections
between neurons and the gating mechanism for retroinjecting connections,
which are responsible for a priming and threshold decreasing of the most
likely to be active neurons at the next upcoming time step. The biological
economy principle states that unnecessary use of energy doesn’t make any
sense in an biological organism. Since the brain consumes a big bunch of



88 CHAPTER 9. MULTI-LAYER MODELS

the available energy, it is obviously of great importance to save energy by
controlling the activations of the neurons in a reasonable way. The priming
of the next most likely active neurons enables the brain to react quicker to
an upcoming percept. This priming can also be interpreted as a kind of
prediction mechanism. If an anticipated percept is missing –e.g. a moving
object occluded by an obstacle, as an example of the visual processing– the
brain is capable to estimate those missing stimuli to complete an imagined
trajectory.

In the Spatio-Temporal STORM we replaced each single processing layer
of stRSOM with a STORM layer. Using our new defined structure allows us
to assure that the temporal ordering of the activation pattern is preserved at
every time step and the demand of an orthogonal access to space and time
in each processing layer is fulfilled.

The prediction loop now is realized by a hetero neural associative memory
[PS95] for binary patterns –in literature often also called Content Address-
able Memory/CAM–. This prediction memory stores the association of the
firing state of the maps neurons and associates the derived activation state
vector with the activation state of the next expected firing neuron. As men-
tioned above, this assembly should be seen as an indexing structure which
stores the activated feedback connections, and not as a sole network struc-
ture.

Figure 10.1 shows the smallest functional part of stSTORM. This single
processing layer already has the processing power of the earlier introduced
LAPS assembly and it is additionally more efficient to train and more efficient
in memory consumption.

The activation status of a single neuron is not defined by a singular
scalar value (0, 1). By choosing kθ-tuples of binary style values it is possible
to represent the strength of activation potentials. For example < 1, 0, 0 >
defines the most active neuron at the current time step <0,1,0> refers to
the former active neuron which has already been damped. We don’t use
the classical logarithmic number representation like in the binary number
system, it is more a simplified state description of the referred neuron. We
get the complete state description vector by filling the kθ-tuples of all non
active neurons simply with zeros.

Through this kind of binary activation representation, it gets possible to
store the activation pattern in a binary hetero associative memory. As stated
earlier the associative memory is a very efficient way to store information in
a robust manner.

To ensure that the associative memory gets loaded sparse enough, a
proper representation has to be chosen. Once again we get back to what
we earlier called the event-horizon of a single neuron. This horizon delim-
its the length of the tuple which defines the representation of the activation
state of the addressed neuron. Now let us define the possible activation levels
for kθ = 3:
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Figure 9.4: Spatio-Temporal STORM. Memory representation layer 1: activ-
ation patches with orthogonal access. Layer 2: combined activation patches
with orthogonal access.

The position of the 1 in a kθ-tuple denominates the activation strength
of the referred neuron. A damping in this representation is done quite easy
by shifting the token (1) every time step by one position to the right. If the
token reaches the right most position, it gets deleted the next time step.

<1,0,0> first time step
<0,1,0> second time step
<0,0,1> third time step
<0,0,0> fourth time step

Table 9.1: Temporal development of the transcoded activation of a single
neuron

So far we have only defined the input representation for the associative
memory. The output representation depends on the purpose. We distinguish
between two cases. The first case is used for the one step prediction. For this
purpose we use a vector of the length n –the number of neuron– in which a
single token represented by a 1 addresses the in the next time step activated
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neuron. All other values in the output vector are simply set to 0. With this
association we realize an one step prediction with a single retrieval operation.

