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Abstract

An essential task for XML applications is querying, i.e. identifying locations in
the input data with certain specified properties. The present work considers
an expressive XML query language and provides efficient algorithms for its
implementation. The techniques introduced are applied in the XML querying
tool Fxgrep.

Some XML documents may be too large to be built in memory. For these,
special algorithms have to be provided. The same holds true for XML data
which must be processed while being received, rather than being completely
available in advance. In such cases XML data is seen as a stream of events to
which the application has to react in order to perform the desired processing.
Fxgrep provides therefore an event-based processing mode which avoids the
in-memory construction of the input, and in addition recognizes matches of
queries at the earliest possible moment.

Typical XML queries identify only individual locations in the input. A use-
ful extension is to retrieve k locations which are in a specified context. Binary
queries (obtained for k = 2) are identified in this work as a useful case, espe-
cially in view of XML transformations. Besides for unary queries we therefore
develop algorithms for the evaluation of binary queries. These techniques are
at the base of our XML transformation tool Fxt.

The practical results are based on the compilation of XML queries to gram-
mars, as used in XML schema languages, and on tree automata based construc-
tions, tailored to our application domain.

A more detailed overview of the addressed topics and the contributions
presented is given in the introductions to the first and second parts of this
work.
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Zusammenfassung

Diese Arbeit betrachtet eine ausdrucksstarke Sprache zur Suche in XML-
Dokumenten, was eine grundlegende Aufgabe von XML-Anwendungen ist.
Für diese Anfrage-Sprache werden effiziente Algorithmen zur Auswertung be-
reit gestellt und in dem Tool Fxgrep realisiert.

Sehr große XML-Dokumente können nicht als Bäume im Speicher aufge-
baut werden. Dasselbe gilt für XML-Daten, die verarbeitet werden müssen,
noch während sie empfangen werden. In diesen Fällen werden spezielle Algo-
rithmen benötigt, die die XML-Eingabe statt als Baum als Strom von Ereignis-
sen ansehen. Diese verarbeiten die Eingabe, indem sie auf Ereignisse reagieren.
Deshalb verfügt Fxgrep über einen strom-basierten Bearbeitungsmodus, der es
so weit wie möglich vermeidet, eine interne Repräsentation des Dokuments im
Speicher aufzubauen, und zudem Treffer der Anfrage zum frühest möglichen
Zeitpunkt signalisiert.

Typische XML-Anfragen suchen nur nach einzelnen Teildokumenten, die
über ihre Eigenschaften sowie die Eigenschaften ihres Kontexts definiert sind.
Sinnvoll sind aber auch Anfragen, die nach k-Tupeln von Teildokumenten mit
gegebenen Eigenschaften suchen. Zweistellige Anfragen werden in dieser Ar-
beit als einen im Hinblick auf XML-Transformationen besonders nützlichen
Fall identifiziert. Hier werden darum neben der Behandlung von einstelligen
Anfragen insbesondere Techniken entwickelt, um zweistellige Anfragen zu be-
antworten. Diese Methoden bilden die Grundlage unseres effizienten Transfor-
mationstools Fxt.

Die eingeführten Algorithmen erzeugen aus Anfragen Grammatiken, wie
sie auch in Schema-Sprachen eingesetzt werden, und konstruieren aus diesen
maßgeschneiderten Baumautomaten.

Ein ausführlicherer Überblick über die behandelten Themen sowie die hier
vorgestellten neuen Forschungsergebnisse befindet sich in den Einführungen
zum ersten und zweiten Teil der Arbeit.
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Chapter 1

Introduction

The Extensible Markup Language (XML) [XML98a] is a specification released
by the W3C Consortium basically providing a syntax for sequentially repre-
senting hierarchically structured information. Rather than a language, XML is
a metalanguage as it allows the specification of (the syntax of) other languages,
hence the claim of extensibility in its name. A language defined according to
the XML standard is called an XML application or XML language.

As the information handled in various application domains has a hierarchi-
cal structure, XML syntax can be used to represent data in a very large num-
ber of fields. Indeed, since the publication of the standard in 1998, XML has
been used for representing information in innumerable areas. XHTML (lay-
outs for Web-pages [XHT02]), XSL:FO (printable pages [XSL01]), WML (mobile
telephones [WML01]), SVG (graphics [SVG03]), DBLP (bibliographic records
[DBL05]), MathML (mathematical formulas [Mat03]), VoiceXML (audio user
interfaces [Voi04]), SMIL (interactive audio-visual presentations [SMI98]),
WSDL (descriptions of interfaces of Web services [CCMW01]), RSS (news dis-
tribution [RSS03]), OpenOffice.org XML (office documents [Org02]), XMI (soft-
ware modeling [XMI03]), CML, PSD (chemistry [CML03, PSD]) and LegalXML
(collections of laws [Leg02]) are just a few of the better known XML languages1.

The spreading of XML is favored by the increased need of exchanging infor-
mation in a standardized way, such that communicating entities are coupled as
loosely as possible in order to achieve better interoperability. XML has become
almost indispensable as an exchange format between communicating applica-
tions.

Another major advantage of XML is that it makes possible the separation
of information content from information presentation. This is highly desir-
able when different presentations of the same content are needed, for instance
XHTML for presence on the Internet, and Printable Document Format (PDF)
for documents to be printed. Maintaining a separate document for each lay-
out is inconvenient, due to the overhead required to keep all copies consis-
tent whenever the informational content changes. Instead, one can maintain a
single document containing the information represented in an XML language
and one transformation program from the XML language to each desired lay-
out. Thereby, keeping a layout up to date simply requires the running of the
corresponding transformation program on the content whenever this changes.

1An extensive list of XML languages can be found at
http://www.oasis-open.org/cover/xml.html.
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Exploiting the advantages of using XML thus intrinsically requires the abil-
ity to transform XML documents, either to convert them from and to the ex-
change formats, or to produce a desired layout. As a basic task in XML appli-
cations, transforming XML data has an important contribution to their overall
performance. Therefore, care must be taken to implement transformations as
efficiently as possible. A concurrent desideratum is that transformations are
specified as intuitively as possible, especially if XML is to gain even more user
acceptance. As part of XML transforming, querying, i.e. locating parts of docu-
ments with some specified properties, is a fundamental task in XML processing
and should therefore follow the same desiderata.

The first part of the work is concerned with XML querying. Our contribu-
tions in particular are as follows.

A powerful method for specifying k-ary queries Most of the XML-queries
identify only individual locations in the XML input data. We introduce a
very expressive method which allows the specification of k-ary queries, that
is, queries retrieving k locations which are in a specified context. The method
is based on grammars, which are already applied in XML, but mainly only as
schema languages. We call these queries k-ary grammar queries.

Efficient implementation of binary queries We identify binary queries (ob-
tained for k = 2) as an important special case, particularly in view of their
use in transformations. We introduce a tree-automata based algorithm which
allows the efficient evaluation of binary grammar queries. The grammar for-
malism and its implementation are further extended to allow the specification
of queries using boolean connectives.

Query evaluation on XML streams Some XML documents may be very
large, which makes it prohibitively expensive to keep them completely in the
main memory while processing them. Also, there are increasingly many real-
life applications in which the document to be processed is received linearly via
some communication channel – as an XML stream –, rather than being com-
pletely available in advance. Special algorithms have to be developed to cope
with these constraints. We solve the problem of answering grammar queries
on XML streams by providing an algorithm which is very efficient in terms of
time and highly adaptive in terms of memory consumption.

Practical implementation in Fxgrep The viability of the algorithms and
ideas presented in this part has been demonstrated by implementing them
in the XML querying tool Fxgrep [NB05], which provides access to the pow-
erful grammar querying formalism via a more intuitive, and thus more user-
friendly, specification language.

This part is organized as follows. In Chapter 2 we introduce terminol-
ogy, definitions, notations and a classic automata construction which are used
throughout this work. Fxgrep is introduced in Chapter 3. The forest grammars
used for specifying queries, the languages specified by them, and their recog-
nition are presented in Chapter 4. Chapter 5 presents how forest grammars can
be used to specify k-ary queries and how these queries, in particular the binary
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ones, can be evaluated. Equipping grammar queries with boolean connectives
is addressed in Chapter 6. Answering queries on XML streams is presented
in Chapter 7. The next part then introduces an XML transformation language
based on the querying techniques introduced in this first part.
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Chapter 2

Preliminaries

Hierarchically structured information, such as XML documents, can be con-
ceptually represented as trees. XML processing is thus basically tree process-
ing. An even more basic task is string processing. Regular expressions are
an intuitive yet quite expressive way of specifying properties of strings. Fur-
thermore, they are at the basis of our more elaborated patterns to be located
in trees, as presented in the following chapters. Therefore, we start in Sec-
tion 2.1 with a presentation of regular expressions and the classic Berry-Sethi
automata construction checking the conformance to a specified regular expres-
sion. In Section 2.2 we then introduce trees and a couple of related definitions
and notations which will be used throughout the remainder of the work. In
Section 2.3 we briefly present the basic XML concepts, notations and terminol-
ogy and relate them to the usual tree terminology.

2.1 Regular Expressions
Let Σ be a finite set. We call Σ alphabet and its elements symbols. The number of
elements of Σ is denoted as |Σ|. The set Σ∗ of strings w over the alphabet Σ is
defined as follows:

w ∈ Σ∗ iff w = λ or w = aw1 with a ∈ Σ and w1 ∈ Σ∗

where λ is the empty string.
The set of regular expressions over the alphabet Σ denoted as RΣ is defined

as:
r ∈ RΣ iff r = /� , or

r = λ, or
r = a and a ∈ Σ, or
r = r1? and r1 ∈ RΣ, or
r = r1

∗ and r1 ∈ RΣ, or
r = r1r2 and r1, r2 ∈ RΣ, or
r = r1 r2 and r1, r2 ∈ RΣ.

Parentheses may be omitted, in which case the composition of a regular
expression is given by using the following operator precedence: ?, ∗, concate-
nation and , from the strongest to the weakest. The number of occurrences of
symbols from Σ in a regular expression r is denoted as |r|

Σ
.

7
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The language of a regular expression r ∈ RΣ is a set [[r]] ⊆ Σ∗ defined as
follows:

[[/� ]] = /�
[[λ]] = {λ}
[[a]] = {a}, for all a ∈ Σ
[[r?]] = {λ} ∪ [[r]]
[[r∗]] = {λ} ∪ {w1 . . . wn | n > 0, wi ∈ [[r]] for all 1 ≤ i ≤ n}
[[r1r2]] = {w1w2 | w1 ∈ [[r1]], w2 ∈ [[r2]]}
[[r1 r2]] = [[r1]] ∪ [[r2]]

A language is called a regular string language if it is the language of a regular
expression.

Finite Automata
The membership of a string to a regular string language can be tested by a finite
automaton. A finite automaton over an alphabet Σ is a tuple A = (Q, q0, F, δ)
consisting of a set of states Q, an initial state q0 ∈ Q, a set of final states F ⊆ Q
and a transition relation δ ⊆ Q × Σ × Q. The language LA accepted by the
automaton A is defined as follows:

λ ∈ LA iff q0 ∈ F
a1 . . . an ∈ LA iff there are q1, . . . , qn+1 ∈ Q such that q1 = q0 and

(qi, ai, qi+1) ∈ δ for all 1 ≤ i ≤ n.

If δ is a function, rather than a relation, A is called deterministic finite automa-
ton (DFA). Otherwise, A is called non-deterministic finite automaton (NFA).

The Berry-Sethi Construction
One method to construct an NFA accepting the language of a regular expres-
sion is the algorithm proposed by Berry and Sethi [BS86]. Given a regular
expression r this constructs an NFA, Berry(r) = (Q, q0, F, δ), accepting exactly
the language [[r]] as follows.

If r = λ then Berry(r) = ({q0}, q0, {q0}, /� ) where q0 is some arbitrarily cho-
sen state. If r = /� then Berry(r) = ({q0}, q0, /� , /� ) where q0 is some arbitrarily
chosen state.

Otherwise, a set P of positions p is generated s.t. |P| = |r|
Σ
. Further, a bijec-

tion f from the set of occurrences of symbols in r into P is defined. A regular
expression �r ∈ RP is constructed by replacing each occurrence o with f (o).
Then, for each subexpression �r1 of �r the following information is computed in
the given order.

1. Empty(�r1), denoting whether λ ∈ [[�r1]], given as follows:

Empty(p) = false
Empty(r1?) = true
Empty(r1

∗) = true
Empty(r1r2) = Empty(r1) and Empty(r2)
Empty(r1 r2) = Empty(r1) or Empty(r2)
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2. First(�r1), denoting the symbols with which strings from [[�r1]] may start:

First(p) = {p}
First(r1?) = First(r1)
First(r1

∗) = First(r1)
First(r1 r2) = First(r1) ∪ First(r2)

First(r1r2) = First(r1) ∪
{

First(r2), if Empty(r1)
/� , otherwise

3. Follow(�r1), denoting the symbols which can immediately follow after a
string w from [[�r1]] within a string from [[�r]] or $ (an auxiliary symbol) if w
might be a suffix of a string in [[�r]]:

If �r1 = �r then Follow(�r1) = {$}
If �r1 = r1? then Follow(r1) = Follow(�r1)
If �r1 = r1

∗ then Follow(r1) = Follow(�r1) ∪ First(r1)
If �r1 = r1 r2 then Follow(r1) = Follow(r2) = Follow(�r1)

If �r1 = r1r2 then
Follow(r2) = Follow(�r1)

Follow(r1) = First(r2) ∪
{

Follow(�r1), if Empty(r2)
/� , otherwise

Given the definitions above, Empty() and First() can be computed in a
bottom-up while Follow() can be computed in a top-down manner. Using
Empty(), First() and Follow(), the NFA is defined as follows. The set of states
is Q = {q0} ∪ P with some arbitrarily chosen start state q0 /∈ P. The set F of
final states is obtained as:

F =

{ {p ∈ P | $ ∈ Follow(p)} ∪ q0, if Empty(�r)
{p ∈ P | $ ∈ Follow(p)} , otherwise

Let sym be the inverse of function f , i.e. the mapping of each position p to the
symbol occurring at f−1(p). The transition relation is given by:

δ = {(q0, sym(p), p) | p ∈ First(�r)} ∪
{(p, sym(p1), p1) | p, p1 ∈ P, p1 ∈ Follow(p)}

Example 2.1: Consider the regular expression r = a∗(a b)b∗. We choose as
the set of positions P = {1, 2, 3, 4} and associate i with the i-th symbol occur-
rence, hence sym = {(1, a), (2, a), (3, b), (4, b)} and �r = 1∗(2 3)4∗. The syntax
tree of �r is depicted in Figure 2.1. The internal nodes of the tree denote the
subexpressions of �r. The Berry-Sethi construction proceeds as follows.

1. Empty(1) = Empty(2) = Empty(3) = Empty(4) = false
Empty(1∗) = Empty(4∗) = true
Empty(2 3) = false
Empty(1∗(2 3)) = false
Empty(1∗(2 3)4∗) = false
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Figure 2.1: Syntax tree of the regular expression 1∗(2 3)4∗
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Figure 2.2: NFA obtained by the Berry-Sethi construction for a∗(a b)b∗

2. First(i) = {i} for all 1 ≤ i ≤ 4
First(1∗) = {1}, First(4∗) = {4}
First(2 3) = {2, 3}
First(1∗(2 3)) = {1, 2, 3}
First(1∗(2 3)4∗) = {1, 2, 3}

3. Follow(1∗(2 3)4∗) = {$}
Follow(1∗(2 3)) = {4, $}, Follow(4∗) = {$}
Follow(4) = {4, $}
Follow(1∗) = {2, 3}, Follow(2 3) = {4, $}
Follow(1) = {1, 2, 3}, Follow(2) = {4, $}, Follow(3) = {4, $}

By choosing q0 = 0 it follows that Q = {0, 1, 2, 3, 4}, F = {2, 3, 4} and δ =
{(0, a, 1), (0, a, 2), (0, b, 3), (1, a, 1), (1, a, 2), (1, b, 3), (2, b, 4), (3, b, 4), (4, b, 4)}.
The obtained NFA is depicted in Figure 2.2, where the initial state is marked
by the • symbol and final states are depicted in gray. �

An NFA obtained by the Berry-Sethi construction has the important prop-
erty that all transitions coming into the same state are labeled by the same
symbol. We denote the label of the incoming transitions into an NFA state y by
in(y).

2.2 Trees and Forests
Let Σ be a set that we call alphabet. The sets TΣ of trees t and FΣ of forests f over
Σ is defined as follows:
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t ∈ TΣ iff t = a〈 f 〉 with a ∈ Σ and f ∈ FΣ
f ∈ FΣ iff f = ε or f = t f1 with t ∈ TΣ and f1 ∈ FΣ

where ε denotes the empty forest. Given t = a〈 f 〉, the symbol a denotes the label
and f the children of t. To denote the label of t we also write lab(t) = a.

A tree a〈ε〉 is called a leaf and may be denoted by a〈〉 or simply by a. Also,
rather than tε or εt, we write t. The notation t can be thus interpreted both as a
tree or a forest consisting of exactly one tree. Both interpretations are valid in
most usage contexts. We will explicitly note the intended interpretation when
the distinction is relevant and if it is not obvious from the context.

Let t = a〈t1 . . . tn〉. The trees ti are the children of t, while t is the father of all
ti trees for 1 ≤ i ≤ n. Two trees ti and t j with 1 ≤ i, j ≤ n and i 6= j are called
siblings. If i < j then ti is a left sibling of t j and t j is a right sibling of ti.

Note that, as required by the XML format, our trees are unranked, that is the
sequence f of children of a tree a〈 f 〉 may have an arbitrary length. We could
have used as well a ranked representation like in the traditional tree theory, as
each tree or forest can be reversibly encoded into a unique ranked tree (see for
example [Neu00]). Working with the encoded representations however com-
plicates both the operations on trees and forest and the intuitions behind them,
hence we preferred the straightforward unranked representation. Also note
that the trees defines above are ordered, i.e. the order of the children is relevant.

Nodes, Paths and Locations
Any subtree t of a forest f is uniquely identified by a node. A node is a string
of natural numbers, denoting the path leading to t, formally defined as follows.
The set Π( f ) ⊆ N∗ contains all paths π in f and is defined as follows:

Π(ε) = {λ}
Π(t1. . . tn) = {λ} ∪ {iπ | 1 ≤ i ≤ n, π ∈ Π( fi) for ti = ai〈 fi〉}

whereN∗ is the set of strings over the alphabet of positive natural numbers and
λ denotes the empty string.

The nodes of a forest f are elements of the set N( f ) = Π( f ) \ {λ}. For
π ∈ N( f ), f [π ] is called the subtree of f located at π and is defined as follows:

(t1. . . tn)[iπ ] =

{
ti , if π = λ

fi[π ], if π 6= λ and ti = a〈 fi〉

For a node π , we define last f (π) as the number of children of π :

last f (π) = max({n | πn ∈ N( f )} ∪ {0})

with last f (π) = 0 iff π identifies a leaf.
Note that a path always locates a tree in a forest, not in a tree. Given a tree

t, t[π ] denotes the tree located by π in the forest which consists of t only. One
can see by definition that in this case π always begins with the symbol 1. In
particular, one can use the subtree t = f [π1] located by a path π1 in a forest f
to further locate a subtree of t. In this case we have that f [π1][1π2] = f [π1π2].

The document order is defined as the lexicographic order of the nodes of a
forest f . Note that this is precisely the order in which the nodes are visited
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Figure 2.3: Locations in a tree

during a left-to-right depth-first search (DFS) traversal of f . Sometimes we
need to precisely identify the locations reached during a DFS traversal of a
forest. To this aim we define the set L( f ) ⊆ N∗ of locations in a forest f as:

L(ε) = {1}
L(t1. . . tn) = {i | 1 ≤ i ≤ n + 1} ∪

{il | 1 ≤ i ≤ n, l ∈ L( fi) for ti = ai〈 fi〉}

Figure 2.3 depicts these locations in a sample tree. The location at which the
root of a subtree is reached (depicted to its left) equals the node at which the
subtree is located.

2.3 XML Basics
This section is only meant to briefly introduce the essential XML constructs
and to relate the XML terminology to the tree terminology. For a thorough
introduction to XML we refer to the books dedicated to this subject, such as to
[Har01].

Basically, an XML document is a serial representation of an ordered, un-
ranked, labeled tree. The XML representation of a tree a〈 f 〉 is an XML element
given as serialize(a〈 f 〉), where:

serialize(a〈 f 〉) ::= <a>serialize( f )</a>
serialize(t1 . . . tn) ::= serialize(t1) . . . serialize(tn)
serialize(ε) ::= λ

For example, a〈b〈c〉d〉 can be denoted in XML as
<a><b><c></c></b><d></d></a> or using (irrelevant) white spaces for en-
hanced readability:

XML Example 1

<a>
<b>

<c></c>
</b>
<d></d>

</a>

Consider a tree a〈 f 〉 and the corresponding XML element
<a>serialize( f ) </a>. The XML terminology denominates the symbol a
tag or element name, <a> start tag, </a> end tag and serialize( f ) element content.
An element with empty content <a></a> is called empty element and might be
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as well denoted as <a/>. The element corresponding to the root of the top-level
tree is the root element.

Additionally, XML elements can be provided with named properties via
attributes. An attribute is a pair consisting of an attribute name and an attribute
value given as arbitrary sequences of symbols. Attributes are specified along
with the start tag of the element, after the tag name, as the attribute name
followed by the “=” sign followed by the attribute value enclosed in single or
double quotes, as for example in:

XML Example 2

< c i r c l e radius = ’ 2 5 ’ x = " 4 0 " y = ’ 6 0 ’ c o l o r = ’ green ’/>

Note that attributes do not add to the expressiveness of XML as they could also
be represented by using dedicated element names, as for example:

XML Example 3

< c i r c l e >
< a t t r i b u t e s >

<name>radius </name><val >25</val >
<name>x</name><val >40</ val >
<name>y</name><val >60</ val >
<name>color </name><val >green</val >

</ c i r c l e >

Besides other elements, text and processing instruction nodes may occur any-
where within an element. A text node consists of a sequence of symbols which
occur within the enclosing element. A processing instruction is intended to
provide an instruction to some target processor of the XML representation and
has the form <?target attributes?>. The attributes are as for elements and
are to be interpreted by the target processor. Processing instructions are also
allowed to occur before and after the root element. Therefore, an XML docu-
ment is a forest rather than a tree as the root element might be preceded and
followed by processing instruction nodes.

For example an XSL-enabled browser uses the processing instruction at the
beginning of the following XML document:

XML Example 4

<?xml−s t y l e s h e e t type =" t e x t / x s l " hre f =" program2html . x s l "? >
<Program>

<Output>Hello World! < newline/>Und Tschüs !</Output>
</Program>

to retrieve the stylesheet program2html.xsl and apply it to the document in
order to obtain its Web presentation.

Similarly to attributes, processing instructions do not actually add to ex-
pressiveness, as their information can be provided via elements with a dedi-
cated name.

An element like Output in XML Example 4 which encompasses both ele-
ment and text nodes is said to have mixed content, while an element with only
text nodes is said to have text content.

The symbols occurring in an XML document, in tags, attribute names and
values, text nodes and processing instructions can be basically any Unicode
[Con03] characters. Unicode is a character set containing virtually all symbols
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from any known alphabets used in any written language. The first version of
the XML standard, 1.0 adhered to the 2.0 [Con96] version of the Unicode stan-
dard. The Unicode continuously evolves as new characters are added to the
character set. To account for these changes a new version of the XML standard,
1.1 [XML04], was recently released. Also, to achieve a looser coupling between
the two standards, XML 1.1 follows a strategy in which the names occurring
in the different XML constructs are allowed to contain any Unicode characters
except those which are explicitly forbidden, accounting thus for future evolu-
tions of the Unicode character set.

Unicode characters can be electronically represented using different encod-
ings. By default, an XML processor assumes that the encoding used is UTF-8, a
variable length encoding which uses one byte for the usual Western characters
and includes ASCII as a subset. If a different encoding is used, then this must
be explicitly declared. The version of the XML standard to which a document
adheres, as well as the encoding of the document, can be declared via the so-
called XML declaration. The XML declaration is a special processing instruction
which must occur at the very beginning of the document and might look like:

XML Example 5

<?xml vers ion = " 1 . 0 " encoding ="ISO−8859−1"?>

XML Languages
The XML specification includes a method for specifying structural constraints
for XML documents. The set of documents adhering to a set of given con-
straints is called an XML language. An XML language is defined using a docu-
ment type definition (DTD). An XML document can be declared as belonging to
an XML language by providing it with a document type declaration. The docu-
ment type declaration indicates the root element and either directly provides
the DTD, in which case the DTD is called internal, or it provides a reference to
an external location where the DTD is to be found as for example in:

XML Example 6

<!DOCTYPE dblp SYSTEM " dblp . dtd">

saying that the DTD is given in the file named dblp.dtd.
An XML document which conforms to its declared DTD is called valid.

Checking validity of XML documents is achieved by XML validating parsers.
Checking the validity of XML is very important for applications which rely on
a specific format for their XML input, especially if the source of the input is not
controllable, as it is often the case in highly dynamic settings.

A DTD consists of declarations restricting the content of the elements oc-
curring in XML documents conforming to the DTD. The content of an element
might be restricted depending on the element’s name. One can either spec-
ify that an element should have only text content, or mixed content, or give a
content-model for it. A content model specified in a DTD is a regular expression
over element names which has to be fulfilled by the string of element names of
the enclosed elements. For example:
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XML Example 7

<ELEMENT ulist (item+)>

specifies that an element named ulist must consist of one or more item ele-
ments. Furthermore one can specify which are the attributes that an element
might have and whether they are required, optional, or that they have some
fixed value.

Even though DTDs are the only means of specifying XML languages an-
chored in the XML specification, they are just one way of doing so. The lan-
guages used to specify XML languages are called XML schema languages, as
they specify a schema to which the XML documents belonging to the XML lan-
guage must conform. The structural constraints expressible with the proposed
schema languages are in general more precise than those allowed by DTDs,
and are basically subsumed by the capabilities of forest grammars, which will
be introduced in Section 4.1.1. A comparison of forest grammars and the most
frequently used schema languages is presented in Section 4.1.3.
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Chapter 3

A Primer for Fxgrep

An important design purpose of tools which are to be used by people with
various backgrounds, as in the case of XML query languages, is that they are as
intuitive and easy to learn as possible. The small number of constructs needed
to build complex regular expressions makes them a simple yet powerful way of
specifying patterns of symbols. Consequently, they have been intensively used
already for searching in flat (i.e. not hierarchically structured) documents.

The classic regular expressions can be used also to search for string pat-
terns in hierarchically structured documents, yet they are not able to exploit
the supplementary structure information in order to provide more precise pat-
terns to be recognized. To account for this, the XML query language Fxgrep
[NB05]1 was designed to extend the convenience of using regular expressions
from strings to trees. This section is intended to be a primer on Fxgrep , as
the language which constituted the motivation of the research presented in the
remainder of this part of the work.

Fxgrep receives as input a query and an XML input document and responds
with the locations in the XML input identified by the query. Queries can be
concisely specified via patterns, the construction of which is introduced in the
rest of this chapter. Fxgrep can be invoked from the command line or via a
graphical user interface as depicted in Figure 3.1.

3.1 Paths
A quite familiar representative of hierarchically structured information is a file
system, in which directories and files are organized in a tree structure. In this
context, a query is simply a file name denoting the path to be followed to a file
or directory of interest. It is thus sensible to use paths as a syntactical basis for
a query language for XML documents, as XPath [XPa99, XPa05] does, the most
prominent XML query language yet. Fxgrep builds upon the same analogy
and is correspondingly syntactically similar to XPath.

G Completely analogously to a file name, the pattern /a/b/c returns XML
elements labeled c which are children of b elements contained in the root
element a.

1Fxgrep is an acronym for “the functional XML grep”, where “functional” denotes that Fxgrep
is written in a functional programming language (SML) and “grep” is an allusion to the Unix string
search tool grep [Fou05].

17
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Figure 3.1: Fxgrep Graphical User Interface

As opposed to file names, patterns may identify more then one node in the
input tree. Also, paths do not need to be completely specified. The deep-match
construct “//” may be used to denote an arbitrary number of steps in a path.

G The pattern /a/b//c returns XML elements labeled c which are descen-
dants of b elements contained in the root element a.

Besides by their name, the element names in a path may be specified as
regular expressions. The regular expression is to be fulfilled by the referred
element names and must be single or double quoted and enclosed between the
“<” and “>” symbols, as in the case of an XML element tag.

G The pattern //<’(sub)*section’> locates all sections, subsections and
subsubsections elements in the input.

The last step in a path may not only be an element name, but could also be
a regular expression specifying a model for a text node.

G The pattern //section/title/"automat(a|on)" locates the titles of
sections containing the words "automata" or "automaton".

3.1.1 Regular Path Expressions
Regular path expressions are known in the literature as regular expressions to
be satisfied by the string of node labels on the path from the root to the node
of interest. Fxgrep provides regular path expressions.

G The pattern (king/)+ person stands for king/king/.../king/person
and identifies person nodes which have only king ancestors.
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As we will see in Section 3.2, nodes occurring in Fxgrep patterns can be
specified much more precisely as only by their label, by further qualifying them
with structural and contextual constraints. By using qualifiers in regular path
expressions one significantly exceeds the expressiveness of the ordinary regu-
lar path expressions.

3.1.2 Boolean Connectives for Paths
Conjunctions

To specify that the path to a match should simultaneously fulfill several path
models, these can be connected via the “&” symbol.

G The pattern ((//king//)&(//count/duke//)) person locates person el-
ements that have both an ancestor king and an ancestor duke whose fa-
ther node is an element count, as specified by the conjunction of the two
connected (incomplete) path patterns //king// and //count/duke//, re-
spectively.

Disjunctions

One can choose between several alternative paths to the match node by con-
necting them via the “||” operator.

G The pattern //((king//)||(count/duke//)) person locates person ele-
ments that have either an an ancestor king or an ancestor duke whose
father node is an element count.

Negations

To specify that the path to a match must not satisfy a path pattern, this must be
preceded by the “!” symbol.

G The pattern !(//king/king//)person locates persons who do not have
two consecutive king ancestors.

3.2 Qualifiers
Nodes in paths can be qualified with both structural and contextual con-
straints. The structural constraints talk about the content of a node, while the
contextual constraints are concerned with the surroundings of the node.

3.2.1 Structure Qualifiers
Similarly to XPath, nodes occurring in a pattern can be specified more precisely
than by their name by indicating a supplementary condition to be fulfilled by a
node provided within brackets following the node. Unlike in XPath, an Fxgrep
qualifier is a regular expression to be fulfilled by the children of the subject
node, as follows. Rather than a string regular expression, a qualifier is a reg-
ular expression over patterns. The children of a node fulfill a pattern regular
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expression if there is a contiguous sequence of them and an equally long se-
quence of patterns fulfilling the pattern regular expression, and every pattern
in the sequence leads to at least one match when evaluated on the correspond-
ing child. The following examples should clarify the idea.

G The pattern //section[(subsection)+ conclusion]/title locates
titles of section elements. The qualifier of the section element in the
path requires that the sought sections have one or more subsections
(each of them fulfilling the simple pattern subsection) followed by a
conclusion element (fulfilling the simple pattern conclusion).

G The pattern //section[(subsection/title/"part")+
conclusion]/title locates titles of sections having one or more
subsections, the title of which contains the substring "part" (each of
them fulfilling the pattern subsection/title/"part" ), followed by a
conclusion element.

Note that any node in a pattern can be qualified, in particular also the nodes
occurring in qualifiers.

G The pattern //section[(subsection[(theorem
proof)+]/title/"part")+ conclusion]/title locates the titles of
sections as in the previous example, but supplementary requires that
the subsections contain a non-empty sequence of theorems followed by
proofs.

Start and end markers

The symbols “ˆ” and “$” can be used to denote the start and the end of a
sequence to be matched by a regular expression, both for string and pattern
regular expressions.

G The pattern //section[^intro] locates sections whose first child is an
intro element. Compare with //section[intro] which locates sections
which have some intro child element.

G The pattern //section[^(theorem proof)+$] locates sections consisting
exclusively of theorems followed by proofs. Compare with the pattern
//section[(theorem proof)+] which locates sections containing a se-
quence of theorems followed by proofs.

Attribute qualifiers

A special form of qualifiers are attribute qualifiers by which one can require
that an element has an attribute with a specified name and possibly a specified
value. An attribute qualifier consists of the symbol “@” followed by the spec-
ification of an attribute name and possibly succeeded by the symbol “=” and
the specification of the attribute value. The name as well as the value of the
attribute can be specified using regular expressions.

G The pattern subsection[@title="Results"] identifies subsections hav-
ing an attribute title with value "Results".
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Wildcards

Often, one needs only to talk about the existence of a node or a sequence of
nodes, without further specifying the appearance of the nodes. To denote an
arbitrary node or an arbitrary sequence of nodes one can use the symbols “.”
and “_”, respectively.

G The pattern //././section locates sections having at least two ancestors.

G The pattern //.[theorem _ proof] locates elements which contain a
theorem, followed by an arbitrary sequence of nodes, followed by a
proof.

Boolean connectives for structure qualifiers

Conjunctions A node can have more than one qualifier, each of them being
supplied in square brackets following the node. If a node has more than one
qualifier than it must fulfill all the conditions defined by them.

G The pattern

//section[(title/"soups")][(subsection/title/"tomatoes")]

identifies sections having the word "soups" in the title and a subsection
whose title contains the word "tomatoes".

Negations Sometimes it is easier to specify what is disallowed, rather than
what model is allowed for a node. A qualifier preceded by the symbol “!”
specifies a condition which must not be fulfilled by the subject node.

G The pattern //section[!conclusion subsection] identifies sections
that do not have a conclusion before a subsection element.

3.2.2 Context Qualifiers
Besides constraints on children, it is possible to specify constraints on siblings
of a node, provided the node’s father is explicitly denoted in a path. To do so,
one specifies two pattern regular expressions l and r which are to be satisfied
by the node’s left and right siblings, respectively. Such a constraint is called
a context qualifier and is given between brackets following the node’s father in
the form [l#r]. The symbol “#” denotes the subject node, which is the sub-
tree where the path continues. The idea should become clear in the following
examples.

G The pattern //section[definition # theorem]/example locates the
examples directly under a section element if they are enclosed between
a definition and a theorem. The symbol “#” denotes the child of the
section element where the path continues, in this case the example el-
ement.

G The pattern //section[definition # theorem]//example locates the
example elements located arbitrarily deep in a section under an element
enclosed by a definition and a theorem. The symbol “#” denotes the child
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of the section element where the path continues, in this case the child el-
ement of the section which has a descendant example.

G The pattern //section[#$]/subsection locates the subsections which
are the last element in their section.

3.3 Binary Patterns
Rather than locating individual nodes in the input, we are sometimes inter-
ested in identifying tuples of nodes which are in some specified relationship.
A particularly useful case is locating pair of nodes from some specified binary
relation.

For example, rather than locating person elements which have some ances-
tor king we might be interested in having both the person and the correspond-
ing king ancestors reported. To specify a binary relation in Fxgrep one must
write a (unary) pattern as presented before, in which both elements of the rela-
tion are explicitly denoted. The first element of the relation has to be the target
node in the pattern (the last node in the top level path). Specifying the second
element of the relation is as easy as placing the special symbol, “%”, in front
of the node denoting the second element of the relation. This should be better
understood by looking at the following examples.

G The pattern to locate person elements which have some ancestor king
is //king//person. To have reported both the person and her king an-
cestors we place “%” in front of the king node in the pattern The binary
pattern for the above query is thus //%king//person.

G The following unary pattern identifies all book titles whose author’s
names end in “escu”: //book[(author/"escu$")]/title. Suppose we
want to identify the titles as above, but together with the authors of the
books with these titles. The binary query which simultaneously reports
the authors having names ending in “escu” and the titles of their books
is //book[(%author/"escu$")]/title.

Strictly speaking, a match of a binary pattern is a pair. The first node in the
pair is called primary match. The second node in the pair is a node related to the
first node as specified by the “%” symbol and is called secondary match. In prac-
tice, however, rather than reporting each primary and secondary match sepa-
rately, if there are more secondary matches related to a same primary match,
they are reported at once together with the primary match.

Consider for example the XML input file library.xml:

XML Example 8

< l i b r a r y >
<book>

<author >Mihai Eminescu</author >
<author >Ion Ionescu </author >
< t i t l e >Fă t Frumos din t e i </ t i t l e >

</book>
<book>

<author >Oscar Wilde</author >
< t i t l e >A woman of no importance </ t i t l e >
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<price >10</ price >
</book>

</ l i b r a r y >

Evaluating the pattern //book[(%author/"escu$")]/title on library.xml
produces:

XML Example 9

<match>
<primary >

<pos i t ion >[ l i b r a r y . xml : 5 . 5 ] < / pos i t ion >
<node>< t i t l e >Fă t Frumos din t e i </ t i t l e ></node>

</primary >
<secondary >

<pos i t ion >[ l i b r a r y . xml : 3 . 5 ] < / pos i t ion >
<node><author >Mihai Eminescu</author ></node>

</secondary >
<secondary >

<pos i t ion >[ l i b r a r y . xml : 4 . 5 ] < / pos i t ion >
<node><author >Ion Ionescu </author ></node>

</secondary >
</match>

It is possible to locate a primary match together with more than one set of
related nodes. Each set of related nodes is specified by a “%” symbol preced-
ing the corresponding node in the pattern. The sets of secondary matches are
in this case reported together with a number denoting to which set of related
nodes a match node belongs, as the ordinal number of the corresponding oc-
currence of the “%” symbol in the pattern, given as the value of an ord attribute.

For example evaluating the pattern:

//book[(%price)?][(%author)]/title["importance"]

on library.xml delivers the title of books containing the word "importance"
together with the optional price, followed by the author of the book:

XML Example 10

<match>
<primary >

<pos i t ion >[ l i b r a r y . xml : 9 . 5 ] < / pos i t ion >
<node>< t i t l e >A woman of no importance </ t i t l e ></node>

</primary >
<secondary ord ="1" >

<pos i t ion >[ l i b r a r y . xml :10 .5 ] </ pos i t ion >
<node><price >10</ price ></node>

</secondary >
<secondary ord ="2" >

<pos i t ion >[ l i b r a r y . xml : 8 . 5 ] < / pos i t ion >
<node><author >Oscar Wilde</author ></node>

</secondary >
</match>

3.4 Comparison with XPath
XPath has established itself since its standardization by the W3C Consortium
as the most prominent XML query language. It is used both standalone or as
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part of other important languages like the XML Schema Language [XML01],
XSLT [XSL99, XSL03] or XQuery [XQu05a]. As mentioned, Fxgrep shares with
XPath the idea of using paths as a framework for expressing queries. In spite
of these syntactic similarities, the two query languages are quite different as
we present next.

3.4.1 XPath’s Paths
Like Fxgrep, XPath is conceptually based on an analogy of locating sub-
documents in a document with locating files in a directory tree. Nodes can
be thus addressed by specifying the path from the root to them. The pattern
/book/sec/title, as in the case of Fxgrep, locates the title elements, the fa-
ther of which is a sec element whose father is the root element labeled book.

Fxgrep and XPath have quite different semantic models. XPath is defined in
terms of an operational model. An XPath pattern specifies a number of succes-
sive selection steps. Each such step selects in turn nodes which find themselves
in a specified tree relationship (called axis in XPath terminology) with a node
selected by the previous step (the context node). Initially, the set of selected
nodes contains only the root of the input.

The axes can be divided into forward and reverse axes, depending on whether
they select nodes which are after or before the context node in document
order. The forward axes are self, child, descendant, descendant-or-self,
following and following-sibling. The reverse axes are parent, ancestor,
ancestor-or-self, preceding and preceding-sibling.

The slash symbols in a pattern are thus to be seen as delimiters be-
tween the selection steps. Besides specifying a tree relationship, each se-
lection step further specifies a so-called node test, i.e., the type of node
to be selected (e.g., text node, processing instruction node, element with
a specified name). This can be seen as a predicate required to filter the
set of selected nodes. Thus, in general, a selection step has the form
treeRelationshipName::nodeTest. For example /book/sec/title is an abbre-
viation for /child::book/child::sec/child::title.

Example 3.1: Consider the XPath pattern:

/child::book/descendant::sec/parent::node()/child::text()

According to the processing model of XPath this pattern is evaluated on a given
input as follows. In the first step, child::book selects all the children of the
root (i.e. the top-level processing instructions and the root element) and re-
tains from them the element nodes named book (i.e. the root element if it has
type book). Then, descendant::sec selects all the descendants of the book root
element and retains the element descendants named sec. Next, the fathers of
these sec elements are selected and retained whatever node type they have. Fi-
nally, the children of these father nodes are selected and those being text nodes
are identified by the pattern. In the alternative, abbreviated syntax provided by
XPath, the name of the child axis can be omitted, “//” stands for descendant
and “..” for parent. Hereby, the pattern presented can be also expressed as:
/book//sec/../text(). �

The presence of both forward and reverse axes allows the location steps to
arbitrarily navigate in the input. Arbitrary navigation in the input in particular
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might prevent efficient stream-based implementations as it requires the input
tree to be built up in memory. In [OMFB02] a set of equivalences are defined
which can be used to transform absolute XPath patterns (i.e. whose initial con-
text node for the evaluation is the root node) into equivalent patterns without
reverse axes. In general however, XPath patterns are interpreted relative to
other nodes selected from the input. In particular, this is the case for XPath
select patterns that are used in XSLT and XQuery.

3.4.2 XPath’s Qualifiers
Besides by node tests, the set of nodes selected in an XPath step can be fur-
ther filtered by specifying a set of predicates. The predicates are given between
square brackets following the node test. A predicate can be an arbitrary XPath
expression. The predicate is evaluated for each of the nodes in the set and only
those nodes for which it returns true are retained. In particular, predicates can
be as follows.

Arithmetic expressions

An XPath qualifier can be an arbitrary arithmetic expression. The qualifier is
fulfilled if the node to be filtered is on the position specified by the expression
in the input document, when considered in document order on the set of nodes
selected by the current step. One simple use case is counting or indexing of
matches.

G The XPath pattern //book[42] locates the 42nd book node in the input, in
document order.

Patterns

An XPath pattern occurring in a predicate denotes for each node in the set of
nodes to be filtered, the set of nodes obtained by evaluating the pattern in that
node’s context. Such a predicate expresses a form of existential quantification
as presented below.

• Static data value comparisons: If an XPath pattern occurs in a predicate
in a comparison with some simple value, then the predicate is true if the
denoted set of nodes contains at least one node with that value. We call
this kind of comparisons static data value comparisons as one term of the
comparison is known statically, before the input is read.

G The XPath pattern book[author="Kafka"] identifies book nodes
having an author child, the text value of which is "Kafka".

• Dynamic data value comparisons: If the predicate consists of a compari-
son of two XPath patterns, then the predicate is evaluated to true if there
exists a node in the set denoted by the first pattern and a node in the
set denoted by the second pattern such that the result of performing the
comparison on the string-values of the two nodes is true. We call this
kind of comparisons dynamic data value comparisons as both terms in the
comparison are only known when the XML input document is read.
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G The XPath pattern //book[author=title] locates the books whose
proud authors have chosen as title their own names.

• Stand alone patterns: If the predicate consists only of an XPath pattern,
the pattern is evaluated in the context of each node in the set of nodes to
be filtered. A node from the set of nodes to be filtered is retained if the
set of nodes obtained by evaluating the XPath pattern given as predicate
in its context is not empty.

G The XPath pattern //sec[subsec] identifies sec elements that have
one or more subsec children. The pattern //sec[subsec/theorem]
selects the sec elements having a subsec child which has a theorem
child.

3.4.3 Differences in Expressiveness
XPath is not directly comparable with Fxgrep, that is, there are queries ex-
pressible by Fxgrep but not expressible by XPath, and also queries expressible
by XPath but not expressible by Fxgrep.

Fxgrep cannot express the non-regular features of XPath, mainly: (1) index-
ing and counting of matches as possible in XPath via arithmetic expressions as
qualifiers, and (2) dynamic data value comparisons.

On the other side, XPath is not able to express most of the regular features of
Fxgrep. In XPath, structure qualifiers for a node may only contain one pattern,
being thus only able to refer to one child of the node, as opposed to Fxgrep
where a structure qualifier may impose a regular condition on a sequence of
children.

Regular structural and contextual conditions are in general not expressible
in XPath even though some simple regular conditions can be expressed by us-
ing, for example, counting of matches.

G The Fxgrep pattern //sec[^subsec*$], locating sec elements whose
children are all subsec elements, could be expressed in XPath as
//sec[count(subsec)=count(*)], where the qualifier requires that the
number of subsec children equals the number of all children.

Expressing simple contextual conditions on nodes is possible by using the
explicit navigation allowed in XPath and the fact that a step in a path might
navigate in arbitrary directions in the input document (e.g. by navigating to
the node’s left or right siblings and imposing some constraints on them). The
explicit navigation however makes the specification more difficult and error-
prone.

G Locating theorem elements which are preceded by a lemma and fol-
lowed by a corollary element, achieved in Fxgrep by using the pattern
//.[lemma#corollary]/theorem, can be performed in XPath by the pat-
tern //theorem[name(preceding-sibling::*[1])="lemma"]

[name(following-sibling::*[1])="corollary"]

Regular contextual conditions are also in general not expressible even
though some simple regular conditions can be expressed in a rather cumber-
some manner by using counting of matches.
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G The Fxgrep pattern //b[^c*#d*$]/a, locating a elements, the father
of which is a b element, and the left and right siblings of which
are all c and d elements, respectively, can be expressed in XPath as:
//b/a[count(preceding-sibling::*)=count(preceding-sibling::c)]

[count(following-sibling::*)=count(following-sibling::d)]

The examples evidence one fundamental conceptual difference between the
two pattern languages. Fxgrep patterns specify properties of the nodes to be
identified in a declarative way. In contrast, XPath patterns adhere to a rather
operational style of specification, which basically consists of a succession of nav-
igation steps.

Furthermore, no regular path expressions can be expressed in XPath. The
only kind of deep-matching allowed by XPath is “//” (arbitrary descendant).
Also, XPath can only locate individual nodes in the input as opposed to the
binary patterns of Fxgrep.

3.5 Bibliographic Notes
The research interest in developing query languages for hierarchically struc-
tured data has been very vivid since the introduction of XML. Technically
speaking, many approaches to querying have been proposed, using different
formalisms, for example logic-, automata- or grammar-based, as it will pre-
sented in Section 5.6. Nevertheless, most of these formalisms are too complex
to be directly usable by non-specialist users. Instead, given the spreading of
XML in different application domains, an XML query language has to be con-
cise and easy to learn by providing a small number of constructs, while being
able to fulfill the various domain-specific requirements. We refer to such a
language as a pattern-language as opposed to more sophisticated, yet for the
non-specialist less understandable languages. Typically, the XML query tools
would provide a pattern language and automatically translate the patterns into
the internally used querying setting, as Fxgrep does.

Most of the proposals made are targeted at the XPath pattern language,
which became the de facto industry standard XML query language. Many of
them are generally able to implement different subsets of XPath. Most of them
are subsumed by an XPath fragment called Core XPath [GKP03], mainly featur-
ing location paths and predicates using location paths but not arithmetics and
data value comparisons. Some of the research works extend XPath with simple
regular path expressions [FS98, AF00, DFFT02, DF03, GMOS03].

Even though formalisms for expressing queries similarly powerful with the
grammar formalism underlying Fxgrep exist (see Section 5.6), to the best of our
knowledge, no other pattern language has been provided which allows one to
express in a concise and declarative way the regular and contextual constraints
as in the pattern language of Fxgrep.

