0-0-0—0—01
L0-0-0—0j0—

|O-0—0-010—

FAKULTAT FUR INFORMATIK M
DER TECHNISCHEN UNIVERSITAT MUNCHEN

Density-based clustering

in large-scale networks

Klaus Holzapfel

Institut fiir Informatik der Technischen Universitat Miinchen
Lehrstuhl fiir Effiziente Algorithmen

Density-based clustering

in large-scale networks

Klaus Holzapfel

Vollstindiger Abdruck der von der Fakultat fiir Informatik der Technischen

Universitat Miinchen zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Dr. h.c. mult. Wilfried Brauer
Priifer der Dissertation: 1. Univ.-Prof. Dr. Ernst W. Mayr

2. Univ.-Prof. Anja Feldmann, Ph.D.

Die Dissertation wurde am 21.01.2004 bei der Technischen Universitat Miinchen

eingereicht und durch die Fakultat fiir Informatik am 07.02.2006 angenommen.

Zusammenfassung

Die Analyse grofler Netzwerke mit bis zu Milliarden von Elementen (z.B. das
Internet, biochemische Netze oder grofie soziale Strukturen) bedient sich oft ab-
strahierender Darstellungen. Dichte-basiertes Clustern ist eine wichtige Technik,
um diese Abstraktionen zu erzielen.

Die vorliegende Arbeit diskutiert die Komplexitiat des Auffindens dichte-basierter
Substrukturen in groflen Netzwerken, die als einfache, ungerichtete Graphen dar-
gestellt werden. Der Schwerpunkt der Arbeit liegt in der Analyse eines ent-
sprechenden “fixed-parameter” Entscheidungsproblems zum Finden dichter Sub-
graphen. Es wird eine Klassifizierung des Problems erzielt, das entscheidet, ob
ein gegebener Graph einen Subgraphen auf genau £ Knoten mit einer bestimmten
Mindestanzahl von Kanten enthélt (in Abhéngigkeit einer festen Funktion v iiber
k). In Abhéngigkeit des Wachstums der Funktion 7 wird eine obere Schranke fiir
die Zugehorigkeit zur Klasse der polynomiell l16sbaren Probleme und eine untere
Schranke fiir eine NP-Vollstéandigkeit angegeben.

Eine Vielzahl der realen, grofien Netzwerke kann gut durch so genannte Power-
Law Graphen beschrieben werden, die durch ihre typische Gradverteilung charak-
terisiert sind. Entsprechend dieser Eigenschaft wird in der Arbeit auch die
Komplexitit des oben genannten Entscheidungsprobelms betrachtet, wenn die
Menge der Eingabegraphen auf diese Graphklasse beschrinkt wird. Ahnlich zur
vorhergehenden Klassifizierung werden entschrechende Schranken ermittelt.

Abschlieflend wird die Approximierbarkeit eines zu Grunde liegenden Optimier-
ungsproblems untersucht. Um Moglichkeiten aufzuzeigen, wie die schwache, best-
bekannt Approximationsgiite verbessert werden kann, werden fiir Netzwerke zur
Darstellung der Hyperlinkstruktur des World Wide Web einige gangige Heuris-
tiken erlautert.

ii

Abstract

The analysis of large networks with up to billions of entities (e.g., the Internet,
biochemical pathways, or huge social structures) is often based on abstract repre-
sentations. Density-based clustering is an important technique for deriving these
abstractions.

In this thesis we dicuss the complexity of finding density-based substructures in
large-scale networks, represented as simple, undirected graphs. The main focus
is on the analysis of a corresponding fixed parameter dense subgraph problem.
We derive a classification for the decision problem that decides whether a given
graph contains a subgraph on exactly k£ vertices and a given minimum number
of edges (calculated by some fixed function 7 of k). Based on the magnitude of
function f we state an upper bound for membership in the class of polynomially
solvable problems and a lower bound for completeness in NP.

A large fraction of real world networks can be sufficiently described in terms
of so called power-law graphs, which are characterized by their typical degree
sequence. Based on this property, we also discuss the complexity of the above
decision problem, when restricted to this class of input graphs. Similarly to the
previous classification, we derive corresponding bounds.

Finally, we investigate the approximability of an underlying optimization prob-
lem. Further, in order to outline some possibilities to overcome the poor best
known approximation ratio, we discuss some commonly used heuristics for net-
works representing the hyperlink structure of the World Wide Web.

iii

iv

Acknowledgments

There are numerous people I want to thank for their advice, help and motivation
during the last four years.

First of all, I would like to thank my supervisor Prof. Dr. Ernst W. Mayr for the
opportunity to be part of his research group while working on my PHD thesis, and
for all his support and encouragement. I had the chance to carry out my research
freely and to attend international research meetings which makes it possible for
me to look back confident on my academic life so far. I also want to thank my
second anonymous referee for kindly agreeing to examine my thesis.

Further, I want to express thanks to all my dear colleagues. Special thank goes to
Hanjo, Moritz, Stefan and Sven from NetLEA for the pleasant atmosphere and
friendship within our research group, and all the hours of fruitful discussions,
inspiration and final proof reading. I also want to thank Angelika, Steffi, Mark,
Martin, Thomas, and Volker who left LEA earlier and helped me to understand
what research is really about and that work must be correlated with fun in order
to please.

Finally, I want to address my family. Metaphorically speaking, thank you for
having carried me in those times where there was only one set of footprints in
the sand. Love is the highest gift, thank you Eva.

vi

Contents

1 Introduction
1.1 Motivation
1.2 Background on Clustering

1.3 Overview and Results

2 Large-scale networks
2.1 Small-world networks oo
2.1.1 History
2.1.2 Small-world graphs oo
2.1.3 Graphmodels oo
2.1.4 Summary for small-world networks
2.2 Power-law graphs o
2.2.1 Properties of random power-law graphs
222 Graphmodels Lo

2.2.3 Analysis of 8-PL degree sequences and construction of sub-
graphs with bounded average degrees

2.2.4 Average-case analysis for power-law graphs
2.3 The hyperlink graph of the WWW
2.3.1 Structure of the hyperlink graph
2.3.2 Communities in the hyperlink graph
2.3.3 Summary for the hyperlink graph

24 Summaryo e e e

3 Graph transformations
3.1 Elementary graph transformations
3.1.1 The Transformation R,
3.1.2 The Transformation S;

vii

SN N

© oo oo

10
12
12
13
17

22
29
29
30
31
33
33

viii CONTENTS
3.1.3 The Transformation N, 39
3.1.4 The Transformation T'I'O,lN('I‘) 43

3.2 General local graph transformation 47
3.2.1 Average Degree 48
3.2.2 Special choices for G, and G, 49

3.3 Combined transformations NyoS;o Ry 52

4 The complexity of finding dense subgraphs 57

4.1 Overview and complexity results 57
4.1.1 Definition of density o7
4.1.2 Dense subgraphs of arbitrary size 59
4.1.3 Dense subgraphs with required size 59

4.2 Finding (k 4+ O(1))-dense subgraphs in polynomial time 64

4.3 NP-completeness for v-DSP with y € Q(k+k°) 70

4.4 NP-completeness for y-DSP in -PL with v(k) > 26k 79
4.4.1 Outline of the proof 80
4.4.2 Casel: 8§ k' <~y(k) <Ok 81
443 Cases II-V: ok <y(k) < (¥) L. 89

4.5 Discussion on the complexity of v-DSP on g-PL 94
4.5.1 General discussion of the bounds based on v-DSP on gen-

eral graphso oo 95
4.5.2 Discussion of the proposed reduction technique for NP-

completeness of y-DSP on g-PL graphs 96
4.5.3 Summary of the discussion 102

5 Approximation of the DENSE-k-SUBGRAPH-PROBLEM 103

5.1 MAX-k-DSP on general graphs 0. 104
5.1.1 Greedy algorithms 0oL 105
5.1.2 LP- and SDP-Relaxations 105
5.1.3 Combined algorithms 106
5.1.4 R3SAT-hardness of MAX-k-DSP 108

5.2 MAX-k-DSP on g-PL graphs 109
5.2.1 MaXx-k-DSP =4p MAX-k-DSP-B-PL 109
5.2.2 Approximation results oL 114

5.3 Heuristics for MAX-k-DSP on the WWW 115

5.3.1 Using complete bipartite graphs 116

CONTENTS ix

5.3.2 Using dense bipartite graphs 118

5.4 Summary . .o oL 120

6 Conclusion 121
6.1 Summaryofresults o oo 121
6.2 Futurework 122
A General definitions 125
Al Graphs oL 125
A.2 Computational complexity 126

B Optimization Problems 129
Bibliography 131

Index 143

CONTENTS

List of Figures

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.9
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

5.1

Small-world model of Watts and Strogatz 11
Small-world model of Kleinberg 11
The structure of the directed hyperlink graph [BRM*00] 31
The densification transformation R, 36
The sparsification operator S;. 38
The degree-bounding transformation N,. 40
Reconstruction of a neighboring clique in N,(G) 41
Example for reconstruction process N5(G) 43
Example for construction of quasi-regular graphs A(r, N(r)) . .. 44
The graph-adjoining operator TTO,‘N(T) 45
General local transformation using G, = K3 and G, =Cys 48
Modeling operation S; by using a general local transformation . . 49
Example for tree-based a general local transformation 50
General local transformation modeling N, oSy 51

A typical situation when exchanging vertices in (N, o S; 0 Rs)(G) 54

Breadth-first search for an excess-1 subgraph 66
Ordering and classification of connected components. 67
Algorithm for excess-aggregation of connected components. 70
Example for the graph transformation Ty, 0 Sz 0 Ry 71
Choosing H* within NP-completeness proof for --DSP 73
Selection of vertices forcase I oo 81
Selection of vertices in Case I of NP-c proof of v-DSP-5-PL. . . 85
Construction of G’ for g-PL (Part 1) 86
Community “Comedy” represented by DBG(6,6,3,3) 120

xi

xii

LIST OF FIGURES

Chapter 1

Introduction

1.1 Motivation

Due to enormous increase of computational power in the last decades, it has
been possible to store and process information that originates from large-scale
networks, which consist of upto billions of entities. While these networks share
the common property of large size, they however come from numerous different
and uncorrelated fields, such as

e collections of information (e.g., World Wide Web (referred to as WWW),
digital libraries, or product catalogs),

e social structures (e.g., acquaintanceship networks, supervisor hierarchies,
or dependency structures),

e technical connectivity networks (e.g., Internet structure, power systems, or
VLSI design problems), or

e human-independent natural systems (e.g., biochemical pathways, neuronal
systems, or food webs).

While, in former times, analysis of corresponding data had to be empirical and
based on small test sets, nowadays, it is possible to collect all or at least an
comprising majority of the data of interest. When working on this networks,
one of the main tasks of sociologists, biologists, engineers, and theoreticians is
to analyze and structure this huge amount of data in order to derive knowledge
that helps to understand the underlying systems and to improve existing or de-
velop new strategies and solutions for information retrieval problems. Regardless
of the above mentioned increase of computational power the applied methods
still have to be simple and efficient. More precisely, in most cases, we have to
require (pseudo)linear time complexity for corresponding algorithms. However,
dependent on the specific questions and desired solutions, this property is often

2 CHAPTER 1. INTRODUCTION

either not achievable (e.g., due to computational hardness) or there is no suitable
solution known, so far. Further, most of these systems evolve over time and thus
the data cannot be collected nor represented in a consistent state. Therefore, it
is impossible to compute optimal solutions for the underlying systems.

As a consequence, in most cases, it is suitable and also computational more effi-
cient to work with approximation results. Using structures or properties that have
been observed for the networks, it is possible to build abstractions and thus to de-
crease data size by grouping entities that share some common property. Finally,
based on these reduced data sets, the approximative solutions of the problems can
be computed faster (due to the decrease of input size, it is sometimes even possible
to disregard the restriction on (quasi-)polynomial algorithms). Especially, when
considering pure information retrieval problems, the derived abstractions them-
selves already represent suitable solutions, in most cases. However, the usage of
comprehensive data representations are obviously applicable in various other sce-
narios, e.g., for search processes in information bases, visualization of geometric
data, statistics on huge data sets, or design of communications systems.

The overall technique of deriving abstractive data representations is often referred
to as clustering and is briefly discussed in the next section. This discussion is
followed by an overview on the content of this thesis. Within this overview we
state a specific clustering problem whose complexity is extensively discussed in
this thesis. Based on the growing interest on large-scale systems, we turn our
attention to cluster problems with inputs chosen from this type of network.

1.2 Background on Clustering

In general, clustering is the problem of grouping entities of some input according
to some objective function that depends on the properties of the entities [JD88|.
Dependent of the choice of clusters (disjoint vs. overlapping, complete vs. partial,
etc.) and the type of objective functions (general distance functions vs. metrics,
properties of isolated entities vs. sets of entities, etc.), there exists a huge variety of
different clustering problems. Two very prominent problems, which are based on
distance functions, ask to partition the elements in two (equal-sized) sets in such
a way that the sum of the squared distances within the sets is minimized or the
sum of distances between entities in different sets is maximized. Unfortunately,
similarly to most clustering problems, the two mentioned problems are NP-hard.
In the following we restrict our discussion on graph-based clustering, i.e. we in-
tend to cluster the vertices of some input graph with respect to the adjacency
matrix (or some additional weight functions on the sets of vertices and edges).
Information on other cluster categories such as text-based clustering (mainly
using vector space models such as latent semantic indexing [BDO95, BDJ99)),
geometric-clustering, or cluster-based compression techniques is found in stan-
dard textbooks and comprehensive articles [AK95, JD88, Per02, Ber03|.

1.2 BACKGROUND ON CLUSTERING 3

Graph-based clustering, on the one hand side, is important for grouping edge-
weighted representations of geometric data or physical networks (e.g., VLSI de-
sign problems [Len90]), and on the other hand side, has become more and more
important to improve text-based clustering in hyperlinked environments (e.g., see
[Cha00]). Nowadays search engines for the WWW, for instance, are highly depen-
dent on the link structure (e.g., search algorithm such as HITS [Kle99], PageRank
[BP98], Salsa [LMO00], etc.). Within graph-based clustering most problems are
partitioning problems, i.e. the resulting subset of vertices are disjoint. Further,
the problems can be defined on directed or undirected graphs, respectively. Typ-
ically, the directed and undirected problems only differ in minor changes of the
objective functions. Similarly, as already mentioned above, it is possible to in-
corporate weight functions on the edges or vertices.

Despite of this variety of different kinds of graph-based cluster problems, almost
all problems aim to optimize either correlation (i.e., high objective value) within
the clusters or separation (i.e., low objective value) between clusters, or sometimes
even both of them. These two approaches have similar results, if it is possible
to partition a graph in a way that the resulting sets of vertices have many intra-
cluster edges but only few inter-cluster edges. However, when such a structure
is missing or occurs only occasionally (e.g., in semi-structured data), the results
may differ extremely, dependent whether optimizing correlation or separation.

There exists a huge variety of objective functions in order to optimize the above
mentioned targets. For maximizing the correlation within the clusters it is possi-
ble to consider edge-connectivity [GPS90, HS00], induced degrees [BMZ99], the
diameter [ESB99], or the number of edges [HK95, SW03|, etc. (most of these
problems are again NP-hard [GJ79]). When minimizing the correlation between
vertices of different clusters, the objective function can be described in terms of
minimum cuts (e.g., [vD00, FLGC02]). While the minimum cut can be computed
in polynomial time by using maximum flow calculations [FF56], in most cases, it
is necessary to include size constraints in order to avoid artificial solutions (e.g.,
see [FLGOO]). A very common objective function that uses this idea is known as
ratio-cut, where the cut is scaled with the size of the single clusters. Doing so,
it is possible to admit somehow unequal cluster sizes in order to get significant

smaller cuts. However, when including size restrictions most problems once again
get NP-hard [GJ79].

Finally, due to the computational hardness of the problem, there are several ap-
proximation solutions that use techniques such as greedy algorithms [AITTO0,
FKPO01], move-based approaches [KL70, FM82], spectral techniques [CSZ93], ran-
dom walks [CHK91], etc. Further, some existing heuristics are based on finding
specific substructures that can be expanded to complete clusters (for an example
on finding clusters in the hyperlink graph of the WWW, see section 5.3).

4 CHAPTER 1. INTRODUCTION

1.3 Overview and Results

In this thesis, based on the above mentioned necessity of abstracting data in
large-scale systems, we analyze the complexity of density-based clustering within
corresponding networks. Doing so, we represent the systems as undirected graphs.
In order to model large-scale systems, we require that these graphs follow some
characteristic degree sequence (referred to as power-law structure) that has been
observed for a wide variety of real-world data (for a detailed discussion on large-
scale systems we refer to the latter corresponding chapter). Further, the objective
function is defined to count the number of edges within a cluster. This choice
is based on the observation that many real-world networks follow the small-
world behavior. This property, among other things, gives strong evidence for
the existence of dense subgraphs (i.e., subgraphs with large average degrees resp.
number of edges), which can be used as clusters.

The analysis of density-based clustering is reduced to the basic problem of detect-
ing dense subgraphs within some given input instance. The clustering itself can
be achieved by iteratively extracting isolated clusters (see also [AK95, HK95]).
Thus, the key algorithmic challenge of the clustering process is condensed of the
above described problem of detecting dense subgraphs. In this thesis, we focus
on the analysis of the computational complexity of this problem. The discussion
itself can be split in two main parts.

1. We analyze the corresponding decision problem on the existence of a sub-
graph of given size and number of edges, where the number of required
edges is calculated by some fixed function v of the number of vertices of
the subgraph. Dependent on the fixed function 7, we achieve to state some
intrinsic classification of the complexity of detecting dense subgraphs.

2. Based on the computational hardness that is derived in the first part, we
discuss the approximability of a densest subgraph on a given number of
vertices.

The discussion of both parts initially analyzes the problem on general input
graphs and proceeds with restricting to the above mentioned abstraction of large-
scale networks (i.e., power-law graphs). Doing so, we can refine general prove
techniques, on the one hand side, and show similar or closely related complexity
of both problems, on the other.

The main results can be summarized as follows. Let v be the function that de-
scribed the number of edges that is required for a subgraph on given number of
vertices in order to be a valid solution (throughout the thesis we do not require
induced subgraphs, unless stated otherwise; for preliminaries on graphs and com-
plexity notations see appendix A). Dependent on 7 we can state the following,
up to some small gap, complete categorization of the complexity of the subgraph
problem. If y(k) € k + O(1) we state an decision algorithm that runs in time

1.3 OVERVIEW AND RESULTS 5

polynomial in the number of vertices of the input graph. If v(k) € k + Q(k¢), for
some £ > 0, we prove, for general input graphs, that the problem is NP-complete.
When restricting to a graph class that abstracts large-scale systems, we prove that
the lower bound for NP-completeness is linear in k, i.e., y(k) > 20 - k (where
d describes the (constant) maximum average degree of the specific class of input
graphs).

After the classification of the decision problems, the next part of this thesis
analyzes the approximability of finding dense subgraphs of a given size. In the
corresponding discussion, we prove equivalence of the problem, when restricting
to abstractions of large-scale networks, and the problem for general input graphs,
which has been extensively discussed in the literature (a detailed overview one the
results is stated in the latter discussion). Thus, we can transfer the approximation
results for the general problem to the restricted version and derive some so far best
known approximation ratio of ns—¢ (with n the number of vertices of the input
graph) and strong evidence for the non-existence of a constant approximation
ratio [FKPO1]. Finally, we get that both, detecting and approximating dense
subgraphs within large-scale networks, is computational difficult.

In order to give a comprehensive discussion on density-based clustering, we state
some heuristics that try to overcome the poor best known approximation ratio
by enumerating dense subgraphs in polynomial time. These heuristics are based
on further analysis of the structure of specific large-scale systems. We choose the
hyperlink structure of the WWW for illustrating this approach. Based on the
large expected number of dense bipartite graphs within the hyperlink structure,
we present two polynomial algorithms [KPRT99b, KRKO01a] for detecting sets
of webpages, that belong to the same cluster and concern some common topic
within the WWW.

The remainder of this thesis is structured as follows. In chapter 2 we give a
short introduction to large-scale networks. Within this overview, we discuss the
two above mentioned properties of this type of networks, namely the small-world
characteristic and the power-law behavior. Further, we outline some additional
observed properties of the hyperlink structure of the WWW. In chapter 3 we state
four graph transformations that are used within the NP-completeness proofs. In
chapter 4, after a brief discussion on density-based subgraph problems, we state
the above mentioned polynomial-time algorithm for detecting subgraphs with
small density. Then, we prove the lower bounds for NP-completeness of the
problem, when using either general input graphs or input graphs that have a
power-law degree sequence. At the end of the chapter we complete the analysis
with a discussion of the remaining gap when using power-law input graphs. In the
subsequent chapter 5, we analyze the approximability of dense subgraph problems
and state the above mentioned heuristics. Finally, in chapter 6, we summarize
our results and finalize with a discussion on future work.

CHAPTER 1. INTRODUCTION

Chapter 2

Large-scale networks

In this chapter, we present an overview on the graph structure of large-scale
networks, which are present in almost all areas of natural life. In order to give
a rough idea on the huge variety of these networks we only name some of them:
the Internet (e.g., the pure physical connections, the AS (autonomous systems)
graph, the hyperlink graph of the WWW), social networks (who-knows-who,
telephone call graphs, sexual contacts), scientific citation networks, power-grid
connections, biochemical networks, food webs, neural connections, etc.

Although these networks are harbored in uncorrelated areas, there are some com-
mon properties (e.g., small-world property and power-law behavior), when rep-
resenting these networks as directed or undirected graphs. In this thesis, we
mainly work on representations using undirected simple graphs. The construc-
tion of these graphs is straight forward. Every entity of the network is matched
to some vertex and any connection between two entities results in an edge con-
necting corresponding vertices. All multiple edges that occur during construction
as well as self loops are removed in order to get simple undirected graphs (for
notations on graphs we refer to appendix A.1).

This chapter is organized as follows. First of all, in section 2.1, we describe some
generalized property of these networks that is known as the small-world char-
acteristic. This property is one of the first attempts to categorize this class of
networks. Then, in section 2.2, we discuss the overall structure of the degree
sequence of the underlying graphs. Within the last years, using the increasing
computational power, this new graph model for large real-world data, referred
to as power-law graphs, has replaced the random graph model G, ,, which has
been often used before. Finally, in section 2.3, we discuss the hyperlink graph
of the World Wide Web and outline differences and similarities to the previously
described global characterizations. Further, we list some properties of this net-
work that are used within heuristics in order to overcome the large computational
complexity of density-based clustering (see section 5.3). A more extensive intro-
duction to this class of complex networks is given in corresponding comprehensive
overviews (e.g., [AB02, BS02, New03]).

8 CHAPTER 2. LARGE-SCALE NETWORKS

2.1 Small-world networks

In this section, we discuss the so called small-world property that is attributed
to several of the above mentioned networks.

2.1.1 History

Due to the huge variety of applications the analysis of large networks has at-
tracted the interest of different research groups. Regardless whether considering
transportation problems, spreading of information or diseases, one of the main
tasks can be boiled down to the detection of a short connection between two arbi-
trarily chosen entities within the network. The overall observation for the graphs
corresponding to the previously mentioned networks is the short average distance
between most of the possible pairs of vertices. This distance appears to have or-
der of O(log |V (G)|). E.g., there exist several experiments on the who-knows-who
graph (i.e., vertices correspond to people, and edges to two people knowing each
other) that have shown the existence of short connections. One of the earliest and
most cited experiment was performed by Milgram in the 1960s [Mil67]. Within
his experiment, he sent letters to persons, referred to as starting persons (either
located in Wichita, Kansas or Omaha, Nebraska), who were asked to deliver the
letter to some target person living in Cambridge. If a person does not know the
target person on a personal basis, he was asked to send the letter to someone
(who must be known on a first-name basis) who is more likely to know the target
person, and so on. The overall result of the experiment can be summarized as
follows: If some letter arrived at the target person (e.g., only 44 of the 160 chains
that started in Nebraska, were completed) there were at most ten intermediate
persons on the chains with an average number of five. Based on the assumption
that other chains were broken due to lack of interest or other difficulties and not
due to the non-existence of a chain, one can observe some rather short expected
path length (compared to the large amount of people living between Nebraska
and Cambridge). Regardless if this assumption is admissible (for an extensive
discussion see [Kle02]), we get some idea on the property of this type of network.
Further, there are other studies, which underline the observation of the existence
of short connecting paths. Within the Hollywood graph, which links actors who
played together in a film, there exists the so called Bacon-distance, which states
the distance to the “center actor” Kevin Bacon. It has been observed that this
distance of actors to Kevin Bacon is less than six [Wat99a]. A similar distance
within scientific networks is represented by the Erdés-Number [DCG99], which
is also bounded by six. Based on these observations the phrase of “six degrees
of separation” is widely used, which assumes that the average distance between
any two people in the who-knows-who network is at most six.

Similarly to these general results, almost everyone has already had the experience
to meet someone he had never seen before and then occasionally to realize to have

2.1 SMALL-WORLD NETWORKS 9

a friend in common. Very often this observation is accompanied with the aston-
ished sentence “Isn’t it a small world”. Due to this phrase, Milgram initiated the
name small-world networks (for a precise definition of small-world networks, we
refer to the next subsection). The existence of short paths has also been observed
in other large-scale networks (see general articles such as [Str01, New03]). At this
point we want to mention that Albert et al. have proposed some small average
distance for the hyperlink graph of the WWW [ABJ99]. However, this result
does not hold in this generality but must be restricted to the undirected graph
or some appropriate subset of the directed graph (see section 2.3).

2.1.2 Small-world graphs

In the following, we define small-world networks in terms of simple undirected
graphs. Most definitions of small-world networks do not quantify the required
properties but only state the basic intuition (see e.g. [Wat99b, Hay00, New03]).
Similarly, Definition 2.1 only formalizes some general properties of graphs. De-
spite, the first and the third property of the definition are not required to guar-
antee the existence of short paths, and thus may not be assumed to belong to
the definition, they are included since they represent an additional good charac-
terization of the intended graphs class.

Definition 2.1 A network is defined to be a small-world network, if the under-
lying graph structure G' has the following three conditions:

e (G is a sparse graph.
e GG has small diameter.

e (G has high cluster tendency.

In general, the first property is interpreted in such a way that the graph has
constant average degree, independent of its size. The second property describes
that the (average) diameter of the graph is often assumed to be logarithmic in its
number of vertices. Finally, the third parameter models the following property
that is often observed in these networks. If a vertex is connected to two neighbors
v and w, it is very likely that the edges {v, w} is also present. This tendency can
be measured by the clustering coefficient! C' with

_ 3 X number of triangles in the network

~ number of connected triples of vertices

'In the literature, there also exist other definitions on the cluster coefficient. E.g. Watts
and Strogatz [WS98] define the clustering coeflicient for every individual vertex and measure
the average value of all vertices of the graph. The differences of these two definitions and other
possible measures are discussed in [New03].

10 CHAPTER 2. LARGE-SCALE NETWORKS

diamreal-world diamGn,p Creal-world CGn,p
Film actors | 3.65 2.99 0.79 0.00027
Power grid | 18.7 12.4 0.080 0.005
C.elegans 2.65 2.25 0.28 0.05

Table 2.1: Comparison of diameter (diam) and cluster coefficient (C) in real-
world graphs and corresponding G, , [WS98]

The last property required for small-world networks, describing the cluster ten-
dency, excludes the classes of general random graphs G, resp. Gy, that have
been introduced by Gilbert|Gil59], and Erdos and Renyi [ER59] (for a compre-
hensive overview on random graphs we refer to [Bol85]). While it is possible to
choose p resp. m in such a way that the graphs fit to the first two properties, the
third property does not hold. Assuming constant average degree d (i.e. p = -5
resp. m = gn) almost all of these graphs have diameter logarithmic in the num-
ber of vertices [CLO1]. However, the cluster coefficient scales with O(n™!) and
thus gets arbitrary small for large graphs what contradicts the third property. In
Table 2.1 we state the different values of the diameter and cluster coefficient for
three large-scale networks compared to the average values of graphs G, , with

corresponding edge density.

2.1.3 Graph models

In this subsections, we present two models for small-world graphs. These models
guarantee the above required properties but do not match the degree sequence
that has been observed for real-world date (see section 2.2).

One of the first small-world models has been stated by Watts and Strogatz
[WS98|. Starting with a ring lattice on n vertices with even degree k (i.e., n
circular ordered vertices, where each vertex is connected to its g left and % right
neighbors) each edge is rewired (i.e., replaced by some arbitrary so far non-
existing edge) with some small probability p (see Figure 2.1).

For p = 0 the network equals the original lattice with high cluster coefficient but
diameter linear in the number of vertices. For small values of p the diameter
(for an analysis of the average path length see [NMWO00]) decreases fast, while
the cluster coefficient only reduces slightly. Finally, for p = 1 the final graph
is equivalent to some random graph G, ,, with small diameter and small cluster
coefficient.

Similarly to the above model, Kleinberg investigated the small-world phenomenon
on a graph model that is based on a n x n-grid with additional edges connecting
arbitrary vertices (according to some variable probability distribution) [Kle00].
Within the graph every vertex v is connected to its neighbors within grid distance
at most p (denoted as local contacts; these local contacts guarantee large cluster

2.1 SMALL-WORLD NETWORKS 11

Figure 2.1: Construction of a small-world graph according to the model of
Watts and Strogatz (12 vertices, degree 4, and 3 rewired edges)

ONONONORONG

Figure 2.2: Construction of a small-world graph according to the model of
Kleinberg (p = 1, ¢ = 2, n=6)[Kle00]

coefficient). Further, every vertex has ¢ so called long-range contacts, where
an edge {v,w} is chosen as long-range contact with probability proportional to
d(v,w)™", for some global constant r and grid distance d(v,w) of v and w. This
idea of choosing the connections is illustrated in Figure 2.2.

Based on this definition, Kleinberg has investigated the expected delivery time
for some decentral transportation problem (i.e., delivering a message from some
vertex v to some different vertex w, where the choice of the route is only based
on local information, i.e. grid position of the actual neighbors and the target).
Kleinberg suggested an algorithm that (starting at v) sends the message to that
neighbor having minimum grid distance to the target. This decentral algorithm
has expected delivery time of at most O((logn)?) which is proven to be optimal
for the choice of » = 2. Expanding this model to higher dimensional grids, it is
possible to derive similar results.

12 CHAPTER 2. LARGE-SCALE NETWORKS

2.1.4 Summary for small-world networks

In this section we have characterized a wide set of natural large-scale networks
using the small-world property. This property abstracts sparse graphs which have
high cluster ratio and small diameter, a property that could not be achieved by
using random graphs on the same number of vertices and edges. While the cluster
ratio must not be confused with the appearance of dense and well separated
clusters within the graphs, this value however appears to be some good indicator
to do so. This assumption is based on the observation that for most real-world
networks with small-world property it is possible to apply clustering techniques
to derive dense substructures (e.g., see [SW03]).

Nevertheless, we want to stress that the small-world property only describes ten-
dencies within graphs. Especially, when considering the diameter, the definition
has to be restricted to the isolated connected components and it is reasonable to
argue on the average path length instead of the maximum occurring value (this
allows to deal with possibly occurring artefacts).

2.2 Power-law graphs

As mentioned in the previous section, a wide set of large-scale networks is clas-
sified to have the small-world characteristic. Despite this property that does not
hold for all large-scale systems, the class of corresponding graphs share some fur-
ther abstracting property regarding their degree sequence. This property that is
referred to as power-law degree distribution (or, due to the considerably large frac-
tion of high degree vertices, also heavy-tail distribution), states that the number
of vertices with degree i is proportional to =7, for some network-typical constant
B. This distribution corresponds to a straight line with slope —f3 in the log-log
plot of the cumulative degree distribution. Similarly, when considering random
graphs, we can require that the probability of a vertex having degree 7 is propor-
tional to 5°. For most large-scale networks it has been observed that 8 € |2 .. 3]
[New03].

Already in 1896, Pareto observed a similar degree distribution, when analyz-
ing peoples’ income [Par96]. Later in 1949, Zipf also received a corresponding
distribution for the frequencies of English words [Zip49]. Due to these early ob-
servations, the terms Pareto distribution and Zipf law are also often used instead
of power-law distribution (however there are minor differences between the pre-
cise definitions). In the last decade a power-law degree distribution has been
observed for a wide range of large-scale graphs, e.g. for the Hollywood graph
[BA99, ASBS00], the connectivity graph of the autonomous systems in the In-
ternet [FFF99, MP01, SFFF03], the hyperlink graph of the Internet [BAJ0O],
metabolic networks [JTA100], or the telephone call graph [ACL02].

Similarly to the power-law distributions, other characterizations of the degree

2.2 POWER-LAW GRAPHS 13

sequence have been proposed, e.g. the double Pareto distribution [Ree03], the
Weibull distribution [Fel00], or the log-normal distribution [Mit03]. The double
Pareto distribution is a combination of two power-laws, the Weibull distribution
models a variety of life behaviors dependent on some shape parameter 3, and
within the log-normal distribution the number of items (e.g., vertices with de-
gree i) follows a normal (Gaussian) distribution. Considering the log-log plot
of the cumulative degree distribution, these alternatives have similar appearance
compared to the standard definition of power-law graphs, for a range of several
magnitudes and can be approximated by a power-law distribution, when allowing
some corresponding error term.

In this thesis, we use the power-law distribution of the degrees in order to abstract
some common characteristic of power-law graphs. In chapter 4 when discussing
the complexity of detecting density based clusters, this very general description
is used when analyzing the corresponding complexity for this class of graphs.
Within this analysis, different so some random graph models, we use a determin-
istic abstraction that is formalized in Definition 2.2. Due to this simple definition,
we are able to set up several general results on the subsets of these graphs (see
subsection 2.2.3) that are required within the complexity proofs.

Definition 2.2 A (N, §)-power-law graph (referred to as (N, §)-PL) is an undi-
rected graph G = (V, E) with the following property

#i =qet {v €V | deg(v) = i}| = |[N-i ?]

where #; denotes the number of vertices v € V with degree deg(v) = i. In order
to guarantee that the sum of degrees is even, there might exist an an additional
vertex of degree 1. Its occurrence is indicated by variable an g, which is assigned
the corresponding value 0 or 1. Thus, #1 results to #1 = [N - 177 | + an .

The set of all instances of (N, 8)-PL graphs for some constant value (3 is referred
to as B-power-law graphs or 5-PL.

Before analyzing the degree sequence corresponding to the above definition, we
discuss several theoretical and empirical results for random power-law graphs
stated in the literature.

2.2.1 Properties of random power-law graphs

There are two main ares of research on 3-PL graphs. First of all, there are sev-
eral studies in order to determine the empirical properties of real-world large-scale
networks with S-PL degree sequence. Second, some research projects define math-
ematically strict models for the family of 5-PL graphs. E.g. Aiello, Chung and
Lu analyze a model for random graphs, which they call the («, 8)-graph [ACLO01].
In this model the number y of vertices with degree z satisfies logy = o — Slogx

14 CHAPTER 2. LARGE-SCALE NETWORKS

(i.e., y =). This model, up to rounding and the additive value ay g, is equiva-
lent to Definition 2.2. Other mathematical models are based on the configuration
model [Bol80, Luc92], the scale-free model [BA99, BAJ00], generating functions
[NSWO01], or the so called LCD model [BR02b]. Some of these models try to
rebuild the dynamical growth of the underlying networks (see subsection 2.2.2).
In the following, we state results on the properties of power-law graphs derived

by either empirical studies or mathematical analysis.

Average degree Using the definition of the power-law degree distribution, it is
easily seen that for values 8 > 2 the (expected) average degree of the correspond-
ing graph is bounded by some constant. Further, for large graphs the average
degree converges and thus is often assumed to be constant [ACL01]. Similarly, for
B > 3, the average degree is less than two. These results match the observation
of constant average degree for large-scale networks (with small-world property)
[New03].

Diameter From the discussion of small-world graphs we know that the diame-
ter of this graph class is logarithmic in the number of vertices. Further we know
that many large-scale networks (especially those with S-PL degree sequence)
have been observed to be small-world networks. As mentioned in the previous
discussion, the diameter has to be considered within the separate connected com-
ponents, unless the graph is connected. Sometimes it is even worthwhile to use
the average diameter (see the latter discussion on the hyperlink graph of the
WWW).