Algorithm 6 Spatio-Temporal STORM training algorithm
Establish initial value of γ, σ2

Initialize Layer1, Layer2
Initialize Associative Memories Layer 1, 2, 3, Blackboard
Random initialization of neuron weights all layers
for i = 0 to trainiteration do

for j = 0 to number_trainset_entries do
STORM_train Layer1

end for
end for
generate_input for Layer2
for i = 0 to trainiteration2 do

for j = 0 to number_trainset_entries2 do
STORM_train(Layer2)

end for
end for
generate_input for Layer3
for i = 0 to trainiteration3 do

for j = 0 to number_trainset_entries3 do
STORM_train(Layer3)

end for
end for
for i = 0 to number_trainset_entries2 do

asso_train(Layer1_activation(i-1),Layer1_activation(i))
end for
for i = 0 to number_trainset_entries3 do

asso_train(Layer2_activation(i-1),Layer2_activation(i))
asso_train(Layer1(i),association Layer2(i))

end for

The black-board prediction needs more entropy on the output vector side
to render the system able of predicting multiple next activation states with
single retrieval operation. In the case of multi-step forecasting the dimension
of the output vector is n · m · kθ consisting kθ ones: exactly analog to the
input vector representation. Overlapping of events is not necessary in this
association scheme, it is sufficient to learn the association of patterns starting
at time step t to the pattern starting at time step t + kθ.
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Figure 9.5: Final Spatio-Temporal STORM model with local and blackboard
prediction loop.

Additionally to the motion perception and prediction part of our model,
we added a kind of cognitive layer which is autonomous responsible for a
classification of the patterns of the highest processing layer. This layer can
be defined as e.g. a learning vector quantification network (LVQ) or again
as a SOM layer. The small size and the small number of vectors in our
training and testing data makes it impossible to conduct real classification
task experiments. We can only evaluate the mere ability to classify correctly.
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And in fact, classification worked. We will now discuss some issues on how
to design the prediction mechanism and on the capacity of those network
structures.

9.6 On the Prediction Capacity of stSTORM

By introducing a threshold that determines a significance level of a neuron
and setting a neuron to a refractory state while being activated stronger
than the threshold, it is possible to give a delimiting value of the maximum
number of activation patterns. The size of a stSTORM layer is n×m neurons
multiplied by the factor kθ caused by the transcoding process. The number of
activated neurons is implicit defined by the feed back factor α which results
in a system response, in our case of α(1−α)k, and the significance threshold
θs. Given these elements we get a combinatorial problem: First determine
the number of possible active neurons in one time frame: Determine the
value of kθ for which

kθ = mink|θs ≥ α(1− α)k (9.5)

holds. So we have to draw kθ activation values out of the pool consisting of
n·m neurons multiplied with a transcoding factor representation based on kθ.
We are looking for all possible permutations we can draw these kθ activation
sequences in an ordered fashion out of the fixed pool simultaneously meeting
the constraints of the transcoded activation vector:

(n ·m)kθ =
kθ−1∏
i=0

((n ·m)− i) (9.6)

The term (n ·m)kθ is a falling factorial, it defines the maximum number of
patterns a single STORM layer is able to produce in a generative process.

Having the limit of possible patterns it is possible to calculate the max-
imum accurate prediction capability of the connected associative memory.
Binary neural hetero associative memories were investigated quite deeply by
G. Palm [PB88] [PSSS97] and F. Sommer [PS95] especially with the focus on
pattern storage capacity and the definition of the term sparseness in relation
with neural associative memories.

The limitations on the number of possible ones in the input, respectively
in the output vector shifts the limit of maximal storable patterns a bit to
the theoretical maximum as not all possible permutations of input vectors
are used.

As a hetero-associative memory is tolerant to errors, a matrix entry –
which in fact is an information bit– has not the information capacity 1 like
in a standard storage structure, it has a capacity of 0.69 = ln 2.

The maximum accurate prediction capability of a stSTORM is bound
by the number of patterns the associative memory is able to store. Using a
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binary hetero associative memory makes it determinable, as the capacity C
of neural associative memories has been analyzed by Günther Palm and Fritz
Sommer [PS95]. To calculate the capacity we have to define some symbols:
p := pr[xi = 1]∀i for all possible input vectors and q := pr[yj = 1]∀j
respectively for the output vectors. δ is a quality factor. The smaller δ the
lower the probability of a wrong 1 at any position of the output vector. Then
the capacity C is defined by:

C = ln 2
− ln q

− ln q − ln δ
(9.7)

Whereas q is defined as the probability of having a 1 in the output vector at
position i. Then for q → 0 the fraction above converges to ln 2.