The pattern language of Fxgrep was originally designed by Neumann and
Seidl [Neu00] and contained simple paths with deep matching, structure qual-
ifiers with boolean conectives and context qualifiers as presented above. We
extended the Fxgrep pattern language in order to test the practical suitability
of the concepts presented in this work by regular path expressions, regular ex-
pressions for element and attribute names, boolean connectives for paths as
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well as the possibility of expressing binary queries.
The task of searching tree-structured documents was present long before

the arrival of XML in application-domains such as linguistics. Linguistic
queries are typically performed on collections of natural language texts man-
ually annotated with syntactical information, called corpora. The corpora are
conceptually labeled trees, similar to XML documents, and can also be encoded
in some XML format. The linguistic queries typically identify syntactical con-
structs by specifying tree relationships, similarly to XPath, or for this matter
Fxgrep.

One of the most popular query-tools for linguistic corpora are tgrep [Pit96],
published as early as 1992, long before the appearance of XPath, and its suc-
cessor tgrep2 [Roh04]. tgrep patterns are build together from dominance and
precedence relationships among nodes, being thus similar to XPath, but using
a different syntax. Finding matches of patterns requires a pre-processing phase
in which the corpus to be searched is annotated with index information. Like
other proposed linguistic query languages, tgrep is tied to the specific data for-
mat of the searched document and cannot be used for general tree-structured
documents.

A natural choice is to represent linguistic data in XML and use general-
purpose XML query languages like XPath or Fxgrep to search for linguistic
patterns. XPath lacks however some features needed for linguistic queries,
where not only vertical but also precise horizontal relationships among nodes
need to be specified. For example, linguistic queries often need to refer to im-
mediately following nodes [BCD+05], i.e. nodes on the path from the following
sibling to its leftmost descendant. One solution to this problem is extending
XPath with more axes for horizontal navigation derived from a basic immedi-
ately following axis, as in LPath [BCD+05]. The immediately-following relation-
ship can be easily expressed in the underlying grammar formalism of Fxgrep.
Given its ability to specify accurate horizontal and vertical constraints , Fxgrep
is suitable for application domains like linguistics where such precise contex-
tual specifications are needed.



Chapter 4

Regular Forest Languages

Specifying and checking conformance of XML documents to a schema, i.e. their
membership to an XML language, is a very important task for XML process-
ing. The XML specification [XML98a] introduced document type definitions
as a basic schema language. Since then, more powerful schema languages
have been defined, which allow a more precise specification of XML languages.
Among the better known are XML Schema Language [XML01], DSD [KMS00]
and RelaxNG [OAS01].

The main purpose of schema languages is to specify the structure of the
documents conforming to the defined XML language. The structural prop-
erties of XML languages specifiable using the various proposed schema lan-
guages are essentially captured by regular forest languages. That is, XML lan-
guages are essentially regular forest languages. Correspondingly, checking
conformance to a schema basically means testing membership in a regular for-
est language.

Since the structural conditions expressible with regular forest languages are
at the basis of Fxgrep, in this chapter we briefly review how these can be spec-
ified, in Section 4.1, and recognized, in Section 4.2.

4.1 Specifying Regular Forest Languages
Regular forest languages constitute a very expressive and theoretically robust
formalism for specifying properties of forests. One way of specifying regu-
lar forest languages is by using forest grammars. In fact, the proposed XML
schema languages essentially specify more or less restricted forms of forest
grammars. The relation between forest grammars and XML schema languages
is discussed in Section 4.1.3. The reason why forest grammars are chosen
among the other possibilities for specifying regular forest languages is that,
in our opinion, they are more comprehensible than the other formalisms.

4.1.1 Forest Grammars
A forest grammar is a tuple G = (Σ, X, R, r0), where Σ and X are alphabets of
terminal and non-terminal symbols, respectively, R ⊆ X × Σ×RX is a set of
productions and r0 ∈ RX is the start expression1. As Σ and X are visible from

1Recall thatRX is the set of regular expressions over X.

29
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the set of productions R we omit them when there is no risk of confusion and
write G = (R, r0). We denote a production (x, a, r) ∈ R as x → a〈r〉. We write
x→ a rather than x→ a〈λ〉.

Intuitively, and using the terminology from schema languages, a produc-
tion x → a〈r〉 specifies that the children of an a element derived using the
production must conform to the content model r. Also, the start expression is a
content model which must be fulfilled by the sequence consisting of the root
element and the possible preceding and following processing instructions.

Example 4.1: Consider for example the following excerpt from a file
sample.dtd containing a DTD for books:

XML Example 11

<!ELEMENT BOOK ( TITLE , SUBTITLE? , CHAPTER+ , APPENDIX?) >
<!ELEMENT CHAPTER ( TITLE , ( CHAPTER|PAR)+) >
<!ELEMENT APPENDIX (CHAPTER+)>

Further suppose that the root element is BOOK as declared in the following doc-
ument type declaration:

XML Example 12

<!DOCTYPE BOOK SYSTEM " sample . dtd">

The same can be specified using a forest grammar with the following produc-
tions:

xbook → BOOK〈xtitle x?
subtitle x+

chapter x?
appendix〉

xchapter → CHAPTER〈xtitle (xchapter|xpar)+〉
xappendix → APPENDIX〈x+

chapter〉

We obtain the equivalent forest grammar by choosing as start expression xbook,
corresponding to the root element in the DTD, and further assuming the pres-
ence in the grammar of productions for the non-terminals xtitle, xsubtitle and xpar,
according to the DTD definitions of the elements TITLE, SUBTITLE and PAR, re-
spectively. �

In the following we give the formal definition of conformance to a schema
specified by a forest grammar.

A set of productions R together with a distinguished non-terminal x ∈ X or
a regular expression r ∈ RX defines a tree derivation relationDerivR,x ⊆ TΣ×TX
or a forest derivation relation DerivR,r ⊆ FΣ ×FX, respectively, as follows:

(a〈 f 〉, x〈 f ′〉) ∈ DerivR,x iff x→ a〈r〉 ∈ R and ( f , f ′) ∈ DerivR,r
(t1 . . . tn, t′1 . . . t′n) ∈ DerivR,r iff x1 . . . xn ∈ [[r]] and (ti, t′i) ∈ DerivR,xi

for i = 1, . . . , n
(ε,ε) ∈ DerivR,r iff λ ∈ [[r]]

If ( f , f ′) ∈ DerivR,r, we say that f ′ is a derivation of f w.r.t. R and r. In the
following we omit R when it is clear from the context which set of productions
is meant. Given a grammar G = (R, r) we write ( f , f ′) ∈ DerivG iff ( f , f ′) ∈
DerivR,r and say that f ′ is a derivation of f w.r.t. the grammar G.
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Figure 4.1: The tree representation of t from Example 4.3
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Figure 4.2: Possible derivations of t from Example 4.3

If ( f , f ′) ∈ DerivG for some f ′, then f conforms to the schema G. Observe
that a derivation f ′ is a relabeling of f and can be seen as a proof of the validity
of f according to the schema G. If lab( f ′[π ]) = x we say that f ′ labels f [π ] with
x.

Note also that forest grammars have been also called unranked tree or
hedge automata elsewhere [BKMW01]. From this viewpoint, non-terminals
are states, productions are transitions, and derivations are accepting runs of
the automaton.

Example 4.2: Let R be the set of following productions:

xa → a〈(xa|xb)
∗〉

xb → b

Let f = a〈ab〉 and suppose we want to check whether there is a derivation of
f w.r.t. R and xa. We can proceed in a bottom-up manner. It is easy to see that
(a, xa) ∈ Derivxa and (b, xb) ∈ Derivxb . Since xaxb ∈ [[(xa|xb)

∗]] we have that
(ab, xaxb) ∈ Deriv(xa|xb)∗ . It follows that (a〈ab〉, xa〈xaxb〉) ∈ Derivxa . �

Example 4.3: Let R2 be the set of following productions:

(1) x> → a〈x∗>〉
(2) x> → b〈x∗>〉
(3) x> → c〈x∗>〉

(4) x1 → a〈x∗>(x1|xa)x∗>〉
(5) xa → a〈xbxc〉

(6) xb → b〈x∗>〉
(7) xc → c〈x∗>〉

Let t be the tree textually represented by the following XML document:

XML Example 13

<a>
<a><b/><c/></a>
<a><b/></a>
<a><b/><c/></a>

</a>
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The tree t is graphically presented in Figure 4.1. Two possible derivations of t
w.r.t. R and the regular expression x1|xa are depicted in Figure 4.2. �

The meaning [[R]] of a set of productions R assigns sets of trees to non-
terminals x ∈ X and sets of forests to regular expressions r ∈ RX as follows:

t ∈ [[R]] x iff there is t′ ∈ TX with (t, t′) ∈ DerivR,x
f ∈ [[R]] r iff there is f ′ ∈ FX with ( f , f ′) ∈ DerivR,r

If t ∈ [[R]] x or f ∈ [[R]] r we say that t can be derived from x or f can be derived
from r, respectively.

Example 4.4: Let R be the set of productions from Example 4.2. It is easy to see
that [[R]] xb is the set consisting only of the tree b. The set [[R]] xa consists of all
trees, the internal nodes of which are all labeled a, and the leaves of which are
labeled either a or b. �

The regular forest language specified by a forest grammar G = (R, r0) is the
set of forests LG = [[R]] r0.

Example 4.5: Consider the grammar G = (R2, x1|xa) over {a, b, c} with the
productions R2 as defined in Example 4.3.

LG is the set of documents in which there is a path from the root to a node
labeled a, whose children are a node labeled b and a node labeled c , and whose
ancestors are all labeled a. The first three productions make x> account for
trees with arbitrary content. As specified by production (5), xa stands for the
a element with the b and the c children. Productions (6) and (7) say that these
children can have arbitrary content. Finally, production (4) specifies that the a
specified by (5) can be at arbitrary depth in the input, and all its ancestors must
be labeled a. �

4.1.2 Practical Extensions
To use forest grammars as a specification language in a practical setting, such
as XML processing, a couple of useful extensions need to be made as presented
below.

4.1.2.1 Text Nodes

The grammar formalism as introduced is not yet able to handle XML docu-
ments in which elements have text content. Let U be the set of Unicode char-
acters. Our definition of trees t and forests f in Section 2.2 can be adapted in
order to allow XML text nodes as well as follows:

t ∈ TΣ iff t = a〈 f 〉 with a ∈ Σ and f ∈ FΣ or t = α∗

f ∈ FΣ iff f = ε or f = t f1 with t ∈ TΣ and f1 ∈ FΣ

whereα∗ denotes an arbitrary sequence of charactersα ∈ U .
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4.1.2.2 External Predicates

To handle text nodes one can extend the definition of forest grammars to in-
clude a set of external predicates P. The purpose of external predicates is to
express properties which cannot be captured via content models. In particular,
an external predicate can test whether a node is a text node.

An external predicate p ∈ P is a boolean function of type TΣ 7→ B which
takes a tree as argument and returns one of the two boolean values in B, true or
false. A forest grammar with external predicates is a tuple G = (Σ, X, P, R, r0) with
Σ, X and r0 as before and R ⊆ (X×Σ×RX)∪ (X× P). As before, we denote a
production (x, a, r) ∈ (X× Σ×RX) or (x, p) ∈ (X× P) as x → a〈r〉 or x→ p,
respectively. Intuitively, a production x→ p is applicable in a derivation of the
tree t when the predicate p is true for t.

Formally, the tree derivation relationDerivR,x ∈ TΣ×TX and the forest deriva-
tion relation DerivR,r ∈ FΣ ×FX defined by set of productions R together with
a distinguished non-terminal x ∈ X and a regular expression r ∈ RX respec-
tively, are correspondingly extended as follows:

(a〈 f 〉, x〈 f ′〉) ∈ DerivR,x iff x→ a〈r〉 ∈ R and ( f , f ′) ∈ DerivR,r
(t, x) ∈ DerivR,x iff x→ p and p(t) = true
(t1 . . . tn, t′1 . . . t′n) ∈ DerivR,r iff x1 . . . xn ∈ [[r]] and (ti, t′i) ∈ DerivR,xi

for i = 1, . . . , n
(ε,ε) ∈ DerivR,r iff λ ∈ [[r]]

The meaning [[R]] of R is similarly given by:

t ∈ [[R]] x iff there is t′ ∈ TX with (t, t′) ∈ DerivR,x
f ∈ [[R]] r iff there is f ′ ∈ FX with ( f , f ′) ∈ DerivR,r

Finally, the language of G is as before LG = [[R]] r0.
Thereby, one can express that a node within a content model is a text node

by referring it via a new terminal xtext for which a production xtext → p exists
where p is a predicate testing whether its argument is a sequence of Unicode
characters, i.e.:

p(t) =

{
true , if t = α∗

f alse, otherwise

In general, predicates can be used to specify arbitrary properties of subtrees
which are not expressible with the original forest grammars formalism. For
example, one can use them to express that some text nodes have a required
datatype, as needed in XML schema languages like XML Schema [XML01] or
RelaxNG [OAS01].

4.1.2.3 Wild Card Symbols

In a practical specification language one is often interested in merely indicating
the occurrence of some entity without further specifying it. For this purpose
special place-holder symbols, also called wildcards, have to be provided. In the
forest grammar formalism we use the wildcard “∗” to denote an arbitrary label
of the node and “.” to denote an arbitrary node. Furthermore, we use “ ” as
an abbreviation for “.∗”, to denote an arbitrary sequence of nodes.
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Example 4.6: Let R be the following set of productions:

x1 → a〈 (x1|x2) 〉
x2 → ∗〈xb .〉
xb → b〈 〉

The grammar G = (R, x1|x2) specifies the language of documents in which
there is a path from the root to a node the ancestor nodes of which are all
labeled with a, and which has two children, the first a b node and the second
an arbitrary node. �

4.1.3 Forest Grammars and XML Schema Languages
As previously mentioned, XML schema languages basically specify forest
grammars. There are however some differences in terms of expressiveness that
we address here.

DTDs, as opposed to forest grammars, do not allow the specification of
context-dependent content models for elements – as presented in the following
example:

Example 4.7: Consider the modification of the productions from Example 4.1
as follows:

xbook → BOOK〈xtitle x?
subtitle x+

chapter1
x?

appendix〉
xchapter1 → CHAPTER〈xtitle (xchapter2|xpar)+〉
xchapter2 → CHAPTER〈xtitle x+

par〉
xappendix → APPENDIX〈x+

chapter1
〉

Note that we specify different content models for chapters on the top-level
and chapters occurring inside other chapters. Rather than allowing arbitrarily
nested chapters as in Example 4.1, the new productions only allow top-level
chapters to contain sub-chapters. This is not possible to express with a DTD
where all elements with the same name must be associated with the same con-
tent model. �

Another limitation of DTDs as compared to forest grammars is the require-
ment of content models to be unambiguous, i.e. that the corresponding finite
string automata, as obtained by the Berry-Sethi construction, are deterministic.
The restriction ensures that every word can be unambiguously parsed using a
lookahead of one symbol.

Similarly to forest grammars and as opposed to DTDs, XML Schema and
RelaxNG allow both to specify context-dependent and non-deterministic con-
tent models. In contrast to forest grammars, they also allow the specification
of the datatype of the text nodes more precisely, for example whether it should
represent an integer, a float or a date. This goes beyond the basic capabilities
of forest grammars. However, it is possible to define this kind of requirements
using forest grammars with external predicates, by using a new non-terminal
and a corresponding external predicate for each basic type needed, which tests
whether the text can be converted into a value of the corresponding required
type.

Another feature provided by schema languages (DTDs and XML Schema,
not RelaxNG) is specifying uniqueness and reference constraints. Uniqueness



CHAPTER 4. REGULAR FOREST LANGUAGES 35

constraints are used to ensure that there are no two elements with the same
property, e.g. with an identical value of an attribute with a given name. Refer-
ence constraints are meant to ensure that a property of an element identifies an
existing property of another element, e.g. that the value of an attribute of an
element identifies another element which contains the same value in another
attribute. This kinds of constraints cannot be expressed using forest grammars.
While this is an important feature, it does not actually belong to the structural
constraints and can be handled in applications after checking conformance to
the schema.

4.2 Recognizing Regular Forest Languages
In this section we briefly review how the structural constraints specified via
forest grammars can be efficiently checked.

Neumann showed that the expressive power of forest grammars is equal
with that of regular tree grammars [Neu00]. That is, for every forest grammar
G there is exactly one regular tree grammar G′ such that the ranked tree lan-
guage specified by G′ is exactly the image of the forest language specified by G
through an encoding function which maps every forest to a ranked tree. One
such encoding can be obtained by representing the arbitrarily long sequences
of sibling nodes in a similar way to how lists are represented in functional pro-
gramming languages, via a binary constructor cons and a nullary constructor
nil.

Therefore, testing the membership of a forest in a regular forest language
(specified by a forest grammar G) is equivalent to testing the membership of
its ranked encoding in the corresponding regular (ranked) tree language (spec-
ified by the regular tree grammar G′). It is well known that regular tree lan-
guages are recognized by bottom-up tree automata [GS97]. Hence, recognizing
regular forest languages could be in principle solved using the classic bottom-
up tree automata. In fact, most of the research literature handling XML pro-
cessing use this to ignore the unrankedness of XML trees.

Nevertheless, this has a few drawbacks. Firstly, in a practical setting it re-
quires a supplementary overhead for the encoding step. Secondly, some natu-
ral one-to-one correspondences between the XML data model and the tree rep-
resentation, as for example tree relationships, are not directly recognizable in
the encoded tree. In contrast, constructions using the original unranked repre-
sentations are more straightforward and easy to realize in practice. Therefore,
we prefer to use a unranked variant of tree automata. One straightforward ap-
proach to recognizing regular forest languages is to use bottom-up forest au-
tomata [Neu00, NS98a] (also known as unranked tree automata [BKMW01]).
However, their implementation may be very expensive [Neu00, NS98a].

As expressive as bottom-up automata but much more concise and efficient
to implement in practice are the pushdown forest automata [NS98a, Neu00]. Any
implementation of a bottom-up automaton has to choose a traversal strategy
for the input tree. The idea of a pushdown forest automaton (PA) is based on
the observation that, when reaching a node during the traversal, the informa-
tion gained from the already visited part of the tree can be used at the transi-
tions of the automaton at that node. This supplementary information allows a
significant reduction in the size of the states and in the number of possible tran-
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Figure 4.3: The processing model of a pushdown forest automaton

sitions to be considered by a deterministic PA as compared to the equivalent
deterministic bottom-up automaton. Intuitively, in the case of a depth-first,
left-to-right traversal, the advantage is that information gained by visiting the
left siblings as well as the ancestors and their left siblings can be taken into
account before processing the current node. The name of the automata (push-
down forest automata) is due to the fact that information from the visited part
of the tree is stored on the stack (pushdown) which is implicitly used for the
tree traversal.

Another advantage of PAs over bottom-up automata is that they can visit
the elements in an XML input exactly in the order in which these are read from
the input. Consequently, they do not need to materialize the tree representation
of the input in memory, as they can handle the XML elements as they come, in
an event-driven manner. This makes PAs suitable for applications in which the
tree cannot be built in main memory, as for example in the case of very large
XML documents. We take up again this topic in more detail in Chapter 7.

4.2.1 Pushdown Forest Automata
In addition to the tree states of classic tree automata, a PA also has forest states.
Intuitively, a forest state contains the information gained from the already vis-
ited part of the tree (context information) at any point during the tree traversal.
Let us consider a depth-first, left-to-right traversal. The following notations are
essentially those introduced in [Neu00].

The behavior of a left-to-right pushdown forest automaton (LPA) is depicted in
Figure 4.3, the notations of which are used in the following explanation. When
arriving at some node π labeled a, the context information is available in the
forest state q by which the automaton reaches the node. The automaton has to
traverse the content of π and compute a tree state p, which describes π within
the context q. In order to do so, the children of π are recursively processed. The
context information for the first child, q1, is obtained (via a Down transition) by
refining q by taking into account that the father is labeled a. Subsequently the
q2 context information for the second child is obtained (via a Side transition)
from q1 and the information p1 gained from the traversal of t1. Proceeding
in this manner, after visiting all children of π , enough context-information is
collected in qn+1 in order to compute p (via an Up transition). After processing
π , the context information for the subsequent node is updated into q′.

Formally, an LPA A = (P, Q, I, F, Down, Up, Side) over an alphabet Σ con-
sists of a finite set of tree states P, a finite set of forest states Q, a set of initial states
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I ⊆ Q, a set of final states F ⊆ Q, a down-relation Down ⊆ Q× Σ× Q, an up-
relation Up ⊆ Q× Σ× P and a side-relation Side ⊆ Q× P× Q. Based on Down,
Up and Side, the behavior of A is described by the relations δA

F ⊆ Q×FΣ × Q
and δA

T ⊆ Q× TΣ × P as follows, where the notations correspond to those in
Figure 4.3:

1. (q, a〈t1 . . . tn〉, p) ∈ δA
T iff (q, a, q1) ∈ Down, (q1, t1 . . . tn, qn+1) ∈ δA

F and
(qn+1, a, p) ∈ Up for some q1, qn+1 ∈ Q.

2. (q1, t1 f , qn+1) ∈ δA
F iff (q1, t1, p1) ∈ δA

T , (q1, p1, q2) ∈ Side and
(q2, f , qn+1) ∈ δA

F for some p1 ∈ P, q2 ∈ Q

3. (q1,ε, q1) ∈ δA
F for all q1 ∈ Q

The language accepted by the automaton A is given by:

LA = { f ∈ FΣ | q1 ∈ I, q2 ∈ F and (q1, f , q2) ∈ δA
F}

An LPA performs a depth-first, left-to-right traversal of the input. Similarly,
if we consider a depth-first, right-to-left traversal we obtain a right-to-left push-
down forest automaton (RPA). An RPA A = (P, Q, I, F, Down, Up, Side) is similar
to an LPA but, as it proceeds on a forest from the right to the left, case 2 from
above is replaced by:

2’. (qn+1, t1 f , q1) ∈ δA
F iff (qn+1, f , q2) ∈ δA

F , (q2, t1, p1) ∈ δA
T and

(q2, p1, q1) ∈ Side for some q2 ∈ Q, p1 ∈ P.

If the Down, Up and Side transitions of a PA are functions rather than
relations and there is exactly one start state, the PA is called deterministic.
Otherwise, it is called non-deterministic. If a PA is deterministic we write
Down(q, a) = q1, Side(q1, p1) = q2 and Up(qn+1, a) = p rather than (q, a, q1) ∈
Down, (q1, p1, q2) ∈ Side and (qn+1, a, p) ∈ Up, respectively.

4.2.2 From Forest Grammars to Pushdown Forest Automata
A compilation schema from a forest grammar G = (R, r0) into a deterministic
LPA (DLPA) accepting the same regular forest language that we briefly review
here has been given in [Neu00]. The idea is that the DLPA keeps at any time
track of all possible content models of the elements whose content has not yet
been seen in its entirety. The forest is accepted at the end if the sequence of
top-level nodes conforms to r0.

Let r1, . . . , rl be the regular expressions occurring on the right-hand sides in
the productions R, where l is the number of productions. For 0 ≤ j ≤ l, let
A j = (Yj, y0, j, Fj, δ j) be the non-deterministic finite automaton (NFA) accept-
ing the regular string language defined by r j, as obtained by the Berry-Sethi
construction (presented in Section 2.1). Recall that Y j is the set of NFA states,
y0, j the start state, Fj the set of final states and δ j ⊆ Yj × Σ×Yj is the transition
relation.

By possibly renaming the NFA states we can always ensure that Yi ∩Yj = /�
for i 6= j. Let Y = Y0 ∪ . . . ∪ Yl and δ = δ0 ∪ . . . ∪ δl. A DLPA A

�
G accepting

LG can be defined as A
�
G =(2X, 2Y, {q0}, F, Down, Up, Side), where X is the set

of non-terminals in G. A tree state synthesized for a node is the set of non-
terminals from which the node can be derived. A forest state consists of the
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NFA states reached within the possible content models of the current level and
can be computed as follows.

We start with the content model r0, i.e.:

q0 = {y0,0}

We accept the top level sequence of nodes if it conforms to r0, i.e.:

F = {q | q ∩ F0 6= /� }
The possible content models of a node are computed from the content models
in which the node may occur:

Down(q, a) = {y0, j | y ∈ q, (y, x, y1) ∈ δ, x→ a〈r j〉}

When finishing a sequence of siblings we consider only the fulfilled content
models in order to obtain the non-terminals from which the father node may
be derived:

Up(q, a) = {x | x→ a〈r j〉 and q ∩ Fj 6= /� }
The possible content models are updated after finishing visiting the next node
in a sequence of siblings:

Side(q, p) = {y1 | y ∈ q, x ∈ p and (y, x, y1) ∈ δ}

The resulting A
�
G is obviously deterministic, since it has one initial state and its

transitions are functions rather than relations.

Example 4.8: The NFAs for the regular expressions occurring in grammar G
with the set of rules specified in Example 4.3 (on page 31) are depicted in Fig-
ure 4.4. Consider as input the XML document depicted in Figure 4.1 (on page
31). The run of A

�
G on the tree representation of the input is shown in Fig-

ure 4.5, where the sets containing x-s are tree states and the sets containing y-s
are forest states. The order in which the tree and forest states are computed is
denoted by the subscripts at their right. Observe that the input tree, which is
in the regular forest language specified by G, is accepted by A

�
G as it stops in

the state {y1}, which is a final state of the LPA. �

4.3 Bibliographic Notes
Originally, Neumann and Seidl have used µ-formulas [NS98b] and later con-
straint systems [NS98a] to specify regular forest languages. Forest grammars, as
a more comprehensible mean of specifying regular forest languages, have been
introduced in [Neu00], as an adaption of tree grammars from the ranked to the
unranked tree case. An overview on how results from the ranked tree-theory
carry over in general to the unranked case is presented by Brüggemann-Klein
et al. in [BKMW01].

The correlation between the most popular available schema languages and
regular forest languages has been studied by Murata et al. [MLM01]. For each
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considered schema language a corresponding restriction of regular forest lan-
guages is identified. An algorithm for checking the conformance to a schema
is presented for each such subclass.

Checking conformance to a schema which is a regular forest language can
be very efficiently performed by a pushdown forest automaton as presented in
this chapter. Pushdown forest automata have been introduced by Neumann
and Seidl in [NS98a]. They show that every non-deterministic pushdown for-
est automaton can be made deterministic and that they are much more concise
when compared to bottom-up automata. They also give a compilation schema
from constraint systems to deterministic pushdown forest automata. The com-
pilation of forest grammars to deterministic pushdown forest automata was
introduced in [Neu00].



Chapter 5

Grammar Queries

Locating parts of documents with specific properties is a fundamental task in
document processing and in particular in XML applications. We refer to this
process as querying. Querying is used on its own in order to extract informa-
tion from documents. Furthermore, especially in the context of XML, where
documents are often dynamically created from different XML sources, query-
ing accomplishes the basic function of locating sub-components used for creat-
ing new content in XML transformations. The importance of query-languages
becomes apparent if one notes that XPath [XPa99], the XML query language
proposed by the W3C Consortium, is integral part of many other important
specifications, for example XML Schema Language [XML01], XSLT [XSL99] or
XQuery [XQu05a].

In Section 5.1 we present how forest grammars can be used to specify pow-
erful XML queries. Forest grammars queries form the basis of the Fxgrep pat-
tern language presented in Chapter 3. Most of the attention in the study of
XML query languages has been drawn by unary queries, which locate individ-
ual nodes from the input tree. In contrast, in Section 5.1, we present a formal-
ism which can express k-ary queries, which are able to locate k nodes which
simultaneously satisfy a specific property. In Section 5.2 we review an efficient
construction based on pushdown automata which can be used to find matches
of unary grammar queries. An efficient construction for locating binary queries
is presented in Section 5.3. Finally, implementing k-ary queries in general is ad-
dressed in Section 5.4.

5.1 Specifying Queries
One possible way of identifying nodes of interest, as required by the task of
querying, is to label them with special symbols. In this respect, derivations
according to a forest grammar, which, as seen in the previous chapter, are re-
labeling of input forests, can be used as a means of specifying queries. The
definitions of grammar queries, given in the remainder of this section pursue
this observation.

41
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5.1.1 Unary Queries
As previously suggested, given a grammar G, a non-terminal x specifies a
query by identifying all nodes π in the input f for which there is a deriva-
tion f ′ w.r.t. G in which π is labeled with x. More generally, a unary grammar
query Q is a pair (G, T) consisting of a forest grammar G = (R, r0) and a set of
target non-terminals T ⊆ X where X is the set of non-terminals in R. The matches
of Q in an input forest f are given by the setMQ, f ⊆ N( f ) as follows:

π ∈MQ, f iff ∃( f , f ′) ∈ DerivG, ∃x ∈ T and lab( f ′[π ]) = x

We say that π is a match of Q in f w.r.t. the derivation f ′.

Example 5.1: Consider the grammar G from Example 4.5 (on page 32). The
query Q1 = (G, {xb}) locates nodes b having only a ancestors and only one
sibling c to the right. The leftmost b in the input tree depicted in Figure 4.1
is a match, as one can see by definition by looking at the first derivation in
Figure 4.2 (on page 31). Similarly, the rightmost b is a match as defined by the
second derivation w.r.t. G.

The query Q2 = (G, {xa}) locates the a nodes which have a child b followed
by a child c. These are the leftmost and the rightmost a nodes.

�

In general, as suggested in the example above, a single grammar can be
flexibly used to specify many similar yet different queries, one for each non-
terminal. This flexibility is in contrast with pattern languages, where for each
query a significantly different pattern has to be specified.

Note that we decided for an all-matches semantic of our queries, i.e. all nodes
π as in the definition are to be reported as matches. This is reasonable, because
a user query typically is aimed at finding all locations with the specified prop-
erties, as for instance in XPath . Furthermore, we do not want to place on the
user the burden of specifying the query via an unambiguous grammar, there-
fore the definition above refers to any derivation.

5.1.2 K-ary Queries
The definition of queries given in the previous section can be straightfor-
wardly extended in order to identify k-tuples of nodes related via structural
constraints, as imposed by forest grammars.

A k-ary grammar query is a pair Q = (G, T) consisting of a forest grammar
G = (R, r0) and a k-ary relation T ⊆ Xk where X is the set non-terminals
in R. The matches of Q in an input forest f are given by the k-ary relation
MQ, f ⊆ N( f )k:

(π1, . . . , πk) ∈ MQ, f iff ∃( f , f ′) ∈ DerivG, ∃(x1, . . . , xk) ∈ T and
lab( f ′[πi]) = xi for i = 1, . . . , k

We say that (π1, . . . , πk) is a match of Q in f w.r.t. the derivation f ′. For
k = 1 and k = 2 we obtain unary and binary queries, respectively.

Example 5.2: Consider the grammar G from Example 4.5 (on page 32). The bi-
nary query Q2 = (G, {(xb, xc)} locates pairs of nodes b and c having as father
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the same node a, and only a ancestors. The leftmost b and c in the input de-
picted in Figure 4.1 (on page 31) form a match pair, as one can see by definition
by looking at the first derivation in Figure 4.2. Similarly, the rightmost b and c
form a match pair as defined by the second derivation w.r.t. G. �

5.1.3 Expressive Power of Grammar Queries
As noted in Section 4.2, forest grammars are as expressive as regular tree gram-
mars. The proof by Neumann [Neu00] shows that for every forest grammar G
there is exactly one regular tree grammar G′ s.t. the language specified by G′ is
the image of the language specified by G through a bijective function enc map-
ping every unranked tree (or forest) to a unique ranked tree representation.

In particular, enc can be chosen s.t. an arbitrarily long sequence of sibling
nodes is represented similarly to the way that lists are represented in func-
tional programming languages via two constructor nodes cons and nil, with
arity 2 and 0 respectively. This mapping ensures that every node in a forest
f corresponds to exactly one node in enc( f ). Moreover, the construction pre-
sented in [Neu00] ensures that for every non-terminal x in G there is exactly
one non-terminal x′ in G′ such that a (forest) derivation of some input forest
f labeling a node with x exists iff a (tree) derivation of the ranked encoding
enc( f ) exists labeling the corresponding node in the encoding with x′.

According to the definition of k-ary grammar queries, this implies that a tu-
ple (π1, π2, . . . , πk) of nodes πi ∈ N( f ) is a match of a query (G, (x1, x2, . . . , xk))
iff the corresponding tuple of nodes (π ′1, π ′2, . . . , π ′k) of nodes π ′i ∈ N(enc( f ))
is a match of a query (G′, (x′1, x′2, . . . , x′k)). Therefore, the expressive power of
forest grammar queries is equal to that of regular tree grammar queries.

It is well known that the class of languages specified by regular tree gram-
mars (the regular ranked tree languages) is exactly the same as the class of lan-
guages specified by formulas of monadic second order logic (MSO) on trees
without free variables [TW68]. Using this result, and casting the problem
of finding matches of regular tree grammar queries into a language recogni-
tion problem, one can show that the expressive power of k-ary tree grammar
queries is equal with that of MSO formulas with k free variables. A proof can
be consulted in [NPTT05]. We conclude that the expressive power of our k-ary
grammar queries is equal to that of MSO formulas with k free variables.

Queries specified directly via MSO formulas are not practicable due to their
high evaluation complexity, yet they have been used as convenient bench-
marks for comparing XML query languages [NS02] due to their large expres-
siveness. Indeed MSO queries subsume many of the fundamental features of
the query languages which have been proposed for XML (as it will be pre-
sented in Section 5.6). Grammar queries have thus the same expressive power
as MSO queries, while being efficiently implementable, at least in the unary
and binary case, as we show in the next sections.

5.2 Recognizing Unary Queries
A construction for answering unary grammar queries using pushdown for-
est automata has been presented in [NS98a, Neu00]. In the present section
we briefly review this construction. Knowing this construction helps under-
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Figure 5.1: The contextual and the structural part of a query

standing its generalization for binary and k-ary queries which is presented in
Section 5.3 and Section 5.4, respectively.

Specifying which are the subtrees of interest in a query typically consists of
two conceptual parts, as described in Figure 5.1. The contextual part constrains
the surrounding context of the subtrees of interest, whereas the structural part
describes the properties of the subtrees themselves.

Example 5.3: Supposing we have an XML document which represents a con-
ference article, where sections and subsections are encoded as XML elements,
we might be interested in subsections containing the word “automata” occurring
in sections whose title contain the word “forest”. The two emphasized parts denote
the structural and the contextual part of the query, respectively. �

Example 5.4: As seen in Example 5.1 (on page 42), the query Q1 = (G, {xb})
locates the b nodes (structure) which have only a ancestors and a right c sibling
(context). �

When specifying a query as a grammar G = (R, r0) together with a distin-
guished non-terminal x, one specifies at once the desired structure and context
of some subtree t in a forest f . The structure is described by the productions
which can be used in order to derive a tree t starting from x. The remaining
productions of the grammar, which constrain the locations where x can occur
in a derivation of f from r0, capture the context part of the specification.

As argued in Section 4.2.1 a PA uses its forest states to remember informa-
tion from the already visited part of the input. Therefore, by looking into the
forest state of the PA after visiting a subtree t it should be possible to check a
structural property of t as well as whether a contextual property can be satis-
fied considering the part of the context seen so far.

Example 5.5: Let Q1 be the unary query from Example 5.1, identifying b nodes
which have only a ancestors and only one c sibling to the right. Consider the
run of the corresponding LPA on the input as depicted in Figure 4.5 (on page
39). One can see that by the time the automata has seen any of the b nodes, each
of them fulfills the structural part (it is a b node) and the upper-left contextual
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part (all ancestors are a nodes). This is reflected in the forest states of the LPA
when it leaves each of the b nodes, depicted at the upper right of each of them,
respectively. In each of these forest states, the NFA state y4, which is reached
after reading an xb, denotes that a derivation of the input forest may exist in
which the respective node is labeled xb.

However, since the right part of the context has not yet been seen, the
LPA cannot decide at the time it leaves the b nodes whether they are indeed
matches. �

In order to decide whether a node is a match, in general, the remaining part
of the context also has to be seen. The idea is to remember for each node the
information collected after seeing only a part of the context and to let a second
automaton proceed from the opposite direction (i.e. to perform a depth-first,
right-to-left traversal if the first PA does a left-to-right traversal) in order to
account for the remaining context.

Before proceeding in Section 5.2.2 to the construction based on the two PA
runs for the evaluation of a grammar queries, we introduce in Section 5.2.1 a
couple of useful notations which allow us to speak about the states of the PAs
at a certain location.

5.2.1 Pushdown Forest Automata as Relabelings
A run of a deterministic PA on an input forest f can be seen as a relabeling of
each node in f with the triple of states involved in the transitions at that node
during the run1.

Consider a DLPA A as defined in Section 4.2.1 (on page 36). The relabel-
ing of f performed by A is a mapping

�
λ : N( f ) → Q × P × Q,

�
λ(π i) =

(
�
qπ(i−1),

�
pπ i,

�
qπ i), where, for the node π i,

�
qπ(i−1),

�
pπ i and

�
qπ i are the forest state

in which the node is reached, the tree state synthesized for the node and the
forest state in which the node is left respectively, by A, i.e.:

�
qλ0 =

�
q0 (the initial state)�

qπ0 = Down(
�
qπ , a)�

pπ = Up(
�
qπn, a), if n = last f (π)�

qπ i = Side(
�
qπ(i−1),

�
pπ i)

where a = lab( f [π ]).
Similarly, a deterministic RPA (DRPA) B can be seen as a relabeling

�
λ(π i) =

(qπ(i−1), pπ i, qπ i), where qπ i, pπ i and qπ(i−1) are the forest state in which the node
is reached, the tree state synthesized for the node and the forest state in which
the node is left, respectively.

5.2.2 Locating Unary Matches
The state in which a DLPA leaves a node π synthesizes all the information
collected after seeing the upper left context and all the content of π . Given this
information, a second (DRPA) automaton, proceeding from right to left, will

1For a visualization, observe Figure 4.3 on page 36 where for the node denoted π , the above
mentioned states correspond to q, p and q′.
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have at every node the information necessary in order to decide whether the
node fulfills the structural and contextual requirements of a query.

Consider a unary query (G, T). Let A
�
G be the DLPA accepting the lan-

guage of grammar G, constructed as in Section 4.2.2 (on page 37). We now
present how to construct the second DRPA B

�
G for the given grammar G. In

the following we use notations as introduced in Section 5.2.1. That is, given a
node π , we denote by

�
pπ and

�
qπ the tree state synthesized for π and the forest

state in which π is left by A
�
G , respectively. For B

�
G , we denote by qπ and pπ ,

the forest state in which π is reached and the tree state synthesized for π by the
DRPA, respectively.

By remembering
�
qπ one can locally decide at each node during a second

traversal of the input by B
�
G whether the node is a match of a query. Also, to

avoid unnecessary re-computations by B
�
G ,
�
pπ is remembered so as to account

for the structure information collected at π .
The automaton B

�
G runs thus on an annotation

�
f of the input forest f by

A
�
G ,

�
f ∈ FΣ×P×Q with N(

�
f ) = N( f ) and lab(

�
f [π ]) = (lab( f [π ]),

�
pπ ,

�
qπ) for all

π ∈ N( f ).
The construction of B

�
G is similar to that of A

�
G but follows the NFA transi-

tions in reverse and considers corresponding NFA final states at rightmost sib-
lings, as the input to the NFAs is seen from the right to the left. Additionally,
B
�
G takes into account information collected by A

�
G in order to avoid consider-

ing NFA transitions which were not relevant for the conformance check per-
formed by A

�
G . The automaton B

�
G =(2X, 2Y, {F0}, /� , Down

�
, Up

�
, Side

�
), where

X, Y and F0 are as in the definition of A
�
G , is given by:

Down
�
(q, (a,

�
p,
�
q)) = {y2 | y ∈ q ∩ �q, (y1, x, y) ∈ δ, x→ a〈r j〉 and y2 ∈ Fj}

Up
�
(q, (a,

�
p,
�
q)) =

�
p

Side
�
(q, p, (a,

�
p,
�
q)) = {y | (y, x, y1) ∈ δ, y1 ∈ q ∩ �q, x ∈ p}

where we also provide the Side
�

transition with the label (a,
�
p,
�
q) of the node

over which it is executed.
Note that pπ =

�
pπ for all π . When it is clear from the context which is the

label (a,
�
p,
�
q) at a transition we will omit this argument.

The following proposition by Neumann [Neu00] shows how for every node
π , the forest state qπ in which B

�
G arrives at π , containing information from the

right context can be combined with the information for the remaining part of
the input given in the annotation

�
qπ in order to find matches of a unary query.

A node is a match if both the forest states in which A
�
G leaves the node and

in which B
�
G arrives at the node contain an NFA state reachable after seeing a

target non-terminal from T.

Theorem 5.1: Let Q = (G, T) be a unary query and f ∈ LG. With A
�
G and B

�
G

as above, π ∈ MQ, f iff y1 ∈ qπ ∩
�
qπ and (y, x, y1) ∈ δ for some y, y1 ∈ Y and

x ∈ T.

This theorem is proven in [Neu00] as Theorem 7.1. �

Directly from Theorem 5.1 follows the corollary:

Corollary 5.1: ( f , f ′) ∈ DerivG and lab( f ′[π ]) = x iff y ∈ qπ ∩
�
qπ , (y1, x, y) ∈ δ

for some y, y1 ∈ Y.
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{y6, y7}7 {y6, y7}4{y6, y7}22 {y6, y7}19

{y4, y6, y7}21{y3, y6, y7}24
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{y5, y6, y7}18 {y3, y6, y7}9 {y5, y6, y7}3
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y9}

a
{xa, x>}
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{xc, x>}5{xb, x>}8
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{y1, y2}1

Figure 5.2: The run of the B
�
G on the input document annotated by the A

�
G in

Example 4.8

This further implies that:

Corollary 5.2: If ( f , f ′) ∈ DerivG and lab( f ′[π ]) = x, then x ∈ pπ .

By Corollary 5.1 there are y ∈ qπ ∩
�
qπ , (y1, x, y) ∈ δ. Since y ∈ �

qπ , it follows
by the definition of Side in A

�
G that there is (y′, x1, y) ∈ δ for some x1 ∈ pπ . By

the Berry-Sethi construction, all incoming transitions into an NFA state y are
labeled with the same symbol. Therefore, x1 = x and thus x ∈ pπ . �

Example 5.6: Consider the run of A
�
G depicted in Figure 4.5 (on page 39). The

run of B
�
G on the tree annotated by A

�
G is presented in Figure 5.2. The order

in which the tree and forest states are computed is denoted by the subscripts
at their right. Note how the rightmost b node is recognized as a match of the
query Q1 = (G, {xb}) . As noted in Example 5.5, the NFA state y4 (having an
incoming transition labeled xb) in the annotation done by A

�
G denotes the node

as a potential match after accounting for its upper left context and its content.
The conformance of the right context is also fulfilled as the forest state in which
B
�
G arrives at the node contains y4 as well. Similarly, the leftmost b node is a

match. On the contrary, the node b in the middle is not a match, as its right
context does not contain a c sibling as required by the query. �

5.3 Recognizing Binary Queries
In this section we present a construction which allows the efficient evaluation
of binary queries. The construction is based on the technique introduced in
the previous section for the evaluation of unary queries. As opposed to unary
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queries, where the decision whether a node is a match can be taken when the
node is visited by the second automaton, finding a match pair of a binary query
requires postponing the decision at least until both nodes in the pair have been
visited. We thus need a supplementary construction which allows the remem-
bering of information distributed upon the tree, and the use of this information
to detect matches.

We introduce the necessary construction in Section 5.3.1 and show how it
can be used to efficiently evaluate a slightly restricted class of binary queries.
In Section 5.3.2 we show how the approach works for general binary queries.

5.3.1 Recognizing Simple Binary Queries
Let Q = (G, B) be a binary query. For convenience, we will first assume that
B = {(x1, x2)} for some x1, x2 ∈ X, where X is the set of non-terminals from G.
We call such a query a simple binary query.

According to the definition, a pair (π1, π2) is a match for an input f iff there
is a derivation f ′ of f w.r.t. G and f ′[π1] = x1, f ′[π2] = x2.

Observe that this implies that π1 and π2 are matches of the unary queries
(G, x1) and (G, x2), respectively. Thereby, (π1, π2) is a binary match for Q iff:

(p) π1 is a match of the unary query (G, x1) and

(s) π2 is a match of the unary query (G, x2) and

(r) π1 and π2 are unary matches w.r.t. the same derivation f ′.

We call the nodes fulfilling (p) and (s) primary and secondary matches, or, for
short, primaries and secondaries, respectively.

We have already seen how unary matches can be located. Thus, testing (p)
and (s) can be done by an automata construction as in Section 5.2. In order to
implement binary queries, however, one must additionally be able to test (r).

5.3.1.1 Construction

In the following we show that binary queries can be efficiently answered by
using a run of a DLPA A

�
G followed by a run of a DRPA B

�
G , in a way which

is similar to the case of unary queries. The A
�
G and B

�
G automata are defined

exactly as in Section 5.2.2. Primary and secondary matches can be thus recog-
nized in the same way as in Section 5.2.2 and we keep the same notations as
there.

In order to locate binary matches, we have to remember during the run of
B
�
G which of the already visited nodes are primary or secondary matches, as

potential components of binary matches. We accumulate these primaries and
secondaries in set attributes l1 and l2, respectively, with which we equip each
element of the tree and forest states of B

�
G .

For a tree state p at node π and x ∈ p, x.l1 contains primary matches and x.l2
secondary matches which are found below π and are defined w.r.t. derivations
which label f [π ] with x.

Similarly, for a forest state q at node π and y ∈ q, y.l1 contains primary and
y.l2 secondary matches collected from the already visited right-sibling subtrees
of f [π ]. These are the matches defined w.r.t. derivations in which the word of
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non-terminals on the current level is accepted by an NFA reaching the current
location in state y.

Similarly to attribute grammars, the values of the l1 and l2 attributes are
defined by a set of local rules, as follows:

G For the elements of a forest state in which B
�
G arrives at a node π which

has no right-siblings (i.e. π is the rightmost node among its siblings), the
sets of primaries and secondaries collected from the right sibling subtrees
are obviously empty. This is the case for the initial state F0 at the root and
for the states obtained by executing a Down

�
transition:

If y ∈ F0 or y ∈ Down
�
(q, (a,

�
p,
�
q)), then y.l1 = /� , y.l2 = /�

G After finishing visiting the children of a node π , the sets of primaries and
secondaries found below π are propagated and possibly updated with π
if π is a primary or secondary match, respectively:

If x ∈ Up
�
(q, (a,

�
p,
�
q)), then

x.l1 =

{
{π} ∪⋃{y.l1 | y ∈ q, y = y0, j, x→ a〈r j〉}, if x = x1

⋃{y.l1 | y ∈ q, y = y0, j, x→ a〈r j〉} , otherwise

x.l2 =

{
{π} ∪⋃{y.l2 | y ∈ q, y = y0, j, x→ a〈r j〉}, if x = x2

⋃{y.l2 | y ∈ q, y = y0, j, x→ a〈r j〉} , otherwise

G At side transitions over a node π labeled with (a,
�
p,
�
q), the list of pri-

maries and secondaries found so far are obtained by combining the
matches below π with the matches from the already visited part to the
right:

If y ∈ Side
�
(q, p, (a,

�
p,
�
q)), then

y.l1 =
⋃{y1.l1 ∪ x.l1 | (y, x, y1) ∈ δ, y1 ∈ q ∩ �q, x ∈ p}

y.l2 =
⋃{y1.l2 ∪ x.l2 | (y, x, y1) ∈ δ, y1 ∈ q ∩ �q, x ∈ p}

Note that the rules allow a bottom-up, right-to-left evaluation of the at-
tributes. Therefore, they can be evaluated directly along the run of B

�
G , which

performs a depth-first, right-to-left traversal. Moreover, the information used
for the evaluation of attributes at a node π is the same as the information
needed to compute the transitions at π . In the practical implementation (which
will be addressed in Section 5.5), where transitions are computed as they are
needed during the run of B

�
G , the attributes can be thus computed at minimal

costs.

