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About this document

0.1 Introduction

This document establishes a concept for a computer implementation of a func-
tion data type on which mathematical operators can be implemented. The
functions should have the flexibility to allow for common operations such as
integration, differentiation, inversion and the solution of differential equations.
Furthermore its flexibility should extend to the algorithmic concepts adaptiv-
ity and sparse grids. Chapter 1 shows how to implement such a data type
and how the common mathematical operations work on it. The algorithms
are presented in a discrete algebra and as computer code. Chapter 2 shows
the transformation of economic investment strategies into functional operators.
Based on functions as basic data type the evaluation of typical problems in
quantitative finance is kept compact and short. Chapter 3 goes into the details
of specific models for the dynamics of economic parameters. Many well-known
processes from quantitative finance are turned into the modular and computer
implementable operator form. The final chapter 4 puts everything into practice
and demonstrates the applicability of the concept for mathematical modeling
as well as for numeric implementation.

0.1.1 Algorithms on the functions domain

Since the very first days, computer science was driven by the search for solutions
to mathematical problems. It started with basic arithmetics on the domain of
integer and floating point numbers, and evolved into the algorithmic machinery
to execute well defined sequences of calculations. With the appearance of FOR-
TRAN, the universal formula translation language, it could well be claimed to
have implemented all tasks of linear algebra, based on the array representation
of vectors and matrices.

With growing computational resources another mathematical discipline is now
in the reach of computer programmers. It is the field of calculus, which deals
with functions and functional operators. As much as a vector is a collection of
finitely many numbers, a function has infinitely many values and must be ap-
proximated appropriately. While the vector dimensionality refers to the number
of vector components, the functional dimensionality is the number of indepen-
dent function arguments. High dimensional functions cause various computa-
tional difficulties associated with the “curse of dimension”.

Example: Suppose we wanted to write a simple iterative solver for an initial
boundary value problem. The problem is known in finance as the pricing of
an American option and will be discussed in chapter 2 in more detail. The
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PDE below shows the equation with its unconventional boundary condition
that prevents this equation from being solved by standard PDE software.

d

dt
f =

σ2x2

2

d2

dx2
f − µx

d

dx
f with f(x) > K − x (0.1)

However, this boundary condition only prevents the function f from falling
below K − x. Although it is difficult to formalize as a conventional partial
differential equation, it demands just a minor adjustment of a numerical solver.
The algorithm then consists only of convection diffusion term with analytic
solution and a maximization to ensure the minimum. Figure 1 presents the
code for an iterative solution of the diffusion and the point wise maximization
in discrete time. Such programs can easily be entered into computer algebra
systems. However due to the non smooth maximization one is very unlikely
to obtain a simplified result. Out of the box numerical packages will have
difficulties to interpret functions as data types and would require significantly
longer program codes.

FUNCTION mypde(f)

FOR t := 1 to 100

f(x) :=

∫

R

EXP(−1
2

(x−y
σ

)2
- µ) f(y) dy

f(x) := MAX( f(x), K-x)

END

RETURN f

Figure 1: This document aims for an algorithmic framework in which
functions can be used as normal data types. The function mypde demon-
strates an example that requires the flexibility of computer algebra sys-
tems and the power of advanced numerical methods.

Available concepts Functional algorithms have since been developed for the
representation of functions, the solution of integrals, differential equations and
variational problems. Good algorithmic concepts are available and have been
implemented to solve very specific problem sets. All current approaches have

Figure 2: The computational solution of mathematical problems on the do-
main of functions is hardly supported by standardized data structures or pro-
gramming interfaces.

2



0.1 Introduction

the same shortcoming of either having limited scope in their applicability or
being too general without significant added value over plain vector algebra.
Everybody who wants to solve a new mathematical problem that involves the
variation of functions and does not fit precisely into the domain of existing
packages must start from the beginning. There is no such thing as a general
data structure for a function that allows for standardized and clear algorithms
to solve equations, optimize the value or perform convolutions and differential
calculus.

0.1.2 Layered model

Calculus, or the mathematics of functions, provides one of the most advanced
notations for mathematical models, as we know them from physics and eco-
nomics. The notation is compact and allows for simplifications and transfor-
mations. For the translation of calculus into software this document suggests
two intermediate steps to be taken. First, the mathematical problem must be
represented in an explicit notation, that is compatible with the vocabulary of
common computer algebra systems. This requires all computational steps to
be explicit instead of being hidden in prose and text forms. Furthermore all
domains must comply to the basic preliminaries of computability, i.e. sets must
be finite or have a norm that allows finite approximation. The second step con-
cerns the representation of the algorithm and its modules. Extremely complex
algorithms might work in some instances, but can not be used as a mathe-
matical tool to be used in untested environments. This document suggests a
computational calculus that leads to a direct implementation in a functional
programming language. It can be turned into efficient code in a separate step.

Explicit notation Before a computational task can be implemented we want
it to be represented in a computer algebra compatible notation. Thus the
numeric challenge should be explicit without having to read any informal and
possibly ambiguous prose. Some of the computational steps involve the solution
of equation systems and require specific operators, which only have an implicit

Figure 3: This document suggests a computational calculus and an explicit
operator notation that simplify the transition from math to code.

3
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definition via their properties. These operators must then be given an explicit
approximation strategy in computational calculus.

Chapters 2 and 3 introduce the explicit operator notation in quantitative fi-
nance. Prevailing financial literature, despite large terminology, does not have
a mathematically precise and well defined notation. The operator notation pro-
vides a straight forward implementation procedure for the problems of financial
institutions.

Computational calculus The goal of computational calculus is to make the
algorithmic behavior explicit. The way a numerical system deals with limits,
integrations and function inversion must be reasonably traceable without having
to study endless program code. The ideal computer calculus has a simple
notation that directly leads to an effective program, and can be implemented
in an efficient fashion.

Chapter 1 uses multiscale calculus to define functional algorithms. It is based
on a standardized data structure for functions. The structure is compatible to
arrays but automates the specification of domain borders and sample spacings.

0.2 Summary of each chapter

This document sheds new light on functions and algorithms on the domain of
functions. We briefly sketch the main result of each chapter.

Chapter 1 The first chapter defines the multiscale function as a computa-
tional representation of real functions of the continuous domain. Between the
discrete function set B(Rm) and the real set R

n → R
m there exists some sort

of isomorphism that makes it possible to evaluate functional operators in either
space. B(Rm) ∼=

⋃

n∈N

R
n → R

m (0.2)

In the context of multiscale calculus a rich set of functional operators are de-
rived. These operators are defined by discrete properties and approximate the
results from continuous calculus. A major design goal is also the possibility for
straight forward computer implementation.

Chapter 2 The notation of functional operators can be used to describe the
quantitative implications of action sequences and trading strategies. Despite
the complex definition of some operators we can use them in a plain sequence
to describe the flow of activities.

· · ·A1Θ
∆tA2Θ

∆tA3 · · · (0.3)

Assume A1 · · ·A3 to be activities that finish in instantaneous time and Θ∆t to
be an operator that waits a time step ∆t. The flow of activities is denoted by
the chronological order of the operators.

4



0.3 Operator index

︸ ︷︷ ︸
∆t

-

A1 A2 A3 time

︸ ︷︷ ︸
∆t

Chapter 3 Chapter three focuses on the time step operator Θ. This operator
is part of the explicit operator notation in chapter 2, but was not defined as
discrete operator in chapter 1.

Θ∆tf(x) = E
(
f(Xt+∆t)|Xt = x

)
(0.4)

Obviously, the operator depends on the stochastic process for X. Several com-
mon processes for stock prices and interest rates can be expressed in terms of
a shift and a blur operator, T and B, that do have a multiscale equivalent.

Chapter 4 The final chapter puts everything into practice and shows how to
apply it to a simple problem in quantitative finance. With the operators it is
very easy to switch between algebraic and numeric solutions, derive algebraic
properties and preprocess numeric evaluations. Also the implementation of
adaptivity is just straight forward, once all the operators from chapter 2 are
implemented.

0.3 Operator index

This document introduces functional operators for economic effects and for
numeric evaluation strategies. The table below briefly indicates the behavior of
each operator.

Operator Interpretation Chapter

Π Economic investment strategy 2, 4
Θ A time step modeled by a stochastic process 2, 3, 4
T Transfer of goods or assets. 1, 2

Like T with constant exponent.
T Continuous drift. Solves the transport equation 3, 4
B Convolution with normal distribution. 1, 2, 4

Like B with constant exponent
B Random noise added to a variable. Solves the 3, 4

heat equation
L Lévy distributed noise. Solves a convolution 2

A

B
Piecewise function. Random events or options 1, 2, 3, 4

S Invert a function on the unit interval 1
∆ Discrete differential 1∫
·∆x Discrete integration 1, 4

P Interpolation of data 1
A Adaptive interpolation 1, 4
⊞ Sparse grid interpolation for high dimensions 1, 4

T Discrete translation operator 1
Z Discrete dilatation operator 1, 4A Evaluation operator, insert values 1, 2, 3, 4

5



1 Multiscale Calculus

Calculus has been developed as the premier method to denote phys-
ical and economic processes. For a long time the analytic approach
presented the only viable method to find the solutions of variational
problems. As calculations became more complex and computational
resources allowed increasingly accurate approximations, the key role
of calculus has shifted to preprocessing and outlining numerical com-
putations. Multiscale calculus provides a discrete extension to calcu-
lus such that algorithmic and numerical concepts can be expressed.
The suggested calculus is based on three operators for translation, di-
latation and evaluation. It thereby combines the concepts of lambda
calculus and multiresolution analysis to achieve a computational rep-
resentation of mathematical functions on continuous domains. Since
the concept can be implemented directly in various programming lan-
guages it serves as a general data type for numerical functions upon
which functional operators can be implemented. Thus, it provides a
unified interface to computer algebra systems and numerical packages.

1.0 Introduction

Calculus is heavily based on the concept of functions and their algebraic trans-
formations. Computational difficulties arise with the numerous mathematical
operators that require function evaluations at infinitely many positions. In-
tegration and differentiation are examples. If no closed-form solution can be
found, many different techniques exist to estimate the result based on a finite
selection of evaluations. This computational inconsistency always appears when
limits prevent the formula to reduce to a finite set of operations.

The discretization of continuous functions can be solved by a variety of in-
compatible algorithmic concepts. Computer algebra systems imitate a math-
ematician’s work with pencil and paper. They can get quite far in deriving
and simplifying mathematical operations. Although results can be short and
exact, you will easily drop out of the class of representable objects as soon as no
closed-form solution is available. The next common representation is an array
of discrete function samples. Highly optimized algorithms work on this kind
of data structure, since all linear operators are expressed as matrix multiplica-
tions. Serious drawbacks of plain arrays are the ”curse of dimension” and the
lack of adaptivity. More sophisticated techniques involve basis functions such as
b-splines or wavelets. These can occur in adaptive resolutions and in arbitrary
arrangements in higher dimensions. Although wavelets have ideal algorithmic
properties, it is extremely difficult to synthesize complex operators. Another
concept of a mathematical function is the function type in programming lan-
guages. As they have to be defined entirely in program code, they lack the
flexibility to represent arbitrary functions at run time.

6



1.1 Multiscale functions

1.1 Multiscale functions

A multiscale function is a scale dependent representation of a mathematical
function. It is based on three important achievements in computer science:
multiresolution analysis, lambda calculus and object oriented programming.
Wavelets are a very efficient discretization of mathematical functions on con-
tinuous domains. Real valued functions can be expressed by a discrete set of
multiresolution coefficients, which are identified by integer translation and di-
latation parameters. Lambda calculus provides a computational notation for
the function type as used by computer algebra systems. Lambda terms are as
flexible as normal data and behave like functions when evaluated. The object
oriented programming paradigm was most successful in unifying the interfaces
to several data structures and algorithms. One common implementation inter-
face can provide access to all analytic functions.

Set of multiscale functions The set of multiscale functions over the range
type V will be written by the symbol B(V ). We will first analyze some ba-
sic properties of the set and its elements and then present the mathematical
procedure for transforming mathematical functions into multiscale functions
including their representation in program code. The set of multiscale functionsB(V ) will be shown to be in some sense isomorph to the set of functions that
map the continuous domain R

n onto range V . The equivalent function set
R

n → V spans all finite but arbitrary dimensional functions including extended
functions such as the delta function and differential forms.B(V ) ∼=

( ⋃
n∈N

R
n → V

)

︸ ︷︷ ︸
set of

multiscale
functions

︸ ︷︷ ︸
set of real
functions

(1.1)

1.1.1 Axioms

The entire multiscale calculus is based on basic algebra and can in most parts
be applied and understood without explicit reference to continuous calculus.
In analogy to the definition of vector spaces we define the space of multiscale
functions as a five-tuple, that consists of a set of V valued multiscale functions
M , an underlying vector space V , the evaluation operator A and two vectors
of directed translation and dilatation operators T and Z.B(V ) = (M,V,A,T,Z) (1.2)

Just as in vector spaces we define the members of the function space by the
membership of the function set M .

f ∈B(V ) ⇔ f ∈ M (1.3)

The operators A, T and Z are called evaluation, translation and dilatation
operator respectively. The latter may also be refered to as zoom operator.

7



1 Multiscale Calculus

Their domain is as follows. A maps elements from the function space into the
underlying vector space V . T and Z are vectors of countable dimensionality
with each component an operator, that maps one function on another function,
according to shortly defined rules. Each component in the operator vector refers
to another direction. A : B(V ) → V (1.4)

T :
(B(V ) →B(V )

)N

Z :
(B(V ) →B(V )

)N

For B(V) to be a valid set of functions it must further fulfill several constraints
on the behavior of the operators.

Axiom 1: Scaling condition The scaling condition defines the relationship
between applications of a translation operator and a zoom operator acting in
the same direction i.

∀i ∈ N : Zi Ti = T
2
i Zi (1.5)

This definition actually implies a dilatation by a factor of two. One step on the
coarse resolution is equivalent to two steps on the refined resolution.

Axiom 2: Commutativity All operators Ti and Zj commute, unless the scaling
condition holds.

Ti Tj = Tj Ti (1.6)

Zi Zj = Zj Zi

Ti Zj = Zj Ti ∀i 6= j

Given these two rules any operator term consisting of translations and dilata-
tions can be transformed into a standard form. All translations, ordered by
index are placed left. Dilatations are placed right. The combination operator is
then fully determined by the number of translations and the number of zooms
in each direction.

Axiom 3: Invertible translation Each translation operator must have an in-
verse, such that each direction can be traveled back and forth.

∀i ∈ N : ∃T
−1
i : T

−1
i Ti = TiT

−1
i = Id (1.7)

Axiom 4: Convergence A further restriction to multiscale functions is their
convergence to real functions. Defined by the operator Ψ⋆ the following limit
function Ψ⋆f(x) must exist for every x and every dimensionality m.

Ψ⋆f(x) = lim
n→∞

A m⊙

i=1

(
T
⌊2nxi⌋
i Z

n
i

)
f ∀x ∈ R

m,m ∈ N (1.8)

= lim
n→∞

A(T⌊2nx1⌋
1 Z

n
1

) (
T
⌊2nx2⌋
2 Z

n
2

)
· · ·
(
T
⌊2nxm⌋
m Z

n
m

)
f
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1.1 Multiscale functions

Having defined a multiscale function we can convert it into the equivalent real
function through well defined application of the multiscale operators. The func-
tion Ψ⋆ maps the set of multiscale functions onto the set of real functions.

Ψ⋆ :B(R) → (Rm → R) (1.9)

A multiscale function f is turned into the real function Ψ⋆f by limiting the
number of zoom operators Z to infinity. After n dilatations the translation
requires 2n steps times the original coordinate x to reach the desired position
where the function can be evaluated with A.

Congruence of real and multiscale functions Two functions will be called
congruent if they fall within one equivalence class of the real representation.
Real functions are represented in multiscale analysis only by a countable num-
ber of coefficients and are thereby confined to the space of square integrable
functions L 2 [JS93]. Thus we consider functions as congruent if their repre-
sentation difference has zero mass with respect to the 2-norm.
Let f ∈B(V ) and g ∈ (Rn → V ), then

f ∼= g ⇔ ‖(Ψ⋆f) − g‖2 = 0. (1.10)

1.1.2 From real functions to multiscale functions

The transformation of a function on the real domain into a multiscale function
is performed according to a wavelet decomposition into scaling coefficients. We
need to define a function Ψ that maps a real function onto a multiscale function,
inverting the effect of Ψ⋆.

Ψ : (Rn → R) →B(R) (1.11)

The first step is to define the five tuple according to (1.2). The set M of
multiscale functions is the set of continuous functions. A more general function
set could be defined, but continuous functions are sufficient for our needs.

M = C0(Rn→R) (1.12)

Access to function values is only granted through the multiscale operators A,
T and Z. B(R) =

(
Mφ, R,A,T,Z

)
(1.13)

For the definition of the multiscale operators we need some sort of mother
scaling function φ, that has unit mass and compact support. We will not rely
on other typical properties of scaling functions, but with further restrictions to
φ standard wavelet decomposition could be obtained.

∫

RN

φ(x)dx = 1 (1.14)

Based on the mother scaling function we can define the effect of all three op-
erators and thus determine the multiscale function uniquely. The evaluation

9



1 Multiscale Calculus

operator A is defined as the value of the inner product of a function f with
the mother scaling function φ. The translation operator Ti maps the multi-
scale function f onto a new function that is shifted by one unit in direction
i. The dilatation operator Z yields a function that is scaled in direction i, by
substracting half of the i-th component.A f = < f, φ > (1.15)

Tif = x → f (x + ei)

Zif = x → f

(
x − 1

2
xiei

)

Wheras the vector ei is the i-th unit vector.

Checking the validity The multiscale function defined by (1.15) is valid, since
it does not contradict any of our axioms. The proof for the correctness of the
operator definitions is pretty straight forward. The four axioms are one by one
shown to hold. First we test the scaling condition.

ZiTif = Zi [x → f(x + ei)] (1.16)

= x → f(x + ei − 1/2xiei)

= x → f(x + 2ei − 1/2ei(xi + 2))

= T
2
i [x → f(x − 1/2xiei)]

= T
2
i Zif

The commutativity rules hold.

TiTjf = x → f(x + ei + ej) = TjTif (1.17)

ZiZjf = x → f(x − 1
2xiei − 1

2xjej) = ZjZif (1.18)

TiZjf = x → f(x + ei − 1
2xjej)) = ZjTif (1.19)

The inverse of the translation operator T
−1
i subtracts the vector that was added

by Ti. There is no alternative solution for this inversion.

T
−1
i f = x → f(x − ei) (1.20)

The proofs have so far been independent of the definition of A. The evaluation
operator will develop its crucial role when returning from a multiscale functions
back to the equivalent real functions.

Recovering the equivalent real function

We will show that the operator Ψ forms a correct isomorphism between real
functions and multiscale functions. A real function g must be reobtained after
a conversion into a multiscale function Ψg.

10



1.2 Computer implementation

Lemma: The term Ψ⋆Ψf revoveres the orginal function f ∈ (Rn → V ), if f
is Riemann integrable.

Ψ⋆ (Ψf)∼=f for f ∈ (Rn → R) (1.21)

We can write the function y → f(y) for Ψf according to (1.15) and use definition
(1.8) for Ψ⋆.

(Ψ⋆Ψf) (x) = lim
n→∞

A m⊙

i=1

(
T
⌊2nxi⌋
i Z

n
i

)
(y → f(y)) (1.22)

= lim
n→∞

A( m⊙

i=1

T
⌊2nxi⌋
i

)
(
y → f(2−ny)

)

= lim
n→∞

〈
y → f

(
2−ny +

m∑

i=1

⌊2nxi⌋
2n

ei

)
, φ(y)

〉

Lebesgue
=

〈
lim

n→∞
f

(
2−ny +

m∑

i=1

⌊2nxi⌋
2n

ei

)
, φ(y)

〉

The result is an inner product of a function f that is stretched infinitely wide
by the factor 2−n and shifted by x. If the function f is continuous in x this
results in f(x) since φ has unit mass and compact support.

∃f ′(x)
= 〈f(x), φ(y)〉 = f(x) (1.23)

If function f is Riemann integrable then there can only be countable many
discontinuities and the multiscale function is L 2 equal to f(x). We proved that
any φ-Riemann-integrable function can be represented as multiscale function.
In compliance with our initial claim (1.1) a multiscale function f does not
change in the 2-norm after transformation into a real function Ψ⋆f .