C ≈ ln 2 (9.8)

A error tolerant memory is not able to reach the capacity of 1 bit per storage
element. It only reaches the relative capacity of ln 2. As long as the aver-
age number of ones in the memory does not reach ln 2, retrieval is possible
without any error.

Given the dimensions of the STORM layer and the tuple length of the
transcoding, the associative memory matrix size is (n ·m · kθ)(n ·m).

The resulting maximum number of stored patterns M is:

M =
ln 2
pq

(9.9)

whereas p is the probability of a 1 in the input pattern and q the probability
of a 1 in the output pattern. The probability of a 1 in q is simply:

q =
1

n ·m
(9.10)

as only a single one is allowed to occur. The probability of a 1 in the input
vector p is dependent on the number of possible representations, the falling
factorial.

p =
1

n ·mk
(9.11)

The maximum number of storable patterns is a theoretical limit of the asso-
ciative memory we use for prediction. As often many similar patterns occur,
the occupancy of the memory matrix is not equally distributed. The retrieval
error increases in the areas with a higher density of ones. The performance
of our prediction mechanism though is strongly bound to the input data.
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Chapter 10

Experiments

In this chapter we introduce and discuss the experiments conducted with
our model. Several model configurations were tested to ensure the correct
behavior of the overall model. The first tests address only a single STORM
layer with one prediction layer realized by a binary hetero-neural associative
memory. This single-layer abstraction model was tested using time series,
whereas the multi-layer model was tested on more motion perception like
data gathered with a gesture recognition device.

10.1 Laser Time Series

The most secure way to test a system is to test its single functional elements.
The smallest possible functional element of the introduced motion perception
system consists of one STORM layer with an attached prediction network,
realized through a binary hetero-neural associative memory (see sketch Fig-
ure 10.1). These two networks represent a single abstraction layer of our
multi-layer network. We used a sinusoidal signal to tune the parameters for
a one dimensional time series. Time is coded implicit by the fixed sampling
rate the data sets were generated with.

In this experiment series we use a chaotic time series. The laser time
series. It is widely used for benchmarking time series forecasting models
(used e.g. in [WG94]) and used in this work to test the one step prediction
capability and the multi step prediction capability of the one layer STORM
assembly. Additionally we crosschecked the STORM layer based configur-
ation with a SARDSTORM based system. As SARDSTORM is only able
to represent single state transitions STORM should give a big advantage on
data which has context distributed over many time steps, as the recurrent
weight adaptation ensures the persistence of past activation events. One
neuron in STORM is learning more of a concept of the past view time steps,
whereas as stated SARDSTORM only represents state transitions.

95
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Network Setup:

• α = 0.5 which evokes a four time-step event horizon.

• Gaussian neighborhood

• 50× 1 neurons first experiment

• 100× 1 neurons second experiment

• 150× 1 neurons third experiment

• Adaptive threshold handling in the associative memory

Comparing the test runs with each other shows that the 150 neuron exper-
iment shown in Figure 10.5, yields a much better prediction ability for one
step forecasting on the 1000 entry sized time series than the other runs.
We only have half the number of neurons compared to “state transitions” in
the data set which indicates that the network learned some concepts. The
ultra-short-term memory lasts with fixed α = 0.5 for four time steps. So
each prediction relies on the combination of the four past activation events
to predict the next possible active neuron.

Associative Predictor

STORM

∆t1

One Step Prediction

30ms
Pöppel/Schill

Activation
Feedback

Input

Output

Figure 10.1: Single layer stSTORM.
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Figure 10.2: Laser time series
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Figure 10.3: Single 50 neuron layer STORM with open prediction after 100
starting values α = 0.5.
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Figure 10.4: Single 100 neuron layer STORM with open prediction after
100 starting values α = 0.5.
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Figure 10.5: Single 150 neuron layer STORM with open prediction after
100 starting values α = 0.5.

The number of neurons affects the networks processing ability in two
ways. The higher the number of neurons, the better the approximation of
the time series. Additionally, the higher the number of neurons, the bigger
the memory matrix of the prediction network. These two parameters affect
the assemblies performance crucially as one can see in the prediction error
we plotted for a 50 neuron network assembly in Figure 10.3, a 100 neuron
assembly in Figure 10.4, and a 150 neuron assembly in Figure 10.5. The high
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prediction error in the smaller networks where mostly caused by the small
number of neurons, the size of associative prediction memory has only been
to small for the case of 50 neurons. The memory matrix of the associative
prediction network was loaded not sparse enough. Testing the 100 neuron
assembly the first 100 predicted values show only a small prediction error,
followed by chaotic oscillating values.