Example 5.7: Consider the binary query Q2 = (G, {(xb, xc)} from Example 5.2,
locating the b and the immediately following c children of a node a whose
ancestors are exclusively a nodes, on the tree depicted in Figure 4.1 (on page
31). Figure 5.3 depicts how the l1 and l2 attributes are computed along the
run of B

�
G on the input annotated by the run of A

�
G (shown in Figure 4.5 on
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{y6, y7} {y6, y7}

{[9]y4, y6, y7}

{y6, y7} {y6, y7}

{
[5,8]

[6,9]
y0}

{y5, y6, y7} {
[8]

[9]
y3, y6, y7} {y5, y6, y7}

{
[5,8]

[6,9]
y8,

[5,8]

[6,9]
y9}

{y6, y7}

{y6, y7} {y6, y7}

{y1, y2}

{y10, y11, y12}
a

{x>}
{y9, y12}

c

{y5, y7,
y9}

b
{xb, x>}
{y4, y7,

y9}

a
{xa, x>}
{y9, y11,

y12}

b
{xb, x>}
{y4, y7,

y9}

c
{xc, x>}
{y5, y7,

y9}

{xc, x>}

{
[5]

[6]
xa, x>}

{xb, x>}

{x>} {
[8]

[9]
xa, x>}

{[8]xb, x>}

{
[5,8]

[6,9]
x1, x>}

{
[8]

[9]
y8,

[8]

[9]
y9, y10, y11, y12}

{[9]xc, x>}

1

2

5 6

3 4

7 8 9

{
[8]

[9]
y8,

[8]

[9]
y9, y10, y11, y12}

{[6]y4, y6, y7}

{[5]xb, x>} {[6]xc, x>}

a
{x1, x>}
{y1}

a
{xa, x>}
{y9, y11}

b
{xb, x>}
{y4, y7,

y9}

{
[5]

[6]
y3, y6, y7}

Figure 5.3: Evaluation of the l1 and l2 attributes

. . .. . . . . .
π

πi πj

π1 = πiπ′

1

π2 = πjπ′

2

. . .. . . . . .
π

πi πj

π2

π1

(a) (b)

Figure 5.4: Relative positions of matches: π is nearest common ancestor or λ

page 39). The order of computation performed by the second automaton is the
same as in the unary case (which was depicted in Figure 5.2 on page 47). Note
that nodes are identified by ordinal numbers rather than by paths in order to
increase readability. The attributes l1, l2 for an element x are depicted as l1

l2
x.

Attributes with value /� are omitted. �

5.3.1.2 Locating Binary Matches

Figure 5.4 (a) and (b), and Figure 5.5 (c), (d) and (e) show all possible rela-
tive positions of the primary (depicted in white) and the secondary component
(depicted in black) of one binary match (π1, π2). In all five situations, due to
the construction above, π1 and π2 belong to the attributes of one of the tree
state pπ i or forest state qπ i in which the automaton reaches node π i (depicted
by a square). This is where the binary match (π1, π2) will be detected at the
Side

�
(qπ i, pπ i) transition.
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π1 = π2 = πi

(c)

���
�

π1 = πi

π2 = πiπ
′

1

π2 = πi

π1 = πiπ
′

1

(d) (e)

Figure 5.5: Relative positions of matches: equal, or one is a proper ancestor of
the other

To see how, we need to observe that our construction ensures the following
invariants:

(i1) A node π1 belongs to the l1 or l2 attribute of an element x of a tree state
computed for a node π i iff π1 is below π i and there is a derivation of the
input forest which labels π i with x and π1 with x1 or x2, respectively.

(i2) A node π2 belongs to the l1 or l2 attribute of an element y of a forest state
in which B

�
G arrives at a node π i iff π2 is in some right sibling subtree and

there is a derivation of the input forest which labels π i with x, the label
of the NFA transitions coming into y, and π2 with x1 or x2, respectively.

This is formally expressed by the following theorem in which the involved
nodes are named as in Figure 5.4 (a) (or (b)):

Theorem 5.2: (Invariants ensured by the construction)

(i1) If y ∈ �
qπ i ∩ qπ i, x ∈ pπ i, (y′, x, y) ∈ δ for some y′, x then

π1 ∈ x.l1 (or π1 ∈ x.l2) iff

π1 = π iπ ′1, ∃ f1 s.t. ( f , f1) ∈ DerivG, lab( f1[π i]) = x and
lab( f1[π1]) = x1 (or lab( f1[π1]) = x2, respectively).

(i2) y ∈ �
qπ i ∩ qπ i, x ∈ pπ i, (y′, x, y) ∈ δ and π2 ∈ y.l2 (or π2 ∈ y.l1) iff

π2 = π jπ ′2, j > i, ∃ f2 s.t. ( f , f2) ∈ DerivG, lab( f2[π i]) = x and
lab( f2[π2]) = x2 (or lab( f2[π2]) = x1, respectively)

A formal proof is given in Appendix A.2. The idea is presented forthwith. �
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Let x ∈ pπ i, y ∈ �
qπ i ∩ qπ i, (y′, x, y) ∈ δ. Let π1 ∈ x.l1 and π2 ∈ y.l2. It is easy

to see that (i1) directly implies (p) and (i2) implies (s). Less obvious but still
true is that (i1) and (i2) also imply (r). It follows that every pair formed with
π1 ∈ x.l1 and π2 ∈ y.l2 is a binary match.

To see why (i1) and (i2) imply (r), let us define a function which given a
forest f , a node π and a tree t constructs a forest f1 by replacing in f the subtree
located at π with t, formally f1 = f /π t where:

(t1 . . . ti . . . tn)/i t = t1 . . . t . . . tn
(t1 . . . ti . . . tn)/iπ t = t1 . . . a〈 f /π t〉 . . . tn, if ti = a〈 f 〉

If f1 = f /π t, we say that f1 is obtained by grafting t into f at π .
The following theorem observes that given two derivations of a forest f

which label a node π with the same symbol, a new derivation can be obtained
by doing a relabeling of f in which the nodes below π are labeled as in one of
the derivations and the rest of nodes as in the other.

Theorem 5.3: If ( f , f1) ∈ DerivG, ( f , f2) ∈ DerivG and lab( f1[π ]) = lab( f2[π ])
then ( f , f1/π f2[π ]) ∈ DerivG and

lab(( f1/
π f2[π ])[π1]) =

{
lab( f2[π1]), if π1 = ππ2 for some π2
lab( f1[π1]), otherwise

The proof is given in Appendix A.1. �

Using the notations of Theorem 5.2, let f ′ = f2/π i f1[π i]. It follows by The-
orem 5.3 that ( f , f ′) ∈ DerivG, f ′[π1] = x1 and f ′[π2] = x2, thus (r) also holds
for (π1, π2). It follows that (π1, π2) is a binary match.

Example 5.8: Consider the side transition at node 8 in Figure 5.3. The element
[9]y4 in the forest state in which node 8 is reached denotes that node 9 is a
secondary match in the part of the tree already visited. The element [8]xb in the
tree state synthesized at node 8 denotes that 8 is a primary match found in the
subtree 8. The fact that 8 and 9 are defined with respect to the same derivation
can be seen from the fact that xb is the label of the incoming transitions into y4.
Thus (8, 9) is a binary match.

Similarly, (5, 6) is detected as a match at the side transition at node 5. �

Thereby, we obtain how binary matches can be detected (where cases (a)-(e)
correspond to the situations depicted in Figure 5.4 and Figure 5.5):

(a) Every pair (π1, π2) with π1 ∈ x.l1, π2 ∈ y.l2 is a binary match, as pre-
sented above.

(b) Similarly, one can show that every pair (π1, π2) with π1 ∈ y.l1, π2 ∈ x.l2
is a binary match.

(c) If x = x1 = x2 it is easy to see in invariant (i1) that by definition (π i, π i)
is a binary match.

(d) If x = x1 we also have by (i1) that every pair (π i, π2) with π2 ∈ x.l2 is a
binary match.
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(e) Similarly, if x = x2 we have by (i1) that every pair (π1, π i) with π1 ∈ x.l1
is a binary match.

To see that all binary matches are detected as above, let, conversely, (π1, π2)
be a binary match. If π1 = π iπ ′1 and π2 = π jπ ′2, j > i then there is f ′ with
( f , f ′) ∈ DerivG, f ′[π iπ ′1] = x1 and f ′[π jπ ′2] = x2. Let f ′[π i] = x. It follows by
Corollary 5.1 that there are y′ ∈ qπ i ∩

�
qπ i, (y′1, x, y′) ∈ δ. By Corollary 5.2 we

have that x ∈ pπ i. By (i1) it follows that π1 ∈ x.l1. By (i2) there are y ∈ �
qπ i ∩ qπ i,

x ∈ pπ i, (y1, x, y) ∈ δ and π2 ∈ y.l2. It follows that there is π i, x ∈ pπ i,
y ∈ �

qπ i ∩ qπ i, (y1, x, y) ∈ δ, π1 ∈ x.l1 and π2 ∈ y.l2.
Similarly, for π2 = π iπ ′2, π1 = π jπ ′1, j > i, or π1 = π2, or π2 = π1iπ ′2, or

π1 = π2iπ ′1 we obtain the converse of (b), (c), (d) or (e), respectively.
We have thus proven the following theorem:

Theorem 5.4: A pair (π1, π2) is a binary match iff there is π ∈ N( f ), x ∈ pπ ,
y ∈ qπ ∩

�
qπ , (y′, x, y) ∈ δ and either:

(a) π1 ∈ x.l1 , π2 ∈ y.l2 or

(b) π1 ∈ y.l1, π2 ∈ x.l2 or

(c) π1 = π2 = π , x = x1 = x2 or

(d) π1 = π , x = x1, π2 ∈ x.l2 or

(e) π2 = π , x = x2, π1 ∈ x.l1.

Complexity

Let n be the size of the input forest f , i.e. the number of nodes in f . The com-
plexity of answering a binary query is given by the complexities of running A

�
G

and B
�
G , computing the l1 and l2 attributes and that of locating binary matches.

The automaton A
�
G executes at each node one Down, one Side and one Up

transition. As one can see in the definitions of the transitions, the time cost of
each of these transitions does not depend on f . The run of A

�
G requires thus

time O(n). Similarly, the run of B
�
G needs time O(n).

The l1 and l2 attributes have to be computed for each component of the
states obtained after a Side

�
and Up

�
transition. For the complexity assessment

let us suppose that m is the larger of the numbers of primary and secondary
matches in f .

Consider now an Up
�

transition. The set x.l1 of primaries for each com-
ponent is computed as the union of the sets y.l1 of primaries. As the number
of sets y.l1 does not depend on f , and a set union can be computed in time
O(m), the time for computing x.l1 is in O(m). Similarly, x.l2 is computed in
time O(m). As the number of elements in the computed state does not de-
pend on f either, executing Up

�
can be done in time O(m). The sets y.l1 and

y.l2 computed at Side
�

transition for each component of the state are similarly
computed in time O(m). It follows that the attributes can be computed in time
O(n ·m).

As for the complexity of locating matches, let p be the number of binary
matches in f . Note that each of the binary matches is located at exactly one of
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the Side
�

transitions, namely at the Side
�

transitions over the ancestor of one
of the primary or secondary, which is a sibling of an ancestor of the other. As
remembering each binary match only requires constant time, locating binary
matches has the overall time cost in O(p).

The total time cost of answering binary queries is thus inO(n ·m + p). Since
p ≤ m2 and m ≤ n, the theoretical worst cost is in O(n2). This corresponds to
the case in which every pair of nodes from f is a binary match. In practice,
however, the number of primary, secondary and binary matches tend to be
irrelevant as compared to the input size. In this case, the time consumed is
rather linear in the input size and binary queries can be answered almost as
efficiently as unary queries.

5.3.2 Recognizing General Binary Queries
Let Q = (G, T), where T ⊆ X2, be a binary query. The construction is similar
to that for simple binary queries but has to keep a set attribute for each non-
terminal occurring in T.

Formally, let X1 = {x | (x, x′) ∈ T or (x′, x) ∈ T} = {x1, . . . , xn}.
Rather than with two attributes as in the case of simple binary queries, we

equip each element of a state in which B
�
G visits the input with n attributes

l1, . . . , ln. The attributes li are computed as follows:

G If y ∈ F0 (the initial state of B
�
G ) or y ∈ Down

�
(q, (a,

�
p,
�
q)) then y.li = /�

G If x ∈ Up
�
(q, (a,

�
p,
�
q)) then

x.li =

{
{π} ∪⋃{y.li | y ∈ q, y = y0, j, x→ a〈r j〉}, if x = xi
⋃{y.li | y ∈ q, y = y0, j, x→ a〈r j〉} , otherwise

G If y ∈ Side
�
(q, p, (a,

�
p,
�
q)) then

y.li =
⋃
{y1.li ∪ x.li | (y, x, y1) ∈ δ, y1 ∈ q ∩ �q, x ∈ p}

for i = 1, . . . , n.
As in the case of simple binary queries, matches are found at Side

�
transi-

tions of B
�
G . Let Side

�
(qπ , pπ) be such a transition and let x ∈ pπ , y ∈ qπ ∩

�
qπ ,

(y1, x, y) ∈ δ. In order to find binary matches, one has to look for every
(xi, x j) ∈ T into the li and l j attributes. Finding the match pairs is achieved
similarly to finding match pairs in the case of simple binary matches.

Theorem 5.5: A pair (π1, π2) is a binary match iff there is π ∈ N( f ), (xi, x j) ∈
T, x ∈ pπ , y ∈ qπ ∩

�
qπ , (y1, x, y) ∈ δ and either:

(a) π1 ∈ x.li , π2 ∈ y.l j or

(b) π1 ∈ x.l j , π2 ∈ y.li or

(c) π1 = π2 = π , x = xi = x j or

(d) π1 = π , x = xi, π2 ∈ x.l j or

(e) π1 = π , x = x j, π2 ∈ x.li.
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By definition, (π1, π2) is a binary match iff there is (xi, x j) ∈ T and (π1, π2) is
a simple binary match for (G, (xi, x j)). The proof follows immediately from
Theorem 5.4 by observing that the attributes l1 and l2 from the construction for
(G, (xi, x j)) equal li and l j, respectively. �

In a similar manner as in the case of simple binary queries one obtains that
the complexity of answering binary queries is quadratic in the input size in the
worst case and rather linear in the average case.

5.4 Recognizing K-ary Queries
The construction introduced for the evaluation of binary queries can be in prin-
ciple extended to work for k-ary queries for arbitrary k’s. In order to locate
matches of a query (G, (x1, . . . , xk)) the construction has to keep a separate set
attribute for each non-empty subset A ⊂ {x1, . . . , xk}. The set attribute for
A then contains all tuples of nodes which form a partial match correspond-
ing to the elements in A. This is necessary because a complete match can be
obtained by considering any pair of complementary partial matches. For ex-
ample, for a query (G, (x1, x2, x3)) one needs to consider putting together the
partial matches corresponding to {x1} and {x2, x3}, or {x2} and {x1, x3}, or
{x3} and {x1, x2}, respectively. However, the complexity of the construction
grows exponentially with k which makes it impracticable for large k’s.

In the XML practice however many queries are expressed via XPath select
patterns which conceptually are binary relations (namely, between the context
node for the evaluation of the pattern and the set of nodes selected in that
context). Therefore, binary queries can be satisfactorily used to cover a wide
range of actual XML applications, as we discuss in the next part of the work.

Nevertheless, it is possible to implement k-ary queries very efficiently if
one adopts a disambiguating policy for grammars. Our queries so far consider
all possible derivations w.r.t. the given input grammar. Following all these
derivations in parallel is the source of the exponential blowup in the evaluation
complexity. A disambiguating policy is a set of rules which allows the choice
of exactly one derivation from among the different derivations.

One disambiguating policy could be obtained for instance by requiring one
to (1) always consider left-longest sequences in fulfillments of content models,
i.e., in NFA runs, to prefer NFA transitions corresponding to symbols which
are as left as possible in the corresponding regular expressions; and (2) always
choose the first applicable production in the input grammar. A similar policy
was in essence originally adopted in XDuce [HP00, HP03], in the context of its
functional style pattern matching for XML documents (a comparison of XDuce
with our approach is provided in Section 5.6). Similarly, one can adopt a right-
longest policy, or non-deterministically choose one of the possible derivations,
if one is for example interested in just one match, as in the case of a one-match
policy.

The implementation in the presence of such a disambiguating policy can
use the same first traversal of A

�
G to annotate the input tree. Only the second

automaton B
�
G has to proceed differently. The adopted policy allows the main-

tenance of its states as singletons, rather than sets, by indicating exactly one
NFA transition (y1, x, y), and exactly one grammar production x → a〈r j〉 to
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be considered at the Side
�

and Down
�

transitions, respectively. The x’s consid-
ered at the NFA transitions are then the labels of the sought-after derivation.
The k match nodes can be thus directly read from the annotation by the second
automata, getting thus even linear time complexity.

5.5 Implementation Issues
The constructions presented in the previous section for the evaluation of unary
and binary queries have been completely implemented in Fxgrep . We re-
frained from implementing general k-ary queries due to their exponential eval-
uation complexity. The efficient implementation of unary queries was pre-
sented in detail by Neumann [Neu00]. We briefly review here a few aspects
which are important in the practical implementation in order to support effi-
ciency and ease of use.

Lazy Evaluation The pushdown automata are efficiently implemented by
computing their transitions only as they are needed. Transitions which are
not required for the traversal of the input are not computed. This avoids the
computation of possibly exponentially large transition tables. The number of
transitions that are actually computed is at most linear in the size of the input
document.

Caching Moreover, the automata do not need to compute transitions at every
node, as many transitions are repeatedly executed. The first time a transition is
needed, its computed value is cached, and the cached value is simply looked
up for its subsequent uses. In practice only few transitions need to be com-
puted even for large XML documents.

Pre-processing Further, information which is repeatedly used for the compu-
tation of transitions, and which does not depend on the input document can be
computed by a preprocessor of the query and directly accessed when needed.
For example, a transition Down(q, a) is computed (only when the automaton
A
�
G arrives in forest state q at a node labeled a, and only if the transition was

not already computed) using the definition:

Down(q, a) = {y0, j | y ∈ q, (y, x, y1) ∈ δ, x→ a〈r j〉 for some x, y1}

To do so it can use the following pre-processed information:

y0s_for_y y = {y0, j | (y, x, y1) ∈ δ, x→ a〈r j〉} for all y ∈ Y
y0s_for_a a = {y0, j | x→ a〈r j〉} for all a occurring in G

Therefore:

Down(q, a) =

{
y0s_ for_a a ∩ ⋃

y∈q
y0s_ for_y y, if a occurs in G

/� , otherwise

Similar information is computed by the preprocessor for supporting the
other transitions of the pushdown automata.
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5.5.1 From Patterns to Grammar Queries
As presented in Chapter 3, Fxgrep allows the specification of queries also by
using a more intuitive pattern language, rather than via grammar queries. In-
ternally, patterns are automatically translated to grammar queries. In the fol-
lowing we show via a few examples how patterns can be automatically trans-
lated to grammar queries. A more formal and detailed translation schema for
most of the Fxgrep pattern language can be found in [Neu00].

Basically, given a pattern, the corresponding grammar has a non-terminal
for each symbol in the pattern denoting some XML node. For example, the
pattern /a/b/c is translated to the query (G, {xc}) where G = (R, xa), and R is
the set productions:

xa → <a> xb </a>
xb → <b> xc </b>
xc → <c> </c>

The a element denoted by xa has a child denoted by xb which is preceded
and followed by an arbitrary number of siblings. Given the same grammar G,
the query (G, xb) is equivalent to the pattern /a/b[c] and (G, {xa}) to a[b[c]].

As presented in Chapter 3, binary queries can be specified via binary Fx-
grep patterns, by using a symbol “%” which may be placed anywhere in front
of a node inside a pattern to indicate the secondary match position. Binary
patterns are similarly automatically translated into binary grammar queries.
The grammar productions are obtained as in the case of unary patterns. The
primary target non-terminal is obtained as the non-terminal corresponding to
the target node of the unary pattern. The secondary target non-terminal is the
non-terminal corresponding to the node preceded by the “%” symbol. For ex-
ample, the pattern a/%b/c is translated to the grammar query (G, (xc, xb)) with
G as above.

Structural constraints for a node are directly reflected in the rule corre-
sponding to the node. For example /a/b[c+ d*] is queried by ((R, xa), {xb})
with the productions:

xa → <a> xb </a>
xb → <b> x+

c x∗d </b>
xc → <c> </c>
xd → <d> </d>

More than one structural constraint for a node is reflected in the grammar
by productions with conjunctions of content models. Conjunctions of content
models are addressed in Chapter 6. Intuitively, a rule containing a conjunction
specifies that each content model in the conjunction has to be fulfilled by a
node derived via that production and can be used to simultaneously specify
more structural constraints. Note that, in a pattern, a structural constraint
is given either explicitly in square brackets following the concerned node,
or implicitly as the continuation of the path in which the node occurs. For
example /a[b]/c[d][e] is matched by ((R, xa), {xc}) with the productions:
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Figure 5.6: Finite automaton for a vertical regular path

xa → <a> xb & xc </a>
xb → <b> </b>
xc → <c> xd & xe </c>
xd → <d> </d>
xe → <e> </e>

When a pattern contains a regular vertical path, the translation is guided
by the finite automaton recognizing the regular path. To every state of the
automaton for the vertical context we associate a new non-terminal, whereas
the transitions correspond to the productions of the grammar accounting for
context. An additional non-terminal is associated to final states in order to
account for the structure. Consider, e.g., the pattern (a/)+b for which the
automaton is depicted in Figure 5.6. The corresponding grammar query is
((R, x1), {x3}) with the productions:

x1 → <a> x2 | x3 </a>
x2 → <a> x2 | x3 </a>
x3 → <b> </b>

5.6 Bibliographic Notes
In this section we briefly survey existing query approaches for tree-structured
data and relate them with ours where possible. The research on XML process-
ing has been extremely prolific in the recent years. No claim can be made with
regard to the exhaustiveness of the presentation.

We consider the following comparison criteria:

Expressiveness As a benchmark for assessing the expressive power of query
languages for trees we use the monadic second order logic (MSO logic),
which has proven to be particularly convenient in the context of tree-
automata and logic-based approaches [NS03].

Extensibility to the k-ary case Most of the proposals only consider the unary
case. We indicate where a query approach can be straightforwardly ex-
tended to express k-ary queries.

Evaluation complexity An important factor for practical implementations is
how efficient are the proposed query languages. Despite the relatively
large number of proposals, there are not many for which practical algo-
rithms have been introduced, and even fewer practical query languages
are actually implemented.
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Some of the approaches have been summarized in a survey done by Neven
and Schwentick [NS03], which mainly addresses only the unary queries. A
somewhat dated overview on practical XML query languages can be found in
[FSW99]. We start with a very brief summary of our grammar queries.

Forest Grammar Queries
The specification of unary queries using forest grammars has been introduced
in [Neu00]. The definition of a match node of a query is given there locally, re-
cursively in terms of the queries matched by the father node and the structural
constraints fulfilled by the sibling nodes. In order to make our unary query
definition extensible to the k-ary case we gave it in the global terms of deriva-
tions, which denote global computations over the input [BS02, BS04]. As pre-
sented in Section 5.1.3, the expressive power of our k-ary queries equals MSO
formulas with k free variables. Evaluating unary grammar queries is done in
time linear in the size of the input. Binary queries can be always evaluated in
quadratic time in the worst case, yet most queries are answered in linear time
as discussed in Section 5.3.1.2. Unary and binary grammar queries are com-
pletely implemented in the practical XML querying tool Fxgrep [NB05]. The
complexity of evaluating k-ary queries generally grows exponentially with k.
Nevertheless, by adopting a disambiguating policy to chose one among the dif-
ferent derivations allowed by a grammar, it is possible to evaluate k-ary queries
in linear time, as discussed in Section 5.4.

Query Automata
Query automata (QA) defined by Neven and Schwentick [NS99] are two-way
tree automata, i.e. automata which can perform both up and down transitions,
together with a distinguished set of selecting states. A query automata is a
unary query locating the nodes of some input which are visited at least once in
a selecting state. Simple QA on unranked trees are less expressive even than
first order logic. Intuitively, the reason for this limitation is due to their inabil-
ity to pass information from one sibling to another. To achieve the expressive
power of MSO logic, QA have to be extended with stay transitions, at which
a two way string transducer reads the string of states of the children of some
node and outputs for each child a new state. Queries of arity k are not con-
sidered. The complexity of query evaluation is linear in the size of the input
[NS03].

Selecting Tree Automata
Similarly to query automata, Frick et al. [FGK03] use tree automata extended
with a set of selecting states (called selecting tree automata) to specify unary
queries. The semantics of queries is defined in terms of runs of the tree au-
tomata, either in an existential or a universal setting. In the existential setting,
a node in some input is a match, if some accepting run on the input visits the
node in a selecting state. In the universal one, a node is a match if every ac-
cepting run on the input visits the node in a selecting state. It is shown that the
existential and the universal queries are equally expressive.
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Runs of tree automata are in fact the same as derivations w.r.t. tree gram-
mars, with automata states corresponding to non-terminals in grammars. The
existential queries are thus basically unary forest grammar queries restricted to
the ranked case. The proof that the expressiveness of selecting tree automata
equals MSO logic unary queries comes therefore as no surprise.

For the evaluation of queries an algorithm is proposed which performs a
bottom-up followed by a top-down traversal of the algorithm, the complexity
of which is O(m · n), where m is the size of the encoding of the automaton and
n the size of the input.

The selecting automata defined in [FGK03] are only used to express unary
queries. As previously argued, the grammar queries formalism presented in
Section 5.1.2 and introduced in [BS02] and [BS04] is in fact a generalization of
the existential query formalism based on selecting automata, to k-ary queries
on unranked trees. Recently, Niehren et al. [NPTT05] consider both existen-
tial and universal k-ary queries defined via selecting tree automata and show
that they are equally expressive also in the k-ary case. Furthermore, [NPTT05]
provide a proof that the k-ary queries defined by selecting tree automata cap-
ture precisely the MSO expressible queries, and that this result carries over to
unranked trees. From this follows that grammar queries have the same ex-
pressiveness as MSO queries, as already mentioned in Section 5.1.3. Another
implication is that forest grammar queries, defined using an existential seman-
tics, also capture universal queries.

As a particularly efficiently implementable case, Niehren et al. identify k-
ary queries specified via unambiguous tree automata, i.e. tree automata for which
for every input tree there is at most one successful run. The proposed construc-
tion identifies the unique run in a bottom-up followed by a top-down traver-
sal of the input and has a time-complexity linear in the input size. Specify-
ing queries by unambiguous tree automata is similar to specifying a grammar
query together with a disambiguating policy for derivations as mentioned in
Section 5.4.

Attribute Grammar Queries
Neven and Van den Bussche [NB02] used attribute grammars (AGs) to spec-
ify queries on derivation trees of context-free grammars, hence they deal with
queries on ranked trees. In particular they consider boolean-valued attribute
grammars with propositional logic formulas as semantic rules (BAG). A BAG
together with a designated boolean attribute defines a unary query which re-
trieves all nodes at which the attribute has the value true. It is shown that BAG
unary queries have the same expressiveness as MSO logic.

In order to deal with unranked trees, Neven extends the BAG query for-
malism [Nev05]. He introduces extended attribute grammars which work on ex-
tended context free grammars (ECFGs) rather than on CFGs. Since an ECFG
production has a regular expression r on the right hand side, the number of
children of a node defined via the production may be unbounded. To be able
to define an attribute for each child, the semantic rules identify them via the
unique position in r to which the child has to correspond. A semantic rule
for a given position defines attribute values for all children corresponding to
that position. The semantic rule is basically given as a regular expression r1
containing a special place-marker symbol “#”. The attribute value of a child
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is assigned true if the sequence of children containing the place-marker “#” in
front of the child under consideration matches the regular expression r1. This
allows the specification of the left and right context of a node. Neven shows
that the query formalism based on extended BAGs is equally expressive as
MSO logic.

BAGs can only express unary queries. No considerations are made regard-
ing the complexity of query evaluation.

One possibility for expressing k-ary queries with AGs has been investigated
by Neven and Van den Bussche [NB02] only for ranked trees. This is achieved
via relation-valued attribute grammars (RAG). A RAG defines a query as some
designated attribute at the root. The matches of the query are given by the
relation computed as the value of this attribute. They show that RAGs are
more expressive than MSO for queries of any arity.

Attribute grammars have been considered also in the context of XML
stream processing [NN01, KS03, SK05]. We briefly review these approaches
in Section 7.3.

Regular Hedge Expressions
In [Mur01], Murata considers providing a specification language to allow for
the specification of context of a node more precisely than by simply express-
ing conditions on the path from the root to the node. The query formalism
proposed is similar to the original proposal by Neumann and Seidl using µ-
formulas [NS98b]. A query is specified as a pair consisting of two expressions
for specifying the structure and the context of a match node, respectively. Mu-
rata’s hedge regular expressions, used to express the structure of a match, are
able to express regular forest languages. To express the contextual condition,
the formalism for specifying structure is extended by using a special symbol to
denote the desired node (obtaining pointed formulas). Murata, previously used
pointed trees for specifying contextual conditions on ranked trees in [Mur97].

The formalism presented in [Mur01] is targeted at unary queries. The eval-
uation time of the queries is proven to be linear in the size of the input. The
expressive power of the selection queries using regular hedge expressions is
equal with MSO logic.

Tree-walking Automata
Tree-walking Automata (TWAs) are sequential automata working on trees. In
contrast to classic tree automata, in which the control state is distributed at
more than one node, a TWA always considers exactly one node of the input.
Depending on the label of the node and its location the automaton changes
its state and moves to a neighbor node2. A TWA specifies the language of
trees on which the automaton starts at the root and ends also at the root in an
accepting state. TWAs can be used to specify unary queries in a similar way
as the selecting tree automata, by defining a set of selecting states. Recently it
was proven that TWAs cannot define all regular tree languages [BC05]. This
implies that TWAs are less expressive than unary MSO queries.

2Pushdown forest automata can be thus also seen as a kind of tree-walking automata enhanced
with a pushdown.
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Brüggemann-Klein and Wood [BKW00] proposed caterpillars as a technique
for specifying context in queries. A caterpillar is a sequence of symbols from a
caterpillar alphabet denoting movements and node-tests. The symbols specify a
movement to the parent, left- or right-sibling, left- or rightmost child of a node
or testing that a node is root, leaf, the first or the last among its siblings. A
caterpillar sequence specifies a unary query as the nodes starting from which
the sequence of movements and tests can be successfully performed. More
generally the query can be specified via caterpillar expressions which are regular
expressions over a caterpillar alphabet. Evaluating the matches specified by a
caterpillar expression can be done in O(m · n), where m is the size of the input
and n is the number of transitions in the finite-state automaton corresponding
to the caterpillar expression. The formalism can express only unary queries.

Expressing binary queries on trees via TWAs was considered by van Best
in [vB98]. A tree-walking automaton can compute a binary relation on tree
nodes by starting at one node and finishing at the other. It is argued that ordi-
nary TWAs cannot compute all MSO definable binary queries. To achieve the
expressiveness of MSO binary queries tree-walking marble/pebble automata are in-
troduced. A tree-walking marble/pebble automaton is a TWA enhanced with
a number of marbles and one pebble. The automaton can place and pick-up the
marbles and the pebble while visiting the nodes of the input, with the restric-
tion that the last one placed must be the first one to be picked-up. Furthermore,
when placing a marble on a node, the automaton is restricted to walk only be-
low this node. It is shown that these automata can be used to compute binary
relations defined by MSO logic formulas. The complexity of query evaluation
is not assessed in [vB98].

To be able to deal with XML text nodes and attributes (generically called
data values) and to allow the use of equality tests on them in queries, two exten-
sions of TWAs are suggested by Neven et al. in [NSV01, NS03]. The extensions
are given for string automata but they carry over also to tree automata. In
the first approach the automata are extended with a finite number of registers
and can check whether the data value of a node equals the content of some
register when performing its transitions. The expressive power of this regis-
ter automata is comparable neither with FO logic nor with MSO logic. That
is, there are FO queries which are not expressible by the automata, but also
queries expressible by these automata which are not captured by any MSO
query. In the second approach, the automata are equipped with a number of
pebbles which they can use according to a stack policy (last dropped first re-
moved). The expressiveness of these pebble automata is shown to lie between
FO and MSO logic. The complexity of query evaluation for both register and
pebble automata is shown to be in PTIME.

Pure Logic Formalisms
In logical formalism queries are expressed directly as logic formulas. A query
containing a free node variable expresses a unary query. Going from unary to
k-ary queries is in principle easily done by using formulas with k free variables
instead of formulas with one free variable. Queries on tree-structured data
can be expressed using MSO logic on trees. Many of the query approaches
mentioned so far have exactly the same expressiveness as MSO logic. Never-
theless expressing queries as MSO logic formulas is not practicable due to the
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prohibitively high (non-elementary) evaluation complexity.
Neven and Schwentick [Sch00, NS00] consider a restriction of MSO logic

as a query mechanism. The logic, called FOREG, is an extension of FO logic
which allows the formulation of constraints on children of nodes and on nodes
lying on a given path, called horizontal and vertical path formulas, respectively.
Horizontal and vertical path formulas are regular expression over formulas
which are to be satisfied by the children of a node, or the pairs of end nodes of
the edges on a path, respectively. It is shown that the expressiveness of FOREG
lies precisely between FO and MSO logic.

Still, the evaluation complexity of FOREG queries is not practicable. Neven
and Schwentick present syntactic restrictions of FO, FOREG and MSO logic
which are still as expressible as the original logics but for which unary queries
can be more efficiently evaluated. The restriction, basically allows the formu-
lation of properties only on paths from the root to a node, rather than on ar-
bitrary paths. It is shown that unary queries expressed in the restriction of
FOREG (called guarded FOREG) and MSO (guarded MSO) can be evaluated in
time O(n · 2m) and O(n · 2m2

), respectively, where n is the size of the input and
m the size of the formula.

Going from unary to k-ary queries in the guarded logic formalism is not di-
rectly possible due to the restricted use of variables in the guarded case. Never-
theless, Schwentick shows [Sch00] that expressing queries of arbitrary arity is
possible by suitable combinations of unary queries as above and an additional
kind of horizontal path formula (called intermediate path formula) which is able
to talk about the sequence of siblings between the ancestors of two arbitrary
nodes. While the expressiveness of the logic formalism is not modified by the
addition of intermediate path formulas, it is shown that an algorithm exists
which checks in time O(n · 2m) whether a tuple of nodes verifies a formula on
some input. Answering queries using this algorithm implies generating all the
k-tuples of nodes from the input, incurring O(nk) time. This gives the evalua-
tion of k-ary queries the O(nk+1 · 2m) complexity. In particular, binary queries
can be answered thus in timeO(n3 · 2m), which is less efficient when compared
with the complexity of our algorithm.

XPath Evaluation
Gottlob et al. [GKP02] find out by experimenting with practical XPath pro-
cessors that their evaluation time might grow exponentially with the size of
the considered XPath pattern. This inefficiency is ascribed to a naive imple-
mentation which literally follows the XPath specification as a succession of
selection and filtering steps. As opposed to this evaluation strategy, the au-
thors propose a bottom-up evaluation, that is, an evaluation in which expres-
sions are computed by first evaluating their sub-expressions and then com-
bining their results. They show that the theoretical evaluation time might be
bound by the class O(n3 · m2) where n is the size of the document and m the
size of the query. The practicability of the approach is limited given its space
complexity bounded by O(n4 · m3), which is due to the tabulation of the re-
sults of evaluating each subexpression considered during the evaluation. In
principle, the reason for the space inefficiency is the same as for bottom-up
automata, namely their ignorance of the upper context (opposedly to push-
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down automata), which should nevertheless be available in a practical imple-
mentation. To alleviate this problem, Gottlob et al. give a translation of their
bottom-up algorithm into a top-down one. It is shown that this has the same
time-complexity and argued that it may compute less intermediate results.

The authors identify a fragment of XPath, called Core XPath which can be
evaluated more efficiently. Core XPath is XPath without arithmetical or data
value operations, being thus basically also a subset of Fxgrep . The complexity
of the evaluation scheme proposed in [GKP02] is O(n · m). As opposed to
Fxgrep where at most two traversals are needed both for unary and binary
queries, the number of traversals of the input document is bounded by the
number of steps in the pattern. Since addressing implementation strategies for
XPath, [GKP02] only considers unary queries.

Numerical Document Queries
Seidl et al. [SSM03] introduce Presburger tree automata, which are able to check
numerical constraints on children of nodes expressible by Presburger formulas.
Whether the children of a node fulfill a Presburger constraint is independent
of their relative order. Correspondingly, the tree automata checking Presburger
constraints can be considered automata on unordered trees. Unary queries are
defined similarly to selecting automata by specifying a distinguished set of
states of a Presburger tree automaton. It is shown that unary query evalua-
tion has linear time complexity in the size of the input. To capture the expres-
siveness of the Presburger tree automata, the authors introduce an extension
of MSO logic with Presburger predicates on children of nodes (called PMSO).
They show that, on unordered trees, PMSO is equivalently expressive with
Presburger tree automata.

Furthermore, they consider expressing both numerical and order con-
straints on children. For this they extend the Presburger tree automata by al-
lowing regular expressions of Presburger constraints in transitions. It is shown
that expressiveness of these automata is captured by PMSO on ordered trees
and that evaluating unary queries can be performed in polynomial time. As
a case of special interest, they further consider expressing either numerical- or
order-constraints on children, depending on the label of the father node. It
turns out that the corresponding tree automata have the same expressiveness
as the corresponding PMSO logic and that the definable unary queries can be
evaluated in linear time.

Tree Queries
To the best of our knowledge, none of the querying approaches mentioned so
far, with the exception of grammar queries (available in Fxgrep), have been
implemented in practical XML querying languages.

A practically available system for XML querying is X2 proposed by Meuss
et al. [MSW+05]. The basic capabilities of the query language of X2 allow it
to specify and relate query nodes via child and descendant relations, labels
of nodes or tokens occurring in text nodes. Supplementary constraints make
it possible to specify immediate vicinity or relative order of siblings and also
to mark nodes as leftmost or rightmost children. Formally, the tree queries ex-
pressible by X2 are conjunctive queries over trees. The nodes identifiable via these
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queries are subsumed by Core XPath (as shown by Gottlob et al. in [GKS04])
and therefore also by Fxgrep. Nevertheless, in contrast to XPath, X2 is able to
express k-ary queries, since one answer to a X2 query is a variable assignment
mapping each node in the query to a node in the input (hence, k is the number
of nodes in the query). Because the number of answer mappings can be expo-
nentially large, a novel data structure, the complete answer aggregate (CAA)
is introduced by Meuss and Schulz [MS01]. CAAs represent the answer space
in a condensed form and allow its visual exploration, while guaranteeing that
all single answers can be reconstructed. The computation of a CAA for a query
is in O(n · log(n) · h ·m), where n and h are the size and the maximal depth of
the input, respectively, and m is the size of the query.

A main concern of X2 is supporting the specification of queries and naviga-
tion within the answer space via a graphical user interface. Among other visual
interfaces to XML query languages which have been proposed are XML-GL
[CCD+99], BBQ [MP00], Xing [Erw03], or visXcerpt [BBS03].

There are a few more practical XML tools built upon recent research work.
Most of them are strictly speaking not query languages but transformation lan-
guages, and we therfore defer addressing them until in Section 12, after pre-
senting our transformation tool based on Fxgrep. Anyhow, we can anticipate
that most of the available tools use XPath as a query language. Furthermore,
a few more tools emerging from research on XML stream processing are men-
tioned in Section 7.3.
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Chapter 6

Grammar Queries with
Boolean Connectives

The grammar formalism and its implementation with pushdown automata
introduced so far allow the location of matches fulfilling one structural and
one contextual condition. In practice however, queries often need to spec-
ify several conditions which are independent (at least conceptually) of each
other and which must be simultaneously fulfilled by matches. As an exam-
ple consider the pattern //sec[subsec]/title in which the sec nodes have to
fulfill two structural constraints, as they are required to have both a subsec
and a title child. Similarly, the pattern ((//king//) & (//queen//)) person
locates person nodes which simultaneously fulfill two contextual conditions:
they have both a king and a queen ancestor. Sometimes one also needs to
specify that a match must not fulfill a certain condition. Both the grammar
formalism and its automata-based implementation can be naturally extended
in order to express the above.

We start in Section 6.1 by considering the extensions needed in order to
conveniently express boolean combinations of structural conditions. Boolean
combinations of contextual conditions are addressed in Section 6.2.

6.1 Conjunctions and Negations of Structural Con-
ditions

The grammar queries introduced so far can already implicitly specify more
than one structural condition for a single node as shown in the next example.

Example 6.1: Consider specifying that a document with root element book
contains at least two sec and one cont element (for contents) as with the Fx-
grep pattern /book[sec sec][cont]. This might be achieved via grammar
G = (R, xbook), where R is the following set of productions:

xbook→ book〈 xsec xsec xcont | xsec xcont xsec | xcont xsec xsec 〉
xsec → sec〈 〉
xcont → cont〈 〉

67
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Observe that the production for the book element has to account for all three
different relative positions of the sec and cont elements. The specification
rapidly grows complicated when more elaborate content models have to be
simultaneously checked.

�
In general we want to require that a given element simultaneously fulfills

two content models r1 and r2. One way to achieve this is by reducing it to the
problem of specifying a regular expression r whose regular language is exactly
the intersection of the regular languages of r1 and r2. Placing this burden on
the user is however neither reasonable nor necessary.

Instead, we allow one to directly specify that an element has to simultane-
ously satisfy two given content models, by extending the grammar formalism
presented in Section 4.1.1. Furthermore, we allow one to specify that an ele-
ment must not fulfill a given content model.

6.1.1 Extended Forest Grammars
Extended forest grammars have been introduced in [Neu00]. In the following
we briefly review them and mention how they can be implemented.

A boolean content model e over a set of non-terminals X is a conjunction of
possibly negated regular expressions over X, defined by the following gram-
mar (with non-terminals e and cm):

e ::= cm | cm & e
cm ::= r | !r, where r ∈ RX

The set of positive content models pos(e) in a boolean content model e are
defined in the obvious way as:

pos(cm) =

{{r}, if cm = r
/� , if cm = !r

pos(e) =

{
pos(cm) , if e = cm
pos(cm)∪ pos(e′), if e = cm & e′

The set of negative content models neg(e) in a boolean content model e is
analogously defined in the obvious way.

An extended forest grammar (EFG) over Σ is a tuple G = (Σ, X, R, E0) where R
is a finite set of (extended) productions and E0 is a set of boolean content models
over X called start expressions. The rules in R have the form x → a〈e〉 with
x ∈ X, a ∈ Σ and e a boolean content model over X. Again, we omit Σ and X
from the grammar when these are obvious from the context.

To distinguish between the original forest grammars (and their produc-
tions) as defined in Section 4.1.1 and their extended counterparts we refer to
the former as simple forest grammars (SFG) (and as simple productions). Note that
an EFG has a set of start expressions rather than a start expression as in the
case of an SFG. This is necessary in order to allow the specification of an alter-
native of boolean content models for the top level. While in the case of SFG an
alternative of content models can be specified with a single content model con-
taining the choice operator , this is not possible in the case of boolean content
models.
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Example 6.2: The book elements as required by Example 6.1 can be specified
by the extended grammar G = (R, {xbook}), where R is the following set of
productions:

xbook→ book〈 xsec xsec & xcont 〉
xsec → sec〈 〉
xcont → cont〈 〉

To additionally require that the book has no index element we write:

xbook → book〈 xsec xsec & xcont & ! xindex 〉
xsec → sec〈 〉
xcont → cont〈 〉
xindex→ index〈 〉

�

As in the case of simple rules, a set of extended rules R together with a
boolean content model e or with a non-terminal x specifies a set of forests [[R]] e
or a set of trees [[R]] x, respectively, as follows:

f ∈ [[R]] e iff f ∈ [[R]] r for all r ∈ pos(e) and
f /∈ [[R]] r for all r ∈ neg(e)

t1. . . tn ∈ [[R]] r iff there is x1 . . . xn ∈ [[r]], with ti ∈ [[R]] xi
for all i = 1, . . . , n

a〈 f 〉 ∈ [[R]] x iff f ∈ [[R]] e for some e with x→ a〈e〉 ∈ R

The language of an extended forest grammar G = (R, E0), denoted LG, is de-
fined as LG =

⋃
e∈E0

[[R]] e.

Recognizing Languages of Extended Forest Grammars

The language of an EFG can be recognized by a pushdown forest automaton
constructed in a similar way to the pushdown automaton recognizing the lan-
guage of an SFG (presented in Section 4.2.2 on page 37). The construction of
the recognizing pushdown forest automaton has been presented and its cor-
rectness has been proven in [Neu00]. We briefly summarize the construction
below.

Basically, when computing the transitions of the automata, for a produc-
tion containing a boolean content model rather then a simple content model,
the fulfillment of all content models in the boolean content model have to be
simultaneously considered. Obviously, a boolean content model as defined
above is fulfilled when all its positive content models are fulfilled and none of
its negative content models is fulfilled.

Given an EFG G we construct a pushdown automaton A
�
G accepting exactly

LG. As opposed to the automaton construction for a SFG, the tree states of A
�
G

contain production numbers rather than non-terminals. This is not necessarily
needed for accepting LG, but provides information which will be needed to
answer EFG queries, introduced in the next section.

Let G = (Σ, X, R, E0) with R = {R1, . . . , Rh}, such that each production Rk
has the form xk → ak〈ek〉 for k = 1, . . . , h. Furthermore, let H = {1, . . . , h} and
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let {r1, . . . , rl} be the set of occurrences of regular expressions in G. For each
j = 1, . . . , l, let (Yj, y0, j, Fj, δ j) = Berry(r j) such that Yi ∩Yj = /� for i 6= j, and
let Y = Y1 ∪ . . . ∪ Yl and δ = δ1 ∪ . . . ∪ δl. The automaton A

�
G is defined as

(2H , 2Y, q0, F, Down, Up, Side) where:

q0 = {y0, j | r j ∈ pos(e)∪ neg(e) for some e ∈ E0}
F = {q | there is an e0 ∈ E0 such that

q ∩ Fj 6= /� for all j with r j ∈ pos(e0) and
q ∩ Fj = /� for all j with r j ∈ neg(e0)}

Down(a, q) = {y0, j | y ∈ q, (y, x, y1) ∈ δ, x→ a〈e〉, r j ∈ pos(e)∪ neg(e)}
Up(a, q) = {k ∈ H | a = ak, q ∩ Fj 6= /� for all j with r j ∈ pos(ek),

and q ∩ Fj = /� for all j with r j ∈ neg(ek)}
Side(q, p) = {y1 | y ∈ q, k ∈ p, and (y, xk, y1) ∈ δ}

6.1.2 Derivations of Extended Forest Grammars
As in the case of simple grammar queries, extended grammar queries will be
defined by using the concept of derivations, since this allows an easy generaliza-
tion from the unary to the k-ary case. In this section we introduce the concept
of derivations adapted in order to account for boolean content models.