1.2 Computer implementation

This section shows the computer implementation of a multiscale function in
various programming languages. The resulting software truly represents a real
function and behaves according to analytic results of calculus. The programing
interface to multiscale functions will be called Dadim1. The data structure for
the multiscale function is a direct translation of the three multiscale operators
into algorithmic procedures, that comply to the multiscale axioms and allow
the definition of algebraic operations.

1.2.1 Java

In the object oriented world of Java, Dadim is an interface. It offers three
methods that can be combined to access function results. The value returned
by da() can be any object of the underlying range type, typically Double or

1da = Chinese for big, dim = short for dimension

11



1 Multiscale Calculus

Boolean. The trans method translates the multiscale function by an integer
length into any direction. It works in place, i.e. without instantiating new
objects, to avoid time consuming copying of data structures. The zoom method
returns a dilated copy of the Dadim. It is called less frequently and returns a
new object, that can be translated independently from the original Dadim.

// Licensed under the Gnu Public License

public interface Dadim {

public Object da();

public void trans(int dir, int length);

public Dadim zoom(int dir);

}

A Dadim object is not necessarily Cloneable. The preferred way to create
equivalent copies of a Dadim is to use a multiplexer (see 1.6.2), that simulates
multiple instances of a Dadim by translating to each position as requested.

Constant Possibly the most trivial, but also, the most commonly used Dadim
is the constant Dadim. The Java class DadimConstant encodes the constant
function.

new DadimConstant(c) ∼= x → c (1.24)

The class definition DadimConstant implements the three methods for the con-
stant function. Every call to the method da returns a constant value. Transla-
tions are ignored. Dilatations return a self reference.

// constant value Dadim

public class DadimConstant implements Dadim {

Object value;

public DadimConstant(Object value) {

this.value= value;

}

public Object da() {

return value;

}

public void trans(int dir, int len) {

}

public Dadim zoom(int dir) {

return this;

}

}

1.2.2 C++

The syntax of the C++ implementation is similar to Java, due to the close
relationship of both languages. Dadim in C++ is a class with three abstract
methods for evaluation, translation and dilatation. A virtual destructor ˜Dadim
has to be defined explicitly as one of the peculiarities of C++. A small but

12



1.2 Computer implementation

decisive difference between C++ and Java is the availability of template defini-
tions. In C++ we can define the template class V as the range of the multiscale
function.

// Licensed under the Gnu Public License

template<class V>

class Dadim {

public:

virtual ~Dadim() {};

virtual V da() = 0;

virtual void trans(int dir, int length) = 0;

virtual Dadim<V>* zoom(int dir) = 0;

}

Every Dadim in C++ has its value type V defined at compile time. The standard
Dadim type for numerical applications, called DDadim, is a pointer on a double
typed Dadim.

typdef Dadim<double>* DDadim;

Variable Probably the second most important multiscale function, after the
constant, is implemented in the DadimVariable. This function is proportional
to the distance from the origin and thus counts the number of translations
in a certain direction. According to our isomorphism (1.8) the C++ class
DadimVariable encodes a linear function in one component. When the se-
quence of Z operators is applied according to the definition of Ψ⋆ this multiscale
function converges to a linear function on the continuous domain.

new DadimVariable(i) ∼= x → xi (1.25)

The class definition of DadimVariable has three member variables, a direction
index, the current position and the current resolution. Every translation in
the variable direction updates the position according to the length and the
resolution. With every dilatation in the variable’s direction the resolution is
divided by two.

class DadimVariable : public Dadim<double> {

int mydir;

double pos, res;

public:

DadimVariable(int dir, double pos=0.0, double res=1.0)

: mydir(dir), pos(pos), res(res) {

}

double da () {

return pos;

}

void trans(int dir, int length) {

if (dir == mydir)

pos += res * length;

13
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Figure 4: Plotting different multiscale functions against the x variable. On the
y-axis there is a constant, a variable and a shifted variable. Operator indices
are omitted in this one dimensional example.

}

DDadim zoom(int dir) {

return

new DadimVariable(mydir, pos, dir==mydir? 0.5*res: res);

}

}

In order to extract the function values of a multiscale function we either define
the computer program print or use the multiscale operators. Both approaches
are equivalent.

print(f, i, N) ≡
(AT

n
i f
)
n=0..N−1

(1.26)

The C++ program that prints the sequence of function values alternates eval-
uations with A and translations in direction index.

void print(DDadim dadim, int index, int N) {

for (int x=0; x<N; ++x) {

cout << dadim->da() << endl;

dadim->trans(index, 1);

}

}

A small table compares the notation in multiscale calculus, C++ and the re-
sulting output. The variables xi are used synonymously to the function x → xi.

Calculus Code Result

(AT
n
0x0

)
n=0..4

print(new DadimVariable(0), 0, 5) 0, 1, 2, 3, 4

(AT
n
1x2

)
n=0..4

print(new DadimVariable(2), 1, 5) 0, 0, 0, 0, 0

(AT
n
0Z0x0

)
n=0..6

print(new DadimVariable(0) 0, 0.5, 1, 1.5,

->zoom(0), 0, 7) 2, 2.5, 3

Figure 4 visualizes the constant and the linear function graphically.
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1.2 Computer implementation

1.2.3 Maple

Maple is a computer algebra system that supports symbolic and numerical com-
putations. Maple has a powerful programing language that allows procedural
and functional styles. The Dadim concept can be expressed in functional and
in object oriented, but not in procedural languages. Therefore the functional
approach is chosen. Since Maple is an untyped language it is impossible to
define a Dadim type. Instead, we define the three multiscale operators for a
triplet containing a value, a translation rule and a dilatation rule.

# Licensed under the Gnu Public License

da:=(dadim)-> dadim[1];

trans:=(dir, len, dadim)-> dadim[2](dir, len);

zoom:=(dir, dadim)-> dadim[3](dir);

Constant The concept of the triplet is best explained with an example func-
tion. We define the function cons that maps a value onto a constant multiscale
function with that value. The first component of the Dadim triplet is simply the
value. The second component is a function that maps a translation direction
and length onto the translated function, here the same constant. Obviously,
this self reference can only be processed by lazy evaluation, since a complete
expansion of this expression would run into an infinite loop. The same applies
for the dilatation rule, where the only argument is the direction index.

cons:=c->[c, (dir, len) -> cons(c), (dir) -> cons(c)];

This computer code is the close interpretation of the multiscale operators for
the constant (x → c). Each entry of the triplet refers to the evaluation rule of
one operator.

Code Calculus

cons:=c-> [ c, A (x → c) = c
(dir, len) -> cons(c), T

n
j (x → c) = (x → c)

(dir) -> cons(c) ]; Zj(x → c) = (x → c)

Obviously the constant value c is always returned from the constant function.
It is the first component of the Dadim triplet.

> da(cons(5));

5

Multiscale functions can have other than numeric range, as this famous example
shows.

> da(trans(0,1,cons("Hallo World")));

Hallo World

Of coarse we can shift and zoom this function in each direction and always
retain the same constant.
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1 Multiscale Calculus

Variable We have seen an implementation of the variable as a slightly more
exciting example function in the C++ section. Now, we write a functional
program for the univariate linear function. For every dimension i we consider
the variable xi. Functions of type x → xi are inserted for definition of the
multiscale operators (1.15) and we get a recursive definition for the multiscale
variable xi. The initial value (Axi) of zero could have been chosen differently,
but with the application of Z’s converges to zero anyway (Ψ⋆xi(0) = 0).A xi = 0 (1.27)

Tjxi =

{
xi + 1 for i = j
xi for i 6= j

Zjxi =

{
1
2xi for i = j
xi for i 6= j

This recursive definition of the multiscale operators implies the recursive com-
puter code x(i) for the variable. The Dadim triplet consists of the value zero,
a dilatation rule that adds a constant one per shift length and a dilatation rule
that divides the variable by two.

x:=(i)->[

0,

(dir,len)->

piecewise(dir=i,

x(i) + cons(len),

x(i)),

(dir)->

piecewise(dir=i,

x(i) / 2,

x(i))

];

Some example runs of this code show the concept in practice.

Calculus Code ResultAT0 x0 da(trans(0,1,x(0))); 1AT
2
1 x3 da(trans(1,2,x(3))); 0AT
3
0 Z0 x0 da(trans(0,3,zoom(0,x(0)))); 3/2

Nested functions A crucial feature of functional calculus is the ability to
nest functions, i.e. to insert functional results as arguments of other functions.
Assume F to be a function with n arguments and f1 to fn multiscale functions.

F ∈ V n → V ∧ f1, · · · , fn ∈B(V ) ⇒ F (f1, · · · , fn) ∈B(V ) (1.28)

The multiscale functions fi can be inserted as arguments of function F , whereas
the whole term turns into a new multiscale function defined by below multiscale
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1.2 Computer implementation

operators. A F (f1, · · · fn) = F (Af1, · · · ,Afn) (1.29)

TiF (f1, · · · fn) = F (Tif1, · · · ,Tifn)

ZiF (f1, · · · fn) = F (Zif1, · · · ,Zifn)

This function nesting can be implemented by a Maple function nested that
takes a list of arguments arg and a function F .

nested:=(arg,F)->[

F(map(da, arg)),

(dir,len)->nested(map(a->trans(dir, len,a), arg),F),

(dir)->nested(map(a->zoom(dir,a), arg), F)];

With nested all explicit functions are representable as computer algorithms.
Crucial for more sophisticated functions is the pointwise product of two Dadim
functions. We define the functions mult and div for the basic arithmetic oper-
ations.

> mult:=(dadim1,dadim2)->nested([dadim1, dadim2], x->x[1]*x[2]);

div:= (dadim1,dadim2)->nested([dadim1, dadim2], x->x[1]/x[2]);

For + and − the equivalent definition is implicitly assumed by Maple.

Example: The multiplication of the constant functions 3 and 4, for instance
evaluates to 12. This example might seem trivial but will reappear in advanced
formulas.A(3 × 4) = A3 ×A4 = 12

> da(mult(cons(3),cons(4)));

12

1.2.4 Other languages

The Dadim Api can be implemented in all object oriented and all functional lan-
guages. Functional languages have their main advantage in the briefness of the
code and the similarity to mathematical calculus. For efficient implementation
the OOP approach is preferable.

Haskell Haskell is a strictly typed functional language. The data type Dadim
is defined over an underlying range type a. The three multiscale operators da,
trans and zoom work on the the Dadim triple consisting of a value, a translation
rule and a dilatation rule.
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1 Multiscale Calculus

-- Licensed under the Gnu Public License

data Dadim a = DadimTriple (a)

(Int -> Int -> Dadim a)

(Int -> Dadim a)

da :: Dadim a -> a

da (DadimTriple e t z) = e

trans :: Int -> Int -> Dadim a -> Dadim a

trans d l (DadimTriple e t z) = t d l

zoom :: Int -> Dadim a -> Dadim a

zoom d (DadimTriple e t z) = z d

The obligatory constant function is implemented as function cons and maps
value of type a into a multiscale function over type a.

cons :: a -> Dadim a

cons c = DadimTriple c (\dir len -> cons c) (\dir -> cons c)

In the usual procedure the constant hello world function can be generated.

> da (cons "Hallo World")

“Hallo World”

Lisp Lisp is an untyped functional language with long standing history. The
Dadim type is implicitly defined through the three multiscale operators. A valid
Dadim triple consists of a value, a rule for translation and a rule for dilatation.
Corresponding components are extracted by each operator and then supplied
with the required arguments.

;; Licensed under the Gnu Public License

(defun da (dadim) (nth 0 dadim))

(defun trans (dir length dadim)

(apply (nth 1 dadim) ’(dir length)))

(defun zoom (dir dadim) (apply (nth 2 dadim) ’(dir)))

1.3 Basic calculus

The foundation of calculus is the concept of two complementary operations.
The differentiation computes the slope of a function. The integration computes
a function from its slope. Both, calculus and multiscale calculus are based on
the differential and integral operation to express the variety of mathematical
and physical concepts.
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1.3 Basic calculus

1.3.1 Differential

The differential operator ∆ measures the change of a multiscale function when
moved by one unit into the differentiated direction. Since the resolution of the
translation operator is halved with every dilatation, the operator ∆ converges
towards zero, when applied to a continuous function.

For the definition of multiscale functions it is sufficient to define the results of
the three multiscale operators, since they provide the only method to access the
function’s values. Thus a function is uniquely defined by a triplet containing
the value, a translation rule and a dilatation rule. For operators, i.e. functions
of multiscale functions, we need to specify how the three multiscale operators
are evaluated after the functional operator (here ∆i) is applied.A ∆i = ATi −A (1.30)

Tj∆i = ∆iTj

Zj∆i = ∆iZj

The implementation of the differential operator ∆i in a functional language is
straight forward. The function Delta takes two arguments, a direction index i

and the operand dadim.

Delta:=(i,dadim) -> [

da(trans(i,1,dadim)) - da(dadim),

(dir, len) -> Delta(i,trans(dir,len,dadim)),

(dir) -> Delta(i,zoom(dir,dadim))

];

Derivative

The classical derivative is computed as the ratio of two differentials. We will use
the following notation to resemble the discrete form of the derivative operator.
Some indices are omitted to increase readability.

∆

∆xi
f :=

∆if

∆ixi
(1.31)

Figure 5 shows an example of a parabola’s first and second derivative. The
slope needs some zooms to converge to its analytic result of 2x − 2.

Lemma: The optical similarity of the real and the discrete differential opera-
tors are justified by an L 2 equivalence of both operations.

∆

∆xi

∼= d

dxi
(1.32)

Proof: The correctness of the differential operator is verified by applying it
to a multiscale function f . The result is turned into a real function with Ψ⋆
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Figure 5: First and second derivative of the parabola f = x2−2x. With every
application of the zoom operator the discrete derivative converges towards the
real result.

and evaluated at coordinate x. This results to the same value as the analytical
derivative of Ψ⋆f , provided this derivative exists and is continuous.

Ψ⋆

(
∆

∆x
f

)
(x) = lim

n→∞
AT

⌊2nx⌋
Z

n ∆f

∆x
(1.33)

= lim
n→∞

A∆T
⌊2nx⌋

Z
nfA∆T⌊2nx⌋Znx

= lim
n→∞

AΨ⋆f(y 7→ 2−n(y + 1) + x) − Ψ⋆f(y 7→ 2−ny + x)

2−n

= lim
n→∞

Ψ⋆f(2−n + x) − Ψ⋆f(x)

2−n

=
d

dx
Ψ⋆f(x)

Derivative rules

A decisive advantage of real over discrete calculus is the existence of nicer
derivative rules. Whereas discrete calculus always produces terms that can be
evaluated numerically. One rule that holds in real and in multiscale calculus is
the linearity of the derivative. Equation (1.35) shows that the product rule for
the discrete case has just one additional term.

Lemma: Let f, g ∈B(V )

∆i(f + g) = ∆if + ∆ig (1.34)

∆ifg = f ∆ig + g ∆if + (∆if) (∆ig) (1.35)

Proof: The proof for the product rule is the only thing that might raise some
difficulties. The T and the Z operators act on ∆ as if it was the identity
operator. So we have to prove the correctness only for the evaluation operator
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1.3 Basic calculusA. A∆(fg) = AT(fg) −A(fg) (1.36)

= A(Tf)(Tg) −A(fg)

= A(fTg − fg) +A(gTf − fg) +A(Tf − f)(Tg − g)

= Ag∆f +Af∆g +A(∆f)(∆g)

The detailed procedure of proofs in multiscale calculus based on complete in-
duction and extensionality will be explained in section 1.3.3.

Delta function

The delta function is an important function in physics and applied mathematics.
It is defined mathematically as a Dirac sequence and has the indicator function
1x>0 as integral. Since we deal exclusively with function sequences in multiscale
calculus, the delta function can be directly written as a derivative.

δ(x) =
∆

∆x
1x>0 (1.37)

For the implementation of the indicator function we rely on the definition for
nested functions (1.29) and define a piecewise function that selects between two
values based on a test function that is either greater or lower than zero. The
function ifgz is slightly more general than needed at this point, but we will
reuse this function later.

ifgz(f0, f1, f2) ∼=
f0>

0

f0≤0

f1

f2

(1.38)

ifgz:= (test, dadim1, dadim2) ->

nested([test,dadim1,dadim2],

x -> if x[1]>0 then x[2] else x[3] end if);

Now we can implement the delta function as the quotient of differentials ac-
cording to (1.37).

> delta:= i-> div(Delta(i,ifgz(x(i),cons(1),cons(0))),

Delta(i,x(i)));

The delta function does not converge to one specific value. As we increase the
computational precision in figure 6 the peak gets higher and thinner. Its mass
always stays one.

1.3.2 Integral

The integral reverts the effect of the differentiation and computes the area
bordered by a function. We will derive the integral operator in two steps. First,
we only compute the integral of a function over a unit interval, also known as
Haar scaling coefficient. Then we add multiple unit length integrals to gain an
integral over an arbitrary interval.
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Figure 6: The delta function is the derivative of a discontinuous step function.
It is represented in multiscale calculus as a discrete Dirac sequence.

Haar integration

The operator H is defined by a numerical scheme that is borrowed from the
wavelet transformation. An application of the dilatation operator refines the
transformed function and performs a decomposition into scaling coefficients on
the next coarser level. After one application the Z operator yields a sum over
two points. With multiple dilatations, the operator H turns into a summation
of all points on a finite interval.A Hi = A (1.39)

TjHi = HiTj ∀i, j

ZjHi =

{
HiZi + HiTiZi for i = j
HiZj for i 6= j

The operator does not normalize the mass of the integral and can only be
applied to something that is proportional to the resolution ∆x. The computer
code for the Haar integration is straight forward.

haar:=(i,dadim)->[

da(dadim),

(dir, len) ->

haar(i, trans(dir,len, dadim)),

(dir) ->

piecewise(dir=i,

haar(i,zoom(dir,dadim) + trans(i,1, zoom(dir, dadim,dir))),

haar(i,zoom(dir,dadim)))

];

Lemma: The H operator computes the integral over the unit interval. When
applied to a multiscale function f , it changes the sequence generated by suc-
cesive applications of the dilatation operator Z, such that the new sequence
converges to Ψ⋆Hf which is the integral over Ψ⋆f . This concept is expressed in
continuous calculus, after the introduction of a temporary variable x′i and the
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1.3 Basic calculus

specification of the integration border.

Hi (f∆xi) ∼=
∫ xi+1

xi

Ψ⋆f |xi=x′

i
dx′i (1.40)

Proof: This proof is again focused on the univariate case. Thus, all the indices
to T and Z can be omitted. The transformation of a multiscale function into
a function on continuous domain Ψ⋆ is defined via a limitation to an infinite
application of Z (1.8). With each dilatation the sum is refined and converges
to the integral over Ψ⋆f .

Ψ⋆Hf∆x = lim
n→∞

AT
⌊2nx⌋

Z
nH(f∆x) (1.41)

(1.39)
= lim

n→∞
AT

⌊2nx⌋
Z

n−1 (HZ(f∆x) + HTZ(f∆x))

...
(1.5)
= lim

n→∞
AT

⌊2nx⌋ (HZ
nf + HTZ

nf + · · · + HT
2n−1

Z
nf
)
∆x

(1.39)
= lim

n→∞
A 2n−1∑

i=0

T
⌊2nx⌋+i

Z
n(f∆x)

= lim
n→∞

2n−1∑

i=0

1

2n
Ψ⋆f(x +

i

2n
)

=

∫ x+1

x
Ψ⋆f(x′)dx′

Integral operator

The discrete integral operator
∫

can now be defined as a sum of Haar integra-
tions. The integral starts with the initial value 0 and is increased by the area
over a unit interval (Hi), when translated by one unit with Ti.A ∫

i
= 0 (1.42)

Tj

∫

i
=

{
Hi +

∫
i for i = j∫

i Tj for i 6= j

Zj

∫

i
=

∫

i
Zj ∀i, j

Lemma: In compliance with axiom three, the T operator has an uniquely
defined inverse for integral terms.

T
−1
∫

=
∫

−T
−1H (1.43)

Proof: What makes the integral definition more complex than previous op-
erators is the non trivial verification of this axiom. The interesting case only
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occurs when the direction indices of the T and
∫

match. The proof therefore
has univariate form.