This empirical observation [New03] is well represented in the models of [-PL
graphs. While empirical studies can only state some assumed logarithmic scaling,
the mathematical models state more precise diameters. Newman et al. state an
analysis on S-PL and derive that the typical length [of a shortest path between
two randomly chosen vertices is [= log N-tloger | 1, where ¢; and ¢y are constants

log c2

depending on the choice of [NSWO01]. Bollobas and Riordan [BR02a] state that
the diameter of their model Gs,?), a (-PL graph on n vertices, satisfies

logn logn

(1 < diam(GM) < (1

—F loglogn —c loglogn’

Further, they point out (independently also stated by Cohen and Havlin [CHO3])
that a heuristic argument, using neighborhood expansion, also gives the correct

. . logn
diameter proportional to —g—log Tog "

Clustering Coefficient The clustering coefficient, that was introduced when
discussing small-world graphs, has been analyzed empirically by Albert and
Barabasi [AB02]. Different to the small-world models discussed in section 2.1
the experimental value C is not constant, but proportional to n=%7. However,

2.2 POWER-LAW GRAPHS 15

analyzing a similar mathematical model Bollobds and Riordan have derived an
expectation proportional to % and therefore have contradicted the empiri-
cal value. Thus, based on the mathematical model, the clustering coefficient of
general S-PL graphs is asymptotically similar to that of random graphs (note
that the constant appears to be larger for 5-PL graphs). Therefore, the observed
cluster tendency for real-world large-scale systems seams to origin from different

properties than the pure power-law degree distribution.

Connected components For most large-scale networks is has been observed
that there exists a unique giant connected component, while all other connected
components are small (e.g., see discussion on the hyperlink graph in section 2.3).
This property is also proven by mathematical models. Aiello, Chung, and Lu
state the following sizes constraints for («, 5)-graphs [ACLO1]:

1. If B > By = 3.47875, a connected component almost surely has size at most
O(n?® logn). Le., there exists no unique giant component.

2. If B < fo, there is a unique giant component of size ©(n).

3. If there exists a unique giant component (i.e., 8 < fy) the size of the second
largest component decreases when 3 approaches 1:

(a) If 2 < B < By, almost surely the size of the second largest component
is O(logn).

(b) If B = 2, almost surely the size of the second largest component is
O(logn/loglogn).

(¢) If 1 < B < 2, almost surely the size of the second largest component
is ©(1).

4. If 0 < B < 1, almost surely the graph is connected.

Based on the observation that most real-world networks have power-law exponent
B €]2 .. 3], the above results of Aiello et al. match the empirical size of the
connected components in large-scale networks.

Maximum Degree Dependent whether using a probabilistic or a determinis-
tic model for B-PL graphs the maximum degree of the graphs may vary. Using
(e, B)-graphs (or, similarly, the graph class defined in Definition 2.2) the maxi-
mum degree evaluates to some value proportional to nd (or, [N éj, respectively).
However, when using randomized models the maximum degree is proportional to
np-1 [ALPHO1, CEbAHO0O0]. Drogovtsev et al. have shown that this property also

holds for networks generated by using the principle of preferential attachment
(see subsection 2.2.2) [DMS01].

16 CHAPTER 2. LARGE-SCALE NETWORKS

Within the latter complexity analysis we assume maximum degree N 5. How-
ever, we often approximate corresponding summations by integrals with infinite
upper bound (instead of N %) Therefore, the possible error that results by the
deterministic definition of S-PL graph is small and has no impact on the overall
result.

Eigenvalues The spectrum of 5-PL graphs has the following structure [CLV03],
where m is the maximum degree of the graphs.

e If 8 > 2.5, the largest eigenvalue of a random power-law graph is almost
surely (14 o(1))y/m. Moreover, the k largest eigenvalues have a power-law
distribution with exponent 23 — 1, where k is a function depending on £,
m, and the average degree.

e If 2 < B < 2.5, the largest eigenvalue is heavily concentrated at cm?~#, for
some constant ¢ depending on 3 and the average degree. Further, the k-th
largest eigenvalues is almost surely (1 + o(1)),/my, where my is the k-th
largest expected degree.

The above analysis matches the empirical observation of the power-law distribu-
tion of eigenvalues and vertex degrees of Siganos et al. [SFFF03].

A second type of analysis is based on the spectrum of the eigenvalues. Similarly
to the spectrum of random graphs G,,, p, whose density function follows the semi-
circle law [Wigh8], the density of the spectrum of scale-free graphs (see description
in 2.2.2.1) can be characterized as follows [FDBVO01]. The density in the central
part (i.e., eigenvalues with small absolute value) follows a triangle like structure,
while the outer part (i.e., large absolute eigenvalues) has a power-law like tail,
both for positive and negative eigenvalues. Further, it has been observed that
the triangle gets negligible for n — oo. Analyzing this distribution and the large
value of the principle eigenvalue, we observe that the number of circles with length
[> 4 increases with n1 and thus is significantly larger than the number of circles
of length [in random graphs, which grow with O(n). However, the number of
triangle, i.e. cycles of length 3 is low (as already stated in the above discussion
of the clustering coefficient).

Robustness and Vulnerability When analyzing the fault tolerance of 5-PL
graphs (i.e. the impact on connectivity and path lengths when removing vertices),
we have to distinguish two scenarios. Firstly, we can analyze some random node
removal, and, secondly, the removal of a set of specific vertices. While the first
scenario models some independent failure/disappearance of vertices, the second
one can be used to simulate either attacks to the networks, or similarly, to analyze
which subset of vertices is almost surely on paths connecting arbitrary vertices
(these subset of vertices could be used to control or protect the system).

2.2 POWER-LAW GRAPHS 17

In the following, we compare these two kinds of node removals for 5-PL graphs
and random graphs (for detailed results see [AB02, SCbAT02]). Different to
random networks, where every vertex has similar impact to the network, the
few vertices with high degree in §-PL graphs have significant impact on the
connectivity and shortest paths. The following results have been observed:

e Random node removal:

— Within S-PL graphs it is possible to remove large sets of vertices with-
out choosing too many of the high degree vertices. Therefore, the gi-
ant component is reduced successively in size, while the average path
length only increases slightly before it also decreases.

— For random graphs it is possible to determine some threshold behavior.
Le., after removing some specific fraction of vertices the average path
length increases significantly, and after removing some further fraction
of vertices the giant component disappears entirely.

e Preferential node removals:

In this cases, both networks behave similar. I.e., if we iteratively remove the
vertex with highest degree, both (8-PL graphs and random graphs) show
the threshold phenomenon (described above). Since the number of vertices
with high degrees in S-PL graphs is small compared the total number of
vertices, we even observe that the threshold for S-PL graphs is significantly
smaller than that for random graphs.

Based on these results, we can summarize that S-PL graphs are resilient, when
randomly removing vertices, but vulnerable when intentionally attacking the net-
work.

2.2.2 Graph models

In the previous subsection, we have summarized several properties of 5-PL graphs
based on empirically studies or mathematical precise analysis. To conclude the
overview on the literature on this class of graphs, we discuss some of the proposed
models to generate power-law graphs. In the above discussion, we have already
mentioned the configuration model that dates back to Bollobds [Bol80]. Different
to the growth characteristic that is observed for real networks (i.e., the number of
vertices increases overtime) this model generates a graph on some fixed number of
vertices with given degree sequence. While this model is comfortable to perform
mathematical analysis, it is not suitable to represent the evolution of large-scale
networks. Therefore, we only concentrate on those models that simulate the so
called growth characteristics (some times also (misleadingly) subsumed as the
scale-free characteristic; see below).

18 CHAPTER 2. LARGE-SCALE NETWORKS

2.2.2.1 Scale-free characteristic

The term scale-free graphs was initially used by Barabasi and Albert [BA99,
BAJO00]. They propose a graph model that is based on the following two proper-
ties. First of all, the graphs evolve over time, i.e. starting with some initial graph,
at every time step a new vertex is connected to the already existing graph. This
property is defined to be the growth of the network. Second, the new vertices
are connected to the already existing graph by using the so called preferential
attachment. l.e., every new vertex v is connected using m new edges {v,w;},
with 1 <147 < m, in such a way that w; is chosen randomly from the existing ver-
tices with probability proportional to the actual degree of these vertices. Thus,
vertices with higher degrees are more likely to be chosen as neighbors of v than
vertices with smaller degrees. Due to this fact this linking strategy is sometimes
also referred to as “the rich get richer”.

Based on these two properties, it is possible to start with some initial graph
and successively add vertices. Doing so, it is observed that the degree sequence
of the resulting graphs converges to a power-law sequence. Thus, ignoring the
first few graphs, the resulting graphs share some common structure of the degree
sequence independent of their number of vertices. Barabasi and Albert use the
term scale-free graphs to describe this characteristic.

2.2.2.2 Graph generators

In the following, starting with the above described graph generator or Barabasi
and Albert [BA99], we discuss some corresponding growth based graph models.

Preferential attachment Using mean-field theory Barabasi, Albert, and Jeong
analyzed the above described graph model and derived that the degree sequence
fits to a B-PL distribution with g = 3 [BAJ99, BAJ00].

Bollobés et al. have stated that the proposed model is not defined mathematically
precise [BRSTO01]. For example, it is left open how to deal with multiple edges
and how to choose the initial graph. Bollobds et al. have stated some similar
model that also handles these cases (this model generates directed graphs; in
order to compare both models we consider only the undirected version of the
latter model). Starting with graph GY, the empty graph, Bollobés et al. define
some graph process (G%);>0, where G% is constructed from G%' by adding a
vertex v; together with a single edge directed from v; to v; (assuming vertex set
V(GY) ={ v |1<i<t}), where i is chosen randomly with

th—l(’Us)
{ 1 1<s<t-1

2t—1
_1
2t—1

Pli=s) = iy

where dGri—l (vy) denotes the degree of v, in G% . In order to simulate the graphs

2.2 POWER-LAW GRAPHS 19

constructed by Barabasi and Albert, where every vertex was added with m out-
going edges, a similar process (Gf,)1>o is defined, which is based on the process
G! on a sequence of vertices v}, v,,... The graph G' is formed from G by
identifying the vertices v{,v5, ..., v}, to form v, identifying v, 1, v;, 19, V5,
to form vy, and so on.

Using this definition Bollobas et al. have proven the distribution of the number
#4 of vertices of a random graph GI', with in-degree equal to d (i.e., with total
degree d =m +d), for 0 < d < nis. Using

2m(m + 1)
d+m)(d+m+1)(d+m—+2)

€ 0(d?)

am,d = (

they have shown that almost surely (1—¢)a, g < % < (14+¢)ay g4, for some fixed
€ > 0. This result states a mathematical precise proof of the S-PL distribution,
with § = 3, that has already been proposed by Barabasi and Albert.

Another enhanced model (proposed by Drinea et al. [DEMO1] and Drogovtsev
et al. [DMS00]) also includes some further property referred to as initial attrac-
tiveness. When building the graph sequences (G%) (resp., (G',)), the probability
distribution is modified as follows, based on some value a that describes the initial
attractiveness:

dGi*I(vsH_a
Pli=s) = { @oe1 1S5st=1
(at1)i—1 s=1

The mathematical analysis was performed by Buckley and Osthus [BO03]. They

have proven that, for a > 1 and degrees in [0 .. n10@+D || the degree sequence
follows a 8-PL with 8 = 2 + a. Further, for a = 1 this model equals the model
of Bollobés et al.

Copying model Different to the models based on preferential attachment,
Kumar et al. proposed a model that, in order to achieve a power-law degree se-
quence, copies links from so far existing vertices [KRR*T00a, KRR*00b]. Doing
so, this model tries to simulate the creation of webpages and the corresponding
hyperlinks. I.e., the authors propose that when creating a new webpage the cre-
ator often copies the links from some other webpage representing similar content.
Based on this intuition, the growth process is defined as follows.

At every time step a new vertex is added and linked to the so far existing
graph with d out-links, for some constant d. In order to determine the out-
links, we choose (uniformly at random) a prototype vertex w from all already
existing vertices (this vertex is chosen once for all d out-links). For 1 <i < d,
dependent on some constant 0 < a < 1, the ith out-link is chosen as follows.

20 CHAPTER 2. LARGE-SCALE NETWORKS

e With probability « the destination is chosen uniformly at random from all
existing vertices.

e With probability 1 — a the i-th out-link is taken to be the i-th out-link of
the prototype vertex w.

Similarly to this (linear growth) process, Kumar et al. have defined a process,
which is referred to as exponential growth process. At time step ¢ (1 + p)* new
vertices are added simultaneously. Despite also allowing self loops, the out-links
are chosen similarly.

Let N;, be the expected number of vertices of degree r in the graph that is
constructed using the linear growth model. Further, define P, = lim;_, o, % to
be the asymptotic probability of a vertex to have degree r. Kumar et al. have
shown that P, = @(r_?:_g) and, thus, the graph obeys a 3-PL degree sequence
with 8 = 2:3. Similarly, they have proven that the exponential growth model

1
also forms a power-law graph.

Additional to the power-law degree distribution of the copying model, Kumar
et al. have shown that the number K (¢,1,j) of complete bipartite graphs K ; at
time ¢ is large (i.e., scaling with ¢° in the copying model) compared to the random
graph model Gy, and the («, 5) graph model proposed by Aiello, Chung, and
Lu [ACLO1]. This observation fits very well to the large observed number of
complete bipartite graphs in the hyperlink graph of the WWW (see [KPRT99a,
KPRT99b)).

Generalized model A very general model for 5-PL graphs has been developed
by Cooper and Frieze [CF03]. This model includes most of the above generation
processes as special cases.

This generalized model also simulates a growth process. Initially, at step ¢ = 0
the graph consist of a single isolated vertex. At any time ¢ > 0 either new vertices
or edges are inserted. I.e. with probability 1 —« the procedure NEW inserts a new
vertex, and with probability a the procedure OLD adds further edges connecting
already existing vertices. The number of edges inserted by procedures NEW and
OLD are given by corresponding distributions. Within procedure OLD an initial
vertex is chosen from the existing vertices and connected to several terminal
vertices. The way how to choose the vertices can be either uniformly at random
or according to their degree. More precisely, the process depends on parameters
a, 5 (not to be mistaken for the exponent of the power-law), 7, J, p, and q that
are described below:

e Choice of procedure at step ¢:

«a Probability that an OLD vertex generates edges.
1 — a Probability that a NEW node is created.

2.2 POWER-LAW GRAPHS 21

e Procedure NEW:
p = (pi)i>1 Probability that the new node generates i new edges.

B Probability that choices of terminal vertices are made
uniformly.
1 — /3 Probability that choices of terminal vertices are made
according to degree.

e Procedure OLD:
d = (¢i)i>1 Probability that the old node generates i new edges.

0 Probability that the initial node is selected uniformly.
1 — 06 Probability that the initial node is selected according
to degree.

v Probability that choices of terminal vertices are made
uniformly.
1 —~ Probability that choices of terminal vertices are made
according to degree.

Once again, the above process inserts directed edges. Nevertheless, as also pro-
posed by Cooper and Frieze, it is possible to consider the corresponding undi-
rected graphs. The authors have proven that (for the undirected case) the pro-
portion of vertices of degree £ is with high probability asymptotic to Ck~7, where
x > 2 is an explicit function of the parameters of the model.

Directed graph models While the above models are often used to analyze
undirected power-law graphs (resp., the power-law distributions of either in- or
the out-degrees) Bollobds et al. have proposed a directed graph model that en-
ables to achieve power-law distributions for in- and out-degrees, simultaneously.
Further, the power-law exponents for these two degree distributions can be cho-
sen independently, where the exponents depend on values of initial attractiveness
(see above). Since the focus of this thesis is on undirected graphs, we refer to the
original paper for a detailed discussion [BBCRO3].

2.2.2.3 Summary on graph models

As a concluding remark, we can state that there are several graph models which
try to include the observed growth characteristic of large-scale networks. Based
on methods similar to preferential attachment, these models converge to some
scale-free power-law degree distribution. However, using only preferential attach-
ment the power-law exponent cannot be adjusted suitable. Nevertheless, based on
the described strategies, it is possible to define a class of random graphs in order
to model the observed power-law behavior for specific exponents. Once again,
these models can only cover some very general aspects of the set of real-word
graph class, and thus, cannot replace some detailed analysis of the individual
classes of large-scale networks.

22 CHAPTER 2. LARGE-SCALE NETWORKS

2.2.3 Analysis of -PL degree sequences and construction
of subgraphs with bounded average degrees

In this subsection, we derive several results on power-law graphs that are used
within the latter proofs. The analysis is split into two parts. Firstly, we analyze
the average degree when restricting to specific subsequences of 3-PL graphs.
Doing so, we derive an upper bound for the average degree of a degree subsequence
of a B-PL graph that contains all vertices with degree at least 2 (Lemma 2.2).
Secondly, we discuss how to generate graphs on degree (sub)sequences in such a
way that the average degree of any subgraph of the resulting graphs is bounded
by some constant, only dependent of 8 (Lemma 2.4). Within these discussions
we use the following definition.

Definition 2.3 A sequence S = [s;]1<i<a € N¢ is a degree sequence if there exists
some graph G in such a way that the degrees of G are contained in [1 .. d] and
that the number of vertices of G with degree i equals s;, for alli € [1 .. d].

A sequence S = [si|i<i<a € N? is call a candidate degree sequence if we want
to express that the sum of the degrees is even but we have not tested whether a
corresponding graph exists.

Similarly to the usage of graphs within the above definition, we use the terms
vertices, edges, and degrees, when arguing on degree sequences.

2.2.3.1 Analysis of degrees of subgraphs

First of all, we investigate some threshold d in such a way that for any (N, §)-PL
graph the sum of degrees of all vertices with degree at least d at most 0.5N.

Lemma 2.1 Let 3 > 2 and N € N be fized. The sum of degrees of all vertices
with degree at least d = (2%) e of a (N, B)-PL graph is at most 0.5- N.

Proof: 'The sum of degrees sumy of the vertices with degree at least d can be
bounded at follows

sumg = » iN-if] < N-d"F+ Ni'*Pdi
i=d i=d
1 -1
= N(dP+—-—d*Ff) < N&*P—
(d +5_2d < Nd 53
—Nzﬂ_lz%gﬁ_l = 0.5N
N B —2 g—2

2.2 POWER-LAW GRAPHS 23

Within the latter NP-completeness proofs we use some special degree subse-
quences of a (N, 3)-PL graph degree sequence. Lemma 2.2 states an upper bound
for the average degree of this degree sequences.

Lemma 2.2 Let S be a (N, 8)-PL degree sequence with N = (20k)® - (26 + 2k)?,
where § = [4 . Qﬁ-‘ + 2. Further, let S’ be a candidate degree subsequence of S
with the following properties:

e s=0
o The number x of missing vertices with degree i € [25] 18 at most the number

y of missing vertices with degree j € [25..]\7%], with respect to S (i.e., v < y).

The average degree of S' is at most ?(1) of the average degree of any (N', §)-PL
with N' > N.

Proof- First of all, we consider the degree subsequence S of S, that contains
all vertices of S with degree at least 2. The following calculation shows that the
average degree of S is at most 4.

1

B . . NB 4
ivg iLN i Ez —2 zN “ < D 177

1 -~ ~ 1 1

B . z; . 7. 1
Zi]i? [V Zf\; (V-iF—1) Zz]i2 if - %

1— 1B -
217F + [Pdi
1
28+ [N i-Pdi — N5
1— 1 2—
2170 4 L5220
26 + gLy (31—/3 —N%) _NF
— 4 — 4
Qﬂ(2+m) < 25(2+m)

28 4 oL (31—ﬂ - BN%> - 27

IN

1 1 .
— 44— 42 < [4-2@} y2=4
-2
For the second last inequality we use 3'=% > 5N 7 or, equ1valently, N7 > 3881 =y
1-8
ThlS proposition can easily seen to be true, when using N's > 20 + 2k > 6 and
Sﬂﬂ 1 < 6. Further, we apply z = TQ > 0 to z < 2% (easily seen to be true for

B
all z > 0) in order to prove the last inequality.

Based on this upper bound for the average degree of S , We can remove pairs of
vertices {v, w} from S, with deg(v) < 0 and deg(w) > 2§, without increasing the

24

CHAPTER 2. LARGE-SCALE NETWORKS

average degree of the sequence. Thus, when removing z vertices with degree at
most & and y vertices with degree at least 26, with y > z, the average degree of
the resulting degree sequence is at most the average degree of S. Therefore, we
can use this bound as an upper bound for the average degree of S’ and get.

avgdeg(S') < Lizs

IN

IA

IN

IN

IN

1
NN i
5 .
YL N i

1 1
NB . . N'F i~
SN AN-if NP /
iz N -7F] Zz 1 N -i7P] +ang -avgdeg(3, N')

1
SN -i8) SN ZLN’ B + anig

S AN) TSN

>y ZLN’ i) SN i)

1
N-NF YN i8] —NNF Y N8

Z N 1+éZi_l N - avgdeg (s, N')
e zli(LN 0] —1) 5 (LN""BJ—M)
ZZN:QZ'LN-@'—/?J _ 1+N'+ZN"LN' P

- avgdeg(6, N')

2
— N7
1 N-—-N

1
N—Ni+Mi|IN- i—J

[14N+ NNF +ZNBB |N"- i8]
1+ =NEA -avgdeg(8, N')
\ NN £ SN

: 1- N7
1= N7 4218 4318 4 [©i1-64j

L+NF + [i Pdi
1+ - N — -avgdeg (8, N')
—N7 +2°8 38+ [TiPdi

: 1- N7
1— N7 421-8 4 31~ ﬂ+ 53277
1 QNT
1+ — + -avgdeg(8, N')

B
NP 426 4+38+ e

% avgdeg(B3, N')

2.2 POWER-LAW GRAPHS 25

Within the calculation we use the following inequalities:
1

1-8 n# 1-8 1 Ne .
L. N7 +> i? > -N3 +2—ﬂ+3—ﬁ+—(4—ﬂ—5—ﬂ)+/ i Pdi
i=2 2 4

1 . 00 00
(—5—ﬂ - NTB> +278 437 +/ iPdi +/ P
4 4 NB

1 B 1-8 4
> (5PN 27F +37F / —Ad
2 <4 531) + + + \ 1 7al

v

> 277 4376 +/ i~Pdi,
4
2 IN"-i7%| > N'-i? -1
N’ N
_ —B
- ¥ (- x)
NI
> N (IV-i77] —1)
3. IN-i7P| > N-i7f -1
N N’
_ B
-V (N' s W)
N _ N’
> N (LNI'Z] _ﬁ)
4 ZNE A< 2t 3h " i-84i
' i=2 - 3
Finally we use that function fy with
2-8 1-8
1-N7 1+2N 7
1— N7 +21-6 4317 4 ;1.32-5 —N7F 427 4+ 37F 4 Lo 41-h

is monotone declining for 8 > 2 and that the limit for 5 = 2 (i.e, lim. o fy(2+¢))

30

can be bounded by %7 for the given value of N. O

Later in this thesis, we use some slightly weaker form of the above lemma.
Namely, we use 9§, which is defined to be the maximum average degree of all
B-PL graphs, for some fixed S > 2, instead of the average degree of a 5-PL graph
with N’ > N. Since the average degree increases with larger number of vertices
the resulting threshold still holds. Doing so, we probably get some threshold that
is slightly larger than required due to the structure within the proof. However,
we achieve to state our result independent of the size of the graph.

26 CHAPTER 2. LARGE-SCALE NETWORKS

2.2.3.2 Construction of subgraphs

After analyzing the degree subsequences, we state how to construct graphs for
some specific type of candidate degree sequence S (see Lemma 2.3). We describe
how to build a graphs G with degree sequence S in such a way that any subgraph
of G has a bounded average degree.

Lemma 2.3 Let 6 € R', and let S be some candidate degree sequence on n
vertices with mazimum degree d. If S has the following properties

1. S1 > (l‘(s;lj)

2. 5,>0 foralli €2 .. L%J]
g
2

3.8>0 foralie[d—|5]+1.. d]

& 16]+1 .
4o Y ies — (U5 > >ooi-s
i=1 i=[041]

then it is possible to build a graph G = (V, E) with degree sequence S, such that
every subgraph has (induced) average degree at most 0.

Proof: In order to prove the lemma we state an explicit construction of GG. Let
n be the number of vertices in S. We start with n isolated vertices each assigned
some degree with respect to S. Then, we successively add the required number
of edges in such a way that in the end every vertex has the degree is has been
assigned to.

First of all, we partition the isolated vertices into the following sets:

A The set of vertices with assigned degree at most 6/2.
B The set of all vertices with assigned degree greater than ¢

C' The set of all remaining vertices (i.e., assigned degree i with §/2 < i < 9)
The edges are inserted as follows:

1. First of all, the vertices in B are assigned their edges. In order to do so, we
add edges from vertices in A to vertices in B. Based on properties 2 and
3 we can show that it is possible to satisfy all degrees of the vertices in A.
We proceed as follows.

Throughout the whole construction process we define an continously up-
dated order S, = [vi]i<i</p on the vertices in B in such a way that, for
every i € [2 .. |B|], it always holds deg*(v; 1) < deg*(v;), where deg*(v) is
the missing number of edges of v (i.e., the difference of the assigned degree
and the actual degree of v).

2.2 POWER-LAW GRAPHS 27

Starting with the vertices with highest degree z in A we assign = edges
to the vertices v|g/_z41,...,vg]. Due to properties 2-4, we can iterate this
process until all demands of vertices in B are satisfied in such a way that no
vertices in are linking twice and that there remain at least (L‘sglj) unlinked
vertices of degree 1 in set A.

Finally, all vertices v € A with deg”(v) > 0 are moved to set C.

2. Now, we add edges to satisfy all remaining open connections of vertices in
C. Tteratively, we choose all vertices with maximum value z of deg” in C.
Using these vertices we build as many cliques of size x + 1 as possible. For
all remaining vertices we satisfy one of their links with a vertex of degree
one (i.e., we reduce = by one). Iterating this process at most z —1 times end
up with vertices that have at most one unsatisfied connection. In very step
in the above iteration we need at most x vertices of degree one. Thus, using
property 1 we know that there exists enough vertices of degree one satisfy
these links. Further, since S is a candidate degree sequence the number of
the finally remaining vertices with one unsatisfied connection must be even.
Therefore, we can inter-connect the remaining vertices pairwise.

After satisfying all links of the degree sequence S, we can determine the maximum
average degree of all subgraph of the resulting graph G. For any subgraph G of
G, we partition the vertices as follows:

e set S; contains all vertices with (induced) degree greater than 0;

e set Sy contains all vertices in V' (G) \ Sy that are connect to vertices in Sy

e set S3 contains all vertices in V(G) \ (S1 U S2).

Further, define n; = |S;| and d; =)_ g degs(v), where degs(v) denotes the

degree of vertex v in graph G. Due to the construction the vertices in S; (degree
greater than 0) are only connected to vertices in Sy (which have degree at most
dy

d/2). Therefore, we know ny > 3/ what is equivalent to d; < gng. Thus, the

average degree to G' can be bounded as follows:

d1+d2+d3 < %nz—i-gng—i-dng
ny +no +ng N9 + N3

<5

avgdeg(G) =

This inequality holds for all subgraphs of G and concludes the proof. [l

Using the above lemma can be state the following result on power-law graphs.
Given some appropriate degree subsequences of a §-PL graphs. Lemma 2.4 guar-
antees the existence of a corresponding graph in such a way that the average
degree of all subgraphs is bounded by some constant, which only depends on £.

28 CHAPTER 2. LARGE-SCALE NETWORKS

Lemma 2.4 Let § > 2, Opax = 4 - 97z + 1, and let S be a candidate degree
sequence with mazimum degree d, that is a degree subsequence of a (N, 3)-PL. If
the following conditions hold

1. ;> |N#| foralli€ |1 .. |%max]]
2. s; < |NiP| for all i € [Omax -- d]
3. 0<s; foralli€[d— == 41 . d]

it is possible to build a graph G = (V, E) with degree sequence S, such that every
subgraph of G has average degree at most Omay.

Proof: It is sufficient to consider only values N > (6max + 1)° in detail. For
all other values, the maximum degree of all (NN, 3)-PL graphs is at most dmax-
Therefore, this value is a trivial upper bound for any subgraph of G. The existence
of G can easily be seen from condition 1.

The proof for values N > (8max + 1)° is done by applying Lemma 2.3, using
0 = dmax- Due to the power-law nature of the degree sequence and the large
value of N and the above conditions the conditions 1-3 of Lemma 2.3 can be
easily seen to be true. Using the definitions of 6 and N as states above, the last
conditions of the lemma evaluates to:

[max /2] d
> et - (T S i

=1 1= L(smax‘i‘lj

Due to 8 > 2 we get N > (0yax + 1)? and therefore it is sufficient to show

[Smax /2] d
Z Nit =8 > Z NP,
i=2 i=[Omax+1]

The latter inequality holds if

[1

ma2x— o0
/ i‘Pdi > / i P di
2 Jmax_l

Using the definition §,,,x = 4 - 957 4 1, we can verify this inequality as follows:

Smax—1

? =B = 1 (22—/5 _ 2%(2—/3)) — 1 92-8 _ 9l-B
/2 LT 7l)
_ Lo s L g
p—2 - B=2
_ 1 (2ﬁ+2)2_ﬁ - /oo PP
p—2 Smax—1

After satisfying all required conditions, we can apply Lemma 2.3 and build a
graph with degree sequence S in such a way that all subgraphs have average
degree at most dp,ax. O

2.3 THE HYPERLINK GRAPH OF THE WWW 29

2.2.4 Average-case analysis for power-law graphs

At the end of the discussion of power-law graphs, we briefly want to explain
the advantages that could be taken of developing random algorithms on general
power-law graphs.

In the past, the introduction of the general random graph model G, , has initi-
ated research of computational complexity for input chosen randomly from the
corresponding sets of graphs. Based on the independent occurrence of edges, it
has been possible to develop algorithms that perform well on average. I.e., despite
of computational hardness or poor approximation results one some specific input
instances, it has been possible to prove good results, on the huge majority of
possible inputs. For a wide range of graph problems, e.g., independence-number
and coloring [KV02], perfect-matching [DFP93], edge connectivity [YDL94], or
restricted bisection [DDSWO03] there exists good results for the average-case anal-
ysis on random graphs.

Consequently, analogous to the research on the G, , model, we might get similar
good results when assuming random power-law graphs. In this section, we have
shown that for some of the models there exist results on the diameter, the cluster
coefficient, and the size of neighborhoods (see subsection 2.2.1). Similarly to the
results on the robustness and vulnerability of this type of networks (also discussed
in 2.2.1), it seams very promising to derive good average-case complexity for other
problems w.r.t. nowadays large-scale networks. We even can hope to reapply some
of the techniques that have been used, when analyzing the models of general
random graphs. Additionally, we can use properties of S-PL graphs (e.g.,the
large number of vertices of small degrees and rare but prominent number of
vertices with high degrees). Combining these techniques and observed properties,
it should be also possible to prove good results for the average-case analysis on
power-law graphs.

2.3 The hyperlink graph of the WWW

In this section, we present some network specific properties the hyperlink struc-
ture of the WWW. This structure is represented by the hyperlink graph, i.e. the
webpages correspond to vertices, while the hyperlinks between two webpages are
modeled as directed edges connecting corresponding vertices.

In the previous part of this chapter, we have stated that this huge graph (with
billions of vertices), either considered in its directed or undirected version, follows
the power-law graph behavior (with power-law exponent 5 = 2.1 [New03]). Fur-
ther, due to its sparsity, the proposed small diameter [ABJ99] (which is known
not to be true, in the case, see below), and the appearance of highly interlinked
clusters (representing webpages concerning some same topic) the hyperlink struc-
ture is often classified as a small-world graph (e.g., see [Adm99]).

30 CHAPTER 2. LARGE-SCALE NETWORKS

In the following, first of all, we discuss the structure of the directed hyperlink
graph in more detail and show that, in general, it does not belong to the class
of small-world graphs (due to its large diameter). Second, we summarize results
on the communities and explain some general property of the clusters that is
widely used to determine relevant pages within the communities (e.g., heuristics
for determining dense subgraphs, see section 5.3).

2.3.1 Structure of the hyperlink graph

While the undirected version of the hyperlink graph appears to be a small-world
graph, this classification is incorrect for its directed version. Broder et al. have
investigated hyperlink graphs that result from two AltaVista crawls each with
over 200 million pages and 1.5 billion links [BRM*00, KRR"00b]. The observed
macrostructure of the hyperlink graph is illustrated in Figure 2.3 and can be
described as follows, often referred to as the bow-tie structure of the WWW.

e 90% of the pages are connected and form a giant component. These vertices
can be categorized in four sets of roughly the same size:

— The set SCC builds a strong connected component.

— The set IN contains all vertices that can reach the vertices in SCC via
directed paths, but are not in SCC themselves.

— The set OUT contains all vertices that can be reached from vertices
in SCC via directed paths, but are not in SCC themselves.

— The remaining set of vertices are referred to as tendrils (i.e. vertices
not in SCC but can be either reached from vertices in IN, or that can
reach vertices in OUT) or tubes (vertices on paths from IN to OUT
using no vertices in SCC).

e 10% of the pages build small disconnected components

Further, Broder et al. investigated the length of a path between two randomly
chosen vertices (using several random BFS runs on the hyperlink graph). First of
all, in the directed case, it is easy to see that such paths exist for only approx. 25%
of all possible pairs. Based on these path, the following results have been derived.
The diameter of SCC is at least 28. The maximum finite existing shortest path
is at least 503. However, its length is likely to be close to 900, assuming that no
short tubes connect the most distant page from IN to the most distance page in
OUT. Finally, using the average connected distance from the BFS runs (either
in the the original direction of the edges (referred to as out-links), the inverse
direction (referred to as in-links), or either direction (referred to as undirected)
the following average distances (assuming that the vertices are connected) have
been derived:

2.3 THE HYPERLINK GRAPH OF THE WWW 31

- tendrils —

/

tube

O

5 O ~ disconnected

components

Figure 2.3: The structure of the directed hyperlink graph [BRM™00]

in-links | out-links | undirected
| avg. distance | 16.12 | 16.18 6.83

These results are interestingly contradicting the average distance of 19 predicted
by Albert, Jeong and Barabasi [ABJ99] on a smaller set of vertices.

All in all, we may conclude that the hyperlink graph is not connected and thus
has infinite diameter. Even when restricting to those pairs of vertices that are
connected, we observe a large value for the maximum shortest path. Thus, the
hyperlink graph is no small-world graph, in general. However, when weaken the
condition for the diameter to the average shortest path length (if existent), or
even considering the undirected graph, we observe the required small distance
between two vertices.

2.3.2 Communities in the hyperlink graph

After analyzing the distance of vertices, we proceed to discuss the structure of
communities. Communities are characterized by sets of highly interlinked pages
(dense subgraphs) that share some common interest (same topic). In the fol-
lowing, different to small-world graphs, where we have analyzed the clustering
coefficient, we focus on specific subgraphs, namely dense bipartite graphs. There
are several results on the existence of dense bipartite graphs [KPRT99b, Kle99,
IMK™03] within the subgraphs that correspond to communities.

Let C;; be a complete bipartite graph on two vertex sets of size ¢ and j. The

number of expected C;;’s in a random graph G, is (7) (’;) p™. Therefore, using

p proportional to % (i.e., guaranteeing constant average degree), this number is

32 CHAPTER 2. LARGE-SCALE NETWORKS

negligible for i > i+ j. However, Kumar et al. observed that the number of C; ;
in the hyperlink graph is of relevant size and increases for larger n [KPRT99b].
Similar results hold, when restricting to dense bipartite graphs. Based on the
motivation of the copying model for 5-PL graphs (also proposed by Kumar et al.,
see paragraph 2.2.2.2), it is possible to explain this large number of occurring
subgraphs.

Similarly, Kumar et al. have observed that the average distance of two vertices
within a community can be measured very well in term of a so called alternating
connectivity [KKRT99]. When using alternating connectivity, we do not count
the length of directed path but require that every second edges is traversed in
inverse direction (i.e., within complete directed bipartite graphs all vertices have
alternating connectivity of at most two). Similarly, Kumar et al. have observed
that, assuming some definition of clusters that is based on the HITS algorithm
(see below), the average alternating distance of two vertices within the same
cluster is at most twice the distance within the corresponding undirected graph.
Thus, the alternating distance is significantly smaller than the distance based on
directed paths.

One of the most prominent results that is based on the concept of bipartite
subgraphs is the previously mentioned HITS algorithm of Kleinberg [GKR98,
Kle99]. This algorithm is used to determine good authorities for one or more
query terms, i.e. webpages that contain good information on these terms (where
good is some measurement, based on endorsement of creators of webpages). The
search algorithm consists of two main steps.

e First of all, using the set of webpages that is returned, when applying
the query to a standard index-based search engine, a root set of vertices
is created (e.g., choosing the top 200 entries in the answer of the search
engine). This root set is enlarged by adding all webpages that either link
to the root set, or are linked from pages contained in the root set. The
resulting set is referred to as the base set.

e Within the second step of the HITS algorithm, for each page ¢ within the
base set, we determine an authority value z; and a hub value y;. These
values provide some final ranking on the vertices. The authority value de-
scribes the quality of information of the page, concerning the query terms,
while the hub value judges whether the page links to pages that are good
authority pages. Both values are determined by using the following iter-
ative weight-propagation procedure (initially all weights are considered to
be equal). The new hub weight of a page is determined by the sum of the
authority weights the pages points to. Similarly, the new authority weight
equals to the sum of the hub weights of the pages it is referred from:

$p:zyp yPZqu

q—p p—q

2.4 SUMMARY 33

Using the adjacency matrix of the hyperlink graph we can expand this
definition and derive z < ATy and y < Ax. Applying one more expansion
step we get

z <+ (ATA)x y + (AAT)y.