Let G = (Σ, X, R, E0) be an EFG. A boolean content model e defines a deriva-
tion relation Derive ⊆ FΣ × (FX∪{&} ∪ {◦}) (where “&” and “◦” are two new,
reserved symbols) as follows:

( f , &〈 f1〉 . . . &〈 fk〉) ∈ Derive iff f ∈ [[R]] e, pos(e) = {r1, . . . , rk} and
( f , fi) ∈ Deriv1

ri
for all i = 1, . . . , k

( f , ◦) ∈ Derive iff f ∈ [[R]] e and pos(e) = /�

(a1〈 f1〉 . . . an〈 fn〉, x1〈 f ′1〉 . . . xn〈 f ′n〉) ∈ Deriv1
r iff

x1 . . . xn ∈ [[r]], xi → ai〈ei〉 ∈ R and
( fi, f ′i ) ∈ Derivei for all i = 1, . . . , n

(ε,ε) ∈ Deriv1
r iff λ ∈ [[r]]

As in the simple forest grammar case, f ∈ [[R]] e denotes that an input forest
f conforms to a schema e. Given ( f , f ′) ∈ Derive, the derivation f ′ might be
seen as a proof of how the required positive content models are fulfilled by
the sequences of sibling nodes in f . The purpose of the “&” symbol in f ′ is to
provide the proof of the conformance of the corresponding sequence of siblings
in f to each of the required positive content models in a boolean content model.
The purpose of the “◦” symbol is to denote that the corresponding sequence of
siblings in f was not required to fulfill any positive content model (implying
that nothing below it is required to fulfill any positive content model; hence,
“◦” symbols are leaves in derivations).

If ( f , f ′) ∈ Derive we say that f ′ is a derivation of f w.r.t. e. We say that f ′ is
a derivation of f w.r.t. G iff ( f , f ′) ∈ Derive for some e ∈ E0.

Example 6.3: Let G = (R, {x∗>(x1|xa)x∗>}) with R containing the following
productions:
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Figure 6.1: Input tree f
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Figure 6.2: Possible derivations of f in Figure 6.1 w.r.t. G in Example 6.3

(1) x>→ a〈x∗>〉
(2) x>→ b〈x∗>〉
(3) x>→ c〈x∗>〉

(4) x1 → a〈x∗>(x1|xa)x∗>〉
(5) xa → a〈x∗>xbx∗> & x∗>xcx∗>〉

(6) xb → b〈x∗>〉
(7) xc → c〈x∗>〉

The language of G consists of all forests in which there is a node a having both
a b and a c child and only a ancestors.

Consider as input f the tree depicted in Figure 6.1. Figure 6.2 depicts two
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possible derivations of f w.r.t. G. �

Every node in a derivation labeled with a non-terminal x has one or more
children labeled “&”, one for every positive content model of a boolean content
model for x. Derivations defined as above have certain similarities with runs
of alternating tree automata [CDG+05]. In alternating tree automata, a node in a
run (corresponding to a derivation in our case) may have an arbitrary number
of successor states (corresponding to non-terminals in our case) for the children
of the node, s.t. a (positive) propositional formula over states at the children is
fulfilled. Extended forest grammars containing only positive content models,
can be seen as a restriction in which the formula is a conjunction of conjunc-
tions of states, one state for each child. The correspondent of the formula is
in our case a forest of & nodes, each of them having as children a conjunction
of non-terminals. In this respect, extended forest grammars could be seen as
alternating forest automata.

A node in some input f may correspond to many nodes in a derivation f ′.
Let π ∈ N( f ) be a node in f . The set of nodes in f ′ corresponding to π in f ,
denoted Π f ′

π , can be defined as:

Π
f ′
n1 ...nk = {π ′ ∈ N( f ′) | π ′ = n′1n1n′2n2 . . . n′knk}

That is, to get to a node π ′ corresponding to π , one arbitrarily descends to one
of the “&” siblings at the first and every second step, and consecutively takes
the child numbers denoted in π at the other steps.

6.1.3 Unary Extended Grammar Queries
Unary grammar queries based on extended grammar have been introduced in
[Neu00]. We present here an equivalent definition based on derivations. The
advantage of this definition is that it can be easily extended to capture k-ary
queries.

An extended unary query Q is specified as in the case of simple unary queries
as a distinguished set of non-terminals of an (extended) forest grammar, that is
Q = (G, T) with G = (Σ, X, R, E0) being some EFG and T ⊆ X. The matches of
Q in an input forest f are given by the setMQ, f ⊆ N( f ) defined as follows:

π ∈MQ, f iff ∃( f , f ′) ∈ Derive for some e ∈ E0 and
∃π ′ ∈ Π f ′

π with lab( f ′[π ′]) = x for some x ∈ T

Example 6.4: Consider the query Q = (G, {xa}) with G defined in Example 6.3.
This query locates the a elements at arbitrary depths in the input which have
only a ancestors and which contain both a b and a c child. Consider as input f
the tree depicted in Figure 6.1. The leftmost and rightmost a nodes in the input
are matches of Q as one can see in the derivations depicted in Figure 6.2. �

The definition of queries in the presence of conjunctions of positive content
models should be quite intuitive. The definition of matches in the presence of
negated content models requires some more attention. The intuitive meaning
should become clear by reviewing the following few examples.
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Figure 6.3: Derivation of f in Figure 6.1 w.r.t. G in Example 6.5

Queries with Negated Content Models

As already mentioned, derivations reflect only required positive content mod-
els, as shown in the following example:

Example 6.5:
Let G = (R, {x∗>(x1|xa)x∗>}) with R containing the following productions:

(1) x> → a〈x∗>〉
(2) x> → b〈x∗>〉
(3) x> → c〈x∗>〉

(4) x1 → a〈x∗>(x1|xa)x∗>〉
(5) xa → a〈x∗>xbx∗> & !x∗>xcx∗>〉

(6) xb → b〈x∗>〉
(7) xc → c〈x∗>〉

The query (G, {xa}) locates a elements at arbitrary depths in the input which
have only a ancestors and which contain a b but no c child. The only derivation
of the input tree depicted in Figure 6.1 is shown in Figure 6.3. �

If a node is exclusively required not to fulfill some content models, then
the corresponding node in a derivation has a unique child labeled with the “◦”
symbol:

Example 6.6: Let G = (R, {x1|xa}) with R containing the following produc-
tions:

x1 → ∗〈x1|xa〉
xa → a〈!xb〉
xb → b〈 〉

The query (G, {xa}) locates (tree representations of) substrings of a (tree-
represented) input string which start with an a which is not immediately fol-
lowed by a b. An input and two derivations are depicted in Figure 6.4.

�

In order for a node to be a match, the definition requires that all its ancestors
must be defined positively, as the following example shows.

Example 6.7: Consider G = (R, {xa}) with R containing the following produc-
tions:
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Figure 6.4: Input and derivations for Example 6.6
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Figure 6.5: Derivation according to G in Example 6.7

xa → a〈! xb 〉
xb → b〈! xc 〉
xc → c〈 〉

A tree is in the language LG if its root is labeled a and it has no child labeled
b which does not contain a child labeled c. It is not quite obvious what are
the matches of the query Q = (G, {xb}). These should be those b children of
a nodes which do not contain a c. But these b nodes are exactly those whose
inexistence we require with G. Thus we can never locate such b nodes. Indeed,
since xb only occurs in a negated content model, Q does not ever locate any
node even in inputs conforming to G. This should become clear after noting
that the only possible derivation of any input is depicted in Figure 6.5 which
does not contain any node labeled xb. Similar considerations can be made for
the query Q = (G, {xc}). �

6.1.4 K-ary Extended Grammar Queries
As in the case of simple grammar queries, going from the unary to the k-ary
case is straightforward by using the concept of derivations. An extended k-ary
query is a pair Q = (G, T) where G = (Σ, X, R, E0) is an EFG and T ⊆ Xk. The
matches of Q in an input forest f are given by the k-ary relationMQ, f ⊆ N( f )k:

(π1, . . . , πk) ∈MQ, f iff ∃( f , f ′) ∈ Derive for some e ∈ E0 and
∃(x1, . . . , xk) ∈ T and
∃π ′i ∈ Π

f ′
πi with lab( f ′[π ′i ]) = xi for i = 1, . . . , k

Example 6.8: Consider grammar G from Example 6.3 (on page 70) and Q =
(G, {(xb, xc)}). The query locates a b and a c sibling which have only a ances-
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tors regardless of their relative order. In the input f depicted Figure 6.1 these
are the left-most and right-most b and c, respectively. This can be seen in the
derivations of f w.r.t. G depicted in Figure 6.2 (on page 71).

�

6.1.5 Locating Unary Matches
As in the case of unary queries specified by SFGs, the construction for an-
swering unary queries specified via EFGs requires annotating the input by the
DLPA recognizing LG, A

�
G , followed by the running of a DRPA B

�
G which uses

the annotation to recognize matches.
Let f be an input forest and

�
f be the A

�
G -annotation of f (defined as

in Section 5.2.2 on page 45). Furthermore, let qF = δF (q0, f ) be the out-
put state of A

�
G for f . The DRPA B

�
G runs over

�
f , i.e. over Σ × P × Q,

where P and Q are the set of tree and forest states of A
�
G , and is defined as

(2X, 2Y, { �q0}, /� , Down
�
, Up

�
, Side

�
), where:

�
q0 = {y | y ∈ Fj for some e ∈ E0 with r j ∈ pos(e),

Fi ∩ qF 6= /� for all i with ri ∈ pos(e) and
Fi ∩ qF = /� for all i with ri ∈ neg(e)}

Down
�
(q, (a,

�
p,
�
q)) = {y2 | y ∈ q ∩ �q, k ∈ �

p, (y1, x, y) ∈ δ for some y1,
Rk ≡ x→ a〈e〉 and y2 ∈ Fj for some r j ∈ pos(e)}

Up
�
(q, (a,

�
p,
�
q)) = {xk | k ∈ �

p}
Side

�
(q, p, (a,

�
p,
�
q)) = {y1 | (y1, x, y) ∈ δ, y ∈ q ∩ �q, x ∈ p}

where we also provide the Side
�

transition with the label (a,
�
p,
�
q) of the node

over which it is executed.
Note how the information in tree states

�
p is used in Down

�
transitions.

When proceeding to the children forest, we want to consider all positive con-
tent models occurring in boolean content models, which are fulfilled by the
children forest. Which boolean content models e were fulfilled is told by the
production numbers k in

�
p.

Using the A
�
G and B

�
G pushdown forest automata constructed as above,

matches can be located as stated in the following theorem. We use the same
notations as in the simple case: for a node π i,

�
qπ(i−1) is the forest state in which

A
�
G reaches the node,

�
pπ i the tree state synthesized for the node, and

�
qπ i the

forest state in which A
�
G leaves the node; qπ i and qπ(i−1) are the states in which

B
�
G reaches and leaves the node, respectively .

Theorem 6.1: Let Q = (G, T) be a unary extended grammar query and A
�
G and

B
�
G be as above. Then

π ∈ MQ, f iff y ∈ qπ ∩
�
qπ and (y1, x, y) ∈ δ for some y, y1 ∈ Y and x ∈ T.

This theorem is proven in [Neu00] as Theorem 7.3. �

6.1.6 Locating Binary Matches
Let Q = (G, {(x1, x2)}) be a binary query where G is an EFG and let f be some
input forest. The construction for locating binary matches of EFG queries is
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similar to that for SFG queries presented in Section 5.3.1, but uses the different
transitions of the pushdown forest automata A

�
G and B

�
G . The main difference

is the way in which binary matches are recognized, which is presented below.
Also, the generalization to the case in which Q = (G, T) with T ⊆ X is straight-
forward, as in the SFG case.

The B
�
G automaton works over the annotation

�
f of the input performed by

A
�
G as presented in Section 6.1.3. As in the case of simple binary queries, we call

unary matches of (G, {x1}) and (G, {x2}), primary and secondary matches, re-
spectively. Primary and secondary matches encountered during the run of B

�
G ,

are accumulated in set attributes l1 and l2 with which we equip each element
of the tree and forest states of B

�
G .

The values of the attributes l1 and l2 are computed by a set of local rules
(similarly to the rules in Section 5.3.1.1 on page 48):

G If y ∈ F0 or y ∈ Down
�
(q, (a,

�
p,
�
q)) then y.l1 = /� , y.l2 = /� .

G If x ∈ Up
�
(q, (a,

�
p,
�
q)) at node π then

x.l1 =

{
{π} ∪⋃{y.l1 | y ∈ q, y = y0, j, x→ a〈e〉, r j ∈ pos(e)}, if x = x1

⋃{y.l1 | y ∈ q, y = y0, j, x→ a〈e〉, r j ∈ pos(e)} , otherwise

x.l2 =

{
{π} ∪⋃{y.l2 | y ∈ q, y = y0, j, x→ a〈e〉, r j ∈ pos(e)}, if x = x2

⋃{y.l2 | y ∈ q, y = y0, j, x→ a〈e〉, r j ∈ pos(e)} , otherwise

G If y ∈ Side
�
(q, p, (a,

�
p,
�
q)) then

y.l1 =
⋃{y1.l1 ∪ x.l1 | (y, x, y1) ∈ δ, y1 ∈ q ∩ �q, x ∈ p}

y.l2 =
⋃{y1.l2 ∪ x.l2 | (y, x, y1) ∈ δ, y1 ∈ q ∩ �q, x ∈ p}

To find matches of binary EFG queries we proceed similarly to the simple
case. Matches are detected, on the one hand, at Side

�
transitions completely

analogously to the simple case. Let x ∈ pπ i, y ∈ �
qπ i ∩ qπ i. Furthermore, let

(y′, x, y) ∈ δ, π1 ∈ x.l1 and π2 ∈ y.l2. Then:

(a) Every pair (π1, π2) with π1 ∈ x.l1, π2 ∈ y.l2 is a binary match;

(b) Every pair (π1, π2) with π1 ∈ y.l1, π2 ∈ x.l2 is a binary match;

(c) If x = x1 = x2 then (π i, π i) is a binary match.

(d) If x = x1 every pair (π i, π2) with π2 ∈ x.l2 is a binary match.

(e) If x = x2 every pair (π1, π i) with π1 ∈ x.l1 is a binary match.

In the extended case, on the other hand, one additionally has to account
for match pairs in which one element of the match pair is defined conforming
to a content model and the other with a different content model which has to
be simultaneously fulfilled (as specified via a conjunction). These matches are
detected when B

�
G finishes visiting a sequence of siblings. Let qπ0 be the forest

state in which B
�
G leaves the forest located at path π . This forest is either the

sequence of children of the node π , if π 6= λ, or the top level sequence, if π = λ.
If π 6= λ, let pπ be the tree state synthesized for node π by A

�
G . For all

y0,i, y0, j ∈ qπ0, i 6= j and k ∈ pπ with Rk ≡ x→ a〈e〉, ri, r j ∈ pos(e):
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(f) Every pair (π1, π2) with π1 ∈ y0,i.l1, π2 ∈ y0, j.l2 is a binary match.

If π = λ, then (f) holds for all y0,i, y0, j ∈ qπ0, i 6= j and ri, r j ∈ pos(e), for
some e ∈ E0.

The above is summarized by the following theorem:

Theorem 6.2: A pair (π1, π2) is a binary match iff
(A) there is π ∈ N( f ), x ∈ pπ , y ∈ qπ ∩

�
qπ , (y′, x, y) ∈ δ and either:

(a) π1 ∈ x.l1 , π2 ∈ y.l2 or

(b) π1 ∈ y.l1, π2 ∈ x.l2 or

(c) π1 = π2 = π , x = x1 = x2 or

(d) π1 = π , x = x1, π2 ∈ x.l2 or

(e) π2 = π , x = x2, π1 ∈ x.l1.

or
(B) there are y0,i, y0, j ∈ qπ0 with i 6= j, ri, r j ∈ pos(e), where e ∈ E0 or x →
a〈e〉 ∈ R, and:

(f) π1 ∈ y0,i.l1, π2 ∈ y0, j.l2

We only sketch the proof here. The more detailed proof is given in Ap-
pendix A.3.

The construction ensures two invariants (similar to the case of binary
queries defined via SFGs), namely:

(i1) A node π1 is propagated in the attribute x.l1 (or x.l2) in the tree state
synthesized at a node π exactly when there is an (extended) derivation
f ′ w.r.t. G with a node corresponding to π labeled with x and having a
descendant corresponding to π1 labeled with x1 (or x2 respectively).

(i2) A node π2 is propagated in the attribute y.l2 (or y.l1) in the state in which
a node π is reached exactly when there is an (extended) derivation f ′′
w.r.t. G with a node π ′ corresponding to π in it labeled with x, the in-
coming transition into y, and a descendant of a right sibling of π ′ labeled
with x2 (or x1 respectively).

Soundness Let a primary match π1 and a secondary match π2 meet as in one
of the cases (a) to (e). Then, there exist two derivations f ′ and f ′′ as in (i1)
and (i2). A derivation which defines (π1, π2) as a binary match can be built by
replacing the content of the node corresponding to the meeting point π ′ from
f ′′ with that from f ′.

Let a primary match π1 and a secondary match π2 meet as in case (f). Then,
by considering (i1), (i2) and the last executed Side

�
transition it follows that

there exist two derivations f ′ and f ′′ defining π1 as a primary match and π2 as
a secondary match in which the content model of the current element conforms
to a content model ri and r j, respectively. A derivation which defines (π1, π2)
as a binary match can be built by replacing in f ′ the content corresponding to
r j with that from f ′′.
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Completeness Let (π1, π2) be a a binary match. By definition, there is a
derivation f ′′′w.r.t. G in which two nodes π ′1 and π ′2 corresponding to π1 and π2
are labeled with x1 and x2, respectively. By the definition of extended deriva-
tions, the nodes π ′1 and π ′2 necessarily have a nearest common ancestor in f ′′′
which is labeled either with some non-terminal x or with the symbol “&”.

Let us consider first that the nearest common ancestor is a node labeled
“&”. If (π1, π2) is a match then (i1) and (i2) ensure that this is detected as stated
in one of the cases (a) to (e), depending on the relative position of π1 and π2 (as
in Figure 5.4 and Figure 5.5 on page 50).

If the nearest common ancestor of π ′1 and π ′2 is a node labeled with some
non-terminal x then π ′1 and π ′2 have to be located within two different &-
labeled children node of the common ancestor. If (π1, π2) is a match then (i1)
and (i2) ensure that this is detected as in case (f).

�

6.2 Conjunctions and Negations of Contextual Con-
ditions

The extension presented in the previous paragraph allows one to specify that a
node of interest simultaneously satisfies several content models or that it must
not satisfy a content model. Besides that, we sometimes need to specify that
a node of interest simultaneously occurs in several different contexts or that it
must not occur in a specific context.

Example 6.9: As a motivating example consider locating in some XML doc-
ument storing a genealogical tree, person elements having an ancestor la-
beled king and no ancestor labeled duke, expressible in Fxgrep via the pat-
tern ((//king//)& !(//duke//)) person. This cannot be expressed with the
querying formalism introduced so far. The extension of the formalism allowing
the formulation of this query is presented below. �

In order to deal with negations in context specifications conveniently, we
extend the notion of queries in the following way: a query is conceptually now
defined by one or more context queries (with vacuous structural constraints)
and one or more structure queries (with vacuous contextual constraints). A
context query locates nodes of arbitrary structure which find themselves in
the specified context, while a structure query locates trees with the specified
structure. Thus, now a node is a match if it is simultaneously located by all its
structure and the context queries. Context or structure constraints might also
occur negated, meaning that they must not be fulfilled by the match nodes.

Example 6.10: By allowing arbitrary boolean combinations of both contextual
and structural constraints, the matches as in Example 6.9 can be specified by
Q1 ∧Q2 ∧¬Q3 where Q1 = ((Rperson, x0), {xperson}) (the structure query), Q2 =
((Rking, x1), {x2}) and Q3 = ((Rduke, x3), {x4}) (the context queries) with the
productions:
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Rperson : (x0-root, xperson-arbitrarily deep situated element labeled person)
x0 → ∗〈 x0 | xperson 〉
xperson → person〈 〉

Rking : (x1-root, x2-an arbitrary element having an ancestor labeled king)
x1 → ∗〈 x1 | xking 〉
xking → king〈 x2 〉
x2 → ∗〈 x2 〉

Rduke : (x3-root, x4-an arbitrary element having an ancestor labeled duke)
x3 → ∗〈 x3 | xduke 〉
xduke → duke〈 x4 〉
x4 → ∗〈 x4 〉

�

6.2.1 Unary Formula Queries
In fact, it is not necessary to have different grammars for different portions of
the composite query as suggested above. Instead, we find it convenient to use
just one grammar but allow boolean combinations of target non-terminals.

The set FormX of boolean formulas h over a set of non-terminals X is de-
fined as:

h ∈ FormX iff h = x and x ∈ X, or
h = h1 ∨ h2 and h1, h2 ∈ FormX, or
h = h1 ∧ h2 and h1, h2 ∈ FormX, or
h = ¬h1 and h1 ∈ FormX

Let B be the set of boolean values B = {true, false}. Given a variable envi-
ronment σ : X → B, the meaning [[h]] : σ → B of a formula h is defined in the
obvious way, inductively on the structure of formulas:

[[x]]σ = σ x
[[h1 ∨ h2]]σ = [[h1]]σ or [[h2]]σ
[[h1 ∧ h2]]σ = [[h1]]σ and [[h2]]σ
[[¬h1]]σ = not [[h1]]σ

A unary formula query is a tuple (G, h) where G is a (simple or extended)
forest grammar with a set of non-terminals X and h ∈ FormX. The matches of a
unary formula query (G, h) in an input forest f are given as the setMh ⊆ N( f )
recursively defined by:

π ∈ Mx iff π ∈ MQ, f
π ∈ Mh1∨h2 iff π ∈ Mh1 or π ∈ Mh2

π ∈ Mh1∧h2 iff π ∈ Mh1 and π ∈ Mh2

π ∈ M¬h iff π 6∈ Mh

where Q = (G, {x}) is a unary (SFG or EFG) query.

Example 6.11: Given the set of productions R = Rperson ∪ Rking ∪ Rduke from
Example 6.10, the query in Example 6.10 can be expressed as ((R, x0 | x1 |
x3), xperson ∧ x2 ∧ ¬x4)). �
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Relation to Unary Extended Grammar Queries

Unary SFG formula queries can be used to express many unary EFG queries
(introduced in Section 6.1.3). This is always possible when the conjunctions
and negations of structural conditions to be expressed concern only the match
node.

Example 6.12: Locating book elements which have at least two sec elements,
one cont element and no index element can be achieved by Q = (G, {xbook}),
with G = (R, xbook) being the EFG in Example 6.2 the productions of which are
reproduced for convenience below:

xbook → book〈 xsec xsec & xcont & ! xindex 〉
xsec → sec〈 〉
xcont → cont〈 〉
xindex→ index〈 〉

The same can be expressed with the formula query
((R, xbook1|xbook2|xbook3), xbook1 ∧ xbook2 ∧ ¬xbook3)) where R is the following
set of productions:

xbook1 → book〈 xsec xsec 〉
xbook2 → book〈 xcont 〉
xbook3 → book〈 xindex 〉
xsec → sec〈 〉
xcont → cont〈 〉
xindex→ index〈 〉

�

In general, however, SFG formula queries do not capture all EFG queries. This
is the case when one needs to express a conjunction of structural conditions
on nodes other than the match node. For instance, one might have to locate
footnotes in sections containing at least four subsections. The corresponding
production for these sections has to specify that their content include a footnote
and the four subsections, via a boolean content model.

Therefore, to allow as general queries as possible, formula queries can be
defined using both using simple and extended forest grammars. Evaluating
these queries is uniformally performed in both cases as presented next.

Locating Matches

The pushdown automata construction can be extended in a straightforward
way in order to implement this generalized form of queries. Rather than re-
porting as match a node from the input which corresponds to one distinguished
non-terminal of the query, one reports a match if the boolean formula of the
query evaluates to true in a variable environment defined by the node. The
variable environment binds every non-terminal to true or false depending on
whether the node can be derived from the non-terminal or not, respectively.

Let f be an input forest. We use the notations from Section 5.2. The variable
environment σπ defined for every node π ∈ N( f ) by the runs of A

�
G and B

�
G

(constructed as in Section 5.2 or Section 6.1.5, depending on whether G is a SFG
or EFG, respectively) is given by:
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σπ x =

{
true , if ∃y1 ∈ qπ ∩

�
qπ and (y, x, y1) ∈ δ for some y, y1 ∈ Y

false, otherwise

Theorem 6.3: Let Q = (G, h) be a unary formula query and f ∈ LG. With A
�
G ,

B
�
G and σπ as above, π ∈Mh iff [[h]] σπ .

The proof is straightforward by structural induction on h (i.e. induction on the
number of operators ∨, ∧ and ¬ in h).

Let h = x for some x ∈ X, where X is the set of non-terminals in G. We
have that π ∈ Mx iff π ∈ MQ, f where Q = (G, {x}). Depending on whether
G is an SFG or EFG, it follows by Theorem 5.1 or Theorem 6.1, respectively,
that π ∈ MQ, f iff y1 ∈ qπ ∩

�
qπ and (y, x, y1) ∈ δ for some y, y1 ∈ Y which is

equivalent to [[x]] σπ .
If h = h1 ∨ h2 then π ∈ Mh iff π ∈ Mh1 or π ∈ Mh2 . This is equivalent by

the hypothesis induction to [[h1]] σπ or [[h2]] σπ , i.e. [[h]] σπ .
The case h = h1 ∧ h2 is completely similar.
If h = ¬h1 then π ∈ Mh iff not π ∈ Mh1 , i.e., by the hypothesis induction

iff not [[h1]] σπ and by definition iff [[h]] σπ .
�

6.2.2 Binary Formula Queries
In this section we extend the formalism for expressing queries via formulas
also to binary queries.

Example 6.13: Binary formula queries are needed to locate for example person
elements having both an ancestor king and an ancestor duke, together with
their first child element. �

A binary formula query is a tuple Q = (Q2, (h1, h2)), with a binary query
Q2 = (G, {(x1, x2)}) and h1, h2 ∈ FormX, where X is the set of non-terminals
in G. The matches of Q in a forest f are given as the setMQ, f ⊆ N( f ) defined
by:

(π1, π2) ∈ MQ, f iff (π1, π2) ∈ MQ2 , f , π1 ∈ Mh1 and π2 ∈Mh2

That is, a binary formula query is a binary query, where the primary and
secondary match are additionally required to conform to a formula over non-
terminals.

Example 6.14: The query in Example 6.13 can be expressed as (Q2, (xperson ∧
x2 ∧ x4, x f irst)) where Q2 = ((R, x0|x1|x3), {(xperson, x f irst)}) and R is the fol-
lowing set of productions:

x0 → ∗〈 x0 | xperson 〉
xperson → person〈x f irst 〉
x f irst → ∗〈 〉
x1 → ∗〈 x1 | xking 〉
xking → king〈 x2 〉
x2 → ∗〈 x2 〉
x3 → ∗〈 x3 | xduke 〉
xduke → duke〈 x4 〉
x4 → ∗〈 x4 〉

�
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Binary Formula Queries with Simple Forest Grammars

For simplicity, we first consider the case in which G is a simple forest grammar.
The case in which G is an extended forest grammar is completely analogous
and is addressed at the end of this section.

Matches of binary formula queries are located by a construction similar to
that for binary queries (as introduced in Section 5.3.1). The A

�
G and B

�
G au-

tomata are exactly the same, but instead of l1 and l2, two other attributes l′1 and
l′2 are computed. The attributes l′1 and l′2 are computed using the same rules as
for l1 and l2 except for the rule computing the attributes of the x elements in
tree states as follows.

If x ∈ Up
�
(q, (a,

�
p,
�
q)) then:

x.l′1 =

{
{π} ∪⋃{y.l′1 | y ∈ q, y = y0, j, x→ a〈r j〉}, if x = x1 and [[h1]] σπ
⋃{y.l′1 | y ∈ q, y = y0, j, x→ a〈r j〉} , otherwise

x.l′2 =

{
{π} ∪⋃{y.l′2 | y ∈ q, y = y0, j, x→ a〈r j〉}, if x = x2 and [[h2]] σπ
⋃{y.l′2 | y ∈ q, y = y0, j, x→ a〈r j〉} , otherwise

Using this new construction, binary formula matches are located similarly
to binary matches, as stated by the following theorem (analogous to Theo-
rem 5.4):

Theorem 6.4: (π1, π2) ∈ MQ, f iff there is π i ∈ N( f ), x ∈ pπ i, y ∈ qπ i ∩
�
qπ i,

(y′, x, y) ∈ δ and either:

(a) π1 ∈ x.l′1 , π2 ∈ y.l′2 or

(b) π1 ∈ y.l′1, π2 ∈ x.l′2 or

(c) π1 = π2 = π i, x = x1 = x2, [[h1 ∧ h2]] σπ i or

(d) π1 = π i, x = x1, [[h1]] σπ i, π2 ∈ x.l′2 or

(e) π2 = π i, x = x2, [[h2]] σπ i, π1 ∈ x.l′1.

Let us consider case (a). Obviously, by comparing the construction with that
in Section 5.3.1, we have that π1 ∈ x.l′1 iff π1 ∈ x.l1 and [[h1]] σπ1 , and π2 ∈ y.l′2
iff π2 ∈ y.l2 and [[h2]] σπ2 . By Theorem 5.4 (for binary matches for SFGs, on
page 53), π1 ∈ x.l1 and π2 ∈ y.l2 is equivalent to (π1, π2) ∈ MQ2 , f . Also,
by Theorem 6.3 (for formula queries, on page 81), [[h1]] σπ1 and [[h2]] σπ2 iff
π1 ∈ Mh1 and π2 ∈ Mh2 . Thus, π1 ∈ x.l′1 and π2 ∈ y.l′2 iff (π1, π2) ∈ MQ2 , f ,
π1 ∈Mh1 and π2 ∈ Mh2 , i.e. iff (π1, π2) ∈MQ, f .

Case (b) follows completely similarly. In case (c), we have by Theorem 5.4
that π1 = π2 = π i, x = x1 = x2 iff (π1, π2) ∈ MQ2, f . Also, by definition
[[h1 ∧ h2]] σπ i iff [[h1]] σπ i ∧ [[h2]] σπ i. From the last two equivalences it follows
that (c) holds.

Cases (d) and (e) follow similarly. �

Binary Formula Queries with Extended Forest Grammars

The case in which a formula query is defined via an extended forest grammar
G = (R, E0), can be handled completely similarly, by extending the construc-
tion for locating binary matches for EFG queries presented in Section 6.1.6,
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rather than that for locating binary matches of SFG queries as before. The A
�
G

and B
�
G automata are exactly the same as in Section 6.1.6, but instead of l1 and

l2, two other attributes l′1 and l′2 are computed. The attributes l′1 and l′2 are com-
puted using the same rules as for l1 and l2 except for the rule computing the
attributes of the x elements in tree states as follows.

If x ∈ Up
�
(q, (a,

�
p,
�
q)) at node π then

x.l1 =





{π} ∪⋃{y.l1 | y ∈ q, y = y0, j, x→ a〈e〉, r j ∈ pos(e)}, if x = x1 and
[[h1]] σπ

⋃{y.l1 | y ∈ q, y = y0, j, x→ a〈e〉, r j ∈ pos(e)} , otherwise

x.l2 =





{π} ∪⋃{y.l2 | y ∈ q, y = y0, j, x→ a〈e〉, r j ∈ pos(e)}, if x = x2 and
[[h2]] σπ

⋃{y.l2 | y ∈ q, y = y0, j, x→ a〈e〉, r j ∈ pos(e)} , otherwise

Matches are located as stated by the following theorem (analogous to The-
orem 6.2)

Theorem 6.5: A pair (π1, π2) is a binary match iff
(A) there is π ∈ N( f ), x ∈ pπ , y ∈ qπ ∩

�
qπ , (y′, x, y) ∈ δ and either:

(a) π1 ∈ x.l1 , π2 ∈ y.l2 or

(b) π1 ∈ y.l1, π2 ∈ x.l2 or

(c) π1 = π2 = π , x = x1 = x2, [[h1 ∧ h2]] σπ i or

(d) π1 = π , x = x1, [[h1]] σπ i, π2 ∈ x.l2 or

(e) π2 = π , x = x2, [[h2]] σπ i, π1 ∈ x.l1.

or
(B) there is y0,i, y0, j ∈ qπ0 with i 6= j, ri, r j ∈ pos(e), where e ∈ E0 or x→ a〈e〉 ∈
R, and:

(f) π1 ∈ y0,i.l1, π2 ∈ y0, j.l2

The proof is completely analogous to that of Theorem 6.4 while using Theo-
rem 6.2 instead of Theorem 5.4. �

6.3 Bibliographic Notes
Neumann handled unary queries extended with boolean connectives of struc-
tural conditions via extended grammar queries in [Neu00]. His definition of
unary matches is given, as in the case of simple unary queries, recursively in
terms of the queries matched by the father node and the structural constraints
fulfilled by the sibling nodes. This local type of definition is not suitable for
an extension to k-ary queries. Our definition based on derivations is equiva-
lent to the original definition for the unary case and can be straightforwardly
extended to the k-ary case. The algorithm for locating unary matches is intro-
duced in [Neu00]. The algorithm for locating binary matches of EFG queries is
a new contribution.
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The contribution regarding boolean connectives for contextual conditions
is essentially new. Universal unary queries defined by selecting automata (as
mentioned in Section 5.6) are the special case of unary formula queries in which
the formula is restricted to a conjunction of non-terminals. In contrast, the
definition of universal k-ary queries in [NPTT05], by which a tuple of nodes is
a match if for every tuple of states specified by a query there is a run visiting
the nodes in these states, is not comparable with our definition for the binary
case. Nevertheless, the result of [NPTT05], by which universal and existential
queries expressed by selecting automata are equally expressive, implies that
our unary formula queries consisting only of conjunctions of non-terminals
are equally expressive as the simple grammar queries.



Chapter 7

Querying XML Streams

XML processing can be classified into two main categories, which correspond
to the two main approaches to XML parsing, DOM [DOM98] and SAX [SAX98].
In the first approach, used by most existing XML processors, the tree which is
textually represented by the XML input is effectively constructed in memory
and subsequently used by the XML application.

In the second approach, the XML input is transformed into a stream of
events which are transmitted to a listening application. An event contains a
small piece of information linearly read from the input, e.g. a start-tag or an
end-tag. The order of the events in the stream corresponds to the document
order of the input, i.e. to the sequential order in which the information is read
from the input. It is up to the listening application to decide how it processes
the stream of events. In particular, it can construct the XML tree in memory
and subsequently process it, as in the first approach, being thus at least as ex-
pressive.

The advantage of the event-based approach is that it allows one to buffer
only the relevant parts of the input, thereby saving time and memory. The
increased flexibility allows the handling of very large documents, the size of
which would be prohibitive if the XML input tree was to be entirely built in
memory. Also, the event-based processing naturally captures real-life appli-
cations in which the document is received linearly via some communication
channel, rather than being completely available in advance.

The research interest in querying XML streams has been very vivid recently
and there is a very rich literature on this topic. The related work is reviewed
in Section 7.3. The proposed query languages are generally able to implement
different subsets of XPath . Most of them are subsumed by Core XPath .

Our contribution is a novel solution for efficient event-based evaluation of
queries which go beyond the capabilities of many languages for which this
problem was previously addressed. Most of these languages can be expressed
using first-order logic (FO) possibly extended with regular expressions on ver-
tical paths, but are less expressive than monadic second order logic (MSO). In
contrast, our solution evaluates grammar queries, which are equivalent to MSO
queries as mentioned in Section 5.1.3.

Grammar queries can be implemented using pushdown forest automata as
presented in Section 5.2. The original construction as introduced by Neumann
and Seidl [NS98a] generally requires the construction of the whole input tree
in memory and the execution of two traversals of it. A one-pass query eval-
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Figure 7.1: Input tree

uation, suitable for an event-based implementation, is addressed only for a
very restricted class of queries. These are the so called right-ignoring queries
for which all the information needed to decide whether a node is a match has
been seen by the time the end-tag of the node is encountered. The term right-
ignoring is coined by the fact that all the nodes to the right of the match node
in the tree representation are irrelevant for the match.

In this chapter we lift this restriction. Rather than a-priori (i.e. statically)
handling only a restricted subset of queries, we show here how arbitrary gram-
mar queries can be evaluated on XML streams using pushdown forest au-
tomata.

Example 7.1: Consider an XML document, the tree representation of which is
depicted in Figure 7.1. Each location in the tree corresponds to an event in
the corresponding stream of events. The stream of events together with the
corresponding locations are denoted below. Nodes too can be identified by the
location corresponding to their start-tag.

1
<a>

11 111 1111 112 1121 113
<a> <b> </b> <c> </c> </a>

12 121 1211 122
<a> <b> </b> </a>

13 131 1311 132 1321 133
<a> <b> </b> <c> </c> </a>

14
</a>
It should be clear that the amount of memory necessary to answer an ar-

bitrary query inherently depends on the query and on the input document at
hand. Consider for example the (XPath or Fxgrep ) pattern //a/b locating b
nodes which have as father an a node. The node 111 is a match in our input.
This can be detected as early as at the location 111, as the events following 111
cannot change the fact of 111 being a match.

The pattern //a[c]/b locates b nodes which have a node a as father and a c
sibling. The node 111 is again a match but this becomes clear only after seeing
that the a parent has also a child c at location 112. One has thus to remember
111 as a potential match between the events 111 and 112. As the events to the
right of 112 cannot change the fact of 111 being a match, 111 can be reported
and discarded at 112.

Finally, as an extreme case consider the (MSO expressible) XPath pattern
/*[not(d)]//* locating all descendant nodes of the root element if this has no
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child node d. Any node in the input is a potential match until seeing the last
child of the root element. In our example all nodes have to be remembered
as potential matches up to the last event 14. Note thus, that any algorithm
evaluating a query needs in the worst case an amount of space linear in the
input size. However, most of the practical queries require a quite small amount
of memory as compared to the size of the input. �

The contributions of this chapter are as follows.

G We introduce a way of defining the earliest detection location of a match
for some given query and input tree.

G The main contribution is proving that matches of grammar queries are
recognizable at their earliest detection location and hereby proving the
following theorem:

Theorem 7.1: Matches of MSO definable queries are recognizable at their
earliest detection location.

G Based on the construction used for proving Theorem 7.1 we give an ef-
ficient algorithm for grammar query evaluation, which reports matches
at their earliest detection point. As a consequence potential matches are
remembered only as long as necessary, meaning that our construction im-
plicitly adapts its memory consumption to the strict requirements of the
query on the input at hand.

G The algorithm has been completely implemented in Fxgrep . We provide
experimental evidence of the practical performance of the algorithm.

This chapter is organized as follows. In section Section 7.1 we briefly
present how a pushdown automaton can be used to answer right-ignoring
queries on streams. The main contribution on query evaluation for XML
streams is given in Section 7.2 where the algorithm is presented and its cor-
rectness, optimality, complexity and performance are addressed. Related work
is discussed in Section 7.3.

In the following let Q = (G, T) be an arbitrary query on input f1 with
G = (Σ, X, R, r0). Further, let A

�
G be the LPA accepting LG constructed as in

Section 4.2.2.

7.1 Right-ignoring Queries
In this section we briefly present the ideas [NS98a, Neu00] which allow the
evaluation of a right-ignoring query Q = (G, T) using the A

�
G LPA. Let us

investigate what are the requirements for Q to be right-ignoring. Consider a
match node π of Q as depicted in Figure 7.2. Since the query is right-ignoring,
all the nodes from the right-context are irrelevant for the decision as to whether
π is a match. That is, π is a match however the right-siblings of π and of every
ancestor of π might look like.

Let us consider that π is the k-th out of m siblings, with m ≥ k. Since π is a
match, according to the definition, there is a derivation labeling the sequence
of siblings containing π with x1 . . . xk . . . xm and xk ∈ T. There is thus a content
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left-
context

right-context

content

f1

π

Figure 7.2: The context and the content of a match

model r j s.t. x1 . . . xk . . . xm ∈ [[r j]]. The fact that the right siblings of π might be
any trees implies that xi must be able to derive any tree, i.e. [[R]] xi = TΣ for all
i = k + 1, . . . , m. Also, as the number of right-siblings might be arbitrary, all of
the above must hold for all m ∈ N with m ≥ k.

To ensure the above there must exist an NFA state yk ∈ Yj reached af-
ter seeing the left siblings of π with yk ∈ Fj and s.t. for all p ∈ N, there are
yk+1, . . . , yp ∈ Fj with (yi, x>, yi+1) ∈ δ j for i = k + 1, . . . , p, where x> ∈ X and
[[R]] x> = TΣ. We call such a yk a right-ignoring NFA state. The non-terminal x>
is to be seen as a wild-card non-terminal which can derive any tree and which is
made available in any forest grammar. The necessity of the above follows from
the fact that no other non-terminal x in the grammar can be s.t. [[R]] x = TΣ, as
in general the alphabet Σ is neither finite nor known in advance1.

Given an NFA state y, we use the predicate rightIgn(y) to test whether y is
a right ignoring state. Testing whether rightIgn(y) holds, can be done statically
by checking in the NFA whether there are cycles visiting y and consisting only
of x> edges, needing thus time linear in the size of the NFA.

Similar considerations have to be made due to the right-ignorance for all
the nodes lying on the path from the root to π . Therefore we need to consider
all the non-terminals with which a derivation defining a match may label the
nodes lying on the path from the match to the root. These are the so-called
match-relevant non-terminals, defined by:

x is match-relevant iff
x ∈ T or x→ a〈r j〉, (y1, x1, y) ∈ δ j and x1 is match-relevant

We call a query Q right-ignoring iff all y ∈ Y with (y1, x, y) ∈ δ and x match-
relevant are right-ignoring. As presented above, testing whether a query is
right ignoring can be done completely statically.

The right-ignorance of Q ensures thus that if the left-context of a match
is fulfilled, then the right-context is also always satisfied. Hence, to check
whether a node is a match, it suffices to look into the forest state in which
A
�
G leaves a node, which synthesizes the information gained after visiting the

left-context and the content of the node, depicted in dark grey in Figure 7.2:

Theorem 7.2: Let qπ be the forest state in which A
�
G leaves a node π . If Q is

right-ignoring then π ∈ MQ, f iff y ∈ qπ , (y1, x, y) ∈ δ for some y, y1 ∈ Y and
x ∈ T.

1We do not consider optimizations possible when the schema of the XML data is available.
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Figure 7.3: Event-driven run of a pushdown forest automaton

The theorem is proven as Theorem 7.4 in [Neu00]. �

To answer queries on XML streams without building the document tree in
memory, it remains to show how a left-to-right pushdown automaton can be
implemented in an event-based manner.

Event-driven Runs of Pushdown Forest Automata
Consider an LPA A

�
G =(2X, 2Y, {q0}, F, Down, Up, Side) as defined in Sec-

tion 4.2.1 and its processing model as depicted in Figure 4.3 (on page 36). The
order in which A

�
G visits the nodes of the input is the order of a depth-first,

left-to-right search, which corresponds exactly to the document-order.
Compare Figure 4.3 (on page 36) and Figure 7.3. At every node π , A

�
G ex-

ecutes one Down transition at the moment when it proceeds to the content of
π and one Up followed by one Side transitions at the moment when it finishes
visiting the content of π . These moments correspond to the start and end tags,
respectively, of the node π . The algorithm implementing the event-driven run
of A

�
G is depicted in Listing 7.1.

We handle the following events:

1. startDoc, which is triggered before starting reading the stream;

2. endDoc, which is triggered after finishing reading the stream;

3. enterNode, which is triggered when a start-tag is read;

4. leaveNode, which is triggered when an end-tag is read.

Listing 7.1: Skeleton for the event-driven run of a pushdown forest automaton
1 Stack s ;
2 F o r e s t S t a t e q ;
3

4 startDocHandler ( ) {
5 q : = q0 ;
6 }
7

8 enterNodeHandler ( Label a ) {
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9 s . push ( q ) ;
10 q : = Down(q, a) ;
11 }
12

13 leaveNodeHandler ( Label a ) {
14 T r e e S t a t e p = Up(q, a) ;
15 q : = Side(s.pop(), a) ;
16 }
17

18 endDocHandler ( ) {
19 i f q ∈ F then output ( " Input accepted . " )
20 e l s e output ( " Input r e j e c t e d . " ) ;
21 }

The stack declared in line 1 is needed in order to remember the forest states
used for the traversal of the content of the elements opened and not yet closed.
The variable q declared in line 2 stores the current forest state during the traver-
sal of the document.

At the beginning, startDocHandler is called and it sets the current state
to the initial state of the automaton (line 5). A start tag triggers a call of
enterNodeHandler which remembers the current state on the stack (line 9) and
updates the current state as result of executing the Down transition (line 10).
An end-tag triggers the corresponding Up transition (line 14), followed by the
Side transition which uses as forest state the last remembered state on the stack,
i.e. the forest state before entering the element now ending (line 15).

The number of elements on the stack always equals the depth of the XML
element currently handled. Hence the maximal height of the stack is the max-
imal depth of the handled XML document, which is in general rather small,
even for very large documents.

Depending on the purpose of the pushdown automaton, other actions can
be performed in the events handler. For the purpose of validation, it must be
checked at the end of the document whether the current state is a final state
(line 18).

For the purpose of answering right-ignoring queries it must be checked
whether the forest state obtained after the side transition has the property
stated in Proposition 7.2. Using the above presented implementation, A

�
G is

thus able to answer right-ignoring queries on XML streams.

7.2 Arbitrary Queries
The previous section only shows how right-ignoring queries can be answered
on XML streams. In this section we lift this limitation by showing how arbitrary
queries can be answered on XML streams.

In the case of non right-ignoring queries, the decision as to whether a node
is a match cannot be taken locally, i.e. at the time the node is left, because there
is still match-relevant information in the part of the input not yet visited. The
decision can only be taken after seeing all of the match-relevant information.

The general situation is depicted schematically in f1 in Figure 7.4 (i). The
node π is a potential match considering its left context and its content (depicted
in dark grey) which can be checked by the time the end-tag of the node is seen.
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Figure 7.4: Right completion of a forest

The decision as to whether this is indeed a match node must be postponed until
seeing the relevant part of the right context (depicted in light grey), which was
empty in the particular case of right-ignoring queries. The location which must
be reached in order to recognize π as a match is denoted as l. We call such a
location l, earliest detection location of the match π , formally defined below.

Earliest Detection Locations
A forest f2 is a right-completion of a forest f1 at location l ∈ L( f1) iff f1 and
f2 consist of the same events until l. (The tree representation of f1 and f2 are
depicted in Figure 7.4). Formally:

f2 ∈ RightCompl f1,l iff prec f1
(l) = prec f2

(l) and lab( f2[π ′]) = lab( f1[π ′])
for all π ′ ∈ prec f1

(l).

with prec f (l) denoting the preceding nodes of a location l ∈ L( f ) in a forest f , de-
fined as prec f (l) = {π | π ∈ N( f ), π < l}, where "<" denotes lexicographical
comparison.

A location l is an early detection location of a match node π for a query Q in
input f1 iff π ∈ MQ, f2 for all right-completions f2 of f1 at l.

A location l is the earliest detection location of a match node π iff l is the
smallest early detection location of π in lexicographic order.

Example 7.2: Reconsider Example 7.1 and the accompanying input depicted in
Figure 7.1 (on page 86). Given the query //a/b, the earliest detection location
of node 111 is 111. As for the query //a[c]/b the earliest detection location
of node 111 is 112. Finally, for the query /*[not(d)]//*, there is no early de-
tection location for any of the match nodes. These matches cannot be detected
until the last location in the input has been reached. �

7.2.1 Idea
We proceed now to the description of the computation performed by our algo-
rithm for evaluating grammar queries on XML streams. This can be seen as a
run of a pushdown automaton changing its state on every XML event.