T
−1

T
∫

=
∫

⇔ (1.44)

T
−1
(∫

+H
)

=
∫

⇔
T
−1
∫

+T
−1H =

∫
⇔

T
−1
∫

=
∫

−T
−1H

Implementation The implementation of the integral operator needs to dis-
tinguish between forward and backward shifts. Either the translation rule for
T

+1 (1.42) is applied or the derived rule for negative translation with length
−1 (1.43). Furthermore, it is not possible to compute the effect of multiple
applications of Ts in one step. The result of T

n
∫

must be evaluated by n times
iterated application of T.

integ:=(i,dadim)->[

0,

(dir, len)->

piecewise(dir=i,

piecewise(

len>0, trans(dir,len-1,

integ(i,dadim) + haar(i,dadim)),

len<0, trans(dir, len+1,

integ(i,dadim) -

trans(dir,-1, haar(i,dadim))),

len=0, integ(i,dadim)),

integ(i,trans(dir,len,dadim))),

(dir) ->

integ(i,zoom(dir,dadim))

];

The definite integral

We will use the following notation to resemble the discrete form of the contin-
uous integral. The integrand function f is multiplied with the resolution ∆x
when integrated with the

∫
operator.

∫
f∆xi :=

∫

i
(f∆ixi) (1.45)

The definite integral over a certain interval is computed by first shifting the
function f to the beginning of the interval, then applying the

∫
operator and

finally shifting everything to the interval’s end.

∫ b

a
f ∆xi := T

b−a
i

∫
(Ta

i f)∆xi (1.46)
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1.3 Basic calculus

Lemma: The relationship between the discrete and the continuous definite
integral is as expected, with the only difference, that the integration variable
(here xi) is bounded outside the integral.

∫ b

a
f∆xi

∼=
∫ xi+b

a
f |xi=x′

i
dx′i (1.47)

However, if the variable xi is not used or, in particular, not shifted with a Ti

operator, then xi valuates to zero, according to (1.27).

Proof: The proof relies on the congruency of discrete and continuous integral,
as it will be shown in (1.55),

∫
f∆xi

∼= (
∫ xi

0 f |xi=x′

i
dx′i).

∫ b

a
(Ψf)∆xi = T

b−a
i

∫
T

a
i (x → f(x))∆xi (1.48)

= T
b−a
i

∫
(x → f(x + aei)) ∆xi

(1.55)∼= T
b−a
i

(
x →

∫ xi

0
f(x + aei)

∣∣
xi=x′

i
dx′i

)

= x →
∫ xi+b−a

0
f(x + aei)

∣∣
xi=x′

i
dx′i

= x →
∫ xi+b

a
f(x)

∣∣
xi=x′

i
dx′i

1.3.3 Fundamental theorem of multiscale calculus

The fundamental theorem of calculus states the inverse relationship between
integral and differential. In multiscale calculus this property is even more im-
portant than good approximations to the continuous result. Derived mathe-
matical concepts rely on the exactness of the inversion rather than any other
property of the integral.

Lemma: This first lemma confirms a previously postulated congruence of H
and the integral (1.40).

∆iHi = Ti − Id (1.49)

Proof: By the principle of extensionality we can prove the correctness of our
lemma for all feasible evaluation paths. Since access to multiscale function
is only possible through the three operators, the following combination of A,
T and Z represent all function values. Again, we are only interested in the
univariate problem. All involved operators behave like identity operators in all
other directions.

∀n ∈ Z,m ∈ N0 : AT
n

Z
m∆H = AT

n
Z

m(T − Id) (1.50)

The complete induction over the parameters n and m starts with n = m = 0
and performs induction steps over n and m. The translation length n can be
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1 Multiscale Calculus

negative. Thus the induction step for n must be performed in a positive and a
negative direction.A∆H

= AHT −AH
(1.39)
= ATH −AH
= AT −A = A (T − Id)AT

n±1∆H
(1.30)
= AT

n∆T
±1H

(1.39)
= AT

n∆HT
±1

= AT
n(T − Id)T±1 = AT

n±1(T − Id)AT
nZm+1∆H

(1.30)
= AT

n
Z

m∆ZH
(1.39)
= AT

n
Z

m∆(HZ + HTZ)
= AT

n
Z

m(∆HZ + ∆HTZ)
= AT

n
Z

m(TZ − Z + T
2
Z − TZ)

(1.5)
= AT

n
Z

m(ZT − Z) = AT
n
Z

m+1(T − Id)

(1.51)

Theorem: The fundamental theorem of multiscale calculus states the inversity
of
∫

and ∆. Applying the differential operator ∆ to the integral operator
∫

,
both with matching direction indices, yields the identity.

∆i

∫

i
= Id (1.52)

Proof: The theorem is verified in univariate calculus for all translation and
dilatation paths.

∀n ∈ Z,m ∈ N0 : AT
n

Z
m∆

∫
= AT

n
Z

mId (1.53)

The complete induction starts with n = m = 0 and requires two induction
steps. The first proves the theorem’s correctness for all non zero translations
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1.4 Advanced calculus

and the second for all dilatations.A∆
∫

= AT
∫
−A ∫

(1.42)
= A (H +

∫
) − 0

= AH +A ∫ = AAT
n+1∆

∫ (1.30)
= T

n∆T
∫

= AT
n∆(

∫
+H)

= AT
n(∆

∫
+∆H)

(1.50)
= AT

n(T − Id + Id) = AT
n+1AT

n−1∆
∫ (1.30)

= T
n∆T

−1
∫

(1.43)
= AT

n∆(
∫
−T

−1H)
= AT

n(∆
∫
−T

−1∆H)
(1.50)
= AT

n(Id + T
−1 − Id) = AT

n−1AT
n
Z

m+1∆
∫ (1.30)

= AT
n
Z

m∆Z
∫

(1.42)
= AT

n
Z

m∆
∫

Z = AT
n
Z

m+1

(1.54)

Lemma: Now, the congruency between the discrete and the continuous inte-
gration will be shown. If we apply the discrete integral operator our result is
the integral function of the operand f with zero as the lower integration border.

∫
(Ψf)∆xi

∼=
∫ xi

0
f |xi=x′

i
dx′i (1.55)

Proof: The first part of the proof shows that the integral operator creates
an integral function, based on its inversity to the discrete differential and the
congruency of discrete and continuous differentials.

Ψ⋆f
(1.52)
= Ψ⋆ ∆

∆xi

∫
f∆xi (1.56)

=
d

dxi
Ψ⋆

∫
f∆xi

∫
(Ψ⋆f)dxi = Ψ⋆

∫
f∆xi

The final part of this proof searches for the correct integration border. Given
that the integral function is always zero at the origin, due to (1.42) and (1.8),
zero must be the starting point of the integration.

(
Ψ⋆

∫
f∆xi

)
(0) = 0 ∀f (1.57)

1.4 Advanced calculus

Solving advanced problems in multiscale calculus is already very close to com-
puter programing. Apart from finding a solution and presenting it nicely, we
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1 Multiscale Calculus

might be concerned with convergence properties and efficiency issues. Due to
the equidistant and regular sampling of multiscale functions it is possible to
employ a wide range of existing algorithms. We will investigate the algorithm
of nested intervals and some techniques known from finite differences. Further-
more we will convert the general convolution integral into discrete calculus and
discuss its representation for optimal convergence.

1.4.1 Solver

The discrete samples of a multiscale function are ideally suited for many nu-
merical algorithms. The solver operator S implements the algorithm of nested
intervals to find a function’s zero point. For some argument function f , the
first approximation of the zero point is based on a linear interpolation of f(0)
and f(1). When dilated, the zero point is recursively searched in one of the
subintervals. The presented code is limited in its applicability, but is a powerful
tool when used correctly. The operand to S must be monotonously increasing
and have its zero point between 0 and 1.ASif = − AfA∆if

(1.58)

TjSi = SiTj

ZiSi =
TiZ

i>
0 1

2SiZi

1
2 + 1

2SiTiZi

ZjSi = SiZj for i 6= j

The code is still simple and has infinite room for amendments. Simplicity, on
the other hand, can be an advantage when complexity and convergence have
to be analyzed precisely. The implementation uses the if-greater-zero function
ifgz from (1.38).

solver:= (i, dadim) -> [

-da(dadim)/(da(Delta(i,dadim)))),

(dir,len) ->

solver(i, trans(dir,len,dadim)),

(dir) ->

piecewise(dir=i,

ifgz(trans(i,1,zoom(i,dadim)),

solver(i,zoom(i,dadim))/2,

cons(1/2) + solver(i,trans(i,1,zoom(i,dadim)))/2),

solver(i,zoom(dir,dadim)))

];

Example: On zoom level two the algorithm of nested intervals S computes the
square root of 1/2 with an error of 0.0071.

Z
2 S(x 7→ x2 − 1

2 ) = 0.7

> da(zoom(0,zoom(0,solve(0,mult(x(0),x(0))-cons(1/2)))));
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7

10

The solver operator can be used in combination with the derivative to find local
optima. Section 2.4.2 makes use of the maximization to find optimal investment
parameters within a trading strategy.

Lemma: For a continuous and monotonously increasing function g ∈ (Rn →
R) with g(0) < 0 and g(1) > 0:

g(Ψ⋆SΨg) = 0. (1.59)

Proof: We define a sequence gi of real valued functions with

gi = Ψ⋆
Z

iSΨg. (1.60)

For i = 0 the term g0 is obviously the zeropoint of the line through g at
coordinate 0 and 1, according to (1.58).ASΨg0 = − g0(0)

g0(1) − g0(0)
(1.61)

For later elements of the sequence the zero point is either searched in the
left subinterval [0, 1/2] or in the right [1/2, 1] depending on the evaluation of
g(1/2) = ATZΨg. The selected interval is transformed onto the unit interval
[0, 1] and the search algorithm can be called recursively. The returned zero point
is a relative coordinate on that domain and is transformed back by multiplying
1/2 and adding 1/2 in case of g(1/2) < 0.

Ψgi+1 =

{
1
2SΨgi(

1
2x) for g(1/2) > 0

1
2 + 1

2SΨgi(
1
2x + 1

2) otherwise
(1.62)

1.4.2 Blur operator

The blur operator plays an important role in statistics and physics. Physically
it solves the heat equation over the unit time interval and models the dispersion
of energy under diffusion. Statistically, the operator performs a convolution of
a function with the Gaussian density. Thus we can compute the density of a
random variable after adding normally distributed noise. In section 3.2.2 we will
see this operator as a main ingredient for the synthesis of stochastic models for
economic parameters. The operator Bi performs the convolution in direction i.
In calculus it is easier to define the operator for the variance up to 1/2.

Bi := B
1
2
i B

1
2
i (1.63)

The definition of B is justified by the central limit theorem. On the coarsest
level the operator A evaluates a discretely sampled expected value of a random

29
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variable with variance σ ≤ 1/2. When the resolution is refined the operator has
to be applied four times as often.A Bσ

i = Aσ

2
T
−1
i + (1 − σ)A+

σ

2
AT

1
i (1.64)

TjB
σ
i = Bσ

i Tj

ZjB
σ
i =

{ (
Bσ

i

)4
Zi for i = j

Bσ
i Zj for i 6= j

B
1

2 δ(x)
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Figure 7: The Gaussian bell curve is generated by an application of the blur
operator to the delta function.

Lemma: The application of the B operator is equivalent to a convolution with
the normal distribution.

Bif ∼= 1√
2π

∫ ∞

−∞
e−

u2

2 Ψ⋆f |xi=xi+u du (1.65)

Proof: Consider xi to be a stochastic variable that performs a random jump.
It jumps up to TiZ

n
i xi = Z

n
i xi + 1/2n with probability σ/2, stays where it is

with 1 − σ and drops to T
−1
i Z

n
i xi = Z

n
i xi − 1/2n with a chance of σ/2.

Var = σ/2 × (−1/2n)2 + (1 − σ) × 0 + σ/2 × (1/2n)2 = 2−2nσ (1.66)

Mean = σ/2 × (−1/2n) + (1 − σ) × 0 + σ/2 × (1/2n) = 0

Apparently, on zoom level n the operator Bσ performs a convolution with prob-
ability density with mean 0 and variance 2−2nσ. According to the definition of
ZBσ, this convolution is repeated 4n times.

Var(ZnBσ) = 4nVar(Bσ) = σ (1.67)

Mean(ZnBσ) = 4nMean(Bσ) = 0

Following the central limit theorem, the convolution kernel can only be a normal
distribution with variance σ and mean 0.
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1.4 Advanced calculus

1.4.3 Continuous shift operator

For the solution of the transport equation, also applied in economics for the
transfer of goods, we define a continuous operator T. Section 2.4.1 will use
this operator as a possible activity in a trading strategy. Section 3.2.1 applies
the shift operator to introduce deterministic effects to economic parameters.
The T operator is equivalent to the multiscale operator T, but has an extended
domain for its exponent. The exponent v is an extra argument of multiscale
type v ∈B(R).AT v

i = A (1 − v + ⌊v⌋) T
⌊Av⌋
i +A (v − ⌊v⌋) T

⌈Av⌉
i (1.68)

TjT
v
i = T

Tjv
i Tj

ZjT
v
i =

{
T 2Ziv

i Zi for i = j

T
Zjv

i Zj for i 6= j

Lemma: The continuous shift operator T v
i shifts the argument function f by

v units into direction i. Alternatively we can interpret this operator as an
increase of variable xi by v.

T v
i f ∼= x 7→ Ψ⋆f(x + vei) (1.69)

Proof: The proof is quite simple when focusing on the i direction, where v is
considered constant. The T and the Z operators are defined according to the
multiscale axioms and A evaluates a linear interpolation if Av is not of integer
type.
Let f ∈ R

n → V . We can compute the limit of T vΨf .

(Ψ⋆T vΨf)(x) = lim
n→∞

AT
⌊2nx⌋

Z
nT vΨf (1.70)

(1.68)
= lim

n→∞
AT

⌊2nx⌋T 2nv(y 7→ f(2−ny)

let p ∈ N, q ∈ [0, 1[ and 2nv = p + q

(1.68)
= lim

n→∞
AT p+q(x 7→ f

(
2−n(y + ⌊2nx⌋)

)

(1.68)
= lim

n→∞
(1 − q)f(2−n(⌊2nx⌋ + p)) + qf(2−n(⌊2nx⌋ + p + 1))

= lim
n→∞

f(x + 2−np) = f(x + v)

Multiple examples for this operator will be given in section 2.4.1, where this
operator is put into practice.

Conservation of mass The T operator is often used in physics and economics
to model a transport of energy or matter. Without special care the T operator
changes the functions integral value. In order to avoid this issue we can apply a
sequence of operators. First we integrate the function, then transport the mass
regardless of any losses and finally differentiate the result.

T̃ v
i := ∆i T

v
i

∫

i
(1.71)
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The transformed transport operator T̃ can conserve the operand’s mass pre-
cisely. ∫

i T̃ v
i =

∫
i ∆iT

v
i

∫
i = T v

i

∫
i (1.72)

1.4.4 Convolution

The convolution is a binary operation that combines two functions. Commonly
it is used in statistics to compute the density or the distribution of a random
variable, after a random noise was added. Section 3.1.1 uses convolutions to
express a stochastic model for economic parameters in its most general form.
We assume Φ ∈ C1 to be the noise’s probability distribution, monotone, smooth
and with unit mass, and f to be any φ-integrable function. The usual notation of
the distribution is transformed onto the unit interval, where it can be converted
into discrete calculus.

∫ ∞

−∞
Φ′(u)f(x − u)du =

∫ 1

0
f
(
x + Φ−1(u)

)
du (1.73)

∼=
∫ 1

0
TΦ−1(u)

x f∆u

Example: Figure 8 shows the convolution of the delta function with the Pois-
son density, for which the inverse distribution Φ−1 can be given analytically.

Φ−1(u) = − ln(1 − u) (1.74)

Poisson kernel

0.2

0.4

0.6

0.8

1

0 1 2 3 4
x

0

Figure 8:

Convolution of the Poisson
density with a delta function
on zoom level 5. The mass
is one and the center of mass
converges. The absolute value,
however, varies between zero
and one.

Higher order In the infinitesimal world, there is an exact equivalence of the
convolution integral and its partially integrated version.

∫ 1

0
f(x + Φ−1(u))du =

∫ 1

0

d
du

∫ x+Φ−1(u)
0 f(x′)dx′

d
duΦ−1(u)

du (1.75)

∼=
∫ 1

0

∆uT
Φ−1(u)
x

∫
x f

∆uΦ−1(u)
∆u

This equivalence does not hold in the discrete world, but expresses the same
mathematical idea and converges to the same limit function. Which of the
two versions is to be used can be chosen freely and decided upon preferred
convergence properties.
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Poisson kernel
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Figure 9:

Higher order representation of
the convolution. Where the
delta spikes were before, there
are now only steps.

1.5 Adaptivity

This section will derive a key argument for the implementation of the Dadim
API in numerical applications. One of the most effective acceleration techniques
in computational algorithms is adaptivity. Through sophisticated strategies the
computational effort can be focused on the problem’s most relevant parts, while
smooth areas are accurately evaluated on low resolutions. However, adaptive
algorithms usually require elaborate data structures and, when implemented,
still need some extra tuning in either theoretical consideration or experimen-
tal optimization. Wouldn’t it be nice to have adaptive strategies that can be
applied and tested for a multiscale function just as easily as any differential
operator? This section will derive three adaptivity operators that exactly lead
to this kind of adaptive evaluations.

1.5.1 Interpolation

Before we can turn to the definition of adaptive strategies we need to define
an interpolation method. Suppose a user decides to perform a dilatation to
increase the computational precision. Normally, this command is passed to the
whole multiscale function. What can be done to protect smooth and already
accurate parts from expensive dilatation? The answer is to pretend increased
accuracy by interpolating previous results. In calculus this means to write the
interpolation operator W instead of the dilatation operator Z. When and how
this is performed is part of the adaptive strategy.

The interpolated function is constructed by the two dual operators W and W .
The first operator W evaluates the function on grid points that also existed on
the coarse grid, while its dual W evaluates the new positions. A reasonable guess
for the values on the refined grid at coincident points are the corresponding
values on the coarse grid. The interpolation operator W turns into its dual
operator W when translated.A Wi = A (1.76)

TjWi =

{
W i for i = j
WiTj for i 6= j

ZjWi = WiZj
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For the intermediate grid points we can interpolate their values by a linear com-
bination of surrounding coarse values. If not specified otherwise we can assume
a piecewise linear scheme (h0 = h1 = 1/2). When translated or dilated, the
operator W for intermediate positions turns back into its dual W for coincident
positions. A W i =

K∑

k=−K

hkAT k
i , with

K∑

k=−K

hk = 1 (1.77)

TjW i =

{
WiTi for i = j

W iTj for i 6= j

ZjW i =

{
WiZi for i = j

W iZj for i 6= j

Example The effect of the intpolation W is illustrated by the following exam-
ples. If the interpolated function is translated by an even number, the function
is evaluated with half the number of translations. A dilatation of the operand
f is simulated. For uneven translations, the intermediate point is interpolated
from surrounding evaluations.AT

2n
Z

mWf = AT
n
Z

mf (1.78)AT
2n+1

Z
mWf =

K∑

k=−K

hkAT
n+k

Z
mf

1.5.2 A priori adaptivity

The first adaptive strategy in our series is introduced by the predict operator P .
Suppose we wanted to add or otherwise combine two functions, one rough and
one smooth. Furthermore we know by either a priori knowledge or preceding
experiments that for good overall precision it is sufficient to apply m fewer Z’s
to the smooth function. Thus we can apply m times the P operator to the
smooth function. Each P replaces one Z with an interpolation W .A Pi = A (1.79)

TjPi = PiTj

ZjPi =

{
Wi for i = j
PiZj for i 6= j

Examples: When we apply n dilatation operators to m predict operators with
matching direction indices we have to distinguish two cases. If n is larger than
m the predict operators are completely dissolved into the according number of
interpolations. Otherwise, the predict operators survive in a number reduced
by n.

Z
n
i Pm

i =





W m
i Z

n−m
i for n > m

W n
i for n = m

W n
i Pm−n

i for n ≤ m

(1.80)
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A special case of prediction is created by an application with infinite power.
This is not an adaptivity operator since it converges to a different function
when increasing accuracy. However it serves as an important basis for advanced
adaptive strategies.