Therefore, both vectors converge to the principle eigenvectors of the matri-
ces AT A and AAT, respectively (if the initial weights are chosen appropri-
ately, e.g. all positive). It is possible to use the power-iteration technique
to approximate the resulting vectors (for more information on eigenvectors
and power-iteration see, e.g., Golub and van Loan [GVL89]).

Finally, the outcome of the HITS algorithm is defined to consist of those pages
from the base set that have the highest authority weight. Similar to the HITS
algorithm, other search technique are also based on similar endorsement policies
(i.e., an link to a page increases its overall weight). As an example, Brin and
Page evaluate some PageRank that, based on some random walk on the hyperlink
graph, determines some overall quality of the page rank independent of the search
query [BP98|.

2.3.3 Summary for the hyperlink graph

In this section we have described some properties of the hyperlink graphs. Besides
the bow-tie structure we have discussed that communities may be characterized
by dense bipartite subgraphs. These properties, which provide some good descrip-
tion of the underlying structure of the hyperlink graph, are used within several
approximations and heuristics (e.g., search engines, community detection, and
information bases).

We have chosen the hyperlink graph of the WWW as an example to illustrate
that the power-law structure of the degree sequence is only a very abstract way to
describe large-scale networks and cannot cover network-typical properties. There-
fore, we have always to keep in mind whether we want to state some general result
on power-law graphs (see the main results within this thesis) or if we want to
get optimized algorithms for some problem for some specific type of this class of
graphs (see section 5.3).

2.4 Summary

In this chapter, we have given a general discussion on large-scale networks. Doing
so, we have described the small-world characteristic that occurs in most of these
networks. Besides sparsity and short paths we have seen that this characteristic
also indicates the existence of high cluster tendency. According to this obser-
vation, we can expect good results, when applying density-based clustering to

34 CHAPTER 2. LARGE-SCALE NETWORKS

this class of networks. In order to describe the overall set of networks, we have
discussed the power-law degree distribution of the underlying graphs. Based on
the extensive study of this characteristic within the literature, we have given an
overview of properties and models for this class of graphs. Further, we have seen
that the power-law exponent for most of these graphs is chosen from the interval
]2 .. 3]. Using these results we can abstract the family of large-scale networks
using [-PL graphs, with 8 > 2. This abstraction is used within the following
chapters, when discussing the complexity of detecting dense subgraphs.

At this point we want to stress the observation that the class of power-law graphs
is a very general abstraction of large-scale networks. As demonstrated in the
previous section, when discussion the hyper-link graph, we have seen that besides
this structural property there exist additional characteristics specific to single
subclasses of these networks. Especially when considering approximation results
for density-based clustering, we require these additional properties in order to
derive good results (see chapter 5). Therefore, 5-PL graphs have to be understood
to as an abstraction for the whole family of large-scale networks but not as a model
for a specific subtype of these structures.

Chapter 3

Graph transformations

In this chapter, we present several graph transformations which are used to de-
rive a reduction from CLIQUE to 7-DENSE-SUBGRAPH-PROBLEM (denoted by
~v-DSP), see sections 4.3 and 4.4. Within this reduction, we convert, for a wide
range of functions +, instances (G, k) of the CLIQUE problem to instances (G’, k')
of v-DSP. The overall idea of the reduction is that the input graph G contains
a clique of size k if and only if the transformed graph G’ contains a subgraph on
k' vertices with density (i.e., number of edges) at least (k). In general, we build
G' by applying iteratively four elementary transformations, which are described
below. To make the reduction work, we show for each transformation and for
sequential combinations that the input contains some specific type of subgraph,
characterized by a certain number of vertices and edges, if and only if the result-
ing graph contains a corresponding subgraph. Having done this, we can reason
that the existence of a clique of size k£ in G is equivalent to the existence of a
corresponding ~y-dense subgraph in G'.

In the following, we introduce the four kinds of transformations. A principle
characteristic of some of these transformations is their locality, i.e., each vertex
or edge of the graphs is replaced simultaneously without considering the rest of
the graph. In order to generalize this property, we define and discuss a suitable
family of graph transformations (referred to as general local graph transforma-
tions). Finally, we demonstrate how to combine the introduced transformations
to achieve the properties, stated above. The terms transformation, operation,
and operator are used interchangeably.

3.1 Elementary graph transformations

In this section, each of the four above mentioned transformations is presented
and analyzed separately. While the first two of them are used to increase resp.
decrease the density of the resulting subgraph, the latter ones are used to assure
some minimum degree or some precise number of edges, respectively.

35

36 CHAPTER 3. GRAPH TRANSFORMATIONS

o

AN AT

Figure 3.1: The densification transformation R,

3.1.1 The Transformation R,

Let G be any undirected graph. The idea of the operator R is to modify the
graph in such a way that the density of the graph (and its subgraphs) increases.
The relative density (i.e, the fraction of existing edges w.r.t. the possible number
of edges on the considered number of vertices) also increases, unless G itself is a
clique. Due to this property, R can be interpreted as a densification transforma-
tion.

3.1.1.1 Definition of R,

The transformation R; is defined using the following sequence (G)o<;<s of graphs.
Let Gy = G and G; = h(Gj_1), for j > 0, where h transforms an input graph H
by adding a new vertex that is connected to all other vertices in H. Finally, let
Rs(G) = Gy. For s = 4, the transformation is illustrated in Figure 3.1. Obviously,
the following property holds (the inductive proof is not stated):

G has a clique of size k <= R,(G) has a clique of size k + s (3.1)

3.1.1.2 Inversion of R,

After defining the transformation itself, we consider the possibility to inverse the
operation. Given a graph G’ = R,(G), we would like to construct a graph G
isomorphic to G, i.e., G = G. There are two possible kinds of inversion problems,
depending on the supplied parameters:

1. Both G' and s are given as input: We can simply remove from G’ s vertices
that have degree |V (G")| — 1.
If there are more than s vertices having that degree, we can remove any s of
them (all such vertices are topologically equivalent, and so are the resulting
graphs). Since the original graph G is one of the possible outcomes, any
resulting graph is a correct solution.

3.1 ELEMENTARY GRAPH TRANSFORMATIONS 37

2. Only G' is given as input: Without the parameter s, we are, in general,

not able to reconstruct a graph isomorphic to G. Let x be the number of
vertices in G’ with degree |V (G')| — 1. Obviously the largest possible value
of s is equal to z. Further, any value in [0 .. 2] is an admissible choice for
s. Therefore, as above, we can construct a set of x + 1 graphs that can be
transformed into G’ by choosing the parameter s appropriately.
There are two settings where s can be reconstructed exactly and thus, a
unique (up to isomorphism) solution can be found. Firstly, if there exists
no vertex in G’ with degree |V(G')| — 1 then s = 0 must hold. Secondly,
if we know that G contains no vertex with degree |V (G)| — 1 then s must
equal z.

3.1.1.3 Decision problem CLIQUE;

In addition to increase the density, R can be used to define a family of special
NP-complete versions of the CLIQUE problem. In these new problems the sizes
of the desired clique is related to the graph size. Such restrictions are well-known
in the area of NP-complete problems (e.g., Asahiro et al. use a version where
the size of the graph is exactly three times the demanded clique size [AHI02]).

The operator R can be used to bound the size of the graph from above. First
of all, define CLIQUE; to be the set of all tuples (G, k) such that graph G has a
clique of size at least k and |V (G)| < (1+6)k. CLIQUE can in a straight forward
manner be reduced to CLIQUEy, for any fixed 4, with 0 < 6 € Q. To do so, let
the tuple (G, k) be an input to the CLIQUE problem.

e |V(G)| < (1+0)k: Obviously, (G, k) is an input of the CLIQUEs problem,
thus no transformation is required.

e [V(G)| > (1+6)k: We can apply R, with s = [$] [V(G)|—[1+ ;] k. Due to
the size restriction on |V (G)| it follows directly that s > 0. The transformed
graph G, has |[V(GQ)|+5 <& (s+ (1+3) k) +s= (14 6)(k + s) vertices.
Furthermore, proposition (3.1) implies that G has a clique of size k + s if
and only if G has a clique of size k. Thus (G, k + s) is the corresponding
input to the CLIQUEs problem.

Later in this thesis, we consider the case § = % and reduce CLIQUE% in order to
show NP-completeness of y-DSP.

Similarly, given some clique size, we can bound the size of the graph from below by
adding isolated vertices. Doing so, the size of the graph increases. A combination
of both techniques can be used to adjust the values in more sophisticated ways,
e.g. as required in [AHI02].

38 CHAPTER 3. GRAPH TRANSFORMATIONS

t=3

Figure 3.2: The sparsification operator S;.

3.1.2 The Transformation S;

In contrast to the previous section, where we described how to increase the den-
sity of a graph, we now state a method to decrease its density. This decrease
takes place in such a way that the density of all subgraphs of the input is re-
duced simultaneously. The corresponding transformation S; is called sparsifica-
tion transformation.

3.1.2.1 Definition of S,

In order to assure that the density of all subgraphs is reduced, we replace all
edges by chains. Formally, we can define the transformation as follows. Let G be
any undirected graph. Applying S; to G results in a graph G; that is a copy of
G, where every edge e = {v1, v2} is replaced by a path p = (vi, Wep, ..., Wey, V2)
of length t+ 1 (number of edges) involving ¢ new vertices w1, ..., W The new
vertices are referred to as inner vertices and the other ones as outer wvertices.
Inner vertices always have degree 2, while outer ones have the same degree as the
corresponding vertex in G. According to the construction, G; has |V (G)|+t|E(G)|
vertices and (¢ + 1)|E(G)| edges. For ¢t = 3 the transformation is illustrated in
Figure 3.2.

Similar to the operator R, an occurrence of a clique in G' corresponds to the
occurrence of some corresponding subgraph in Gy, and vice versa.

k
G has a clique of size k <= S;(G) has a subgraph on k + t(2) vertices

and (t+ 1) (l;) edges

While the implication from left to right is straightforward, the other direction has
to be proven in detail. For the proof we refer the reader to the proof of Lemma
3.2, where we are going to show a more general proposition. Similar constructions
have been used in the literature for the complexity analysis of this and similar
problems [FK94, FS97, GNY94|.

3.1 ELEMENTARY GRAPH TRANSFORMATIONS 39

3.1.2.2 Inversion of S;

For the inversion of S we derive results analogous to those in the previous sub-
section. Let Gy = S;(G). Once again, only if both G; and ¢ are supplied, it is
possible to uniquely reconstruct a graph isomorphic to G. If the value of ¢ is
not given, it is, in general, possible to compute several graphs that can be trans-
formed to G; by applying the transformation S with some appropriate parameter
t (see below).

For t = 0 we have that S;(G) = G. Therefore, in the following, we only consider
choices t > 1. The inversion process is based on the property that all inner vertices
have degree two and every edge in the original graph G has been replaced by a
chain of length ¢ + 1. Let X be the set of all vertices of G; with degree unequal
two. Obviously, these vertices must be outer vertices. Consider the subgraph G5
of G, induced by the vertices in X = V(G;) \ X. Its connected components are
either circles or chains:

e Each circle ¢ in G5 has length i, - (¢ + 1), for some i, € N and i, > 2, and
it corresponds to an isolated circle in G of length i..

e Each chain p in G has length 4, - (¢ + 1) — 2, with ¢, € N and 4, > 1, and
corresponds to a chain in G of length 7, connecting two outer vertices in
X. All outer vertices on such chains can be determined easily. Starting at
one end exactly every ¢ + 1-sth vertex is an outer vertex, with degree two.

Thus, if we know the value of ¢ we can build a graph isomorphic to G. Otherwise,
if we have no information on ¢, it is possible that there exist different values ¢, for
which we can find some graph G such that S;(G) = G,. All possible values of £ can
be determined as follows. Let Y. be the set of sizes (i.e., number of vertices)
of those connected components of G5 that form circles, and let Y., be the
corresponding set of chain lengths. Further we define yy,in = min{Yeirce U Yenain }-
For all admissible values ¢ it must hold

EE [1 .. ymin]
A (v Ycircle S }/;ircle 34 €]N, 0 2 2) [Ycircle = .- (
A i (

(v Ychain € chha,in die]N; { 2 1) [Ychain =
Note, if S; was applied to some (G, using some value ¢ which is greater than
two and odd, unique reconstruction is not possible. Obviously, in such a case,
t=2-i+ 1, with i € N and ¢ > 1, and furthermore S;(S1(G)) = G;. Thus, both
G and Si(G) can be transformed into G; using operator S.

)

+1)]
+1)—2]

Sk R

3.1.3 The Transformation N,

The transformation N, which we introduce in this subsection, can be used to
increase the minimum degree of the graph while keeping the structure generated

40 CHAPTER 3. GRAPH TRANSFORMATIONS

z=4 $
. ® 8B %

Figure 3.3: The degree-bounding transformation N,.

by other operators, such as R and S. This property is used when reducing
CLIQUE to 7-DSP in power-law graphs. The transformation is called degree-
bounding transformation.

3.1.3.1 Definition of N,

To guarantee that the topology of the transformations R and S are not disturbed,
the general idea is to replace vertices instead of edges. Informally speaking, every
vertex is replaced by a clique, while the edges are expanded to complete matchings
connecting those cliques.

Let G = (V, E) be an undirected graph, and let z € N, with z > 1. N,(G) = G,
is defined formally by the following sets of vertices and edges:

V(Gy) = { (v,1) | veV,1<i<z }
E(Gz) = { {(,0),(w,5)} | (v=w)or{v,w}eE A i=7j) }

It is easy to see that G, has z - |V (G)| vertices and (5) - |V(G)| +z- |E(G)| edges.
In Figure 3.3, we outline the transformation for x = 4.

In the literature, there exists a wide range of names for this transformation.
The notion of the Cartesian Graph Product [Viz63] of G with K, is the most
commonly used. The same operation sometimes is also referred to as sum [Ber58].
Further there exist several generalizations for this family of transformations, e.g.,
p-sum [Ber58] and NEPS (Non-complete Extended P-Sum) [CL70].

Alternatively, we can interpret the operation N, as build z copies of the input
graph and completely connecting corresponding vertices. Therefore, we easily
observe that for any subgraph in G there exists an isomorphic subgraph in N,(G).
Thus, unlike for R and S, when applying N to some input, it is not possible to
set up a similar equivalence between the existence of a clique on the one hand
and the existence of some subgraph of appropriate size and density on the other.

However, when S is followed! by N, we can prove the following result (see Lemma
3.2 for a complete proof).

1Let f and g be two transformations. We use f o g, to express that g is followed by f,
ie., (fog)(z) = f(g(z)).

3.1 ELEMENTARY GRAPH TRANSFORMATIONS 41

((o—0
o—OoV o—oV
® ® o—0
: — I — — BB :
[J —0
((o—0
® ® —0
C; C; C; C;

Figure 3.4: Reconstruction of a neighboring clique in N, (G)

G has a clique of size k <= (N, o S;)(G), with z,¢ > 1 has a subgraph on

T - (k +t vertices and

)
@ (k ; t(];)) Taft+1) @ edges

N
[N
N——

3.1.3.2 Inversion of N,

Similar to the inversion problems already discussed, the inversion of N, is only
unique if both G, and z are provided. The method of reconstruction is to iden-
tify the cliques which where introduced when applying N to the input graph
G. In the following, let V(G) = {1)1, - 7U|V(G)\}7 and let (', .. -7C|V(G)\ be the
corresponding cliques in G, = N, (G).

First, assume we have detected some clique C;, with V(C;) = {vi1,...,viz}-
Choose any two vertices v; x, v;; € V(C;) and any path (v;x, w1, wa, v;;) of length
three using no edge in C;. Due to the construction of G5, both vertices w; and
wsy must belong to some clique C; # C;, and {v;,v;} € E(G). Further, for z > 2,
we can observe that for any choice of ¢, x, ¢,, ;, and one of their neighbors not in
C;, there must exist a unique vertex forming a path of length three. As a result,
we can start from a clique C; and detect all other cliques C; within the same
connected component of G;,. This can be done in the following way. Choose any
outgoing edge {v;x, v} of C;. If vertex v exists, it must belong to some clique
C; connected to C; by a complete matching. To detect C;, we locate all paths
of length three that start in v;;, proceed to v, and end at some vertex in Cj.
All vertices on these path which are not endpoints induce C;. The principle is
outlined in Figure 3.4.

Thus, for every connected component in G, starting with any of its cliques Cj,
we can identify all other cliques C; of the component. If we can detect at least one
clique in every connected component in GG, we can construct a graph isomorphic

to G.

42 CHAPTER 3. GRAPH TRANSFORMATIONS

It remains to show how to identify a clique within a connected component of G,.
To do so, we iteratively examine all pairs of vertices {v,w} and test whether the
set of vertices {v,w} U (N(v) N N(w)) induces a clique of size k. Let {v,w} €
E(C;), for some C;. It is straightforward that |N(v) N N(w)| = z — 2. Thus, we
have obtained a necessary condition whether two vertices can be extended to a
required clique. However, this condition is not sufficient, consequently, when we
detect two connected vertices v and w with appropriate common neighborhood
(i.e., both size and clique condition hold), we need further testing. We proceed
as above, and try to partition the vertices into cliques of size k. There are two
possible outcomes:

1. In the first case, we fail to partition V(G;) correctly. Consequently we
know that the initial clique was not an intended one, and thus we proceed
with the next pair of vertices. Note that, in every non-empty connected
component of N, there is at least one clique C;. Thus, we finally detect
some pair of vertices such that the second case holds.

2. In the second case, we find a valid partitioning of V(G,). If the initial pair
of vertices {v,w} belongs to some clique C;, we have in fact reconstructed
all cliques C; within this connected component in G.

It remains to show that the reconstruction is also possible, if v and w
belong to two different cliques C; and C;. Since the partitioning process
stopped properly, we know that v and w are connected. Further, we know
that v and w belong to the same copy G of G (with respect to the second
interpretation of operator IV, see above). The same is true for their common
neighborhood. Consequently the initial clique C is also a subgraph of G.

Because of the way how G, is constructed, the partitioning process has
identified all z copies of C' in G,. Let us consider all other neighbors of
C in N,. Once again, since the partitioning process stopped properly, we
can conclude that these vertices have been partitioned into cliques and that
those cliques are connected to C' via complete matchings. This property
can be extended to all vertices of the corresponding connected component
Hg in G. The vertices of Hg are therefore partitioned into cliques of size
x. The vertices of these cliques can be labeled in such a way that all
matchings connect vertices with the same label (see left side side of Figure
3.5). Therefore, G is isomorphic to a graph Nm(CAv’), for some appropriate
graph G.

For the reverse construction, we collapse every clique into a vertex and
remove parallel edges. Thus, Hg results in some graph isomorphic to G (see
right hand side of Figure 3.5). So does every copy of Hs in G,. We finally
end up with z copies of G where corresponding vertices are completely

~

inter-connected. This graph matches the definition of N, (G) and thus is

3.1 ELEMENTARY GRAPH TRANSFORMATIONS 43

Figure 3.5: Example for elements in the reconstruction process of Nj
(left: copy of G, right: corresponding reconstruction)

isomorphic to the connected component of G containing the vertices v and
w.

Combining both cases, we have proven that the inverse construction outputs a
graph isomorphic to G.

The observation within the final part of the second case can be interpreted as
follows. If G is isomorphic to N, (G"), for some graph G', i.e., G5 = (N;0N,)(G'),
we cannot distinguish which of the two operations N, or N, was applied first.
Thus, although we can test whether a given graph is the result of an application
of the operation N for some specific input z, it is possible that several choices of
x are admissible. Thus, if only G, = N,(G) is given, a unique reconstruction of
G is in general not possible.

3.1.4 The Transformation 1"y,

The fourth transformation (denoted 7y() adds to the given graph another
graph, whose vertex degrees differ by at most one. This graph is added either
disjointly or in such a way that the old and the new vertices are completely
connected. Accordingly, 7T is called the graph-adjoining operation.

3.1.4.1 Definition of T;,‘N(T)

Before stating a definition of 7', we discuss the class of graphs being added. First
of all, we define a graph to be quasi-regular if its vertex degrees differ by at most
one. In the following, we prove that it is possible to build a quasi-regular graph
efficiently for all possible tuples (n,m), with 0 < m < (3).

Lemma 3.1 For every n,m € N, with 0 < m < (Z), both given in unary (i.e.,
as inputs 1™ and 1™), a quasi-regular graph having exactly n vertices and m edges
can be computed in time polynomial in the input length.

Proof. Define d* = [22] and d, = |22]. There are two distinct cases: either d*
is even or d, is even. First, let d, be even. Compute a d,-regular graph (e.g., by

44 CHAPTER 3. GRAPH TRANSFORMATIONS

A(12,27) Z :i A(12,21) Z 5

Figure 3.6: Example for construction of quasi-regular graphs A(r, N(r))

considering n circular ordered vertices, connecting each vertex with its d, /2 left
and its d,/2 right neighbors in the circle) and add some arbitrary matching of
size m — (d,/2)n. It is always possible to add such a matching since

If d* is even then compute a d*-regular graph and remove an existing matching
of size (d*/2)n — m. Analogously to the first case, this is possible since

n_ < (P2
2 ~ "=\ n 2 MT o

Both cases are outlined in Figure 3.6. Clearly, the graphs can be computed in
time polynomial in n and m, and hence polynomial in the size of the input. [

Further, for a matter of convenience, we define A(n,m) to be a quasi-regular
graph on n vertices and m edges.

Using the above idea, i.e., firstly arranging the vertices in circular order, secondly
connecting every vertex to some number of its neighbors, and then thirdly adding
resp. removing edges, it is possible to state a unique construction process for all
reasonable tuples (n,m). In the following we use A(n,m) to denote the resulting
graph for input (n, m). Further, it is possible to do define A(n, m) in such a way
that the following properties also hold:

e A(n,m) can be tested for isomorphism with any graph G in time polynomial
in n, m, and the size of G.

o Let H = (V,E) be a graph, and let H = (V,V?\ E) be its complement.
A(n,m) (resp., A(n,m)) is disconnected iff m < n (resp., m > () — n).

3.1 ELEMENTARY GRAPH TRANSFORMATIONS 45

AN

IR
— 00 =

1|I 1l

/\ .N(

Figure 3.7: The graph-adjoining operator TSN(T)

Based on the construction of A(n, m) (which is not give in more detail) we state
the formal definition of 77y, Within this definition, we use r and N(r) instead
of n and m when building the quasi-regular graph. On the one hand, this avoids
misunderstandings concerning the number of vertices and edges in GG, and on the
other hand, this choice of parameters better fits the latter settings.

Let G be any undirected graph, o € {0,1}, r € N, and 0 < N(r) < (;) We
define T1%y,,(G) = (V', E') as follows. Based on the definitions

Gy = A(r, N(r)),

E*:{(Z) Jifa=0
{{v,w} |veV(G),weV(G)} ,ifa=1

we set

V'=V(G) U V(Gy)

E'=E(G) U E(G,) U E*
For parameters a = 1, 7 = 8, and N(r) = 19, this process is illustrated in
Figure 3.7.

Unlike the three transformations R, S, and N, the operator T is applied without
considering the topology of the input. For that reason, a correlation of the
occurrence of cliques in the input graph to the occurrence of some corresponding
subgraphs in the output graph cannot be stated in general. However, for special
settings of the parameters, when applying all four transformations R, S, N and T’
sequentially, we are able to prove that the input contains a clique of size k if and
only if the final graph contains a subgraph on k' vertices and some correlated
density (k). The non-trivial proof of this property and the existence of the

46 CHAPTER 3. GRAPH TRANSFORMATIONS

desired parameter sets constitutes the technical part of the NP-completeness
proofs in this thesis (see sections 4.3 and 4.4).

3.1.4.2 Inversion of TN

To conclude the discussion on 7', we once again consider the corresponding in-
version problem. Given a graph G’ = TT‘TN(T)(G), a unique reconstruction of G is,
in general, only possible if both parameters » and N(r) are supplied. E.g., it is
easy to see that for a graph G' =T v (. (T} NQ(M(CAJ)) we can not decide which
of the two transformations 17 Na(ry) OF 1 Na(ry) WAS applied first, if we have no
information on r; and N(r;). On the contrary, if parameter « is missing, while
r and N(r) are given, we can state two processes in such a way that only one
succeeds and outputs a unique reconstruction of G.

First of all, assume that all parameters are supplied. Dependent on o we can
detect an induced subgraph isomorphic to A(r, N(r). Removing this subgraph
from G' = Trch(r)(G) results in some graph isomorphic to G. We consider the
following two cases:

1. @ =0: We know that G and A(r, N(r) are disconnected. Therefore, we have
to find an induced isolated subgraph that is isomorphic to the connected
components of A(r, N(r)). Based on the properties of A(r, N(r)), stated
above, we know that A(r, N(r)) is disconnected if and only if N(r) < r. In
such a case, due to quasi-regularity, the connected components consist of
isolated vertices or paths of predefined length. It is easy to find the required
number of these components. Thus, we can choose a subgraph isomorphic
to A(r, (N(r)) in time polynomial to the size of G'. Otherwise, if » > N(r),
we know that A(r, N(r)) is connected. Due to definition of A(r, N(r)), it is
possible to check every component on isomorphism to A(r, N(r)), in time
polynomial in 7, N(r) and the size of the component.

2. a = 1: In this case, we know that, G and A(r, N(r)) are completely con-
nected. In the following we consider G’ instead of G'. It is easy to see that
the components of A(r, N(r)) are not connected to the rest of the graph.
Therefore, similar to above, we can select a subgraph isomorphic to graph

A(r, N(r)) in time polynomial in the size of G'. Removing the correspond-
ing vertices from G’ results in a graph isomorphic to G.

It is easy to see that only one of the two cases can hold for some triple (G', r, N(r)).
Thus, parameter « is not required to guarantee a unique reconstruction of the
input graph.

3.2 GENERAL LOCAL GRAPH TRANSFORMATION 47

3.2 (General local graph transformation

Within the reduction of CLIQUE to 7-DSP we use the combined graph transfor-
mation N,o0S;. This operation replaces all vertices and edges without considering
the rest of the graph. The resulting transformation can be generalized using a
general local graph transformation (denoted by Transg, ¢,) that depends on two
graphs G, and G,. These two graphs represent the image of a transformed vertex
or edge, respectively. In chapter 4, we use this generalized family of transforma-
tions, when analyzing the quality of the derived lower bound for NP-completeness
of v-DSP in S-PL graphs.

Let G, and G, be two undirected graphs, and let n, = |V (G,)| and n. = |V (G,)|.
For any undirected input graph G, the graph G’ = Transg, ¢, (G) is constructed
as follows:

Within the construction, we assume some fixed orderings on the set of
vertices of G, (i.e, V(G,) = {v1,v2,...,v,,}) and the set of vertices
of G, (i.e, V(Ge) = {w1,wa,...,wp,}).

Further, we require a sequence S = ((I3,13),..., (I, 1)) of n, pairs
of indices of V(G,) in such a way that, for all 1 < i < n,, the two
vertices wy, wyr € V(Ge) are topologically equivalent w.r.t. G, (wy

and wyy may be identical).

e Initially we choose graph G’ to be empty.
e For every vertex o € V we add a copy G? = (V,?, E?) of graph G, to G".

e For every edge € = (0,w) € E we add a copy G¢ = (V&, E?) of graph G.
to G'. Further, the two graphs G? and G¥, corresponding to vertices ¥ and
w, are connected to G¢ as follows:

Let V(GY) = {of,...,0% }, V(G¥) = {vf,...,v¥ }, further let
V(GE) = {wf,...,ws }. Using sequence S we add the following
2n,, edges:

{of,wi } -~ {vgv,wﬁnv} and {v}’,wjy} - - {Ug),,,wlé;;v}

Figure 3.8 illustrates an example of a general local transformation Transg, g,
applied to a single edge, with G, = K3 and G, = Cg. Using to the above
definition and a suitable choice of sequence S, it is straight forward to choose
graphs G, and G, in order to get

Transg, ¢, = N o 5.

Therefore, the following argumentation on the average degree of the output
graphs of general local graph transformations can be used to analyze the re-
duction process within the NP-completeness proof of y-DSP.

48 CHAPTER 3. GRAPH TRANSFORMATIONS

Figure 3.8: General local transformation using G, = K3 and G, = Cy

3.2.1 Average Degree

In the following, we analyze the average degree ' of a graph G’ = Transg, ¢, (G),
dependent on the sizes and average degrees of the graphs G,, G, and GG. Within
the analysis we use the following abbreviations:

_2lE(Gy)| _ 2|E(G)

_ _ _ 2|E(G)]
nv_‘V(Gv)‘ ne_|V(Ge)‘ O‘v—m ae—m 0= |V(G)|

According to the definition of the general local graph transformation we get:

5 = ZAEG)] _[V(G)|-2|E(G,)| + |E(G)]-(4n, +2|E(Ge)])
V(&) V(G)|-no + [E(G)] - ne

V(G)|- ayny + L8V(G)| - (4n, + aene)
V(&) 1w + 50[V(G)] - ne

_oon, + %5- (4n, +aene) 20y (ay — e + 20)
B nv+%6-ne - 21, + 0 - e
2 — 20
= + (av ae:)
2+0- 7

This result can be interpreted as follows:

1. The average degree of G' does not depend on the size but on the average
degree of GG. Therefore, if the average degree of the input graph is known
to be constant (e.g., scale-free graphs), the average degree of the output is
also constant, regardless of the size of the input graph.

2. Increasing the value of Z—:, while fixing the values of «,, a., and §, we
can decrease the value of the second term in the last sum. Therefore,
independent of the input graph, we can choose G, and G, such a way that
the resulting average degree is well approximated by a, (with small error
term).

Within the proof of the NP-completeness of the v-DSP, we use the second
property. l.e., we transform the input graph in such a way that the average
degree of any subgraph of the output graph (on some specific number of vertices)

3.2 GENERAL LOCAL GRAPH TRANSFORMATION 49

[® *——0 - 0—0—0

n. vertices

Figure 3.9: Modeling operation S; by using a general local transformation

is bounded from above by an appropriate chosen threshold (correlated to a).
Further, when considering subgraphs, we prove that the gap to this threshold
is minimal, when considering a subgraph that correspond to the image of some
densest subgraphs of the input. Using additional transformations, this gap is
shown to be zero if and only if the input graph contains a clique of demanded
size (see Theorem 4.4).

3.2.2 Special choices for GG, and G,

In the following, we consider some special types of graphs G, and G, (e.g., re-
quired when Transg, ¢, = N, o0 S;) and discuss the corresponding average degree
of graphs G' = Transg, ¢, (G).

e First of all, we restrict to the case that graph G, consists of a single vertex.
Therefore, we get n, = 1 and o, = 0, and consequently, the value of §
results to: 459

— 2«
8 =+ —F—s
N0 +2

In the following we consider two types of graph G,:

1. Let GG, be a line segment on n, vertices, and S defined in such a way
that the two copies of G, are connected to different ends of the line
segment (see Figure 3.9).

Based on this choice of G, G, and S we get:

Transg, g, = Ny 0 S: = S, with ¢ = n, (and z = 1)

Using o, = 2%=2 = 2 — 2 the average degree &' of G’ evaluates to:

L §|V]+2n.(56|V]) 26+2n.0 5 2 5—2

V] + n.(36|V]) 2+ neo Ne 5+n%

Based on the upper bound 2 + n% of ¢', it is easy to see that for any
input graph G, with |E(G)| > 0, we get
1 V(G
8@ = 2o v(@) < Ve + G

e

50 CHAPTER 3. GRAPH TRANSFORMATIONS

— e B

-
L.

oo

Figure 3.10: Example for tree-based a general local transformation

Further, using
V(G
vl < ("5 vl .

we observe that, for all ¢ > 0, there exists some sufficient large value
of ne (polynomial in [V (G)|) in such a way that

[E(G)] < V(G + V(G € [VIG)]+o(IV(G)]).

This property is used, when proving NP-hardness for y-DSP in gen-
eral graphs, with v(k) € k + Q(k®).

2. Later in this thesis, when restrict to S-PL input graphs to y-DSP, we
would prefer to choose graph G, in such a way that it contains more
vertices with higher degree, but still has average low degree.

E.g., we could define G, to be the graph that results when taking two
copies of a rooted tree and collapsing corresponding leaves. Further,
when applying Transg, ¢, to some edge {0,w} we add a matching
between the two roots of the trees the vertices corresponding to ¥ and
W, similar to above (see Figure 3.10).

Let x be the number of leaves in the underlying tree. The average

degree of G, evaluates to a, = w and thus the average degree

§" of G' = Transg, ¢, (G) results to: ’

:25\V(G)|+2(ne+x—2)(%5|V(G)\) 404+ 2(n. 4+ — 2)0)

7y VO + V@) - 24n

2x6 — 4 2z -2
2+ 2.

ned+2 Ne 6+ =
4

_ netz—=2

et d " < gt
¢ 240 -n, “ e

Once again, we can see that the average degree of the final graph
strongly depends on the value of «,. Using other definitions of G,

3.2 GENERAL LOCAL GRAPH TRANSFORMATION 51

x edges
fe———

t copies

Figure 3.11: General local transformation modeling N, o S;

this idea could be extended to guarantee specific degree distributions
for the final graph. However, within the latter discussion, we will see
that it is not possible to use arbitrary degree distributions for G, (e.g.,
many vertices with degree one) without making the NP-completeness
proof fail.

e After choosing G, to consist of an isolated vertex, we show how to define
graphs G, (and G,) in order to guarantee that the minimum degree of
G’ = Transg, . (G) is only slightly above some given constant, for any
input graph G. This property is used within the NP-completeness proof
of 7-DSP for 5-PL graphs (see section 4.4). Further, the choice of G, and
G. also guarantees that transformation Transg, ¢, equals N, o S;.

Let x — 1 be the required minimum degree. We define G, to be a complete
graph on z vertices and G, to correspond to ¢ copies of cliques of size x that
are connected chain-like using £ — 1 matchings of size z. When transforming
an edge {v, w} the clique corresponding to v is connected to one end of the
chain and w to the other (once again, using matchings of since z). This
construction is outlined in Figure 3.11 and is equivalent to transformation
N; 0 S;. Once again let G' = Transg, g, (G). The average degree ¢ of G
evaluates to:

V(G)(G) + V(@) -2+ 30V(G)| - ta - (z+1)

V(@) + 36V (G) [tz
z(x — 1) + 26z + otz (xz + 1)

5/

2 + 0tz
r r+20—3—2
= 1)+ = z
(@ +)+t (5x+%

Choosing t > x we can approximate ¢’ &~ x + 1. Further, all vertices have
degree at least z—1 (or x resp. z+ 1, if G contains no isolated vertices resp.
vertices of degree one). Within the NP-completeness proof we use input
graphs in such a way that the minimum degree is exactly x + 1.

52 CHAPTER 3. GRAPH TRANSFORMATIONS

3.3 Combined transformations N, o S; o R,

In this section, we investigate the resulting graph structure when applying itera-
tively the three graph transformations R, S, and N that have been defined in the
section 3.1. We prove (see Lemma 3.2) the equivalence of the existence of a clique
of size k in the input graph and the existence of a subgraph in the output graph
with corresponding size and density. Within the lemma, we do not require the
existence of some topological unique subgraph in the output graph but only the
existence of a subset of vertices of appropriate size with some minimum number
of existing edges between these vertices.

Lemma 3.2 Let G be an undirected simple graph, and let s,t,x € N, with x > 1.
Further, we assume (t=0) = (z=1).

G contains a clique of size k if and only if the transformed graph
G' = (N, o S; 0 R,)(G) contains a subgraph (not necessarily induced)
on exactly

k
T - (k-i—s-l—t(;8>> vertices

and at least

() (1) o () e

Proof: If t = 0, and thus x = 1, we know G' = (N; o Sy o R,)(G) = R,(G).
From Observation 3.1 we derive that G contains a clique of size £ if and only if
G’ contains a subgraph on k + s vertices and at least (k+5) edges. Obviously,

e (7))
(37) = G Lrore(57)) e (757)

and, consequently, the proposition holds.

For the rest of the proof, we assume ¢,z > 1. If G contains a clique C of size k,
the subgraph of G’ that corresponds to the transformation of C' has the require
number of vertices and edges. It remains to show that G contains a clique of
size k if G' contains some subgraph H with the required number of vertices and
edges.