For the purpose of evaluation we use the stack to remember the following
information for a location l at some nesting level :
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1. q, denoting the progress within the content models to be considered on
the level containing l. This is exactly the forest state in which A

�
G (the

DLPA accepting LG) reaches l;

2. ri, needed for the early detection of matches as presented below;

3. m, storing potential matches which might be confirmed on the current
level, as well as the potential matches accumulated while traversing the
current level up to l.

For 1, we remember the states of the finite automata corresponding to the
content models which are reached considering the content seen so far on the
current level. They are obtained as by performing the transitions of A

�
G .

For 2, we need to know which of the content models considered on the cur-
rent level occur in right-ignoring contexts. A content model for an element e
occurs in a right ignoring context iff there is no content model of an enclos-
ing element whose fulfillment depends on the right context of e. We call such
content models right-ignoring content models.

For 3, we associate potential matches with NFA states from q. A potential
match is associated with a state y at location l iff the match may be defined w.r.t.
derivations in which the word of non-terminals on the current level is accepted
by an NFA run reaching l in state y. The information m can be thus represented
as a partial mapping from NFA states y to the corresponding potential matches
m(y).

Consider our query Q = (G, T) with a forest grammar G = (R, r0). Let
r1, . . . , rp be the regular expressions occurring on the right-hand sides in the
productions R, where p is the number of productions. For 0 ≤ j ≤ p, let A j =
(Yj, y0, j, Fj, δ j) be the NFA accepting the regular string language defined by r j
as obtained by the Berry-Sethi construction. By possibly renaming the NFA
states we can always ensure that Yi ∩Yj = /� for i 6= j. Let Y = Y0 ∪ . . . ∪ Yp
and δ = δ0 ∪ . . .∪ δp.

Initial State

Initially, we start with the NFA start state y0,0 of the start content model r0. The
content model r0 is right-ignoring as there are no enclosing elements. Also,
there are no potential matches detected yet, thus the information initially re-
membered on the stack consists of:

q0 = {y0,0}, ri0 = {r0}, m0 = /�

Start-Tag Transitions

On a start-tag event <a> at location l, new information (q1, ri1, m1) is pushed on
the stack, depending on the information in the current top of the stack (q, ri, m)
as follows.

The possible content models of the current element are computed from the
content models in which the element may occur (as in the case of a Down tran-
sition in A

�
G ). Before seeing any of the children of the current element we are

in the initial NFA state of these content models:

q1 = {y0, j | y ∈ q, (y, x, y1) ∈ δ, x→ a〈r j〉}
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A content model r j considered for the current element l is right-ignoring
if (1) the surrounding content model rk is right ignoring and (2) rk is fulfilled
independently of how the right siblings of l might look like. Condition (1) can
be looked up in ri. To ensure (2) there must be a right-ignoring NFA state y1
reachable after seeing the left siblings of l. Thus:

ri1 = {r j |y ∈ q, (y, x, y1) ∈ δk, x→ a〈r j〉, rk ∈ ri, rightIgn(y1)}

As for the potential matches which might be confirmed while visiting the
content of l, these are the matches propagated so far for which the content of
the current level is fulfilled whatever follows after l. We add l to these potential
matches if it can be derived from a target non-terminal considering its left-
context, and its right-context is irrelevant (that is l’s confirmation as a match
depends thus only on its content).

m1(y0, j) =
⋃{m(y) | y ∈ q, (y, x, y1) ∈ δk, x→ a〈r j〉, rk ∈ ri, rightIgn(y1)}
∪
{l | y ∈ q, (y, x, y1) ∈ δk, x→ a〈r j〉, rk ∈ ri, rightIgn(y1), x ∈ T}

(7.1)

End-Tag Transitions

An end-tag event </a> at location π i(n + 1) signals that the processing of the
sequence of children π i1, . . . , π in is completed and the computation has to re-
turn to the nesting level and advance over the father node π i. The top two
elements on the stack at this moment: (q, ri, m) and (q1, ri1 , m1) store the state
of the computation after seeing the children and the left siblings of π i, respec-
tively. The elements (q, ri, m) and (q1, ri1, m1) are consumed from the stack and
used to compute the new top of the stack (q2, ri2 , m2), reflecting the state after
finishing seeing π i, as follows.

A content model r j is fulfilled by the children of π i iff there is some y2 ∈ q∩
Fj, i.e. an NFA final state for r j is reached after traversing them. It follows that
π i can be derived from symbols x for which there is a production x → a〈r j〉.
The advance in the content models on the level of π i, after seeing π i is obtained
by considering NFA transitions with symbols x from which π i may be derived.
This is completely similar to an Up transition followed by a Side transition in
A
�
G and is summarized by:

q2 = {y1 | y2 ∈ q ∩ Fj, x→ a〈r j〉, y ∈ q1, (y, x, y1) ∈ δ}

As the set of right ignoring content models only depends on the surround-
ing content models, it remains unchanged for a whole nesting level, that is :

ri2 = ri1

As for the potential matches, we have to aggregate the potential matches
from the left-context of π i with those from its content. More precisely, potential
matches defined by an NFA run on the children level are joined with potential
matches from the left context associated with NFA states which are reached in
nesting NFA runs after seeing the father node. The father node, π i is added as
a potential match if it can be derived from a target non-terminal:
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Figure 7.5: Right completion at l and corresponding derivation

m2(y1) = {m(y2)∪m1(y) | y2 ∈ q ∩ Fj, x→ a〈r j〉, y ∈ q1, (y, x, y1) ∈ δ} ∪
{π i | y2 ∈ q ∩ Fj, x→ a〈r j〉, y ∈ q1, (y, x, y1) ∈ δ, x ∈ T}

(7.2)

7.2.2 Recognizing Matches
The construction above allows the location of matches as stated by the follow-
ing theorem:

Theorem 7.3: A location l is an early detection location for a match node π iff
π ∈ m(y), r j ∈ ri and rightIgn(y) for some y ∈ q ∩Y j with (q, m, ri) being the
top of the stack at event l.

The complete proof is given in Appendix A.4. The idea of the proof is described
next.

Let l be an early detection location for a match node π . Let f2 be a right-
completion obtained from f1 by adding on every level from the root to l an
arbitrary number of right siblings ?〈〉 (as depicted in Figure 7.5), where ? is
a symbol not occurring in any of the rules in the grammar. By the definition
of early detection locations there is a derivation f ′2 of f2 in which π is labeled
x for some x ∈ T. Also, since ? does not occur in any rule, f ′2 must label all
the ? nodes with x>. The y with the properties as required by this theorem is
the NFA state in which the location l is reached within the NFA accepting run
corresponding to f ′2.

Conversely, let (q, m, ri) be the top of the stack at event l and let π ∈ m(y),
r j ∈ ri and rightIgn(y) for some y ∈ q ∩ Y j. From π ∈ m(y) it follows that
there is a relabeling of the nodes visited so far in which π is labeled with some
x ∈ T and which might be completed to a whole derivation according to the
grammar G using x> symbols for the not yet visited nodes. The existence of the
completion on the current level follows from rightIgn(y), while the existence
of the completions on the enclosing levels is ensured by the condition r j ∈ ri.

�

As locations are visited in lexicographic order, testing the condition in The-
orem 7.3 ensures that every match π is detected when reaching its earliest de-
tection location. This proves Theorem 7.1.

7.2.3 Implementation
The algorithm implementing the event-driven evaluation of the queries as
above is given in Listing 7.2. We assume that enterNodeHandler and
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leaveNodeHandler receive as an argument, besides the label of the currently
read node, also the currently reached location. For the case in which the cur-
rent location is not provided by the event-based parser, note that it can be easily
propagated along the event handlers in the internal parse-state. The algorithm
basically follows the computation rules given above while sharing the com-
monalities in the rules for q, ri and m. As an abbreviation we use the operator
⊕ to add a new entry or update an existing set entry in a mapping m via set
union.

Listing 7.2: Algorithm for event-driven query answering
1 Stack s ;
2

3 enterNodeHandler ( Locat ion l , Label a ) {
4 ( q , ri ,m ) : = s . top ( ) ;
5 q1 : = ri1 : = m1 : = /� ;
6

7 f o r a l l y ∈ q with (y, x, y1) ∈ δk and x → a〈r j〉
8 q1 : = q1 ∪ {y0, j}
9 i f rightIgn(y1) and rk ∈ ri then

10 ri1 : = ri1 ∪ {r j} ;
11 i f rightIgn(y0, j) then
12 reportMatches ( m(y) ) ;
13 i f x ∈ T then reportMatches ({l} ) endi f
14 e l s e
15 m1 : = m1 ⊕ {y0, j 7→ m(y)} ;
16 i f x ∈ T then m1 : = m1 ⊕ {y0, j 7→ {l}} endi f
17 endi f
18 endi f
19 endfor
20

21 s . push ( ( q1 , ri1 ,m1 ) ) ;
22 }
23

24 leaveNodeHandler ( Locat ion ln , Label a ) {
25 ( q , ri ,m ) : = s . pop ( ) ;
26 ( q1 , ri1 ,m1 ) : = s . pop ( ) ;
27 q2 : = m2 : = /� ;
28 ri2 : = ri1 ;
29

30 f o r a l l y ∈ q1 , y2 ∈ q , y2 ∈ Fj , x→ a〈r j〉 and (y, x, y1) ∈ δk
31 q2 : = q2 ⊕ {y1} ;
32 i f r j ∈ ri then reportMatches ( m(y2) )
33 e l s e
34 m2 : = m2 ⊕ {y1 7→ m(y2)} ;
35 m2 : = m2 ⊕ {y1 7→ m(y)} ;
36 i f x ∈ T then m2 : = m2 ⊕ {y1 7→ {l}} endi f
37 endi f
38 endfor
39

40 s . push ( ( q2 , ri2 ,m2 ) ) ;
41 }
42

43 startDocHandler ( ) { s . push ( ( q0 ,{r0} ,/� ) ) ; }
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44

45 endDocHandler ( ) {
46 ( q ,ri , m ) : = s . pop ( ) ;
47

48 f o r a l l y ∈ q ∩ F0

49 reportMatches ( m(y) ) ;
50 endfor
51 }

Matches are detected when their earliest detection location is reached, i.e. at
the event-handler executed at the immediately preceding location. This might
be the case either at start or at end tags. At start tags (line 12) we report poten-
tial matches for which we know that (a) the right siblings at the current level
are irrelevant (condition rightIgn(y1) tested in line 9); (b) the right siblings of
the ancestors are irrelevant (condition rk ∈ ri tested in line 9) and (c) the content
is irrelevant (condition rightIgn(y0, j) in line 11).

At end tags (line 32) we report potential matches for which the content was
fulfilled (condition y2 ∈ Fj in line 30) and the upper-right context is irrelevant
(condition r j ∈ ri ).

Note that there is no need to propagate a confirmed match π beyond its
earliest detection location l where it is reported. (see tests in lines 11 and 32).

Also, potential matches are discarded implicitly precisely as soon as enough
information is seen in order to reject them. Potential matches m(y) at a loca-
tion l are no longer propagated when y is not involved in the NFA transitions.
This happens at end tag events if there is no transition (y, x, y1) in any of the
possible content models. Also at end tag events, potential matches in m(y)
are discarded if y is not a final state in any of the considered content-models on
the finished level. Thereby matches are remembered only as long as the strictly
necessary portion of the input has been seen in order to confirm them.

Finally, at the end of the input potential matches not yet confirmed and
conforming to the top-level content model (condition y ∈ q ∩ F0 in line 48) are
reported as matches in line 49.

7.2.4 Complexity
Let |D| be the size of the input data, i.e. the number of nodes in it. The size of
a query Q can be estimated as the number of NFA states |Y| plus the number
of non-terminals |X|. Let potmax be the maximum number of potential match
nodes at any given time during the traversal.

For every node in the input enterNodeHandler and leaveNodeHandler is
called once. In enterNodeHandler at π i, the loop starting at line 7 is executed
for every y ∈ q, for every outgoing NFA transition (y, x, y1) and for all content
models r j for x. The size of q is in O(|qmax|), where qmax is the forest state q
with the maximum number of elements. Let cmmax be the maximum number
of content models considered on a level and let outmax be the maximum number
of outgoing NFA transitions from an NFA state. The loop is executed thus up
to |qmax| · outmax · cmmax times.

The set union in line 8 can be computed in time O(|qmax|). The set union
in line 10 needs time O(cmmax). Reporting the confirmed matches additionally
requires time O(potmax). Finally the set unions in lines 15 and 16 necessitate
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again O(potmax) time. A call to enterNodeHandler amounts thus to O(|qmax| ·
outmax · cmmax · (|qmax|+ cmmax + potmax)) time.

In leaveNodeHandler, the loop starting at line 30 is executed in the worst
case, for every y ∈ q1 and every y2 ∈ q, i.e. up to |qmax|2 times. The set union in
line 31 is computed in time O(|qmax|). Reporting the confirmed matches possi-
bly adds O(potmax) time. The set unions in lines 34, 35 and 36 need O(potmax)
time. A call to leaveNodeHandler amounts thus to O(|qmax|2 · (|qmax|+ potmax))
time.

As leaveNodeHandler and enterNodeHandler are called each once for every
node, the overall time complexity of event driven evaluation of queries is thus
in O(|D| · (|qmax| · outmax · cmmax · (|qmax|+ cmmax + potmax) + |qmax|2 · (|qmax|+
potmax))). The values of |qmax|, outmax and cmmax are bounded by values which
do not depend on |D|. Experimental evidence show them to be small, and cor-
respondingly the algorithm scales well with the size of the query as presented
in the next section.

The worst complexity in the size of the document is obtained for potmax =
|D|, in the case where all the nodes are potential matches until the end of the
document. In general, however, the number of potential matches is much less
than the total number of nodes (potmax � |D|) and can be assimilated with a
constant. In this case we obtain a time linear in the size of the document, as
suggested by our experimental results.

As for the space complexity, let d be the depth of the input document.
During the scan of the document we store at each location the (q, ri, m) tu-
ples for all ancestor locations up to the root, which correspond to the opened
and not yet closed elements at the current location. For every level, q has up
to |qmax| elements, m stores up to |qmax| · potmax locations and ri up to cmmax
content models. As all these elements can be stored in constant space and the
height of the stack is at most d, we obtain the worst case space complexity
O(d · (|qmax|+ |qmax| · potmax + cmmax)). Most of the practical queries need only
a small amount of memory, as the information relevant to whether a node is a
match is typically located in the relative proximity of the node (that is potmax is
small).

7.2.5 Experimental Results
The algorithm presented here has been completely implemented in Fxgrep.
Even though many proposals for evaluating XML queries on streams exist,
there are surprisingly few tools publicly available. Furthermore, most of the
proposals for which public implementations exist impose serious limitations
on Core XPath (see Section 7.3 on related work). A more mature implementa-
tion we were able to experiment with was SPEX [OFB04] which covers a large
subset of XPath. As a reference for the in-memory DOM approach we used
Xalan-Java 2.6.0 [Pro05] one of the most popular XSLT processors, which also
provides a command line XPath processor.

We used for our experiments the Protein Sequence Database [PSD], an XML
document of over 700 MB size, containing around 25 million nodes with a max-
imal depth of 7 and an average depth of approximately 5. The experiments
were performed on an Athlon XP 3000+ with 1GB of memory running under
Linux (kernel version 2.6.8).

Even though the querying capabilities of Fxgrep go beyond those of Core
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Fxgrep Spex Xalan
T P R T P R T P R

Q1 29.8 8.7 3.4 9.1 4.1 2.2 15.8 2.5 6.3
Q2 31.9 8.7 3.6 21.2 4.1 5.1 22.0 2.5 8.8
Q3 33.5 8.7 3.8 50.9 4.1 12.4 178.8 2.5 71

Table 7.1: Evaluation times (in seconds) for increasingly complex queries

XPath , for the comparison with other query tools for XML streams we had to
limit ourselves to queries expressible in Core XPath. We used the following
queries:

Q1: As a representative of simple queries, specifying only the path to the
matches, we chose Q1 looking for protein entries containing a reference
with an author element. The query is expressible with the XPath pattern
//ProteinEntry//refinfo/author.

Q2: A slightly more complex query, containing simple structure qual-
ifiers is Q2. The query locates authors of entries, the de-
scription of which contains the word “iron” and s.t. the year
“2000” is mentioned among its references, i.e. the XPath pattern
//ProteinEntry[//description[contains(.,’iron’)]]
//refinfo[//year[contains(.,’2000’)]]//author.

Q3: Finally we use a more complex query Q3 locating authors of proteins con-
taining a reference to the year “2000”, which are followed by two protein
entries, the descriptions of which contain the word “iron”.

Table 7.1 presents the evaluation times for Q1, Q2 and Q3 on a fragment
of the database of 16 MB size. Absolute times are difficult to compare in the
case of tools implemented in different programming languages. Fxgrep and its
underlying parser Fxp are written in SML, while SPEX and Xalan are written
in Java. The SML parser is significantly slower than the Java parsers in the case
of large documents as in our experiment. That is, the events are delivered at
different paces by the parsers used in the three applications. It is a situation
similar to comparing absolute time measurements obtained using CPUs with
different tact frequencies. A sensible way to account for this is to divide the
absolute times by the frequency. Therefore, besides the total time in column T,
we list the parsing time in column P, as well as the relative speed in column R
obtained by dividing the total time by the parsing time.

The absolute times are depicted in Figure 7.6. One remarkable feature of
Fxgrep is that the evaluation time does not significantly depend on the com-
plexity of the query as opposed to the other tools. The reason is the expressive-
ness of the underlying grammar formalism in which adding supplementary
contextual conditions does not significantly change the size of the underlying
grammar. Interestingly enough, Fxgrep performs better even in absolute terms
as the query complexity increases.

The relative times are depicted in Figure 7.7. The numbers denote how
many times slower the query evaluation is as compared to the generation of
the event stream. In Fxgrep around 30 percent of the evaluation time is needed
for generating the stream of events. Fxgrep’s throughput is comparable on
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Fxgrep Spex Xalan
3 MB 9.8 10.2 10.1

16 MB 33.5 50.9 178.8
32 MB 61.8 96.8 614.6

159 MB 338 446 n/a

Table 7.2: Evaluation times (in seconds) for Q3 for increasing document sizes
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Figure 7.8: Scalability with the input size

average with the relative throughput of SPEX and better than what is achieved
in Xalan.

Table 7.2 presents the dependency of the evaluation times on the size of the
document. We chose fragments of the input of increasing sizes and evaluated
query Q3. As depicted in Figure 7.8 (containing the results for 3MB, 16MB
and 32 MB size, respectively) the evaluation time increases linearly for Fxgrep
and SPEX, as opposed to Xalan. This shows that the event-based processing
mode of Fxgrep scales well with the input size, as presented in the complexity
assessment presented in Section 7.2.4.

As for the memory usage, Fxgrep and SPEX need a constant space for all
runs of up to 10 and 15 MB, respectively, including the SML runtime system
and the Java Virtual Machine. As opposed to this, Xalan needs a multiple of
the size of the handled input document. Even a memory space of 1 GB was not
enough for Xalan in order to process the 159 MB large input.

7.3 Bibliographical Notes
A basic task in XML processing is XML validation. The problem of validating
XML streams is addressed by Segoufin and Vianu in [SV02] and Chitic and
Rosu in [CR04]. As mentioned in Section 4.1.3, XML schema languages are
basically regular forest languages, hence conformance to such a schema can be
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checked by a pushdown forest automaton. As presented in this chapter this
can be performed efficiently on XML streams in the event-based manner.

Many research works deal with querying of XML streams. Most of them
consider subsets of XPath. Some of them deal with XQuery, which in fact is
more than a querying language as it allows the transformation of the input.
In the following we are mainly interested in the querying capabilities of the
considered languages.

Conventional attribute grammars (AG) and compositions thereof are pro-
posed by Nakano and Nishimura in [NN01] as a means of specifying tree
transformations. An algorithm is presented which allows an event-driven
evaluation of attribute values. Specifying transformations, or in particu-
lar queries, using AG is however quite elaborate even for simple context-
dependent queries and AG are restricted to use attributes of non-terminal sym-
bols at most once in a rule. Also as no stack is used input trees have to be
restricted to a maximum nesting depth.

More suited for XML are attribute grammars based on forest grammars as
considered in XML Stream Attribute Grammars (XSAGs) [KS03] and Trans-
formX [SK05]2. A restricted form of attribute forest grammars is considered
which allows the evaluation of attributes on XML streams. The attribute gram-
mars have to be L-attributed, i.e. to allow their evaluation in a single pass in
document-order. Another necessary restriction is that the regular expressions
in productions are unambiguous, as in the case of DTDs. This ensures that ev-
ery parsed element corresponds to exactly one symbol in the content model
of the corresponding production, which allows the unambiguous specification
and evaluation of attributes. While XSAGs are targeted at ensuring scalabil-
ity and have the expressiveness of deterministic pushdown transducers, the
TransformX AGs allow the specification of the attribution functions in a Turing-
complete programming language (Java). In both cases, for the evaluation of the
attribute grammars pushdown transducers are used. The pushdown transduc-
ers used in TransformX [SK05] validate the input according to the grammar in
a similar manner to the pushdown forest automata. Additionally, a sequence
of attribution functions is generated as specified by the attribute grammar. A
second transducer uses this sequence and performs the specified computation.
For the identification of the non-terminals from which nodes are derived in the
(unique) parse tree, as needed for the evaluation of the AGs in [KS03, SK05],
pushdown forest automata can be used. The unambiguousness restriction of
the attribute forest grammars allows one to proceed as in the case of right-
ignoring queries presented in Section 7.1. That is, the non-terminal correspond-
ing to the current node can be directly determined from the (single) NFA state
in the current forest state, as it does not depend on the events after the current
one.

A number of approaches handle the problem of querying XML streams in
the context of selective dissemination of information (SDI), also known as XML
message brokering [CDTW00, AF00, DFFT02, DF03, ACGG+02, GMOS03,
GS03, CFGR02]. In this scenario a large number of users subscribe to a dissem-
ination system by specifying a query which acts like a filter for the documents
of interest. Given an input document, the system simultaneously evaluates all
user queries and distributes it to the users whose queries lead to at least one

2In these works forest grammars are called extended regular tree grammars.
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match. Strictly speaking, the queries are not answered. The documents which
contain matches are dispatched but the location of the matches is not reported.
XFilter [AF00] handle simple XPath patterns, i.e. without nested XPath pat-
terns as filters. These can be expressed with regular expressions, hence they
are implemented using finite string automata. YFilter [DFFT02] improves on
XFilter by eliminating redundant processing by sharing common paths in ex-
pressions. More recently, in [DF03], the querying capabilities are extended to
handle filters comparing attributes or text data of elements with constants and
nested path expressions are allowed to occur basically only for the last location
step. Green et al. [GMOS03] consider regular path expressions without filters.
It is shown that a lazy construction of the DFA resulting from multiple XPath
expressions can avoid the exponential blow-up in the number of states for a
large number of queries. XPush [GS03] also handles nested path expressions
and addresses the problem of sharing both path navigation and predicate eval-
uation among multiple patterns. XTrie [CFGR02] considers a query language
which allows the specification of nested path expressions and, besides, an or-
der in which they are to be satisfied. Even though Fxgrep is not targeted at
SDI, note that it basically exceeds the essential capabilities of all previously
mentioned query languages.

There are a number of approaches in which queries on XML streams are
answered by constructing a network of transducers [LMP02, PC03, OFB04,
Feg04]. A query is there compiled into a number of interconnected transduc-
ers, each of them taking as input one or more streams and producing one or
more output streams by possibly using a local buffer. The XML input is de-
livered to one start transducer and the matches are collected from one output
transducer. The query language of XSM [LMP02] handles only XPath patterns,
without filters and deep matching (//), but allows instead value-based joins.
XSQ [PC03] deals with XPath patterns in which at most one filter can be spec-
ified for a node and filters cannot occur inside another filter. The filters only
allow the comparison of the text content of a child element or an attribute with
a constant. SPEX [OFB04] basically covers Core XPath. Each transducer in
the network processes the input stream and transmits it augmented with com-
puted information to its successors. The number of transducers is linear in the
query size. The complexity of answering queries depends on whether filters
are allowed and is polynomial in both the size of the query and of the input.
XStreamQuery [Feg04] is an XQuery engine based on a pipeline of SAX-like
event handlers augmented with the possibility of returning feedback to the
producer. The strengths of this construction are its simplicity and the ability
to ignore irrelevant events as soon as possible. However, the approach only
handles the child and descendant axes as yet.

FluXQuery [KSSS04] extends a subset of XQuery with constructs which
guide an event-based processing of the queries using the DTD of the input.
FluXQuery is used within the StreamGlobe project which is concerned with
query evaluation on data streams in distributed, heterogeneous environments
[SKK04]. STX [Bec03] is basically a restriction of the XSLT transformation lan-
guage to what can be handled locally by considering only the visited part of
the tree and selecting nodes from the remaining part of the tree. Sequential
XPath [Des01] presents a quite restricted subset of XPath, handling only right-
ignoring XPath patterns, which can be implemented without the need of any
buffering. TurboXPath [JFB05] introduces an algorithm for answering XPath
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queries containing both arithmetic and structural predicates and which is nei-
ther directly based on finite automata nor on transducer networks. The dy-
namic data structure WA (work array), used to match the document nodes has
certain similarities with our construction. Entries are added in the WA upon
each start-tag event for each sub-pattern to which the children must conform,
which roughly correspond to a Down transition of the LPA. Matches of the
sub-patterns are detected upon end-tag events by AND-ing the fulfillment of
the sub-patterns by the children, similarly to an Up transition. Side transitions
are not needed as the pattern language does not impose any order on the chil-
dren nodes. In this perspective the context information is optimally used, as
in our case, by a combination of top-down and bottom-up transitions. Recent
work by Bar-Yossef et al. [BYFJ04], indicates that the space requirement for the
TurboXPath approach is near the theoretical optimum for XPath queries.
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Chapter 8

Introduction

One of the main advantages of encoding information in XML format is that
it offers a platform-independent representation suitable for information ex-
change between applications. XML is often deemed the “de facto standard
for data exchange in Internet”. XML documents used in information exchange
are intermediate representations which have to be transformed by the com-
municating entities into their internal formats. Transforming XML documents
is therefore a task to be accomplished by any application which uses an XML
communication interface.

Also, XML documents used as a permanent rather than temporary rep-
resentation are frequently transformed to other different formats. In this us-
age scenario, an XML document typically stores some information content,
which is transformed to different layout formats for different presentation pur-
poses, e.g. HTML for presence on the Internet, PDF for printed media, WML
for mobile telephones, and so on. This usage scenario has coined the term
“stylesheet” for XML transformations, as these can be considered style indica-
tions to be followed in order to present the informational content in the speci-
fied layout.

Transforming is thus a task inherently related with XML processing, both
for XML as transient and as permanent information representation. Corre-
spondingly, many proposals exist as to how this could be best accomplished
in different usage scenarios.

A straightforward possibility is to use already available general purpose
programming languages to perform the desired transformation tasks. As ev-
ery general purpose programming language can be used to perform any com-
putable transformation, a programmer can choose in principle his favorite lan-
guage. As the programmer has total control over the computation to be per-
formed, this approach has the advantage that the application can be tailored
for optimally performing the task at hand.

Many libraries exist to support XML processing in most of the program-
ming languages, e.g. Java, C, C#, SML, Caml, Haskell and many others. More-
over, in order to support the seamless integration and interchangeability of
XML libraries, efforts have been made to standardize their functionality, for
example SAX [SAX98] and XMLPull [XML98b] for parsing, or DOM [DOM98]
for representing and accessing XML documents. The predetermined syntax
of the general purpose programming languages however makes even simple
transformations tedious to write or understand. Moreover, non-programmers
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are precluded from specifying even very simple transformations using this ap-
proach. This is a serious limitation as XML processing has to be performed by
increasingly many non-programmers.

Rather than using general purpose programming languages, it is thus
preferable to have languages dedicated to XML processing, in particular for
XML transformations. They typically offer the convenience of an XML suit-
able syntax which allow for more concise and, for the most part, more intu-
itive specifications. Ideally, they should allow the convenient specification of
simple transformations, while offering the whole power of a general purpose
programming language for more elaborate transformations.

The most prominent transformation languages dedicated to XML available
at this time are XSLT [XSL99] and XQuery [XQu05a], both proposed by the
W3C consortium. Rather than imperative, as are the most used programming
languages, XSLT and XQuery are intended to be declarative languages in or-
der to provide a more intuitive way of specifying transformations. XSLT is
a W3C Recommendation released in 1999 and as a rule-based transformation
language is accessible even to non-programmers. Support for XSLT is already
available in most modern Web browsers, where it may be used for formating
Web pages stored as XML documents. XQuery, at the time of writing still a
W3C Working Draft, is similar in syntax and style to the relational query lan-
guage for databases SQL, and is targeted more at programmers. While XQuery
continuously increases its importance, it will probably not replace the need for
rule-based stylesheet languages like XSLT.

XSLT’s and XQuery’s goal of declarativeness is however only partially
achieved due to their dependence on XPath as a sub-language for address-
ing nodes of interests. Rather than specifying what are the properties of the
nodes to be selected, XPath specifies how to navigate within the input in order
to reach them.

We therefore chose to develop a new XML transformation language, Fxt ,
which uses the declarative querying capabilities presented in the previous part.
The contributions presented in this second part are as follows.

Fxt: a declarative, rule-based XML transformation language In the con-
struction of Fxt we build upon the Fxgrep pattern language introduced in
Chapter 3. Fxt uses the expressiveness of Fxgrep patterns to allow for intu-
itive rule-based transformations. Simultaneously it allows the usage of the full
power of a general purpose programming language, SML [MTHM97, SML05],
by making possible the integration of SML code into Fxt transformations.

Binary queries for rule-based transformations Querying is, as mentioned, at
the base of transformation languages. Traditionally, transformation languages
use only unary queries, as for example XPath patterns in XQuery and XSLT.
The nodes identified by a unary query are obtained by evaluating the query
in the context of a given node. This context node is often in turn identified by
another unary query. For example, in rule-based languages a match pattern
identifies the nodes on which a rule is applicable. When the rule is applied
on such a node, a select pattern is typically used to locate nodes of interest in
the context of this node. The current node together with each selected node
are elements of a binary relation. This relation can be specified in the global
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context of the root node via a binary query. This is easily possible, because the
context nodes are always identified in the global context of the root. As Fxgrep
is able to express binary queries, we may use its binary patterns as a a means
of selection in Fxt. Rather than explicitely specifying how to navigate from the
context node in order to reach the nodes to be selected, as for example with
XPath select patterns, we indicate where are these nodes located in the global
context. This is in our view another improvement in terms of declarativeness.
Moreover, since binary queries can be efficiently implemented as presented in
Section 5.3, it turns out that using binary queries can mean an important gain
of efficiency, as shown in Fxt.

Binary queries for other approaches to XML transformations While binary
queries are especially suited as a means of selecting in rule-base transforma-
tions, they can be also very useful in the implementation of other approaches to
XML transformations. A typical usage of queries, for instance, is to iterate over
the set of nodes located by one unary query q1 and use a second unary query q2
to associate each node n1 selected by q1 with the set of nodes selected by q2 in
the context of n1. This is for example the case in XQuery where nodes from the
input XML data are selected via an XPath pattern in the context of nodes pre-
viously selected by another XPath pattern. Given the similarities with the use
of match and select patterns in rule-based transformations, we suggest how
binary queries can be similarly employed in these cases to support efficient
implementations.

This part is organized as follows. The basic capabilities of Fxt are intro-
duced in Chapter 9. In Chapter 10 we show by means of Fxt how binary queries
can be used for efficient and declarative rule-based XML transformations. Im-
plementation issues for Fxt are discussed in Chapter 11. Also, we present
experimental results assessing Fxt’s performance as compared to established
XML transformation tools. In Chapter 12 we relate Fxt to the other transforma-
tion languages proposed for XML, including the standardized languages XSLT
and XQuery. We compare them with Fxt in terms of expressiveness and present
how the ideas used in Fxt can be put to work in their implementation.
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Chapter 9

A Primer for Fxt

In this chapter we introduce Fxt 1, a rule-based XML transformation language
constructed on top of the querying capabilities presented in the first part of the
work. On the one hand, we want to provide the non-specialist user with a tool
by which transformational ideas can be expressed conveniently, i.e., without
resorting to a general-purpose programming language. Therefore we choose
the intuitive and comfortable rule-based approach to XML transformations.
On the other hand, however, we also want to support XML processing for
functional programmers. For this we allow the formulation of more elaborate
transformations to be flexibly achieved by hooks provided to the full function-
ality of the SML programming language.

Our three main design goals are:

G to allow the specification of the intended transformations as declarative
as possible;

G to provide only primitives, in particular for pattern matching, which can
be implemented efficiently;

G to allow maximal flexibility by fully integrating an external programming
interface.

In the rest of this chapter we present the basic capabilities of Fxt. It is mainly
meant as a primer to the specification language of Fxt XML transformations,
which we call again Fxt. For convenience, we use in the following the term Fxt
transformation or stylesheet to denote the specification of an XML transforma-
tion in Fxt.

9.1 The Transformation Model of Fxt
XML transformation tools typically expect a transformation specification and
some XML input, and produce the specified output as depicted in Figure 9.1.
Fxt can be used in this manner as exemplified below.

1Fxt is an acronym for “the functional XML transformer”, where “functional” denotes that Fxt
is written in a functional programming language (SML).

111
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Figure 9.1: The interpreter approach to XML transformations
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Figure 9.2: Fxt as compiler of XML transformations

Example 9.1:
An XML input file input.xml is transformed by Fxt into an output file

output.xml as specified in a stylesheet located in a file transform.tf by the
following command:

> fxt -i input.xml -o output.xml transform.tf

�

Fxt achieves this by compiling the specification of the XML transformation
into an XML transformer as depicted in Figure 9.2. The generated transformer
can be subsequently used to transform an XML input document as specified.
The output of a transformation typically is an XML document, but in general
may be some arbitrary content.

Obviously, the advantages of this approach are those of a compiler over
an interpreter, namely that the specification is processed only once, indepen-
dently of how many times the transformation is applied on different input
documents. It is convenient to proceed in this manner especially in XML pro-
cessing where typically the same transformation is meant for a whole class of
documents rather than for a single one.

Example 9.2: Given an Fxt transformation specified in a file transform.tf, the
compilation of the transformation is achieved by executing:

> fxt transform.tf

As a result, a transformation program is generated and compiled to machine
code. The specified transformation can be subsequently achieved by executing
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Figure 9.3: Phases of an XML transformation

the generated code on some XML input data. For instance, applying the trans-
formation on an XML input file input1.xml to produce output file output1.xml
is performed by:

> transform.sh -i input1.xml -o output1.xml

The same transformation can be invoked repeatedly for example to transform
a file input2.xml to a file output2.xml by:

> transform.sh -i input2.xml -o output2.xml

�

9.2 Rule-based Transformations
In the rule-based approach, a transformation is specified by a set of rules. Each
rule consists of a match pattern (the where) identifying subtrees from the input to
which the rule is potentially applicable and a corresponding action specifying
how to transform these subtrees (the what). An action constructs a piece of XML
content – typically by using parts of the matching subtree and by selecting
further subtrees from the input and recursively applying the transformation
rules on them. We use the term current tree to denote the subtree on which a
rule is applied.

The result of a transformation is given by executing the action associated
with the first match pattern in the specification fulfilled by the root of the input
document.

It is worth emphasizing that the applicable rules for a subtree do not de-
pend on the rule in which the subtree was selected for recursive processing, but
only on the match-pattern fulfilled by the subtree in the global context. Con-
sequently, the applicable rule for a subtree is determined solely by the match
patterns fulfilled by the subtree in the input tree. Correspondingly, finding
out which are the applicable rules can be done before actually performing the
transformation by evaluating the match patterns on the input tree as depicted
in Figure 9.3.

We may therefore think of such a transformation as consisting of two phases
(see Figure 9.3). In the first phase, the pattern matching phase, a pattern
matcher annotates each node of the input tree with the fulfilled matched pat-
terns. In the second phase, the transformation phase, the annotations are used
as a guide to what actions are to be taken when the subtrees are to be trans-
formed.

Fxt uses as match patterns the Fxgrep patterns introduced in Section 3.
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Example 9.3: As a simple example of a rule-based transformation, consider the
following Fxt transformation, which given an XML document, produces an
HTML list of titles of the sections in the document. Note that the specification
of the XML transformation to be generated by Fxt is itself given as an XML
document.

Fxt Example 1

< f x t : spec >
< f x t : pat >/∗</ f x t : pat >

<ul >
< f x t : apply/>

</ul >

< f x t : pat >// s e c t i o n / t i t l e /""</ f x t : pat >
< l i >

< f x t : current/>
</ l i >

< f x t : pat >defaul t </ f x t : pat >
< f x t : apply/>

</ f x t : spec >

Here, the elements fxt:pat contain the match patterns of the rules, whereas
the action parts span from their triggering pattern to the following fxt:pat el-
ement (or the end). In the given example, the topmost element of every doc-
ument to be transformed matches the first pattern, i.e., /*. The corresponding
action specifies that the result must be an element of type ul (which stands for
“unordered list”), the content of which is given by recursively transforming
the content of the topmost element. The second rule says, that whenever text
is found inside the title element of a section, a new li (which stands for
“list item”) element should be created the content of which is the matched text.
The rule for the default pattern says that otherwise, the transformation should
simply proceed to the subtrees in the content of the current subtree. �

9.3 Fxt Basic Constructs
Many usual transformations can be achieved by using a small number of prim-
itive constructs that we introduce in this section.

9.3.1 Literal XML Output
Choosing an XML syntax for specifications has the advantage that XML ele-
ments which are to appear literally in the output, as well as the nested structure
of the XML output to be produced, are directly reflected in the Fxt specification.

For that matter, anything appearing in the action part of a rule which is not
an element prefixed by fxt: is to be exactly reproduced in the output of the
transformation. Elements prefixed by fxt: are reserved for specifying other
specific Fxt actions.

Example 9.4: Consider the following transformation:

Fxt Example 2
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< f x t : spec >
< f x t : pat >/∗</ f x t : pat >

<html>
<head>

< t i t l e >Example</ t i t l e >
</head>
<body>
</body>

</html>
</ f x t : spec >

The generated transformation produces for any XML document (whose
root is matched by the pattern /*) an empty HTML document as below:

XML Example 14

<html>
<head>

< t i t l e >Example</ t i t l e >
</head>
<body>
</body>

</html>

�

The previous example transformation is not especially useful, as the input
does not influence how output is produced. For a reasonable transformation
we typically will need to copy portions of the input document or recursively
apply the transformation rules on subtrees of the input document.

9.3.2 The Default Action
If a default pattern is not specified, an action is added by default. The default
action is to be performed when the transformation is applied on a subtree that
does not match any specified pattern. The default action produces a subtree
that has the root of the matched subtree as its root and the result of applying
the transformation on the content of the matched subtree as its content. This
ensures that a node from the input which conforms to a match pattern of a rule
is processed by the action of that rule (even) if its ancestors do not conform to
any match pattern.

Example 9.5: The following specification uses an explicit action and the default
action to generate a transformation where all italic elements are replaced by
i elements containing the text “Hello!”:

Fxt Example 3

< f x t : spec >
< f x t : pat >// i t a l i c </ f x t : pat >

<i >Hello !</ i >
</ f x t : spec >

For the following XML document:

XML Example 15

<doc>
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< i t a l i c >Some t e x t wr i t ten in i t a l i c </ i t a l i c >
<bold >

< i t a l i c >Some t e x t wr i t ten in bold−i t a l i c </ i t a l i c >
</bold >

</doc>

the generated transformation produces:

XML Example 16

<doc>
<i >Hello !</ i >
<bold >

<i >Hello !</ i >
</bold >

</doc>

�

9.3.3 Explicitly Applying the Transformation Rules
One of the fundamental constructs of rule-based transformation is recursive
transformation. Recursive application of the transformation allows one to
specify within a rule that the output to be produced when processing a node
by that rule is obtained by applying the transformation rules on a set of nodes
selected in the context of the processed node.

This is achieved in Fxt by the fxt:apply element. fxt:apply produces a
sequence of subtrees by concatenating the results of recursively applying the
transformation on the children of the current subtree.

Example 9.6: The transformation specified in the previous subsection replaced
italic elements by i elements with some fixed content. Now we want to have
the italic elements replaced by i and bold elements replaced by b. Rather
than some fixed content, we want the content of the i and b elements to be ob-
tained by applying the transformation rules on the content of the correspond-
ing italic and bold elements respectively. This is specified as follows:

Fxt Example 4

< f x t : spec >
< f x t : pat >// i t a l i c </ f x t : pat >

<i >< f x t : apply/></i >

< f x t : pat >//bold </ f x t : pat >
<b>< f x t : apply/></b>

</ f x t : spec >

The same input file in XML Example 15 is now transformed to:

XML Example 17

<doc>
<i >Some t e x t wr i t ten in i t a l i c </i >
<b>

<i >Some t e x t wr i t ten in bold−i t a l i c </i >
</b>

</doc>
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The transformation starts at the root element doc. As doc does not match
any of the specified match patterns, the default rule produces a doc element,
the content of which is obtained by applying the transformation rules on its
content. Transforming the first italic child which is matched in the original
input by the pattern //italic produces an i element, the content of which
is obtained by applying the transformation rule on the content of the italic
node, i.e. on the text node “Some text written in italic”. This text node
does not match any match pattern and thus the result of transforming it by the
default rule is a copy of it. The bold child of doc matches the pattern //bold
and is thus transformed to a b, the content of which is given by applying the
transformation rules on the content of the bold element. The content of the
bold element is an italic element which is transformed similarly to the first
italic element. �

Note again that the way a node from the input is transformed by the trans-
formation rules depends only on the match pattern that this node matches
when considered in the input, i.e., does not depend on the location where the
node was selected for recursive transformation.

9.3.4 Explicitly Selecting Nodes for Recursive Transformation
The set of nodes on which a transformation is to be recursively applied as spec-
ified by an element fxt:apply is by default formed from the children of the
current element. In general, however, it is possible to explicitly select the set
of nodes by specifying a select pattern. The set of nodes selected is the set of
nodes located by the pattern in the current subtree. The selected subtrees are
processed in the order in which they appear in the input. A select pattern can
be specified via a select attribute of the fxt:apply element. Select patterns
can be arbitrary Fxgrep patterns.

Example 9.7: Consider the following transformation:

Fxt Example 5

< f x t : spec >
< f x t : pat >//sec t ion </ f x t : pat >

<ol >
< f x t : apply s e l e c t ="//example"/>

</ol >

< f x t : pat >//example </ f x t : pat >
< l i >

< f x t : apply/>
</ l i >

</ f x t : spec >

This transformation produces for each section an HTML ordered list of the
examples occurring in that section. The fxt:apply with select attribute in the
first rule tells that when a section element is processed, an ol (which stands
for “ordered list”) element must be produced. The content of the ol element
is obtained by applying the transformation on the example descendants of the
current section element. When such a descendant is transformed, as specified
by the second rule, an li element is to be produced. The content of the li ele-
ment is given by recursively transforming the children of the example element.

�
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It is worth noting that, while match patterns are evaluated once and for all
in the input tree, select patterns are to be evaluated in the current subtree.

9.3.5 Copying Nodes from the Input
Observe that, by the default rule, when a node is transformed and none of its
descendants are matched by some match pattern, the outcome in the output is
a copy of the node. This is the case for instance in Fxt Example 5 with example
elements (assuming that examples themselves do not contain sections or other
examples). Example elements could thus be directly copied rather than recur-
sively transformed as specified by fxt:apply. The content of an element can
be copied by using the element fxt:copyContent as below:

Example 9.8:

Fxt Example 6

< f x t : spec >
< f x t : pat >//sec t ion </ f x t : pat >

<ol >
< f x t : apply s e l e c t ="//example"/>

</ol >

< f x t : pat >//example</ f x t : pat >
< l i >

< f x t : copyContent/>
</ l i >

</ f x t : spec >

�
By default, fxt:copyContent copies the children of the current node. Sim-

ilarly as with fxt:apply, one can explicitly specify other descendants to be
copied by providing a select pattern as the value of the attribute select.

Example 9.9: The following transformation produces for any section element
in the input the collection of all example-elements in the section grouped under
an element examples:

Fxt Example 7

< f x t : spec >
< f x t : pat >//sec t ion </ f x t : pat >

<examples >
< f x t : copyContent s e l e c t ="//example"/>

</examples >
</ f x t : spec >

�

9.3.6 Decomposing and Building up
XML input content can be decomposed into its parts, e.g., an element into the
element tag and element attributes, text content, and these parts can be inde-
pendently used to build up the output.

When the current node is an element, fxt:copyType for example produces
an element with the same tag as the current element and the content of which
is given by the content of the fxt:copyType element.



CHAPTER 9. A PRIMER FOR FXT 119

Example 9.10: The following specification generates a transformation which
embeds all elements having an attribute importance with a value of “great” in
bold elements:

Fxt Example 8

< f x t : spec >
< f x t : pat >//∗[@importance =" great "] </ f x t : pat >

<bold >
< f x t : copyType>

< f x t : apply/>
</ f x t : copyType>

</bold >
</ f x t : spec >

The following input:

XML Example 18

<manual>
<ch>Unpacking</ch>
<ch importance=" great "> Before you begin </ch>
<ch>Troubleshooting</ch>

</manual>

is transformed by the generated transformation to:

XML Example 19

<manual>
<ch>Unpacking</ch>
<bold >

<ch>Before you begin </ch>
</bold >
<ch>Troubleshooting</ch>

</manual>

�
An action fxt:copyAttributes copies the attribute of the current element

into the set of attributes of the surrounding element in the output document.
fxt:addAttribute adds an attribute to the set of attributes of the surrounding
element in the output.

Example 9.11: The transformation:

Fxt Example 9

< f x t : spec >
< f x t : pat >//a/b</ f x t : pat >

<B>
< f x t : copyAttr ibutes/>
< f x t : addAttr ibute name="sonOf " val ="a"/>

</B>
</ f x t : spec >

replaces b elements having an a father by B elements having the same set of
attributes and a supplementary attribute sonOf with value “a”. �

In addition to adding an attribute, it is possible to remove an attribute or
change its value. Furthermore, a set of useful shortcuts are provided for groups
of basic constructs which are frequently combined in the same way, as for ex-
ample:
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G fxt:current to get an exact copy of the current subtree;

G fxt:copyTag to produce an element with the same tag and the same at-
tributes as the current element;

G fxt:copyTagApply to produce an element with the same tag, the same
attributes as the current element and a content obtained as the concate-
nation of the subtrees resulting from recursively applying the transfor-
mation on the content of the current element.

9.4 Interfacing with the SML Programming Lan-
guage

Many of the standard transformation tasks should be expressible by the con-
structs as introduced so far. However, not all potential needs, especially of
more elaborated XML processing, are foreseeable. In order to meet them as
well, we embedded into Fxt an escape mechanism into the full programming
language SML. In order to do so in a clean way, an interface is needed which
abstracts from the implementation details of documents.

As mentioned in Chapter 7, there are two main types of interfaces: tree-
based and event-based. While event-based interfaces are well-suited for one-
pass applications, tree-based interfaces also support applications that need
multiple passes over the input, as generally needed for XML transformations.
In the tree-based case, an abstract data type is specified. The most commonly
used is the Document Object Model (DOM) [DOM98]. Though claiming to be
designed for any programming language, the DOM is committed to the object-
oriented paradigm: it defines class interfaces for accessing XML documents.
Also, it views the document tree as a graph within which arbitrary navigation
is possible. Different interfaces are needed for XML processing in functional
programming languages. We briefly present one in the next section.