Z
n
i P∞

i = W n
i P∞

i (1.81)

1.5.3 A posteriori adaptivity

The next version of our adaptive strategy must have two improvements. First,
the decision on where to refine and where to interpolate should be found au-
tomatically and, second, the refinement decision should adapt to local function
properties. The a posteriori adaptive strategy is executed by the A operator
that takes control over a function’s smooth and rough areas.

The adaptivity decision is based on the error estimator E that determines,
whether an interpolation can generate the desired accuracy or whether the
decision must be repeated on the refined level. The decision operator is in
fact a function with three arguments, the choice indicator E < ε and the two
alternatives P∞

Z and AZ. This form of adaptivity obviously works only if lazy
evaluation is assumed. The dilatations of the multiscale function do not change
with the application of A. Only the fact where and if at all the dilated function
is evaluated does. A Ai = A (1.82)

TjAi = AiTj

ZiAi =
E≤ε

E>ε

P∞
i Zi

AiZi

ZjAi = AiZj for i 6= j

We can implement a simple error estimator by comparing the effect of refine-
ment with the interpolation |Z − W |. This difference is interpolated on all
refined levels with P∞. The is no need to refine the estimator unless the func-
tion itself is. A second term counts the number of refinements and increases
the estimator with a factor of α. This ensures that the function still converges
correctly when precision is increased.

E = P∞
i |Zi − Wi| − α log2(∆xi) (1.83)

Whereas AαZ
n log2(∆xi) equals αn. With a large number of zooms, the error

estimator always reaches the tolerance ε. In other words, even if the interpola-
tion is perfect, every α/ε-th zoom is executed.

Example: Figure 10 shows a kind of worst case for the adaptive strategy. The
function 5

√
B1/2δ(x) is zero at first and converges to its real value only after

several Z’s are applied.
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Figure 10: A posteriori adaptive strategy created by A 5
√

B1/2δ(x). The input
points on the zero axis show that the function evaluates to zero even after
refinement. The plot was computed on level 5 with ε = 0.05 and α = 0.25ε.

1.5.4 Sparse grid

Our final strategy for selective evaluation is the sparse grid. The method
presents an efficient and accurate adaptive strategy that works for smooth and
high dimensional functions [BD03, Bun98, JGT01]. The rationale behind sparse
grids is summarized as follows. Suppose we wanted to evaluate a d-dimensional
function f on zoom level l for each direction. On standard grids, the number of
Z operators is d× l, each doubling the number of points in the grid. The result-
ing computational effort of O(2dl) exceeds available resources even for relatively
low d and l. Here is where the sparse grid enters the scene. Instead of apply-
ing all Z’s to f at once, the sparse scheme combines the result from multiple
versions of f , each with its own selection of zoomed directions. The maximum
number of Z’s applied in sequence is now l and the total computational effort
reduces to O(l log(l)d)[Bun98].

The sparse grid operator ⊞ is always applied to a set of multiple directions
D. Its definition exploits a recursive construction property. Each grid can be
combined recursively from two grids, one with lower dimension and one with
lower resolution.A ⊞

D
= A (1.84)

Ti ⊞
D

= ⊞
D

Ti

Zi ⊞
D

=

{
⊞D\{i} P∞

i Wi + PD\{i} ⊞D(Zi − Wi) for i ∈ D

⊞D Zi otherwise

The predict operator P with multiple indices D refers to a successive application
of one P operator for each index direction.

PD = Pd1Pd2 · · ·Pdn for D = {d1, d2, · · · , dn} (1.85)

Example This final example evaluates a discrete derivative on an adaptive
sparse grid. The function of interest f is a discrete derivative of an exponential
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1.6 Proxy operators

function.

f :=
∆2

∆x1∆x2
e−(x1+2x2) (1.86)

For the sparse and adaptive approximation f̃ to the two dimensional function
f three operators are deployed. The sparse grid for both dimensions, and one
adaptivity operator for each direction.

f̃ = ⊞
{1,2}

A1A2 f (1.87)

The result of the adaptive algorithm is quite impressive, given the low amount
of code and the ease of use. More advanced adaptive schemes can be developed
at the expense of brief and precise formulas.
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Figure 11: Adaptive sparse grid approximation generated by the mixed strat-
egy ⊞{1,2} A1A2. Function f is evaluated adaptively on level eight with an error
tolerance of ε = 0.01. Instead of 28×28 = 64k calls to f , the result is combined
from only 2800 evaluations and is nearly as accurate as a standard grid on level
7.

1.6 Proxy operators

Finally we have to spend a paragraph on practical issues. The implementa-
tion of multiscale calculus in a functional language was shown to be short and
compact, but without further tuning even simple programs run for ages and do
not stop filling giga bytes of main memory. Relief is brought, how else could it
be, by extra operators that reorganize the computational procedure. Interest-
ingly, these operators rely only on the Dadim API for multiscale functions. We
will consider two kinds of proxy operators that behave like identity operators
mathematically, but perform computational optimizations in terms of time and
memory requirements. Proxies just work like and were inspired by web proxies
in their way to reduce function calls to subsequent units.

1.6.1 Cache

Caches are well known in computer science. They can store the results of previ-
ous calculations and reproduce them when the same calculation is about to be
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1 Multiscale Calculus

repeated. Sounds simple, but isn’t necessarily. Dadim caches have to meet sev-
eral challenges. First, all dilatation and translation paths have to be tracked in
order to identify equal evaluation positions. Second, the dimensionality might
possibly be unknown at compile time. Many mathematical concepts, like con-
volutions, introduce temporary dimensions at run time. Third, appropriate
heuristics are needed to determine obsolete cache contents. And finally, cache
operators must be extremely fast, since we want to install too many of them
rather than missing one at an important place.

Figure 12: Possible data struc-
ture for the Dadim cache. The
nested hyper cubes guarantee
that nearby values are stored to-
gether. Each cube is referenced
by a bit set according the n-th
bit in each coordinate. For the
translation, the lowest bits are
first and, in case of an overflow,
the next higher bits are then up-
dated

Figure 12 shows a possible data structure for the cache. The plotted tree struc-
ture must be implemented twice. One tracks translation paths and contains
values and the other one tracks dilatation paths and contains caches of the first
kind. It has been shown that optimal memory access pattern follows the vertex
order of a space filling curve, e.g. the Hilbert or the Peano curve [GMPZ04].

1.6.2 Multiplexer

The importance of the second proxy operator is easily underestimated. The
representation of Dadim objects occupies a significant part of main memory.
Many operators reference multiple instances of multiscale functions and expo-
nentially increase this number when dilated. Luckily, these instances mostly
differ only in their translation history and can be converted into each other.
The Dadim multiplexer simulates multiple instances of a Dadim by tracking
the translation history of each virtual instance and executing the translation in
case of an evaluation. When dilated, the virtual instance must attach to a new
multiplexer, that can be found in a cache for equivalent dilatation paths.

1.6.3 Other proxies

The evaluation procedure of Dadim programs can be tuned further with more
advanced proxy routines. Since there is always a trade off between algorithmic
overhead and possible accelerations, one must be increasingly careful with more
elaborate proxies. While multiplexer and cache must be applied after more
or less any operation, the following proxies must be well understood before
deployed.

38



1.7 Conclusion

Dadim Dadim DadimDadim

Dadim

Multiplexer

Figure 13: The Dadim
multiplexer simulates sev-
eral instances of a multi-
scale function. Each time
a virtual instance per-
forms an evaluation, the
single instance is trans-
lated to the virtual’s po-
sition.

Beylkin sampler The first of our proxies was a cache that could store function
values. In a logical step to the next higher complexity we can try to cache
the effect of operators. All linear operators perform only linear combinations
of the operand’s values. Finding the linear weight of each input value is often
connected with high computational effort. It is possible to extract these weights
by applying the operator to an array of n test functions with a complexity of
O(n2). Once sampled, the operator can be applied to any function by decom-
position into these test functions. Represented in an appropriate wavelet basis
the operator can be applied with a complexity of O(n). The method was first
described by G. Beylkin in [Bey92, Bey91] and pays for all linear operators that
are applied extremely often to different functions.

Algebraic simplificator Depending on the computational representation of
Dadim objects it is possible to simplify a functional term algebraically. This
requires the knowledge of algebraic operator properties like linearity and direc-
tional dependencies. The triggers and the simplification rules should be chosen
with care, since simplification commands can take a very long time. A suggested
strategy is the simplification after each zoom. This command is not executed
very often and generates some simplification opportunity in most instances, es-
pecially when common operator sequences like

∫
· · ·∆x or B B have a tuned

implementation.

Tracer The tracing proxies do not change, but visualize the computational
procedure. They store intermediate results, evaluated points and required times
into a file for further inspection by the user. Due to the highly recursive char-
acter of the programs it is next to impossible to trace the computation in a
conventional debugger. The precise action of the adaptivity schemes in the
previous section could only be plotted after the application of such a proxy.

1.7 Conclusion

This chapter presented a unified interface to computer algebra systems and
numerical packages. It enables the user to specify mathematical terms in a no-
tation close to traditional calculus, embed numeric algorithms in functional and
object oriented programming styles, smoothly integrate discrete data samples
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1 Multiscale Calculus

and express cutting edge adaptive multidimensional algorithms. The core of the
discrete calculus is the multiscale function which is a computer implementable
algebraic data structure and constitutes a computational interface to functions
on the multidimensional real domain. It can be transformed and used with
the operations known from continuous calculus. At the same time it induces
a unique and well-defined algorithmic evaluation procedure on regular grids of
function samples.
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2 Pattern in portfolios

This chapter considers sequences of trading activities and suggests
a mathematical representation for typical pattern in human invest-
ment decisions. In particular we will express financial strategies as se-
quences of operators that can be implemented according to the formal-
ism introduced in chapter 1. All kinds of financial contracts, strategies
and multiperiod games can be captured in terms of quantitative im-
plications by a vocabulary of three words: waiting, transacting and
deciding. Each activity will be represented by a functional operator,
that can be interpreted in an operator sequence as a chronologically
ordered list of instructions. In an example setting we will investi-
gate the behavior of a typical risk averse agent and derive hedging
possibilities and the resulting economic impact.

2.0 Introduction

The field of quantitative finance has to deal with an increasing complexity and
the rapid development of new contract types. The creation of a consistent and
unified portfolio framework is complicated by the lack of a mathematical nota-
tion for human trading activities and financial products. Elaborate contracts
and investment objectives are mostly specified in prose form and typically use
specific terminology that is hard to interpret by an uninvolved. Such represen-
tations are difficult to evaluate mathematically and have to be translated into
formulas and computer code individually. Those who feel inclined to pursuit
greater generality are mostly struck by an inflation of parameters and mathe-
matical concepts.

In order to meet the industry demand for a technical portfolio representation
there have been developments in the extension of existing programming dialects.
Most notable results are MLFi [JES00], based on the functional programing lan-
guage Caml, and the XML-standard Fpml [fpm04]. However, neither provides
a mathematical framework for the derivation of theoretical properties. Their
vocabulary is huge and gets still extended. Finally, there is a large distance
from product representation to the evaluation procedure, which raises the fear
of model ambiguity and inconsistency.

Here we suggest an explicit and mathematically precise operator notation for
financial portfolios and financial derivatives. The notation is based on the
foundations of operator theory and introduces a vocabulary of three operators:
waiting, transacting and deciding. Each of the possible activities is represented
by an operator, which is written in a chronological list to express a sequence of
trading activities. The notation thus provides explicit expressions for contract
details and trading strategies including embedded options, minimum guaranties,
event triggers and non-delta hedges. Furthermore the notation yields a rather
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2 Pattern in portfolios

explicit procedure to extract its statistical properties, which can be performed
by a computer algebra system or by a numerical scheme that is directly de-
rived from the operator sequence. Chapter 3 will give more datails on how the
operators can be translated to those defined in the previous chapter.

2.1 The economic state

The prevailing state of economy at time t is summarized by a vector X(t), that
contains all relevant and available knowledge. This includes observable market
parameters and private book keeping variables. For the scope of this document
we will focus on a number of parameters that will occur in the following exam-
ples. As relevant information X(t) we consider the current time t, the stock
price S, the short rate r, our wealth in cash c and the number of stocks h in
our deposit.

X(t) =
[
t, S(t), r(t), c(t), h(t), · · ·

]
∈ R

n (2.1)

Other parameters that might occur as economic state are forward rates, ex-
change rates, stochastic volatilities, moving averages and default probabilities,
if not constant. In short, every variable that varies in time must be represented
as a component of X.

Initial values We can provide the initial values to our models by replacing
every instance of X with X(0). This step is always the first operator in an
operator sequence and written by the operator A.AV := V |X=X(0) (2.2)

As we will see, the operator is required to maintain a chronological operator
ordering, in which initial events are written left and final actions on the right
hand side.

2.2 Valuation function

A valuation function V is an interpretation of state X. It determines the kind
of information we want to extract from a portfolio. The next section will show
how to compute the expected value of such a function, after some random
events occurred. V might evaluate theoretical contract prices, risk measures or
probabilities for certain events to happen after an initial state.

V : R
n → R

m (2.3)

We will briefly discuss the three most common instances of the valuation func-
tion. The first example Vc evaluates the amount on the cash account c. It is
applicable whenever we are interested in expected cash profits.

Vc

(
X(t)

)
= c(t) (2.4)
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Additionally, we can take our stock deposit into the balance sheet. The function
Va returns the nominal worth of the stock deposit plus the cash account.

Va

(
X(t)

)
= S(t)h(t) + c(t) (2.5)

Finally, we consider a probability measure, that is an indicator function on the
cash account greater than x. If we compute the expected value of the indicator
function Vp we can determine the probability distribution of our total cash
profit.

Vp

(
X(t)

)
= 1c(t)>x (2.6)

All risk measures like value at risk and expected shortfall can be derived from
the full knowledge of the probability distribution.

2.3 Processes

The time process operator Θ is a function of a function and determines the
stochastic model for the state variables. With Θ∆t we can look one step ∆t
into the future and evaluate the expectation of our function V under the future
process state. Whenever the operator occurs in a sequence of event operators
it refers to a time step ∆t with no activity.

Θ : (Rn→R
m) → (Rn→R

m) (2.7)

The process operator Θ∆t is defined as the expected value of the argument
function V applied to tomorrow’s state X(t+∆t) given a current state x = X(t).
The operator always corresponds to a Markovian process, or one that can be
turned into Markovian form.

Θ∆tV (x) := E

[
V
(
X(t + ∆t)

)∣∣∣∣X(t) = x

]
(2.8)

Another version of the same operator is given by the probability density p∆t(x, y)
for the state to travel from x to y within one time step. Explicit formulas for
this density are derived below for the most common processes.

Θ∆tV (x) =

∫

R

p∆t(x, y)V (y)dy (2.9)

Lemma: Multiple applications of the process Θ∆t evaluate the same expected
value as (2.8), but with the new time horizon in the exponent.

(
Θ∆t

)n
= Θn∆t (2.10)

Proof: The correctness of the operator power rule (2.10) is verified through
repeated application of Θ according to its definition (2.8).

(Θ∆t)nV (x) = (Θ∆t)n−1
E
[
V (X(t + ∆t))

∣∣X(t) = x
]

(2.11)

= (Θ∆t)n−2
E
[
E
[
V (X(t + 2∆t))

∣∣X(t + ∆t)
] ∣∣X(t) = x

]

= (Θ∆t)n−2
E
[
V (X(t + 2∆t))

∣∣X(t) = x
]

...

= E
[
V (X(t + n∆t))

∣∣X(t) = x
]

= Θn∆tV (x)
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2.3.1 Discrete process

A simple model but yet a good approximation to reality is the discrete state
model. Suppose a random variable X reaches the high state HX with proba-
bility p and drops to the low state LX otherwise.

X
p

1−p

HX

LX
(2.12)

The expected value of a measuring function V is the linear combination of both
scenarios. That is just how the expected value was defined in statistics.

ΘV (X) := pV (HX) + (1 − p)V (LX) (2.13)

Of course we can build multistep trees through multiple applications of Θ. The
example below shows the first two steps.

Θ2V (X) = Θ [pV (HX) + (1 − p)V (LX)] (2.14)

= pΘV (HX) + (1 − p)ΘV (LX)

= p2V (HHX) + p(1 − p)V (LHX) +

p(1 − p)V (HLX) + (1 − p)2V (LLX)

The result simplifies in recombining trees where the operators L and H commute
LH = HL.

2.3.2 Brownian motion

The Brownian motion operator Bx is defined by a convolution with the Gaussian
density. It models a jump of the index variable x with a normally distributed
jump size. Possible applications will be discussed in section 3.2.2. We will
briefly anticipate the result of equation (3.28).

B
σ2

x V (x) =
1

σ
√

2π

∫

R

exp

(
−1

2

(
x − y

σ

)2
)

V (y)dy (2.15)

Example: If the process consisted exclusively of normally distributed varia-
tions in variable S with zero drift and standard deviation σ, then we could
write:

Θ = B σ2

S . (2.16)

2.3.3 The Black&Scholes model

The Black&Scholes model is a theoretical framework for the dynamics of stock
prices and is used for the valuation of stock options [BS73]. Although options
are the topic of the next section on financial contracts, we will briefly discuss
how the Θ operator is applied in this context. The profit V that we can draw
from a call or put option depends on the difference between stock price S and
strike price K. In case of a call option we have the right to buy one share at
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2.3 Processes

price K. Our profit is consequently S − K. The profit is multiplied with the
discount factor e−rt.

Vcall(S, t) = max(S − K, 0)e−rt (2.17)

In the notation of partial differential equations we write the change of the
expected value ΘtV in its classical form. The equation yields a unique solution
for the expected option value at expiration time.

d

dt
ΘtV = rΘtV − rS

d

dS
ΘtV − 1

2
σ2S2 d2

dS2
ΘtV (2.18)

The solution of this equation is well known and can be written explicitly
by a convolution with the Gaussian density. The operator Θbs solves the
Black&Scholes formula for the unit time step. The origin of this result will
be discussed in more detail in section 3.3.1 and is also found in [Hul02].

Θbs V (S, t) =

∫

R

e−x′2/2

√
2π

V
(
Ser+σx′− 1

2
σ2

, t + 1
)

dx′ (2.19)

The expectation of the option payoff at maturity time t is computed by an
application of Θ with the appropriate power. The resulting function is supplied
with the initial values for S and t.

Θt
bsVcall(S0, 0) (2.20)

Note that the operators are placed in chronological order from left to right.
First, you wait t time steps, and then you evaluate the payoff. Although the
operators are written left to right, their evaluation direction is opposite. First
compute the value function V and then apply Θbs t times.
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Figure 14: Call option un-
der the Black&Scholes model.
The process operator Θbs is
applied t times to Vcall

Plotted function:
ft(S) = Θbs

t Vcall(S, 0)

with
σ = 40%, r = 5%, K = 100

The Black&Scholes model describes a stock that increases its value in expec-
tation with the same rate as an interest rate account. The great achievement
of Black and Scholes was that option prices can be computed as the expected
payoff under the adjusted drift although real stock prices are experienced to
grow at a significantly higher rate. Only these option prices can be reproduced
without risk in a continuous buying and selling strategy called delta hedge.
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2.4 The Portfolio

The ultimate goal of this chapter and the presented operator notation is the abil-
ity to describe complex portfolios and contract conditions in a mathematically
precise way. We wanted to derive a mathematical term that fully represents
our portfolio, including all outstanding transactions, all embedded options, the
sensitivity to random events and the room for further trading activity.
A portfolio Π is a function of an operator. Given an operator Θ this results in
the new portfolio operator Π(Θ). The effect of the transformation Π is simply
an expansion of the considered state variables. While Θ only evaluates the
expectation of observable market parameters without any interaction, the port-
folio Π(Θ) expands the statistic measure to balance and accounting variables
that correspond to the portfolio or the trading strategy.

Π : ((Rn→R
m) → (Rn→R

m)) → ((Rn→R
m) → (Rn→R

m)) (2.21)

A portfolio is specified by a vocabulary of three words: waiting, transacting and
deciding. A time step without activity is denoted by Θ. For the transaction
we will see the T operator. Decisions will be expressed by a specially designed
option operator.

2.4.1 Transaction

The transaction operator T transfers one unit to the accounting variable spec-
ified by the operator index. Accordingly, Txi increases the i-the component of
the state vector x by one. We can use the operator power to transfer multiple
goods at once.