First of all, we prove that the existence of H implies the existence of some set of
vertices X, with |X| = |V (H)|, which has the following properties:

3.3 COMBINED TRANSFORMATIONS N, o0 S; o R, 53

1. For each cliques C}, introduced by transformation N, either all or none
vertices are contained in X.

2. For all but at most one chain, introduced by transformation S;, either all or
none of the vertices that correspond to the ¢ inner vertices are contained in
S. If a chain is contained entirely, it holds that the vertices that correspond
to the two incident outer vertices are also elements of X.

3. Let G, be the subgraph of G’ that is induced by X. The number of edges
in G, is at least as high as the number of edges in H.

To proof the existence of such a set X, we start with the set of vertices V(H) and
iteratively reselect vertices until we end up with some set that has the desired
properties. Within the proof, we guarantee that the number of induced edges
does not decrease, at any time. Further, when speaking of cliques we consider
those cliques C; that have been build when applying operation N. Similarly, if
it is clear from context, we use the terms edges and degrees instead of induced
edges and induced degrees.

We know that, according to transformation NV, the vertices of G can be partitioned
into cliques of size x and that the vertices of each clique can be labeled in such
a way that inter-clique edges connect vertices with the same label. Thus, it is
always possible to reselect the vertices within every clique in such a way that
vertices with smallest label are chosen first. Obviously, the number of edges does
not decrease. Throughout the whole process, when removing or adding vertices
of a clique, we proceed according the this order on the vertices.

In the following, we show how exchange vertices in order to to select entire cliques.
Doing so, we refer to those cliques that correspond to inner vertices of the oper-
ation S to inner cliques, and to those of outer vertices to outer cliques. Assume
that there exist at least two cliques which are not selected entirely (Since the
number of vertices in the subgraph is a multiple of x it never happens that only
one clique is partially selected). According to the following rules, applied in the
same order as stated, we choose two of these cliques, A and B, and exchange
vertices. Let a = |V (A)| and b = |V (B)| (only considering selected vertices).

1. Try to choose two inner cliques, where a # b (w.l.o.g., we assume a < b).

Due to t > 1, every selected vertex in A is connected to at most (a—1)+2 =
a+ 1 vertices. We remove a vertex in A and add the next unselected vertex
in B. The new vertex is connected to at least b > a + 1 vertices in B.
Therefore the number of edges does not decrease. This procedure is iterated
until either no vertices of A or all vertices of B are selected.

2. Try to choose two inner cliques (@ = b), where A is connected to some
(inner or outer) clique C with z (# a) selected vertices.

If z < a then the vertex with highest label in A has induced degree at

o4

CHAPTER 3. GRAPH TRANSFORMATIONS

Pl BN
l—l—l.I:IIZI

=

| = =
<4 o0 o
<4 o0 o

Figure 3.12: A typical situation when exchanging vertices in (N, 0S;0R,)(G)

most a and thus exchanging that vertex to the next unselected vertex in B
does not decrease the number of edges. Otherwise, if z > a, we can remove
the top selected vertex from B (degree at most b+ 1) and choose the next
unselected vertex in A. The new vertex must be connected to a selected
one in ', due to z > a. Once again, the number of induced edges does
not decrease. We continue exchanging vertices until one of the cliques is
unselected or the other one is selected completely.

. Consider all induced connected components of G’ which contain a partially

selected inner clique. Note that within all cliques the same number z of
vertices are selected (otherwise case 1 holds). Further (since case 2 does not
hold), all inner cliques have two neighboring cliques with the same number
of selected vertices. For t = 3, z = 3, x = 5 this situation is outlined
in Figure 3.12 (circles resp. squares represent vertices of inner resp. outer
cliques; selected vertices are filled).

We choose one of those components. If it contains an outer clique which
has only one induced neighboring clique, we choose that outer clique and
an arbitrary one of the inner cliques. We can exchange vertices from the
outer clique to the inner clique without decreasing the number of induced
edges (similar to case 2). Otherwise, dependent on z, we distinguish two
sub-cases:

(a) If z > 2 choose any two inner cliques A and B. It is possible to re-
move 2 vertices from A (loss of (z — 1) + (2 — 2) + 4 = 2z + 1 edges)
and replace them with the next unselected vertex v € V(B) and one
of the next unselected vertices w ¢ V(A) in the neighboring cliques
of B (gain of z + z + 1 = 2z + 1 edges). Vertex w must exist since
both neighboring cliques of B are also partially selected. Now, we
can continue exchanging vertices from A to B until the the number of
partially selected cliques decreases.

3.3 COMBINED TRANSFORMATIONS N, o0 S; o R, 55

(b) Otherwise, z = 1, in every partially selected cliques exactly one vertex
is selected. Due to ¢t > 1 and the choice of this case, we know that
the component is isomorphic to a 2-edge-connected subgraph of graph
(St o Rs)(G). Let v be an outer vertex with minimum induced degree
within the selected component. Removing v and all its neighbors leads
to a loss of 7 + 1 vertices and 27 edges. Due to the 2-edge-connectivity
of the initially induced graph the remaining (at least 7 + 1) vertices
are still connected. We choose any 7+ 1 connected vertices and add in
each of the corresponding cliques the next unselected vertex. Doing
so, we gain (i + 1) +¢ = 2i + 1 edges and thus equalize the number
of lost edges. Similar to the previous cases, the number of partially
selected cliques is also reduced.

4. There exists exactly one partially selected inner clique A. All other inner
cliques are either selected completely or not at all. Choose any partially
selected outer clique B. Let a' and b’ be the minimum induced degrees
in A and B. If ¢’ < b’ remove the corresponding vertex of A and choose
some unselected vertex v € V(B). Obviously, v has induced degree at least
b'. Similar, if a’ > b’ remove the corresponding vertex from B and choose
some unselected vertex v € V(A). This vertex has induced degree at least
a' —1 > b'. Therefore, the number of edges is not decreased. We continue
exchanging vertices until the number of partially selected cliques decreases.

5. There exists no partially selected inner clique. Note, for any outer clique all
its selected vertices have the same induced degree. Choose any two partially
selected outer cliques A and B. Let a’ and o' be the corresponding induced
degrees, w.l.o.g. we assume a' < b’. We can exchange vertices from A to B
without decreasing the number of edges. Thus, after the maximum number
of possible exchanges, once again the number of partially selected cliques
decreases.

For all the above cases, we stated a method that guarantees to decrease the
number of partially selected cliques. Thus, when iterating this process, finally,
there remain no partially selected cliques, i.e., the first condition from above
holds.

In order to further satisfy the second condition, we start to exchange complete
cliques. Note that this has no impact on the truth of the first condition. Assume
there exist two partially selected chains A and B (compared to the second prop-
erty). We iteratively exchange inner cliques of A, which have only one selected
neighboring clique, with unselected cliques of B, which have at least one selected
neighboring clique. This process does not decrease the number of edges. Finally,
the number of partially selected chains is decreased by one. Iterating this process
results in at most one partially selected chain.

56 CHAPTER 3. GRAPH TRANSFORMATIONS

At this point the proof is nearly finished. So far, having started with some
appropriate subgraph H of G', we have constructed a subgraph H' of G’ on x -
(k+ s +1t(*1*)) vertices and at least induced (%)-(k + s +¢(*3*)) +=-(t+1)- (*1?)
induced edges with the above properties. Using these properties, we can argue
that H' is isomorphic to a transformed clique of size k, i.e., H = (N,0S;0R,)(K}).

Since every selected vertex of H' is an element of an entirely selected clique,
we know that there are (k + 5+ t(k;s)) such cliques. Every cliques induce (”2”) .
(k + s+ t(k;”)) edges. Therefore the remaining edges, at least z(t + 1) (k;”),
must be contained in the matchings connecting these cliques (i.e., the matchings
are located within the corresponding chains). Each completely selected chain
contributes z(t+ 1) such edges. Thus, using property 2, there must be (k;rs) such

chains, which correspond to the same number of “selected” edges in Rs(G).

Now, we can conclude. In order to induce the required number of line segments
(inner cliques) we need x - ¢(*}®) vertices. Thus, there remain at most z - (k + s)
vertices for the outer cliques. This corresponds to at most k+ s vertices in Ry(G).
Using the above observation, these vertices must induce (*1°) edges in R,(G).
The only possibility to induce at least (kzs) edges with at most k£ + s vertices is
to form a clique of size k£ + s. Therefore, the existence of H implies the existence
of a clique of size k + s in R4(G). Using Observation 3.1, this is equivalent to
the existence of a clique of size k in G. This completes the proof of the second

implication of the lemma. U

Chapter 4

The complexity of finding dense
subgraphs

In the beginning of this thesis (chapter 1), we have discussed the usability of
density-based cluster techniques, when abstracting large networks with small-
world property. Further, in chapter 2, we have discussed the main characteristics
of power-law graphs, a class of graphs that is often used to generalize large-scale
networks occurring in a wide range of research areas. In the present chapter,
we investigate the computational complexity of finding dense subgraphs in either
general or power-law graphs (where, for a fixed number of vertices, density is
measured in terms of the number of edges, or, equivalently, the average degree).

While finding subgraphs of arbitrary size with highest average degree can be
done in polynomial time, we show that it is NP-complete to decide, whether
a subgraph on exactly k vertices and at least (k) edges exists, for any func-
tion v € k 4+ Q(k%) (with € > 0). Due to the appearance of power-law degree
structures on large-scale networks, the above problem is also discussed for this
special graph class. We show that, despite of this restriction, the problem remains
NP-complete for a wide range of functions .

4.1 Overview and complexity results

4.1.1 Definition of density

First of all, before presenting an overview on density based subgraph problems,
we explain our choice to use the average degree as a measure of density.

In the literature, density of a (sub)graph is very often defined in terms of a
function on the number of its vertices and edges. Basically, there are three
standard definitions of density.

o7

58 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

e The density di(G) of a graph G = (V, E), often referred to as relative
density, is defined to be the fraction of the number of edges in G relative
to the maximum number of possible edges on the vertex set of G (e.g., see
[AF99, RGW02)):

di(G) = ﬂ

(%)

It is easy to see that d;(G) € [0 .. 1], for any graph G.

e The density dy(G) of a graph G = (V, E) is defined to be the average degree
of the vertices of G (e.g., see [Gol84, FKP01]):

2|F
ds(G) = % = avgdeg(G)

Instead, it is possible to use the ratio of the number of the edges to the
number of vertices, since both values only differ by a factor two. We further
observe dy(G) € [0 .. |[V|—1].

e The density d3(G) of a graph G = (V, E) is defined to be its number of
edges (e.g., see [SW98, AHI02]):

d3(G) = |E]
Obviously, d3(G) € [0 .. (V{@)].

If we use the above definitions to compare the density of different graphs, we get
different results, depending on the structure of the underlying graphs. As a case
in point, we consider definition d;. On the one hand, due to its range [0 .. 1],
it seems to be very intuitive since it enables to compare graphs of different sizes
directly. On the other hand, the maximal number of possible edges is quadratic
in the number of vertices. Therefore, when using definition ds for comparing two
graphs G, and G, with [V(G))| = 3|V(G>)|, we need |E(G:)| = 4|E(Gs)| in
order to guarantee that d;(G1) = di1(G2). Thus we get that smaller graphs are
“preferred” when using definition d;. Similarly, when using definition d3, larger
graphs are favored.

However, if we assume that the number of edges increases linearly with the num-
ber of vertices (e.g., when considering graphs with scale-free characteristic, see
discussion in 2.2.2.1), the definition of dy appears to be most appropriate. In
chapter 2 we have observed that scale-invariance (or at least size-independent av-
erage degree) often arises when modeling large real-world data. For this reason,
throughout this thesis, we use definition dy for measuring the density of graphs
(most times, however, we consider the number of edges, which is an equivalent
measure if considering subgraphs of a fixed number of vertices).

4.1 OVERVIEW AND COMPLEXITY RESULTS 59

4.1.2 Dense subgraphs of arbitrary size

One of the most intuitive dense subgraph problems is to find the densest subgraph
for some given input graph (denoted by DENSEST-SUBGRAPH-PROBLEM).

Problem 4.1 DENSEST-SUBGRAPH-PROBLEM

Input: undirected graph G
Output: subgraph G' of G, which has mazimum average degree
with respect to all subgraphs of G

Using flow techniques, Goldberg has shown that there is a polynomial-time algo-
rithm for the DENSEST-SUBGRAPH-PROBLEM [Gol84]. The idea of the algorithm
is to introduce two new vertices s and ¢ that are connected to all vertices of the
input graph G. Using appropriate weights for the new edges, while all edges in G
are assigned equal weights, it is possible to state an equivalence between the exis-
tence of a min-cut of size at most « and the existence of a subgraph with density at
least some value correlated to a. Combining several runs of this algorithm (using
different edge weights), it is possible to evaluate a subgraph of G with maximal
density among all subgraphs of G. The fastest algorithm currently known for this
problem, which is also based on flow techniques, has been developed by Gallo,
Grigoriadis, and Tarjan [GGT89] and runs in time O(mn log(n?/m)). Modifying
the above definition, it is also possible to consider edge-weighted graphs. These
variants can be solved similarly.

Obviously, by applying a single min-cut computation, the corresponding decision
problem VARIABLE-DENSITY-SUBGRAPH-PROBLEM can be decided in polyno-
mial time. It is defined as follows.

Decision-Problem 4.2 VARIABLE-DENSITY-SUBGRAPH-PROBLEM

Input: (G, d), where G is an undirected graph, and d € Q
Question: Does G contain a subgraph with average degree at
least d?

4.1.3 Dense subgraphs with required size

In the previous subsection, the dense subgraphs could be of arbitrary size. How-
ever, if we intend to construct a density-based clustering of a graph we usually
want to partition the vertex set into subsets of comparable size and density.
When applying the above methods iteratively to some input graph, there is no
guarantee on the sizes and densities of the resulting clusters. Hence, this method,
which detects some densest subgraph, cannot be applied to clustering, in general.
As a consequence, we have to refine the approach by adding size and density

60 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

restrictions for the desired subgraphs. Unfortunately, as we can see in the follow-
ing, most of the corresponding decision problems are complete for NP and thus
corresponding solutions are not computable in polynomial time (unless P equals
NP).

The most general form of including size and density is stated in the GENERAL-
DENSE-k-SUBGRAPH-PROBLEM:

Decision-Problem 4.3 GENERAL-DENSE-k£-SUBGRAPH-PROBLEM

Input: (G, k,d), where G is some undirected graph, k € N, and
deq

Question: Does G contain a subgraph on k wvertices with average
degree at least d?

The membership of the problem in this complexity class NP can easily been
verified. Further, we can use the query (G, k, ('2“)) to reduce an instance (G, k) of
CLIQUE, which is known to be NP-complete [Kar72]. Even when restricting to
the DENSEST-A-SUBGRAPH-PROBLEM [SW98, AKK99, FKP01, AHI02|, where
we ask for the densest subgraph with exactly k vertices, the problem is NP-hard
(e.g., see [RRT94]).

4.1.3.1 Fixed-parameter dense subgraph problem

Within the above problems, NP-completeness has been derived due to the pos-
sibly large number of demanded edges. However, in case of building abstractions
for sparse input graphs, there is no need to require the existence of all possible
edges (i.e., maximum density) within the subgraphs. Thus, in contrast to the
above variable dense subgraph problems, where we can specify arbitrarily large
average degree for the demanded subgraph, we restrict to fized-parameter prob-
lems. The overall idea of this class of problems is to define the minimal required
average degree of the desired subgraph (on & vertices) in terms of a fixed function
v that may depend on k. Especially, if we have detailed information on the over-
all graph structure (e.g., when operation on large-scale networks) it is possible to
define dense subgraphs by correlating their sizes and densities, appropriately (e.g.
some multiple of the average degree of the input graph). In the literature the
number of edges is often used instead of the average degree in order to describe
the density [FKP01, AHI02]. For the above problem the computational complex-
ity is equivalent for both definitions of density, since the average degree and the
number of edges differ by the factor %k, which can be hidden within function v. In
order to guarantee consistency with the literature we define the fixed-parameter
~v-DENSE-k-SUBGRAPH-PROBLEM (denoted by v-DSP) in terms of edges of the
subgraph.

4.1 OVERVIEW AND COMPLEXITY RESULTS 61

Decision-Problem 4.4 ~-DENSE-k-SUBGRAPH-PROBLEM (7-DSP)

Input: (G, k), where G is some undirected graph, and k € N
Question: Does G contains a subgraph on k vertices with at least
(k) edges?

Similar to the above definition of y-DSP, it is possible to use hyper-graphs
instead of undirected graphs. Nehme and Yu [NY97] investigated the complexity
of the constrained maximum value sub-hypergraph problem, which contains the
dense k-subgraph problem as a special case. They obtained bounds on the number
of (hyper-)edges a (hyper-)graph may have in such a way that the problem is
still polynomial-time solvable (namely, n — s + alogn edges, where n is the
number of vertices, s is the number of connected components, and « is any
constant). Similarly, fixed parameter-restrictions to simple input graphs were
also considered in [AITT00, AHI0O2]. These scenarios have no consequences for
complexity of the above problem since the restrictions affect the graph outside
of possible dense subgraphs, while we are interested in the existence of dense
subgraphs of fixed quality inside any arbitrary graph (or graphs with different
properties, e.g., power-low graphs).

The complexity of the general v-DSP depends on the choice of function 7. Ob-
viously, we may restrict to functions vy with 0 < (k) < (’2“), since all other values
of v(k) do not correspond to valid choices for the number of edges of a graph on
k vertices. It is easy to see that the problem is trivially solvable in polynomial
time for y(k) = 0 (i.e., we do not demand the existence of any edge and thus
any subgraphs on k vertices is a valid solution). Further, if we choose (k) = (£)
the problem is equivalent to deciding on the existence of a clique on k vertices
an thus y-DSP is known to be NP-complete. The containment in two different
(besides P = NP) complexity classes for the two extreme choices of y poses the
question if there exists dichotomy (i.e. there exists some threshold in such a way
that v-DSP is solvable in polynomial for all choices of v blow this threshold, and
is contained in the class of NP-complete problems, otherwise). The analysis of
this question is a main theoretical focus in this thesis and is presented within
the following sections. The overall result enables to state membership in P resp.
NP-c for a wide range of functions. Nevertheless, a small gap remains open and
thus dichotomy can only be assumed but not proven, in general.

In the literature, there are several results on the complexity of y-DSP for specific
functions 7. Asahiro, Hassin, and Iwama [AHI02] studied the k-f(k) dense sub-
graph problem, (k, f(k))-DSP for short, which asks whether there is a k-vertex
subgraph of a given graph G which has at least f(k) edges. Therefore, besides
the notation, this problem is equivalent to v-DSP. The authors have proved
that the problem remains NP-complete for f(k) = ©(k'*¢) for all 0 < & < 1 and
is polynomial-time solvable for f(k) = k. Feige and Seltser [FS97]| even proved

62 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

P NP-c
Feige, Seltser (1997) — v(k) = k+ k°
Asahiro et al. (2002) | v(k) = k (k) = O(k'T*)
H et al. (2003) | v(k) = k+O(1) | v(k) = k + Q(k°)

Table 4.1: Overview on the complexity results for y-DSP

the special result that (k, f(k))-DSP is NP-complete if f(k) = k + k° for any
0 < € < 2. In this thesis, we show how to improve these bounds. Further,
while the previous results only considered special choices of function v, we prove
upper and lower bounds for the containment in P or NP-c, respectively, and
thus provide an almost complete classification of v-DSP with respect to algo-
rithmic difficulty depending on the choices of v [HKMT02, HKMTO03]. A short
comprehensive overview of the results is stated in Table 4.1.

The detailed proofs of our results are presented in the succeeding sections. First
of all, in section 4.2, we show that v-DSP is polynomial-time solvable for func-
tions v € k+ O(1), i.e. asking whether a graph contains some subgraph on &
vertices and at least k£ + c¢ edges, for some ¢ > 0. Moreover, by analyzing the
polynomial-time algorithm, we easily observe that the problem can be solved in
subexponential time 27" for v =€ k + k°@. Further, in section 4.3 we prove
that v-DSP is NP-complete for v € k + Q(k°) for 0 < ¢ < 2. These results, for
general graphs, are subsumed in Theorem 4.1.

Theorem 4.1 Let v : N — N be a function that is computable in polynomial
. . k
time, with 0 < (k) < (5).
1. If v € k+ O(1), then v-DSP is solvable in polynomial time.

2. If v € k 4+ k°D | then 4-DSP is solvable in subexponential time.

3. If v € k+ Q(k?) for some € > 0, then v-DSP is NP-complete.

All in all, we establish a rather sharp boundary between polynomial time solv-
able and NP-complete cases. As a more intuitive formulation of the problem,
i.e., when considering constant average degree, we obtain that detecting a k-
vertex subgraph of average degree at least two (which is nearly the case of any
connected graph) can be done in polynomial time whereas finding a k-vertex sub-
graph of slightly-higher average degree, at least 2 + ¢, for some £ > 0, is already
NP-complete. Thus, density-based clustering is inherently hard as a general
methodology.

4.1 OVERVIEW AND COMPLEXITY RESULTS 63

v-DSP on power-law graphs In chapter 2 we described the family of -
PL graphs that builds an abstract graph representation for may natural large-
scale networks. Obviously, the graphs used within the NP-completeness proof of
v-DSP do not belong to the class of 5-PL graphs. Therefore, the computational
complexity for 7-DSP may differ, when restricting to power-law graphs, and
thus presumably when applying this technique to large real-world date. While
the bound for polynomial tractability also holds when restricting to a subclass
of input problems this is not true for NP-completeness, in general. Therefore,
in section 4.4, we investigate the NP-completeness for 7-DSP on S-PL graphs.
Unlike to the general problem we can only prove NP-completeness for functions
v(k) > 126k, where § is the maximum average degree for all 8-PL graphs for
some constant value of 3. Referring to this restricted version as y-DSP-3-PL
we can summarize these results in Theorem 4.2.

Theorem 4.2 Let v : N — N be a function that is computable in polynomial

time, with 0 < (k) < (’2“), and let B > 2.

1. If y € k+ O(1), then v-DSP-B-PL is solvable in polynomial time.
2. If v € k+ k°Y | then v-DSP-B-PL is solvable in subexponential time.

8. If v(k) > 20k, then -DSP-B-PL is NP-complete, where § is the mazi-
mum average degree of all 3-PL graphs.

Different to y-DSP for general graphs, there remains a larger gap between the de-
rived bounds for polynomial time solvability and NP-completeness. In section 4.5
we discuss the quality of the lower bound, when using the proposed reduction
technique. Doing so, we observe that where as it seems possible to slightly de-
crease the factor of % (by applying further refinements), it is not likely that
the applied reduction technique can be used to prove significantly better lower
bounds. In order to do so we require stronger results on the class of 5-PL graphs.
Nevertheless, despite of laking exact proofs for the computational complexity of
the remaining gap, we give evidence that for almost all function vy within the
remaining gap the problem 7-DSP restricted to S-PL may be assumed to be
NP-complete, similar to the result on general graphs.

Structure of the proofs The proof of the polynomial-time cases is mainly
based on dynamic programming over collections of minimal subgraphs having
certain properties. For instance, for the above-mentioned polynomial-time result
for (k, f(k))-DSP with f(k) = k [AHI0O2], we simply need to find shortest cycles
in a graph, which is easy. For functions f(k) = k + ¢ with ¢ > 0, the search for
similar minimal subgraphs is not obvious to solve and is the main difficulty to
overcome in order to obtain polynomial-time algorithms.

In the NP-hardness proofs we extend techniques used in [FK94, GNY94, FS97,
AHI02|, that are well suited for ©-behavior of functions but do not suffice for

64 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

()-behavior. The completeness is proved by reduction from a special version of
CLIQUE using elementary graph transformations. These transformations can be
divided in densification (by enriching graphs with vertices and edges so that
only cliques consisting of at least half of the vertices are relevant [AHI02]) and
sparsification (either by vertex replacement, e.g., replacing each vertex with a
cycle on r vertices [FS97], or by edge replacement, e.g., replacing each edge
with a path of length s [FK94, GNY94, FS97]). Whereas densification increases
average degrees, sparsification is intended to lower average degrees of transformed
subgraphs. However, as both kinds of transformation are rather coarse in its
effects (for instance, it is easy to calculate that vertex replacement with r > 0
vertices together with edge replacement with path length s > 1 maps cliques to
very sparse graphs having average degree less than 2 + ¢, for every constant € >
0), we need additional transformations of intermediate density effects to adjust
fine-grained behavior. This is realized by graph adjoining (i.e., adding graphs
having prescribed numbers of vertices and edges). The main issue remaining for
getting results for (2-behavior is to unify reductions for several growth classes
by a non-trivial choice of the parameters involved in transformations.! When
restricting to the input class of power-law graphs, we require some further graph
(having subgraphs of sufficiently bounded average degree) in order to guarantee
the desired overall degree distribution.

4.2 Finding (k + O(1))-dense subgraphs in poly-
nomial time

In this section, we show how to solve 4-DSP for v € k+O(1) in time polynomial
in the number of vertices. In other words, we prove that searching a subgraph on
k vertices with at least k4 c edges, with ¢ constant, is a polynomial-time problem
[HKMT02, HKMT03]. We will formalize this problem as EXCESS-¢ SUBGRAPH.

For a graph G, let the ezcess of G, denoted by ¢(G), be defined as the difference
of the number of edges and the number of vertices, i.e., ¢(G) = |E(G)| — |V(G)|.
A (sub)graph G with ¢(G) > c is said to be an excess-c (sub)graph.

!Basically, having Turdn’s theorem [Tur41] in mind, one could ask whether it is possible,
at least in the case of dense graphs, to deduce intractability results using inapproximability
of MAXIMUM CLIQUE due to Hastad [Has99]: there is no polynomial-time algorithm finding
cliques of size at least nate (where n is the size of the maximum clique) unless P = NP. Assume

we would have a polynomial-time algorithm for y-DSP with, e.g., v(k) = #(%) and 0 < 8 < 1,

are we now able to decide whether there is a clique of size k2+? Turdn’s theorem [Tur41]

says that there is a clique of size k in a graph with n vertices and m edges, if m > %n2%

Unfortunately this implies that we can only assure that in a graph with n vertices and at least

ﬂ(g) edges, there is a clique of size at most 31__26 , which is constant and makes the argument

fail. This objection remains valid with the recent improvements of inapproximability results
for MaxiMuM CLIQUE as in [KhoO1].

4.2 FINDING (k + O(1))-DENSE SUBGRAPHS IN POLYNOMIAL TIME 65

Problem 4.5 EXCESS-¢ SUBGRAPH

Input: (G, k), where G is some undirected graph, and k € N
Output: Does G contain an excess-c subgraph with (exactly) k
vertices?

We will show how to find excess-c subgraphs in polynomial time. The general
solution is based on the case of a connected graph as it is considered in the
following lemmata.

Lemma 4.1 Let ¢ > 0 be any integer. Given a connected graph G on n vertices,
an excess-c subgraph of minimum size can be computed in time O(n**?).

Proof: Let G be any connected graph with ¢(G) > ¢. Obviously, there exists a
subgraph G, of minimum size with excess c. For the degree-sum of G, we obtain

S degg, (v) =2/ B(GL)| = 2(|V(Go) + o).

veV(Ge)

Since GG, is minimal w.r.t. the number of vertices, there exists no vertex with
degree less than two. Therefore, the number of vertices with degree greater than
two in GG, is at most

D (degg, (v) = 2) = 2(|V(Go)| + ¢) = 2[V(Ge)| = 2e.

veV(Ge)

Let S be the set of all vertices in G, with degree greater than two. If there is
a path connecting vertices u,v € S using only vertices from V(G.) \ S (u and v
are not necessarily distinct), then there can be no shorter path connecting v and
v containing vertices from V(G) \ V(G.). Otherwise G, would not be minimal
w.r.t. the number of vertices. In the following we will describe how to find such
a subgraph G, if it exists.

We examine all sets S’ C S of size at most 2¢, i.e., the elements of S’ are those
vertices where paths can cross. For each such set we can iteratively construct
a candidate H(S') for G.. In each step we include a path of minimum length
among all paths connecting any two vertices in S’. We may restrict ourselves
to those paths that do not intersect or join common edges, since those cases are
covered by other appropriate choices of S’. This process is repeated until either
excess c is reached or no further connecting path exists. In the latter case, the
set S’ does not constitute a valid candidate for G,.. Otherwise H(S') is kept as
a possible choice for G.. After considering all possibilities for S’, the graph G,
can be chosen as a vertex-minimal subgraph from all candidates that were found.
Note that G, is not unique w.r.t. exchanging equal length paths.

66 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

RURMV AR A

Figure 4.1: Breadth-first search for an excess-1 subgraph. For excess ¢ =1
we have at most 2c = 2 starting vertices. Three shortest paths
(thick lines) connecting two possible starting vertices (boxes) are
located and added in order of increasing length.

Since |S’| < 2¢, there are

2c

Z (|‘j|) — O(nZC)

i=1

possible choices for S’. For the verification of a chosen set S’ that consists of
1 vertices, we have to find iteratively ¢ + ¢ shortest non-crossing paths, e.g., by
using i + ¢ < 3c parallel breadth-first-search runs (see A.1), which takes overall
time O(3c|E(G)|) = O(n?).

Hence an excess-c¢ subgraph of minimum size can be determined by testing all
possible choices of S’ in total time O(n**?). Figure 4.1 shows an example for
¢ = 1. Note that for ¢ = 0 we only have to find a shortest cycle (e.g., by
breadth-first search), which can be done in time O(n?). O

Unfortunately, the algorithm of Lemma 4.1 cannot directly be used for the general
case of possibly non-connected graphs. For these graphs a solution may contain
vertices from different connected components. Therefore, our algorithm is based
on solving the subproblem of maximizing the excess for a given number of vertices
within a connected graph.

Lemma 4.2 Let ¢ > 0 be any integer and G be a graph with n vertices. We define
¢; to be the mazimum excess of a subgraph of G on (exactly) i vertices. Calculating
min{e;, c} for all values of 1 € {0,1,...,n} can be done in time O(n?**2).

Proof: 'We first observe that ¢ = 0. Also, since G is connected, ¢; > —1 for
all i € [1 .. n]. Furthermore, due to the connectivity of G any subgraph can
iteratively be extended without decreasing the excess. Thus, if there exists a
subgraph on ¢ > 0 vertices having excess ¢;, the value ¢; is a lower bound for the
maximum excess of subgraphs with more vertices. Therefore, it is sufficient to
know the minimum number of vertices necessary to achieve excess ¢ (as done in
Lemma 4.1).

The maximum excess we are interested in is bounded from above by c¢. We get
the minimum number of vertices needed for all possible values of ¢ € [0 .. ¢] by

4.2 FINDING (k + O(1))-DENSE SUBGRAPHS IN POLYNOMIAL TIME 67

|
1
|
O Cy Cjo : Cjo +1 Cr1 Cr
|
e 0o 0 1 e 0o 0
god| IR W RO B B et R o S
l
|
excess > 0 : excess = —1
|

Figure 4.2: Ordering and classification of connected components. The com-
ponents C; with excess ¢(C;) = —1 are trees and therefore easier
to handle.

performing c+ 1 iterations of the algorithm described in Lemma 4.1. Using these
results we can easily calculate the desired value min{e;, ¢}, for each i € [0 .. n].
This requires total time O(n?*2). O

Before we proceed to the main theorem, we have to discuss a further property.
Let (G, k) be the instance of the EXCESS-c SUBGRAPH problem, i.e., we have to
find a subgraph of G on k vertices with at least £ 4+ c edges. In time linear in
|[V(G)| + |E(G)| we can (as a preprocessing step) partition G into its connected
components and calculate their excess. Let C4,...,C, be the list of the com-
ponents, sorted non-increasingly by their excess. Note that ¢(C;) > —1 since
all components are connected. Let j; denote the maximum index of the compo-
nents with non-negative excess and kg the total number of all vertices of those
components (see Figure 4.2).

Lemma 4.3 Let G be an undirected graph that consists of connected components
Ci,...,C,. Further let jy and ko be defined as stated above.

1. If k > ko then there exists a mazrimum excess subgraph comprising all ver-
tices from the non-negative excess components Ci, ..., Cjy,.

2. If k < ko then there always exists a subgraph of size k having mazimum
excess within G and consisting only of vertices from components with non-
negative ercess.

Proof: Let G’ be an induced subgraph of G. Assume that G’ contains vertices
of a component C; with negative excess while there exists a component C; with
positive excess that is not contained entirely.

If at least one vertex in Cj is selected, there exists another so far not selected
vertex v in C; that is adjacent to some selected vertex. Since C; must be a tree,
there must exist a selected vertex u € C; that is a leaf in the selection, i.e., it is

68 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

incident to at most one edge in G'. By exchanging u and v, no excess is lost.

Otherwise, no vertex in Cj; is selected. Once again we exchange leaves from
C; with connected vertices from C;. There are two possibilities. Firstly, if C; is
selected entirely, we cannot lose excess because ¢(C;) > 0. Secondly, if all vertices
of C; were exchanged, once again we cannot lose excess since ¢(C;) = —1 and all
chosen vertices in C; are connected (and thus the induced graph has excess at
least —1).

This process can be iterated until there all vertices in the components with neg-
ative excess are unselected or all components with positive excess are contained
entirely. m

With these results we are able to state the main theorem of this section.

Theorem 4.3 Let ¢ be any integer. For any input (G, k), EXCESS-c SUBGRAPH
can be decided in time O(|V(G)|?H4).

Proof. Let ¢ be any fixed integer. Let (G, k) be a problem instance. The problem
can be divided into two cases.

Case k > ko. In this case, the problem can be solved straightforward. Because
of Lemma 4.3, there exists a maximum-excess subgraph on k vertices that con-
tains all components with non-negative excess entirely. Therefore, all remaining
vertices must be chosen from the components with negative excess. Those com-
ponents are trees (each having excess —1 by definition) and thus the selected
vertices within these components induce a forest. Since we want to maximize the
excess, we have to minimize the number of trees. Therefore, as long as possible,
we choose complete components ordered by non-increasing size (i.e., largest trees
first). From the next component we choose a subtree of sufficient size, to get
exactly the desired number of vertices. This procedure determines the minimum
number of trees to choose. Finally, the maximum excess of a subgraph of G
on k vertices can be evaluated by adding up the excess of all used components.
Obviously, in this case the time bound of the theorem holds.

Case k < kg. Here, we may restrict our choice to those components with non-
negative excess. We show that it is sufficient to calculate separately for each such
component the minimum size of subgraphs for all values of excess within the
fixed range {0,1,...,c+ 1}. The original problem can be decided by combining
these solutions. For each component C; we create an array A;. At index ¢ €
{0,1,...,|V(C;)|} we store the maximum excess for any (induced) subgraph of
component C; on % vertices. As we will see later values larger than ¢ + 1 are of
no interest. In these cases the lower bound c + 1 will be used instead. Due to
Lemma 4.2 array A; can be calculated in time D[V (C;)|2(¢#1D+2 for some D > 0.

4.2 FINDING (k + O(1))-DENSE SUBGRAPHS IN POLYNOMIAL TIME 69

Hence, the total time to calculate the values for A; for all components is

r r 2|c|+4
2 DIV(G)P ™ < D (Z |V<0j)|) = O(V(G) e,

j=1
Based on the results of the calculation we can distinguish two different cases.

e If there exists a component that contains an excess-(c¢ + 1) subgraph on
ki < k vertices, we can choose this subgraph and add a sufficient number
k — ki of vertices such that the excess decreases by at most one. This
can be achieved by appending remaining vertices of the component, adding
entire so far unused components (with excess ¢ > 0) and adding at most
one incomplete component (a connected subgraph with excess ¢ > —1).

e Otherwise, for the second case, all excess-(c + 1) subgraphs of any com-
ponent have more than £k vertices. Assuming that we already calculated
the values of the arrays A;, we can compute the maximum excess of a k-
vertex subgraph from G by considering suitable subsets of the components.
Therefore we have to decide how many vertices of each component have to
be selected.?

From each component C; at most min(|V (C})|, k) vertices can be selected.
Remember that the corresponding maximum excess is stored in A;. We
iterate over all components and within the components over all possible
subgraph-sizes and store the currently best sub-result in array X. This can
be done in such a way that after each iteration X[i] contains the maximum
possible (bounded by c¢) excess for an i-vertex subgraph of the so far pro-
cessed components. Finally X[k] contains the value of the maximum excess
for any subgraph on £ vertices. Thus, it can be decided whether there exists
an excess-c subgraph of size k. Figure 4.3 shows an algorithm (based on
dynamic programming) for this calculation in pseudo-code.

Since the total size of all components is bounded by n (first and second
loop) and k£ < n (third loop), the calculation time of the algorithm is in
O(n?).