We also run experiments with e.g. α = 0.7 and higher, to illustrate the
important influence of the activation feedback to the temporal processing
capability. As easily can be seen, a temporal memory shaped with the feed-
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Figure 10.6: Single 150 neuron layer STORM with open prediction after
100 starting values α = 0.7.

back factor α = 0.7 simply is to short to learn sufficient context within the
laser time series.

The 150 neuron sized assembly with α = 0.5 shows an expected behavior
in the last third of the predicted sequence caused by similarities between
the second part and the third part of the sequence. Differences between the
second and the third part of the sequence occur at the position around time
step 500. The prediction mechanism is not able to distinguish between the
possible development in the second part and the third sweep of the series.
Even the context preserving weight adaption is not helping in this case.
Simply to many time steps are involved and the context horizon in this case
was 3 time steps. To point the necessity of context preserving learning out we
introduced a non recurrent weight adaption scheme to our STORM network
and named it after the inspiring SARDNET SARDSTORM.

SARDSTORM showed a very poor, even not existent open prediction
capability as showed in Figure 10.7. Even in one step prediction SARD-
STORM is not able to predict correctly, if context is necessary to determine
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the right next value. Once again the similarity of the second and the third
part of the time series causes problems. As no context information was
learned, the neural assembly has no chance to predict the correct values in
the third sweep, in contrast to our STORM assembly whose performance is
shown in Figure 10.8.
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Figure 10.7: Single 150 neuron layer SARDSTORM with one step prediction
error, open prediction after 100 starting values and absolute prediction error
of the open prediction.
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Figure 10.8: Single 150 neuron layer STORM with one step prediction, one
step prediction error, open prediction after 100 starting values and absolute
prediction error of the open prediction.
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Figure 10.9: Laser time series with one step trend prediction. Map size
150 × 1: Prediction memory population for α = 0.7 and α = 0.6. nz: non
zero elements.
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10.2 Qualitative Motion Vector based Data

The DFG priority program Spatial Cognition had the aim to provide amongst
other things symbolic spatio-temporal descriptions of motion paths. One
thesis in this research program dealt with a qualitative description of motion
[Mus00]. The formalism allowed a generalization of motion but was not
able to predict future motion elements. Our multi-layer motion processing
model is capable of prediction; so the step to link qualitative motion vectors
(QMVs) with multi-layered STORM is quite obvious. In the next lines you
will find a simplified quasi qualitative motion description. We will use this
input data to illustrate some behaviors of the model to motion. The input
vector consist basically of direction changes measured in degrees and the
velocity, which is subdivided in numerical representations of slow, medium
and fast. The distance is implicitly encoded due to the fact that we assume
a discretized input sampled at a frequency of 30Hz.
Due to the small number of test stimuli at least the first processing layer

Direction Speed Label
90 1 right_slow
90 1 right_slow
90 2 right_medium
90 1 right_slow
180 1 down_slow
180 2 down_medium
180 1 down_slow
270 1 left_slow
270 2 left_medium
270 1 left_slow
0 1 up_slow

Table 10.1: Numerical representation of QMV vectors

has to be trained with visual stimuli consisting of arbitrary combined motion
atoms to form a orientation selective mapping. Nonetheless the QMV based
data has to view real features to be learned well.

Provided with this first filtering layers we are able to observe the behavior
of the higher processing layers. The second processing layer joins dependent
on the predetermined feedback factor, motion atoms to motion compounds.
The third layer combines these compounds to more complex motion path
elements.

The test set consisted of a sequence of QMV trajectories sketched in Fig-
ure 10.10: QMV1, QMV2, QMV1, QMV3, QMV2, QMV4, QMV3, QMV4.
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QMV3 QMV4

Figure 10.10: Simple QMV trajectory examples, also used in psychophysical
experiments
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Figure 10.11: Data propagated from the first to the second processing layer.
Each row is an activation snapshot joining the last four time steps. Color
indicates the activation strength of the referred neuron.
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Figure 10.12: Data propagated from the second to the third processing
layer. Each row is an activation snapshot joining the last four time steps.
Color indicates the activation strength of the referred neuron.