TxiV (x) := V (x + ei) (2.22)

Let our value V depend on the amount of units in the account x and some
other state variables y. The new value after the delivery of a units is T a

x V . The
number of transfered goods may vary with the states x and y.

T a(y)
x V (x, y) = V (x + a(y), y) (2.23)

This operator replaces every occurrence of the index variable with the same
variable plus the exponent.

Coupon bond The notation of a coupon bond highlights the use of the opera-
tor power to express repeated transactions. The operator term reads chronolog-
ically from left to right. First pay a regular coupon rate of size r until maturity
M , then pay a redemption of 100.

Πc(Θ) = (ΘT r
c )MT 100

c (2.24)

The cash flow of a coupon bond is visualized in the plot below.

100+r

rrrrrr r

time-
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Swap A swap is an arrangement in which two parties repeatedly exchange
assets at predefined conditions. In the case of currency swaps they exchange
certain amounts in different currencies over a certain period. For interest rate
swaps one pays a fixed size while the other pays a state dependent number.
The swap investment Πs transferes −r1 after half a period and simultaneously
transferes −r1 in one direction and r2 to opposite side over M periods.

Πs(Θ) =
(
Θ

1
2 T−r1

c Θ
1
2 T−r1

c T r2
c

)M
(2.25)

Swaps are usually agreed on without any initial premium. The expected profit
from a swap is zero for both parties.

Πs(Θ)Vc = 0 (2.26)

Swap agreements are known with a variety of payment modalities, concerning
payment dates and interest rate specification. [Zag02]

2.4.2 Option

An option is defined by the alternatives among which can be selected and by
the entity that does select. Feasible choices are specified by the two portfolios
Π1 and Π2. Depending on the choice, one of the optional portfolios determines
the remaining portfolio after the option expired. The deciding entity is charac-
terized by her choice condition C. If C is one the first option Π1 is chosen. If
C is zero, Π2 is the selected portfolio.

C

1−C

Π1

Π2

:= CΠ1 + (1 − C)Π2 (2.27)

The choice condition C is an operator. When applied to a value function V it
returns an indicator function on the states that lead to choice Π1. In the most
common cases the value function itself carries the information on which choice
is preferred. If the option is long, i.e. the holder of the product herself can
choose, we can use the choice condition Cmax to yield the scenario with higher
value.

CmaxV = Π1V > Π2V = 1Π1V >Π2V (2.28)

In case of a short option, someone else can choose. Normally this leaves us with
less valuable scenario Cmin.

CminV = Π1V < Π2V = 1Π1V <Π2V (2.29)

Bond option Combining the option and the transaction operator we can spec-
ify our first interest rate derivative. The operator term below describes an op-
tion on a zero coupon bond. Again, the term reads chronologically from left to
right. First, we wait a time m and then choose between two scenarios. In the
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first scenario we first pay a strike price K and wait for the underlying matu-
rity M until we receive a final redemption of 100. The second scenario is the
identity operator and refers to no transaction.

Θm
C

1−C

T−K
c ΘMT 100

c

·
(2.30)

Asian option The Asian option, as denoted below, is easily read from left to
right. First we initialize an accounting variable a to have an initial value of 0.
Then we repeat n times a time step that waits one period and then adds the
current stock price S to a. Finally we can choose to receive the difference of
the average stock price a/n and the strike price K as a cash payment.A

a=0

(
ΘT S

a

)n C

1−C

T
a/n−K
c

·
(2.31)

Random events

A special case of the option operator occurs if the choice condition is unobserv-
able. Economy knows a lot of sudden and unforeseeable events. Companies can
default and outstanding payments become void or unexpected damages have
to be compensated. In this case we can use the same operation as for the op-
tion. The only difference is that we use a choice probability λ instead of the
deterministic condition.

λ

1−λ

Π1

Π2

:= λΠ1 + (1 − λ)Π2 (2.32)

Subdivision We assume an event that occurs with probability λ per period.
If we want to decide whether the event occurred after a non unit time step of
∆t we use the probability λ∆t instead of λ. For ∆t = 1/2 we can easily verify
that the event operator with

√
λ is the square root of the event operator with

probability λ.




√ λ

1− √
λ

·

X




2

V =

√ λ

1− √
λ

√ λ

1− √
λ

V

X

X

= λV + (1 − λ)X (2.33)

Time continuous option

The time continuous option, also referred to as American option, is an option
with the continuous right of exercise. Over a certain time span M the holder
of the option has the continuous right to leave the product path and branch
into the optional product ΠX . The option requires a time process that can be
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infinitely subdivided and an option that is exercisable after each infinitely small
time step. The American option is defined by the limit of the number of time
steps to infinity and the length of each step ∆t to zero.

lim
∆t→0


Θ∆t

C

1−C

ΠX

·




M/∆t

(2.34)

As an alternative to the limit function we can write the same term with the
differential form dt replacing the discrete time step ∆t.

(
Θdt

C

1−C

ΠX

·

)M/dt

(2.35)

American stock option The American stock option consists of a cash trans-
action for the choice ΠX , which when executed ends the investment. First,
the amount S − K is transfered. Then the value function V ends the operator
term. The function can be considered as a constant operator that evaluates V
regardless of what function it is applied to.

ΠX = T S−K
c V (2.36)

Space continuous option

Space continuous options require continuous values to fully describe the selected
action. A portfolio manager has the option to sell or buy more or less arbitrary
amounts of stocks in each period. The objective of the action might be a
rebalancing of the portfolio or an adjustment of a hedge position. Assume
an action operator A for an activity, that can be repeated arbitrarily often in
instantaneous time. Let A⋆ be the optimal exercise of A with respect to utility
U :

A⋆ = Ax∗

(2.37)

Whereas x∗ is the optimal operator power with respect to utility operator U .

x∗ = argmax UAx∗

(2.38)

Hedging A typical application of the space continuous option is the optimal
rehedge, where we can buy or sell an arbitrary number of stocks. The operator
that buys one stock increases our deposit h by one and decreases our cash
account by the current stock price S.

A = T−S
c Th (2.39)

For an optimal hedge investment we have to apply the stock buying operator
A with the optimal exponent.

A⋆ =
(
T−S

c Th

)⋆
(2.40)
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2 Pattern in portfolios

For a function V that depends on c, h and some variables x the operator that
buys n stocks can be solved explicitly.

An V (c, h, x) = V (c − nS, h + n, x) (2.41)

The result of the optimal investment A⋆ is then obtained by maximizing the
utility UAnV over the number of bought stocks n.

2.5 Pricing via arbitrage

This section gives a quick introduction into arbitrage pricing to find the unique
option price in a single step binomial tree. We will try to replicate the pay off
of a call option precisely. In fact, there exists an investment strategy that yields
the same final cash value as a call option.

In order to set up our strategy we write the usual operator sequence in chrono-
logical order from left to right. First we buy x stocks at price S, thus with-
drawing xS from our account c. Then we buy one option at a price y. Then we
wait one period, sell all our stocks and exercise the option.

Π(Θ) = T−xS
c T−y

c︸ ︷︷ ︸
buy x stocks
at S and 1
option at y.

Θ︸︷︷︸
wait

T xS
c︸︷︷︸

sell
stocks

max T S−K
c

·
︸ ︷︷ ︸
exercise option

(2.42)

2.5.1 The process

Now we need to define what happens during the time of our inactivity. The
time process consists of two effects. First, an interest rate of size rc is payed
to the cash account c. And, second, two different branches are taken with
probabilities p and 1 − p. In the first case S is increased by +S, resulting in
2S. The other possible outcome reduces S to its half.

Θ = T rc
c

p

1−p

T +S
S

T
− 1

2
S

S

(2.43)

Initial values The initial values of the process parameters are always inserted
after the complete operator term is expanded. We will use the operator A to
indicate this insertion. A is always the leftmost operator in a sequence, since
the variables do no longer occur in the function after its application.AV = V

∣∣
S =100 c=0
K=150 r=1/9

(2.44)

The operatorA inserts the initial values and triggers a computational evaluation
procedure, if necessary. Binomial tree models with short time horizons can
normally be handled symbolically by computer algebra systems and thus allow
the automated extraction of many implicit parameters.
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2.5 Pricing via arbitrage

2.5.2 Arbitrage-free price

In order to find the fair option price y, we have to find a hedge position x such
that our final cash amount is zero under all conditions. Basically, we write
our evaluation formula chronologically. First we fix the initial values, then go
through our investment strategy Π and finally query our cash value Vc, with
Vc = c from (2.4). This operator sequence evaluates the expected amount π of
account c after the completion of this strategy.

π = AΠ(Θ)Vc (2.45)

= AT−xS
c T−y

c ΘT xS
c (c + max(S − K, 0))

= AT−xS
c T−y

c Θ (c + xS + max(S − K, 0))

= AT−xS
c T−y

c

(
c(1 + r) + p (x2S + max(2S − K, 0)) +

(1 − p) (xS/2 + max(S/2 − K, 0))
)

= A((c − xS − y)(1 + r) + p (x2S + max(2S − K, 0)) +

(1 − p) (xS/2 + max(S/2 − K, 0))
)

Inserting the initial values according to the configuration of A (2.44) this yields:

p

(
50 +

800

9
x − 10

9
y

)
+ (1 − p)

(
−550

9
x − 10

9
y

)
(2.46)

The final cash value is the same as has been derived in [Ros99]. The difference is
that this computation follows straight forward mathematical expansions. You
should keep in mind that more realistic examples with multiple steps and ad-
ditional assets quickly lead to algebraic results that can span several pages. A
simple and compact calculus to command a computer algebra system is there-
fore essential.
Fortunately, this result is short and several methods can be used to find the
solution. The equation system that is to solve requires that the profit π is zero
for all probabilities p.

∃x, y : ∀p : π = 0 (2.47)

We can turn this into a finite system of equations, by inserting different values
for p and verify the result. In the above example we retrieve an option price of
55/3 and a hedge position of −1/3 stocks.

x̃ = −1

3
, ỹ =

55

3
(2.48)

The existence of a solution is not always guaranteed. The fact that we do have
a valid single solution is due to the fact that we deal with a so called complete
market, in which all options can be replicated by a unique stock trading strategy
[Zag02, p62].

2.5.3 Equivalent martingale measure

A simplified and efficient method for finding the same price is done with the
equivalent martingale measure. There exists a pseudo probability p̃ for which
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2 Pattern in portfolios

the discounted stock price is a martingale, i.e. the discounted expected value
tomorrow is equal to todays’ value.

∃p :
ΘS

1 + r
= S (2.49)

Which expands to an equation for p, after inserting the definition of Θ (2.43).

2pS + 1
2(1 − p)S

1 + 1
9

= S (2.50)

The result is found easily.

p̃ =
11

27
(2.51)

With the new value for p we can create a transformed process Θ̃ that evaluates
the expected value under the equivalent martingale measure, where stock prices
are expected to grow with the interest rate.

Θ̃ = Θ|p=ep (2.52)

This transformed operator can now be directly applied to the pay off structure
of the option to compute the fair price, exactly as we did it in the Black&Scholes
model (see 2.3.3). A Θ̃ max(S − K, 0)

1 + r
=

55

3
(2.53)

The evaluation operator A causes the computational system to switch to a
numerical scheme after the full operator term was specified.

2.6 Example

In this final example we consider a portfolio manager who periodically rebal-
ances her hedge portfolio. Our trader has an obligation to her customers in
the form of a call option with strike 10. Suppose her mission was to optimally
meet her obligation in either cash or stocks with a minimum squared distance.
We do not work in complete markets, since we assume trading opportunities at
discrete times and will later introduce market impact. Thus all hedges will bear
at least some risk. Our function V contains the final wealth and its square.

V =

(
Va − Vcall

−(Va − Vcall)
2

)
=

(
c + Sh − max(S − 10, 0)

−
(
c + Sh − max(S − 10, 0)

)2
)

(2.54)

For a least square hedge we define the utility operator U as the second compo-
nent of vector V .

UV = V2 (2.55)

We consider a single asset market where the price level S fluctuates according to
a Brownian motion. The process operator is for now a single B in the direction
of S, thus modelling a variation of S with volatility σ = 1. (2.15).

Θ = B1
S (2.56)
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The numeric solution to the expected final amount of cash and the expected
utility is done by the numerical evaluation scheme A. This operator evaluates
an approximation to the operator term ΘV and inserts the initial values for
S, c and h. Depending on the chosen method A initializes a scenario in a
Monte-Carlo simulation or retrieves the initial position in a PDE result.AΘV = ΘV

∣∣
S= 10
c= 0.4
h= 0

=

(
0

−0.34

)
(2.57)

The first component tells us that the trader meets the expectation of her obli-
gation precisely. Hence, the initial cash value of 0.4 is the expected value for the
option. The low utility in the second component reveals the high risk inherent
in holding the unhedged option.

2.6.1 Hedging activity

Now we want to see, if the utility can be increased by trading in the underlying
stock with a reoptimization frequency of ∆t. The operator that buys one stock
subtracts the current stock price from cash account c and adds one stock the
deposit h. The ⋆ indicates the optimal exponent.

Π(Θ) =
((

T−S
c Th

)⋆
Θ∆t

) 1
∆t

(2.58)

According to our numeric results, the utility increases significantly with a port-
folio rebalancing frequency of ∆t = 1/4. The expected profit is still zero. The
strategy produces no extra costs.AΠ(Θ)V =

(
0

−0.03

)
(2.59)

Complete market With our choice for the process Θ the risk of every obliga-
tion V can be reduced to zero by infinitely many rehedges. Markets governed
by such processes are called complete markets [Shr97].

lim
∆t→0

AΠ(Θ)V =

(
0
0

)
(2.60)

2.6.2 Supply and demand

Due to the law of supply and demand real stock prices vary with the traded
amount. Individual market participants will enter in the order book the prices
at which they are willing to buy or sell. The more stocks we want to trade, the
more people we have to satisfy and the worse is our price. We assume a linear
order book in which every transaction has a price impact of κ per stock. The
new strategy ΠI performes 1/∆t rehedges and considers the price impact on S.

ΠI(Θ) =
((

T κ
S T−S

c Th

)⋆
Θ∆t

) 1
∆t

(2.61)
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Trade size

Total costs

Pric
e im

pact

 1

−5  5  10

 2

−2

−1

−10

Figure 15: In the linear mar-
ket impact model every traded
stock shifts the price by κ =
0.2. The total cost, marked by
the filled area, is proportional
to the square of the trade size.

Applied to our valuation function this reveals the expected final cash amount
and the utility. The assumed market impact ratio, sometimes defined as market
elasticity, is κ = 0.2. Numeric evaluation can be performed with PDE methods
or with our operators from chapter 1.AΠI(Θ)V

(
−0.05
−0.04

)
(2.62)

Our trader is expected to lose 0.05 units of cash due to market friction. These
are not transaction costs, since the selling operator is the exact inverse of the
buying operator. The costs originate from procyclic trading and are gained by
the anticyclic investor. If our trader wanted to reduce her loss then she had
to take more risk. With respect to her quadratic utility function the presented
values are optimal.

2.6.3 Market impact

Finally we might ask for the market impact of the hedging strategy on the stock
price. The valuation function V is easily extended by additional components
for the expected stock price S and its square.AΠI(Θ)




V
S
S2


 =




ΠI(Θ)V
10.117
103.5


 (2.63)

The first interesting result is that the stock price S is expected to rise by 1.17%,
which is due to the fact that we bought stocks for hedging purposes but did
not necessarily sell them finally. Economists will refer to this phenomenon as
inflation, induced by a 40 cent increase of circulating cash and a corresponding
overdemand on the stock exchange. The second parameter needs some treat-
ment to reveal its information.

σ̃ =
√

E(S2) − E(S)2 =
√

103.5 − 10.1172 = 1.08 (2.64)

We remember that the volatility σ was initialized to one in (2.56) and now
increased to 1.08. The final result is that our hedging strategy is procyclic and
increases the market volatility of the stock by 8%. This is a realistic value for
very large investments.
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2.7 Conclusion

This chapter introduced an operator term Π for the sequence of human invest-
ment activities. Three kinds of operations were considered to constitute the
space of possible strategies. The first kind of occupation is inactivity. When-
ever Θ occurs in an operator term it refers to a period of passive observation.
During that time, external state variables may vary according to a stochastic
process [Shr97, KO01] or as described by a partial differential equation [TR00].
The second possible activity is a transaction. The operator T initiates a de-
terministic effect on our parameter set. Typical instances are the transfer of
goods or cash. The third and final operation models an option. Multiple op-
erator terms Π1 · · ·Πn can be offered as choices for further procedure. The
decision criteria can be based on the current state and the expected values for
each choice.
The operator term Π is written in chronological order from left to right and
makes use of some mathematical concepts like the operator power for repeated
actions. Solutions to risk measures and expected values can be evaluated di-
rectly with either a numerical or in some instances symbolic method. Thereby
the operators provide a much more natural procedure to derive the formulas
that solve a problem, without leading to any new solutions. The computational
evaluation of operator terms requires algorithms that work on the domain of
mathematical functions. A framework for an appropriate data structure was
defined in the previous chapter. The subsequent chapter 3 shows how com-
mon definitions for Θ can be expressed by sequences of operators that can be
approximated by the B and T operators.
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3 The Theta-notation for stochastic

processes

This chapter presents a notation for stochastic processes that is based
on the foundation of operator theory. Any stochastic Markov process
can be written as an operator Θ evaluating an expected value of an
arbitrary operand function under a given process. Based on this rep-
resentation, any stochastic process and any statistic measure can be
described in operator form. We will see various applications in the
field of quantitative finance.
The operator notation has two main advantages over the prevailing
stochastic analysis. Firstly, the process itself as well as statistical
measures are written in explicit form and can be evaluated by plain al-
gebraic expansions or explicitly determined numerical methods. This
considerably simplifies the process of implementing a stochastic model
in a computer algebra system or any numerical package. Secondly,
the notation allows for chronological notations of business events and
trading strategies. This is useful, since many financial products are
currently not representable in closed form or as an explicit mathe-
matical expression.

3.0 Introduction

Stochastic processes are used in quantitative finance, economy and various fields
of physics for the description of random time series. A mathematically rigid
theory was developed and applied in quantum mechanics to describe the evo-
lution of a particle that moves randomly or, at least, in a way that is not
deducible from observable information [Hua98]. Random walks are of crucial
importance in finance, since all market parameters and prices are assumed to
be unpredictable. Financial theories postulate the stochastics of future states
by the means of a stochastic process.

Two competing mathematical methods for the definition and the analysis of
stochastic processes were introduced by physicists. One was based on differen-
tial operators and used functions to describe a current state. The other was
based on stochastics and measure theory, where the current state was defined
by a vector of random variables. The fundamental relationship between both
approaches was developed by Feynman-Kac [Zag02, p40]. Since then it was
possible to convert both formulations into each other. Despite high compatibil-
ity there have not been any serious attempts to develop a larger framework for
financial processes based on differential equations and functional operators.

This document suggests a complementary Θ-notation for stochastic processes
in the context of financial applications. Despite the apparent domination of
stochastic calculus there seem to be important advantages of the operator-
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based notation. The first and possibly the key argument in favor of operator
calculus is the existence of explicit expressions for contract details and trading
strategies including embedded options, minimum guarantees, event triggers and
non-delta hedges [Dir04]. This is in fact a decisive feature since financial port-
folio details are currently only written in text and prose form. Mathematically
explicit expressions were currently confined to very specific portfolio properties
and to a fixed stochastic process. The second advantage concerns practical ap-
plicability. Given a process in operator form there are rather explicit methods
to extract its statistical properties as they can be performed by a computer
algebra system. Finally, the Θ-notation deals much more naturally with the
many financial processes that do not live in continuous time, such as free form
probability distributions or some regime switching models. The Θ-calculus
should be considered as highly complementary to stochastic calculus. The the-
oretical framework around stochastic processes is much more established and
many classical models do have more compact and nicer formulas in stochastic
calculus.

3.1 Stochastic model

In this section we derive the stochastic framework for a process X and its process
operator Θ. We plan to define an operator Θ that fully describes the algebraic
properties of the stochastic process X, but can do without any reference to
stochastic calculus. On our way to turn any stochastic process into operators we
start with an investigation of general Markov processes. Consider a probability
space (Ω,A, P ) that determines the probability distribution of the random seed
ω. At every time t the process X satisfies a stochastic differential equation.