It is easily seen that the total calculation time is on O(|V(G)|?€**) O

So far, we only considered the EXCESS-c SUBGRAPH problem for constant values
c. If we are interested in a k-vertex subgraph with excess function f € O(1),
the same method can be applied. From f € O(1) we know that f(k) is bounded
from above by a constant ¢’. Obviously, the time complexity for our algorithm is

2Note that this problem is a variant of SUBSET SUM, using a set of integer-intervals
{{0,1,...,|V(C))|} | 0<j<jo }. Despite SUBSET SuM is NP-complete, this problem can
be solved in polynomial time, because of the present unary representation of 7.

70 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

initialize array X[0 .. k] :=[0,—1,...,—1]
initialize array Y[0 .. k] :=[0,—-1,..., —1]
for all j € {1,...,j0} do

for alli € {1,...,min(|V(C})|,k)} do

for alll € {0,...,k —i} do
if Y[l +1] < X[I] + A;[i] then
Y +1] := X[I] + A;[i]
copy array Y to X

Figure 4.3: Algorithm for excess-aggregation of connected components.

O(n**4), if f(k) can be computed in the same time. This problem corresponds
to finding a (k4 O(1))-dense subgraph. Applying some modifications the method
can also be used to find such a subgraph instead of only deciding its existence.

Corollary 4.1 For polynomial-time computable functions v € k+ O(1), v-DSP
15 18 solvable in polynomial time. Moreover, finding a v-cluster on k vertices is
also solvable in polynomial time.

Looking carefully at our algorithm, we observe that the algorithm runs in time
O((f(k) + 1)?n2/®)+4) for a given excess function f. From this, we easily obtain
a subexponential time-complexity of the algorithm for excess function f = k).

Corollary 4.2 Let v: N — N be a polynomial-time computable function.

1. For~y € k+ O(k°W), finding ~-clusters can be done in time 2.

2. Ify € k+0(k°M) and y-DSP is NP-complete, then NP C DTIME (27°").

The second statement of the corollary makes the NP-completeness of y-DSP for
v € k + ©(k°Y) unlikely to hold since subexponential-time simulations of NP
problems are neither known nor expected. On the other hand, also a polynomial-
time algorithm is not known for this problem. More interestingly, e.g., EXCESS-
|logk| SUBGRAPH could be a natural example of a problem which is neither
NP-complete (unless NP is in quasi-polynomial time) nor solvable in polynomial
time.

4.3 NP-completeness for v-DSP with v € Q(k + k)

In this section we prove one of the main theorems of this thesis. We show that
~v-DSP is complete in NP for all functions v € k + Q(k¢) [HKMT02, HKMTO03].

4.3 NP-COMPLETENESS FOR 7-DSP wiTH v € Q(k + k%) 71

Figure 4.4: Example for the graph transformation T60, 140520 Ry

Theorem 4.4 Let~y: N — N be a polynomial-time computable function. Further
we require v € k + Q(k), for some fized rational ¢ > 0, and f(k) < (’2“) The
problem ~v-DSP, i.e., given a tuple (G,k) deciding whether graph G contains
some subgraph on exactly k vertices with at least (k) edges, is NP-complete.

Proof. Let f be a polynomial-time computable function with f € &k + Q(k¢), for

some arbitrary but fixed rational e > 0 and f(k) < (%).

Obviously, given some tuple (G, k), deciding whether graph G contains a sub-
graph on k vertices with at least f(k) edges is in NP. We proof NP-hardness by
reduction of the NP-complete problem CLIQUE; (see paragraph 3.1.1.3).

Let (G, k) be any instance of the problem CLIQUE 1. We state a graph transfor-
mation in such a way that graph G contains a clique of size k if and only if the
transformed graph contains a subgraph on k' vertices and at least f(k') edges,
for some appropriate choice of k. The transformation process is based on the
graph operations R, S, and T, presented in section 3.1. The choice of the pa-
rameters for these transformations will be divided into several cases, dependent
on the value of f(k'). However, the transformation takes place according to some
general construction which is described first. In the latter, we will consider the
different cases in detail.

For all cases, we transform G to graph G' = (T;%y) © S; o R)(G) for some
fixed parameters «, r, N(r), t, and s. An example of such a transformation
is illustrated in Figure 4.4. In the following, we describe how to choose the
parameters to receive the desired result, in general.

72 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

First of all, we define k' to be the number of vertices that corresponds to the
size of the vertex set that results when applying the transformation S; o R, to a
clique of size k plus the number of vertices of the quasi-regular graph added by

. o .
operation Tr,N(r)’ le.,

k’:(k+s)+t(k;‘9> + 7.

Now, we describe how to choose N(r). Assume, G contains some clique of size
k. Obviously, the vertices of the transformed clique plus the vertices of the quasi-
regular graph would induce (¢ +1)(*3*) + a-7- ((k+s) +t(*}%)) + N(r) edges.
We define N(7) in such a way that this number of edges equals f(k'). Thus, we

derive
N(r) :f(k’)—(t-i-l)(k;s) Caer- ((k+s)+t<k;8>> .

In order to satisfy all requirements in the definition of operator 7" (see subsection
3.1.4), we will prove that 0 < N(r) < (}) for each of the occurring parameter
sets.

Now, to proof the desired property of G’, as stated in the theorem, we distinguish
the two cases dependent on whether GG contains a clique of size k or not.

For the first case, assume G contains a clique of size k as a subgraph. According
to the definition of £ and N(r), we know that G’ contains some subgraph on &'
vertices and f (k') edges. The existence of G', i.e., a valid choice of the parameters
of the transformations, is shown in the second case.

For the second case, assume G does not contain a clique of size k. In order to
prove the theorem, we must show that each subgraph of G’ on k' vertices has less
than f(k") edges. To do so, we determine a subgraph with maximum number of
edges among all subgraphs of G’ on k' vertices. In particular, we will guarantee
that there exists such a subgraph H* that contains all vertices of the quasi-regular
graph A(r, N(r)). Using Lemma 3.2 and the definition of N(r) this enables to
complete the proof. First of all, consider the graph H that results when removing
all vertices of A(r, N(r)) from H*. Obviously, H must be some densest subgraph
in (S; 0 Ry)(G) on (k + s) +t(**) vertices. Since G contains no clique of size k
we know (according to Lemma 3.2) that H has less than (t+1) (*+%) edges. Now,
using definition of N(r), it follows that H*, and thus any subgraph of G’ on &'
vertices, has less than f(k') edges.

It remains to show that graph H* always exists. To do so, let H be any induced
subgraph of G' on k' vertices that has maximum number of edges among all
those subgraphs. Further, let G be the induced subgraph on G’ that contains no
vertices of A(r, N(7)), i.e., G = (S, 0 R,)(G), and let | = k' —r =k + s + ¢t(*}*).
The vertices of H can be separated into vertices belonging to G or A(r, N(r),

4.3 NP-COMPLETENESS FOR v-DSP WITH 7 € Q(k + £°) 73

St 9 R St o) R
z vertices | vertices [vertices ,)
) k' vertices
r — 2z vertices T vertices

A(r, N(r))

K

Figure 4.5: Choosing H* within NP-completeness proof for v-DSP

respectively. Formally, there exists some z, with 0 < z < r (more precisely,
z < min{r,|V(G)| — 1}), such that [4 z vertices of H belong to V(G) and r —
vertices of H belong to V(A(r, N(r))). This choice of subgraph is illustrated in
Figure 4.5 (left hand side).

Now, let H* be the induced subgraph which results from replacing an appropriate
choice of z vertices in V (H) N V(G) with the remaining z vertices of A(r, N(r))
that are not in V(H) (see Figure 4.5, right hand side). We are done, if we can
show that |F(H*)| > |E(H)| (see below). Note that, if ¢ > 1, the vertices in
H can be iteratively removed in such an order that always a vertex with degree
at most 2 is removed (simply by removing first all the inner vertices around an
outer vertex and then the outer vertex which now has degree 0).

The above discussion concludes the proof of the theorem. In order to make it
work, we have to choose all the parameters in such a way that the following two
conditions (assumed above) can be satisfied:

e Constructibility: We have to guarantee that the graph G’ can be computed
in polynomial time. Obviously, the operations R, and S; are polynomial
computable if parameters s and ¢ can be computed in polynomial time. In
the latter, r will depend polynomially on k£ which is logarithmic in the size
of the graph. Thus, a unary description of r can be computed in polynomial
time. Using Lemma 3.1 we know that the graph A(r, N(r)) exists and can
be computed in polynomial time, if we further assure that 0 < N(r) < (;)
Usually, in the latter cases, N(r) > 0 is seen easily and it is often proved

together with the next condition.

e Exchangeability: This condition refers to the claim |E(H*)| > |E(H)| used
above. Note that the claim is trivial for z = 0. For z > 1 we consider the
edge balance of transforming H into H*. In the case of a = 0, which is
the majority of our cases, we will argue as follows. On the one hand, we

74 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

| Case | upper bound [s | t | r (o]
L @D | 0 |[W-r-BE”| ~[upW)] |0
II (1+ D)k"> 0 1 K- -k |0
111 (*) — k'3 0 0 ok 0
v o) -5 [3k5] — k 1 K—k—s— (") |1
v (%) 0 0 K —k 1

Table 4.2: A rough summary of parameter settings. For a function value
f(E") choose the case with the least number in such a way the
value is less than or equal to the corresponding upper bound.

remove at most A - z edges from G, for some A. On the other hand we add

at least %[%Jz edges in A(r, N(r)). Thus, it is sufficient to satisfy that
%[zz\gﬁjz > A -z or, if 2A € N, equivalently, @ > A. In the cases with

a =1 we will employ more refined arguments.

After the outline of the general proof structure, we now state the precise choice of
the remaining parameters. From the theorem, we know f € k + Q(k¢), for some
fixed € > 0. Thus, there exists two natural numbers kg, D > 1 in such a way that
k+ D ke < f(k), for all k > ko. Obviously, we may suppose that ¢ < ¢ and
D > 5.

Dependent on the value of f(k') we choose different parameters. We define five
cases that represent a partitioning of the corresponding interval for f (k') between
k' + D7'k'® and ('“2) To distinguish between these cases we choose the value of

the parameter &' to
K= [(D%)-].

Clearly, k' is computable in time polynomial in the length of k. Now, depending
on the function value f(k') we choose the parameters s, ¢, r, and « in such a
way, that the property &' = k + s + t(k;S) + r, assumed above, is guaranteed. A
summary of the cases and the corresponding parameter settings is listed in Table
4.2. The exact choice of 7 in Case I does not fit into the table and is fully stated,
when considering this case.

In the following, to finally complete the proof, we show the two properties con-
structibility and exchangeability, for each of the five cases, separately.

Case It k' + D'k < f(K') < k' + Dk'.

We split this case in several subcases. We consider, depending on j, with

4.3 NP-COMPLETENESS FOR v-DSP WITH 7 € Q(k + £°) 75

- 1 ! -1 I(Z)js 1 i /(Z)H_ls
0 <j<logr <, the ranges k' + D~'k'\6) ¢ < f(k') < k' + Dk'\s . Clearly,
6 €
we can combine those subcases to cover the complete range from k' + D7k’ to

k' + DK’ as required for Case I. For each value of j, we apply R;, S;, and TﬁN(T)
with the following parameters:

s =0, t=0F-r—k)/(), a=0,

2

- [(49%2)(%)]} N [(k ~ [(4D4k2)(%)j] _ k) mod (’;)}

The modular term in the definition of r guarantees that ¢ € N . Trivially, we
have k + s + t(k;’S) +r=Fk+ t(’;) +r =k'. For k large enough (and thus £’ and
r, as well) constructibility and exchangeability can be satisfied as can be seen by
the following calculations.

e Constructibility:

N(r) = fK)=(t+1) (k) < k’+Dk’(%)j+15—(t+1)(k>

AN
S
N =

<
N——
N

VAN
VRS
N3
N~

e Exchangeability: Since t > 1 for k > 0, we can choose A = 2 and we obtain
the following:

2

N(r) = [f(K)- (t+1)(];> > K+D WE (¢t 41) (k)

Case IT: k' + Dk' = (1 + D)k' < f(K') < (1 + D)k'>

Clearly, we have k+ s —i—t(k“;s) +r= (kgl) +7 = k'. For k large enough (and thus

k' and r, as well), constructibility and exchangeability can be satisfied as can be
seen by the following calculations.

76 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

e Constructibility:

NG) =) =2

AN
|
S
o
-
(V1[4
A\
N | ©
S
e
IN
| =
4
N
AN
o
N~

e FExchangeability: Since t =1 we can choose A = 2 and we have the follow-

= () = e (e () ()

> (1+D)r+(D—1)(g> > 2r.

Case IIT: (14 D)k'z < f(k') < (}¥) — k'3

‘ s=0, t=0, a =0, r=k'—k

Obviously, k£ + s + t(k;rs) +r = k+r = k'. Note that since ¢ < % we have

k2 < k's < r. For k large enough (and thus k', r as well), constructibility and
exchangeability can be satisfied as can be seen by the following calculations.

e Constructibility:

o = 0-() < (17)-4-()
< () rreow < ()
k1

e FExchangeability: Since G has at most % vertices, we can set A = 3
(observe that 2A € N) and we obtain the following:

k
2

(M)

|
N
N x
N~

Ne) = 10 (5) 2 @+ DE+n

> r (D) E+ni=1) > ok -1) > T

4.3 NP-COMPLETENESS FOR v-DSP WITH 7 € Q(k + £°) 7

Case IV: (¥) - KR < fE)<(5)-%

Clearly, s > 0 and we have k + s + t(kgs) +r= (HSH) +r = k'. Moreover, it is
easily seen that r > k’%, since r = k’—(“;“) > k'—%(k+s+1)2 > k’—%k’% > k4.
Furthermore, for & large enough (and thus &',r as well), constructibility and
exchangeability can be satisfied as can be seen by the following calculations.

e Constructibility:

N(r) = f(’f')—2(k;2> ‘T(’”” (k;S»

r+(k+;+1)> —T<k+8+1> K

IN

2

() < -
<

IN

IA
/\/‘\@/"\/‘\

e FExchangeability: Since t = 1, we can iteratively remove vertices in such
a way that every removed vertex has maximum degree two (w.r.t. graph
(St o Rs)(G)), when being removed. Thus, a vertex removed from H was
incident with at most 7—z+2 edges. Assume that every vertex in A(r, N(r))
has degree at least (r — 1) — ((*37') — 2) within A(r, N(r)). Then a
new vertex in H that is chosen from A(r, N(r)) is incident with at least
(r—2z)— ((H;H) —-2) + (H;H) = r — z + 2 new edges. Therefore, we
can exchange vertices consecutively in such a way that all vertices from

A(r,N(r)) are chosen. The minimum degree of a vertex in A(r, N(r)) is
[%(T)J Thus, we have to prove {MJ >(r—1)— ((H;H) —2) what is

r

equivalent to 2N(r) > 2(}) — (**3*")r + 2r since k, r, and s are natural

78 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

numbers. The inequality can be seen as follows:
k+2 k
2<f(k’)—2(N)—r(k—i—s—i—(+S>>)
2 2
k' /9 k+s+1 k+2
A((5) (73 (3)
k+s+1
_ 2(<r+(:)>—<k+5+1)r—k'3—2<k+8>)
2 2 2
k+s+1
2<T)+2((2)>—2k'%—4<k+8)
2 2 2

Finally, we obtain the desired statement by the following calculations:

k+s+1
2((5))+(k+s+1)r—2r—2k'g—4(k+8)
2 2 2
1 4 2 1 2
> Z(k+8) + (k+s) 5r—2 —2r — 2k's

> Iy (%k’i - 2> — AK'S

2N(r)

v

9
> Lt st s g
> 3 >

Case V: (’;’) - %I < f(K') < (kgl)

‘ s=0, t=0, a=1, r=~k—k. ‘

Clearly, we have k + s+ ¢(**) + 7 = k +r = k. For k large enough (and thus
k', r as well), constructibility and exchangeability can be satisfied as can be seen
by the following arguments.

e Constructibility:

I U () B (o R B

Further, since not proven within exchangeability:

o) = - () -k = (5)-5- () -t-nk
0

-1 1 k
(i) ()

4.4 NP-COMPLETENESS FOR 7-DSP IN 3-PL wiTH y(k) > 22§ -k 79

e Exchangeability: Let B be the densest k-vertex subgraph of H. Assume
that G has no clique of size £ (which in fact, is the only interesting case to
consider). Hence, B is not a clique. Since B is the densest subgraph, each
vertex of H which does not belong to B is adjacent to at most k£ — 1 vertices
of B. Thus, on the one hand, removing all vertices in H \ B yields a loss of
at most z(r — z) + (%) + 2(k — 1) edges. On the other hand, since A(r, N(r))
misses at most %' < 5 edges to be complete, each vertex of the quasi-regular
graph A(r, N(r)) is adjacent to at least r — 2 vertices, thus not connected
to at most one vertex other than itself. Consequently, choosing all z so far
unselected vertices of A(r, N(r)) adds at least (r — z)z + (§) — z + 2k =
z2(r —z) 4+ (2) + 2(k — 1) edges. Thus, an exchange of vertices is possible
without decreasing the number of induced edges.

O

4.4 NP-completeness for v-DSP in g-PL with
v(k) > 26 - k

In this section, we investigate the problem v-DSP when restricting to power-law
input graphs. More precisely, we determine a range of functions v where the
problem is NP-complete.

From previous sections, we know that for arbitrary input graphs the problem
is NP-complete, if v € k + Q(k°), with € > 0 (see Theorem 4.4). Further we
know that the general problem can be solved in polynomial time, if v € £+ O(1)
(Corollary 4.1). Obviously, the bound for polynomial tractability of the problems
also holds when restricting to power-law graphs, whereas this is not true when
considering NP-completeness. Nevertheless, we can prove NP-hardness (resp.
NP-completeness, since containment of v-DSP in NP once again is easily seen)
for a wide range of functions «y (see Theorem 4.5). The complexity of y-DSP for
the remaining gap is discussed in 4.5.

Theorem 4.5 Let > 2 be some fized rational, and let 6 be the maximum
average degree of all 3-PL graphs. Further let v : N — N be a polynomial-time
computable function, with y(k) > 26 - k).

The problem v-DSP on -PL graphs, i.e., given a tuple (G, k) deciding whether
B-PL graph G contains some subgraph on eractly k vertices with at least (k)
edges, is NP-complete.

For the proof we use similar techniques as we have done in section 4.3, when
proving NP-completeness of y-DSP for general input graphs. Once again, we use
reduction from CLIQUE 1. Within the proof, we assume that for every instances

(G, k) € CLIQUE;

80 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

e (G has minimum degree k, and
o k> max{4f +2 26}, with § = [4-2ﬁw Y

Obviously, this property has no impact on the NP completeness of the problem.
For every input (G, k), we construct a new graph G’ € 8-PL in such a way that
G’ has a subgraph on k' vertices with at least (k') edges if and only if graph
G has a clique of size k. Different to the proof of Theorem 4.4, we also use
transformation N and some further techniques.

4.4.1 Outline of the proof

In the NP-completeness proof for general graphs, it has been possible to build
graphs with arbitrary degree sequence. Now, in order to guarantee that the
final degree sequence obeys a power-law, we have to perform a more careful
construction. Nevertheless, we can reuse some of the construction techniques of
the previous proof, when building the graph G':

e Firstly, we transform the input graph to some graph G; and add an ad-
ditional graph G, (either disjointly or completely connected). Within the
proof, once again, we show that this is done in such a way that there exists
a densest subgraph on &' vertices that includes all vertices of Gs.

e Secondly, different to the construction for general graphs, we add (dis-
jointly) a third graph G3 in order to guarantee that the final graph G’ is a
B-PL graph. We will choose GG3 in such a way that any densest subgraph
on k' vertices of G’ does not contain vertices of Gf.

This overall idea is is illustrated in Figure 4.6 (the location of some densest
subgraph in G’ on £’ vertices is highlighted).

Once again, we fix the value of £’ and use (k") to distinguish five cases for the
construction of the final graph G'. We choose k' to be number of vertices of a
(N, B)-PL-graph with degree at least two, where we leave out some appropriate
number of vertices, dependent on the values of £ and £.

! % . 28-1—%]6 A a 3 £ ~
k= Z?LQ [N -i7P] — Zi:5+k 5(%k +9) — (2k2+‘5) (4% +2)6

with §=[4.272| +2 and N = (20k)°- (20 + 26)°

This non-trivial value of k' is chosen in order to assures that, within all different
cases, we can prove the above stated property that the final 5-PL graph contains
a subgraph on k' vertices and at least (k') edges, if and only if G contains a
clique of size k.

4.4 NP-COMPLETENESS FOR 7-DSP IN 3-PL wiTH y(k) > 22§ -k 81

Gy

G

(=
o«
-t

Figure 4.6: Selection of vertices for case I

o (O -

Based on the choice of k', for each of the five cases, as listed in Table 4.3, we can
defined the exact ranges, which dependent on ~(k'). Further, the graphs Gy, Gs
and (G5 are defined as follows:

e Within all cases we define G; = (N, o S; o R,)(G), using appropriately
chosen parameters s, ¢, and .

e (75 and (G5 are built as follows:

— Case Il - V: (G4 is constructed by applying operator T to graph Gy,
where graph G, is defined to be the added quasi regular graph. Fur-
ther, graph Gj is built according to Lemma 2.4.

— Case I: The construction of Go and (G5 is more difficult and cannot be
stated in terms of so far shown techniques (for a detailed description,
see below).

Within the remaining part of the proof, each of the five cases is considered sepa-
rately. Firstly, we show how to choose the parameters in order to build the final
graph G’. Secondly, we prove that the above condition on the densest subgraph
of G’ holds.

4.4.2 Case It 155 . k' < (k') < 6K’

Before defining the detailed construction process of G, we state a brief moti-
vation. The essential idea of Case I is to build G; and G5 in such a way that
these graphs comprise almost all vertices of the final 5-PL degree sequence that
have degree of at least some appropriate threshold. Doing so, we can bound the

82 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

Case I 20K < Ak) < 6K
Case II bk < AK) < b-k3

S 3 / kY _ a2
Case III .) klg < v(k,) < (1?') IZ'
Case IV . (,2) —ks < HK) < (;?f) -
Case V (2)—% <~(k) < ~(k&) < (2)

Table 4.3: Parameter settings for the NP-completeness proof of y-DSP for
B-PL

average degree of all subgraphs of (G5, and thus, we can guarantee the required
condition for the densest subgraph in G'.

First of all, we determine the value N to build the final (N, 3)-PL degree sequence.
In parallel, we construct a subset X of the corresponding vertices in such a way
that |[X| = k' and that the sum of degrees is 2y(k’), i.e., the vertices in X
induce exactly v(k') edges, when considering a graph on the vertices of X (with
corresponding degrees).

Based on the resulting set X and the value of N, we construct the final graph
G'. As stated above, we define G; = (V0 S;0 R,)(G), with appropriately chosen
parameters s, ¢, and xz. In order to build G5, we inter-connect the vertices in
X (regarding their assigned degrees) after removing a subset of vertices that
corresponds to the vertices of a graph (N, o Sy o R,)(K%). Finally, we determine
the number of vertices (with corresponding degrees) that miss to build the desired
(N, B8)-PL degree sequence. These vertices are also inter-connected, constituting
graph Gf.

In the remaining discussion of Case I, we show how to choose N, X, as well
as the remaining parameters, and how to construct the two graphs G5 and Gj.
Further, we prove the desired property that the densest subgraph on &’ vertices of
G = G, WG, contains all vertices of V(Gs). Finally, we conclude that G' = GYG,
contains a subgraph on k&’ vertices and at least (k') edges if and only if G contains
a clique of size k.

Parameter Selection In the following, we state the process of how to choose
N and the set X. First of all we construct some starting set X that has the
required size k' but where the sum of degrees is too small. Then we will refine
the choice of X in order to adjust the sum of degrees to the desired value of
2v(k").

The construction of set X is based on the following property that holds for the
whole construction process. Let z’ be the minimal degree within X (initially
x' = 2). At any time, it must be possible to:

4.4 NP-COMPLETENESS FOR 7-DSP IN 3-PL wiTH y(k) > 22§ -k 83

e build the graph (Ny 1 0 S|4s49) 0 R5)(G), assuming 2’ — 1 < 4, by using
only non-selected vertices of the actual (N, §)-PL degree sequence.

e remove vertices from X that correspond to a graph (N 108469/ 0 ;) (K}).

In order to guarantee the existence of the required sets of selected and unselected
vertices, we use the following sufficient properties.

1. There exist
at least 5- (47 +2) (%k;‘s) non-selected vertices, and
at least (2’ —1)- (4% +2) (k;’s) selected vertices

with degree z'.

2. There exist

at least 3(%]6 +6)2 non-selected vertices , and
at least 0-(k +0) selected vertices

for all degrees in [§ +k .. 26 + 3k]

Now, we can state how to define the initial choices of N and X initially. We
define) A A 1
N = (26k)% - (26 + 2k) with 6 = [4 . 2m} +o.

and X as the set comprising all vertices of the (N, 3)-PL degree sequence and
with degree at least two, where we leave out the following sets of vertices:

o §(4° + 2)(%'“;5) vertices of degree 2, and
o (3k + 0)? vertices for each degree in [d + k .. 20 + 3k]

Obviously, X has cardinality &" and matches the required properties. Further, we
can see that X contains no vertices of degree 1, and that there miss more vertices
with degree at least 26 than vertices with degree in [2 .. §], w.r.t. the (N, 3)-PL
degree sequence. The last condition is true since

(4P +2)- (2 < —k-0=k+
d-() (5) 21<: 5<2k 5)

holds for k¥ > max{4% + 2, 23}.Theref0re, the degree sequence corresponding to
set X satisfies all conditions of Lemma 2.2. Applying this lemma, we derive that
the average degree of the vertices in X is less than % of the average degree of any
B-PL degree sequence, or, equivalently that the number of edges that correspond
to the sum of degrees in X is at most y(k'), since y(k') > 126 - k'.

84 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

In the following, using these initial definitions of N and X, we alter the value
N and the choice of X in such a way that the sum of the degrees corresponds
to exactly (k') edges, while the number of selected vertices remains constant.
More precisely, we iteratively exchange a vertex v € X with a vertex w ¢ X,
where deg(w) = deg(v) + 1 (or equal-sized sets of vertices with equivalent degree
balance). Doing so, we increase the sum of degree in X step by step and finally
end up with the desired sum of degrees. In order to guarantee that the required
properties of X hold, we proceeded as follows:

e Due to the first property, we exchange the last (z'—1)- (4% +2) (’”2”‘5) selected
vertices of degree z' at once. Since the sum of degrees must increase by
exactly one, we also exchange an appropriate number of vertices with degree
x' + 2 with unselected vertices of degree =’ + 1.

e To assure the second property, we can leave out the necessary number of
vertices throughout the whole process.

e Further, satisfying these two conditions, we always try to exchange vertices
with degree z’. If this is not possible, due to the above restrictions, we use
vertices with highest possible degree. At some some point, it may happen
that no further exchanges are possible, while the sum of selected degrees is
still less than 27y(k'). In such a case, we increase N by (z’ + 1)?. Doing so,
due to

I(N+ (' + D)) (' +1)°| = |Na' +1)7?] +1

the number of vertices with degree z’ 4+ 1 is increased by one. For other
degrees greater than z’ the number of vertices can also increase by one.
Obviously, the number of all these additional vertices is bounded by N 5
(maximum degree).

This process of exchanging vertices and increasing N, respectively, can be iterated
until finally the sum of degrees equals 2y(k'). We will use the corresponding value
of N and the set X to construct the graph G'. Since y(k') < %Sk’, it holds that
7' < 6.

The structure of the resulting set X is high-lighted in Figure 4.7 (at the left
boundary of the filled region, it is illustrated that there may miss several vertices
of degree 2’ and z' + 1).

Before stating the construction of G, we argue that the sum of degrees of the un-
selected vertices with degree greater than z' can be bounded by 0.5N. Obviously,
there are at most

o 2(z' —1)(4P +2) (k42—3) +6(4° +2) (%k;’s) unselected vertices of degree 2’ + 1,

S

3k + 6) unselected vertices for each degree in [§ + & .. 26 + k], and

4.4 NP-COMPLETENESS FOR 7-DSP IN 3-PL wiTH y(k) > 22§ -k 85

#i

x' degree i

Figure 4.7: Exemplary selection of vertices for Case 1 of the NP-
completeness proof of y-DSP in §-PL

e aset of at most N7 additional unselected vertices with degree at least 2’41,
1
NB

where the sum of degrees is bounded by » ;" ., 4.

Based on the following three inequalities (assuming k& and thus N large enough)

mf—1wﬂ+2WE;5>+$Mﬁ+m(%;j> N

36(4° +2)2k%6% < ——
1006

2k>

Ea
+
8)/)
IN

1
Yoio< §(fv% +1)N

™|

we can bound the sum of degrees of the unselected vertices by
5.1 N 4+ 2825+ 2k + (VLN
1006 2 2

=

< 0.5N.

Construction of G’ Using the final choices of N and X, we can describe how
to build graph G’ = G; W G2 W G3. The three graphs are define as follows.

e The graph G; = (N 0 S;0 R,)(G) is constructed with the following param-
eters:

S

5 t=|47+2] z=z" -1

From above we know that 2 < 2’ < § and thus 1 <z< 5. Further, we
know that G has minimum degree at least k¥ and maximum degree at most

86

CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

Figure 4.8: Construction of G' for 8-PL (Part 1)

%k — 1. Due to the properties of X, it is easy to see that we can build G
by using vertices of the (N, 3)-PL degree sequence that are not contained
in X.

Using lemma 3.2, we know that G; has a subgraph with z (k + s + t(kgs))

vertices and at least (3) (k+s+t(*}°)) + z(t + 1)(*}°) edges if and only
if G contains a clique of size k.

Now, we describe how to build G5. This rather complex construction is
required in the latter proof on exchanging vertices within G’. The set of
vertices V' (Gy) corresponds to the set X after removing a set of vertices that
are required to build a graph (N, 05,0 R,)(K}) (i.e., z- (6 + k) vertices with
degree (s+k — 1) + (v — 1) and z - t(°*}*) vertices with degree z + 1 =).
Due to the choice of X and N, it is always possible to remove that set of
vertices.

In the following, we state how to inter-connect the remaining vertices re-
garding their assigned degrees. The resulting graph is assigned to Gj.

1. All vertices of degree z’' are grouped to sets of x = ' — 1 vertices.
We use these sets to build graphs isomorphic to graphs that result
when applying transformation N, o S; to a single edge (z and ¢ are
chosen as in construction of G1). At each end of these chains, every
vertex remains with one so far unlinked connection. The remaining
sets are connected to build some additional chain (with length less
than ¢). Further, all vertices (at most ¢ < x) that have not been
assigned to some set, are inter-connected as dense as possible (i.e., we
build some graph K;, where every vertex has ' — ¢ additional unlinked
connections). For 55 = 20+ 20 + 12 4 3 vertices, t = 5, and = = 4 this
process is illustrated in Figure 4.8.

2. In order to link the vertices of degree '+ 1 we build some quasi-regular
graph A(n', 2(2'+1)n’), where n’ equals to the number of vertices with

4.4 NP-COMPLETENESS FOR 7-DSP IN 3-PL wiTH y(k) > 22§ -k 87

degree x' + 1 (if the sum of degrees is odd, we leave out one of the
vertices and link its connections similar to the open connections of
vertices with degree z). Due to the large number of vertices with
degree z' + 1, the number of required edges is less than (’;’) This
guarantees the existence of the graph.

3. The remaining vertices (degree i > z' 4 2)) are connected as follows.
For every vertex, we guarantee that at least '+ 2 of its outgoing edges
connect to other vertices with degree at least ' 4+ 2. The remaining
i — (2" + 2) edges can lead to arbitrary vertices within X, i.e. also
vertices with degree x’ chosen as follows:

First, we satisfy all remaining open connections of the vertices with
degree 2’ (and 2’ +1). In order to do so, we show that there are enough
suitable connections within the vertices with degree at least = + 2. It
suffices to show:

|V -2'8| 2 NP 20+3k 3
S U < - ! B _ _ Y ~
(P +2)w T (2) < Z (i~ (" +2) (V-7 -1) Z i-8(5k +9)
=242 i=b+k
which can easily seen to be true since
LN . iL"_’BJ , 7! g A2
——— 44 <N-(4 4
(@ oo T2 T) sN Uo7+
<N-(@+3)P+4-N@'+6)"°
z'+6
<Y G-@+2)(IN-i?] 1)
i=x'+3
NEB 26+3k 3
< — (' +2)(IN-i?] —1) - Sk d
_z'_zz'+3(z o))(L i) '%kz (2)

Since every vertex with degree z’ has only one open connection (up to
a small number of exceptions) we can guarantee that not two vertices
are linked twice.

After satisfying the demand of vertices with degree z' (and =’ + 1) we
continue with the vertices with degree greater than x’ + 2. We group
the vertices according to the number of missing links. Starting with
those vertices S with highest number d of missing links we build regular
graphs A(n/,m'), for appropriate values of n' and m'. If the number
of vertices is too small or the sum of degrees is odd, we additionally
use vertices of the next level(s). However, in the end we will be able
to satisfy all links, due to the large number of vertices in X and the
property that the sum of degrees is even.

88 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

¢ Finally, we construct graph GG3. Based on the choice of N, 8, G, and G, we
can derive the number of vertices (with corresponding degrees) that miss
to build the overall (V, 5)-PL degree sequence. First of all, we will link
all vertices with degree greater than z’' the vertices with degree 1. Using
the above calculation, we know that this can be done with at most 0.5/N
vertices of degree 1. For the remaining vertices with degree 7 we build chains
corresponding to the outcome of a transformation (N; oSy), with ¢’ as large
as possible. At each end of the chain there remain ¢ unsatisfied connections.
Further, for every degree i there remain at most ¢ — 1 unmatched vertices
corresponding to i(i — 1) unsatisfied connections. All in all, for all degrees

i € [2..6], there remain at most Z?:g i(i+1) < 263 open connections which
are satisfied with vertices of degree 1. Since the total number of vertices
with degree 1 equals N, the number of these vertices is large enough to
satisfy all required corresponding connections. The remaining vertices of
degree 1 are connected pairwise. Once again, due to the choice of the even
sum of degrees, there remain no unmatched connections.

Using these three graphs we can construct graph G' = G, WG W G5 that obviously
has a (N, 8)-PL degree sequence.

Densest subgraph on £’ vertices In the following part of the proof we show
that G’ contains a subgraph of k' vertices with at least (k') edges if and only if
G contains a clique of size k.

To do so, let Y be a set of k&’ vertices of G', and Y7, Y3, and Y3 be the corresponding
subsets of vertices in the graphs G, G5, and GG3. We state a process to exchange
vertices in such a way that finally all vertices of Gy (i.e., Yo = V(G2)) and no
vertices of G (i.e., Y3 = () are selected without decreasing the induced number
of edge. We consider two cases:

o V3] < |V(Gy)| — |Ye|: First of all, we replace all vertices in Y3 with the
unselected vertices in V(G3) (note that the average induced degree in Y;3
is less than minimum degree in G3). To select the remaining unselected
vertices in V' (G2) we exchange vertices from Y;. We can choose the vertices
from Y] in such a way that we start with the inner cliques of chains in G;.
Before removing an outer clique, we will remove all inner cliques connected
to it. Doing so, we can observe that the loss in the sum of induced degrees
in Y7 is less than the increase in Gy (due to the lengths of chains and the
rules of connections in Gy). All in all we can see that the number of induced
edges does not, decrease.

o |Y3] > |V(Gy)| — |Y2|: We replace |V (G2)| — |Ya| vertices of |Y3| vertices
with the remaining unselected vertices in V(G5). As mentioned above the
sum of induced degrees cannot decrease. The remaining vertices in Y3 are

4.4 NP-COMPLETENESS FOR 7-DSP IN 3-PL wiTH y(k) > 22§ -k 89

replaced with unselected vertices in V(G;). W.lo.g., we can assume that
the vertices in Y] are initially chosen in such a way that at most one of the
cliques introduced by operator N, is partially selected (see Lemma 3.2).
Further, due to s = 5, we know that G is connected. Therefore, it is
possible to exchange the remaining vertices of Y3 with unselected vertices
in G in such a way that all selected vertices in G; belong to completely
selected cliques. Once again, we can conclude that the number of overall
induced edges does not decrease.

Finally we know that all vertices of V(G,) and z (k +s —I—t(k;s)) vertices of
V(G1) are selected. The number of induced edges is at least the number of
induced edges of the initial set Y (this also holds if Y originally induced some
densest subgraph on &' vertices). Obviously, the number of edges in the final
subgraph is equal to the number of edges in G5 plus the number of induced edges
in G1. Therefore, in order to induce y(k') in G’ the selected vertices in G; must

induce at least (%) (k+s+t(*1%)) +z(t + 1) (*1*) edges.