9.4.1 The Functional Document Model
For SML and its specific use with Fxt, we provide a programming interface
called FDM (Functional Document Model).

One practical problem of SML here is that XML documents may contain
any legal Unicode character [Con96], while SML supports only 8-bit characters
and has no notion of Unicode. Therefore a Unicode library is provided inside
FDM declaring types for the Unicode characters and strings, along with basic
functions for manipulating them, as well as conversion functions from and to
SML strings.

The types Tree and Forest are provided as abstractions of XML trees and
forests, respectively. Functions are provided for testing the type or content of
a node, for accessing its constitutive parts and for constructing different node
types. Basic functionality is supplied for transforming forests, e.g., for map-
ping, successive composition (folding), filtering, sorting or outputting trees or
forests. The functional concept of higher-order functions makes it possible to
elegantly obtain complex processing from combining basic functions provided
by the FDM.
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The FDM is completely presented in Appendix B. An excerpt from the FDM
interface is presented below:

Example 9.4.1:

signature FDM =
sig

type Tree
type Forest = Tree vector
...

(* testing type and content *)
val isElement : Tree -> bool
val isText : Tree -> bool
val hasElementType : Unicode.Vector -> Tree -> bool
val hasTextContent : Tree -> bool
val hasAttribute : Unicode.Vector -> Tree -> bool
...

(* constructing node types *)
val element : Unicode.Vector -> Attribute list

-> Tree vector -> Tree
val text : Unicode.Vector -> Tree
...

(* accessing constitutive parts *)
val getElementType : Tree -> Unicode.Vector
val getTextContent : Tree -> Unicode.Vector
val getAttribute : Unicode.Vector -> Tree

-> Unicode.Vector
...

(* transforming forests *)
val map : (Tree -> ’a) -> Forest -> ’a vector
val foldl : (Tree * ’a -> ’a) -> ’a -> Forest

-> ’a
val deleteAll : (Tree -> bool) -> Forest -> Forest
val deleteFirstN : int -> (Tree -> bool) -> Forest

-> int * Forest
val filterFirst : (Tree -> bool) -> Forest -> Tree
...

(* outputting *)
val putTree : Tree -> string -> string option

-> unit
val putForest : Forest -> string -> string option

-> unit

end

The names of the FDM functions are mostly self-explanatory. filterFirst, for
example, is a function which expects a predicate over trees as its first argument
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and a forest as the second argument. It returns the first tree in the forest sat-
isfying the predicate. Consider the call filterFirst hasTextContent where
hasTextContent tests whether a node has plain text content. Then a function is
returned which takes a forest and returns the first tree in the forest having only
text content.

In the call filterFirst (hasElementType (String2Vector "alfa")),
(String2Vector "alfa") returns the Unicode string alfa. The application
of hasElementType to this Unicode string returns a predicate testing whether
a tree has the specified type. The application of filterFirst returns thus a
function which takes a forest and returns the first tree in the forest having
element type alfa.

9.4.2 Embedding SML Code into Transformations
SML code is embedded into an Fxt specification via special attributes of Fxt
actions. The values for these attributes are SML expressions. Their evaluation
can provide XML content to be used in the output, predicates for filtering XML
forests, or even functions for application onto document components. Access
to the input is provided via the reserved name current which provides a han-
dle to the node being currently transformed.

9.4.2.1 Computing Names

Rather than only fixed names or names available in the input, Fxt transfor-
mations offer the possibility of producing names with computed content. The
computed content can be specified in general as an SML expression.

Example 9.12: The following transformation replaces every element name con-
taining more than six characters by its first six characters:

Fxt Example 10

< f x t : spec >
< f x t : pat >//∗</ f x t : pat >

< f x t : tag
f x t : name= ’

l e t
val name = getElementType current

in
i f Vector . length name > 6 then Vector . e x t r a c t ( name, 0 ,SOME 5 )
e l s e name

end’ >
< f x t : apply/>

</ f x t : tag >
</ f x t : spec >

The fxt:tag outputs an element whose name is given as the value of an
attribute fxt:name, which must be an SML expression evaluating to a Unicode
string. The reserved name current always refers to the current subtree. Thus,
getElementType current returns the name of the current element as a vector
of characters. The content of the output element is given by the content of the
fxt:tag element, which, in this case, applies the transformation on the children
nodes. �
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Furthermore, it is possible to output processing instructions with some
computed names for the processor or the data parts, as well as text nodes with
some computed value.

9.4.2.2 Conditional Processing

It is sometimes desirable that a rule produces some output only when the cur-
rent node fulfills some condition which is not expressible by the match pattern.
For this purpose, Fxt provides an fxt:if element which can be used if output is
to be produced only when a condition is satisfied. The condition must be spec-
ified as the value of an attribute test and must evaluate to an SML boolean.

Example 9.13: A most superstitious user might want to avoid elements with
a prime number of children by adding one extra dummy child. Then she could
use, e.g., the following transformation:

Fxt Example 11

< f x t : spec >
< f x t : pat >//∗</ f x t : pat >

< f x t : copyTag>
< f x t : apply/>
< f x t : i f

t e s t = ’
l e t fun prime i = i f i =0 then f a l s e

e l s e L i s t . a l l ( fn j = > i mod j >0)
( L i s t . t a b u l a t e ( i div 2 , fn x = > x +2) )

in prime ( Vector . length ( sons current ) ) end’ >
<dummy/>
</ f x t : i f >

</ f x t : copyTag>
</ f x t : spec >

The boolean SML expression given as the value of the test attribute defines
the auxiliary function prime, which is then used to check whether the number
of children of the current element (Vector.length (sons current)) is prime.

�

9.5 Storing Intermediate Results: Variables
In order to access information obtained earlier during the transformation, it
would be nice to have the possibility of simply storing certain data for later
use. Therefore, we decided to include a notion of global variables into Fxt .

Example 9.14: As a simple example of the use of Fxt variables, consider an in-
put document in which consecutive repetitions of the same XML content are
avoided by using a special place-holder denoting previously defined content.
Now, a transformation should process the XML input and replace the defini-
tion as well as the place-holder elements by the result of processing this XML
content according to some specified rules. Suppose the XML content whose
repetition is avoided is enclosed in an def element whereas the place-holder is
the lastdef element.

Fxt remembers the result of processing the last def element in a variable
with name “res”. This value then just has to be looked up when transforming
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subsequent lastdef elements. A variable is declared using the fxt:global
element before the first rule. The type of the variable (here: Forest) must be
declared too. The result of outputting the value of a variable depends on its
type.

Fxt Example 12

< f x t : spec >
< f x t : g loba l name=" res " type =" Fores t "/>
< f x t : push name=" res " val =" emptyForest"/>

< f x t : pat >//def </ f x t : pat >
< f x t : s e t F o r e s t name=" res ">

<DEF>< f x t : apply/></DEF>
</ f x t : s e t F o r e s t >
< f x t : get name= ’ res ’/>

< f x t : pat >// l a s t d e f </ f x t : pat >
< f x t : get name= ’ res ’/>

</ f x t : spec >

The variable is initialized before the transformation begins via the fxt:push2

after its declaration. The value emptyForest is pre-defined in FDM for empty
XML content. Every time a def element is processed, the value of the def vari-
able is set to an element DEF whose content is obtained by recursively process-
ing the content of the def element, as specified by the fxt:setForest element.
The last stored value is output in the second rule via the fxt:get element which
inserts the variable with the specified name in the result. Note that the trans-
formation produces the intended result only under the assumption that def
elements do not occur inside another def element. �

Nested Scopes Processing hierarchically nested elements incurs the need
for introducing scopes for variables. One way of doing so is to allow local
variables which are visible just during processing a specific XML element.
Re-structuring transformations, however, ask for more flexible scoping rules.
Therefore, we decided to organize every variable as a stack — meaning that we
support push and pop operations on variables. A push operation introduces
a new scope whereas a pop leaves this scope again. So, the single fxt:push
element in the example above creates in fact a new scope of the variable res.

Besides for pushing and popping, Fxt actions are provided for setting or
outputting the values of the topmost elements.

Example 9.15: The following specification generates a transformation which,
given an XML document containing nested li elements (list items), adds be-
fore every li an integer representing the number of the list item on its nesting
level:

Fxt Example 13

< f x t : spec >
< f x t : g loba l name=" i " type =" i n t "/>
< f x t : push name=" i " val ="1"/ >

2The choice of the name fxt:push is shortly explained.
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< f x t : pat >// l i </ f x t : pat >
< f x t : get name=" i "/ >:

< l i >
< f x t : inc name=" i "/>
< f x t : push name=" i " val ="1"/ >
< f x t : apply/>
< f x t : pop name=" i "/>

</ l i >

</ f x t : spec >

The global variable i is declared to be of type int. Whenever an li element
is transformed, the last value of i is output using fxt:get, and the li tag is
copied to the output. Before proceeding with the transformation to the sons,
the current value of i is incremented, and a new scope for the variable i is
introduced by means of the fxt:push element. The new instance of the variable
i which is initialized with the value 1. After processing the contents of the
li element, the last instance of i is popped off the stack using fxt:pop. The
following input:

XML Example 20

<doc>
< l i >

< l i >
< l i >a</ l i >
< l i >b</ l i >

</ l i >
< l i >

< l i >e</ l i >
</ l i >

</ l i >
</doc>

is transformed to:

XML Example 21

<doc>
1: < l i >

1: < l i >
1: < l i >a</ l i >
2: < l i >b</ l i >

</ l i >
2: < l i >

1: < l i >e</ l i >
</ l i >

</ l i >
</doc>

�

Special actions are provided for the convenient use of Tree and Forest
variables. For example, a Forest value can be constructed and pushed or
set, using the actions fxt:pushForest or fxt:setForest, respectively. The
fxt:pushForest and fxt:setForest elements must have an attribute name
specifying the name of the global on top of which the forest value is to be
pushed or set. The forest value is specified as the content of the elements
fxt:pushForest or fxt:setForest which can consist of any sequence of Fxt
actions.



126 9.5. Storing Intermediate Results: Variables

Example 9.16: The following is the specification of a transformation which
adds the list of links to the anchors within an XHTML document to the end
of it:

Fxt Example 14

< f x t : spec >
< f x t : g loba l name=" index " type =" Fores t "/>

< f x t : pat >xhtml</ f x t : pat >
< f x t : push name=" index " val =" emptyForest"/>
< f x t : copyTagApply/>
< f x t : pop name=" index"/>

< f x t : pat >//a [@name]</ f x t : pat >
< f x t : s e t F o r e s t name=" index">

< f x t : get name=" index"/>
<a>

< f x t : a t t r i b u t e name= ’name’/>
< f x t : addAttr ibute name= ’ href ’

valExp = ’ concatVectors ( S t r ing2Vector " # " ,
( g e t A t t r i b u t e ( S t r ing2Vector " name " ) current )) ’/ >

</a>
</ f x t : s e t F o r e s t >
< f x t : copyTagApply/>

< f x t : pat >//index </ f x t : pat >
<p>Index : </p>
<p>< f x t : get name= ’ index ’/></p>

</ f x t : spec >

The following input document:

XML Example 22

<xhtml>
<p>Text </p><a name=" a1 "/>
<p>Text </p><a name=" a2 "/>
<p>Text </p><a name=" a3 "/>
<p>That was i t . </p>
<index/>

</xhtml>

is transformed to:

XML Example 23

<xhtml>
<p>Text </p><a name= ’ a1 ’></a>
<p>Text </p><a name= ’ a2 ’></a>
<p>Text </p><a name= ’ a3 ’></a>
<p>That was i t . </p>
<p>Index : </p>
<p><a href = ’# a1 ’ > a1</a><a href = ’# a2 ’ > a2</a><a href = ’# a3 ’ > a3</a></p>

</xhtml>

The Forest variable index functions as an accumulating parameter in which
links are collected when encountering anchors in the input document. �
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9.6 Grouping
An important task in transformations is grouping and processing together ele-
ments having a certain common property.

Example 9.17: Consider the following XML document containing a list of
books.

XML Example 24

<books>
<book>

<author >Ste fan Zweig</author >
< t i t l e >Maria Stuar t </ t i t l e >

</book>
<book>

<author >Giuseppe Tomasi di Lampedusa</author >
< t i t l e > I l Gatopardo</ t i t l e >

</book>
<book>

<author >Franz Kafka</author >
< t i t l e >Amerika</ t i t l e >

</book>
<book>

<author >Ste fan Zweig</author >
< t i t l e >Sternstunden der Menschheit</ t i t l e >

</book>
<book>

<author >Franz Kafka</author >
< t i t l e >Tagebücher </ t i t l e >

</book>
</books>

A classic task is to group together books written by the same author as below:

XML Example 25

<authors >
<author >

<name>Ste fan Zweig</name>
< t i t l e >Maria Stuar t </ t i t l e >
< t i t l e >Sternstunden der Menschheit</ t i t l e >

</author >
<author >

<name>Giuseppe Tomasi di Lampedusa</name>
< t i t l e > I l Gattopardo</ t i t l e >

</author >
<author >

<name>Franz Kafka</name>
< t i t l e >Amerika</ t i t l e >
< t i t l e >Tagebücher </ t i t l e >

</author >
</authors >

�

The common property of the elements to be grouped is called key. Given an
element, a key can be seen as an identifier telling to which group the element
belongs. In the example above, given a book element its key is the text content
of its author sub-element, i.e. the author’s name. In general a key might be an
arbitrary Unicode string.
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Generally speaking, grouping is a partial mapping from a key to the set
of nodes having this key in common. Correspondingly, this mapping can be
stored as a table indexed by keys and whose entries are sets of nodes grouped
together. In the following sections we call the partial mapping a keyed table. A
key identifies the nodes belonging to the same group as the entry for the key.

9.6.1 Defining a Keyed Table
To define a keyed table one must specify which are the nodes to be stored in the
table and, given such a node, what is its key. A keyed table is specified using
an empty element fxt:groupBy before the first rule. The nodes of interest are
specified using an Fxgrep pattern as the value of a group attribute. The key of a
given node can be specified via a select pattern given as the value of an attribute
by. The key is obtained as the text content of the nodes retrieved by the select
pattern in the context of the given node. Alternatively, if an attribute byExp is
present, it must specify an SML function which is to be applied on the node to
obtain its key. As there may be more than one keyed table, an attribute in is
used to identify the currently defined table.

Example 9.18: To group the books in XML Example 24 by their authors we
write:

Fxt Example 15

< f x t : groupBy group="//book " by=" author " in ="booksByAuthor"/>

We group the book elements as specified by the pattern //book. A book element
belongs to the group specified by the name of its author, obtained by evaluating
the select pattern author in the context of the book element. �

9.6.2 Using a Keyed Table
Having defined a keyed table we are able to process every entry of it sepa-
rately. Typically, there are two usage patterns of keyed tables as presented in
the next two subsections. Firstly we want to be able to process all the entries
one after another, when we want to handle each group of nodes sharing a com-
mon property in turn. An instance of this usage scenario is the transformation
addressed in Example 9.17. Secondly we might be interested only in an entry
for a given key, when we want to handle only nodes sharing a given common
property.

9.6.2.1 Iterating over Table Entries

To iterate over the entries of a keyed table fxt:forAllKeys may be used. An
attribute in specifies the identifier of the table as specified in its definition in
the corresponding fxt:groupBy element. The content produced for each entry
is specified by the content of the fxt:forAllKeys element, which may con-
tain any Fxt action. An element fxt:getKey can be used to output the cur-
rent key. The entire current entry can be output using fxt:copyKey. To recur-
sively process the nodes in the current entry using the transformation rules,
fxt:applyKey can be used.
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Example 9.19: The solution to the transformation presented in Example 9.17 is
presented in Fxt Example 16.

Fxt Example 16

< f x t : spec >
< f x t : groupBy group="//book " by=" author " in =" booksByAuthor"/>

< f x t : pat >/∗</ f x t : pat >
<authors >

< f x t : forAllKeys in ="booksByAuthor">
<author >

<name>< f x t : getKey/></name>
< f x t : applyKey/>

</author >
</ f x t : forAllKeys >

</authors >

< f x t : pat >//book< f x t : pat >
< f x t : copyContent s e l e c t =" t i t l e "/>

</ f x t : spec >

The keyed table is declared as presented in Example 9.18. The result is an
authors element enclosing one author element for each entry in the table. The
name of the author is the current key, output by fxt:getKey. The entry contains
the book nodes in the input document written by the current author. These are
recursively transformed by using the second rule which simply outputs their
titles in order to produce the desired output. �

9.6.2.2 Selecting One Entry

Rather than being interested in processing all groups, we are sometimes in-
terested only in a group with a certain property. The group of interest is se-
lected via its key, which in general depends on information from the input
document made available while evaluating a transformation rule on a cur-
rent node. One can process a single entry in a table either by copying it with
an fxt:copyContent element, or, more generally, by recursively applying the
transformation rules on it using an fxt:apply element. The name of the ta-
ble has to be specified as the value of an attribute in. The key is obtained by
default as the text content of the current node. Alternatively, the key can be
explicitly indicated either literally as the value of a by attribute or as an SML
function taking the current node and producing the key.

Example 9.20: Consider the modified XML input in XML Example 24 where a
list of the best authors has been added:

XML Example 26

<books>
<book>

<author >Ste fan Zweig</author >
< t i t l e >Maria Stuar t </ t i t l e >

</book>
<book>

<author >Giuseppe Tomasi di Lampedusa</author >
< t i t l e > I l Gattopardo</ t i t l e >

</book>
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<book>
<author >Franz Kafka</author >
< t i t l e >Amerika</ t i t l e >

</book>
<book>

<author >Ste fan Zweig</author >
< t i t l e >Sternstunden der Menschheit</ t i t l e >

</book>
<book>

<author >Franz Kafka</author >
< t i t l e >Tagebücher </ t i t l e >

</book>

<bestAuthors >
<author >Giuseppe Tomasi di Lampedusa</author >
<author >Franz Kafka</author >

</bestAuthors >
</books>

We want to replace the bestAuthors element with a bestBooks containing the
books written by the best authors as presented in XML Example 27:

XML Example 27

<books>
<book>

<author >Ste fan Zweig</author >
< t i t l e >Maria Stuar t </ t i t l e >

</book>
<book>

<author >Giuseppe Tomasi di Lampedusa</author >
< t i t l e > I l Gattopardo </ t i t l e >

</book>
<book>

<author >Franz Kafka</author >
< t i t l e >Amerika</ t i t l e >

</book>
<book>

<author >Ste fan Zweig</author >
< t i t l e >Sternstunden der Menschheit</ t i t l e >

</book>
<book>

<author >Franz Kafka</author >
< t i t l e >Tagebücher </ t i t l e >

</book>

<bestBooks>
<book>

<author >Giuseppe Tomasi di Lampedusa</author >
< t i t l e > I l Gattopardo</ t i t l e >

</book>
<book>

<author >Franz Kafka</author >
< t i t l e >Amerika</ t i t l e >

</book>
<book>

<author >Franz Kafka</author >
< t i t l e >Tagebücher </ t i t l e >

</book>
</bestBooks>

</books>
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The solution in Fxt is presented in Fxt Example 17. We again use a keyed table
grouping book elements by their authors, as specified by the fxt:groupBy ele-
ment. The first rule produces the bestBooks element by recursively applying
the rules on the author sub-elements. These are processed by the second rule
which uses the fxt:copyContent element to retrieve the entry stored under the
key given by the author name obtained as the content of the current element.

Fxt Example 17

< f x t : spec >
< f x t : groupBy group="//book " by=" author " in =" booksByAuthor"/>

< f x t : pat >//bestAuthors < f x t : pat >
<bestBooks>

< f x t : apply/>
</bestBooks>

< f x t : pat >//bestAuhtors /author < f x t : pat >
< f x t : copyContent in ="booksByAuthor"/>

</ f x t : spec >

�

9.6.3 Handling Cross References in XML Documents
In practice, not all the information which we would like to represent is strictly
hierarchically structured. Consider for example the XML representation of an
article in which references from one section are to be permitted to arbitrary
sections. Therefore, the XML specification [XML98a, XML04] provides a way
in which supplementary connections can be specified among the nodes in an
XML document, allowing the representation of graph- rather than just tree-
structured data.

For this purpose the DTD of an XML specifies a way of uniquely identifying
and locating elements, via so-called ID and IDREF attribute types in elements.
The uniqueness constraints and the validity of references can be verified by a
validating parser.

Transformers must be correspondingly able to use these possibly addition-
ally available cross references in XML documents. This can be handled in Fxt
via keyed tables, as these are a generalization of the reference mechanism.
Identifiers of nodes correspond to our keys, which can be located anywhere
inside an element, rather than just as a value of some ID attribute. Similarly, a
reference may be located anywhere, rather than just as a value of some IDREF
attribute. Also, rather than just one node, a key may identify a group of nodes,
allowing thereby the specification of one-to-many relations.

Example 9.21: As an example consider the following XML input containing a
description of a recommended route.

XML Example 28

<routePlanner >
< l o c a t i o n id ="1" >München</locat ion >
< l o c a t i o n id ="2" > Ber l in </locat ion >
< l o c a t i o n id ="3" >Köln </locat ion >
< l o c a t i o n id ="4" >Bonn</ locat ion >
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< l o c a t i o n id ="5" > Tr ier </locat ion >

<route >
<step from = " 1 " to ="2" > car </step >
<step from = " 2 " to ="3" > plane </step >
<step from = " 3 " to ="4" > t r a i n </step >
<step from = " 4 " to ="5" > bike </step >
<step from = " 5 " to ="1" > t r a i n </step >

</route >
</routePlanner >

Suppose that we want to present the route in the following form:

XML Example 29

From München to B e r l i n by car
From B e r l i n to Köln by plane
From Köln to Bonn by t r a i n
From Bonn to T r i e r by bike
From T r i e r to München by t r a i n

The Fxt transformation to achieve the above is presented below:

Fxt Example 18

< f x t : spec >
< f x t : groupBy group="// l o c a t i o n " byAtt =" id " in =" loca t ionById "/>

< f x t : pat >//step </ f x t : pat >
From < f x t : copyKey in =" loca t ionById " byAtt =" from"/>
to < f x t : copyKey in =" loca t ionById " byAtt =" to "/>
by < f x t : copyContent/>

< f x t : pat >defaul t </ f x t : pat >
< f x t : apply/>

</ f x t : spec >

The mapping from locations to their identifiers is stored in the table
locationById as declared by fxt:groupBy. The textual representation of a step
is obtained in the first rule by outputting the entries keyed by the from and to
attributes via fxt:copyKey. The second rule ensures that no other content is
produced in the output.

�

9.7 Summary
This chapter has introduced the basic capabilities of Fxt via examples. For
a complete reference to the constructs which have been presented, we refer to
the user guide of Fxt 3. The Fxt transformation language introduced so far, only
makes use of the unary queries expressible by Fxgrep. This does not yet exploit
all querying capabilities presented in the first part of this work, where we have
seen that binary queries can be efficiently implemented. In the next chapter
we present how binary queries can be used to increase the expressiveness and
efficiency of rule-based transformations.

3Might be consulted online at http://www2.informatik.tu-muenchen.de/~berlea/Fxt



Chapter 10

Binary Queries in
Transformations

The use of unary queries in rule-based transformations as presented in the pre-
vious chapter has a couple of problematic aspects. In this chapter we address
them and show how they can be solved by using binary queries.

10.1 Limitations of Unary Queries
As presented so far, in Fxt nodes selected via a select pattern can be situated
only below the current node, since Fxgrep unary patterns only locate nodes
below the node in the context of which they are evaluated.

On the one side, this restriction ensures that transformations will terminate
on any input. Also, one might argue that such uni-directional transformations
are easier to comprehend than those performing a random walk over the tree.

On the other side, the select patterns have two inherent problems that we
address in the rest of this section. The first problem is that nodes may need
to be selected not only for the purpose of recursive processing but also for
copying them into the output. Only allowing one to copy nodes which are
below the current node may be too restrictive.

Example 10.1: Consider for example a document having department elements
which contain an id element followed by a sequence of employee elements.

XML Example 30

<company>
<department>

<id >Publ i c Re la t ions </id >
<employee>Jan Smith</employee>
<employee>Meg Rush</employee>

</department>
<department>

<id >Sales </id >
<employee>David Hughes</employee>
<employee>Angela Dimm</employee>

</department>
</company>

Suppose we want to produce a list of employees, each of them containing the
id of his department as below:

133
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XML Example 31

<employee><dept>Publ i c Re la t ions </dept>Jan Smith</employee>
<employee><dept>Publ i c Re la t ions </dept>Meg Rush</employee>
<employee><dept>Sales </dept>Don Hughes</employee>
<employee><dept>Sales </dept>Angela Dimm</employee>

One straightforward solution would be to write a rule for processing
employee elements in which the content of the id left sibling of the current
element is selected. However, Fxt’s select patterns introduced so far cannot
refer to nodes other than below the current node. �

The variable mechanism introduced in Section 9.5 can be used as a
workaround for this problem. Generally speaking, the nodes of interest can
be stored in a variable in advance by selecting them at an ancestor node, rather
than at the node where they are needed. All nodes are selectable in this way as
they are all descendants of an ancestor of the current node (in the worst case
they are descendants of the root node). The idea is exemplified below.

Example 10.2: The processing task described in Example 10.1 is achieved by
the following Fxt transformation:

Fxt Example 19

< f x t : spec >
< f x t : g loba l name="deptName " type =" Fores t "/>
< f x t : push name="deptName " val =" emptyForest"/>

< f x t : pat >//department</ f x t : pat >
< f x t : pushForest name="deptName">

< f x t : copyContent s e l e c t =" id "/>
</ f x t : pushForest >
< f x t : apply s e l e c t ="employee"/>
< f x t : pop name="deptName"/>

< f x t : pat >//department/employee</ f x t : pat >
<employee>

<dept>< f x t : get name="deptName"/></dept>
< f x t : copyContent/>

</employee>

< f x t : pat >defaul t </ f x t : pat >
< f x t : apply/>

</ f x t : spec >

The fxt:global element declares a variable deptName which can store any XML
fragment as an FDM forest. The value is remembered at department nodes
as the content of the id sub-element in the first rule. The subsequent recur-
sive processing of the employee child elements activated by the fxt:apply el-
ement can access the value of the variable, as specified in the second rule by
the fxt:get element. The value is thrown away by fxt:pop on leaving the
department node. �

Even though the presented workaround may always be used, one might
argue that this workaround affects the intended declarativeness of rule-based
transformation languages. Therefore, we are going to lift the limitation of Fxt
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select patterns s.t. that the selected nodes may be situated anywhere in the
document, rather than only bellow the current node.

A second problematic aspect of select patterns is how to efficiently evalu-
ate them. Every pattern evaluation (obviously) requires processing the tree in
which the pattern is to be evaluated. Match patterns, as unary Fxgrep patterns,
which are to be evaluated in the context of the root element of the input tree,
require (as seen in Section 5.2) at most two traversals of the input. In contrast,
a select pattern is to be evaluated on the subtree on which the rule containing
the select pattern is currently applied. Its evaluation requires, at least in princi-
ple, to traverse this current sub-tree. As the number of rule applications is not
fixed, this implies that some nodes may be visited for the purpose of pattern
evaluation an unbounded (i.e. not a priori fixed) number of times. Navigation
in the input tree, as necessary for pattern evaluation is nevertheless time-costly
and should be reduced to a minimum in order to obtain efficient implementa-
tions of XML transformations. As we present next, by using binary patterns
it is possible to ensure that two traversals of the input tree are enough for the
evaluation of all (match and select) patterns in Fxt transformations.

10.2 Selecting via Binary Queries
The match pattern of a rule together with a select pattern occurring in the rule
can be thought of as specifying a binary relation between nodes. The relation
pairs a node fulfilling the match pattern with each of the nodes to be selected
by the select pattern in the context of this node. Our key idea is that, rather
than using a match and a select pattern, one could as well use a binary query to
specify this binary relation.

As in the case of standalone Fxgrep patterns, we specify a binary relation
by using the special symbol “%” in match patterns, such that the first node in
a relation is the target node of the pattern and the second node is the node
corresponding to the symbol preceded by “%”.

The binary Fxgrep match patterns in Fxt have the following meaning. The
primary node is the match node, i.e. it identifies nodes in the input to which
the rule is applicable. Given a primary node, all the secondary nodes with
which it forms a match pair can be selected together for further process-
ing, similarly as with a unary select pattern. For example, a match pattern
//author[(//%book)][(name/"")] in a rule specifies that the rule is applicable
to author elements which have at least one book descendant and whose names
have some text content. When applying the rule to such an author node it is
possible to select all his books descendants, as indicated by the second compo-
nents of the binary matches denoted by the “%” symbol.

As with select patterns, we might want to select more than one set of
nodes within a rule. Since each such set of selected nodes corresponds to a
binary query, we allow the specification of several binary queries with a sin-
gle pattern by denoting each binary relation with one “%” symbol in front
of the corresponding node in a pattern. For example, by using the pattern
//author[(//%book)][(name/%"")] we will be able to select the books ele-
ments inside an author as well as the author’s name. To refer to one of the set of
selected nodes we simply specify which “%” symbol defines them, by giving its
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ordinal number in the pattern. Correspondingly, we allow the select attribute
of the Fxt actions fxt:apply and fxt:copyContent for recursive applications
and copying to be specified as a positive integer number.

Example 10.3: Consider the following XML input data:

XML Example 32

<authors >
<author >

<name>Gustave Flaubert </name>
<book>Madame Bovary</book>
<book>L ’ Education sentimentale </book>

</author >
<author >

<name>Marcel Proust </name>
<book>À l a recherche du temps perdu</book>
<book>Le temps retrouv é</book>

</author >
</authors >

The following transformation produces for every author as above an un-
ordered list (ul) of items (li) enclosing the content of the books sub-elements.

Fxt Example 20

< f x t : spec >

< f x t : pat >//author [(//%book ) ] [ ( name/%"")] </ f x t : pat >
Books by < f x t : copyContent s e l e c t ="2"/ >:

<ul >
< f x t : apply s e l e c t ="1"/ >

</ul >

< f x t : pat >//book</ f x t : pat >
< l i >< f x t : copyContent/></ l i >

</ f x t : spec >

The first rule handles the author elements of interest. The name of the author
is copied by selecting the nodes specified by the second occurrence of the %
symbol, as denoted by the value 2 of the select attribute in fxt:copyContent.
The books are selected for recursive processing via the select attribute in
fxt:apply which refer to the first occurrence of the % symbol in the match pat-
tern.

The XML data in XML Example 32 is transformed to:

XML Example 33

<authors >
Books by Gustave Flauber t :

<ul >
< l i >Madame Bovary</ l i >< l i >L ’ Education sentimentale </ l i >

</ul >
Books by Marcel Proust :

<ul >
< l i >À l a recherche du temps perdu</ l i >< l i >Le temps retrouv é</ l i >

</ul >
</authors >

�
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The usage of binary queries in transformations solve the problematic effi-
ciency and expressiveness issues previously mentioned, as we review in the
next two sub-sections.

10.2.1 Efficiency
Note that the transformation performed in Example 10.3, could be as well
achieved without using binary patterns by:

Fxt Example 21

< f x t : spec >

< f x t : pat >//author [(// book ) ] [ ( name/"")] </ f x t : pat >
Books by < f x t : copyContent s e l e c t = ’name/"" ’/ >:

<ul >
< f x t : apply s e l e c t ="//book"/>

</ul >

< f x t : pat >//book</ f x t : pat >
< l i >< f x t : copyContent/></ l i >

</ f x t : spec >

We will see in Section 10.3 that every transformation using unary select
patterns can be automatically rewritten such that it contains only binary match
patterns.

There is however one important conceptual difference between Fxt Exam-
ple 21 and Fxt Example 20 (on page 136). The unary select patterns in Fxt
Example 21 are to be evaluated in the context of the current node, i.e., in the
dynamic context of a node matched by the match pattern when this is reached
by the transformation. Thus, select patterns must, at least conceptually, be
evaluated during the transformation phase.

A binary pattern, like that in Fxt Example 20 on the other hand, simultane-
ously locates the primary match nodes, and, as secondaries, the sets of related
nodes selected within the rule. No dynamic context is needed. Instead, all
binary relations specified by binary patterns can be statically tabulated once
before the actual transformation begins. Selections during transformation thus
boil down to lookups of these tables. As presented in Section 5.3, evaluating
several binary match patterns simultaneously requires at most two traversals
of the input. In contrast, every dynamic evaluation of a pattern requires up to
two supplementary traversals of the current subtree, thereby possibly being a
major source of inefficiency.

Thus, instead of a potentially unbounded number of traversals, as needed
to evaluate the select patterns, we only need two traversals for the evaluation
of the binary patterns. This solves the efficiency problem addressed in Sec-
tion 10.1.

10.2.2 Expressiveness
Moreover, binary queries also lift the expressiveness limitation addressed in
Section 10.1. Indeed, rather than only below the current node, the nodes se-
lected for further processing within a rule may be situated at arbitrary posi-
tions within the input tree.
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Example 10.4: The solution for the transformation addressed in Example 10.1
(on page 133) is:

Fxt Example 22

< f x t : spec >
< f x t : pat >//company</ f x t : pat >

<employees>< f x t : apply/></employees>

< f x t : pat >//department[%id ]/ employee</ f x t : pat >
<employee>

<dept>< f x t : copyContent name="1"/></ dept>
< f x t : copyContent/>

</employee>

< f x t : pat >defaul t </ f x t : pat >
< f x t : apply/>

</ f x t : spec >

Note how the id sibling of the currently transformed employee element is di-
rectly retrieved when needed. �

Generally speaking, in order to select nodes in a rule one has thus to put
them in the context of the node being currently transformed by the rule. This
possibly requires refining the match pattern of the rule if the nodes to be se-
lected are not specified in it. One might argue that this makes transformations
less error-prone by requiring one to think about the context, for instance here.
In the example above, for instance, we wanted to provide employees with the
name of their department only if this has an id element.

Besides for copying, as in the example above, nodes can be selected also for
recursive processing. This allows in principle proceeding to nodes others than
descendants of the current node, which no longer ensures a strictly top-down
transformation of the input and, consequently, no longer ensures termination.
Such transformations require supplementary care to avoid infinite computa-
tions. Of course, binary queries can be also used to select descendants of the
current node. We use this in the following to optimize transformations in terms
of time consumption.

10.3 Removing Dynamic Select Patterns
As previously suggested, it is preferable from the point of view of efficiency, to
use binary match patterns rather than unary select patterns. Rewriting trans-
formations in order to eliminate unary select patterns is quite simple and can
be performed automatically. The idea is straightforward, as presented in the
following example.

Example 10.5: Suppose we have an XML document describing the output of
some compiler:

XML Example 34

<program>
< d e c l a r a t i o n s >

<warning >Var iab le i redeclared </warning >
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</ d e c l a r a t i o n s >
<error >Unexpected assignment </error >
<main>

<error >Undeclared v a r i a b l e j </error >
<warning >Deprecated method doAll</warning >

</main>
</program>

If the compiler report contains both errors and warnings, we might want to
output a list containing the errors in bold text followed by the warnings in
italic as:

XML Example 35

< l i s t >
Errors :

<b>Unexpected assignment </b><b>Undeclared v a r i a b l e j </b>
Warnings :

<i >Var iab le i redeclared </i ><i >Deprecated method doAll</i >
</ l i s t >

This can be achieved by using unary select patterns with the following trans-
formation:

Fxt Example 23

< f x t : spec >
< f x t : pat >program</ f x t : pat >

< l i s t >
Errors :

< f x t : apply s e l e c t ="// e r r o r "/>
Warnings :

< f x t : apply s e l e c t ="//warning"/>
</ l i s t >

< f x t : pat >//error </ f x t : pat >
<b>< f x t : apply/></b>

< f x t : pat >//warning </ f x t : pat >
<i >< f x t : apply/></i >

</ f x t : spec >

The same can be achieved by means of binary patterns as in the following
transformation:

Fxt Example 24

< f x t : spec >
< f x t : pat >program[(//% e r r o r )?] [ (//% warning )?] </ f x t : pat >

< l i s t >
Errors :
< f x t : apply s e l e c t ="1"/ >

Warnings :
< f x t : apply s e l e c t ="2"/ >

</ l i s t >

< f x t : pat >//error </ f x t : pat >
<b>< f x t : apply/></b>

< f x t : pat >//warning </ f x t : pat >
<i >< f x t : apply/></i >
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</ f x t : spec >

Here, the binary pattern in the first rule identifies program nodes together with
their descendants of type error and warning, respectively, if any. When the
rule is applied to a program node, the error and the warning descendants are
retrieved via the ordinal reference to the secondary elements specified in the
binary patterns and recursively transformed by the last two rules. �

Transformations as above are instances of the special case in which the rule
with a match pattern p has an action containing a select pattern consisting of
a path p1. A binary pattern describing the necessary binary relation can be
obtained by adding the qualifier [(p′1)?] to the target node in p, where p′1 is
obtained by preceding the target node of p1 with the % symbol. The option ?
has to be specified in order to maintain the original applicability of the rule on
a node, independently of whether p1 leads to matches when evaluated for the
node or not. Thus, in this case the elimination of the dynamic select pattern p1
can be performed via syntactical transformations.

In general, however, the elimination can not be performed in a syntactical
manner. The reason is that a select pattern can be a path p together with a
boolean content model bcm for the top level evaluation context. For example,
a select pattern [theorem lemma]/proof, selects the proof elements of the cur-
rent node if this contains a theorem followed by a lemma element. Similarly,
we need to deal with top level context qualifiers. For example, a select pattern
[theorem#lemma]/proof selects the proof elements of the current node which
are preceded by a theorem and followed by a lemma. The rewriting of the match
pattern p of a rule has to capture in general the top-level constraint too. In
the examples above, this would be p[theorem lemma][%proof] and p[theorem
%proof lemma], respectively.

In general, a select pattern can be removed as follows. Let Qmatch =
((R, E0), T) be a an extended query as defined in Section 6.1.3 specifying a
match pattern of a rule. Let Qselect = ((R′, E′0), T′) be an extended query spec-
ifying a select pattern within the rule. An extended binary query which sub-
sumes the match and the select query as explained below can be constructed
as Qlocate = ((R′′, E0), T× T′), where :

R′′ = R ∪ R′ ∪ {x→ a〈bcm & bcm′〉 | x→ a〈bcm〉 ∈ R, x ∈ T, bcm′ ∈ E′0}

The rules in the two queries are collected together in R ∪ R′. Additionally,
for any rule for a target in the match query, a new rule is added which requires
that the target node fulfills, besides the original boolean content model bcm,
one of the start content models of the select query. Keeping the rules in R
ensures that the rule is applicable for exactly the same nodes as before. The
new rules added relate the match node with the nodes to be selected. The
conjunction of content models bcm&bcm′ ensures that the relation between the
match and the select node is compatible with the original match pattern. One
can see that R′′ is a function depending on R, T, R′ and E′0. For later reference,
we denote it as R′′ = combine((R, T), (R′, E′0)).

The start content models for the XML input, E0 remain unchanged. The
targets of the match query and the targets of the select query become primary
and secondary targets, respectively, in the constructed binary query.
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Example 10.6: Consider the following Fxt rule:

Fxt Example 25

< f x t : pat >// s e c t i o n [(// c o r o l l a r y )] </ f x t : pat >
< f x t : copyContent s e l e c t ="//∗[ theorem#lemma]/ proof "/>

which applied on a section containing a corollary copies the proofs descen-
dants enclosed between a theorem and a lemma.
The match pattern is expressed by the query ((R, {_ x1|xsection _}), {xsection}),
where R is the following set of productions:

x1 → ∗〈_ x1|xsection _〉
xsection → section〈_ x2|xcorollary _〉
x2 → ∗〈_ x2|xcorollary _〉
xcorollary → corollary〈_〉

The select pattern is expressed by the query ((R′, {_ x3|x4 _}), {xproo f}), where
R′ is the following set of productions:

x3 → ∗〈_ x3|x4 _〉
x4 → ∗〈_ xtheorem xproo f xlemma _〉
xtheorem → theorem〈_〉
xproo f → proo f 〈_〉
xlemma → lemma〈_〉

The corresponding binary query is ((R′′, {_ x1|xsection _}), {(xsection, xproo f )}),
where R′′ is the union of rules in R, R′ and the rule:

xsection → section〈_ x2|xcorollary _ & _ x3|x4 _〉

�

The efficiency gain obtained by automatically rewriting transformations
containing unary select patterns into transformations using binary match pat-
terns can be very large. This can be observed especially in applications using
many select patterns. One such application, which is often given as a sam-
ple XML transformation in the literature, takes statistics about baseball players
and produces HTML tables containing processed information about the play-
ers [Har99]. We wrote this transformation in Fxt using unary select patterns.
The optimized version of this transformation, in which select patterns are au-
tomatically replaced by binary queries, is between 4 and 5 times faster than the
un-optimized one. This great efficiency gain is due to the many select patterns
used in the original transformation in this particular transformation. Never-
theless, as selection is a fundamental feature especially in rule-based transfor-
mation languages, this benefit is important for transformations in general.

10.4 Grouping via Binary Queries
Grouping nodes sharing a common key as presented in Section 9.6 is a special
case of establishing a binary relation. Grouping can be namely considered as
establishing a relation between a key and the set of nodes sharing that key. We
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present below by means of an example how binary queries can be used for
grouping.

Reconsider the transformation in Example 9.17, which motivated the need
for grouping in Section 9.6. The sample input and the desired output are re-
produced for convenience below in XML Example 36 and XML Example 37,
respectively.

XML Example 36

<books>
<book>

<author >Ste fan Zweig</author >
< t i t l e >Maria Stuar t </ t i t l e >

</book>
<book>

<author >Giuseppe Tomasi di Lampedusa</author >
< t i t l e > I l Gattopardo </ t i t l e >

</book>
<book>

<author >Franz Kafka</author >
< t i t l e >Amerika</ t i t l e >

</book>
<book>

<author >Ste fan Zweig</author >
< t i t l e >Sternstunden der Menschheit</ t i t l e >

</book>
<book>

<author >Franz Kafka</author >
< t i t l e >Tagebücher </ t i t l e >

</book>
</books>

XML Example 37

<authors >
<author >

<name>Ste fan Zweig</name>
< t i t l e >Maria Stuar t </ t i t l e >
< t i t l e >Sternstunden der Menschheit</ t i t l e >

</author >
<author >

<name>Giuseppe Tomasi di Lampedusa</name>
< t i t l e > I l Gattopardo </ t i t l e >

</author >
<author >

<name>Franz Kafka</name>
< t i t l e >Amerika</ t i t l e >
< t i t l e >Tagebücher </ t i t l e >

</author >
</authors >

Grouping the books by their authors was achieved in Fxt Example 16 (on
page 129) using the following declaration:

Fxt Example 26

< f x t : groupBy group="//books " by=" author " name=" booksByAuthor"/>

Alternatively, key tables can be specified using a binary pattern as below:
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Fxt Example 27

< f x t : groupBy group="//%book/author " name="booksByAuthor"/>

The primary matches of the pattern, in this case the author elements, are used
to produce the key. Their text content is used by default. The entries in the
key tables are the secondary matches of the binary query. A secondary match
node belongs to the entry whose key is specified by its corresponding primary
match.

As in the case of their usage as a means of selecting nodes, binary queries
enlarge the expressiveness of grouping, as they allow the key and the nodes in
an entry to be situated at arbitrary relative locations. As opposed to this, using
unary patterns for grouping only allowed the key of a node to be retrieved
from the content of the node.

For instance, it is for possible to group the title elements of books by
their author, independently of the relative positions of the title and author
elements inside a book element. Thereby, the transformation above can be
achieved by the following transformation:

Fxt Example 28

< f x t : spec >
< f x t : groupBy group="//book[% t i t l e ]/ author " in =" t i t l esByAuthor "/>

< f x t : pat >/∗</ f x t : pat >
<authors >

< f x t : forAllKeys in =" t i t l esByAuthor ">
<author >

<name>< f x t : getKey/></name>
< f x t : copyKey/>

</author >
</ f x t : forAllKeys >

</authors >

</ f x t : spec >

We iterate over the entries for each author and output the name as the value
of the key via fxt:copyKey and the titles as the nodes stored in the entry via
fxt:copyKey.

Compare Fxt Example 28 with the equivalent transformation in Fxt Exam-
ple 16 (on page 129). There, it was not directly possible to key the titles under
their author’s name (because author is not a descendant of a title element).
We instead had to group book elements by author and transformed the book
elements to retrieve their titles. The new transformation appears to be more
declarative and clean, due to the expressive power of binary queries.

10.5 Decoupling Navigation from Transformation
Finally, another advantage of using binary queries in rule-based transforma-
tion is a further step towards separation of concerns. Binary queries, namely,
might help decoupling the task of locating matches of patterns from the task
of constructing XML content in transformation rules. Consider an input docu-
ment in which an author element contains all the books written by the author.
The following Fxt rule produces for each author a table row containing the
name of the author and the books written by him:
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Fxt Example 29

< f x t : pat >//author [(//%book )][%name]</ f x t : pat >
<tr >

<td>< f x t : copyContent s e l e c t ="2"/></ td>
<td>< f x t : copyContent s e l e c t ="1"/></ td>

</tr >

If the structure of the input document changes s.t., for example, the books
written by every author follow after the author element, only the match pattern
has to be modified to //*[#_ %book]/author[%name] in order to account for the
new relation between the author and his books, in order to achieve the same
transformation.

Generally speaking, in this perspective, the action part uses the relation de-
fined by the match pattern. The same informational relations might be encoded
differently in different documents. However assuming that these relations can
be extracted using match patterns, the action part is concerned only with build-
ing the desired layout from the extracted information. The action parts can be
thus shared among transformations which use as input similar but differently
structured data.

10.6 Conclusions
This chapter has shown that Fxt benefits from using binary queries in rule-
based transformations in different respects, as follows.

Expressiveness Binary queries allow the selection of nodes situated at arbi-
trary positions relative to the node at which the selection takes place,
rather than only below this node.

Declarative style Rather than explicitly indicating the navigation path from a
node to a second one to be selected in its context (as if we were to use
XPath select patterns) the relation between the two nodes is specified by
refining the context of the first node s.t. it captures the second node.

Efficiency Locating binary matches in the static global context requires at most
two traversals of the input XML data. In contrast, locating unary matches
in the dynamic context of a node requires traversing the content of this
node. This might result in repeatedly visiting the same node an un-
bounded number of times.

While exemplified using Fxt, the considerations made in this chapter might
be also applied in other XML transformation tools, in particular in implemen-
tations of XSLT and XQuery. Suggestions in this direction will be presented in
Chapter 12. Before that, in Chapter 11, we present the implementation of Fxt.



Chapter 11

Implementation of Fxt

The previous chapters introduced the specification language of Fxt transfor-
mations. This chapter provides an overview on the implementation of the Fxt
language. As Fxt is a domain specific language (DSL) we start by presenting
the DSL approach used. Then, we justify the choice of the implementation lan-
guage. We describe the system architecture and conclude with experimental
results which show the efficiency of Fxt.

11.1 Fxt as Pre-Processor
Rather than transforming XML data, Fxt generates XML transformers (as men-
tioned in Chapter 9). This is conceptually described in Figure 11.1. Given an
Fxt transformation specification, the generator produces code in the Standard
ML programming language (SML) [MTHM97]. The generated code can be sub-
sequently either directly included in SML application programs, or compiled
via an SML compiler and used as a stand-alone application.