Generally, one would expect that a cyclic motion performed with a some-
how correct frequency will induce some attractors on higher processing layers,
and in fact attractors where found on the second processing layer in our three
layer model. The first layer acts like an compound of orientation selective
filter, whereas each neuron reacts on a stimulus of a special direction and
velocity. We derive a more abstract description of motion by the summation
of several activation events before propagating an activation pattern to the
next higher processing layer. The next higher level acts exact in the same
way. As the hierarchical level gets higher, the represented motion compounds
get more abstract and more complex.

We were able to observe exactly the same effects like in the psychophysical
experiment on the same stimuli. Small changes in the trajectory not effecting
a geometrical structure like the part of the motion path which is similar
to a circle are not detected by the system. QMV1 versus QMV3 versus
QMV2 are not discriminable. QMV4 on the other hand is discriminable quite
easily, as one geometrical structure, the circular motion part is affected over
a temporally longer period. The changes in the first three motion paths are
also temporally to short, to have an big impact to the system on a higher
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–in this case already on the second– processing layer. It would of course
be possible to outperform humans recognition abilities by prolonging the
temporal memory of one neuron. In that case one neuron would be able to
learn the concept of a complete trajectory within one activation period and
the second layer would represent one whole trajectory by the firing of one
single neuron and therefor the chance of not learning a representation but
memorizing one gets really high.

To enter a more realistic scenario we derived some motion data in col-
laboration with Matthias Kranz PhD student at the embedded interaction
group, chair for media informatics at the Ludwigs-Maximilian-University
Munich.
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10.3 Gesture Data Set

These data sets were gathered with a hollow wooden cube, containing three
orthogonal acceleration sensors (Figure 10.13). The sensor readings are
transfered via wireless interfaces in real time to a PC unless the embedded
processors do not have the necessary computing power to realize a neural
network of the complexity of the introduced multi-layered STORM model.
Some examples of simple gestures are plotted in Figure 10.14.

Figure 10.13: Gesture Cube

We set up a three layer model like sketched in Figure 9.5 to test the
behavior of the model on the introduced gesture data. For training purpose
we combined all gestures in a single data file plotted in Figure 10.17.

As one would expect, temporally stationary elements in the data file are
reflected by an attractor like firing pattern of neurons. Whereas in this case
stationary elements are characterized by a cyclic temporal pattern. Sinus-
oidal like input signals with fixed amplitude and frequency as a temporal
constant signal are a simple example for a stationary signal. The STORM
layer filters the signal and joins several time steps to one activation pattern.
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Figure 10.14: Sensor reading of left/right shaking and shift backward mo-
tion.
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Figure 10.15: Data propagated from the first to the second processing layer.
Each row is an activation snapshot joining the last four time steps. Color
indicates the activation strength of the referred neuron.

Generally, all alternate processing layers again combine several time steps
of activation events of the earlier stages to a new temporally more coarse
activation pattern. The input representation of the third layer is shown in
Figure 10.16. It is more difficult to find the stationary signal parts here,
despite for the last time steps. The input data set shows at step 1500 to the
end of the sequence in Figure 10.17 four singular signal lines. These lines
are represented as one activation pattern in Figure 10.16 at about time step
92 to 100.
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Figure 10.16: Data propagated from the second to the third processing
layer. Each row represents an activation snapshot of the last four time steps.
Color again indicates the activation strength.

The experiments showed that the spatio-temporal STORM model is able
to abstract data from a provided input stream automatically. This behavior
is similar to a filtering of the signal, whereas our model additionally stores
context information which is important for prediction issues. As the exper-
iments on the laser time series showed the system is robust on signal drop
outs through its prediction mechanism.