Allin all, the existence of a subgraph of G’ on exactly k' vertices and at least (k')
edges is equivalent to the existence of a subgraph of G; on exactly £ + s+ t(’“;s)
vertices and at least (%) (k+s+t(*%)) + z(t + 1)(*}°) edges. According to
Lemma 3.2 the last proposition is equivalent to the existence of a clique of size k
in G. Thus, for Case I, we have proven that G’ contains a subgraph on k' vertices

with at least (k") edges if and only if G contains a clique of size k.
. St / k'
4.4.3 Cases II-V: 0k’ < (k') < ()

Within Cases II-V, the construction of G’ and the structure of the proof follows
some common pattern. Therefore, we describe the general proof technique before
consider each case on its own. We define G’ = G W Gs, using the following
definitions:

e Gy = (N, 05,0 Rs)(G). To assure the constructibility of G;, we have to
guarantee x > 1,1 > 0, and s > 0, for each case.

o G = Tnry(G1), with the following parameters:

r = k'—ac(k-i—s—i—t(k—gs))

N(r) = *y(k')_@”) (k+s+t<’“‘2”)> _ x(t+1)(k-24-5>
_a.r.m<k+$+t(k;5>)

Graph (G5 that has defined in the overall description of the proof, is consid-
ered to be the quasi-regular graph A(r, N(r) added by transformation 7.

90 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

In order to guarantee the existence of G, similar to the NP-completeness
proof of v-DSP on general graphs, we have to prove the property Con-
structibility of A(r,N(r)), i.e., 0 < N(r) < (}), where the first inequality
is often shown combined with some second property (Ezchangeability, see

below).

e For the construction of G5 we use 8 and N = (20k)® - (20 + 2k)?. Based
on the graph G we can determine the number of missing vertices (and
corresponding degrees) to build the desired (V, 8)-PL graph. Using Lemma
2.4, we can inter-connect these vertices and build G5 in such a way that
any subgraph has average degree at most 5 —1.

For each case, besides Constructibility (defined above), we show that G’ contains
a subgraph on k' vertices with at least (k") edges if and only if G contains a
clique of size k.

Similar to Case I, let Y C V(G') be a set of vertices that induced some densest
subgraph of G’ on k' vertices. Further, let Y7, Y5, and Y3 be the corresponding
sets of vertices in Gy, GGy, and G3. Once again, we exchange vertices in such a
way that all vertices in G5 and no vertices in G5 are selected, without decreasing
the number edges, by using similar arguments as in Case 1. Let Gy, Gy, and
Gy, be the graphs induced by the finally resulting sets Y, Y3, and Y. Obviously,
the number of edges |E(Gy)| is equivalent to the maximum number of induced
edges on all subgraphs of G’ on k' vertices and it holds:

E(Gy)| = |E(GY1)|+|E(GY2)|+CY'7"~’”(’”5”(%8))

— y(K) - <§) (k+s+t<k;—8)) —x(t+1)<k;8) + |E(Gy,))-

Thus the number of edges in Gy is at least y(k') if

|E(Gy,)| > (‘;) <k+s+t<k;—‘9)> +x(t+1)(k;—8).

Using [Vi| =k —r =z (k+s+ t(k;rs)), Lemma 3.2, and assuming that it is
possible to exchange the vertices as desired, we can conclude that G’ contains a
subgraph on k' vertices with at least (k') edges iff G contains a clique of size
k. Therefore, besides Constructibility of G, it remains to show how to exchange
the vertices in order to assure the properties assumed above.

Similar to Case I we exchange all vertices of Y3 with unselected vertices in V (Gs).
If all vertices in V(G2) get selected, we can continue to exchange the remaining
vertices in Y3 with unselected vertices in V(Gy). Otherwise, if V(G3) is not
selected entirely, we choose the remaining set of required vertices from Y;. Finally,
all vertices in V(G2) and k' — |V (G2)| vertices in G, are selected.

In order to prove the theorem we have to show that the number of induced edges
does not decrease. This can be done as follows:

4.4 NP-COMPLETENESS FOR 7-DSP IN 3-PL wiTH y(k) > 22§ -k 91

e FEzxchangeability 1: For the exchange of vertices from Y3 to vertices in V/(G1)
and V(G3), we show that the average induced degree of the new vertices
finally is at least 6 — 1. According to Lemma 2.4 we know that 6 —11is an
upper bound for the average induced degree of Y.

e FEzchangeability 2: For the exchange of vertices from Y; to vertices in V (Gy),
we proceed similar to the proof for general input graphs (see proof of The-
orem 4.4). Assume that we exchange z > 0 vertices. For the case a = 0 we
will remove at most Az edges from G, for some A. Therefore, after adding
vertices to Y5, the sum of the induced degrees must increase by at least
2Az. Thus, it is sufficient to satisfy that the minimum (induced) degree
of the (exchanged) vertices in G, is large enough i.e. Lzz\gﬁjz > 2Az or, if
2A € N, equivalently, N > A. In the case, if a = 1, we will employ more

T
refined arguments stated in the corresponding cases.

In the remaining part of the proof, we show that the properties Constructibility
and Exchangeability 1 and 2 hold for all four cases.

Case II: 0k' < v(k') < 0k'2

e Exchangeability 1: W.l.o.g., we can assume that the vertices in Y; (both,
before and after exchanging vertices) are chosen similar to the final graph
within the proof of Lemma 3.2 (i.e., almost all cliques are chosen completely
and have at least one selected neighboring clique). Therefore we know
that, in the end, all new vertices have induced degree at least (z — 1) +
1 =6 —1. All vertices in V(G5) have degree at least [26] > 6 — 1 (see
Exchangeability 2).

e FExchangeability 2: Due to t = 1 we can set A = (z —1) +2 = 5. Since
2A € N, it remains to prove N(r) > or.

92 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

>

())+
e G) - 6) (- G)) (s
51+ (6 - 2)a k+(l2€>>—(x;1)x(k+<];>>+

e Constructibility: We have to prove 0 < N(r) < ('2“) While the lower bound
follows directly from Exchangeability 2, the upper bound holds for large
enough values of £ as the follows:

N(r)

109 () () -2 (2)
0k'2 = §((6k)®)2
513k12 — #814]{;14 — ;((61{:)7)2

((Sk)8 - w2(k + (’5))) < (;)

Case III: 6k'> < y(K') < (§) — k's

s=19

r=k-—k—s N(r) :fy(k')—(k“)

t=20
a=20

2

e Exchangeability 1: Due to the choice of the parameters we have G; = Rs(G).
Therefore, the exchange of vertices is possible in such a way that all new
vertices in Y] have degree at least s—1 = 6—1. Once again, it follows from
Exchangeability 2 that the degree of all vertices in G5 is greater than 6—1.

e Ezchangeability 2: Since |V(G)| < 3k (using definition of CLIQUE%) we
can set A = 3k + s = 3k + 6 (once again 2A € N). Thus, we have to

4.4 NP-COMPLETENESS FOR 7-DSP IN 3-PL wiTH y(k) > 22§ -k 93

show N(r) > (3k + 6)r. Based on k' > (6k)® and r = k' — (k + s) we get
r> (k;s) and (k + r)% > k*. Using these two inequalities if follows:

R R (M ETHEE (0
> (§(k+r)F—1)-r
> (6K ~1)-r> Ch+dr

e Constructibility: Once again, we show 0 < N(r) < (7). The lower bound
follows from Exchangeability 2. Using the below calculation we can prove
the upper bound:

0 =0 (3) < (F57) ()

r

)+%M+@—H2§ Q)+M(@+@—M§

I
VRS
N3

PR - () NG =10~ (49 + () =27

— ’}/(k‘l) _ (k—l—;—l—l)r _ 2(lc—2|—s)

Due to = = 1 the operator N, does not modify the graph. All other parameters
are similar to Case IV in the proof for general graph. Therfore, Exchangeability 2
and Constructibility can be proven using equivalent calculations. It remains to
prove Exchangeability 1.

e Exchangeability 1: Due to @ = 1 and the large values for r and s the
induced degrees of the exchanged vertices are obviously greater than § — 1.

Case V: (';') —E<hyk) < (k')

94 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

Once again, z = 1, while all other parameters are equivalent to Case V for the
proof for general graphs. Thus, once again, we can restrict to prove Exchange-
ability 1.

e Exchangeability: From Constructibility we know that N(r) > (§ — 1)r.
Therefore, the induced degree of every new vertex in Y5 is at least 6—1.
When we have to exchange vertices from Y3 to V(G1), we know that every
new vertex has an induced edge to all vertices in V' (G2). Consequently, the
induced degree is at least r = k' — k > §—1.

With the proof of Exchangeability 1/2 and Constructibility for Case II — V we
have completed the proof of Theorem 4.5.

4.5 Discussion of the upper and lower bounds
for the complexity of v-DSP on S-PL graphs

Within the preceeding sections (sections 4.2 to 4.4), we have derived bounds for
function v guaranteeing that the decision problem y-DSP is either decidable
in polynomial time or NP-complete. While, for general input graphs, the lower
bound for NP-completeness is very close to the upper bound for polynomial-time
tractability, this is not the case when restricting to 8-PL input graphs. In this
section, we discuss the remaining gap for this restricted problem:

1. We argue that the upper bound £+O(1) for polynomial time solvability and
the lower bound of k + Q(k¢), with ¢ > 0, for NP-completeness of y-DSP
on general graphs are also good corresponding bounds for the restricted
problem.

2. We analyze the reduction technique that has been used to derive the lower
bound for completeness in NP. We show that using this technique, we
cannot improve the lower bound, unless further properties of the underlying
power-law graphs are known.

We propose that, similar to the general case of v-DSP, the restricted problem
is NP-complete for most of the remaining functions 7. As already mentioned
above, the main difficulties in order to improve the corresponding bounds strongly
depend on the following unknown properties for 5-PL graphs.

e There exists no construction for graphs on 8-PL degree subsequences (match-
ing requirements similar to those of graph G3 within Cases II-V of the
NP-completeness proof) with small upper bound for the average degree of
subgraphs. An approach to this question has been initiated in Lemma 2.4,
where we have been able to shown a possible construction for maximum

4.5 DISCUSSION ON THE COMPLEXITY OF 7-DSP onN §-PL 95

average degree O = 4- 973 + 1. Despite not relying on this bound within
our proof, we propose the existence of better bounds which lead to some
stricter lower-bound for NP-completeness.

e It is still open whether there exists a threshold 0, > 2, only dependent
on 3, in such a way that every (N, [)-PL graph has a subgraph (trivial
solution) on exactly k vertices with average degree at least O, for all
k€ [6mn+1. NJ

In either of these two cases, we possibly could improve our results for the so far
best known bounds for the membership of y-DSP in P resp. NP-c.

4.5.1 General discussion of the bounds based on ~-DSP
on general graphs

In this subsection, we give evidence that the derived bounds for the complexity
of v-DSP on general graphs also hold for 5-PL input graphs.

The polynomial-time algorithm for general input graphs (see section 4.2), is based
on testing all appropriate sets (i.e., sets of cardinality at most two times the
desired excess) on vertices with degree greater two. When considering [-PL
graphs, we have detailed information on the degree distribution and thus may
improve the corresponding upper bound for polynomial solvability. Nevertheless,
since the fraction of vertices with degree greater two (in -PL graphs) is at least
%, the algorithm still has exponential runtime for values of excess larger than
any constant (i.e., v € w(1l)). Therefore, this algorithm does not improve the
derived upper bound for containment in P.

We even do not believe that it is possible to significantly increase the upper
bound unless either there always exists some dense enough subgraph (trivial
solution)? or k is restricted to values k > 1|V| (in such a case, due to the large
number of vertices with degree one, it is possible to test on the existence of a
desired subgraph in polynomial time). This assumption is based on the following
discussion arguing on the existence of a small lower-bound for NP-completeness
of the problem, that is consistent with the bound for polynomial tractability of
the problem.

Any graph G on k € o(nﬁ) vertices can be embedded in a 8-PL graph G’ on n
vertices (i.e., it is possible to construct G’ in such a way that G is isomorph to

3We are aware of the result of Asahiro et al. [AHI02] which shows that, given a graph on n
vertices with average degree d, there always exists a subgraph of k vertices with at least d fb Efb :11))
edges. Nevertheless, this result does not improve the upper bound for polynomial solvability
of 4-DSP, for small values of k € o(n) and d € O(1). However, if there would be theoretical
evidence that properties like the observed scale-invariance could also be applied to very small
subgraph of general 5-PL graphs, we could apply the result of Asahiro et al. in order to improve
the upper bound for containment in P.

96 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

one of the connected components). This proposition holds since for every possible
value of degree in G there exist at least k vertices with corresponding degree in
G'. Further, all remaining vertices in G’ can be inter-connected according to their
assigned degrees. Assuming, that it is possible to connect the remaining vertices
in such a way that any subgraph on at most k£ vertices has small average degree
(bounded by some specific value less than 27T(k)), we could conclude that any
subgraph on k vertices with at least (k) edges, if existing, must be a subgraph
of the component that is isomorphic to G. As an example how to use the bound
derived in Lemma 2.4 we refer to Cases II-V of the NP-completeness proof for

7-DSP on S-PL graphs (section 4.4).

As described earlier, the lower-bound for containment in NP-c strongly depends
on the construction of S-PL graphs. We assume that using the large number of
vertices with degree one, and some refined construction, it is possible to build
power-law graphs in such a way that the above condition on subgraphs of size
k can be guaranteed. Further, if any subset of vertices has only few induced
edges, its neighborhood must be large and therefore the graph has good expander
properties [Alo86]. Based on the small observed average diameter of 5-PL graphs,
despite of missing some explicit rule of construction, we assume the existence of
instances of -PL graphs with this property. Nevertheless, at the current state
of research, it is open how to construct S-PL graphs with the desired property.
Solving this problem that is based in the research area of general power-law
graphs, would improve the lower bound as suggested.

Based on these arguments and on the bounds derived for 7-DSP on general
graphs, we assume that it is not possible to significantly improve the upper bound
v € k+ O(1) for polynomial time tractability of v-DSP, if restricting the prob-
lem to S-PL graphs (unless there exists some trivial solution). Similarly, the
lower-bound v € k + Q(k?), with ¢ > 0, for NP-completeness is also likely to
hold for this restricted version of the problem.

4.5.2 Discussion of the proposed reduction technique for
NP-completeness of v-DSP on S-PL graphs

In the preceeding subsection, we have argued that y-DSP on [-PL graphs is
NP-complete for v € £+ Q(k), with € > 0. However, a theoretical precise proof
of containment in this class of problems has only been shown for (k) > %5 -k
(see section 4.4). In the following, we analyze whether it is possible to improve
the derived bound using the proposed reduction technique.

First of all, we determine some necessary properties for the parameters that are
used within the reduction process. Then, we examine the possible topologies
of the underlying graphs. Finally, with respect to these results, we discuss the
quality of the lower bound proven in Theorem 4.5. Within this discussion, we
argue that using the proposed reduction technique, it is not possible to derive

4.5 DISCUSSION ON THE COMPLEXITY OF 7-DSP onN S-PL 97

significantly better bounds. Thus, in order to get better results it is necessary
to use other techniques, e.g. based on improved bounds on the average degrees
of subgraphs of power-law graphs (similar to the discussion in the preceeding
subsection).

4.5.2.1 Requirements of the reduction technique

The general idea of the reduction process is to construct a new graph G’ in such
a way that the input graph G contains a clique of size k if and only if G’ contains
a subgraph on k' vertices and at least (k') edges. The graph G’ is defined on
the union of the three graphs G, G5, and G3, where GG; represents the topology
of the input graph, G, is used to adjust the number of edges in some densest
subgraph of required size, and (G3 provides the remaining number of vertices to
achieve the -PL structure of the final graph. In the following, we only consider
the case G' = G W G, W G5 for the construction of G'. The type of construction,
wherein the vertices of G; and (G5 are connected completely, has no impact on
the lower bound for NP-completeness of y-DSP (due to the large average degree
of some densest subgraph), and is thus not discussed.

Within the reduction, graph G is defined to be the outcome of the transformation
N, o S;0 R, applied to the input graph G. While operator R is only used to adjust
the degrees within GG, the transformations N and S are required to simultaneously
decrease the average degree of any subgraph of G without perturbing the overall
topology. In section 3.2 we have seen that transformation N,o0S; can be described
in terms of some general local graph transformations Transg, ¢,. Therefore, in the
remaining part of the analysis, we use this transformation (instead of in N, o S;)
in order to derive results for the proposed proof technique that are as general as
possible. Throughout the discussion we use the following abbreviations:

2=k = |V(Gy) ny = [V(Gy)| o= 72”5((5))"
=G =T

Properties based on construction rules of GG;: First of all, we discuss the
construction of G;. A key observation of the general proof is that G contains
a clique of size k if and only if G; contains a subgraph on z vertices with y =
v(k) — |E(G2)| edges. Within the construction process G, and G, are chosen in
such a way that Transg, ¢, (Kx) is a graph on z vertices with exactly y edges.
Further, the choice of these two graphs guarantees that any subgraph G; on
that number of vertices has less edges, if G contains no clique of size k. In the
following, we derive some necessary properties for G, and G, with respect to this
second condition.

98 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

Assume that GG does not contain a clique of size k. Nevertheless, we can assume
that G' contains a subgraph H on k vertices that misses exactly one edge to form
a clique, and further contains an additional edge e = {v;, v} with v; & V(H)
and ve € V(H). Obviously, the induced subgraph H' of G’ corresponding to H
plus the copy of GG, that corresponds to e, is a subgraph on z vertices and y — n,
edges. Due to the requirements of the proof it must not be possible to exchange
vertices in V' (H') with vertices in V(G')\V (H') in such a way that the number of
induced edges increases by at least n,. In the following, we state some properties
of G, and G, that would imply the existence of such a subgraph of G’ of size z
with at least y edges:

e o> 2(ﬁ+22—z) — For every copy of G, that is a subgraph of H’' the average

degree of the vertices is 8+ ZRL:
the corresponding vertex sets in H in such a way that at most (8 + %”)n,,
edges are lost. After removing these vertices, we select all n, vertices of
G (corresponding to the so far not selected vertex v; incident to edge e).
Doing so, we gain at least jan, +n, > (8 + 222)n, + n, edges. Thus, the
number of induced edges is at least |E(H)| + n, > y.

. Therefore, we can remove n, vertices from

e sparse and weakly-connected subgraphs in G, — In the above argumenta-
tion, we have only considered the average degree of G.. Thus, it holds for
any choice of G.. We can reduce the restriction o > 2(3 +22—:) to & > min
(for some amin < 2(8 + 27*)), if we know that V(G.) contains a subset
of n, vertices which is incident to at most %aminnv edges. Similarly, this
observation holds if the set consists of %+ vertices and is incident to at most
%amin”T“ edges, with i € [1 .. (;) —1].

This discussion affects the existence of vertices with degree one in G, (in-
cluding the edges to neighboring copies of G,). Thus, the existence of each
vertex with degree one in G, would result in least (’2“) — 1 vertices with
degree one in H'. If the total number of these vertices with degree one is at
least n, we could exchange these vertices, in the above described manner.

e dense subgraphs in G, or G,, — Let us assume that G, (resp., G,) contains
dense subgraphs Ggense in such a way that we can exchange (keeping the
number of vertices constant) several copies of G, in H' (or corresponding
dense and weakly connected subgraphs, respectively) with multiple copies
of Ggense N0t in H' and increase the total number of induced edges by at
least n,. Similar to the previous item, the resulting induced subgraph of
G' would induce at least y edges.

We can apply these observations to the definition of Gy = Transg, ¢, (G) within
the NP-completeness proof as follows. From section 3.2 we know that the average
degree of appropriate subgraphs in G; mainly depends on avgdeg(G.), which itself
depends on the values (k') and &'. Further, for any specific choice of 3, we know

4.5 DISCUSSION ON THE COMPLEXITY OF 7-DSP onN S-PL 99

that o must not be too large. Similarly, we know that there must be neither too
sparse nor too dense subgraphs in G, (resp., G,).

Based on these observations, we can summarize that the degree distributions
of G, and G, must be chosen carefully. Strictly speaking, especially if § is
small (what happens for the lower-bounds of NP-completeness of v-DSP), the
degrees within the corresponding degree sequences should not vary too much
from the average degrees o resp. 8. This observation backs our choice to choose
transformation N, o Sy, since this guarantees that all vertices (in G, and G,) have
degree close to 8 ~ x + 1, what corresponds to a valid choice w.r.t. the above
discussion.

Properties based on construction rules of Gy: After considering the prop-
erties that result from the structure of graph G;, we proceed to analyze prop-
erties of the graph G = G1 W Gy. Within the NP-completeness proof we re-
quire that a densest subgraph of G on k' vertices contains all vertices of G and
z =k —|V(Gs)| vertices of Gy. Let H be a subgraph of G that contains all
vertices of G5 and z vertices of GGy in such way that the subgraph in GG; contains
the maximal number of possible edges. In order to guarantee the correctness of
the NP-completeness proof, it must not be possible to exchange vertices of H in
such a way that the number of edges increases.

Let p be the average degree of GG5. In the following, we state properties of G,
G, and G5 which would imply that it is possible to modify the vertex set of H
in order to increase the number of induced edges.

5 resp. p < g — Similarly to the discussion of the properties of G'1, we
can remove n, vertices of Gy (assuming |V (G3)| > n,) and loose at most
pny = 5n, edges. Instead of these vertices, we choose an arbitrary so far
unselected copy of G, and gain at least $n, edges. The same argumentation
applies when considering copies of G..

¢ p<

e sparse and weakly connected subgraphs in G5 — Once again, the previous

observation holds for all graphs G5. However, it is sufficient that there
exists a sparse subgraph in (G, of appropriate size that is weakly connected
to the rest of G5. Replacing that subgraph with some sufficiently dense
subgraph in G increases the number of induced vertices.
Therefore, similar to G (see the discussion on the construction of G;) the
number of vertices with degree one within GG, must not be too large. If their
number is at least n, +n, we can exchange these vertices with vertices in G
and gain edges (assuming arbitrary graphs G, and G,, with G, connected
or avgdeg(G,) > 2).

Similarly to the discussion on graph G;, we obtain that graph G2 must not
contain too sparse and weakly connected subgraphs. Further, in order to prove

100 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

exchangeability (see NP-completeness proofs for details), the value of § has to be
sufficiently large w.r.t. 8. Therefore, when constructing G5 we either have chosen
quasi regular graphs with sufficiently large average degree or have constructed
the graph in such a way, that the number of edges in any subgraphs in GG; and
G+ of equal size differ by at least some number of edges (e.g., by choosing higher
degrees or shorter chains; see construction of G5 in Case I of the NP-completeness
proof).

Properties based on construction rules of G3: Within the NP-completeness
proof for 7-DSP on general graphs, we have not had to satisfy any condition on
the final degree sequence (corresponding to an empty graph G3). However, if
we want to guarantee some specific resulting degree sequence of G’ (e.g., 8-PL
graphs) we have to add an additional graph G5. Further, we must guarantee that
there exists some densest subgraph of G’ on k' vertices that uses only vertices of
graph G. Thus, similarly to the discussion on GG; and (G5, it must hold that there
exists no sufficiently dense subgraph in G'3. Otherwise we could exchange vertices
in order to increase the number of induced edges. This observation implies some
low average degree of G3, which can be bounded in terms of «, 3, and 4.

A first and straight forward approach of choosing G3 is applied when proving
Theorem 4.5. Within the construction of Gj3 all vertices with degree above
some threshold (e.g., the minimum degree in G) are either connected to ver-
tices with sufficiently small degree, or inter-connected appropriately (e.g., using
long chains). In order to improve the lower bound of NP-completeness it would
be possible to choose some different construction for G5 that allows to include
more vertices of high degrees, while keeping the average degree of all subgraphs
sufficiently small. This modification might enable to decrease the values of
and 0 and thus allow to perform the reduction of CLIQUE 1 to v-DSP for some
smaller choice of function 7.

4.5.2.2 Discussion for g-PL input graphs

In the following, we restrict our discussion to S-PL input graphs (with 8 > 2).
We derive additional properties for the parameters within the corresponding
NP-completeness proof.

First of all, we summarize the relevant properties that have been achieved in the
preceeding discussion (see paragraph 4.5.2.1):

e (5 is constructed by applying a general local transformation Transg, ¢, to
the input graph G, using appropriate graphs G, and G,. This construction
is equivalent to transformation N, o S;.

e The number of edges of (G5 is chosen in such a way that |E(G5)| plus the
number of edges of a graph Transg, ¢, (Kj) equals vy(k').

4.5 DISCUSSION ON THE COMPLEXITY OF 7-DSP onN S-PL 101

e The average degree of all subgraphs of G is sufficiently large (i.e., some
densest subgraph of G’ on k vertices contains all vertices of Gy).

e The average degree of all subgraphs of G is sufficiently small (i.e., some
densest subgraph of G’ on k vertices contains no vertices of G3).

e Almost all vertices of degree one are element of G3.

The proof of Theorem 4.5 provides an admissible choice and construction of
graphs Gy, G5 and G3 in order to prove NP-completeness of y-DSP on S-PL
graphs for functions v with (k) > 126 - k. This bound is based on the average
degree of a set of vertices of graph G5 that contains almost all vertices of a
(N, B8)-PL degree sequence with degree at least two (see Lemma 2.2).

In order to improve this lower bound we either have to find some tighter calcula-
tion on the average degree of graph G, (however, in any case, the average degree
is greater than the average degree of the whole (N, 3)-PL degree sequence) or
some refined definition of its set of vertices. Due to the former discussion, we can
not include vertices of degree one in G. Thus, in order to decrease avgdeg(Gs)
we have to move large-degree vertices from G to G3 (without creating dense
subgraphs in G3). E.g., we can inter-connect these vertices to stars by using
so far pairwise connected vertices of degree one. Analyzing the proposed proof,
we observe that number pairwise connected vertices with degree one is at least
0.5N (and at most N which is equal to the total number of such vertices). The

following calculation shows that all vertices with degree at least (c‘lg)ﬁ can
be satisfied using c¢ - N vertices of degree one, with 0 < ¢ < 1.

1
NB 1
—1 —1\7z2
> i[N-i_ﬂJSNﬁ—QxQ_ﬂgc-N = xZ(c‘l%)

However, for S-PL graphs with values of 8 close to two (similar to graphs for

most real-world networks) we know that this value is at least (5 - avgdeg(G))ﬁ.
Further, it is possible to observe that the average degree of G5 decreases only
slightly and that the lower bound of %(5 - k can be improved by at most some
constant factor.

All in all, we can summarize that the analysis of Case I of the proposed reduction
technique is tight, up the described constant factor. We even assume that the best
lower bound that can be proven with this technique, is at least %5 -k (correspond-
ing to some average degree of at least ¢ within the desired subgraph). Thus, once
again, in order to significantly improve the lower bound for NP-completeness
(e.g., some bound independent of ¢), it seams to be necessary to use different
concepts for the construction of G’ (see previous discussion).

102 CHAPTER 4. THE COMPLEXITY OF FINDING DENSE SUBGRAPHS

4.5.3 Summary of the discussion

In the two preceeding subsections, we have discussed the bounds of polynomial
tractability and NP-completeness for y-DSP on -PL graphs. We have observed
that, when using the stated polynomial algorithm (see section 4.2) or the proposed
reduction (see section 4.4) we cannot expect to significantly improve the derived
bounds in either case. Further, we have given evidence that, for most of the
functions v contained in the remaining gap, the problem y-DSP is also NP-
complete.

The exact location of the corresponding thresholds depends on so far unknown
properties of B-PL graphs, i.e. constructions of graphs for given [-PL degree
(sub)sequences that enable to bound the average degree of occurring subgraphs.
We suggest that the bound that has been derived in Lemma 2.4 can be signif-
icantly improved. Further, we assume that the complexity of v-DSP for 5-PL
input graphs is similar to the complexity of y-DSP for general input graphs.

Chapter 5

Approximation of the
DENSE-k-SUBGRAPH-PROBLEM

The results of the previous chapter have shown that, even when restricting to
B-PL graphs, clustering based on v-DSP is not polynomial tractable for a wide
range of functions 7. Thus within this chapter, we focus on the approximability
of v-DSP by analyzing the MAX-DENSE-k-SUBGRAPH-PROBLEM (denoted by
MAx-k-DSP):

Approximation-Problem 5.1 MAX-DENSE-k-SUBGRAPH-PROBLEM

Input: (G, k), where G is some undirected graph, and k € N
Solutions: all subgraphs G' of G on k vertices

Value: val(G') = |E(G")|

Target: MAX

For general input graphs, this problem is well studied in the literature (see
section 5.1 for a detailed discussion). Similarly to the previous chapter, we also
discuss the problem when restricting to S-PL input graphs. In order to derive
results on the approximability for this restricted problem (see section 5.2), we
prove equivalence to the general problem, w.r.t. AP-reduction. This result guar-
antees that both problems are contained in the same approximation class (i.e.,
algorithms with polynomial resp. constant approximation ratio for the first prob-
lem imply algorithms with polynomial resp. constant approximation ratio for
the second one, and vice versa). Finally (see section 5.3), for the special graph
class that represents the hyperlink structure of the WWW, we summarize some
heuristics that are used within density based clustering and try to overcome the
polynomial (so far best known) approximation ratio.

103

104 CHAPTER 5. APPROXIMATION OF THE DENSE-k-SUBGRAPH-PROBLEM

5.1 MAX-k-DSP on general graphs

In this section, we present an overview on the approximation results for MAX-
k-DSP that are stated in the literature. Most of the results consider the edge-
weighted version of the problem, i.e. every edge is assigned some weight and
the objective function measures the sum of the edge weights of corresponding
subgraphs.

While the (weighted or unweighted) problem is obviously contained in the ap-
proximation class N PO, there exists no algorithm proving its membership in
class APX, so far. Feige, Kortsarz, and Peleg even conjecture that the problem
is hard to approximate within factor n¢, for some € > 0 [FKP01]. Nevertheless,
there exist no results stating that MAX-k-DSP on general graphs is not approx-
imable within factor (1 + ¢), for some ¢ > 0. However, Feige [Fei02] has given
strong evidence for non-membership in the corresponding approximation class
(see subsection 5.1.4). All in all, we can summarize that, at the current state of
research, it is has to be assumed that there exists no algorithm approximating
the problem within some constant factor.

If the class of input graphs is restricted to complete weighted graphs, where the
weight function satisfies the triangle inequality, (often denoted as the MAXIMUM-
DISPERSION-PROBLEM [WKS88]) there exist algorithms with constant approxima-
tion ratios. Ravi, Rosenkrantz, and Tayi [RRT94] have proven a 4-approximation
that greedily extends a set S of vertices (initially containing the vertices incident
to some heaviest edge) with some vertex whose edges, incident to S, have maxi-
mum sum of weights. This result has been improved with a 2-approximation of
Hassin, Rubinstein, and Tamir [HRT97] whose greedy algorithm iteratively adds
the vertices of some global heaviest edge (while neglecting all edges incident to
so far selected vertices).

Further, for instances on dense graphs, Arora, Karger, and Karpinski [AKK99]
proved the existence of a polynomial time approximation scheme (PTAS). If
either k € Q(n) and |E| € Q(|V|?) or the minimum degree of the input graph is
in Q(n), it is possible to achieve some polynomial-time algorithm with approxi-
mation ratio 1 + ¢, for every € > 0. Using Szemeredi’s regularity lemma [Sze78|,
Czygrinow [Czy00] even proved an PT.AS with calculation time O(|V'[**) if the
optimal solution is in Q(|V|?). However, due to a large constant that depends
on % and is hidden by the usage of the Landau symbol O, the algorithm is no

FPTAS.

In the following, we present several optimization algorithms for MAX-k-DSP (on
general input graphs) that guarantee approximation ratios of O(n®), for some
e < 1.!' Obviously, by choosing vertices corresponding to arbitrarily selected
|k/2] edges (plus some additional vertex, if the value of k is odd) it is possible

In order to guarantee this property, for some of the following algorithms, we have to restrict
the range of parameter k.

5.1 MAX-k-DSP ON GENERAL GRAPHS 105

to get the trivial approximation ratio of O(n). Therefore, only approximation
ratios with € < 1 are of interest.

5.1.1 Greedy algorithms

The above described greedy algorithms for complete weighted graphs satisfy-
ing the triangle fail to perform well on general weight functions (see [KP93]).
However, Asahiro et al. [AITTO00] stated a simple greedy algorithm GREEDY
for unweighted graphs that iteratively removes vertices with least induced degree
until finally there remains a graph on the required number of vertices. Lemma 5.1
states the upper and lower bounds for the approximation ratio.

Lemma 5.1 ([AITTO0]) The worst-case approzimation ratio R of GREEDY
satisfies

2(-1)-0() < R < 2(3-1)-0(g) Jfork<}, and
(G+%)-0(m¥) < B < (G+5)+0(2) forg<hk<n

Using these bounds, for £ € Q(n), the approximation ratio R is seen to be
constant. Nevertheless, for other choices of k the ratio 7 results in an exponential

approximation ratio R (e.g., k € ©(n3) results to R € ©(2n3)).

5.1.2 LP- and SDP-Relaxations

As a consequence on Goemans and Williams approach to use semidefinite pro-
gramming (SDP) for approximating the maximum cut and satisfiability prob-
lems [GW95], several authors also applied SDP resp. linear programming (LP)
to MAX-k-DSP.

Typically, MAx-k-DSP is described in terms of a the following 0-1 integer
quadratic program. Variable x; indicates for every vertex v; of the input graph
whether v; is contained in the resulting subgraph or not. The additional variables
w; ; represent the possibly present edges weights (once again, values 0 and 1 can
be used to model unweighted graphs).

Definition 5.1 Integer quadratic program for MAX-k-DSP
Mazimize: ZKJ- Wi jTi %
subject to: > x; =k
x; €{0,1} for all1 <i<n

Using relaxations, this problem can be described in terms of SDPs resp. LPs (e.g.,
see [FS97, SW98, FLO1, HYZ02]). Applying rounding techniques to the resulting

106 CHAPTER 5. APPROXIMATION OF THE DENSE-k-SUBGRAPH-PROBLEM

solutions of these programs it is possible to derive solutions for the corresponding
MAx-k-DSP instances. Usually, the approximation ratios of these algorithms
are close to . While the earliest attempts performed worse than 7, some of
the recently invented programs (e.g. [HYZ02]) even perform slightly better (i.e.
achieving approximation ratios less than 7), for some ranges of k. However, only
if k£ is linear in n these algorithms can guarantee constant approximation ratios.
Feige and Seltser [FS97] even proved that for k ~ n3 semidefinite programs (or
at least some subclass) fail to distinguish between graphs that contain a clique
of size k£ and graphs in which the densest subgraph on £ vertices has average
degree below logn. This corresponds to a gap (i.e., some lower bound for the
approximation ratio) of Q(ns) between the value of the SDP and the optimal
value of the M AX-k-DSP instance.

Finally, we can summarize that it is possible to outperform the standard GREEDY
algorithm of Asahiro et al. (see subsection 5.1.1), by using SDP or LP relaxations.
Further, for values k£ € Q(n) the resulting approximation ratios are constant, and
thus, the corresponding algorithms guarantee good approximations. However,
for k € o(n) the approximation ratios of these techniques can approach to O(n),
which has been seen to be a trivial upper bound.

5.1.3 Combined algorithms

In the following, we present optimization algorithms that use combinations of
different techniques (e.g. greedy techniques, shortest paths, etc.) and guarantee
worst-case approximation ratios better than O(n) (trivial solution), for the whole
range of k. Some years before the usage of SDP-relaxations, the first exponential
approximation ratio of O(n) (more precisely O(n¢), within € converging to some
value close to 0.388445) has been presented by Kortsarz and Peleg [KP93]. In a
later work, Feige, Kortsarz, and Peleg derive the so far best known polynomial-
time algorithm for MAX-k-DSP that approximates the maximum average degree
of a k-vertex subgraphs within factor O(ns), for some & > 0 [FKP01] .

To introduce the main principles of this approach, we outline the overall idea and

results of a similar algorithm of Feige et al. (see also [FKPO01]) that guarantees
. . . 1 . .

an approximation ratio of O(ns) and is based on the following three procedures:

e PROCEDURE 1 (trivial procedure):

Select g arbitrary edges from G. Let S be the set of vertices
incident with these edges. We add arbitrary vertices to S, which
are connected to S, if its size is smaller than k. Return the
subgraph of G that is induced by S.