This approach to implementing a DSL is not new. In fact, system design and
implementation here follows the pre-processing paradigm for DSL implementa-
tion as sketched in [DKV00]. The advantage of such an approach is obvious:
it clearly relieves us from re-implementing compiler support for standard pro-
gramming language features. In particular,

G we participate in all general enhancements of compiler implementation
for free;

G engineering, extending and re-engineering of our prototypical language

Code GeneratorSpecification
Transformation

XML Input

XML
Transformer

Output

SML Compiler
Fxt

Source Code
SML

Figure 11.1: Fxt as pre-processor
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design could very rapidly be implemented;

G embedding SML code into specifications (where needed) becomes essen-
tially trivial.

The drawback of this approach, however, is also apparent: certain non-
syntactical errors are currently caught not in the pre-processing phase, but
only in the follow-up compilation phase — where the original source of mal-
function is more difficult to track. This problem is partly alleviated in our sys-
tem by generating comments which point back from the generated code to the
corresponding Fxt source locations.

11.2 The Implementation Language

Standard ML
For the implementation of Fxt we chose the SML language. The decision was
based on a couple of practical considerations as presented below. One of the
main reasons to use SML was that the original implementation of the pattern
language used by Fxt , Fxgrep , was also implemented in SML. Interfacing the
two can be thus performed naturally via function calls in SML. Besides that,
there are more advantages of using SML, some of them being already taken
into consideration in the decision to use SML for Fxgrep, as follows:

Tree processing As a functional language, SML is a natural choice for process-
ing tree structured data like XML documents. The declarative style of
tree processing via recursive calls in functional languages is much clearer
as compared to iterative approaches. The pattern matching primitives of-
fered by SML also offer a good basis for extracting information from trees
in a more declarative and less error-prone way as compared to explicitly
using references to denote the edges in trees as in an imperative, object-
oriented language.

Type system SML is a strongly typed language, meaning that an SML compiler
can ensure that the accepted programs will execute without type errors.
Besides ensuring robustness at the run time this allows many program-
ming errors to be detected early. A comfortable feature is that types do
not need (mostly) to be explicitely indicated, as they are automatically
inferred by the compiler.

Parametric modules SML supports a modular development of programs via
grouping of related types, values and functions inside structures and pro-
viding views thereof via signatures. Moreover, via functors, modules are
parameterizable by taking as arguments signatures of other modules. For
example, an event-based parser can be implemented as a functor param-
eterized with a structure which contains the event-handlers.

Polymorphism Another feature which supports reusing and maintaining the
code is polymorphism. A polymorphic type is a type parameterized with
other types. Polymorphic functions are functions which can handle argu-
ments of polymorphic types without depending on the parameter types.
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For example to compute the height of a tree one might use a polymorphic
function working on trees, the nodes of which may be any fixed type, as
the implementation does not use the information stored in the nodes.
A single function declaration is enough to operate on trees of boolean,
strings or whatever type as long as their structure is the same.

Imperative features SML is not a pure functional language meaning, that is, it
also allows the use of side-effects as in imperative languages, in particu-
lar by providing updateable references. While this is to be avoided most
of the time, there are situations where imperative updates are more natu-
ral and also efficient, as for example when updating entries in hash tables.

Standard ML of New Jersey
More implementations of SML exist. We chose to use Standard ML of New
Jersey language (SML/NJ) [SML05] implementation. One of the main reasons
is again the legacy of Fxgrep, which is also implemented in SML/NJ. There are
also other important advantages as described in the following.

Compilation Manager A distinguishing feature of SML/NJ among other SML
implementations is its compilation manager (CM) [Blu97]. CM helps
maintaining large programs by automatically establishing the dependen-
cies between the different modules in the program and re-compiling after
a change to the source code only the modules influenced by the change.
This has on the one hand the advantage that the re-compilation is gen-
erally performed very quickly and on the other hand relieves the pro-
grammer from the tedious task of manually maintaining the dependen-
cies among the system units.

The Compiler Interface SML/NJ provides via its Compiler structure access to
the SML/NJ compiler. The SML/NJ primitives for manipulating compile
and run-time environments are designed to allow for incremental compi-
lation. This basically means that compiling a source in an given environ-
ment results in a new environment obtained by adding the new bindings
to those available in the input environment [AM94]. This allows in prin-
ciple the implementation of a compilation manager like CM as a usual
SML/NJ program [HLPR94]. Of particular importance for us, this com-
piler interface provides a convenient basis for meta-programming, i.e. for
the synthesis and evaluation of ML code by user programs [AM94], as in
the case of Fxt.

Exporting and Importing Heap Images A remarkable feature of SML/NJ
runtime is its ability to save a frozen copy of the heap (called exporting
the heap image) and use it to perform a computation in the same environ-
ment at a later moment. The SML/NJ heap not only contains the values
dynamically created during the computation but also the code compiled
up to the moment. Before exporting the heap a garbage collection is per-
formed which gets rid of the unreachable objects and also only keeps the
code necessary to run the exported functionality.
This feature is very convenient for sharing information between the gen-
eration and the execution phase of an Fxt transformation. For example,
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the match patterns are compiled to automata in the transformation phase,
and the data structures containing the automata are exported in the heap
image which will be imported by the transformation when this is called.
Thereby, we are able to save the computational effort which would have
otherwise been needed to serialize the shared data structures to SML
code in the generating phase and re-compiling them in the compiling
phase.

A few other ML dialects exist other than SML [LDG+05, BRS+05, CEKL05].
Better known among them is probably OCaml [LDG+05] which can produce
both bytecode and native code. The code generated by OCaml is generally
known to run faster as compared to the code generated by SML/NJ. On the
other side, however, it does not provide the convenience of a compilation man-
ager as in SML/NJ. Neither is the comfort provided by other languages imple-
menting SML, like MoscowML [Ses05], MLton [Wee05] or SML.NET [BKR05].

11.3 Compilation of Fxt Transformations
As previously mentioned, the Fxt generator of XML transformations uses the
SML/NJ features of incremental compilation as well as exporting and import-
ing of heap images. The steps of the code generation and compilation are
sketched in Figure 11.2. The compiled code for Fxt together with the libraries it
uses, like the Functional Document Model (FDM), as well as the SML compiler
lie in the heap of the Fxt process executed via the SML runtime environment.
Fxt receives the specification of a transformation as an Fxt stylesheet (step 1)
and generates SML code to perform the required transformation (step 2). The
same runtime is used to compile the generated code (step 3) and as result the
heap is enriched with the compiled code needed to perform the transforma-
tion (step 4). The transformation is exported in step 5. Only the strictly nec-
essary code (e.g. the FDM or library functions invoked by the user code in
the stylesheet) and dynamic structures (e.g. the automata to perform the pat-
tern matching) are automatically retained by the SML system upon exporting
the transformation function. When the transformation is invoked via a new
environment the previously exported heap image is imported and the trans-
formation may directly proceed to its task (step 6).
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11.4 System Architecture
The architecture of Fxt is depicted in Figure 11.3. The parser module handles
both the XML input to be transformed and the Fxt stylesheet as this is also an
XML document. We use the event-driven Fxp parser [Neu04]. The XML input
is parsed via the tree event handlers which produce the forest representation
of the XML input data. The Fxt front-end handlers basically deliver the rules
specified in the transformation in the form of (match) patterns and their corre-
sponding actions.

The actions are transformed into SML expressions of the FDM type Forest
by the action generator module. The transformation generator uses the code
generated for the actions to generate a transformation which basically is a func-
tion expecting an XML input annotated with match information and evalu-
ating the corresponding action. The generated transformation code is subse-
quently compiled as described in Section 11.3.

The patterns are compiled by the pattern compiler module into a dynamic
structure in the heap representing the pre-processed information needed by
the automata implementing the pattern matching.

The compiled patterns and the generated transformation are to be used for
the evaluation of the transformation performed by the evaluator module. The
evaluation of the transformation does not have to be performed immediately,
in the same runtime as the code generation and compilation. Alternatively, the
heap image containing the transformation and the compiled patterns can be
persistently saved by the exporter and may be subsequently restored by the
importer module and delivered to the evaluator.

The input of the transformation is provided by the parser which delivers
the input forest obtained by parsing the XML input. The pattern evaluator
annotates the input with match information and passes it to the transformation
evaluator which invokes the transformation function to produce the desired
output.

11.5 System Evolution
The first release of Fxt contained the basic functionality of the rule-based trans-
former. Recursive application of the transformation was only allowed on chil-
dren of the current element. It is often however useful to apply the transfor-
mation directly on some proper descendant, rather than on a direct child of the
current node. This was possible by repeatedly selecting the child node via a
default rule repeatedly applied until the desired descendant was reached and
processed by the appropriate rule; but it sometimes made the transformation
look unnecessarily complicated. Also, it required visiting all the descendants
of the node up to the nodes of interest.

We therefore introduced select patterns which allow to directly select the
nodes of interest in the context of the current node. As argued in Section 10.1,
the evaluation of select patterns may be expensive in any rule-based language,
since a direct implementation may require visiting some nodes in the input an
unbounded number of times.

We removed this inconvenience later by automatically removing the select
patterns via binary match patterns as presented in Chapter 10. This limits the
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number of traversals of the input tree to at most two. Also, selecting nodes
via binary match patterns extended the expressiveness of Fxt by allowing the
selection of nodes from everywhere around the current node, not only from
below it. Binary patterns were further allowed as a means of specifying tables
which can be mainly used for grouping purposes as presented in Section 10.4.

The Fxgrep pattern language used by Fxt evolved in parallel with Fxt. The
possibility of expressing binary queries with Fxgrep initially arose from the
select patterns necessities of Fxt. The other extensions of Fxgrep, such as con-
junctions and negations of context as presented in Section 6.2 have also had to
be accounted for in the interface of Fxt to Fxgrep.

A more detailed description of the evolution of Fxt during the research
project can be found in the change log of the Fxt distribution.

11.6 Experimental Results
In order to assess the time performance of Fxt we compared it with two of the
most popular XML processors. The first is the Xalan Java processor version
2.6.0 which is part of the Apache XML Project [Pro05]. As denoted by its name,
this processor is written in Java. Xalan is currently one of the most used XSLT1

processors, being part of the reference implementation of the standard Java
Application Programming Interface for XML processing (JAXP [Mic05]) in the
Java 2 Platform, Standard Edition 5.0. The second XSLT processor that we used
is the open source Saxon XSLT processor [Kay05], version 6.5.3, also written in
Java.

We considered the following benchmark transformations:

G Birds

– XML Input (9.2 KB): Description of classes of birds

– Output: Plain text file presenting the information in the input in an
indented manner

This transformation traverses the document in the implicit depth-first
left-to-right manner. The text content of the nodes of interest is out-
put using different indentations, depending on the type of the nodes.
These nodes are identified by simple match patterns consisting only of
the names of the nodes.

G Article

– XML Input (80 KB): An article about Fxt [BS02] conforming to the
DTD format for the Extreme Markup Language Conference Pro-
ceedings

– Output: An HTML layout of the paper

This is a typical stylesheet transformation. Most of the transformation
rules relabel the nodes denoting the logical format of the paper with cor-
responding HTML annotations. The patterns used here are slightly more

1A comparison of Fxt with the XSLT language is given in Section 12.2.1.
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elaborated than in the Birds application, as they sometimes need to dis-
tinguish among elements with the same name in different contexts. Ad-
ditionally, bibliographical references, footnotes and cross references have
to be handled. This is achieved in Fxt via keyed tables as presented in
Section 9.6. Moreover the sections have to be numbered and an index
has to be constructed. We perform this in Fxt by using variables as pre-
sented in Section 9.5.

G T1 and T2

– XML Input (205 KB): Shakespeare’s “All’s Well That Ends Well” play
[Bos99]. A play is a sequence of ACTs, each of them containing a
sequence of SCENEs. A SCENE has a sequence of SPEECH-es, each of
them containing a SPEAKER and a sequence of LINEs containing plain
text.

– Output: A list of paragraphs containing matches of patterns which
are slightly more elaborated than the very simple patterns used in
the previous transformations.

Transformation T1 collects all lines in speeches of Lafeu appearing in
scenes where Bertram is also present 2. Transformation T2 collects all
speeches in scenes containing a line having the word “husband” and be-
ing in an act containing a line having the word “abundance”3.

We wrote the stylesheets performing the above transformations in both Fxt
and in XSLT and correspondingly used them as specifications for the different
XML transformers. Every transformation was executed 10 times and the av-
erage execution time was computed. The measured times include the startup
phase of the SML runtime and Java Virtual Machine (JVM), respectively.

The benchmarks were executed under Linux (kernel version 2.6.8) on a
AMD Athlon XP 3000+ processor with 1 GB of memory. The JVM used to run
the benchmarks with the Java XSLT implementations was the Sun JVM imple-
mentation Java version 1.5, which uses by default a just-in-time compiler (JIT).
The SML version used for Fxt was 110.0.7.

We considered both the interpretive and the compilation approach, where
applicable. In the compilation approach a stylesheet is compiled once, and sub-
sequent executions of the same transformation may be performed by directly
executing the compiled code, thereby saving the time needed to process the
stylesheet. As presented in Chapter 9, Fxt always compiles the stylesheet. In
its “interpretive” approach, Fxt immediately uses the compiled code in order
to perform the required transformation on the presented XML input. In the
compilation approach the compiled code is saved and can be used to directly
perform the same transformation an arbitrary number of times. Xalan Java
also includes a similar feature via its included XSLT compiler (XSLTC). Given
an XSLT specification, XSLTC generates a Java class which can be subsequently
used to perform the transformation. Saxon 6.5.3 (the last version implementing
XSLT 1.0) only functions in the interpretive approach.

2Expressible with the XPath pattern SCENE[.//SPEAKER="BERTRAM"]/
SPEECH[SPEAKER="LAFEU"]/LINE

3Expressible with the XPath pattern: ACT[.//LINE[contains(.,"abundance")]]/
SCENE[.//LINE[contains(.,"husband")]]/SPEECH
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The results for the interpretive and compilation approaches are graphically
depicted in Figure 11.4 and Figure 11.5, respectively. The times indicated in the
interpretive approach include the times needed to process the stylesheet. The
times indicated in the compilation approach are the times needed to run the
compiled code.

Fxt proved to be generally faster for most of the considered applications,
both in the interpretive and in the compilation approach. The good perfor-
mance of Fxt is especially visible in the compilation approach. In the case of
the quite simple Birds transformation Fxt was almost ten times faster than the
XSLT processor.

The more complex Article application clearly shows the advantage of com-
piling the stylesheet. Most of the time needed for executing this transformation
in the interpretive approach by Fxt is taken by the compilation of the stylesheet
which makes Fxt slower than the Java processors. Executing the same pre-
compiled Fxt transformation however is significantly faster, even when com-
pared with the equivalent compiled Xalan Java transformation.

A strength of Fxt is its pattern language, Fxgrep. While being quite ex-
pressive, Fxgrep can be also efficiently implemented. The advantages of using
Fxgrep as a pattern language become visible as the complexity of the patterns
used in the XML transformations increases. All transformations considered
above use very simple patterns. In contrast, the transformations T1 and T2 con-
tain more elaborate, yet completely meaningful patterns as mentioned above.
One can see that the relative performance of Fxt was very good. Moreover, by
comparing the execution times of Fxt for T1 and the more complex T2, one can
note that the complexity of the patterns does not significantly influence Fxt, in
contrast to the XSLT processors.

For T1 and T2 we also considered the dependency of the transformation
time on the size of the input document. The input document was augmented
by duplicating the ACTs of the play, which is doubling the breadth of the input
tree. The expected effect on both the Fxt and the XSLT transformations is that
of doubling of the transformation steps. The size-time dependency proved to
be indeed linear.

11.7 Conclusions
As presented in the case of Fxt, most of the time spent during an XML transfor-
mation is likely to be spent for the purpose of locating matches of patterns,
i.e. for query evaluation. The overall good performance of Fxt which can
be observed in the experimental results presented in the previous section is
correspondingly mainly due to the efficient implementation of queries in Fx-
grep. An important contribution to the overall good performance of evaluat-
ing queries in Fxt is obtained via the optimization presented in Section 10.3,
which removes the expensive select patterns by efficiently implementable bi-
nary queries.

Furthermore, Fxt is another proof that functional programming languages
can keep up with imperative ones, while offering the safety and the comfort
emerging from extensive static type checking, and type inference, and that they
are very suitable for processing tree-structured data.



Chapter 12

Fxt vs. Other Transformation
Languages

As argued in the introduction in Section 8, non-trivial XML processing requires
a domain specific approach. In particular, constructs and syntax specially tai-
lored for XML processing are needed in order to achieve readable and easily
composable transformations.

DSL approaches, and in particular DSLs for XML processing, can be
roughly divided into two categories: embedded and stand-alone. Embedded
DSLs are extensions of general purpose programming languages (GPLs) with
domain specific syntax and constructs. In contrast, stand-alone DSLs are inde-
pendent of any constraints which an underlying GPL might impose. Fxt , XSLT
and XQuery are for example stand-alone DSLs for XML processing.

Of course, both DSL approaches have their strengths. The stand-alone ap-
proach enjoys the complete freedom of choosing a suitable syntax and imple-
mentation. This allows for instance Fxt or XSLT to provide an implicit con-
trol flow as required by rule-based transformations. Also, using a stand-alone
DSL does not require being aware of anything else other than the application
domain, as opposed to an embedded language which additionally requires fa-
miliarity with the underlying GPL. Consequently, stand-alone DSL can be thus
used also by non-programmers.

On the other side, embedded DSLs can directly use the computational
power and the functionality provided by the underlying GPL and their use
only requires the programmer familiar with the GPL to additionally learn a
number of domain-specific constructs. Embedded DSLs are targeted thus ex-
clusively at programmers.

The distinction between embedded and stand-alone DSLs is nevertheless
not always very strict. Fxt for example has features from both, as it offers ac-
cess to a GPL (SML) via optional embedding of SML code into transforma-
tions. Other stand-alone DSLs are developed such that they resemble GPLs
with added domain specific features, hence their strict classification is not pos-
sible. As a general rule, in this chapter we consider to be standalone DSLs
those which do not depend on some previously existing GPL.

The chapter addresses different approaches to XML transformations that
have been proposed and relate them with Fxt, where possible. Embedded DSL
approaches are reviewed in Section 12.1. Stand-alone DSL approaches are han-
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dled in Section 12.2.

12.1 Embedded DSL Approaches to XML Transfor-
mations

One of the main concerns in the embedded DSL approaches is static type check-
ing, i.e. statically guaranteeing the validity of dynamically generated XML
data. In the case of a statically typed GPL, when XML element types are inte-
grated in the type system of the language, it is possible to provide some guar-
antees that if an input document conforms to a given input schema, the output
produced by the transformation conforms to a given output schema. Checking
the consistent use of XML content with the declared input and output types
is supported in these cases by the type checker of the language. Stand-alone
DSLs like XQuery also provide some form of static type checking. For aspects
related to the type checking problem of XML transformation languages we re-
fer the interested reader to the overview by Møller and Schwartzbach [MS05].
In particular, type checking XML rule-based transformations, which use MSO
expressible binary queries as patterns (like Fxt), is considered by Maneth et al.
in [MBPS05]. In contrast, in the following, we address the XML processing
languages from the point of view of the transformation primitives that they
offer.

12.1.1 Object-oriented Programming Languages
XML processing has received from its beginning a large support in the Java lan-
guage, in which many of the available XML tools have been written. A number
of projects like XOBE, JWig, XACT or XJ are concerned with extending the Java
language with support for XML processing. All of them are implemented as
Java pre-processors.

XOBE [KL03, KL04] extends the Java language with XML objects as first-
class values, i.e. values which can be manipulated like any other values in the
language. XML objects can be represented directly in XML syntax, while an es-
cape mechanism inside them allows one to embed arbitrary Java expressions.
Referring to sub-components of XML trees is directly possible using XPath pat-
terns on XML objects.

XACT [KMS04], similarly to its predecessor languages BigWig [BMS02] and
JWig [CMS03], offers as main type for representing XML values XML templates,
which are XML tree fragments with named gaps which can be filled with val-
ues in an arbitrary order and are treated as first class values. The decompo-
sition of XML values needed in XML transformations is achieved via XPath.
XPath patterns are for instance used to select subtrees or gaps to be filled or cre-
ated. Syntactical support is offered for representing constant XML fragments
and XPath expressions directly in the XML syntax.

Similarly to XOBE and XACT, XJ [HRS+05] integrates XML data as first
class values into Java and uses XPath to navigate these values. As distinguish-
ing features, XJ aims at integrating the XML Schema types into the Java type
system and explicitly permitting destructive updates of the XML data.

A few projects are concerned with extending C# [Csh05] with support for
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XML processing. Cω [BMS03] extends the type system of C# s.t. XML data and
SQL tables can be uniformly represented as first class values in the language.
To query and transform these values, the member access available in object ori-
ented languages is generalized with wildcard, transitive and type-based mem-
ber access, obtaining a functionality similar to the basic functionality of XPath.
Another approach to enhancing C# for convenient XML processing is Xtatic
[GLPS05], a successor project of XDuce (which is addressed in Section 12.1.2),
which builds upon the type system and the pattern matching ideas of XDuce.

12.1.2 Functional Programming Languages
From the very beginning, the application domain of processing hierarchically
structured documents has been attracted by the functional programming style
of declarative specifications. So, the syntax of SGML [Int86], the markup lan-
guage which preceded XML, as well as the XML syntax is similar to Lisp
expressions. Also, the document transformation language for SGML, DSSSL
[Int96], originally had been designed as a superset of Scheme.

Also, popular languages like XSLT and XQuery have one of the basic fea-
tures of functional languages, namely they are side-effects free. The advan-
tage is that the components can be combined arbitrarily, without the need to
think about the order in which an implementation will evaluate them. As in
functional languages, every language construct returns a value, in both cases a
sequence of XML nodes.

However, there are more typical functional constructs which make up a
fully fledged functional programming language, like higher order functions,
pattern matching, static type checking, polymorphism. Even though some
typical higher order functions can be implemented in XSLT (as e.g. in FXSLT
[Nov01]), XSLT and XQuery were not conceived to explicitly support the func-
tional programming style. The need for a functional style of XML processing
was recognized by many authors, as for example by Parsia in [Par01].

In [WR99], Wallace and Runciman provide a library for XML processing
in the general purpose functional language Haskell. The approach followed
is a popular solution to extending functional languages to specific domains by
enriching them with a library of combinators [SAS98]. Combinators are higher-
order functions which can be used to provide more elaborate functionality out
of basic processing functions. Combinators are to be uniformly defined such
that they can be themselves flexibly combined with one other. A small core of
functions are defined in terms of which it should be possible to express all the
functionality required by the specific domain. One advantage of the combina-
tor approach in general is that a number of algebraic laws for combinators can
be derived which could be used for code optimizations. However, even though
a set of operators can be defined to improve readability, the syntax remains lim-
ited to the syntax of the implementation language, which in particular is not
suitable for describing XML content. Furthermore, writing transformations in
terms of combinators leads itself to not especially readable code.

Designing a new functional programming language dedicated to XML pro-
cessing like in XMLambda [MS99], XDuce [HP03] or CDuce [BCF03] has the
advantage that a syntax convenient for XML can be chosen. Actually, these
languages could be as well considered stand-alone DSLs, but we prefer to men-
tion them here, as they can be seen as extensions of general-purpose functional
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programming languages.
The language proposed in [MS99], XMLambda, is similar to Haskell but

dedicated to XML. XML elements are basic values in the language and can be
written directly in the XML syntax. An escape mechanism allows embedding
arbitrary expressions of the language in the XML content. Element types from
DTDs can be represented one to one into types in the language. XMLambda
uses this type information to statically check that the expressions have their
required types. The type checker works similarly to a validator of XML content
but takes additional care of the embedded expressions.

Similarly to classic functional languages, pattern matching with variable
bindings is also provided. A pattern for an XML element can be seen as an
XML tree in which variables are used as place-holders for XML content. When
an XML value is matched against the pattern, the variables are bound to the
corresponding XML content. To resolve possible ambiguities, type annotations
have to be provided for the variables in the pattern. As opposed to Fxgrep
and XPath patterns, the XML information which may be selected via variable
bindings in patterns is always at a fixed depth within the node against which
matching is performed. No deep matching capabilities are provided. The ideas
of XMLambda were pursued by Shields and Meijer in [SM01], yet apparently
they were not made available in any practical implementation.

In contrast, a publicly available implementation of XDuce [HP03] exists,
which is another functional language specially designed for XML processing.
Similarly as in the XMLambda proposal, in XDuce, the traditional pattern
matching capabilities from functional languages are extended with regular ex-
pression constructs. To avoid using tedious type annotations, a type inference
scheme is provided which, given the type of a value to be matched against a
pattern, automatically infers the type of the variables in the pattern. Basically,
the XDuce patterns are forest grammars. XML values can be de-constructed
into their component parts by using patterns with variables. A variable in a
pattern is a name for a distinguished sub-pattern and allows one to individu-
ally address sequences of nodes of arbitrary lengths. Evaluating a pattern with
k variables simultaneously binds the k variables, and can be thus seen as a k-
ary query. Patterns may be in general ambiguous. That is, matching against an
input value may bind a variable to different values. XDuce initially solved the
ambiguity by adopting a left longest match policy, and later by issuing a warn-
ing and non-deterministically choosing one possibility. This ensures yielding
at most one match tuple, as required for the purpose of pattern matching in a
programming language. An all-matches semantics is however more suitable for
a query language, both as a stand-alone tool or embedded within a rule-based
transformation language as in Fxgrep and Fxt, respectively. Nevertheless, as
mentioned in Section 5.4, in the presence of a disambiguating policy, pattern-
matching with k variable bindings can be efficiently implemented using push-
down forest automata.

XDuce focuses on static type checking and does not provide any effi-
cient algorithm for pattern-matching evaluation other than naive backtracking.
CDuce [BCF03] is based on XDuce and improves its pattern matching evalua-
tion by an implementation based on a combination of top-down and bottom-up
tree automata [Fri04] similar to the pushdown forest automata and optimized
to take static type information into account. Besides, CDuce extends XDuce
with the use of higher-order functions, more basic types, non-linear capture
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variables, products, records and handling of XML attributes.

12.2 Stand-alone XML Transformation Languages
In this section we consider XSLT and XQuery as the prominent XML trans-
formation languages available. Note that the term “query languages” occurs
with different acceptances in the literature. In some of them “querying” is
not distinguishable from “transforming”, as one can see for example in the
name of “XQuery”. In contrast, we adopt the terminology in which a query
language is a language which, given an input XML document, only identifies
sub-documents having some specified properties.

12.2.1 Fxt and XSLT
As a stable W3C Recommendation, XSLT 1.0 [XSL99] is probably the most
widely used XML transformation language. As a rule-based transformation
language, XSLT has a processing model similar to Fxt. The basic constructs
of XSLT, like those of Fxt, offer possibilities for selecting and copying exist-
ing nodes, creating new XML nodes, and recursively applying transformation
rules. The syntax of XSLT and Fxt is also similar, as they both adopt an XML
syntax. As in Fxt, by default, element names occurring in a transformation
specification are to appear as such in the output. Calls to transformation prim-
itives are given by elements with reserved names.

Example 12.1: Compare the Fxt specification in Fxt Example 1, producing a
list of section titles, reproduced for convenience below in Fxt Example 30, with
the equivalent transformation in XSLT Example 1. Rules, called templates in
XSLT terminology, are defined in XSLT via xsl:template elements. The match
pattern is given as the value of an attribute match and the corresponding action
is given by the content of the xsl:template element.

Fxt Example 30

< f x t : spec >
< f x t : pat >/∗</ f x t : pat >

<ul >
< f x t : apply/>

</ul >

< f x t : pat >// s e c t i o n / t i t l e /""</ f x t : pat >
< l i >

< f x t : current />
</ l i >

< f x t : pat >defaul t </ f x t : pat >
< f x t : apply/>

</ f x t : spec >

XSLT Example 1

<?xml vers ion = " 1 . 0 " encoding ="UTF−8"?>
< x s l : s t y l e s h e e t

xmlns : x s l =" ht tp ://www.w3 . org /1999/XSL/Transform " vers ion ="1.0" >
< x s l : template match="/∗">
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<ul >
< x s l : apply−templates/>

</ul >
</ x s l : template >

< x s l : template match="// s e c t i o n / t i t l e / t e x t ( ) " >
< l i >

< x s l : copy−of s e l e c t =" ."/ >
</ l i >

</ x s l : template >

< x s l : template match=" t e x t ( ) |@∗"/>

</ x s l : s t y l e s h e e t >

The match patterns of the first two rules are equivalent in the two transfor-
mations, up to the syntactical differences between XPath and Fxgrep , the pat-
tern languages used by XSLT and Fxt, respectively. The recursive application
of the transformation rules on the children of the current element, performed
in Fxt by the fxt:apply element in the first rule, is achieved in XSLT by the
xsl:apply-templates element. Copying the current node, achieved in Fxt by
the special element fxt:current, is specified in XSLT by selecting the current
node with the XPath pattern “.” and copying it via the xsl:copy-of element.
The xsl:copy-of is the XSLT correspondent of the fxt:copyContent element.
Finally, the last rule specifies in both transformations that nodes not matched
by any previous rule are to be ignored. Since, in XSLT, element nodes are any-
way ignored if they do not fulfill any match-pattern, this remains to be explic-
itly required only for text content and attributes, as in the last rule in XSLT
Example 1. �

Despite their similar syntax, XSLT and Fxt are quite different in terms of
expressiveness, as described next.

Pattern Language

A main difference is the pattern language used. XSLT uses general XPath pat-
terns, as select patterns, and XPath patterns in which navigation is restricted
only downwards in the input tree, as match patterns. Fxt, on the other hand,
uses general Fxgrep patterns both as match and select patterns. The different
expressiveness of Fxt and XSLT mainly originates in the different expressive-
ness of Fxgrep and XPath (presented in Section 3.4).

Selection

Besides by unary patterns as in XSLT, nodes can be selected in Fxt by using
binary patterns. As presented in Chapter 10, this allows the extraction of sup-
plementary information from a match pattern which can be used in the ac-
tion part of the corresponding rule. A binary pattern may deliver not only
the target node of the rule but also the nodes which caused this to be a target
node, as matches of an arbitrary node in the pattern. For example the pattern
//chapter[(//%section//"query")]/title not only locates the title elements
of chapters containing section sub-elements containing the word “query”, but
also allows the selection of exactly these sections.
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Even though Fxt and XSLT are not directly comparable because of the dif-
ferent capabilities of the underlying pattern languages, one might argue that
the use of binary patterns in Fxt is an increase in terms of declarativeness as
compared to XSLT, as suggested in the following.

Example 12.2: As an example of the different flavors of selection in Fxt and
XSLT re-consider the XML transformation addressed in Example 10.1, which is
reproduced for convenience below. It handles documents having department
elements which contain an id element followed by a sequence of employee
elements as for example:

XML Example 38

<company>
<department>

<id >Publ i c Re la t ions </id >
<employee>Jan Smith</employee>
<employee>Meg Rush</employee>

</department>
<department>

<id >Sales </id >
<employee>David Hughes</employee>
<employee>Angela Dimm</employee>

</department>
</company>

The transformation is to produce a list of employees, each of them containing
the id of his department, as below:

XML Example 39

<employee><dept>Publ i c Re la t ions </dept>Jan Smith</employee>
<employee><dept>Publ i c Re la t ions </dept>Meg Rush</employee>
<employee><dept>Sales </dept>Don Hughes</employee>
<employee><dept>Sales </dept>Angela Dimm</employee>

The Fxt solution, presented in Fxt Example 22, is reproduced for convenience
below:

Fxt Example 31

< f x t : spec >
< f x t : pat >//company</ f x t : pat >

<employees>< f x t : apply/></employees>

< f x t : pat >//department[%id ]/ employee</ f x t : pat >
<employee>

<dept>< f x t : copyContent name="1"/></ dept>
< f x t : copyContent/>

</employee>

< f x t : pat >defaul t </ f x t : pat >
< f x t : apply/>

</ f x t : spec >

The binary Fxgrep pattern simultaneously locates an employee and the id of
her company.

To achieve the same in XSLT, the following two rules have to be specified:
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XSLT Example 2

< x s l : template match="employee">
<employee>

<dept>< x s l : copy−of s e l e c t = " . . / id/ t e x t ()"/ > </ dept>
< x s l : copy−of s e l e c t =" t e x t ( )"/ >

</employee>
</ x s l : template >

< x s l : template match=" t e x t ( )"/ >

The select pattern “../id/text()” in the first rule, processing employee ele-
ments, indicates the navigation steps to be performed to get to the id sibling:
first going to the father node (as specified by “..”), then descending to the id
child, and finally descending to its text content.

�

The binary patterns used in Fxt extract more information from the input,
similar to how pattern matching with variable bindings extract more infor-
mation as compared to simple pattern recognition. The binary patterns can be
seen in this respect as a particular form of pattern matching with variable bind-
ings tailored to the needs of rule-based XML transformations. The approach of
Fxt is more declarative, because rather than specifying how to navigate to get to
the nodes of interest, one directly captures the nodes of interest with a pattern.

12.2.1.1 Binary Queries for XSLT Implementations

Some results presented in the case of Fxt basically take over to XSLT, when
considering the (fairly large) subset of XPath (Core XPath ) covered by Fxgrep.

In particular, the relation between a match node and the nodes identified
via (unary) select patterns in the node’s context can be captured by binary
queries with similar benefits as for Fxt (as presented in Section 10.3). This im-
plies, as in the case of Fxt, that pattern matching can be performed efficiently
before the actual transformation begins. The pattern evaluation can thus tab-
ulate the information needed for node selection beforehand, s.t. at transforma-
tion time, selection may be performed by simply looking up these tables.

XSLT keys are similar to the keyed tables used for grouping in Fxt (pre-
sented in Section 9.6), that is, they are a particular form of binary queries. Ba-
sically, XSLT keys are pairs consisting of a node and a string value (the node’s
key). The node is identified using a match pattern, while the value is given
by a select pattern evaluated in the context of the node. The usage pattern is
completely similar to that of match and select patterns in transformation rules,
which can be efficiently implemented as addressed above. Thus, binary queries
can also be used to efficiently implement XSLT keys.

12.2.2 Fxt and XQuery
XQuery is another language for transforming XML documents proposed by
the W3C Consortium. XQuery version 1.0 [XQu05a], at the time of writing
still a working draft, is likely to gain a broad acceptance in the XML process-
ing area. Together with XSLT it belongs already to the most prominent XML
transformation languages. While XSLT is rule-based and intended also for non-
programmers, XQuery offers similar constructs as SQL, the standard language
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for extracting information from relational databases, and is more similar to a
traditional programming language. Thus XQuery is targeted more at people
familiar with programming languages. Even though they compete in achiev-
ing the same purposes, it is likely that XSLT and XQuery will be used in paral-
lel, each of them having its advantages for different tasks. While XSLT is more
intuitive as a stylesheet language (in so-called document-oriented applications),
XQuery is especially expressive for typical database operations like joins and
sorting (in so-called data-oriented applications).

Despite their different processing models, both XQuery and XSLT use
XPath as a sub-language. Any XPath pattern is a valid XQuery expression.
Like in XSLT, XPath patterns are used as a means of selecting nodes of interest
from XML data.

In contrast to XSLT, an XQuery implementation is only required to im-
plement a subset of XPath axes, namely: child, attribute, parent, self,
descendant or descendant-or-self. The only reverse axis used is thus parent.
Since patterns containing the parent axis can be rewritten using the other avail-
able axes, navigation can be restricted in XQuery strictly downwards the input.

Also unlike in XSLT (at least in the current recommendation, version 1.0
[XSL99]), XPath patterns in XQuery can select nodes not only from the input
XML document, but also from XML fragments constructed as intermediate re-
sults. This implies that for this type of patterns, evaluation can be only per-
formed along with the transformation. In the following we restrict our obser-
vations to the cases in which queries are to be evaluated on XML input data
available beforehand. We consider typical usage patterns of XPath queries in
XQuery and suggest how techniques already presented in Fxt and Fxgrep can
be used to optimize their evaluation.

12.2.2.1 Binary Queries for XQuery implementations

XQuery’s basic type is the flat heterogeneous sequence of either simple values
(e.g., integers, strings) or XML nodes. In fact, every XQuery expression returns
a sequence. In particular, an XPath expression returns the sequence of nodes
obtained when the expression is evaluated in the current context.

The XQuery language can be reduced without loss of expressiveness to a
small core of constructs [XQu05b]. The fundamental construct in the core of
XQuery is the for construct which allows iteration over a sequence. The for
expression has the form:

XQuery Example 1

f o r $x in expression1
re turn expression2

For each value t in the sequence given by the evaluation of expression1,
expression2 is evaluated in a context in which variable $x is bound to t. The
result of the for expression is given by concatenating the sequences resulting
from the evaluations of expression2.

Example 12.3: The expression:

XQuery Example 2

f o r $x in ( 1 , 1 1 )
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re turn ( $x +1 , $x +2)

evaluates to the sequence (2,3,12,13). �

In particular, every step in an XPath pattern can be represented as a for
expression, where expression1 is the set of nodes selected in the previous step (or
the root of the input document if this is the first step), and expression2 selects the
nodes according to the current step. This observation allows the core language
of XQuery to represent XPath patterns as a sequence of nested for-expressions,
each of them representing one step in the pattern.

Example 12.4: The pattern /a//b/../text() could be evaluated in the docu-
ment "input.xml" by:

XQuery Example 3

f o r $root in document ( " input . xml " ) re turn
f o r $dot1 in $root/a re turn

f o r $dot2 in $dot1//b return
f o r $dot3 in $dot2 / . . re turn

$dot3/ t e x t ( )

�

Evaluation of Select Patterns

Nodes from some input document are delivered in XQuery essentially by
XPath patterns. An XPath select pattern is either absolute, if its evaluation con-
text is the root of some input document, or relative if its evaluation context is a
previously selected node. Consequently, any sequence of nodes selected from
some input document can be constructed by an expression of the form:

XQuery Example 4

f o r $n1 in /pattern1 re turn
f o r $n2 in $n1/pattern2 re turn

f o r $n3 in $n2/pattern3 re turn
...

f o r $nk in $nk−1/patternk re turn
re turn $nk/patternk+1

That is, a select pattern patternk+1 is evaluated in the context of a set of nodes
which in turn have been selected by a pattern patternk, and so on, with the first
set of nodes being selected by an absolute pattern /pattern1.

An expression as in XQuery Example 4 can be efficiently evaluated (for
the class of patterns expressible with grammar queries) by a construction us-
ing binary grammar queries, as presented below. As mentioned in Section 3.4,
this class of XPath queries is quite large, the restriction being basically that no
arithmetic and data value comparison can be used in patterns. The construc-
tion is similar to that used for removing select patterns in Fxgrep presented in
Section 10.3. It implies that at most two traversals of the input document are
enough for the evaluation of most XPath patterns in XQuery.

Let Qi = ((Ri, Ei), Ti) be the grammar query obtained by translating
patterni for all i = 1, . . . k + 1. Given a query Qi+1 to be evaluated for each
match of a query Qi, a binary query Qi,i+1 = ((Ri,i+1, E1), Ti × Ti+1) can be
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constructed which directly locates every match of Qi together with the corre-
sponding matches of Qi+1, where Ri,i+1 is obtained as follows:

R1,2 = combine((R1, T1), (R2, E2))
Ri,i+1 = combine((Ri−1,i, Ti), (Ri+1, Ei+1)) for all i > 1 (12.1)

with combine defined as in Section 10.3.

Example 12.5: Consider the following instance of the expression in XQuery
Example 4 where pattern1=//a, pattern2=//b and pattern3=//c.

XQuery Example 5

f o r $x in // a re turn
f o r $y in $x//b return

$y//c

The corresponding unary queries are

Q1 = (({(1), (2)}, {_ x1|xa _}), {xa})
Q2 = (({(3), (4)}, {_ x2|xb _}), {xb})
Q3 = (({(5), (6)}, {_ x3|xc _}), {xc})

where the productions are as below:

x1 → ∗〈_ x1|xa _〉 (1)
xa → a〈_〉 (2)
x2 → ∗〈_ x2|xb _〉 (3)
xb → b〈_〉 (4)
x3 → ∗〈_ x3|xc _〉 (5)
xc → c〈_〉 (6)
xa → a〈_ & _ x2|xb _〉 (7)
xb → b〈_ & _ x3|xc _〉 (8)

The productions for the constructed binary queries are:

R1,2 = {(1), (2), (3), (4), (7)}
R2,3 = {(1), (2), (3), (4), (5), (6), (7), (8)}

The query Q1,2 = ((R1,2, {_ x1|xa _}), {(xa, xb)}) selects each a descen-
dant of the root together with all its b descendants. The query Q2,3 =
((R2,3, {_ x1|xa _}), {(xb, xc)}) selects each b node which have an a ancestor,
together with all its c descendants. �

Given the grammar queries constructed as above, an expression like in
XQuery Example 4 can be evaluated as simply as presented in Listing 12.1:

Listing 12.1: Iteration via Binary Queries
f o r a l l n1 ∈ MQ1

f o r a l l (n1, n2) ∈ MQ1,2

f o r a l l (n2, n3) ∈ MQ2,3

...
f o r a l l (nk, nk+1) ∈ MQk,k+1

re turn nk+1
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1

2

3

4

5

6

a

b

c

a

b

c

Figure 12.1: Sample input

whereMQ1 are the unary matches of Q1 andMQi,i+1 are the binary matches of
Qi,i+1 for all i = 1, . . . , k.

Thus, by locating the matchesMQ1 andMQi,i+1 for all i (which can be per-
formed by at most two traversals of the XML input data), one is able to iden-
tify quite straightforwardly the set of nodes selected by any XPath pattern as
above.

In fact, for the evaluation of an expression like that in XQuery Example 4
only the evaluation of Qk,k+1 is needed. However, in general, rather than sim-
ply locating the node of the innermost patterns, one needs the variable bind-
ings defined by all patterns as these may be referred to in the original expres-
sion in which the patterns occur. For a correct evaluation of the original expres-
sion, in which the order of the elements in the resulting sequence correspond
to the nested structure in the for expression, one must also ensure the correct
visibility of the variables n1 to nk.

To ensure this, it is enough tabulate the binary matches of Q1,2 to Qk,k+1 as in
the case of binary match patterns in Fxt. That is, a primary node is stored in one
entry together with all the secondary nodes with which it forms a match pair.
Using this construction, given a binding πi for ni, the sequence of bindings
for ni+1 in the scope of ni is obtained by looking up the entry for ni in the
tabulated result of Qi,i+1 (stored in a table TabMQi,i+1

). The nested scopes can be
implemented by starting with a binding for n1 to a match for Q1 (stored in a
table in TabMQ1

) and proceeding as above.

Example 12.6: Consider the XML input graphically represented in Figure 12.1
where nodes are identified via numbers. Figure 12.2 (i) depicts the variable
bindings and their scope during the evaluation of the expression in XQuery
Example 5 for this input. As depicted in Figure 12.2 (ii) and described above,
the nested scopes can be implemented by looking up the tables storing the
matches of the initial select pattern and the constructed binary queries.

�

12.2.2.2 XQuery Use-Cases in Fxt

The W3C Consortium has released together with the XQuery specification a
set of so-called XML Query Use Cases [XQu05c]. XML Query Use Cases aims
at providing a representative set of XML transformations. By presenting the
proposed solution in XQuery for each of these transformations, these use-cases
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$n1 return
1

$n2 return
2

$n3 return
3 3
6 6

5 6

4
$n2 return
5

$n3 return
6 6

TabMQ1
:

n1
1
4

TabMQ1,2
:

n1 n2
1 2 5
4 5

TabMQ2,3
:

n2 n3
2 3 6
5 6

(i) (ii)

Figure 12.2: Implementing nested scopes

are suited for testing XQuery implementations for their conformance to the
XQuery specification.

As the sample transformations are intended to offer a representative
overview of the different type of transformations needed for XML docu-
ments, it was interesting to use them to compare the expressiveness of Fxt and
XQuery. The results were obtained as part of a student project [Eis05]. The de-
scribed transformations are divided by the specification into classes (use-cases),
according to the type of task that they achieve.

All use-cases up to two were completely implemented. One of these two
cases is the “NS” use case which is concerned with namespace information,
currently not supported by Fxgrep and Fxt. The other is the “STRONG” use
case, not applicable for Fxt as it deals with type information taken from the
schema of the XML input, which is not considered in Fxt. For the more im-
portant of the other use cases a brief overview is presented in the following,
together with remarks on how they were implemented in Fxt.

The use-case “TREE” covers transformations which basically maintain the
structure of the input document. These queries are likely to occur when pro-
ducing the layout for XML marked-up text. As expected, this class could be
implemented without difficulties, since the required top-down transformation
model is well suited for the rule-based approach, as suggested by the following
example.

Example 12.7: Transformation “Q1” in “TREE” requires producing a hierarchi-
cally structured table of contents for an XML document representing a book by
listing all the sections and their titles. The solution in Fxt is presented in Fxt
Example 32.

Fxt Example 32

< f x t : spec >
< f x t : pat >/book</ f x t : pat >

<toc >
< f x t : apply/>

</toc >
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< f x t : pat >// s e c t i o n [% t i t l e ]</ f x t : pat >
<sec t ion >

< f x t : copyAttr ibutes/>
< f x t : copyContent s e l e c t ="1"/ >
< f x t : apply/>

</ sec t ion >

< f x t : pat >defaul t </ f x t : pat >
</ f x t : spec >

�

Some transformations in “TREE” require counting the number of nodes ful-
filling a certain pattern. One way to achieve this is to use Fxt variables as in
Example 12.8.

Example 12.8: The transformation “Q4” in “TREE” requires reporting the num-
ber of top-level sections. The solution in Fxt is presented in Fxt Example 33.

Fxt Example 33

< f x t : spec >
< f x t : g loba l name=" sec " type =" i n t "/>
< f x t : push name=" sec " val ="0"/ >

< f x t : pat >/book</ f x t : pat >
< f x t : apply/>
<top_sect ion_count >< f x t : get name=" sec "/></ top_sect ion_count >

< f x t : pat >/book/sec t ion </ f x t : pat >
< f x t : inc name=" sec "/>

< f x t : pat >defaul t </ f x t : pat >
< f x t : apply/>

</ f x t : spec >

A global variable sec is used as a counter. The transformation traverses the
input top-down and increments the counter at every top level section. The
value of the counter is output after processing all children of the root element
book. �

The use-case “R” contains SQL-like queries on XML views of relational
databases in which each table is represented by an XML document. XQuery
was specially designed to perform this type of queries. A frequently needed
operation is joining two table representations by comparing some data values.
As data value comparison is not expressible in Fxgrep, the Fxt transformations
have to use SML-code in this case. To perform a data value based join, the data
value from the first table is used to construct an Fxgrep pattern with which the
elements of interest are selected from the second table, as in the next example.

Example 12.9: The “R” use case deals with a table storing information used
by an online auction. The “items.xml” file contains an item_tuple element for
each item offered in the auction, with an identifier itemno and a description
element. The “bids.xml” file contains a bid_tuple element for each offer, with
an itemno element identifying the item for which the bid was provided. The
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transformation “Q4” in “R” requires performing a join between the two tables
stored in the files “items.xml” and “bids.xml”, by listing item numbers and
descriptions of items that have no bids. The solution in Fxt is presented in Fxt
Example 34.