It is possible to place a pattern classification algorithm on top of our
model, to classify the gestures. Technically every algorithm would be suit-
able. In the motion processing system of the real brain, the next processing
step would involve cognition. A conscious or unconscious tagging of the per-
ceived motion stimuli to form and generate trajectories in mind.
We will continue on our discussion in the conclusion chapter.
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Figure 10.17: Test input data set derived from a combination of all gesture
data sets.
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Conclusion and Discussion

This thesis introduced a novel motion processing and prediction model. The
realization of the model is the result of the combination of findings from
different research schools like psychophysics, neuro-anatomy, connectionism
and within connectionism, computer science. Defining the model was not
possible by using only established models. We had to define novel flavors
of recurrent self-organizing maps for the single processing layers. Also the
interaction between the processing layers was defined in a suitable way to
meet the demands of an orthogonal access of space and time along the whole
system and in each of the processing layers. We will now recapitulate on
each part of our system to emboss the novelties and to discuss the results of
this thesis.

• RSOM: We developed a training method which ensures temporal or-
dering and prevents poor topological development of the map. The
training method is based on selecting subsets of the sequence. The
length of the subsequences is delimited by the event horizon of the first
firing neuron of the subsequence. The first element of a subsequence
is selected randomly. This pseudo random scheme is done the first
ten percent of the training phase. The rest of the training is done in
ordered fashion, as the network is able to unfold itself within the first
ten percent training cycles.

The second novelty is the processing of the activation of the map. We
are using the activation configuration of the complete map for further
processing, not only the actual winning neuron.

• Strict temporally ordered map, STORM: In contrast to the
SARDNET variant of the self-organizing map we use a recurrent weight
adaption within the learning algorithm. Additionally we defined the
event horizon to determine the time span a neuron is refractory and
taken out of the pool of competing neurons. SARDNET removes each
neuron winning the competition for the best match. The most import-
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ant advantage of our definition is that the context information is not
only dependent on the last occurring state transition.

Similar to SARDNET is the use of a standardized activation of a com-
petition winning neuron. The use of this activation is different though.
We use the activation of the neurons to generate an activation pattern.
The activations of all neurons are combined to a single vector, which
is intended to be fed to the next higher processing layer. Additionally
the activation vector is stored –in a transcoded representation– in a
neural associative memory.

As we use a recurrent weight adaptation, STORM stores the temporal
development of several time steps. This recurrent weight calculation
results in combination with the associative prediction memory in a
much better prediction capability of a STORM associative memory
assembly.

• Stochastic Spiking STORM Not yet realized in a multi-layer con-
text, we showed a possibility to go further towards a biological more
plausible self-organizing map definition. As the activation is calculated
in temporal distributed fashion a single stochastic spiking STORM
works on a temporally finer resolution as STORM. Adding up the time
steps of one activation event of a neuron results in a STORM neuron.
The stochastic spiking definition might be useful for biologically plaus-
ible representation of temporal processes.

• Spatio-Temporal RSOM: The piloting multi-layer model, we real-
ized. Inspired by LAPS we introduced the orthogonal access memory
within each processing layer. Also the information propagation from
one processing layer to the hierarchically next higher was changed as
the use of recurrent neurons made it possible to represent several time
steps in an activation pattern derived by the enumeration of all activ-
ation values of all neurons of one layer. Not quite pleased with the
feed-forward network for the prediction of future input values and the
limited temporal resolution of the prediction network we developed a
more sophisticated multi-layer model.

• Spatio-Temporal STORM: Analyzing spatio-temporal RSOM we
recognized that the temporal ordering in the activation pattern can
be broken. This resulted in the above discussed STORM network and
with the replacement of the RSOM layer in the spatio-temporal RSOM
assembly.

Additionally we searched for a more sophisticated prediction mech-
anism. With the introduction of neural hetero-associative memories
we added a efficient robust computing structure. These memories act
like an indexing structure similar to retroinjecting lines in real brains,
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lowering the threshold in those neurons which are most likely to be
activated in the next time step.

It should be stressed that already the one layered stSTORM network
has the computational power of a LAPS network consisting of two SOM
layers connected with a feed-forward network for prediction purpose.
Our model is more efficient in time and space.