X :
(
R

+
0 × Ω → R

n
)

(3.1)

dtX(t, ω) = F (X(t), ω, dt)

The instantaneous change of the process variable X is determined by a function
F with three parameters. The first parameter is the current process state, that
is sufficient to determine all deterministic process components. The stochastic
variable ω allows the process dependence on random events. The final parame-
ter dt is the time resolution of the process evaluation, that is required for fractal
processes such as the Brownian motion.

To pick up our operators for financial contracts we will briefly repeat the use of
V (see 2.2) and Θ (see 2.8) in our new framework. We consider an evaluating
function V that gives us some interpretation of the current process state. This
can be an event indicator or some utility that we can draw from the process.

V : R
n → R

m (3.2)

With the operator Θ we can look one step ∆t into the future and evaluate
the expectation of our function V under the future process state. Since we

57



3 The Theta-notation for stochastic processes

exclusively consider Markov processes, and those that can be transformed into
Markovian form, the definition for Θ does not depend on time t.

Θ : (Rn→R
m) → (Rn→R

m) (3.3)

Θ∆tV (x) := E

(
V
(
X(t + ∆t)

)∣∣∣∣X(t) = x

)

Based on the operator Θ∆t and its application to arbitrary but well selected
functions we can solve a wide range of expected value problems, in particular
those associated with present values and risk measures in finance.

3.1.1 Transition probabilities

A common tool for the definition of stochastic processes is the probability den-
sity. After every time step the current state x changes randomly. Let p∆t(x, x′)
be the probability density for the state to travel from x to x′ within a time step
of ∆t. The operator Θ∆t is defined as a convolution with p∆t.

Θ∆tV (x) =

∫

Rn

p∆t(x, x′)V (x′)dx′ (3.4)

Every process has a probability density, when we take extended functions into
account. The delta function is well defined as a Dirac sequence and integrates
well into calculus.

Lemma: We can apply the Θ operator to a delta function as bellow and extract
the probability density.

p∆t(x, x′) = Θ∆tδ(x − x′) (3.5)

Proof: We have to prove that the extracted probability density (3.5) correctly
reproduces the Θ operator when inserted into the convolution formula (3.4).
The proof utilizes the linearity of Θ, which is due to the linearity of the expected
value (3.3), and exploits Θ’s independence of the temporary variable x′.

∫

Rn

p∆t(x, x′)V (x′)dx′
(3.5)
=

∫

Rn

(
Θ∆tδ(x − x′)

)
V (x′)dx′ (3.6)

= Θ∆t

∫

Rn

V (x′)δ(x − x′)dx′

= Θ∆tV (x).

3.1.2 Deterministic transition

A simple, but common, transition is a deterministic step from a current state
X to a deterministic new state f(X). The corresponding density is the delta
function p(x, x′) = δ(f(x) − x′). We use the special symbol A to indicate such
a step. A

x=f(x)
V := V |x=f(x) (3.7)
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There is a notational difference of the A operator and the more common expres-
sion using the bar operator, as indicated by the right hand side of the definition
3.7. The A operator is written left of the argument V , which allows us to write
different effects, as introduced in chapter 2, chronologically from left to right.
The standard application of this operator is to provide initial values to the pro-
cess parameters. This operation is always the leftmost operator in a sequence.
After its application all process variables are replaced by numbers. (see 2.1)A := A

x=X(0)
(3.8)

3.2 Differential processes

Differential equations are a well established technique to describe the evolution
of physical settings over time. Physics and finance have many similarities that
already triggered the scientific research field of econophysics. The most vivid
example is the particle in heated media that moves according to the same laws
as a stock price in volatile markets. We will focus on two special cases of a
partial differential equation and define appropriate operators that solve these
equations. The first PDE is the transport equation that models a deterministic
evolution of the process parameters. The second is the heat equation that
models random state changes according to a Brownian motion.

Definition In its most general form a differential process operator O solves a
partial differential equation that is defined by a differential operator D. Let
this D depend on the value of the function f and its spatial derivatives up to
order two.

D : (Rn → R
m) → (Rn → R

m) (3.9)

Df(x) = µ(x)∇f(x) +
1

2
∇TΣ(x)∇f(x)

Which can be expanded into a sum of derivatives:

Df(x) =

n∑

i=1

µi(x)
∂

∂xi
f(x) +

1

2

n∑

i=1

n∑

j=1

Σij(x)
∂2

∂xi∂xj
f(x) (3.10)

The operator O can be defined by the solution of a partial differential equation
generated by D. We choose the time variable t to play the role of time in
classical PDE analysis.

∂

∂t
Ot = DOt (3.11)

The definition above can also be written in a long version, where functions and
their arguments are appended explicitly. Please note that equation (3.11) is
just a short form of (3.12).

∀V : ∃Ṽ : Ṽ (0, x) = V (x) (3.12)

Ṽ (t, x) = Ot V (x)

∂

∂t
Ṽ (t, x) = D Ṽ (t, x)

59



3 The Theta-notation for stochastic processes

With this PDE we can solve the spacial part of the Cauchy problem [Zag02,
p38] and will later include the means to express the discounting drift.

Lemma: The superposition that is written to the operator O satisfies the
power rules and thus is an exponent of the operator. There are three properties
of the operator power, which will be used later in this document.

OaOb = Oa+b (3.13)

O0 = Id (3.14)

(Oa)b = Oab (3.15)

Proof: First, we verify the power rule (3.13). Assume Ṽ1 and Ṽ2 solve the
PDE (3.12).

Ṽ1(0, x) = V (x) ⇒ ObV (x) = Ṽ1(b, x) (3.16)

Ṽ2(t, x) = Ṽ1(t + b, x) ⇒ Ṽ2(0, x) = ObV (x)

⇒ Ṽ2(a, x) = OaObV (x) = Ṽ1(a + b, x) = Oa+bV (x)

Proving (3.14) is almost trivial. Again, we assume Ṽ to solve the PDE (3.12).

Ṽ (0, x) = V (x) ⇒ O0V (x) = V (x) (3.17)

The final power rule (3.15) is a direct consequence of the first two rules. For
b ∈ N it is just a rewrite of (3.13) with multiple summands. For 1/b ∈ N the
operator root Ob is correct due to (Ob)1/b = Id. Hence, all rational number are
proved. Irrational numbers follow from the continuous property of the PDE
solution.

3.2.1 Drift operator

The drift operator T µ solves the so-called transport equation over the unit
time interval with a velocity field µ, according to (3.9) with Σ = 0. Possible
financial meanings are the transfer of goods and assets or a deterministic drift
in observable parameters. Technical applications of T µ include the introduction
of temporary variables and domain transformations.

T
µ : (Rn → R

m) → (Rn → R
m) (3.18)

∂

∂t
T

tµ = µ(x)∇T tµ

Univariate projection In most situations, the drift operator T µ applies in only
one direction, thus solving only a univariate partial differential equation. The
considered dimension is written as an index.

T
µ
x : (Rn → R

m) → R
n → R

m (3.19)

∂

∂t
T

tµ
x = µ(x)

∂

∂x
T

tµ
x
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Properties

The resulting drift operator can usually be solved analytically. The correctness
of the solutions below are easily verified by differentiation with respect to the
index variable x according to (3.12).

Lemma: In the following there are the solutions for constant and linear expo-
nents. For real valued exponents, the T operator is equivalent to T , defined in
section 2.4.1.

T
aV (x) = V (x + a) ∀a ∈ R (3.20)

T
axV (x) = V (eax) ∀a ∈ R (3.21)

These two results account for probably most instances of the T operator.

Proof: The proof is briefly sketched below. We use the function V (x + t) and
V (xet) as Ṽ and verify the equations from (3.12). The results in the lemma
represent the special case of t = 1 for other values of t the operator can be
raised to the power of t (see (3.15)).
∂
∂tV (x + at) = aV ′(x + at) = a ∂

∂xV (x + at) and
∂
∂tV (xeat) = axeatV ′(xeat) = ax ∂

∂xV (xeat)

Lemma: The drift operator commutes with function evaluation T µf(x) =
f(T µx). Hence, it can also be written as a deterministic step (see 3.1.2).

T
µV (x) = A

x=T µx
V (x) (3.22)

= V (T µx)

Proof: The proof is briefly sketched below and is based on the complete dif-
ferential and the chain rule.
∂
∂tV (T tµx) = ( ∂

∂tT
tµ)∇V (y)|y=T tµx = (µ(x)∇T tµx)∇V (y)|y=T tµx =

= µ(x)∇V (T tµx)

Lemma: With the previous lemma the T operator can be converted into an
ordinary differential equation, for which an integral representation is known.
The exponent µ must be continuous and non zero to yield a unique solution.

T
µ(x)x = fx(1) (3.23)

⇐ f−1
x (y) =

∫ y

x

1

µ(h)
dh

Proof: Again, we proof the more general case y = T tµx = fx(t). From the
explicit formula for t = f−1

x (y) we can conclude the derivative of f(t), according
to the differentiation rule for inverse functions
∂
∂tT

tµx = ∂
∂tfx(t) = 1

∂
∂y

f−1
x (y)

= µ(y) = µ(y)µ(x)
µ(x) = µ(x) ∂

∂xf(t)
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Example

This example models the growth of a money market account with time depen-
dent interest rates. We are interested in the expected value of a function V (c, t)
that depends on the cash account c and time t. The process Θ consists of two
operators. One updates the time variable t. The other pays the interest rate
rt.

TtV (c, t)
(3.20)
= V (c, t + 1) (3.24)

T
crt

c V (c, t)
(3.21)
= V (cert , t)

The future value can be computed by repeated application of our process op-
erators to the cash and time sensitive function V .

(T crt
c Tt)

M V (c, t) = (T crt
c Tt)

M−1 V (cert , t + 1) (3.25)

= (T crt
c Tt)

M−2 V (certert+1, t + 2)

· · · = V


c

M−1∏

p=0

ert+p , t + M




Inserting the initial cash amount for c in the solution yields the functions final
value after M periods.
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Figure 16: Growth of an in-
terest rate account with time
dependent rate rt.

Plotted function:
f(M) = A

c=100
t=0

ΘMV

with Θ = T
crt

c Tt

rt = 1% + 2%t
V = c

3.2.2 Blur operator

The blur1 operator B Σ solves the heat equation, according to (3.9) with µ = 0,
which has a Brownian motion as source of randomness. Heated particles move
according to a Brownian motion, which is unpredictable and random. The
random movements in each direction are modeled to have the covariance matrix
Σ. Financial models use the blur operator as the main source of uncertainty.

B
Σ : (Rn → R

m) → (Rn → R
m) (3.26)

∂

∂t
B

tΣ =
1

2
∇TΣ(x)∇B tΣ

1“Blur” is the name given to this operation in image processing, due to a function’s smoother
appearance after the operation.

62



3.2 Differential processes

Univariate projection In most situations, the blur operator B applies in only
one direction, solving only the univariate heat equation. The uncertain dimen-
sion can be written as an index to the operator.

B
σ2

x : (Rn → R
m) → R

n → R
m (3.27)

∂

∂t
B

tσ2

x =
σ2(x)

2

∂2

∂x2
B

tσ2

x

The univariate σ is the standard deviation of the modeled variable x. The time
normalized exponent σ√

∆t
was termed volatility in finance. The subsequent

sections will derive solutions for specific classes of exponents.

Real exponent

The solution of the blur operator with real exponents is expressed by the con-
volution with the Gaussian density function. We insert the bell curve for p∆t

in (3.4) from section 3.1.1.

B
σ2

x V (x) =
1

σ
√

2π

∫

R

exp

(
−1

2

(
x − y

σ

)2
)

V (y)dy (3.28)

u= x−y
σ=

1√
2π

∫

R

e−u2/2V (x + σu)du

Proof: Now we shall proof the equivalence of the PDE definition and the
convolution formula. The proof covers the more general case with tσ2 in the
exponent.

∂
∂tB

tσ2
V (x) = 1√

2π

∫
R

∂
∂t

1
σ
√

t
exp

(
−1

2
(x−y)2

tσ2

)
V (y)dy (3.29)

= 1√
2π

∫
R

(
(x−y)2

2σ3t2
√

t
− 1

2σt
√

t

)
exp

(
−1

2
(x−y)2

tσ2

)
V (y)dy

= 1√
2π

∫
R

1
σ
√

t

(
(x−y)2

2t2σ2 − 1
2t

)
exp

(
−1

2
(x−y)2

tσ2

)
V (y)dy

= 1√
2π

∫
R
− ∂

∂x
1

σ
√

t

(x−y)
2t exp

(
−1

2
(x−y)2

tσ2

)
V (y)dy

= σ2

2
1√
2π

∫
R

∂2

∂x2
1

σ
√

t
exp

(
−1

2
(x−y)2

tσ2

)
V (y)dy

= σ2

2
∂2

∂x2B
tσ2

V (x)

Examples The B operator is difficult to solve analytically. Only very few
examples can be derived from (3.28) and expressed in closed form.

B
σ2

x exp(x) = exp

(
x +

σ2

2

)
(3.30)

B
σ2

x a + bx + cx2 = a + cσ2 + bx + cx2 (3.31)
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Figure 17: Geometric Brow-
nian motion applied to a delta
function.

Plotted function:
f(M, x) = ΘM V (x)

Θ = B (σx)2 , with σ = 20%

V1(x) = δ(1 − x),
V2(x) = δ(2 − x)

Geometric Brownian motion

The volatility of many economic parameters is often observed to be more or less
proportional to their absolute level. Random innovations to the stock prices
are often assumed to have a standard deviation that is proportional to the
stock price itself. The operator B (σx)2 models a state parameter x with relative
volatility σ. For easy computation it can be reduced to a blur operator with
real exponent on a transformed domain.

B
(σx)2
x = T

−x(x′+ 1
2
σ2)

x B
σ2

x′ T
xx′
x for σ ∈ R+ (3.32)

The application to a function V (x) can be evaluated explicitly. The proof can
be found below.

B
(σx)2V (x)

(3.32)
= T

−x(x′+ 1
2
σ2)

x B
σ2

x′ T
xx′

x V (x) (3.33)

(3.21)
= T

−x(x′+ 1
2
σ2)

x B
σ2

x′ V (xex′)

(3.28)
= T

−x(x′+ 1
2
σ2)

x
1

σ
√

2π

∫

R

exp

(
−1

2

(
x′ − y

σ

)2
)

V (xey)dy

(3.21)
=

1

σ
√

2π

∫

R

exp

(
−1

2

(
x′ − y

σ

)2
)

V (xey−x′− 1
2
σ2

)dy

=
1

σ
√

2π

∫

R

exp

(
− u2

2σ2

)
V (xeu− 1

2
σ2

)du
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3.2 Differential processes

Proof: The operator terms in (3.32) can be shown to solve the same differential
equation for the exponent σ2t.

∂
∂tT

−x(x′+ 1
2
σ2)

x B
σ2t
x′ T

xx′
x V (x) (3.34)

(3.33)
= ∂

∂t
1

σ
√

2πt

∫
R

exp
(
− u2

2σ2t

)
V (xeu− 1

2
σ2t)du

let y=u−ln(x)+ 1
2
σ2

= 1√
2π

∫
R

∂
∂t

exp

(
−(y+ln(x)− 1

2
σ2t)

2

2σ2t

)

σ
√

t︸ ︷︷ ︸
=:g

V (ey)dy

= 1√
2π

∫
R

(
(y−ln(x))2

2σ2t2
− 1

2t − σ2

8

)
gV (ey)dy

= x2 1√
2π

∫
R

∂
∂x

(
−y−ln(x)+ σ2t

2
2tx

)
gV (ey)dy

= (xσ)2t
2

∂2

∂x2

∫
R

gV (ey)dy

= (xσ)2t
2

∂2

∂x2 B
(xσ)2tV (x)

Examples: The following result allows us to solve the geometric Brownian
motion for all polynomials.

B
(xσ)2xn = xn exp

(
n(n − 1)

2
σ2

)
, ∀n ∈ R (3.35)

The analytic derivation is easy to verify with (3.26):
∂
∂tB

(xσ)2txn = ∂
∂tx

ne
n(n−1)

2
σ2t = σ2x2

2
∂2

∂x2 xne
n(n−1)

2
σ2t = σ2x2

2
∂2

∂x2B
(xσ)2txn.

The computation for the exponential function via a power series fails due to
diverging coefficients. For positive x the series goes to ∞.

B
(xσ)2 exp(x) = ∞ ∀ x, σ > 0 (3.36)

Following (3.32) we can conclude the result for the logarithmic operand.

B
(xσ)2 ln(x)

(3.32)
= T

−x(x′+ 1
2
σ2)

x B
σ2

x′ T
xx′
x ln(x) (3.37)

(3.21)
= T

−x(x′+ 1
2
σ2)

x B
σ2

x′ ln(xex′)

(3.31)
= T

−x(x′+ 1
2
σ2)

x ln(x) + x′

= T
−x(x′+ 1

2
σ2)

x ln(xe−(x′+ 1
2
σ2)) + x′

= ln(x) − σ2

2

Principal axis transformation

The multi-dimensional heat equation with constant coefficients is commonly
solved on a transformed domain. It is possible to separate the individual dif-
fusions into a sequence of one-dimensional blur operators. We assume that
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3 The Theta-notation for stochastic processes

the covariance matrix Σ is real and independent of the diffusion directions xi.
Furthermore, the matrix must always be positive semidefinite and thus have a
Cholesky decomposition Q.

Σ = QQT, Σ ∈ R
n×n (3.38)

The domain transformation is performed by a forward and a backward trans-
formation operator F and F−1 applied before and after the diffusion. The blur
sequence is applied on the temporary transformation variables x′i. We let the
transformation operator F be defined as a sequence of drift operators.

F =
n⊙

i=1

T
−eT

i Q x′

xi = T
−eT

1Q x′

x1 · · · T −eT
nQ x′

xn
(3.39)

F−1 =

n⊙

i=1

T
eT

i Qx′

xi = T
eT

1Q x′

x1 · · · T eT
nQ x′

xn

Lemma: The multidimensional blur B Σ with covariance matrix Σ is easily
evaluated by a sequence of univariate blurs and the transformation F .

B
Σ = F

(
Bx′1

· · · Bx′n
)

F−1 (3.40)

= F

(
n⊙

i=1

Bx′i

)
F−1
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Figure 18: Joint processes with correlations 0, 0.5 and 0.8. All three processes
have equal marginal distributions. The process operators are applied to a delta
function located at the origin.
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Proof: Since all operators have been solved previously, the correctness of the
domain transformation (3.40) can be verified by consecutive application of each
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operator.

∂

∂t
T

−e1Qx′

x1
T

−e2Qx′

x2
B

t
x′1
B

t
x′2
T

e1Qx′

x1
T

e2Qx′

x2
V (x1, x2) (3.41)

(3.20)
=

∂

∂t
T

−e1Qx′
x1

T
−e2Qx′
x2

B
t
x′1
B

t
x′2

V (x1 + q11x
′
1 + q12x

′
2, x2 + q21x

′
1 + q22x

′
2)

(3.26)
= T

−e1Qx′

x1
T

−e2Qx′

x2

[

1

2
(q2

11 + q2
12)V11 + (q11q21 + q12q22)V12 +

1

2
(q2

21 + q2
22)V22

]

(3.20)
=

1

2
Σ11

∂2

∂x2
1

V (x1, x2) + Σ12
∂2

∂x1dx2
V (x1, x2) +

1

2
Σ22

∂2

∂x2
2

V (x1, x2)

=
1

2
∇TΣ∇(B Σ)t

The final result does no longer depend on the temporary variables x′i.

3.3 Stock price models

Now it is time to synthesize some common stochastic processes from previ-
ously derived operators. We will use the drift and the blur operator to describe
Brownian motion based processes with drift. Also known as Wiener or Gaus-
sian processes they have been used for modeling asset prices since 1900 by the
French bond trader Bachelier [Bac00]. In 1965 the first stock price model was
based on geometric Brownian motion by Samuelson [Sam65]. This was a sig-
nificant improvement, since stock prices were ensured to stay positive. Until
then all models required an expected drift rate for stock prices which by nature
could not be observed directly. Possibly the greatest contribution to quanti-
tative finance was introduced by Black and Scholes in 1973 [BS73], when they
discovered that the final value of a stock option can be reproduced by a dy-
namic hedging strategy without risk and with costs that are independent of the
expected growth rate of stocks.