5.1 MAX-k-DSP ON GENERAL GRAPHS 107

e PROCEDURE 2 (greedy procedure):

Sort the vertices of G by order of their degree. Let H denote the
|£] vertices with highest degree in G (breaking ties arbitrarily).
Sort the remaining vertices by the number of neighbors they have
in H. Let C denote the [£] vertices in G \ H with the largest
number of neighbors in H. Return the subgraph of G that is

induced by H U C.

e PROCEDURE 3 (using walks of length 2, in order to find dense subgraphs
that may have only few vertices with high degree)

Let Wi(v,w) be the number of walks of length [from v to w.
Compute Wy(v, w) for all pairs of vertices. Construct a candidate
graph H" for every vertex v of GG, as follows:

1. Sort the vertices of V(G) \ {v} = {wi,wo,...,wy@-1} by
non-increasing order of their number of length-2 walks to v,
ie., Wy(v,w;,) > Wa(v,wy,) > ..., and let P denote the set
{wil, .. ,wzg}

2. Compute for every neighbor z of v the number of edges con-
necting = to PY (denoted by deg(z, P’)) and construct a
set BY containing the g neighbors of v with highest value
deg(z, P?).

3. Let H" denote the subgraph of G induced by P*U B*. If H"
still contains less than k vertices, then it is completed to size
k arbitrarily.

Select the densest candidate graph H” to be the output graph of
PROCEDURE 3.

Let A;(G, k) denote the average degree of the graph returned by PROCEDURE 1
applied on the input (G, k), for i € {1,2,3}. The following lower bounds hold:

L Al(Ga k) 2 1
e Ay (G k) > %

d*(G,k))?
o A3(Gk) > Qm(ax{(k:,QA))(G)}
Where A(G) denotes the maximum degree in G, dy is the average degree (w.r.t.
G) of the vertices in H (definition see PROCEDURE 2), and d*(G, k) represents
the maximum average degree of all subgraphs of G on k vertices.

The overall algorithm applies the three above procedures to the input (where
PROCEDURE 3 is applied only to some appropriate subgraph of G) and outputs

108 CHAPTER 5. APPROXIMATION OF THE DENSE-k-SUBGRAPH-PROBLEM

the densest of the three resulting graphs. Using the above properties Feige et al.
have shown that the average degree A(G, k) of the resulting graph satisfies

A(G, k) > (1 kdg - (d°(G,F))?) S d* (G, k)

omn 2max{k, 2A(G)} Iz

Therefore, the guaranteed approximation ratio of the algorithm is O(né).

In order to improve the worst-case approximation ratio to O(n%_g), for some
e > 0, Feige et al. have defined two more procedures. Similar to PROCEDURE 3,
these procedures output graphs that dependent on the occurrences of paths of
length 3 and 5. Based on these additional procedures, it is possible to prove
better approximation ratio for those parameter settings, where the first three
procedures can only guarantee an approximation ratio of O(né).

5.1.4 R3SAT-hardness of MAx-k-DSP

At the beginning of this section, we stated that currently there exists no result on
the approximation hardness of the problem MAXx-k-DSP. However, besides the
conjecture of Feige, Kortsarz, and Peleg that the problem is hard to approximate
within a factor O(n) for some ¢ > 0 [FKPO1], there exists further evidence for
hardness of the problem.

We consider the following idea (e.g., see [Fei02]). Assume that there exists some
problem A, where it is not known how to prove NP-hardness for algorithms that
approximate problem A within some ratio R. Further let B be some problem that
is assumed to have no polynomial algorithm. In order to discuss the complexity
of problem A, we prove that A is hard to approximate within ratio R w.r.t. to B.
L.e., the existence of an optimization algorithm with corresponding approximation
ratio for problem A would imply the existence of a polynomial algorithm of
problem B, which is not assumed to exist.

Feige considered the following hypothesis on 3CNF formulas (i.e., instances of
the 3SAT problem, where every clause contains three literals) that is assumed to
hold, in general [Fei02].

For every fized € > 0, for A a sufficiently large constant independent
of n, there is no polynomial time algorithm that on most 3CNF for-
mulas with n variables and m = An clauses outputs typical, but never
outputs typical on 3CNF formulas with (1 — €)m satisfiable clauses.

Based on this hypothesis, Feige has proven the following result.

The MAXIMUM-DENSE-k-SUBGRAPH-PROBLEM is R3SAT-hard to
approximate within some constant p < 1.

5.2 MAx-k-DSP onN -PL GRAPHS 109

Using the motivation from above, this results denotes that if there exists an op-
timization algorithm for MAX-k-DSP with a constant approximation ratio that
dependent on p, the above hypothesis on random 3CNF formulas does not hold.
This would contradict the assumed correctness of the hypothesis. Therefore, such
an algorithm is not very likely to exist.

Despite this property of MAX-k-DSP does not imply MAX-k-DSP ¢ PT AS, it
still gives further evidence for the non-membership in this approximation class.

5.2 MAX-k-DSP on S-PL graphs

In this section, similarly to the discussion of the complexity of 7-DSP, we restrict
the optimization problem MAX-k-DSP to the class of S-PL graphs (denoted as
Max-k-DSP-3-PL). Due to the specific degree structure of this graph class it
might be possible to improve the approximation ratios that have been described
in the previous section. In the following (subsection 5.2.1) we prove equivalency
of MAx-k-DSP-3-PL and MAX-k-DSP w.r.t. AP-reduction. Based on this ob-
servation, we know that both problems are contained in the same approximation
class. Therefore, we can state similar approximation results for the restricted
problem MAX-k-DSP-3-PL (subsection 5.2.2).

5.2.1 MAX-k-DSP =,4p MAX-k-DSP-5-PL

Before proving the equivalence of MAX-k-DSP and MAX-k-DSP-3-PL w.r.t.
AP-reduction, we formally define both problems according to Definition B.1.

Definition 5.2 The two optimization problems MAX-k-DSP and MAX-k-DSP-
B-PL are defined as follows:

Max-k-DSP = < IDSP 5 SOZDSP 5 Valep , max)
MAX-k-DSP-B-PL = (Ipsp.g.pL, Solpsp-g-pL, Valpsp-spr, Max)

where B > 2 is some fized rational value, and

Iosp = {(G,k) | G is a graph AN1<E<|V(Q)}
TIpsp-g-pL = {(G,k) | G is a B-PL graph N 1<k <|V(GQ)|}
Solpsp (G, k) = { G'| G'is a subgraph of G A |V(G")| =k }
Solpsp.prr(G, k) = { G'| G"is a subgraph of G A |V(G")| =k }
V&lDSP(I, G’) = |E(G’)|

ValDSP-ﬁ-PL (Ia G') = |E(G,) ‘

The following theorem states the equivalence w.r.t. AP-reduction of the two above
optimization problems.

110 CHAPTER 5. APPROXIMATION OF THE DENSE-k-SUBGRAPH-PROBLEM

Theorem 5.1 The two problems M AX-k-DSP and MAX-k-DSP-3-PL are equiv-
alent w.r.t. AP-reduction, 1i.e.

MAX-k-DSP =,4p MAX-k-DSP-3-PL.
The correctness of the Theorem 5.1 is shown using the following two lemmata.

Lemma 5.2 MAX-k-DSP-G-PL <,p MAX-k-DSP

Proof.: Obviously Zpsp-g.pr. is a subset of Zpgp, while all other entries in the
quadruples defining MAX-k-DSP-3-PL and MAX-k-DSP are equivalent. There-
fore, the triple (id,id, 1), where id is the identity function, is an AP-reduction
(see Definition B.6) from MaAx-k-DSP-3-PL to MAX-k-DSP. O

Lemma 5.3 MAX-k-DSP < p MAX-k-DSP-5-PL

Proof: Our proof of this reduction is based on a graph transformation F', which
transforms the input graph G into a S-PL graph G’ = F(G). Within the proof,
we show that for any subgraph H' of G’ of size k' we can construct a subgraph H
of G on k vertices whose average degree differs by at most some constant factor
from the average degree of H. We use the following constructive definition of
transformation F. Let F(G) = G' = G W G, where the two graphs G and G
are defined as follows:

1. In order to construct G, we add a clique of size d = [4 973 + 1-‘ + 2

to the input graph G. This is done in such a way that all vertices of the
clique are fully connected to the vertices of G. This operation is equivalent
to transformation Ry, with s = d (see subsection 3.1.1), that has been used
within the NP-completeness proofs of y-DSP. We define G; = R,(G) and
observe the following property.

G has a subgraph H on £ vertices with at least v - k edges iff G
has a subgraph H; on k+ d vertices with at least y-k+k-d+ (;i)
edges.

The correctness of this statement is easily seen. Firstly, assume that G
contains such a subgraph H on k vertices. The induced subgraph in Gy,
whose vertices correspond to the k vertices of H and the d vertices of the
clique, has sufficient number of vertices and edges.

Secondly, assume that G’ contains a subgraph H; on k + d vertices and at
least y-k+k-d+ (‘21) edges. Obviously, we can exchange the vertices in H;
in such a way that all vertices of the clique (added by transformation R)
are selected without decreasing the number of induced edges. Thus, w.l.o.g.

5.2 MAx-k-DSP onN -PL GRAPHS 111

we can assume that H; contains all vertices of the clique. Consequently,
since H; has at least v-k+ k-d+ (‘21) edges, there must exists a subgraph
H of G with k vertices and at least 7y - k edges (this subgraph results when
removing all vertices of H; that are elements of the clique).

2. Now, we define some graph G, in such a way that G' = G; ¥ G is a §-PL
graph. To do so, we choose N = (|V(@)| + d)?**. This choice of N assures
that for all occurring degrees ¢ in G; the number of vertices in the (N, §)-PL
degree sequence with degree 7 is large enough to subsume all corresponding
vertices of G;. Further, we know that all vertices in G; have degree at
least d — 1 = [4 .97 + 1-‘ + 1. Therefore, when removing the degrees
corresponding to all vertices of G; from the (N, 5)-PL degree sequence, the
remaining degree sequence S matches all conditions that are required in
Lemma 2.4. Consequently we can apply the lemma and build some graph
G with the degree sequence S (and size polynomial in the size of G) in
such a way that any subgraph of GG has average degree at most d — 1.

Based on transformation F', we define the following two functions f and g, which
are used within the AP-reduction.

1. f:ZIpsp X RT — IpspgpL:

This function is used to transform an instance of MAX-k-DSP to an in-
stance of MAX-k-DSP-3-PL. Using transformation F', we define

f((G’ k)aé) = (F(G)vk+d)

2. g: IDSP X SOZDSP_/J’_PL X Rt — SOlepi

Within the AP-reduction, we map instances (G, k) of MAX-k-DSP to in-
stances (G', k") of MAX-k-DSP-3-PL. Function ¢ is used to define the
(reverse) mapping for a solution of (G', k') to a solution of (G, k). In the
following we define the output for any input triple ((G, k), H', 5), with
(G,]{3) € IDSP; H' € SOlep_g_PL and § € R™.

Since we want to use function g within an AP-reduction we only consider
the case that H' is a subgraph of f ((G, k), 0) on k+d vertices (otherwise,
in order to define g on the entire input range, we define the output to be
an arbitrary subgraph of G on k vertices).

We know that the vertex set of H' can be partitioned (w.r.t. definition of
transformation F') into the three sets:

e vertices of G,

e vertices of the added clique C of size d, and

e vertices of (Gs.

112 CHAPTER 5. APPROXIMATION OF THE DENSE-k-SUBGRAPH-PROBLEM

Further based on the definition of F', we know that the average induced
degree of the corresponding vertices in V(Gs) is at most d — 1. Therefore,
we can exchange the vertices (without decreasing the induced degree) in
such a way, that all vertices d vertices of clique C' and k vertices of G are
selected. Additionally, we can require that the k£ vertices of G induce at
least |%] edges in G. Otherwise, we perform additional exchanges with
vertices incident to that number of arbitrarily chosen edges in G.

Finally, we define the output graph of function g to be the subgraph of
G that is induced by the k selected vertices of G. Based on the above

1

construction we know that this graph has average degree at least 3 %

In the remaining part of the proof, we show that the triple (f, g, 10d) is an AP-
reduction. In order to do so, we satisfy properties AP1 — AP4 required in the
definition of the AP-reduction (see Definition B.6):

e AP1, AP2: These properties follow directly from the above definitions of
f and g.

e AP3: Both functions are independent of the choice §. Thus, using the
above definitions, we can conclude that f and g are computable polynomial
time.

o AP4: Let I = (G,k) € Ipsp, 6 > 0, and H' € Solpsp-g.pL(f(L,9)) be any
subgraph of G' = f(I,) on k + d vertices. Further, let H be the subgraph
of G’ on k + d vertices that is constructed when applying function g on the
triple ((G', k+d), H',J), i.e., we know that H contains all d vertices of the
adjoint clique plus k vertices of G.

According to the definition of g we get that H has at least as many edges
as H'. Therefore it holds that

val(f(I,6),H') _ val(f(I,6),H)
opt(f(Z,6)) — opt(f(/,d))

and consequently
1 _ val(f(,9), H') 1 _ wl(f(Z,9), H)
150~ opt(f(1,9)) 150 = opt(f(1,0))
Further, due to the definition of function g, it holds that

g(I,H',y) = g(I,H,7).

Combining these results we can show property AP4, by proving the fol-
lowing implication (trivially, the upper bounds hold for all maximization
problems)

1 val(f(I,6), H) 1 val(I, g(I, H,9))
155 optf(Lo) ~ 1t+ad =" opt(l)

5.2 MAx-k-DSP onN -PL GRAPHS 113

First of all, we derive some results on the number of edges of the graphs
that are used within the reduction process.
— The number of edges in H (i.e., val(f(I,8), H)) is the sum of

* the number of edges that are induced from the k vertices of H
that are also contained in G (i.e., val(Z, g(I, H,0)), and

+ dk+(9) (i.e, the number of edges in H that are incident to vertices
of the clique).

Therefore we get:

val(f(I,6), ﬁ)) = val(Z, g(7, H, 9)) + dk + (;l)

— The maximum number of edges of a subgraph of G’ on k + d vertices
(i.e., opt(f(Z,9))) is the maximum number of edges of a subgraph of
G on k vertices (i.e., opt([)) plus dk + (%) (once again, this number
corresponding to the number of edges incident to vertices of the clique).

opt(f(1,0)) = opt(I) + dk + @

Finally, we define 7y to be the average degree of g(I, H, §) (i.e., the subgraph
of G on k vertices that results, when applying function g on G’ and H') and
Yopt t0 be the average degree of some densest subgraph of G on k vertices.

Now, we a ready to prove the above implication:

— The left hand side can be transformed to

A

1 val(f(I,6), H) -
1+6 opt(f(I,6)
opt(f(I,8)) —val(f(I,0),H) < &-val(f(I,6),H) &

IN

§-(vk+2kd+d(d-1)) &
J- <7+2d+%(d—1))

(Yopt — 7k

IN

Yopt — 7Y

— The right hand side results to:

1 < val(Z,9(I,y,0))
14+ad — opt (/)
opt(I) — val(I, g(I,y,9)) adval(I, g(I,y,9)) &
Yopt — Y 0-ay

3

IN A

114 CHAPTER 5. APPROXIMATION OF THE DENSE-k-SUBGRAPH-PROBLEM

Combining the last predicates, which are equivalent to the original left and
the right hand side of the above implication, we can prove AP4 if

d
(’)"+2d—|—E(d—1)) < oy

For large enough values of k, we can assume k£ > d and 7' > % Finally, in
order to prove AP4, we can evaluate:

d 1
(’y' +2d + %(d — 1)) < ++ 9d§ < 10dy = o'

Thus, we have proven AP1 — AP4 and consequently the AP-reduction holds. [J

5.2.2 Approximation results

In the previous subsection, we have proven an important result for characterizing
the approximability of MAX-k-DSP-3-PL. Based on this results we know that
both problems MAX-k-DSP on general input graphs and on S-PL input graphs
are contained in the same approximation class w.r.t. AP-Reduction. Thus, based
on Lemmata B.1 and B.2, we can state the following corollary:

Corollary 5.1

MaAx-k-DSP € APX & MAXx-k-DSP-8-PL € APX
MAX-k-DSP € PTAS < MAX-k-DSP-3-PL € PTAS

Combining this corollary and the currently best known results on MAx-k-DSP
(see previous section), we can state the following results:

1. There exists an optimization algorithm that approximates MAX-k-DSP on
. . . 1
B-PL graphs within a ratio of O(nz~¢), for some € > 0.

2. While it is still open whether it is possible to approximate M AX-k-DSP on
B-PL within 1 + &', for some &' > 0, it is very likely that it is NP-complete
to approximate the problem within O(nf"), for some ” > 0 (using similar
propositions for MAX-k-DSP on general graphs).

Due to the numerous studies that have been performed on MAX-k-DSP on gen-
eral graph, we assume that the approximability of problem is well classified.
Therefore, we do not expect to derive a better classification based on the analysis
of MAX-k-DSP on g-PL graphs.

At this point we stop the details discussion on the approximability and leave
the problem to improve the currently best known exponent of % — £ as an open

5.3 HEURISTICS FOR MAX-k-DSP OoON THE WWW 115

problem. These improvements can be based on further analysis of the power-
law degree sequence. E.g. they can either improve the derived approximation
solutions, or result to some stricter bound for the optimal solution. As some
first indication we state the following easily seen facts. For k& > ni a densest
subgraph on k vertices can have degree at most ni and thus even the trivial
algorithm guarantees an approximation ratio of O(n%). Similarly, for £ < ne
we can use PROCEDURE 3 of [FKPO01] in order to guarantee the same ratio.
Therefore, it is possible to approximate MAX-k-DSP-3-PL within O(n%) if we
restrict k ¢ [n% . ni |- However, deriving more refined and tight results is an
further extensive problem and thus not covered within this thesis.

Before proceeding with the description of some heuristics that use additional
properties, different to power-laws, in order to improve the clustering results, we
want to mention the approach of Sagie and Wool [SWO03] to cluster the graph
representing the structure of autonomous systems (AS) in the Internet [MPO1], by
applying the algorithm of Feige, Kortsarz, and Peleg [FKP01]. Although, as we
have presented, the worst-case approximation ratio is known to be exponential in
the number of vertices, the authors derive some empirical good clustering of the
AS graph. As already suggested within the discussion on large-scale systems (see
chapter 2), this result also indicates the usability of the density-based clustering
approaches within real-world large-scale networks.

5.3 Heuristics for MAX-k-DSP on graphs for the
hyperlink structure of the WWW

In the above section, we have shown that the optimization problem MAX-k-DSP
on -PL graphs is most likely not contained in the approximation class APX.
Therefore, when using density-based clustering we cannot refer to some overall
sufficient approximation technique (the term sufficient denotes that some small
approximation ratio, e.g. a small constant, is guaranteed). Consequently, in order
to derive a partitioning of the vertex set that indicates dense subgraphs, we have
to make further assumptions. We can either restrict to very special parameter
settings (e.g., large values of k), or include further properties of the underlying
graphs. In this section we present heuristics that use the second approach.

Communities in the WWW usually correspond to dense subgraphs within the
hyperlink graph (see section 2.3). Therefore, if it is possible to detecting commu-
nities (of given size), we can also assume to derive good approximations of dense
subgraphs in the graph representing the hyperlink structure of the WWW. In
the following, we explain two approaches [KPRT99b, KRKO01a] that have been
proposed to locate communities in the hyperlink graph.

The overall idea of these two algorithms is based on the observation that most
communities in the WWW can be identified by detecting dense bipartite sub-

116 CHAPTER 5. APPROXIMATION OF THE DENSE-k-SUBGRAPH-PROBLEM

graphs, where the two corresponding sets of vertices are often referred to as hubs
and authorities (see subsection 2.3.2). While the first algorithm proposed by
Kumar et al. indicates these dense subgraphs using complete bipartite graphs
(subsection 5.3.1), the second algorithm proposed by Krishna Reddy and Kit-
suregawa is based on dense bipartite subgraphs, i.e., not all possible edges are
required to exist (subsection 5.3.2).

Using the resulting dense bipartite graphs, it is possible to expand the corre-
sponding set of vertices to entire subgraphs of desired size. To do so, consider
any bipartite graph G’ defined on the set H of hub pages (i.e., vertices with out-
going links w.r.t. G') and the set A of authority pages (i.e., vertices with ingoing
links w.r.t. G'). Kumar et al. [KPRT99a| suggest to build a candidate set S that
consists of H U A plus all pages that are referenced from pages in H, or link to
at least two pages in A. As a next step, it is proposed to derive an order on the
vertices of S, by applying the HITS algorithm (see subsection 2.3.2) and using
the resulting hub and authority values. Choosing the best k vertices w.r.t. this
order, we get the desires web community of size k£ (dense induced subgraph on &
vertices). The next two subsection explain the two different concepts of detecting
the initial bipartite graphs.

5.3.1 Using complete bipartite graphs

As mentioned above web communities are characterized by dense directed bipar-
tite subgraphs [KPRT99b]. Kumar et al. use the following hypothesis:

A random large enough and dense enough bipartite subgraph of the
Web almost surely has a core,®> where a core is defined to be a small
(1, 7)-sized complete bipartite subgraph, for some values i,j € N.

Based on this idea Kumar et al. present the following algorithm to extract
(1, 7)-cores from the graph representing the hyperlink structure of the WWW.

2Misleadingly, Kumar et al. have proposed that every random bipartite graph G = (LUR, E)
with |L| = |R| = 10 and |E| = 50 has an (i, j)-core, with 4, j > 5, with probability more than
0.99. This threshold can be seen to be too large for general random graphs, since even the
expected number Fs 5 of complete bipartite graphs with vertex sets of size 5 in such a random
graph calculates to (due to linearity of the expectation):

10 10 (25) (75) _
Ess = (5) (5> . 2(51002)5 ~ 0,33-107%.

50

Similarly, using the same number of edges, we get a expectations of approx. 0.161 resp. 19.0
for (4,4) resp. (3,3)-cores. Therefore, we only can assure the occurrence of (3,3)-cores (and
smaller). However, in real-world date, where we (i) can assume higher edge density within the
dense bipartite graphs and (ii) link behavior similar to preferential attachment (see paragraph
2.2.2.1), it has been observed that (i, j)-cores with 4, 7 > 5 are a good indicator for communities
[KPRT99a].

5.3 HEURISTICS FOR MAX-k-DSP oON THE WWW 117

The algorithm is split in two parts:

e First of all, a preprocessing step cleans the input data. The key idea of
this step is to remove duplicates and to eliminate very attractive webpages
(so called potential fans, indicated by very large in-degrees), e.g. Yahoo,
Netscape, Microsoft Internet Explorer, etc. Due to their high linkage from
different communities these pages would distort the quality of the result-
ing communities. Further an additional process referred to as shingling is
applied in order to eliminate duplicates containing minor changes. Apply-
ing these techniques Kumar et al. report that about 60% of the pages are
removed.

e The second step attempts to extract the cores within the remaining web-
pages. These pages are stored, using two lists A and B, where A is sorted
according to the out-degrees of the pages and B according to the in-degrees.
Initially, each page is contained once in each list.

Pages with out-degree less than j resp. in-degree less than ¢ cannot be
contained in an (i, j)-core. Therefore, at any time throughout the second
step, all entries in A and B with too small degree (i.e, less than i for list B
and less than j for list A) are removed. This process is iterated until non
of these degrees remain.

The main part of step two, iteratively removes a page p with lowest ad-
missible out-degree j and tests if all j neighbors of p share a common
neighborhood (w.r.t. in-links) of size at least i. If so, an (i, j)-core is found
and is removed from the process. Otherwise, page p is not contained in
a core and can be eliminated from the process. Similarly to pages with
out-degree 7, it is possible to choose pages with in-degree 7 .

In each iteration step at least one page is removed. Further, due to the
degree distribution of the graph, we have an average constant calculation
cost per iteration. Therefore, if we assure that, throughout the whole pro-
cess, there exists at least one page with least admissible in- or out-degree,
the whole graph is processed and the total calculation time is linear in the
number of pages. Due to the power-law behavior and the scale-free charac-
teristic of the hyperlink structure of the WWW it may be assumed (and also
has been observed by Kumar et al.) that there always exist vertices with de-
gree i resp. j. A more detailed discussion on all assumptions and reasoning
for the algorithm is presented within the original paper [KPRT99b].

The resulting cores can be expanded to communities within the WWW (see
above), which describe some same topic. In Tabular 5.1 we restate an example

for best hubs and authorities of a community on Australian fire brigades (further
examples are stated in [KPRT99a, KPRT99b]).

118 CHAPTER 5. APPROXIMATION OF THE DENSE-k-SUBGRAPH-PROBLEM

Authorities

Hubs

NSW Rural Fire Service Internet Site
NSW Fire Brigades

Sutherland Rural Fire Service
Redirection Advice

The National Cente...the Children’s ...

New South Wales ... Australian Links
Feuerwehrlinks Australien

FireNet Information Network

The Cherrybrook ... Brigade
Australian Fire Services Links

CRAFTI Internet Connexions- INFO
Welcome to Blackwoo... Fire Safety Ser...

Fire Departments ... Information
The Australian Firefighter Page

Table 5.1: Example for hubs and authorities of web communities, based on
the technique of Kumar et al. [KPRT99b]

5.3.2 Using dense bipartite graphs

The above approach of Kumar et al. has been refined by Krishna Reddy and
Kitsuregawa [KRK01la, KRK01b] who required only dense (instead of complete)
bipartite graphs. In the content of the Web, they consider community as a group
of content creators that manifests itself as a set of interlinked pages. Further
they abstract a community as a set of pages that form a dense bipartite graph.
In order to formalize their approach they define a dense bipartite graph (DBG)
as follows:

Let p and q be nonzero integer variables. A DBG(T,1,p,g) is a bi-
partite graph on the vertex sets T and I, where

(i) each node of T establishes an edge with at least p (1 < p < |I])
nodes of I, and

(#) at least ¢ (1 < q < |T'|) nodes of T establish an edge with each
node of I.

Further they define a dense bipartite graph set DBGS(r, s) to be the set of all
DBG(T, I,p,g) with p > r and s > ¢. Obviously any graph corresponding to an
(1, 7)-core (see approach of Kumar et al.) is contained in DBGS(j, 7).

Based on this definition of DBGS, Krishna Reddy and Kitsuregawa define the fol-
lowing algorithm to extract most of the occurrences of corresponding subgraphs.
Starting with some initial page p they determine a dense bipartite graph that
represents the community page p is contained in, if existent. Applying the algo-
rithm for all webpages, it is possible to enumerate a large set of dense bipartite
subgraphs of the hyperlink graph.

e First of all, a set of pages that are related to the initial page p, is gathered.
This process is based on the following definitions.

For any pair of webpages (p;, p;) we define that p; cocites p;, if the number of
webpages, both pages point to, is greater or equal to some given threshold.

5.3 HEURISTICS FOR MAX-k-DSP oN THE WWW 119

| (p,q) | # of DBG(T, I,p,q) | avg(T) | avg() |
(2.,3) 110422 36.21 | 162.60
(2.4) 81135 36.98 | 109.65
(2,5) 61566 36.15 | 83.47
(3,3) 90129 32.86 | 192.00
(3,4) 59488 32.26 | 140.56
(3,5) 40708 30.17 | 114.93
(4,3) 66670 34.29 | 244.81
(4,4) 49051 2775 | 159.62
(4,5) 32309 24.97 | 134.33
(5,5) 28296 21.07 | 145.0
(6.6) 17335 19.03 | 161.67
(7.7) 10960 18.97 | 198.17

Table 5.2: Number of dense DBG(T, I, p, q) and average number of pages in
T and I on the TREC data collection according to [KRKO01a]

Similarly, a single web page p; cocites a set of webpages S, if it holds that
p;i cocites pj, for all p; € S.

The set of related pages T is defined using the following iteration (for some
predefined value maz-iterations):

(a) Set T'= {p}
(b) While num-iterations < maz-iterations

i. For some given threshold, find all web pages p; that cocite with
set T

i T = {plUT.
(c) Output 7.

e Consider the bipartite graph that is defined on the set 7" and the set [
(i.e., all pages that are linked from T'). Iteratively, all vertices with induced
degree less than the global values r and s are removed (similar to the
algorithm of Kumar et al.). Finally, the converged hyperlink graph, if it
exists, is returned.

Using this process it is possible to related every webpage to a dense bipartite
graph. Krishna Reddy and Kitsuregawa verified the algorithm on a hyperlink
graph on 1.7 million pages and 21.5 million links provided by TREC (Text RE-
trieval Conference). Table 5.2 recites the number of corresponding subgraphs
DBG(T, I, p, q) for different thresholds p, q.

120 CHAPTER 5. APPROXIMATION OF THE DENSE-k-SUBGRAPH-PROBLEM

Figure 5.1: Community example “Comedy” represented by DBG(6,6, 3, 3)
without a (3, 3)-core [KRKO01a)]

Examing the dense bipartite graphs returned by their algorithm, Krishna Reddy
and Kitsuregawa have compared the results to the heuristic that has been pro-
posed by Kumar et al. (see above). Different to the suggestion of Kumar et al.,
some of the detected dense bipartite graphs, which sufficiently represent a com-
munity (evaluated by examing the links), do not contain a corresponding com-
plete bipartite graph. As a case in point, Figure 5.1 illustrates the graph that
corresponds to a community on the topic “Comedy” that is represented by a
DBG(6, 6, 3, 3) but does not contain a (3, 3)-core. However, there is no detailed
information on the ratio of dense bipartite graph representing a community that
is not represented by some complete bipartite graph. Therefore, it is difficult
to measure the overall improvement of this heuristic. Especially, when taking
into consideration that the algorithm has super-linear runtime (dependent on the
choice of the thresholds), both algorithms cannot be adequately compared.

5.4 Summary

In this section we have analyzed the approximability of the MAX-DENSE-k-
SUBGRAPH-PROBLEM for general and S-PL input graphs. Within the discus-
sion, we have proven equivalence of both problems with respect to AP-reduction,
and thus, we have derived similar approximation results. While it is not known
whether there exists a PT.AS for these problems, it is assumed that the best
approximation ratio is polynomial in the number of vertices of the input graph
[FKPO1].

Based on this assumed poor approximation ratios we have presented two heuris-
tics from the literature [KPRT99b, KRKO01a] in order to show that, when includ-
ing further properties of the underlying graphs, it is possible to develop fast and
efficient algorithms to detect dense subgraphs.

Chapter 6

Conclusion

6.1 Summary of results

In this thesis, a general analysis on the complexity of density-based clustering
has been performed, where the clustering problem has been approached as the
problem of detecting a subgraph on a given number of vertices with at least some
corresponding number of edges. Within this discussion, we have focused on the
class of power-law graphs, which has been shown to be a general abstraction of
many large-scale networks. While the general problem of detecting the densest
subgraph on some given number of vertices is known to be NP-hard, the com-
plexity, if requiring only some suitable proportion of the possible edges within
the subgraph (denoted by the problem y-DSP), has not been classified entirely,
so far.

The main contribution of this thesis is the almost complete classification of the
computational complexity of the fixed-density decision problem y-DSP (see chap-
ter 4). Dependent on the function v that describes the required number of edges
of a subgraph on k vertices, in order to be a valid solution, we have derived the
following results. For all functions v € k£ + O(1) the problem is solvable in time
polynomial in the number of vertices of the input graph, whereas the problem is
NP-complete, for general graphs and v € k + Q(k°), with € > 0. Le., even the
existence of a subgraph on k vertices with average degree at least 2 + &', with
¢’ > 0, can not be decided in time polynomial in the number of vertices of the
input graph (unless P = NP). Additionally, we have derived that it is very likely
that the problem is not NP-complete for v € k + k°!) (based on an algorithm
with subexponential time complexity). When restricting to S-PL graphs, we have
also proven a lower-bound for NP-completeness linear in k, namely v(k) > 126-k
(i.e., subgraphs with average degree at least %5) The constant factor depends on
the maximum average degree § of -PL graphs (which is bounded by a constant
that only depends on /3) and can be significantly larger than factor 2 + ¢’ for gen-
eral input graphs. These different values result due to the unknown characteristic

121

122 CHAPTER 6. CONCLUSION

of subgraphs of general S-PL graphs. Research on the properties of this graph
class is located in a different research area and thus has not been extensively
considered within this thesis. However, as a first indication, we have proven a
constant upper bound for the average degree of any subgraph of a 5-PL graph.
The corresponding value, which is still too large to improve the constant factor,
has been used for deriving the approximation results stated below. The actual
lower bound for NP-completeness of v-DSP on 3-PL graphs has been achieved
by using some sophisticated analysis on the degree sequence. Within our dis-
cussion, we initially found evidence that the lower bound for NP-completeness
of v-DSP on S-PL graphs is similar to that for general input graphs, unless ev-
ery (3-PL instance has a trivial solution. Therefore, we summarize that even if
restricting to power-law graphs, the problem of detecting dense subgraphs with
v € k + Q(k®), with € > 0, is considered to be computationally hard.

In chapter 5, we have discussed the problem of approximating the densest sub-
graph on some given number of vertices. Once again, analogous to y-DSP,
we have proven that the problem is contained in similar approximation classes
when the input is chosen from either general graphs or S-PL graphs. Since the
problem on general input graphs has already been extensively discussed in the
literature, our result has enabled to derive so far unknown approximation results
when restricting to 8-PL graphs. Thus, we know that the densest subgraph can
be approximated in O(n%_g), where n is the number of vertices of the input
graph. Further, we may assume that there exists no constant approximation ra-
tio. However, it is still open whether the problem can be approximated within
1+e.

Finally, we can conclude that density-based clustering with size constraints in
large-scale networks is inherently hard. In most cases, deciding on the existence
on dense subgraphs on a given number of vertices and fixed density is NP-
complete. Similarly, when searching some densest subgraph on a given number
of vertices, it is supposed that no optimization algorithm with constant approxi-
mation ratio exists. The best currently known approximation ratio is polynomial
in the number of vertices. However, we have been able to stress the importance
of using properties, different to power-law (e.g. specific substructures), in order
to construct good heuristics for finding density-based clusterings in large-scale
networks.

6.2 Future work

In the following, we list some possible extentions to the work that has been done
in this thesis.

In the case of general input graphs, the remaining gap for the computational
complexity of y-DSP could be examined and possibly reduced in size. For in-
stance, a classification of the problem for functions v € k& + ©(logk) could give

6.2 FUTURE WORK 123

more information on the dichotomy of the problem. Similarly, further discussion
or even introduction of additional graph transformations might result in tighter
lower bounds for NP-completeness of the problem.

When restricting the problem to [-PL graphs, although we have evidence on
the characterization of the corresponding complexity, it would be worthwhile
to state some improved, theoretical precise lower bound. This discussion could
also help to better understand the nature of power-law graphs. We suppose
that a good way to decrease the lower bound for NP-completeness is to derive
advanced construction methods for power-law graphs that bound the average
degree of corresponding subgraphs (similar to our approach within this thesis).
Further, some deeper analysis on the degree sequence of power-law graphs, e.g.
by applying improved summation techniques, could also result to some smaller
lower bound.

Finally, as briefly mentioned in the discussion of approximability, in spite of ex-
pecting only polynomial approximation ratios, further analysis of approximation
techniques could lead to smaller exponents, in particular when restricting to S-PL
input graphs. Based on the properties of the degree sequence, it may be possible
to either bound the value of the optimum solution or to improve the quality of
the derived approximation results. While it might not be feasible to apply this
technique in general, we may aim to improve the results for different ranges of the
subgraph size (e.g., for very large subgraphs, we can restrict to remove vertices
of degree one and thus derive optimal solution). If it is possible to cover the
whole range of &, these results could be combined in order to derive some general
improvement.

124 CHAPTER 6. CONCLUSION

Appendix A

General definitions

A.1 Graphs

(Undirected) Graphs

An (undirected) graph G consists of a set of vertices V and a set of edges E C V?
(denoted by G = (V, E)). If we want to define some orientation on the edges,
we use directed graphs with E CV x V (i.e., edge (v, w) € E represents an edge
from v pointing to w). A simple graph, is an undirected graph without multiple
edges and self-loops (i.e., edges that start and end at the same vertex). In this
thesis, unless stated otherwise, we consider undirected simple graphs.

Subgraphs

A subgraph H = (Vy, Ey) of some graph G = (Vi, E¢) is a graph with Vg C Vg
and Ey C Eg. It is not required that Ey = Eg N V3 (i.e., it is not required
that all possible edges between vertices in Vy must exist in H, if they exist
in G). However, when referring to the induced subgraph, the existence of all
possible edges that are also element of E¢ is required. Let G(V, E) be a graph
and V' C V. The subgraph G' of G induced by V' is defined to G' = (V', E'),
with B/ = ENV". If G is clear from the context we also refer to G’ as the
induced subgraph of V.

Sets of vertices and edges

For any graph G, we use V(G) and E(G) to denote the sets of vertices and edges
of G. For the cardinality of a set S we use |S|, e.g., |V(G)| and |E(G)| are the
cardinalities of the sets of vertices and edges of G. For any simple graph G, it
holds that 0 < |E(G)| < (V9.