• SARDSTORM: To point the advantage and the necessity of a re-
current weight adaptation scheme out, we defined a network similar
to SARDNET. SARDSTORM uses two elements of SARDNET. First
the standardized activation value of winner neurons and second, a non
recurrent weight adaptation identical to standard SOM. In contrast to
SARDNET, SARDSTORM puts a once activated neuron back into the
pool of competing neurons after an absolute refractory period like in
our STORM network definition.

So far we only reflected the technical algorithmic side of our work. The
algorithmic realization of the model is more or less only the tool for a mo-
tion processing and prediction model. All the novel definitions in our model
were guided and inspired in the results of psychophysical experiments done
in collaboration within the research group of Kerstin Schill. We finally in-
troduced a model which fulfilled all demands we derived in interdisciplinary
discussions.

The model shown in Figure 9.5 already shows the next steps we intend to
add to our model. We already experimented with hand tagged classification,
yet a cognitive processing stage needs more attention. So far the model
provides the demand of an orthogonal access memory, various feedback and
retroinjecting lines between several processing stages, and therefor the ability
to process and predict motion in a hierarchical manner. Nonetheless our
model is a highly sophisticated preprocessing mechanism providing proper
input to higher cognitive processing, this already is one of the topics of the
planned future work.
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Chapter 12

Future Work

In the attempt to realize a visual motion processing model based on psycho-
physical experimental findings we realized an artificial neural assembly. This
model was designed with biology in mind but biology was only the second
most important source of inspiration. To tune the model to more biology like
representations we suggest to incorporate the prediction indexing structure
realized by the neural associative memory so far, into the STORM layer.
This additional structure could be realized be a feed forward network sitting
beneath each of the STORM layers neuron. Learning might be done with
error back-propagation. Having these two different styles of training in one
assembly brings on idea into account, which addresses two stages of learning.
We argued already for this twofold learning process earlier. The adaptation
of the STORM layer is realized by a competition process in which the weights
are adapted using the parameters learning rate and neighborhood. This part
of learning in an dynamic processing system is in our believe more analog
to the evolutionary ordering process of neural cells to functional areas in
the maturation of a fetus. Learning in the post-fetal stage –at the age of
two months a new born baby has the maximum number of interconnections
between neurons– is in our belief more like hebbian learning. This second
learning stage, subdivided from the evolutionary learning process, is reflec-
ted in the training of the dynamic extension, the feed-forward net of each
STORM neuron.

Another possible extension addresses the stochastically spiking STORM.
In the search for a more biologically realistic model still adaptable in reas-
onable time we argue for a replacement of the exponential trace memory by
a gamma trace memory. The gamma memory establishes a more realistic
onset behavior of a single neuron.

Beside the possible model improvements we can also give some ideas
on how our proposed motion processing model might be used in technical
systems like:

• Driver assistant systems

117
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• Reactive robot motion planning

• Dynamic pattern analysis and concept generation

• Saccadic eye movement analysis classification concept generation

• Cognitive motion planning

• Realization of inter-modal connections

One rather interesting point would be a distributed realization of our model.
As the calculation in self-organizing map based model is highly local it is
possible to construct a parallel version quite easily. A diploma thesis related
to this work realized a parallel version of standard self-organizing maps based
on the PVM toolkit (parallel virtual machine). Based on this diploma thesis
it would be possible to develop parallel versions of all self-organizing maps
based models we introduced.

It would be even simpler to distribute only complete layers over a parallel
computing facility, as all layers process their information independently and
the interaction happens not every calculation time step.

As the implementation is based on matlab, we cannot say anything about
real time capability. Though retrieval, compared to training is blazingly fast
as a complete data set of 2000 vectors is retrieved within three seconds which
should be enough taken the flicker fusion frequency into account. But pos-
sibly an implementation in C or C++ could fulfill realtime capabilities better.
So one next steps on the implementation side should address a redesign of
the software in a more efficient language to test, if the system can be used
in real world applications like the discussed Driver assistant systems, or in
reactive robot motion planning.

The most important step in continuing the research is the development
of a cognitive processing stage which is able to process the motion data
generated by our stSTORM model to define motion plans autonomously by
observing its own percepts.

There are still many more possibilities in extending and improving the
here proposed stSTORM. Hopefully this work inspired some further devel-
opment in visual motion processing and prediction.
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