3.3.1 The Black&Scholes model

Black and Scholes found the formula for the arbitrage-free option price, as the
expected value of a modified process. They used a constant coefficient Brownian
motion with a drift equal to the riskless interest rate and measured the expected
pay off. This approach was later called risk-neutral evaluation by Cox and Ross
[CR76], since stock and bond rates can only be equal if investors do not demand
an extra premium for the high risks inherent in stock markets. Using the shift
and blur operator, the time process Θbs of the famous model can be rewritten.

Θbs = e−r
T

rS
S B

(σS)2

S r, σ ∈ R (3.42)

The process is built from three individual operations: discounting, stock
price drift and stock price diffusion. The discount effect renders the present
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3 The Theta-notation for stochastic processes

value of the received cash in one period (e−r). The expected drift in the stock
price is the interest rate (T rS). And, finally, there is uncertainty added by
the diffusion operator (B (σS)2), whereas g denotes the standard normal density
function.

ΘbsV (S)
(3.42)
= e−r

T
rS
S B

(σS)2

S V (S) (3.43)

(3.33)
= e−r

T
rS
S

∫

R

g(u)V (Se+σu− 1
2
σ2

)du

(3.21)
= e−r

∫

R

g(u)V (Ser+σu− 1
2
σ2

)du

It is easily verified that the three operators commute and can be written in
any of six possible orders. Multiple applications of Θ are therefore most easily
evaluated by powering each individual operator.

Θ M
bs V (S) = e−rM

T
rSM

S B
(σS)2M
S V (S) (3.44)

= e−rM

∫

R

g(u)V (SerM+σuM− 1
2
σ2M )du

Option price An option’s pay off at maturity time depends on the final value
of the stock price. We consider European call and put options with strike K.
Their value at maturity time is Vcall and Vput respectively.

Vcall(S) = max(S − K, 0) (3.45)

Vput(S) = max(K − S, 0)

The expected value of the option with time to maturity M is computed by ap-
plying our Θ operator M times to the value function V . The resulting function
is supplied with the current stock price S0.A

S=S0

Θbs
M V (3.46)

3.3.2 GARCH

The GARCH2 model is a stochastic volatility model that deserves some extra
attention. This is a path dependent process, where future probabilities depend
on previous states. The volatility parameter σ varies with time and is driven
by variations in the stock price. Any innovation to the price is fed back into
the volatility parameter. The model in this section is known as GARCH(1,1)
in the literature [Bol86].

σ2
t = (1 − α − β)σ2

t−1 + α ln

(
St

St−1

)2

+ βγ, (3.47)

with a + b < 1. The process operator of the GARCH model consists of three
steps. First, the current stock price S is stored in a temporary variable S′.

2Generalized AutoRegressive Conditional Heteroskedasticity
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3.3 Stock price models

Then any other time process, e.g. a standard Black&Scholes step, with stock
price drift and diffusion is performed. Finally, the variance σ2 is updated based
on the ratio of realized stock price S and its previously expected value S′.

Θgarch = A
S′=ΘbsS

Θbs A
σ2=(1−α−β)σ2+

α ln( S
S′ )

2
+βγ

(3.48)

Three parameters specify the GARCH model, the update intensity α, the mean
reversion speed β and the long term mean γ. Figure 19 shows the convolution
kernel for α = 0.02 and β = 0.
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Figure 19: Joint probability distribution of volatility and stock price under
the GARCH process. Large jumps of the stock price, starting at 100, coincide
with a rise in volatility. Over longer time intervals this dependence fades away.
The volatility becomes less dependent on the current price, but more on the
path along which it got there.
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Figure 20: Volatility analysis of the European banking index (SX7E) based
on August 1st, 2002. The future expectation under the GARCH model shows
the mean reversion inherent in this model.
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3.3.3 Copulas

So far we have looked at single asset models. For additional stocks with different
sources of randomness there needs to be a definition of their interdependence
structure. One standard tool was the previously derived correlation method.
It can be applied easily via a linear domain transformation. In more gen-
eral settings one often wishes to separate the process of individual parameters
from their interdependence structure [QMRLUF03]. Then the complex interac-
tions of various marginal processes can be modeled by a copula function. The
marginal distributions Φi of the individual parameters xi can be derived from
a common process Θ or an individual process Θi.

Φi(u) = Θi 1u>xi (3.49)

Their statistical interdependency can be written in a very general form as a
copula. The copula is the probability distribution of the uniformly distributed
variables Φi(xi). The full process can be written in 2D as a multidimensional
integral. The integral over the function V on the unit cube is equivalent to
the convolution formula (3.4), but adds the interdependence structure to the
interdependent variables.

ΘcopV (x) =

∫ 1

0

∫ 1

0

(
∂

∂u

∂

∂v
C(u, v)

)
V
(
x1 −Φ−1

1 (u), x2 −Φ−1
2 (v)

)
du dv (3.50)

A fairly general group of Archimedean copula functions is created via a prob-
ability distribution F . Valid copulas are created for all choices of continuous
distributions F [QMRLUF03].

CArch(u, v) = F
(
F−1(u) + F−1(v)

)
(3.51)
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Figure 21: Convolution kernel generated
by a Gaussian distribution (G) and a
Poisson marginal distribution, combined
with the Gumbel copula, a special case of
Archimedean copula.

Φ1(x1) = G(x1)
Φ2(x2) = 1 − exp(−x2)
F (x) = 1 − exp

(
−x1/β

)

β = 1/2

Plotted function:
p(x′1, x

′
2) = A

x1=0
x2=0

Θcop δ(x1 − x′1)δ(x2 − x′2)
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3.4 Term structure models

In this section we will explore processes with functions as state variables. In
particular we investigate interest rate and yield curve models, determining the
performance of riskless investments, like bonds. In risk neutral pricing these
yield curves resemble the expected growth rate of all other investments.

Numéraire Before we can take a closer look at interest rate models we need
to define some vocabulary. The numéraire is a unit of wealth proportional to
which all cash flows are measured. We will use the symbol P0 for one unit of
cash on a money market account. Hence, P0 is the inverse of the numéraire and
measures today’s present value and becomes smaller the further we look into
the future.

P0 := unit of wealth (3.52)

Yield The yield Y defines the expected discount rate over the next N periods.
It is computed from the ratio of the expected numéraire value in N periods
ΘNP0 and today’s value AP0 = 1. This ratio may depend on other process
parameters.

Y (N) := − 1

N
ln
(
ΘNP0

)
(3.53)

Forward rate Most often we will use the instantaneous forward rate f(t, s), of-
ten referred to as instantaneous discount rate for time s. This curve is measured
at time t.

f(t, s) :=
∂

∂s
(s − t)Y (s − t) (3.54)

Its initial value f(0, s) is commonly considered as a known input parameter. It
is the forward rate curve f(t, s) supplied with all initial values.

f(0, s) = Af(t, s) (3.55)

Drift condition Following the previous two statements, the expected value of
P0 in s periods can be derived. It is the current value P0 multiplied by the
accrued interest rate. All interest rate models must obey this condition for a
given term structure f(t, s).

ΘsP0 = P0 exp

(
−
∫ t+s

t
f(0, u)du

)
(3.56)

Note, the drift condition only holds in the risk-neutral world or the risk-neutral
measure. Thus, the drift condition is only relevant for models that are used for
pricing interest derivatives.

3.4.1 Deterministic model

In the first model we will consider interest rates to be deterministic and compute
the result of contingent future cash flows. We will compare two different versions
of the solution. In the first, the numéraire P0 creates discounted cash flows and
in the second accrues cash accounts and returns expected final values.
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Version 1: The first version is probably preferred in practice, since it directly
results in discounted present values. The deterministic term structure model
consists of two effects. First, the numéraire value is discounted with the forward
rate of the next period. Second the time counter t is updated.

Θ∆t
det = T

−P0
R t+∆t
t

f(0,u)du

P0
T

∆t
t (3.57)

In a simple example we compute the present value of an annuity that pays one
unit of wealth per period. Thus, we evaluate a repeated operator sequence that
waits one unit of time with Θ and then transfers one unit of cash onto account
c. Inserting the constant forward curve, f(0, s) = r = 0.1, our initial wealth c0

increases by 6.01P0.A (ΘdetT
1P0

c

)10
c = A (ΘdetT

1P0
c

)9
T

−rP0
P0

(c + 1P0) (3.58)

= A (ΘdetT
1P0

c

)9
(c + e−rP0)

= A (ΘdetT
1P0

c

)8
T

−rP0
P0

(c + P0 + e−rP0)

= A (ΘdetT
1P0

c

)8
(c + e−rP0 + e−2rP0)

= · · ·

= c0 +

10∑

t=1

e−0.1tP0

= c0 + 6.01041P0

It is important to realize, that operator sequences are always written chrono-
logically in time. First, we wait, then we pay and repeat both effects ten times.

Version 2: The second version is sometimes easier to write, but discounts cash
flows to the end of the model horizon. We increase the cash account c in every
period. Thus our time operator Θ pays the coupon and updates time t.

Θ∆t
fut = T

c
R t+∆t

t
f(u)du

c T
∆t

t (3.59)

The same example as above results in the cash amount that we will possess after
the ten periods passed. Our initial value c0 and the return from the investment
is larger by e1. A (ΘfutT

1
c

)10
c = 16.338 + 2.71828c0 (3.60)

3.4.2 Heath-Jarrow-Morton

The Heath-Jarrow-Morton model is one of the most general term structure
models. It describes the stochastic behavior of the whole forward rate curve f
in a risk neutral world and is suited for the evaluation of interest rate derivatives.
In discretized time the HJM model updates the curve f(t, s) with a deterministic
drift µ(t, s) and normally distributed impact with deterministic volatility σ(t, s)
[Mun98, Zag02].

f(t + ∆t, s) = f(t, s) + σ(t, s)ξ
√

∆t + µ(t, s)∆t, ξ ∼ N (0, 1) (3.61)
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Since the process models the evolution of f(t, s) for all s simultaneously we
need to find a way to apply our differential operators to curves, or in partic-
ular to express the curve in terms of finitely many coefficients. We define the
current forward rate curve f(t, s) as the sum of the initial curve f(0, s) and a
linear combination of a set of basis functions φi. The linear coefficients ai are
initialized to zero and vary with time. Instead of modeling curves the HJM
model describes the evolution of the coefficients ai.

f(t, s) = f(0, s) +
N∑

i=0

aiφi(s) (3.62)

For the sake of simplicity, we assume that φi is an orthonormal basis with
respect to an inner product A.

< φi|φj > =

∫ ∞

0
φi(s)A(s)φj(s)ds (3.63)

= δij

Although the concept of basis functions was not explicitly part of the original
work on the HJM model [Mun98, HJM92], it is the common numerical pro-
cedure for modeling curve transformations. The HJM model now consists of
a diffusion B and convection T in the coefficient vector a. After the curve is
updated, the process continues as in the deterministic model, paying a coupon
and updating the time counter (3.57).

Θ∆t
hjm = B Σ∆t

a T
R∆t
a Θ∆t

det (3.64)

Due to the orthogonal basis functions, the variance matrix is diagonal. The
drift vector s projects a drift µ onto the function basis φ.

Σ =




< σ |φ1 >2 · · · 0
...

. . .
...

0 · · · < σ |φN >2


 , R =




< µ |φ1 >
...

< µ |φN >


 (3.65)

The drift µ that satisfies the initial condition (3.56) has been derived multiple
times by various sources [HJM92, Mun98, Shr97, Zag02].

µ(t, s) := σ(t, s)

∫ s

t
σ(t, u) du. (3.66)

It has to be noted, that the risk neutral drift µ was derived in continuous time,
whereas Θ-processes always operate in discrete time. The result is correct for
small ∆t and volatilities σ that do not depend on f .

3.4.3 Hull&White

There exists a range of volatility structures σ for which the drift adjustments µ
can be captured exactly with a finite set of basis functions φi [IK98]. The Hull
and White interest rate model is a special case of the extended Vasicek model
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3 The Theta-notation for stochastic processes

and requires only two basis functions for its oscillation on the initial curve. It
can also be written as a special case of the HJM model [Zag02, p134] with an
exponentially decaying σ with the volatility level α and the volatility decay κ
that makes longer forward rates less volatile.

σ = α exp
(
−κ(s − t)

)
α, κ ∈ R+ (3.67)

In order to represent shifts in the interest rate curve f(t, s) together with the
drift adjustment term µ, we need the function space spanned by σ and −σ

∫
σds.

These can be represented in an orthonormal basis φ1 and φ2, with respect to
the standard inner product (A = 1).

φ1(s) =
√

2κ exp(−κs) (3.68)

φ2(s) =
√

36κ

(
exp(−2κs) −

√
2

3
√

κ
φ1(s)

)

For this function basis the results of the inner products can be given explicitly.
These parameters determine the HJM model.

< σ|φ1 > =
α exp(κt)√

2κ
(3.69)

< σ|φ2 > = 0

< µ|φ1 > = −α2
√

2 exp(κt)(2 exp(κt) − 3)

6κ
3
2

< µ|φ2 > = −α2 exp(2κt)

6κ
3
2

The basis functions φ1 and φ2 may not depend on current time t, while the
inner products may not depend on maturity s. If that happens to be the case,
you might have chosen an inappropriate function basis. The Hull and White
model is written according to (3.64). Since σ and µ are independent of a we
can expand the operators into a sequence of univariate operations.

Θhw = B <σ|φ1>
a1

T
<µ|φ1>
a1

T
<µ|φ2>

a2
Θ1

det (3.70)

The sequence consists consists of the usual effects. A diffusion and drift in the
curve parameters a and the effects from the deterministic model. The operator
Θhw can be raised to the power of ∆t, which is approximated by powering each
individual operator. Since the operator term denotes a discrete time version of
the model the accuracy depends the time resolution ∆t.

Example: As an example for the Hull&White interest rate model we will eval-
uate a bond deal. Suppose at time zero you paid 0.8 units of wealth and receive
a redemption of one unit after one period. The full operator sequence for this
deal is denoted by Π and consists of three effects. In chronological order you
pay 0.8, then wait Θ and finally add one to the account c.

Π(Θ) := T −0.8P0
c Θ T 1P0

c (3.71)
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The result of the operator sequence can be solved analytically and numerically
for quite a range of operand functions. We assume values for f , α and κ.

f(0, s) = 0.1 + 0.01s (3.72)

α = 0.2

κ = 0.5

c0 = 0 (3.73)

Hence we have a formula for f(t, s) that depends only on the two time dependent
variables a1 and a2.

f(t, s) = a1 exp(−0.5s) + a2

√
18

(
exp(−s) − 2

3
exp(−0.5s)

)
(3.74)

The cash account c starts at zero. This value must be inserted into the function,
after the operator Π(Θ) was applied. Before application c has to be treated as
either a free variable or as a free dimension of a multidimensional function.
According to (3.3) the expected discounted profit of this investment is Π(Θ)c.

E(c) = AΠ(Θhw) c = 0.100P0 (3.75)

The application of univariate blur operators has been discussed mulitple times
and expands to extremely lengthy algebraic terms. For that reasons we display
only the numeric results.

Following the same rationale we can compute the expected squared profit.

E(c2) = AΠ(Θhw) c2 = 0.0415P 2
0 (3.76)

Having expectations for c and c2 we can compute the standard deviation of
discounted profits. √

E(c2) − (Ec)2 = 0.177P0 (3.77)

The operator Π(Θ) can be supplied with any measuring function and we could
extract all kinds of risk measures and expected values for the investment Π
under the process Θhw.

3.5 Example

This final example demonstrates the flexibility of the Θ-notation for stochastic
processes. Based on a Θ operator that models economic parameters we can
derive explicit formulas for the evaluation of various trading strategies and
financial portfolios. Applying the product operator to appropriate measuring
functions will reveal all kinds of risk measures and expected values.

Suppose you entered or are offered to enter a financial contract of the following
type: A bond issuer wants to borrow from you a certain amount of money and
in turn binds himself to a dept redemption procedure. For a period of 10 years
he pays a coupon of 7 cash units per year and finally redeems a nominal value
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3 The Theta-notation for stochastic processes

of 100. Furthermore the debtor has the option of early redemption at a strike
price of 105. The option can be exercised right after each coupon payment,
but not before year two. The investment can be written as an operator Π(Θ)
and reads chronologically from left to right. The Θ refers to a unit period of
inactivity, Tc transfers the exponents amount onto the cash account and min
selects the less valuable of two functions.

Π(Θ)V =
(
ΘT 7P0

c

)2

 min T 105P0

c V

·
ΘT 7P0

c




8

T
100P0

c V (3.78)

When entered into a computer algebra system, the term is flattened out and
expanded into nested minimum functions. The algebraic result can become
very long and should not necessarily be looked at.
For our numeric examples we choose a Hull&White model with an additional
probability for the debtors default λ. In case the debtor goes default the portfo-
lio operator Π(Θ) is not continued. Instead we evaluate V directly, without any
further payments. The function can be considered as a constant operator that
evaluates V regardless of what operand it is applied to. Due to Θ’s definition
via the expected value (3.3) the two scenarios can be combined linearly (see
2.4.2).

Θ =
1−λ

λ

Θhw

V
= λV + (1 − λ)Θr (3.79)

The model is parameterize by two kinds of parameters. One that are constant
and could as well be given as numbers and others which behave like free variables
at first and are only inserted after all operators are applied. The point of
insertion has a crucial effect on the numeric result. We will use the A operator
to indicate the replacement of variables with their initial coordinates.AV = V

∣∣
c=0
t=0

(3.80)

Depending on the system you use there are three different implementations
of the insertion procedure. Computer algebra systems substitute the numeric
values for the free variables and triggers a numeric evaluation scheme. Monte
Carlo methods use the initial values for scenario generation. PDE methods
solve the operator term on a multidimensional grid of which each free variable
refers to one grid dimension. And, finally, evaluate the grid at the initial values.
The model parameters that serve just as an abbreviation of well defined values
can be inserted into the function at any time. The probability measure for λ
fit to the risk-neutral probabilities of Θhw.

λ =
1

100
, r0 =

5

100
, f(0, s) = r0 +

s

200
, σ = 0.02e−0.66(s−t)

3.5.1 Present value

The first and most commonly asked question is about the investment’s present
value. We can compute the expected discounted cash value by setting our
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3.5 Example

measure function V to the cash account c. Accordingly, any application of the
portfolio operator Π(Θ) will evaluate the expected final value of c under process
Θ.

Vc(c, t) = c (3.81)

Figure 22 shows the discounted portfolio value and its sensitivity to parallel
shifts of the interest rate curve. The horizontal axis shows the interest rate
at start time r0 . On the vertical axis we can see the values of three different
investments. The bond with short option PV is less valuable than the two
reference investments: the same portfolio without short option, i.e. a 10 year
coupon bond (BV ) and the portfolio, if exercised after two periods, i.e. a two
year bond with a redemption of 105 (EV ).
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Figure 22: A bond with short
call is less valuable than the plain
bond and the first exercise value.
Portfolio value:
PV (r0) = Π(Θ)Vc

Bond value:
BV (r0) =

(
ΘT 7P0

c

)10
T

100P0
c Vc

First exercise value:
EV (r0) =

(
ΘT 7P0

c

)2
T

105P0
c Vc

3.5.2 Risk measures

A probability distribution for discounted portfolio values can be computed with
an extended measure function Ṽ . The new measure has an additional compo-
nent containing a characteristic function on where the original measure V is
smaller than a threshold x. The expected value of the indicator function, as
evaluated by the portfolio operator Π equals the probability of the cash value
to be less than x.

Ṽ =

(
Vc

1Vc<x

)
(3.82)

The first component is required to determine whether to exercise the option, as
required by the minimum function in the portfolio operator Π. The expected
value of the second component is equal to the cumulative probability distribu-
tion of discounted final profits on account c. Figure 23 plots its derivative, the
probability density.

3.5.3 Stopping times

Another important question concerns the time after which the option is exer-
cised. The portfolio is now evaluated with a new parasite component in Ṽ .
The stopping time indicator determines the probability that the option was
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Figure 23: In case of a plain
bond, the probability distribution
of profits, exhibits the usual bell
shape. Taking the short call into
the portfolio rules out very high
revenues in favor of early payment
just above the strike price.

Plotted function:
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Π(Θ)

(
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1Vc<x

)

exercised within the first τ time steps.