Neighbors and degree

Let G = (V, E) be an undirected graph. The set of neighbors N(v) of a vertex
v € V is defined to N(v) = { w | {v,w} € E }. Further the degree of a vertex
v is number of its neighbors and is denoted by deg(v) = |N(v)|. The average

125

126 CHAPTER A. GENERAL DEFINITIONS

degree avgdeg(S) of a set S of vertices is defined to be the average value of the
degrees of all vertices in S. Similarly, the average degree avgdeg(G) of a graph
G equals the average degree of V(G). For a vertex v of a directed graph the
in-degree resp. out-degrees is defined to the number of edges (v, w) € E(G) resp.
(w,v) € E(G), with w € V(G). Similarly, we define the in/out neighbors and
the average in/out-degree.

Connected components

Let G = (V, E) be an undirected graph. Two vertices v, w € V are referred to be
connected, if there exist vertices vy, ..., v, with £ < [V| — 2, in such a way that
{v,m},{vi, vis1}, {vk, w} € E, for 1 < i < k — 1. Further, it is always possible
to partition set V into subsets Vi,...,V; (e, ViNV; = 0, for all i # j, and
ViU---UV,=V) in such a way that v € V; and w € V; are connected iff i = j.
The subgraphs induced of sets V;, for 1 < ¢ < [, are referred to as connected
components. A graph is connected if all possible pairs of vertices are connected,
or, equivalently, it has only one connected component.

Isomorphism
Two graphs G = (V, Eg) and H = (Vg, Eg) are said to be isomorphic (denoted
by G = H) if and only if there exists a bijection f : Vi — Vj in such a way that

{v,w} € Eq & {f(v),f(w)} € Ey.

Breadth first search (BFS)

A breadth first search (BFS) is an algorithm that is used to traverse a connected
graph (resp. connected component). Throughout the whole algorithm, we keep
a first-in-first-out queue that initially contains a single start vertex. The process
iterates until the queue is empty. Within each iteration, the next vertex v from
the queue is removed and all so far not visited neighbors of v are added to the
queue. Similarly, we define a parallel BFS to be the corresponding algorithm
whose queue initially contained several start vertices.

After running either of the algorithms all vertices of the graph (resp. connected
component) have been visited exactly once, while every edge has been considered
at most twice. Therefore, the run time of the algorithms on a connected graph
(resp. connected component) G is proportional to |V (G)| + |E(G)|.

A.2 Computational complexity

Throughout the whole thesis, when considering the complexity of a problem, we
discuss the time complexity of the problem assuming logarithmic costs (i.e., bit
complexity and Turing machines).

A.2 COMPUTATIONAL COMPLEXITY 127

Complexity classes P and NP, reduction

The complexity class of problems computable in polynomial time of the input
size is denoted as P , while the set of problems computable in non-deterministic
polynomial time is referred to as NP . For two problems A, B € NP we define
that A can be reduced to B if there exists a polynomial-time many-one reduction
of A to B (i.e., there exists a function f computable in polynomial time such that
for all z it holds that x € A & f(x) € B). Based on this type of reduction, a
problem A is said to be NP-complete (also referred to as NP-c), if every problem
in NP can be reduced to the A. Two well-known NP-complete problems are
SATISFIABILITY (SAT) [Coo71] and CLIQUE [Kar72] (for more examples see also
[GJ79)).

Landau symbols
In order to describe the asymptotic growth of a function f : N — R we use the
Landau symbols:

0, Q, 0, o,and w

Let f,g: N — R be two functions. The sets of functions O(g), Q(g), ©(g), o(g),
and w(g) are defined as follows:

f€O0(g)

& (JceR In, €N Vn>n,) [[f(n) <le-g(n)]]
feQg) & (FceR In, €N Vn>n,) [[f(n)]=]c-g(n)l]

&

&

f€6(g) feO0(g) N feQg) :

f € olg) (VeeR In, eN Vn>n,) [|f(n) <|c-g(n)|]
feuwlg & (YeceR In,eNVn>n,) [[f(n)]>]c-g(n)|]

Instead of defining functions f and g explicitly, we use implicit declarations, e.g.
2n € O(n?) in order to express that f € O(g), with f(n) = 2n and g(n) = n?.
Further examples are: 0.001y/n € Q(n%?°), (n +2)® € ©(n?), log(n) € o(n), and
n? + log(n) € w(n).

Further, once again assuming f, ¢g, and h to be functions N — R, we use the
following abbreviation (only stated for Landau symbol O, the sets for all other
Landau symbols are defined accordingly).

feg+0(h) & (FceR3n, eNVn>n,)[|f(n) <l|g(n)+]c-h(n)]

Using this definition it is easy to see that, e.g., it holds n 4+ 141 € n + O(1) and
1.5n € n+ Q(n2).

128 CHAPTER A. GENERAL DEFINITIONS

Appendix B
Optimization Problems

Within this thesis, we use the following formal definitions and lemmata on opti-
mization problems (adopted from [Ste03]). A more detailed description is given
in standard text books [ACG199, MPS98, Vaz01].

Definition B.1 An optimization problem 1 is a four-tuple (Z, Sol, val, goal) such
that, for some alphabet X

e 7T C ¥* is the set of instances.

e For every instance I € T,Sol(I) C X* denotes the set of solutions of I and
18 non-empty.

e For every instance I € T and solution x € Sol(I), the value val(I,x) is a
positive integer. The function val(-; -) is called the objective function.

e goal € {min, max}.

Definition B.2 An optimization problem (Z,Sol,val, goal) belongs to the class
NPO iff

e 7 C X* is a set of instances that is recognizable in linear time.

e The size of the solutions is polynomially bounded in the length of I, i.e.,
there exists a polynomial p such that

lz| < p(|1]) for all T € T and z € Sol(I).

e The question “Is x € Sol(I)?” is decidable in polynomial time.

e The function val(-; -) is computable in polynomial time.

Based on these definitions, it is possible to define the sets APX, PT.AS, and
FPTAS of optimization problems.

129

130 CHAPTER B. OPTIMIZATION PROBLEMS

Definition B.3 APX is the set of all optimization problems in N'PO which
admit a polynomial time approximation algorithms with performance ratio p for
some constant p > 1.

Definition B.4 PT AS is the set of all optimization problems in N'PO which
admit a polynomial time approximation scheme.

Definition B.5 FPT.AS is the set of all optimization problems in N'PQO which
admit a fully polynomial time approrimation scheme.

Within this thesis, when comparing the approximation classes of two optimization
problems, we use the following reduction (referred to as AP-reduction).

Definition B.6 An Optimization problem I1 = (I, Sol, val, goal) is AP-reducible
to an optimization problem IT* = (I*, Sol*, val*, goal®), referred to as II <,p 117,
if and only if there exist functions f and g and constant o > 0 such that:

(AP1) For any 6 >0, and for any I € I, it holds f(1,0) € T*.

(AP2) For any & > 0, for any I € Z, and y € Sol*(f(I),0), it holds
g(1,y,9) € Sol(I).

(AP3) For any fized § > 0, the functions f and g are computable in polyno-

mial time.
(AP4) For any I € I, and for any 6 > 0, and for any y € Sol*(f(I)),
1 _val(f(Z,0),y) 1 val(Z, g(1,y,6))
< <1 < <1 - 0.
1+ = opt(f(1,9)) — o= l+a-6~ opt(]) sl+a-o

The triple (f, g,) is an AP-reduction from II to IT*.

If 11 <ap II* and IT* <,p I, we say that I1 is equivalent to IT* w.r.t. AP-reduction
(denoted by I1 =4p I11*).

Using this definition of AP-reduction the following two lemmata hold.
Lemma B.1 Let II.II* € NPO. IfII* € APX and II <,p IT* then Il € APX.

Lemma B.2 LetIL, II* € NPO. IfII* € PTAS andIl <,p II* thenIl € PT.AS.

Bibliography

[AB02]

[ABJ9Y]

[ACG*99]

[ACLO1]

[ACLO02]

[Adm99]

[AF99]

[AHI02]

[AITTOO]

[AK95)

[AKK99]

R. Albert and A.-L. Barabasi. Statistical mechanics of complex net-
works. Review of Modern Physics, 74(1):47-97, 2002.

R. Albert, A.-L. Barabasi, and H. Jeong. Diameter of the World
Wide Web. Nature, 401:130-131, 1999.

G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi. Complexity and Approximation.
Springer, 1999.

W. Aiello, F. Chung, and L. Lu. A random graph model for power
law graphs. Experimental Mathematics, 10(1):53-66, 2001.

W. Aiello, F. Chung, and L. Lu. A random graph model for massive
graphs, chapter 4, pages 97-122. Kluwer Academics, 2002.

L. Admic. The small world wide web. In Proceedings of the 3rd Eu-
ropean Conference on Digital Libraries (ECDL’99), volume 1696 of
Lecture Notes in Computer Science, LNCS, pages 443-452. Springer,
1999.

N. Alon and E. Fischer. Refining the graph density condition for the
existence of almost k-factors. Ars Combinatoria, 52:296-308, 1999.

Y. Asahiro, R. Hassin, and K. Iwama. Complexity of finding dense
subgraphs. Discrete Applied Mathematics, 121(1-3):15-26, 2002.

Y. Asahiro, K. Iwama, H. Tamaki, and T. Tokuyama. Greedily
finding a dense subgraph. Journal of Algorithms, 34(2):203-221,
2000.

C. J. Alpert and A. B. Kahng. Recent directions in netlist parti-
tioning: A survey. Integration: The VLSI Journal, 19(1-2):1-81,
1995.

S. Arora, D. Karger, and M. Karpinski. Polynomial time approxi-
mation schemes for dense instances of NP-hard problems. Journal
of Computer and System Sciences, 58(1):193-210, 1999.

131

132

BIBLIOGRAPHY

[Alo86]

[ALPHO1]

[ASBS00]

[BAYY]

[BAJ99)

[BAJOO]

[BBCRO3]

[BDJ9Y]

[BDOY5]

[Ber58]
[Ber03]

[BMZ99]

[BO03]

[Bol&0]

N. Alon. Eigenvalues and expanders. Combinatorica, 6(2):83-96,
1986.

L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman.
Search in power-law networks. Physical Review E, 64(4), 2001. Ar-
ticle 046135.

L. A. N. Amaral, A. Scala, M. Barthelemy, and H. E. Stanley. Classes
of small-world networks. Proceedings of the National Academy of
Sciences, 97(21):284-293, 2000.

A.-L. Barabasi and R. Albert. Emergence of scaling in random net-
works. Science, 286:509-512, 1999.

A .-L. Barabasi, R. Albert, and H. Jeong. Mean-field theory for scale-
free random networks. Physica A, 272(1-2):173-187, 1999.

A.-L. Barabasi, R. Albert, and H. Jeong. Scale-free characteristics
of random networks: The topology of the world-wide web. Physica
A, 281(1-4):69-77, 2000.

B Bollobés, C. Borgs, J. Chayes, and O. Riordan. Directed scale
free graphs. In Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms (SODA 2003), pages 132-1309.
Society for Industrial and Applied Mathematics, 2003.

M. W. Berry, Z. Drmac, and E. R. Jessup. Matrices, vector spaces,
and information retrieval. STAM Review, 41(2), 1999.

M. W. Berry, S. T. Dumais, and G. W. O’Brien. Using linear algebra
for intelligent information retrieval. SIAM Review, 37(4), 1995.

C. Berge. Théorie des graphes et ses applications. Dunod, 1958.

M. W. Berry. Survey of Text Mining: Clustering, Classification, and
Retrieval. Springer, 2003.

V. Batagelj, A. Mrvar, and M. Zaversnik. Partitioning approach to
visualization of large graphs. In Graph Drawing: 7th International
Symposium (GD’99), volume 1731 of Lecture Notes in Computer
Science, LNCS, pages 90-97. Springer, 1999.

G. Buckley and D. Osthus. Popularity based random graph models
leading to a scale-free degree distribution, 2003. to appear in Discrete
Mathematics.

B. Bollobds. A probabilistic proof of an asymptotic formula for the
number of labelled regular graphs. European Journal on Combina-
torics, 1:311-316, 1980.

BIBLIOGRAPHY 133

[Bol85)

[BP98]

[BRO2a]

[BRO2b]

[BRM+00]

[BRSTO1]

[BS02]

[CEbAHO0]

[CF03]

[CHO3]

[Cha00]

[CHKO91]

[CL70]

B. Bollobas. Random Graphs. Academic Press, 1985.

S. Brin and L. Page. The anatomy of a large-scale hypertextual
(web) search engine. Computer Networks and ISDN Systems, 30(1-
7):107-117, 1998.

B. Bollobas and O. Riordan. The diameter of a scale-free random
graph. Combinatorica, 2002. to appear.

B. Bollobds and O. Riordan. Mathematical results on scale-free
random graphs. In Handbook of Graphs and Networks: From the
Genome to the Internet, pages 1-34. Wiley-VHC, 2002.

A. Broder, Kumar. R., F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener. Graph structure in the Web.
In Proceedings of the Ninth International World Wide Web Confer-
ence/Computer Networks, volume 33, pages 1-6. Elsevier, 2000.

B. Bollobas, O. Riordan, J. Spencer, and G. Tusnady. The degree
sequence of a scale-free random graph process. Random Structures
and Algorithms, 18(3):279-290, 2001.

S. Bornholdt and H. G. Schuster, editors. Handbook of Graphs and
Networks. Wiley-VCH, 2002.

R. Cohen, K. Erez, D. ben Avraham, and S. Havlin. Resilience
of the internet to random breakdown. Physical Review Letters,
85(21):4626-4628, 2000.

C. Cooper and A. Frieze. A general model of web graphs. Random
Structures and Algorithms, 22(3):311-335, 2003.

R. Cohen and S. Havlin. Scale free networks are ultrasmall. Physical
Review Letters, 90(5), 2003. Article 058701.

S. Chakrabarti. Data mining for hypertext: a tutorial survey.
SIGKDD Explorations: Newsletter of the Special Interest Group
on Knowledge Discovery & Data Mining, 1(2):1-11, 2000.

J. Cong, L. Hagen, and A. B. Kahng. Random walks for circuit
clustering. In 4th IEEE International ASIC Conference (ASIC’91),
pages 14.2.1-14.2.4, 1991.

D. Cvetkovi¢ and R. P. Li¢i¢. A new generalization of the concept
of the p-sum of graphs. Univerzitet u Beogradu Publikacije Elek-
trotehnickog Fakulteta, Serija Matematika, Univerzitet Beograd,
Belgrade, 302:67-71, 1970.

134

BIBLIOGRAPHY

[CLO1]

[CLV03]

[CooT1]

[CSZ93]

[Czy00]

[DCGY9)

[DDSWO03]

[DEMO1]

[DFP93]

[DMS00]

[DMSO01]

[ER59)

[ESB99]

F. Chung and L. Lu. The diameter of random sparse graphs. Ad-
vances in Applied Mathematics, 26:257-279, 2001.

F. Chung, L. Lu, and V. Vu. Eigenvalues of random power law
graphs. Annals of Combinatorics, 7:21-33, 2003.

S. A. Cook. The complexity of theorem-proving procedures. In
Conference record of third annual ACM Symposium on Theory of
Computing (STOC’71), pages 151-158. ACM Press, 1971.

P. K. Chan, M. D. F. Schlag, and J. Y. Zien. Spectral k-way
ratio-cut partitioning and clustering. In Proceedings of the 30th
ACM/IEEE Design Automation Conference (DAC’93), pages 749—
754. ACM Press, 1993.

A. Czygrinow. Maximum dispersion problem in dense graphs. Op-
erations Research Letters, 27(5):223-227, 2000.

R. De Castro and J. W. Grossman. Famous trails to paul erdos.
MATHINT: The Mathematical Intelligencer, 21:51-63, 1999.

J. Diaz, N. Do, M. J. Serna, and N. C. Wormald. Bounds on the max
and min bisection of random cubic and random 4-regular graphs.
Theoretical Computer Scence., 307(3):531-547, 2003.

E. Drinea, M. Enachescu, and Mitzenmacher. M. Variations on ran-
dom graph models for the web. technical report TR-06-01, Harvard
University, Department of Computer Science, 2001.

M. Dyer, A. Frieze, and B. Pittel. The average performance of the
greedy matching algorithm. Annals of Applied Probability, 3(2):526—
552, 1993.

S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Struc-
ture of growing networks with preferential linking. Physical Review
Letters, 85(21):4633-4636, 2000.

S. N. Dorogovtsev, J. F. F. Mendes, and A. N. Samukhin. Size-
dependent degree distribution of a scale-free growing network. Phys-
ical Review E, 63(6), 2001. Article 062101.

P. Erdds and A. Rényi. On random graphs. Publications Mathemat-
ical Debrecen, 6:290-297, 1959.

J. Edachery, A. Sen, and F. J. Brandenburg. Graph clustering using
distance-k cliques. In Graph Drawing: 7th International Symposium
(GD’99), volume 1731 of Lecture Notes in Computer Science, LNCS,
pages 98-106. Springer, 1999.

BIBLIOGRAPHY 135

[FDBV01]

[Fei02]

[Fel00]

[FF56]

[FFF99)

[FK94]

[FKPO1]

[FLO1]

[FLGOO]

[FLGC02]

[FM82]

[FS97]

I. J. Farkas, I. Derenyi, A.-L. Barabasi, and T. Vicsek. Spectra of
“real-world” graphs: Beyond the semi circle law. Physical Review
E, 64(2), 2001. Article 026704.

U. Feige. Relations between average case complexity and approxima-
tion complexity. In Proceedings of the 34th Annual ACM Symposium
on Theory of Computing (STOC 2002), pages 534—543. ACM Press,
2002.

A. Feldmann. Characteristics of TCP Connection Arrivals. In Self-
Similar Network Traffic and Performance Evaluation. Wiley, 2000.

L. R. Ford and D. R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399-404, 1956.

M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law rela-
tionships of the internet topology. In ACM Special Interest Group
on Data Communications (SIGCOMM’99), volume 29 of Computer
Communications Review, pages 251-262, 1999.

U. Faigle and W. Kern. Computational complexity of some maxi-
mum average weight problems with precedence constraints. Opera-
tions Research, 42(4):1268-1272, 1994.

U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem.
Algorithmica, 29(3):410-421, 2001.

U. Feige and M. Langberg. Approximation algorithms for maximiza-
tion problems arising in graph partitioning. Journal of Algorithms,
41:174-211, 2001.

G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identification of
web communities. In Sixth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD 2000), pages 150
160, 2000.

G. W. Flake, S. Lawrence, C. L. Giles, and F. M. Coetzee. Self-
organization and identification of Web communities. Computer,
35(3):66-71, 2002.

C. M. Fiduccia and R. M. Mattheyses. A linear-time heuristic for im-
proving network partitions. In 19th Design Automation Conference
(DAC’82), pages 175-181. ACM/IEEE, 1982.

U. Feige and M. Seltser. On the densest k-subgraph problem. Techni-
cal Report CS97-16, Department of Applied Mathematics and Com-
puter Science, The Weizmann Institute of Science, Rehovot, Israel,
1997.

136

BIBLIOGRAPHY

[GGTSY)

[Gil59)

[GI79]

[GKROS]

[GNY94]

[Gol84]

[GPS90]

[GVL8Y]

[GWO5]

[Has99)

[Hay00]

[HK95]

G. Gallo, M. D. Grigoriadis, and R. E. Tarjan. A fast parametric
maximum flow algorithm and applications. SIAM Journal on Com-
puting, 18(1):30-55, 1989.

E. N. Gilbert. Random graphs. Annals of Mathematical Statistics,
30:1141-1144, 1959.

M. R. Garey and D. S. Johnson. Computers and Intractability, A
Guide to Theory of NP-Completeness. Freeman, 1979.

D. Gibson, J. Kleinberg, and P. Raghavan. Inferring web commu-
nities from link topology. In Proceedings of the 9th ACM Confer-
ence on Hypertext (Hypertext’98), Structural Queries, pages 225
234, 1998.

O. Goldschmidt, D. Nehme, and G. Yu. On the set union knapsack
problem. Naval Research Logistics, 41(6):833-842, 1994.

A. V. Goldberg. Finding a maximum density subgraph. Technical
Report UCB/CSB 84/171, Department of Electrical Engineering and
Computer Science, University of California, Berkeley, CA, 1984.

J. Garbers, H. J. Promel, and A. Steger. Finding clusters in VLSI
circuits. In Proceedings of the IEEE International Conference on
Computer-Aided Design (ICCAD’90), pages 520-523. IEEE Com-
puter Society Press, 1990.

G. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, 1989.

M. X. Goemans and D. P. Williamson. Improved Approximation
Algorithms for Maximum Cut and Satisfiability Problems Using
Semidefinite Programming. Journal of the Association for Comput-
ing Machinery, 42(6):1115-1145, 1995.

J. Hastad. Clique is hard to approximate within n'=%. Acta Mathe-
matica, 182(1):105-142, 1999.

B. Hayes. Graph theory in practice: Part 2. American Scientist,
88(2):104-109, March—April 2000.

D. J.-H. Huang and A. B. Kahng. When cluster meet partitions:
New density-based methods for circuit decomposition. In European
Design and Test Conference (EDTC’95), pages 60-64. IEEE Com-
puter Society Press, 1995.

BIBLIOGRAPHY 137

[HKMT02]

[HKMT03]

[HRT97]

[HS00]

[HYZ02]

[IMK*03]

[JD8S]

[JTA*00]

[Kar72]

[KhoO1]

[KKR199]

[KL70]

K. Holzapfel, S. Kosub, M. Maaf}; and H. Taubig. The complexity
of detecting fixed-density clusters. Technischer Bericht TUM-10212,
Technische Universitat Miinchen, Institut fiir Informatik, 2002.

K. Holzapfel, S. Kosub, M. Maaf}; and H. Taubig. The complexity
of detecting fixed-density clusters. In Algorithms and Complexity,
5th Italian Conference (CIAC 2003), number 2653 in Lecture Notes
in Computer Science, LNCS, pages 201-212. Springer-Verlag, 2003.

R. Hassin, S. Rubinstein, and A. Tamir. Approximation algorithms
for maximum dispersion. Operations Research Letters, 21(3):133—
137, 1997.

E. Hartuv and R. Shamir. A clustering algorithm based on graph
connectivity. Information Processing Letters, 76(4-6):175-181, 2000.

Q. Han, Y. Ye, and J. Zhang. An improved rounding method and
semidefinite programming relaxation for graph partition. Mathemat-
ical Programming, 92(3):509-535, 2002.

S. Itzkovitz, R. Milo, N. Kastan, G. Ziv, and U. Alon. Subgraphs in
random networks. Physical Review E, 68(2), 2003. Article 026127.

A. K. Jain and R. C. Dubes. Algorithms for clustering data. Prentice-
Hall, 1988.

H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A.-L. Barabasi.
The large-scale organization of metabolic networks. Nature, 407:651—
654, 2000.

R. M. Karp. Reducibility Among Combinatorial Problems, pages
85-103. Plenum Press, 1972.

S. Khot. Improved inapproximability results for max clique, chro-
matic number and approximate graph coloring. In Proceedings 42nd
Annual Symposium on Foundations of Computer Science (FOCS
2001), pages 600-609. IEEE Computer Society Press, Washington,
D.C., 2001.

J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. S.
Tomkins. The web as a graph: Measurements, models, and methods.
In Computing and Combinatorics:5th Annual International Confer-
ence (COCOON’99), volume 1627 of Lecture Notes in Computer
Science, LNCS, pages 1-17. Springer-Verlag, 1999.

B. W. Kernighan and S. Lin. An efficient heuristic for partitioning
graphs. Bell Systems Technical Journal, 49:291-307, 1970.

138

BIBLIOGRAPHY

[K1e99]

[K1e00]

[Kle02]

[KP93]

[KPRT99a]

[KPRT99b)]

[KRKO1a]

[KRKO1D]

[KRR™00a]

[KRR*+00b]

J. M. Kleinberg. Authoritive Sources in a Hyperlinked Environment.
Journal of the ACM, 46(5):604-632, 1999.

J. M. Kleinberg. The small-world phenomenon: An algorithmic per-
spective. In Proceedings 32nd Annual ACM Symposium on Theory
of Computing (STOC 2000), pages 163-170. ACM Press, 2000.

J. S. Kleinfeld. Could it be a big world after all? the “six degrees of
separation” myth. Society, April 2002.

G. Kortsarz and D. Peleg. On choosing a dense subgraph. In
Proceedings 34th Symposium Foundations of Computer Science
(FOCS’93), pages 692-703. Institute of Electrical & Electronics En-
gineers, 1993.

R. Kumar, Raghavan P., S. Rajagopalan, and A. Tomkins. Extract-
ing large-scale knowledge bases from the web. In Proceedings of the
25th International Conference on Very Large Data Bases (VLDB’99),
pages 639-650, 1999.

R. Kumar, Raghavan P.; S. Rajagopalan, and A. Tomkins. Trawl-
ing the Web for emerging cyber-communities. Computer Networks
(Amsterdam, Netherlands: 1999), 31(11-16):1481-1493, 1999.

P. Krishna Reddy and M. Kitsuregawa. An approach to relate the
web communities through bipartite graphs. In Second International
Conference on Web Information Systems Engineering (WISE 2001),
pages 301-310, 2001.

P. Krishna Reddy and M. Kitsuregawa. Inferring web communi-
ties through relaxed cocitation and dense bipartite graphs. In Pro-
ceedings of the 12th Database Engineering Workshop (DEWS 2001),
2001.

R. Kumar, P. Raghavan, R. Rajagopalan, D. Sivakumar,
A. Tomkins, and E. Upfal. Stochastic models for the Web graph.
In IEEE, editor, 41st Annual Symposium on Foundations of Com-
puter Science (FOCS 2000), pages 57-65. IEEE Computer Society
Press, 2000.

R. Kumar, P. Raghavan, R. Rajagopalan, D. Sivakumar,
A. Tomkins, and E. Upfal. The web as a graph. In Proceedings of the
Nineteenth ACM SIGMOD-SIGACT-SIGART Symposium on Prin-
ciples of Database Systems (PODS 2000), pages 1-10. ACM Press,
2000.

BIBLIOGRAPHY 139

[KV02]

[Len90]

[LMOO0]

[Luc92]

[Mil67]

[Mit03]

[MPO1]

[MPS98]

[New03]

[NMWOO]

INSWO1]

[NY97]

[Par96]

M. Krivelevich and V. H. Vu. Approximating the independence num-
ber and the chromatic number in expected polynomial time. Journal
of Combinatorial Optimization, 6(2):143-155, 2002.

T. Lengauer. Combinatorial Algorithms for Integrated Circuit Lay-
out. Wiley, 1990.

R. Lempel and S. Moran. The stochastic approach for link-structure
analysis (SALSA) and the TKC effect. Computer Networks, 33(1—
6):387-401, 2000.

T. Luczak. Sparse random graphs with a given degree sequence.
Random Graphs, 2:165-182, 1992.

S. Milgram. The small world problem. Psychology Today, 1(1):60-
67, 1967.

M. Mitzenmacher. A brief history of generative models for power
law and lognormal distributions. Internet Mathematics, 1(2), 2003.
to appear.

D. Magoni and J.-J. Pansiot. Analysis of the autonomous system
network topology. ACM SIGCOMM Computer Communication Re-
view, 31(3):26 — 37, 2001.

E. W. Mayr, H. J. Promel, and A. Steger, editors. Lectures on Proof
Verification and Approximation Algorithms, volume 1367 of Lecture
Notes in Computer Science. Springer, 1998.

M. E. J. Newman. The structure and function of complex networks.
SIAM Review, 45(2):167-256, 2003.

M. E. J. Newman, C. Moore, and D. J. Watts. Mean-field solu-
tion of the small-world network model. Physical Review Letters,
84(14):3201-3204, 2000.

M. E. J. Newman, S. H. Strogatz, and D. J. Watts. Random graphs
with arbitrary degree distributions and their applications. Physical
Review E, 64(2), 2001. Article 026118.

D. Nehme and G. Yu. The cardinality and precedence constrained
maximum value sub-hypergraph problem and its applications. Dis-
crete Applied Mathematics, 74(1):57-68, 1997.

V. Pareto. Cours d’Economie Politique. Univerité de Lausanne,
1896.

140

BIBLIOGRAPHY

[Per02]

[Ree03]

[RGW02]

[RRT94]

[SCbA*02]

[SFFF03]

[Ste03]

[Str01]

[SW9S]

[SWO03]

[SzeT8]

[Tur41]

P. Perner, editor. Data Mining on Multimedia Data, volume 2588 of
Lecture Notes in Computer Science, LNCS. Springer, 2002.

W. J Reed. The pareto law of incomes - an explanation and an
extension. Physica A, 319:469-486, 2003.

J. W. Raymond, E. J. Gardiner, and P. Willett. Heuristics for simi-
larity searching of chemical graphs using a maximum common edge
subgraph algorithm. Journal of Chemical Information and Computer
Sciences, 42(2):305-316, 2002.

S. S. Ravi, D. J. Rosenkrantz, and G. K. Tayi. Heuristic and spe-
cial case algorithms for dispersion problems. Operations Research,
42(2):299-310, 1994.

N. Schwartz, R. Cohen, D. ben Avraham, A.-L.. Barabasi, and
S. Havlin. Percolation in directed scale-free networks. Physical Re-
view E, 66(1), 2002. Article 015104(R).

G. Siganos, M. Faloutsos, P. Faloutsos, and C. Faloutsos. Power
laws and the as-level internet topology. IEEE/ACM Transaction on
Networking, 11(4):514-524, 2003.

A. Steger. Approximability of np-optimization problems. In B. A.
Reed and C. Linhares-Sales, editors, Recent advances in algorithms
and combinatorics, volume 10 of CMS books in mathematics, chap-
ter 7. Springer, 2003.

S. H. Strogatz. Exploring complex networks. Nature, 410:268-276,
2001.

A. Srivastav and K. Wolf. Finding dense subgraphs with semidefinite
programming. In Proceedings International Workshop on Approxi-
mation Algorithms for Combinatorial Optimization (APPROX’98),
volume 1444 of Lecture Notes in Computer Science, LNCS, pages
181-191. Springer-Verlag, 1998.

G. Sagie and A. Wool. A clustering approach for exploring the inter-
net structure. Technical Report EES2003-7, Department of Electrical
Engineering Systems, Tel Aviv University, Israel, 2003.

E. Szemerédi. Regular partitions of graphs. In Proceedings of the
Colloques Internationaux du Centre National de la Recherche Scien-
tifique (CNRS), pages 399-402, 1978.

P. Turan. On an extremal problem in graph theory. Matematikai és
Fizikai Lapok, 48:436-452, 1941. In Hungarian.

BIBLIOGRAPHY 141

[Vaz01]
[vDOO]

[Viz63|

[Wat99a]

[Wat99b]

[Wigh8]

[WKSS]

[WS98]

[YDL94]

[Zip49]

V. Vazirani. Approximation Algorithms. Springer, 2001.

S. van Dongen. Graph Clustering by Flow Simulation. Phd thesis,
University of Utrecht, 2000.

V. G. Vizing. The cartesian product of graphs (in russian). Vy¢isl.
Sistemy, 9:30-43, 1963. (English translation: Comp. El. Syst. 2
(1966) 352-365).

D. J. Watts. Kevin bacon, the small-world, and why it all matters.
Santa Fe Institute Bulletin, 14(2), 1999.

D. J. Watts. Small Worlds: The Dynamics of Networks between
Order and Randomness. Princeton University Press, 1999.

E. Wigner. On the distribution of the roots of certain symmetric
matrices. Annals of Mathematics, 67:325-327, 1958.

D. W. Wang and Y. S. Kuo. A study on two geometric location
problems. Information Processing Letters, 28(6):281-286, 1988.

D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’
networks. Nature, 393:397-498, 1998.

S. B. Yang, S. K. Dhall, and S. Lakshmivarahan. A processor effi-
cient connectivity algorithm on random graphs. Parallel Processing
Letters, 4:29-36, 1994.

G. K. Zipf. Human Behavior and the Principle of Least Effort.
Addison-Wesley, 1949.

142 BIBLIOGRAPHY

Index

A(?“,N(T‘)), 45 IDSP, 109
AZ(G, k), 107 IDSP—ﬁ—PL; 109
DBG(T,I,p,g), 118 NP, 127
DBGS(r, s), 118 NP-complete (NP-c), 127
E(G), 125 P, 127
Ge, 47 SOlep, 109
GU, 47 SOlep_/j_PL, 109
Grm, 10 0, 127
Gnp, 10
Q, 127
N, 80 w, 127
N(r), 72, 89 ’
0, 127
N(v), 125
o, 127
N, 39 o. 40
%x o gt 04}125, 92, 81 = ,p, 109, 130
Rw 036t’ = 126
5 <ap, 110, 130
Sy, 38 =Ar
Tr‘j‘N(T), 43, 89 (o, B)-graph, 13
TﬁN(T) 0S;0R,, 71 alternating connectivity, 32
Transg, q., 47 alternating distance, 32
V(G), 125 AP-reduction, 109, 130
A, 74 authority, 32
B, 13
5. 79 B-PL, 13

Bacon-distance, 8

i,l’Ps(/']\f', 130 bipartite subgraph, 31, 116, 118
FPTAS. 130 complete, 116

NPO, 129 candidate degree sequence, 22
PTAS, 130 CLIQUE, 127

t(G), 64 CLIQUEg, 37

avgdeg(G), 126 CLIQUE., 37

deg(v), 125 cluster coefficient, 9

k', 72, 80 cluster tendency, 9

r, 72, 89 cocite, 118-119

valDSp(I, G,), 109

ValDSP_ﬁ_pL (I, G,), 109

community, 31, 115

Constructibility, 73, 90

144

INDEX

cumulative degree distribution, 12

degree sequence, 22
dense subgraph, 31, 115

bipartite, 31, 116, 118

complete bipartite, 116
DENSEST-SUBGRAPH-PROBLEM, 59
density, 57-58

average degree, 58

number of edges, 58

relative density, 58
distribution

B-PL, 13

log-normal, 13

Pareto, 12, 13

power-law, 13

Weibull, 13

Zipf, 12
dynamic programming, 63, 69-70

Erdos-Number, 8

excess, 64

excess-c (sub)graph, 64

EXCESs-¢c SUBGRAPH, 64

Exchangeability, 73, 90-91
Exchangeability 1, 91
Exchangeability 2, 91

fixed-parameter problem, 60

v-DSP, 60

v-DENSE-k-SUBGRAPH-PROBLEM, 60

general local graph transform., 47-51
average degree, 48-49
special G, and G, 49-51

GENERAL-DENSE-k-SUBGRAPH-P., 60

graph, 125
(induced) subgraph, 125
degree, 125
directed, 125
neighbor, 125
simple, 125
undirected, 125
graph transformation, 35-56
N, 39

N; 0S5, 0 R, 52, 81

N, oS, 41

R, 36

St, 38

Ty 43, 89

TﬁN(r) oS;o R, 71

Transg, q., 47
GREEDY, 105
growth, 18

heuristics, 115-120
HITS, 32, 116
Hollywood graph, 8
hub, 32
hyperlink graph, 29
bow-tie structure, 30
communities, 31
IN, 30
OuT, 30
SCC, 30

(i, j)-core, 116
inner
clique, 53
vertex, 38
isomorphic, 126

Landau symbol, 127
large-scale networks, 7-34
linear programming (LP), 105
log-normal distribution, 13

MAX-DENSE-k-SUBGRAPH-P., 103
MaxiMuM CLIQUE, 64
MAaAx-k-DSP, 103

B-PL, 109-115

general graphs, 104-109
Max-k-DSP-3-PL, 109

(N, 8)-PL, 13

optimization problem, 129
outer

clique, 53

vertex, 38

INDEX 145

parameter setting, 74, 82 Watts and Strogatz, 10
Pareto distribution sparse, 9
double, 13 SUBSET SuM, 69

Pareto distribution, 12

power-iteration, 33 Turdn’s theorem, 64

power-law, 12-29 Weibull distribution, 13
average-case analysis, 29
distribution, 13 Zipf law, 12

graph model
initial attractiveness, 19
graph model
(e, B)-graph, 13
Barabasi, Albert, 18
Bollobés et al., 18, 21
configuration model, 14
Cooper, Frieze, 20
copying model, 19
generating functions, 14
LCD model, 14
property
average degree, 14
clustering coefficient, 14
connected component, 15
diameter, 14
eigenvalues, 16
maximum degree, 15
robustness, 16
vulnerability, 16
preferential attachment, 18
PROCEDURE 1, 106
PROCEDURE 2, 107
PROCEDURE 3, 107

quasi-regular, 43

R3SAT-hard, 108
reduction, 127

SATISFIABILITY, 127
scale-free, 18
semidefinite programming (SDP), 105
six degrees of separation, 8
small world, 8
graph model, 10-11
Kleinberg, 10