Ṽ =

(
Vc

1t<τ∧c≥105P0

)
(3.83)

There are two possible reasons why the time variable t is smaller than maturity
time. One is that the option was exercised and the portfolio was not evaluated
to the end. The second explanation is a default. We are interested in option
exercises and can differentiate scenarios by checking whether a cash redemption
was payed. According to figure 24 the total probability of exercise is Π(Θ)Ṽ2 =
27.7.
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Figure 24: Probability of option
exercise. The option becomes in-
creasingly unlikely to be exercised
with time. The total probability
of exercise is 27.7%.

Plotted function:
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)

3.6 Conclusion

This chapter introduced a new financial calculus based on the foundations of
operator theory. Any stochastic process can be written as an operator Θ, which
in turn can be constructed by simple operators, that introduce various deter-
ministic or stochastic effects. Most notably are the operators T and B that solve
the transport and the heat equation. Whereas T models deterministic impacts
and transactions between various accounting variables. Random or Gaussian
impacts are performed by the B operator. In combination both operators allow
the description of Brownian motions with drift, for processes like Black&Scholes
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3.6 Conclusion

or interest rate models. An event sequence that occurs within one time step can
be summarized in the operator Θ. Read chronologically from left to right the
operators also allow the notation of trading strategies and financial portfolios
(see chapter 2).
The operator notation can easily be implemented in the context of a computer
algebra system or any programming environment that supports the concept of
functions as data types. Hence, Θ-calculus presents an ideal tool for financial
engineers who wish to quickly set up various financial models and need the
freedom to combine processes, investment strategies and risk or return measures
easily.
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4 Put into practice

In this final chapter we discuss a simple financial product and its
transformation into a numeric scheme. First, we will use the oper-
ator notation developed in chapters 2 and 3 to describe the finan-
cial contract and a model for the stock price dynamics. Then we
will demonstrate that the resulting operator term is flexible enough
to extract some analytic properties. Based on three different repre-
sentations of the operator term there will be three possible numeric
implementations, that consist of hardly more than a transcription of
each individual operator in an operator sequence. This quick transi-
tion from operators to computer code is made possible by chapter 1,
where an abstract class for functions and functional operators was im-
plemented. Finally, we will show how easy it is to extend the scheme
to adaptive refinement. Normally only a result of heavy coding, we
will just introduce an additional operator and set up an adequate
error estimator.

4.1 Economic model

This first section derives the economic setting in operator notation. There
are two main advantages of operator-based finance over traditional notations.
First, operators allow the explicit notation of all kinds of financial contracts,
where prevailing financial literature can currently only present text form de-
scriptions. Second, the operator notation is much closer to a computational
scheme. Evaluating mathematical properties requires no more than the in-
sertion of appropriate definitions, as it is suitable for computer algebra and
numerics software.

4.1.1 The product

We will consider a product known as Asian option with strike K = 1 and time
to maturity n = 5, as introduced in (2.31). The precise details of this contract
can be represented by a sequence of effects in chronological order. Initially, a
temporary accounting variable a is introduced and set to zero. Then follows an
event sequence that is repeated five times, as indicated by the operator power.
This sequence performs a time step Θ, during which economic parameters can
fluctuate according to a theoretical model, and then adds the current stock
price S onto the counter a. After the repeated sequence finishes, an option
between nothing and a cash payment of a/5 − 1 is exercised.

Π(Θ) = A
a=0

(
ΘT S

a

)5 max T
a/5−1
c

·
(4.1)
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4.2 Algebraic results

The portfolio Π(Θ) is represented by an operator that depends on a process for
economic parameters Θ. It can be applied to any measuring function, depending
on what kind of statistical property we want to extract. The most common
measure is the pricing measure, that evaluates the expected amount on the
cash account c after contract maturity. Assuming an initial balance of c = 0,
we can slightly simplify the previous operator term (4.1).A

c=0
Π(Θ) c = A

a=0

(
ΘT S

a

)5
max(a/5 − 1, 0) (4.2)

4.1.2 The process

As the model for the stock price dynamics we use the Black&Scholes model as
defined in (3.42). The process assumes stock prices with normally distributed
movements and an expected stock price growth that is equal to the interest
rate. This growth property ensures that expected cash values are actual prices
that can be reproduced by a hedging strategy (see 2.5).

Θbs = e−r
T

rS
S B

(σS)2

S (4.3)

The interest rate r occurs twice in this equation. Once for the stock price drift
and once for the discounting. The later is done by a multiplication with e−r,
which is only allowed if applied to a measure that is proportional to a cash
amount, i.e. a measure for pricing. We assume the following values for r and
σ.

r =
2

100
, σ =

40

100
(4.4)

4.2 Algebraic results

The task of computing the option price according to (4.2) can not be performed
analytically. However, we can derive other properties and preprocess the oper-
ator term for effective solution with various numerical methods. The algebraic
results that are presented in this section are not new and several methods are
known to derive them. What is going to be demonstrated here is that the op-
erator notation provides quick access to these results. Thus, the notation is a
compact description language for finance and its computational tasks.

4.2.1 Simplified setting

The reason why the pricing formula can not be solved algebraically is the maxi-
mum function in the final payment. It is not smooth and can not be integrated
algebraically. We simplify the function (4.2) and replace it with a polynomial
that depends on a. A

a=0

(
ΘT S

a

)5
ap (4.5)

With this simplified pay off there is a straight forward solution according to the
previously derived algebraic rules for the involved operators B and T .
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Term Result

(ΘT S
a )5 a 4.805S

(ΘT S
a )5 a2 37.209S2

(ΘT S
a )5 a3 955.140S3

There are several reasons why one could be interested in the results of this
simplified option. Firstly, it can be used as a test case for numerical option
pricers. Their accuracy can be estimated based on these similar but solvable
problems. Secondly, the price of options with the polynomial payoff can be used
to extract the expected value and higher order moments of the final distribution
of a. Analytical approximations can be built by generating a process for a that
has the same moments.

4.2.2 Integral form

Financial products, including the Asian option, are often evaluated by numeri-
cal integration. A mathematical representation for the financial product must
therefore be converted into integral form. Without a proper mathematical term
for the product this might be an easy task for the experienced, but not trivial
for anyone who is new to finance. With the explicit operator notation the task
can be performed mechanically, because the operator notation is essentially an
integral representation. The integral is hidden in the blur operator B and only
needs to be expanded according to B ’s definition (3.33).

ΘT S
a f(a, S) = e−r

T
rS

S B
(σS)2

S T
S
a f(a, S) (4.6)

=
e−r

√
2π

∫ ∞

−∞
e−1/2 u2

T
S(r+σ u−σ2/2)

S T
S

a f(a, S) du

=
e−r

√
2π

∫ ∞

−∞
e−1/2 u2

f
(
a + Ser+σ u−σ2/2, Ser+σ u−σ2/2

)
du

As a further preparation for numerical quadrature, the integration domain is
often mapped onto a finite interval. It is suggested to substitute the integration
variable u with the inverse Gaussian distribution. Thus, the integration borders
are now 0 and 1, with the nice side effect that the exponential function in the
integrand cancels out.

ΘT S
a f(a, S) = e−r

∫ 1

0
T

S(r−σ G−1(v)−σ2/2)
S T

S
a f(a, S) f(a, S) dv (4.7)

Whereas G is the Gaussian distribution function.

G(v) =
1√
2π

∫ v

−∞
e−1/2u2

dv (4.8)

The integral form for a single time step must be applied 5 times to reach the
maturity of our Asian option. This leads us to 5-dimensional integral. Due
to the high dimensionality the Monte-Carlo method is the rule of choice. A
numerical integration based on sparse grids, a method to create regular grids
in high dimensions, is also possible but does not converge as fast, since the
integrand is not smooth [BD03].
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4.3 Numerical solution

4.2.3 Logarithmic scale

The Black&Scholes model postulates a geometric Brownian motion for the stock
price. It is a well known fact that geometric Brownian motion can be turned
into standard Brownian motion on a logarithmic scale. The standard Brownian
motion is expressed by the blur operator B with just a real number in the
exponent and is often easier to implement.
Basic ingredients for this transformation were derived in section 3.2.2. A geo-
metric blur B (σS)2 was shown to be equivalent to a sequence of three operators:
Transformation onto log scale, blurring and transforming back to standard scale.
Inserting this equivalence in our pricing formula, we end up with a sequence of
blurs on log scale and transactions onto counter a on standard scale. It would
be nice to perform the transaction to a on log scale as well, such that no scale
changes are required. Knowing the basic rules and operator properties we can
evaluate this transformation purely in operator calculus.

(
ΘT S

a

)5
f(a) =

(
e−r
T

rS
S B

(σS)2

S T
S

a

)5
f(a) (4.9)

(3.32)
= e−5r

(
T

rS
S T

−S(S′+ 1
2
σ2)

S B
σ2

S′ T
SS′

S T
S

a

)5

f(a)

= e−5r
T

S(r− 1
2
σ2)

S

(
B

σ2

S′ T
SS′

S T
S

a T
S(r−S′− 1

2
σ2)

S

)4

B
σ2

S′ T
SeS′

a f(a)

= A
S′=0

e−5r
T

S(r− 1
2
σ2)

S

(
B

σ2

S′ T
SeS′

a T
S(r− 1

2
σ2)

S

)4

B
σ2

S′ T
SeS′

a f(a)

= A
S′=0

e−5r

(
T

S(r− 1
2
σ2)

S B
σ2

S′ T
SeS′

a

)5

f(a)

= A
S′=0

e−5r

(
T

r− 1
2
σ2

S′ B
σ2

S′ T
SeS′

a

)5

f(a)

After this transformation the initial stock price S can be considered as a con-
stant. Any change is reflected by S′ on logarithmic scale. The S′ is initialized
to zero with AS′=0.

4.3 Numerical solution

When it comes to numerical solution, very often a huge gap between a math-
ematical concept with compact results and a computer implementation that is
confronted with the limitations of computability opens. The incompatibility
between math and programming is a consequence of very different concepts
that can not be represented in each others world.
Chapter 1 on multiscale calculus offers cure for at least one source of such prob-
lems. A computational data type for mathematical functions and operators was
introduced. Based on this implementation a wide range of common operators
was made available to a computer program. In particular we have seen code
for all the operators that are involved in our financial model. Hence, the trans-
formation from operator notation to computer code should require hardly more
than a transcription of each operator into the corresponding implementation.
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4 Put into practice

4.3.1 Integration

Numeric integration is the standard method for the determination of an Asian
option’s price. Hence, the intgeration method will be the first that is turned
into computer code. The integral representation, as developed in section 4.2.2,
is a five dimensional integral over an integrand function to which several T
operators are applied. We can write the complete integrand A as a sequence of
initial values, the transformations T and final evaluation function.

A = A
S=1.0
a=0.0

(
5⊙

i=1

T

S
“
− 2

5
G−1

“
xi+

∆xi
2

”
− 3

50

”

S T
S

a

)
e−1/10 max

(a

5
− 1, 0

)
(4.10)

The argument to the inverse Gaussian distribution G−1 is shifted by half the
resolution, such that we can later apply an integration method that starts at
zero. Since we have already discussed the transcription of all involved operators
the computer code is straight forward. It is assumed that all occurring numbers
are automatically casted to the constant function (see 1.2).

S = 1.0

a = 0.0

FOR dim = 1 TO 5

S = S*Exp(-2/5 * Invnorm(x(dim) + Delta(dim, x(dim))/2) -3/50)

a = a+S

END

A = Exp(-1/10) * Max(a/5 - 1.0, 0)

Now, we apply the integral operators to the integrand. For the univariate
integration the standard rule

∫
·∆x was developed in section 1.3.2. This might

not be the best integration rule available, but the integrand function is not
smooth and many optimized quadrature rules will not necessarily work properly.

I =

∫ 1

0
· · ·
∫ 1

0
A∆x1 · · ·∆x5 (4.11)

The integral has five dimensions and it is advisable to apply the sparse grid
operator ⊞ from section 1.5.4 to perform an efficient evaluation on heigh di-
mensions.

Z
n
1 · · ·Zn

5 ⊞
{1,··· ,5}

I (4.12)

The accuracy level is determined by application of dilatation operators. The
result does converge with with increased zoom level, but results could certainly
be better.

Term n 3 4 5 Analytic

(ΘT S
a )5 a 4.60 4.69 4.74 4.80

(ΘT S
a )5 a2 29.7 32.1 33.73 37.2

(ΘT S
a )5 a3 120 174 224 955

(ΘT S
a )5 max(a/5 − 1, 0) 7.0 29.3 23.2 –
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4.3 Numerical solution

Obviously the result for a3 causes serious problems to the computational method.
The problem is in part caused by rounding errors in the floating point arith-
metics. Even the Monte-Carlo method does not converge to the correct result,
unless floating point numbers with significantly more than 64 bits are used.

4.3.2 Standard scale

After the most common implementation approach was discussed we turn to
the most straight forward approach. Given that you have set up the operator
term for your financial product and given an implementation for the common
operators, nothing is easier than just applying all the operators one by one.A

S=1.0
a=0.0

(
e−r
T

rS
S B

(σS)2

S T
S
a

)5
max

(a

5
− 1, 0

)
(4.13)

The continuous operators T and B do solve complex partial differential equa-
tions. In a discrete setting it is sufficient approximate them by T and B as
defined in sections 1.4.3 and 1.4.2.

≈ A
S=1.0
a=0.0

(
e−rT rS

S B
(σS)2

S T S
a

)5
max

(a

5
− 1, 0

)
(4.14)

Before we can feed this into our multiscale algorithm we must get rid of the
non zero initial value for S and determine the resolution with the application
of the dilatation operator Z.

∼= AZ
nT 1

S

(
e−rT rS

S B
(σS)2

S T S
a

)5
max

(a

5
− 1, 0

)
(4.15)

The convergence of this implementation is much better. The number of dimen-
sions is lower, with only a and S. The polynomial order is better as well. Linear
functions can be represented precisely with the linear interpolation method even
on the coarsest scale.

Term n 0 1 2 Analytic

(ΘT S
a )5 a 4.80 4.80 4.80 4.80

(ΘT S
a )5 a2 36.4 37.1 37.2 37.2

(ΘT S
a )5 a3 362 415 434 955

(ΘT S
a )5 max(a/5 − 1.0, 0) 23.0 25.0 24.76 –

The result behaves like function and it is just easy to evaluate the problem for
different intial parameters. By changing the power of the repeated operator
sequence, we can trace the intermediate computational steps. The results are
visualized in figure 25.

4.3.3 Logarithmic scale

On logarithmic scale the transcription of operators is essentially the same as
on standard scale. We even don’t need to approximate our operators T and
B , since they have real valued exponents and can directly be translated into
congruent discrete operators. Please keep in mind, that no further configuration
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Figure 25: Value profile of the Asian option. The evaluation is performed
backwards in time. The last picture in this sequence shows the final payment
V and to which the operators are successively applied. The first picture shows
Asian option price that depends on the initial value for the counter a and current
spot price S.

was necessary to implement this term as a multiscale function. Domain borders
are adjusted automatically and the resolution can always be determined with
Z operators. The following term is just repeated from (4.9) and evaluated with
the numerical scheme A.AΠ(Θ)c ∼= AZ

ne−5r

(
T

r− 1
2
σ2

S′ Bσ2

S′ T 1eS′

a

)5

max
(a

5
− 1, 0

)
(4.16)

The polynomial accuracy is lower on logarithmic scale and linear functions
can no longer be captured precisely. A hard case is again the function a3,
with an error of more than 50% due to unprecise floating point representation.
Fortunately there are no options with such a high curvature in the pay off. The
resulting option price seems to settle around 24.7.

Term n 0 1 2 Analytic

(ΘT S
a )5 a 4.85 4.80 4.80 4.80

(ΘT S
a )5 a2 42.6 36.8 37.0 37.2

(ΘT S
a )5 a3 722 412 425 955

(ΘT S
a )5 max(a/5 − 1, 0) 25.5 24.8 24.71 –

4.4 Further tuning

The programming interface to multiscale functions works well in encapsulat-
ing some of the difficulties of numeric programming. Complex operator terms
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4.4 Further tuning

could be evaluated on the domain of mathematical functions without bothering
about the internals of the functional implementation. However, it is sometimes
unavoidable to trace down the computational procedure. Speed bottlenecks or
sources of errors can only be detected after deeper research. We will now anal-
yse and tune the code purely through our proxy operators, without having to
dig in elementary program code.

4.4.1 Evaluation nodes

In order to tackle any speed problem connected to the evaluation of a multiscale
function some measurements and visualizations can help detecting its source.
Concerning speed it is highly relevant, how often and where a function is eval-
uated. If we have an operator term of the form Θ5f it results in a function and
we have tight control over where we want to evaluate it. However, one call to
Θ5f will be followed by more than one call to Θ4f at possibly very different
coordinates. Each call to Θ4f will in turn generate calls to Θ3f . Eventually a
single call to the whole operator term Θ5f causes an abundance of calls to the
plain function f . It is very important to understand this calling sequence.
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Figure 26: Calling sequence for the Asian option pricer. An evaluation of the
operator term (ΘT S

a )5V at one point, marked by a single cross in the first plot,
causes several calls to subterm (θT S

a )4V , marked in the second plot, and so on.
Finally, the whole operator term requires multiple evalutations of the original
function V , plotted finally.

Figure 26 visualizes the calling sequence for the Asian option pricer. This kind
of graphics can be printed by the tracing proxy as discussed in 1.6.3. The
initial term is only called once at the coordinates (0, 0). Although not plotted
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4 Put into practice

to the full extent, the values on the a-axis do eventually reach very high values.
While the S′-axis is scaled logarithmically, the a-axis is not. When the stock
price ln(S) goes to 8, a is increased by e8 = 2981. A large part of the function
samples lie far out.

4.4.2 Local adaptivity

A more careful placement of evaluation nodes can be achieved by local adaptiv-
ity. In section 1.5.3 an a posteriori adaptive algorithm was introduced, which
can be applied to a function just in the same way as any operator. Adding this
kind of adaptivity to an existing algorithm has never been easier.
The first thing that we have to do is to set up an error estimation function.
Based on the result of the refined solution Z and an interpolated guess W an
error estimation E must be derived. A mixture between an absolute and a
relative error is appropriate in this case.

E =
|Z − W |
|Z| + 1

(4.17)

Configured with this error estimator we can apply the adaptive scheme A in
both directions. The adaptivity can be placed at every position where it seems
appropriate. In this example, five adaptive layers are inserted.

(
ΘT S

a A1A2

)5
max

(a

5
− 1, 0

)
(4.18)

Figure 27 shows the effect of the adaptivity on the evaluated nodes. The pa-
rameters are ǫ = 0.005 and α = 0. Clearly the computational effort is focused
on the singularity of the function. Two effects are worth mentioning. Firstly,
the adaptive scheme never gets courser than the initial uni-spaced grid. Sec-
ondly, some extra effort for the adaptive scheme is required, since the space is
more coarsely sampled before evaluation of a precise position. The difference
becomes very clear in the second plot. Adaptivity should better have been
switched off here. Also the last picture, where adaptivity interpolates a lot of
values, but surely consumes more time for the interpolation than the simple
maximum function would require.
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Figure 27: Evaluation nodes of the adaptive scheme. Compared to the pre-
vious figure evaluated points are sampled more coarsly where the function is
smooth.
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5 Conclusion

This document presented a case for the use of operators in finance and numerics.
Strictly speaking, operators are functions that map functions onto functions.
However, this thesis presented many applications of operators which gave this
mathematical concept much more practical meanings. First, the well known
operators integration and differentiation were redefined to work on a computer
implementable data structure as a domain, on which further operations, such
as adaptivity and sparse grid evaluation could be seen as operators too. A
unified concept for the definition of the mathematical model and the numerical
procedure is certainly desirable, since the two can hardly be viewed separately
from each other. However, few methods essential for effective scientific com-
puting were not explicitly presented but are implementable by principle. These
include implicit PDE and iterative methods and multi-grid. A much more com-
plete coverage of required operators was reached in the field of finance for the
expression of financial contracts and products. Based on operators for elemen-
tary events a chronological sequence of operators could express all commonly
traded contracts, which was previously not possible through neither technical
nor mathematical means. Finally, a method was given to express stochas-
tic processes in a way can be directly reduced to mathematical operations on
the domain of functions, although it meant that some models could only be
expressed as approximations. By and large this work demonstrated the appli-
cability of operators for financial modeling as well as their applicability for the
controlling of computational routines. Maybe the work with functions as data
structures may once become as common place as matrices and vectors are used
in numerics today.
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