Fxt Example 34

< f x t : spec >
< f x t : g loba l name=" bidsForItem " type =" Fores t "/>
< f x t : push name=" bidsForItem " val =" emptyForest"/>

< f x t : pat >/∗</ f x t : pat >
< r e s u l t >

< f x t : apply/>
</ r e s u l t >

< f x t : pat >//item_tuple [% d e s c r i p t i o n ]/ itemno</ f x t : pat >
< f x t : s e t F o r e s t name=" bidsForItem">

< f x t : copyContent f i l e =" bids . xml "
se lec tExp = ’ St r ing2Vector (
"//itemno /\""^( Vector2Str ing ( getTextContent current ) )^"\"" ) ’/ >

</ f x t : s e t F o r e s t >

< f x t : i f t e s t = ’ ( Globals . get G. bidsForItem ) = emptyForest ’ >
<no_bid_item >

< f x t : current />
< f x t : copyContent s e l e c t ="1"/ >

</no_bid_item >
</ f x t : i f >

< f x t : pat >defaul t </ f x t : pat >
< f x t : apply/>

</ f x t : spec >

The transformation is to be applied on the “items.xml” file. A global vari-
able bidsForItem is used to store the bids for a given item. The first rule pro-
duces an enclosing result element containing the required items. The sec-
ond rule handles the items in “items.xml” identified by their itemno. When
processing an itemno, an Fxgrep pattern is constructed via an SML expres-
sion in the attribute selectExp which selects the references to the current item
in the “bids.xml” table. The result of this selection is stored in the variable
bidsForItem via the fxt:setForest element. If the value of the variable equals
the empty forest (as tested by the fxt:if element), then no bids were found
and the item is output as required. �

The use case “XMP” is meant to cover typical transformations for XML in-
put representing both marked up text documents and database XML views
and could be implemented quite straightforwardly. A few transformations
performing data value based joins have been implemented again using SML
code. Also, to compute aggregation functions like the minimum, sum or mean
of a sequence of selected values, SML code had to be used in the Fxt imple-
mentation.

The use case “SEQ” exploits the relative order of elements of elements in a
document and could be implemented in Fxt without difficulties since Fxgrep is
especially good at specifying contextual conditions. To account for the ordinal
number of nodes in a selection, Fxt variables were used.
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The use case “STRING”, uses string searching capabilities in XML docu-
ments. These capabilities were for the most part covered by the Fxgrep match
patterns used.

The implementation of the XQuery use-cases shows that most of the usual
XML transformations are expressible in Fxt. As a rule-based language, Fxt
can easily specify stylesheet transformations, similarly to XSLT but possibly
in a more declarative and efficiently implementable manner. Performing data
value comparisons as required by joins in database-like applications is achiev-
able, though one has to resort to embedding SML code into transformations.
The same holds true in the cases where different aggregation functions are
needed. This justifies the adequacy of the design decision of Fxt to allow one
to embed SML code in transformations, to account for eventual limitations of
the pattern language or unanticipated but necessary functionality.

12.2.3 XPath 2.0 and XSLT 2.0
At the time of writing, the W3C consortium is working at a successor spec-
ification for XPath, XPath 2.0 [XPa05], currently having the status of a W3C
Working Draft. XPath 2.0 is a superset of XPath 1.0 and loosely speaking a
subset of XQuery. In fact, most of the text in the specifications of XQuery and
XPath 2.0 is the same.

As opposed to version 1.0, XPath 2.0 is strictly speaking not a pattern lan-
guage but rather a transformation language, as it not only identifies parts of
input XML documents, but also is able to restructure the input data. One ex-
tension as compared to XPath 1.0 is that, like XQuery, XPath 2.0 provides for
expressions for iterations over sequences. The observations regarding XPath
1.0 patterns and for expressions in XQuery thus apply to XPath 2.0 as well.
As opposed to XQuery, XPath 2.0 does not provide constructors for XML el-
ements, meaning that nodes which are selected are always from the original
input, as assumed in our remarks.

Like XQuery, XPath 2.0 may use type information that becomes available
when the input documents are validated using an associated instance of an
XML Schema [XML01]. The type of a node influences the way it is handled
within the evaluation of an expression.

XSLT version 2.0 [XSL03] is a rule-based transformation language using
XPath 2.0 as a pattern language. Its match patterns are still the restriction of
XPath 2.0 expressions to XPath 1.0 match patterns while its select patterns can
be XPath 2.0 expressions evaluating to sequences of nodes. Implementation
techniques for evaluating XPath 2.0 queries as mentioned above are thus use-
ful also in XSLT 2.0.

12.3 Summary
One possibility of providing convenient tools for XML processing is to ex-
tend existing GPLs with XML-specific constructs. Since, traditionally, object-
oriented GPLs have been mainly used for XML processing, there are a few
approaches in which object-oriented GPLs are used as the basis of embedded
DSLs for XML, which we briefly reviewed. Furthermore, we considered some
approaches which attempt to provide highly desirable features of functional
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programming languages, like absence of side-effects, pattern-matching or ex-
tensive static type checking in an XML processing setting. We have briefly
remarked how techniques for query evaluation which proved their robustness
in Fxgrep and Fxt could also be used as a basis for efficient implementations of
pattern matching primitives in functional programming languages specialized
for XML.

By using an XML syntax for XML constructs and pattern matching capabil-
ities (either as simple as XPath for concisely addressing parts of XML trees, or
more elaborated patterns which extract more information from the data), em-
bedded DSLs highly improve the convenience of writing and the readability
of programs, yet, as such, they are exclusively targeted at programmers of the
underlying GPLS.

As an alternative accessible also to non-programmers, XML processing is
already primarily performed via stand-alone DSLs which can be used by solely
manipulating XML concepts. We compared Fxt as a stand-alone DSL to the
most prominent languages in the same category: XSLT and XQuery. A distin-
guishing feature of Fxt among XML transformation tools is its use of efficiently
implemented binary queries. In contrast, popular languages like XSLT and
XQuery only use unary queries. Nevertheless, typical usage scenarios com-
bine unary queries in such a way that they can be internally implemented via
binary queries, and benefit from them similarly to Fxt. This was sustained by
the successful implementation of an important part of the XML sample trans-
formations, representative for the purposes of XQuery.
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Conclusion

We have presented querying techniques for unranked trees based on (exten-
sions of) tree grammars and tree automata and showed how these can be used
to support declarative and efficient pattern and transformation languages for
XML data. The contributions of this work are summarized in the following.

An expressive method for specifying k-ary queries We have introduced a
simple yet powerful method based on forest grammars allowing the formula-
tion of queries which identify tuples of k related nodes in the input document
tree.

Efficient evaluation of binary queries Unary grammar queries have previ-
ously been shown to be efficiently implementable. We have shown here that bi-
nary queries can also be efficiently evaluated by providing an algorithm based
on pushdown forest automata. Binary queries are a fundamental feature of the
XML querying tool Fxgrep and of Fxt, an XML transformation tool built upon
Fxgrep. To ensure the reliability of the query evaluation in these XML tools,
we have proven the correctness of the algorithm for evaluating binary queries.

Evaluation of k-ary queries We have mentioned how the algorithm for an-
swering binary queries can be generalized for the evaluation of queries for ar-
bitrary arity. The complexity of query evaluation grows exponentially with k.
Nevertheless, we have suggested restrictions for k-ary grammar queries under
which their evaluation is efficiently implementable.

Event-driven evaluation of grammar queries on XML streams We have pre-
sented an efficient algorithm which allows the evaluation of unary grammar
queries in an event-based manner. This processing method is suitable for very
large documents which cannot be built completely in memory. The algorithm
is also useful in settings in which documents are received linearly on some
communication channel and would ideally be processed while being received,
rather than waiting until the whole document is locally available.

Implementation in Fxgrep The querying techniques introduced here have
been implemented in the XML querying tool Fxgrep. Fxgrep makes it possible
to express powerful contextual conditions, as permitted by grammar queries,
via an intuitive pattern language. The practical implementation confirms the
efficiency of the introduced algorithms.
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A rule-based transformation language based on grammar queries Fxgrep
has been used as the basis of Fxt, a rule-based transformation language for
XML documents. Fxt allows the specification of common, simple transforma-
tions in an intuitive and concise way. More complex transformations are possi-
ble via a variable mechanism, as well as via a functional programming interface
which allows the embedding of arbitrary SML code into transformations.

Binary queries in XML transformations We have identified binary queries
as an especially useful case of queries in XML transformations. Given the effi-
cient evaluation of binary grammar queries, we use them in Fxt both at the
specification and at the implementation level. As a means of specification,
Fxgrep binary patterns allow one to identify together the nodes to which a
rule is applicable and the nodes to be selected in the body of the rule. In the
implementation, user-specified, unary selection patterns are automatically re-
placed by more efficiently implementable binary queries. This ensures that the
number of traversals of the input performed for purposes of pattern matching
is always limited to two. Besides efficiency, binary queries also improve the
expressiveness and declarativeness of XML transformation languages as pre-
sented in the case of Fxt and as suggested for other popular XML processing
languages.
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Appendix A

Proofs

A.1 Proof of Theorem 5.3
We start by showing that if a derivation f ′ of a forest f labels a node π with x,
then the trees f [π ] and f ′[π ] are in the derivation relation Derivx.

Lemma A.1: If ( f , f ′) ∈ Derivr and lab( f ′[π ]) = x then ( f [π ], f ′[π ]) ∈ Derivx.

The proof is by induction on the length of π .
Let π = i and last f (λ) = n. Thus f = f [1] . . . f [n] and f ′ = f ′[1] . . . f ′[n].

From the definition of Derivr it follows that there is some x1 . . . xn ∈ [[r]] with
( f [k], f ′[k]) ∈ Derivxk for k = 1, . . . , n. In particular ( f [i], f ′[i]) ∈ Derivxi .

Now let π = π1i, last f (π1) = n and let lab( f [π1]) = a, lab( f ′[π1]) = x′. By
the induction hypothesis, ( f [π1], f ′[π1]) ∈ Derivx′ . By the definition of Derivx′

there is some x′ → a〈r1〉 ∈ R with ( f [π11] . . . f [π1n], f ′[π11] . . . f ′[π1n]) ∈
Derivr1 . By the definition of Derivr1 there is some x1 . . . xn ∈ [[r1]] with
( f [π1k], f ′[π1k]) ∈ Derivxk for k = 1, . . . , n. In particular ( f [π1i], f ′[π1i]) ∈
Derivxi .

In either case, from ( f [π ], f ′[π ]) ∈ Derivxi it follows by the definition of
Derivxi that xi = lab( f ′[π ]) = x. �

In the following we show that if a derivation f ′ of a forest f labels a node
π with x, and there is a derivation t′ of the tree f [π ] from the same x, then we
obtain another derivation of f ′ by grafting t′ into f ′ at π .

Lemma A.2: Assume ( f , f ′) ∈ Derivr, lab( f ′[π ]) = x and ( f [π ], t′) ∈ Derivx.
Then ( f , f ′/π t′) ∈ Derivr.

The proof is by induction on the length of π .
If π = i then let f = t1 . . . tn and let (t1 . . . ti . . . tn, t′1 . . . t′i . . . t′n) ∈ Derivr. By

the definition of Derivr there is some x1 . . . xn ∈ [[r]] with (tk, t′k) ∈ Derivxk for
k = 1, . . . , n. Since t′i = f ′[i] = x〈_〉 it follows that xi = x. From ( f [i], f ′[i]) ∈
Derivxi we have that (t1 . . . ti . . . tn, t′1 . . . t′ . . . t′n) ∈ Derivr which is ( f , f ′/i t′) ∈
Derivr.

If π = i jπ1 we have that ( f [1] . . . f [i] . . . f [n], f ′[1] . . . f ′[i] . . . f ′[n]) ∈
Derivr. By the definition of Derivr there is some x1 . . . xn ∈ [[r]] with
( f [k], f ′[k]) ∈ Derivxk for k = 1, . . . , n. From ( f [i], f ′[i]) ∈ Derivxi it
follows that f [i] = a〈 f1〉, f ′[i] = xi〈 f ′1〉 and there is xi → a〈r1〉 ∈ R
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and ( f1, f ′1) ∈ Derivr1 . As f1[ jπ1] = f [i jπ1] and f ′1[ jπ1] = f ′[i jπ1] we
have that ( f1[ jπ1], t′) ∈ Derivx and f ′1[ jπ1] = x〈_〉. It follows by the
induction hypothesis that ( f1, f ′1/ jπ1 t′) ∈ Derivr1 . By the definition of
Derivxi , (a〈 f1〉, xi〈 f ′1/ jπ1 t′〉) ∈ Derivxi which is ( f [i], xi〈 f ′1/ jπ1 t′〉) ∈ Derivxi .
Therefore, ( f [1] . . . f [i] . . . f [n], f ′[1] . . . xi〈 f ′1/ jπ1 t′〉 . . . f ′[n]) ∈ Derivr which is
( f , f ′/i jπ1 t′) ∈ Derivr. �

Now we show that the forest obtained by grafting t into f at π has the nodes
below π labeled as in t and all other nodes as in f .

Lemma A.3:

lab(( f /π t)[π1]) =

{
lab(t[1π2]), if π1 = ππ2
lab( f [π1]) , otherwise

First, observe the definition of the subtree located in a grafted forest:

( f /iπ1 t)[ jπ2] =





f [ jπ2] , if i 6= j
t[1π2] , if i = j, π1 = λ

a〈 f1/π1 t〉 , if i = j, π1 6= λ, π2 = λ, f [i] = a〈 f1〉
( f1/π1 t)[π2], if i = j, π1 6= λ, π2 6= λ, f [i] = a〈 f1〉

The proof is by induction on the length of π .
If π = i then if π1 = iπ2, ( f /i t)[π1] = t[1π2] thus lab(( f /i t)[π1]) =

lab(t[1π2]). If π1 = jπ2, j 6= i then ( f /i t)[π1] = f [π1] thus lab(( f /i t)[π1]) =
lab( f [π1]).

We consider now the case where π = iπ ′, π ′ 6= λ.
If π1 = iπ2 then ( f /π t)[π1] = ( f1/π

′ t)[π2], where f[i]=a〈 f1〉. If π1 =
ππ3, i.e. if iπ2 = iπ ′π3, π2 = π ′π3 then by the induction hypothesis
lab(( f1/π

′ t)[π2]) = lab(t[1π3]). Thus lab( f /iπ ′ t)[iπ2]) = lab(t[1π3]) and there-
fore we obtain that lab( f /π t[ππ3]) = lab(t[1π3]) as required.

Otherwise, also by the induction hypothesis lab(( f1/π
′ t)[π2]) =

lab( f1[π2]). Since f1[π2] = f [iπ2] = f [π1] it follows that lab(( f /π t)[π1]) =
lab( f [π1]).

If π1 = jπ2 and j 6= i then ( f /π t)[π1] = f [π1] thus lab(( f /π t)[π1]) =
lab( f [π1]). �

Using the lemmas above we prove now Theorem 5.3.
Let lab( f1[π ]) = lab( f2[π ]) = x. By Lemma A.1 we have that ( f [π ], f2[π ]) ∈

Derivx. From Lemma A.2 it follows that ( f , f1/π f2[π ]) ∈ Derivr. By Lemma
A.3:

lab(( f1/
π f2[π ])[π1]) =

{
lab( f2[π ][1π2]), if π1 = ππ2
lab( f [π1]) , otherwise

With f2[π ][1π2] = f2[ππ2] we obtain now the result of our theorem.

A.2 Proof of Theorem 5.2
We start by showing that the nodes collected in the attributes of a tree state at
π are from the subtree located at π .

Lemma A.4: If x ∈ pπ , π1 ∈ x.l1 then π1 = ππ ′.



APPENDIX A. PROOFS 189

The proof is by induction on the height of f [π ].
If f [π ] = a〈ε〉 then pπ = Up

�
(Down

�
(qπ , a), a). By the definition of Down

�
,

Up
�

and attributes it follows that π1 = π .
Otherwise, by the definition of attributes we have that π1 = π or there is

y ∈ qπ0, y = y0, j, x → a〈r j〉 and π1 ∈ y.l1. From π1 ∈ y.l1 it follows by
straightforward induction on n = last f (π) that there is x1 ∈ pπ i and π1 ∈ x1.l1.
By the induction hypothesis it follows that π1 = π iπ ′. �

A.2.1 Proof of (i1)
Let π ′ = π i and n = last f (π

′).

Left-to-right: From π1 ∈ x.l1 it follows by Lemma A.4 that π1 = π ′π ′1. In the
following we do the proof by induction on the length of π ′1.

If π ′1 = λ then π1 = π ′ and by the definition of attributes it follows that
x = x1. Our conclusion follows now by Theorem 5.1.

If π ′1 = lπ ′′1 then l ≤ n. By Theorem 5.1 there is fa s.t. ( f , fa) ∈ Derivr0

and lab( fa[π ′]) = x. From π1 ∈ x.l1 and π ′ 6= π1 it follows by the definition of
attributes that there is x → a〈rh〉, y0,h ∈ qπ ′0 and π1 ∈ y0.l1. By the definition
of attributes it follows by straightforward induction on n that there is m, 0 <
m ≤ n and x1, . . . , xm, y1, . . . , ym s.t. (yk−1, xk, yk) ∈ δ, yk ∈ qπ ′k ∩

�
qπ ′k, xk ∈ pπ ′k

for k = 1, . . . , m and π1 ∈ xm.l1. By Lemma A.4 m = l. By the induction
hypothesis it follows that there is fc s.t. ( f , fc) ∈ Derivr0 , lab( fc[π ′l]) = xl and
lab( fc[π1]) = x1.

From yl ∈ qπ ′ l ∩
�
qπ ′ l it follows from the definition of Side

�
by straightfor-

ward induction on n that there are xl , . . . , xn, yl , . . . , yn s.t. (yk−1, xk, yk) ∈ δ,
yk ∈ qπ ′k ∩

�
qπ ′k, xk ∈ pπ ′k for k = m + 1, . . . , n. Also by the definitions of Down

�
and Up

�
y0 = y0,h and yn ∈ Fp. As NFA transitions are done only inside one

NFA we have that p = h and it follows that x1, . . . , xn ∈ [[rh]].
By Theorem 5.1 there is fk s.t. ( f , fk) ∈ Derivr0 , lab( fk[π

′k]) =
xk for all k, and by Lemma A.1, ( f [π ′k], fk[π

′k]) ∈ Derivxk . Thus
( f [π ′1] . . . f [π ′n], f1[π ′1] . . . fn[π ′n]) ∈ Derivrh and with x1 . . . xn ∈ [[rh]],
( f [π ′], x〈 f1[π ′1] . . . fn[π ′n]〉 ∈ Derivx. Let t = x〈 f1[π ′1] . . . fn[π ′n]〉 and let
fb = fa/π ′t. By Lemma A.2, ( f , fb) ∈ Derivr0 , lab( fb[π

′]) = x, lab( fb[π
′l]) = xl.

Let fd = fb/
π ′ l fc[π ′l]. By Theorem 5.3 we now have that ( f , fd) ∈ Derivr0 ,

lab( fd[π ′]) = x and lab( fd[π1]) = x1.

Right-to-left: The proof is by induction on the length of π ′1.
If π ′1 = λ it follows that x = x1 and by the definition of attributes π1 ∈ x.l1.
If π ′1 = lπ ′′1 then l ≤ n and let xk = lab( f1[π ′k]) for k = 1, . . . , n. By

Corollary 5.2, xk ∈ pπ ′k. By Lemma A.1 ( f [π ′], f1[π ′]) ∈ Derivx and by the
definition of Derivx we have that there is x → lab( f [π ′])〈rh〉 and x1 . . . xn ∈
[[rh]]. Thus there are y0, . . . , yn s.t. (yk−1, xk, yk) ∈ δh for k = 1, . . . , n, y0 = y0,h
and yn ∈ Fh. Also, by hypothesis there are y ∈ qπ ′ ∩

�
qπ ′ and y′ s.t. (y′, x, y) ∈ δ.

Using this, one can show by using the definition of Down, Side, and Down
�
,

Side
�

that for k = 0, . . . , n, yk ∈
�
qπ ′k and yk ∈ qπ ′k, respectively.

By the induction hypothesis π1 ∈ xl .l1. By straightforward induction on
l, using the definition of Side

�
and of the attributes, it follows that π1 ∈ y0.l1.

Now by the definition of Up
�

and of the attributes it follows that π1 ∈ x.l1.
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A.2.2 Proof of (i2)
Let n = last f (π).

Left-to-right: Let yi = y.
From π2 ∈ y.l2 it follows from the definition of Side

�
and of attributes

by straightforward induction on n that there are j, i < j ≤ n, yi+1, . . . , y j,
xi+1, . . . , x j, s.t. (yk−1, xk, yk) ∈ δp for k = i + 1, . . . , j with yk ∈ qπk ∩

�
qπk

for all k and π2 ∈ x j.l2. By (i1) it follows that π2 = π jπ ′2 and there is fa s.t.
( f , fa) ∈ Derivr0 , lab( fa[π j]) = x j and lab( fa[π2]) = x2.

From yi ∈ qπ i ∩
�
qπ i it follows from the definitions of Side and Side

�
that there

are y0, . . . , yi−1, x1, . . . , xi s.t. yk ∈ qπk ∩
�
qπk for k = 0, . . . , i− 1, (yk−1, xk, yk) ∈

δh for k = 1, . . . , i and y0 = y0,h for some h. By the Berry-Sethi construction,
since (y′, x, yi) ∈ δ and (yi−1, xi, yi) ∈ δ, it follows that x = xi. Similarly,
from y j ∈ qπ j ∩

�
qπ j it follows that there are y j, . . . , yn s.t. yk ∈ qπk ∩

�
qπk for

k = j, . . . , n, (yk−1, xk, yk) ∈ δg for k = j + 1, . . . n and yn ∈ Fg for some g.
Because transitions in δ can be made only inside the same NFA we have that
p = g = h. We further get that x1 . . . xn ∈ [[rh]].

By Theorem 5.1 it follows that there is fk s.t. ( f , fk) ∈ Derivr0 , lab( fk[πk]) =
xk and by Lemma A.1 ( f [πk], fk[πk]) ∈ Derivxk for k = 1, . . . , n. Let the forest
fb = f1[π1] . . . fn[πn]. It follows that ( f [π1] . . . f [πn], fb) ∈ Derivrh . Let fc =
fb/

j fa[π j]. By Lemma A.1 ( f [π j], fa[π j]) ∈ Derivx j and by Lemma A.3 we
have that ( f [π1] . . . f [πn], fc) ∈ Derivrh , lab( fc[i]) = lab( fb[i]) = xi = x and
lab( fc[ jπ ′2]) = lab( fa[π2]) = x2.

Now, if π = λ then h = 0 and f = f [π1] . . . f [πn]. As above ( f , fc) ∈
Derivr0 with the required properties.

If π 6= λ then by the definition of Down
�

there are y′′ ∈ qπ ∩
�
qπ ,

(y′′′, x′, y′′) ∈ δ, x′ → a〈rh〉. By Theorem 5.1 there is fd s.t. ( f , fd) ∈ Derivr0 and
lab( fd[π ]) = x′. Let t = x′〈 fc〉. We have that ( f [π ], t) ∈ Derivx′ . Let fe = fd/

π t.
By Lemma A.2 we have that ( f , fe) ∈ Derivr0 with the required properties.

Right-to-left: Let xk = lab( f2[πk]) for k = 1, . . . , n. By (i1) π2 ∈ x j.l2.
We first show that x1 . . . xn ∈ [[rh]] for some h. If π = λ then by the definition

of Derivr0 it follows that x1 . . . xn ∈ [[r0]]. If π 6= λ let lab( f2[π ]) = x′. It follows
by Theorem 5.1 that there is (y′′′, x′, y′′) ∈ δ and y′′ ∈ qπ ∩

�
qπ . By Lemma A.1

( f [π ], f2[π ]) ∈ Derivx′ . By the definitions of Derivx′ there is x′ → a〈rh〉 and
x1 . . . xn ∈ [[rh]].

There are thus y0, . . . , yn s.t. y0 = y0,h, yn ∈ Fh and (yk−1, xk, yk) ∈ δh for all
k. From the definitions of transitions it follows that yk ∈ qπk ∩

�
qπk.

By Corollary 5.2, xk ∈ pπk. From π2 ∈ x j.l2 it follows by the definitions of
attributes by straightforward induction on j that π2 ∈ yi.l2. With y = yi we get
the desired result.

A.3 Proof of Theorem 6.2
In the following we use the notations of Section 6.1.6, where Theorem 6.2 is
stated.

Directly from Theorem 6.1 (on page 75) it follows by the definition ofMQ, f
(on page 72) the following corollary:
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Corollary A.1: ( f , f ′) ∈ Derive for some e ∈ E0, π ′ ∈ Π f ′
π with lab( f ′[π ′]) = x

iff y ∈ qπ ∩
�
qπ and (y1, x, y) ∈ δ for some y, y1 ∈ Y.

The construction presented in Section 6.1.6 ensures the following invariant:

Lemma A.5: y0,i ∈ qπ0 and π1 ∈ y0,i.l1 (or π1 ∈ y0,i.l2, respectively) iff π1 =
π lπ ′1, ∃( f , f ′) ∈ Derive for some e ∈ E0 and either

1. π = λ, pos(e) = {r′1 , . . . , r′p}, ri = r′k for some 1 ≤ k ≤ p, and f ′ =

&〈 f1〉 . . . &〈 fp〉 or

2. π 6= λ, x→ a〈e1〉 ∈ R, pos(e1) = {r′1 , . . . , r′p}, ri = r′k for some 1 ≤ k ≤ p,

∃π ′ ∈ Π f ′
π , f ′[π ′] = x〈&〈 f1〉 . . . &〈 fp〉〉

and ( f [π1] . . . f [πn], f j) ∈ Deriv1
r′j

for all j = 1 . . . p, ∃kπ2 ∈ Π&〈 f1〉...&〈 fp〉
lπ ′1

and

lab( fk[π2]) = x1 (or lab( fk[π2]) = x2, respectively), where n = last f (π).

We proof the two directions of Lemma A.5 separately.

Left-to-right Let y0,i ∈ qπ0 and π1 ∈ y0,i.l1. Since the primaries are prop-
agated bottom-up by construction, i.e. the path to an already found primary
match is longer than the path to the current node π0, we have that π1 = π lπ ′1
for some l and π ′1.

The proof will be by induction on the length of π ′1.
From y0,i ∈ qπ0 it follows by the definition of the Side

�
transition that

the content model ri is fulfilled by the nodes on the current level. That is,
∃x1 . . . xn ∈ [[ri]], y j ∈ qπ j ∩

�
qπ j and (y j−1, x j, y j) ∈ δi for j = 1, . . . , n. Fur-

thermore, by the definition of the attribute l1 at Side
�

transitions, π1 must have
been propagated from some x j, with 1 ≤ j ≤ n. Since π1 is found in the l-th
subtree (because π1 = π lπ ′1), it must be that π1 ∈ xl .l1. From yl ∈ qπ l ∩

�
qπ l and

(yl−1, xl , yl) ∈ δi it follows by Corollary A.1 that ∃( f , f ′) ∈ Derive for some
e ∈ E0 and ∃π3 ∈ Π

f ′
π l with lab( f ′[π3]) = xl. That is, by distinguishing on

whether the current level is a top level or there is a father node in the input,
either:

1. π = λ, pos(e) = {r′1 , . . . , r′p}, ri = r′k for some 1 ≤ k ≤ p, and f ′ =

&〈 f1〉 . . . &〈 fp〉 or

2. π 6= λ, x→ a〈e1〉 ∈ R, pos(e1) = {r′1 , . . . , r′p}, ri = r′k for some 1 ≤ k ≤ p,

∃π ′ ∈ Π f ′
π , f ′[π ′] = x〈&〈 f1〉 . . . &〈 fp〉〉

and ( f [π1] . . . f [πn], f j) ∈ Deriv1
r′j

for all j = 1, . . . , p and lab( fk[l]) = xl.

Base case: If π ′1 = λ it directly follows from π1 ∈ xl .l1 that xl = x1 (other-
wise π ′1 6= λ) and f ′ is the derivation as required by our lemma.

Induction step: If π ′1 6= λ let π ′1 = mπ ′′1 . It follows from π1 ∈ xl .l1 by the
definition of the attribute l1 at the Up

�
transition to π l that ∃y0,r ∈ qπ l0 and π1 ∈

y0,r.l1 with xl → a〈e′1〉 ∈ R, pos(e′1) = {r′′1 , . . . , r′′p′}, rr = r′′k′ for some 1 ≤ k′ ≤
p′. From y0,r ∈ qπ l0 and π1 ∈ y0,r.l1, it follows by the induction hypothesis that
∃( f , f ′′) ∈ Derive′ for some e′ ∈ E0, ∃π ′′ ∈ Π f ′′

π l , f ′′[π ′′] = xl〈&〈 f ′1〉 . . . &〈 f ′p′〉〉
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with ( f [π l1] . . . f [π l lastπ l( f )], f ′j) ∈ Deriv1
r′′j

for all j = 1 . . . p′, and ∃k′π ′2 ∈

Π
&〈 f ′1〉...&〈 f ′p′ 〉
mπ ′′1

and lab( fk′ [π
′
2]) = x1.

The derivation required by our lemma is obtained by replacing the content
of xl from f ′ with the content of xl from f ′′ (similarly to the grafting used in the
proof for simple grammar queries).

Right-to-left The proof is by induction on the length of π ′1.
Base case: Let π ′1 = λ. Then, since kπ2 ∈ Π&〈 f1〉...&〈 fp〉

l , it follows that π2 = l.
Now, either π = λ and f ′[kl] = x1, or π 6= λ and f ′[π ′kl] = x1. It follows by
Corollary A.1 that ∃y ∈ qπ l ∩

�
qπ l and (y1, x1, y) ∈ δi. It follows by the definition

of the Side
�

transitions that y0,i ∈ qπ0 and π1 ∈ y0,i.l1.
Induction step: Consider now the case in which π ′1 = l′π ′′1 . From kπ2 ∈

Π
&〈 f1〉...&〈 fp〉
lπ ′1

it follows that π2 = lk′l′π ′2. Let fk[l] = x′〈&〈 f ′1〉 . . . &〈 f ′p′〉〉. From
the definition of Deriv we have that x′ → a〈e′1〉 ∈ R, pos(e′1) = {r′′1 , . . . , r′′p′},
( f [π l1] . . . f [π l last f (π l)], f ′j) ∈ Deriv1

r j
for all j = 1 . . . p′, k′l′π ′2 ∈ Π

&〈 f ′1〉...&〈 f ′p′ 〉
l′π ′′1

and lab( fk′ [l′π ′2]) = x1. It follows by the induction hypothesis that y0,m ∈ qπ l0
and π1 ∈ y0,m.l1 with rm = r′′k for some 1 ≤ k ≤ p′. By the computation rules of
the attributes l1 at Up

�
transitions it follows that x′ ∈ pπ l. Since lab( f ′[πkl]) =

x′ it follows by Corollary A.1 and the computation of l1 at Side
�

transitions that
π1 ∈ y0,i.l1 for some i.

�

A.3.1 Right-to-left Direction of Theorem 6.2
For the right-to-left direction of the proof, the cases (a) to (e) result similarly
as in the proof of Theorem 5.4. Case (f) follows from Lemma A.5 as explained
below.

Suppose that y0,i, y0,s ∈ qπ0, i 6= s, Rk ≡ x → a〈e′〉, ri, rs ∈ pos(e′), and
furthermore π1 ∈ y0,i.l1, π2 ∈ y0,s.l2.

From y0,i ∈ qπ0 and π1 ∈ y0,i.l1, it follows by Lemma A.5 that π1 = π lπ ′1,
∃( f , f ′) ∈ Derive for some e ∈ E0 and either

1. π = λ, pos(e) = {r′1, . . . , r′p}, ri = r′k for some 1 ≤ k ≤ p, and f ′ =

&〈 f1〉 . . . &〈 fp〉, and since ri ∈ pos(e′), ri ∈ pos(e), e = e′, or

2. π 6= λ, x→ a〈e1〉 ∈ R, pos(e1) = {r′1, . . . , r′p}, ri = r′k for some 1 ≤ k ≤ p,

∃π ′ ∈ Π f ′
π , f ′[π ′] = x〈&〈 f1〉 . . . &〈 fp〉〉 and since ri ∈ pos(e′), ri ∈ pos(e1),

e1 = e′

and ( f [π1] . . . f [πn], f j) ∈ Deriv1
r′j

for all j = 1 . . . p, ∃kπ2 ∈ Π&〈 f1〉...&〈 fp〉
lπ ′1

and

lab( fk[π2]) = x1, where n = last f (π).
Similarly, from y0,s ∈ qπ0 and π2 ∈ y0,s.l2 it follows by Lemma A.5 that

π2 = πmπ ′2, ∃( f , f ′′) ∈ Derive for some e ∈ E0 and either

1. π = λ, pos(e) = {r′1, . . . , r′p}, rs = r′k for some 1 ≤ k ≤ p, and f ′′ =

&〈 f ′1〉 . . . &〈 f ′p〉 or
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2. π 6= λ, x→ a〈e1〉 ∈ R, pos(e1) = {r′1, . . . , r′p}, rs = r′k for some 1 ≤ k ≤ p,

∃π ′ ∈ Π f ′
π , f ′[π ′] = x〈&〈 f ′1〉 . . . &〈 f ′p〉〉

and ( f [π1] . . . f [πn], f ′j) ∈ Deriv1
r j

for all j = 1 . . . p, ∃kπ ′′2 ∈ Π
&〈 f1〉...&〈 fp〉
mπ ′2

and
lab( fk[π

′′
2 ]) = x2.

Note that e and e1 are the same in the two application of Lemma A.5 as ri
and rs are positive content models of the same boolean content model. Let f ′′′
be the forest obtained by replacing fk in f ′ with f ′k (i.e. by grafting f ′k into f ′).
It is straightforward now that f ′′′ is as required by the definition of (π1, π2) as
binary match.

A.3.2 Left-to-right Direction of Theorem 6.2
Let (π1, π2) be a binary match. There is by the definition ( f , f ′) ∈ Derive for
some e ∈ E0 and ∃π ′1 ∈ Π

f ′
π1 , π ′2 ∈ Π

f ′
π2 with lab( f ′[π ′1]) = x1 and lab( f ′[π ′2]) =

x2.
The proof considers the different possible relative positions of π ′1 and π ′2 in

f ′. The nodes π ′1 and π ′2 have as nearest common ancestor in f ′ either a node
labeled with a non-terminal x or with the symbol “&”. If the nearest common
ancestor is a node &〈x1〈 f1〉 . . . xn〈 fn〉〉, the cases (a) to (e) result similarly as in
the proof of Theorem 5.4.

Otherwise, let the π ′ be the nearest common ancestor of π ′1 and π ′2 in f ′. It
follows that π ′1 = π ′iπ ′′1 , π ′2 = π ′ jπ ′′2 with i 6= j, and π ′ ∈ Π f

π where π is the
nearest common ancestor of π1 and π2 in f , i.e. π1 = ππ3, π2 = ππ4 for some
π3, π4.

Furthermore, let f ′[π ′] = x〈&〈 f1〉 . . . &〈 fp〉〉. Thus, lab( fi[π ′′1 ]) = x1 and
lab( f j[π ′′2 ]) = x2 and also iπ ′′1 ∈ Π

&〈 f1〉...&〈 fp〉
π3 , jπ ′′2 ∈ Π

&〈 f1〉...&〈 fp〉
π4 .

Since ( f , f ′) ∈ Derive, x → a〈e1〉 ∈ R, pos(e1) = {r′1 , . . . , r′p} and
( f [π1] . . . f [πn], f j) ∈ Deriv1

r′j
for all j = 1, . . . , p.

By Lemma A.5 it follows that y0,i ∈ qπ0 and π1 ∈ y0,i.l1 with ri = r′i. Also
by Lemma A.5, y0,s ∈ qπ0 and π2 ∈ y0,s.l2 with rs = r′j. We thus meet the
requirements of our case (f).

A.4 Proof of Theorem 7.3
In the following we use the notation from Appendix 7 where Theorem 7.3 was
stated.

Alternative Definition of Matches
In order to proof Theorem 7.3 a more refined definition of matches is needed in
which the NFA states reached while checking the content models of elements
are given explicitely. Let R be a set of forest grammar productions, r0 be a reg-
ular expression over non-terminals and f an input forest. A (non-deterministic,
accepting) run fR over f for R and r0, denoted fR ∈ Runsr0 , f is defined as fol-
lows:
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r3 = x>
∗(x1|xa)x>

∗

r1 = xbxc r2 = x>
∗

r0 = x1|xa

x>

x1

y9

xa
y11

x>

x>

y12

y10

xa

x1

y8

x>

x>

xb
y3 y4 y5

xT

x>

y6 y7y0

y1

y2

xa

x1

xc

Figure A.1: NFAs obtained by Berry-Sethi construction for regular expressions
in Example A.1

b cb

a a a

c

a

b

Figure A.2: Input tree t

y0〈 f ′1〉 . . . yn−1〈 f ′n〉 yn〈〉 ∈ Runsr0 ,a1〈 f1〉 ... an〈 fn〉 iff

y0 = y0,0, yn ∈ F0, and
(yi−1, xi, yi) ∈ δ0, xi → ai〈ri〉, f ′i ∈ Runsri , fi for all i = 1, . . . , n

y ∈ Runsr0 ,ε iff y = y0,0, y ∈ F0

An example run is given immediately below.
It is straightforward to see that a derivation f ′ with ( f , f ′) ∈ Derivr0 (de-

fined on page 30) exists iff a run fR ∈ Runsr0 , f exists.

Example A.1: Let G = (R, r0) with R being the set of rules from Example 4.3
reproduced for convenience below:

(1) x>→ a〈x∗>〉
(2) x>→ b〈x∗>〉
(3) x>→ c〈x∗>〉

(4) x1 → a〈x∗>(x1|xa)x∗>〉
(5) xa → a〈xbxc〉

(6) xb → b〈x∗>〉
(7) xc → c〈x∗>〉

The NFAs for the regular expressions occurring in grammar G with the set are
reproduced in Figure A.1.

Consider the input tree depicted t reproduced for convenience in Figure A.2
and one derivation of t′ w.r.t. r0 depicted in Figure A.3. A run corresponding
to t′ is depicted in Figure A.4 via dotted lines.

�

The derivation corresponding to a run can be obtained by taking the in-
coming transitions of the NFA states of the nodes which are not the first in
their siblings sequence as one can see in Figure A.4. Formally, the following
expresses the relation between derivations and runs:
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x> x>xb

xa x> x>

xc

x1

x>

Figure A.3: Derivation t′ of t w.r.t r0

x> x>xb

x> x>

xc

x1

x>

xa

y3 y4 y5 y6

y11

y7 y6 y7 y7

y12

y1

y6 y6y6 y6 y6

y8 y12

y0

Figure A.4: Run corresponding to t′

( f , f ′) ∈ Derivr
iff ∃ fR ∈ Runsr, f with L( f ′) = N( fR)

and lab( f ′[π p]) = in(lab( fR[π(p + 1)])) for all π p ∈ N( f ′).

Let f be an input forest and Q = ((R, r0), T) a grammar query. Matches
of Q, which were originally defined in terms of derivations, can be equivalently
defined in terms of runs as it follows:

π p ∈ MQ, f iff ∃ fR ∈ Runsr0 , f s.t. in(lab( fR[π(p + 1)])) ∈ T.

Notations
Before proceeding with the proof we further introduce a couple of useful no-
tations. The set of matches defined by runs with label y at location l is defined
as:

π p ∈ Ml,y
Q, f iff ∃ fR ∈ Runsr0 , f s.t. in(lab( fR[π(p + 1)])) ∈ T

and lab( fR[l]) = y

The set of l-right-ignoring matches defined by a run with label y at l is defined
as:

π ∈ ri-Ml,y
Q, f iff π ∈ Ml,y

Q, f2
∀ f2 ∈ RightCompl f ,l

A node π ′ is a π i-upper-right ignoring match defined by a run with label y at π i
iff for any right-completion f2 at the parent of π i there is a run defining π ′ as a
match of Q in f2 which labels π i with y, formally:

π ′ ∈ uri-Mπ i,y
Q, f iff π ′ ∈ Mπ i,y

Q, f2
∀ f2 ∈ RightCompl f ,π

Given a location π i and an NFA state y, a sequence of states is a suffix run
from y at π i iff the last state in the sequence is a final state and the sequence of
siblings to the right of π i allows to visit the sequence of states, formally:
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yi, . . . , yn ∈ Su fπ i,y
iff (yk−1, xk, yk) ∈ δ j, f1[πk] ∈ [[R]] xk with xk = in(yk), ∀k ∈ i, . . . , n and

yi−1 = y, yn ∈ Fj where n = last f1 (π)

To denote the information on top of the stack at the some moment π i we
write π i.q, π i.m and π i.ri in analogy to attributes of attribute grammars. Sim-
ilarly to attribute grammars, these are computed by local rules as presented in
Section 7.2.1.

Proof
Theorem 7.3 is a straightforward corollary of the following theorem:

Theorem A.1: The construction presented in Section 7.2.1 keeps the following
invariant:

π ′p ∈ π i.m(y), y ∈ π i.q ∩Y j, ∃c ∈ Su fπ i,y and r j ∈ π i.ri
iff π ′p < π i and π ′p ∈ uri-Mπ i,y

Q, f
(A.1)

We proof the two directions of Theorem A.1 separately.

Left-to-right

We show that (A.1) holds at all locations in the input by induction using the
lexicographic order on locations.

Base case Initially, at location 1, 1.m(y) = /� , ∀y ∈ 1.q, thus π ′p ∈ 1.m(y)
is false, and the left-to-right direction trivially holds.

Induction step Supposing that (A.1) holds at all locations up to some lo-
cation l we show that it also holds at the immediately next location.

Start-tag transition We first show that if (A.1) holds at π i ∈ N( f ), so
does it at π i1.

Let π ′p ∈ π i1.m(y0), y0 ∈ Yj and suppose ∃c ∈ Su fπ i1,y0 and r j ∈ π i1.ri.
Since π ′p ∈ π i1.m(y0), it follows by our construction (conform to (7.1) on page
93) that ∃y ∈ π i.q with (y, x, y′) ∈ δk, x → a〈r j〉, rightIgn(y′), rk ∈ π i.ri and
either (i) π ′p ∈ π i.m(y) or (ii) π ′p = π i and x ∈ T.

In case (i) it follows from (A.1) at π i that π ′p < π i and π ′p ∈ uri-Mπ i,y
Q, f .

Thus, obviously π ′p < π i < π i1 and it remains to show that π ′p ∈ uri-Mπ i1,y0
Q, f .

This follows directly from π ′p ∈ uri-Mπ i,y
Q, f , c ∈ Su fπ i1,y0 and rightIgn(y′) by

grafting the run over the children of π i corresponding to c into the run corre-
sponding to uri-Mπ i,y

Q, f .
In case (ii), π ′p = π i < π i1. The proof will use in this case the following

lemma (also used later on):

Lemma A.6: If there is a suffix run within a right ignoring content model, then,
independently of what follows in the input after the enclosing element, there
is a run over the input forest containing that suffix. Formally, if y ∈ π i.q ∩ Yk,
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rk ∈ π i.ri and ∃c ∈ Su fπ i,y then ∀ f2 ∈ RightCompl f ,π ∃ fR ∈ Runsr0 , f2 with
c = lab( fR[π i]), . . . , lab( fR[π last fR (π)]).

The proof is by straightforward induction on the locations in the input forest.
The assertion trivially holds at location 1. For the induction step, let π i ∈ N( f ).
We show that if the assertion holds at the location π i, it also holds at (i) π i1 and
(ii) at π(i + 1). In case (i) ∃y ∈ π i.q with (y, x, y′) ∈ δk, x→ a〈r j〉, rightIgn(y′),
rk ∈ π i.ri. The required run is obtained by grafting the run over the children
of π i corresponding to c into the run y, y′, . . . corresponding to the induction
hypothesis. In case (ii) the existence of the suffix run at π(i + 1) implies the
existence of a run at π i and our conclusion follows by the induction hypothesis.

�

We continue now with the proof of Theorem A.1.
Since c ∈ Su fπ i1,y0 it follows (straightforwardly by definition) that f [π i] ∈

[[R]] x. Given that (y, x, y′) ∈ δk and rightIgn(y′) it follows that there is thus
a suffix run c ∈ Su fπ i,y with c = y, y′, . . .. With rk ∈ π i.ri it follows by
Lemma A.6 that ∀ f2 ∈ RightCompl f ,π ∃ fR ∈ Runsr0 , f2 with lab( fR[π i]) = y′.
Since rightIgn(y′) it follows that ∃ fR ∈ Runsr0 , f2 for any f2 ∈ RightCompl f ,π i
and lab( fR[π i]) = y′. With c ∈ Su fπ i1,y0 it follows that ∃ f ′R ∈ Runsr0 , f2 (ob-
tained by grafting the run over the children of π i corresponding to c into fR)
with lab( f ′R[π i]) = y′ and lab( f ′R[π i1]) = y0. Thus π ′p ∈ uri-Mπ i1,y0

Q, f .

End-tag transition We next show that if (A.1) holds at l ∀l < π(i + 1),
so does it at π(i + 1).

Let π ′p ∈ π(i + 1).m(y′′), y′′ ∈ Yk and suppose ∃c ∈ Su fπ(i+1),y′′ and rk ∈
π(i + 1).ri. Since π ′p ∈ π(i + 1).m(y′′), it follows by our construction (conform
to (7.2) on page 94) that ∃y ∈ π i.q, y′ ∈ π i(n + 1).q with y′ ∈ Fj, x → a〈r j〉,
(y, x, y′′) ∈ δk and either (i) π ′p ∈ π i.m(y), or (ii) π ′p ∈ π i(n + 1).m(y′), or (iii)
π ′p = π i and x ∈ T.

In case (i) our conclusion follows directly from (A.1) at π i.
We continue with the cases (ii) and (iii). Given c and rk ∈ π(i + 1).ri

it follows by Lemma A.6 that ∀ f2 ∈ RightCompl f ,π ∃ fR ∈ Runsr0 , f2 s.t.
lab( fR[π(i + 1)]) = y′′. Further we use the following lemma (also employed
later on):

Lemma A.7: If y ∈ πn.q ∩ F j then ∃ fR ∈ Runsr j , f [π1]...f [πn] with lab( fR[π(n +

1)]) = y.

The proof is straightforward by induction on the depth of f [π ]. �

In case (ii), π ′p was found either before or while visiting the content of π i,
that is either π ′p ≤ π i or π i < π ′p < π(i + 1), respectively. In the first case our
conclusion follows directly from (A.1) at π i. In the second case π ′p < π(i + 1)
we further need the following lemma:

Lemma A.8: If y ∈ πn.q ∩ F j, π ′p ∈ πn.m(y) and π1 ≤ π ′p ≤ πn then ∃ fR ∈
Runsr j , f [π1]...f [πn] with lab( fR[π(n + 1)]) = y and in(lab( fR[π ′(p + 1)])) ∈ T
where n = last f (π).
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? ?. . .

?. . .?

f2

π

π
′
p

Figure A.5: Right completion of f at π

The proof is by induction on the depth of f [π ]. By Lemma A.7 ∃ f ′R ∈
Runsr j , f [π1]...f [πn] with lab( f ′R[π(n + 1)]) = y.

For depth 1 it directly follows that π ′p = π i for some 1 ≤ i ≤ n and
in(lab( f ′R[π ′(p + 1)])) ∈ T. Therefore fR = f ′R is the sought after run. If
the depth is more than 1, then either (A) π ′p = π i for some 1 ≤ i ≤ n and
in(lab( fR[π ′(p + 1)])) ∈ T as above or (B) ∃y′ ∈ π in′.q ∩ Fk, π ′p ∈ π in′.m(y)
and π i1 ≤ π ′p ≤ π in′ for some 1 ≤ i ≤ n and n′ = last f (π i). In case (B) fR in
our conclusion can be constructed by grafting the run over the children of π i
existent by the induction hypothesis into f ′R. �

Our conclusion results now for the case (ii) π i < π ′p < π(i + 1) by grafting
the run corresponding to the children which defines the match (as implied by
Lemma A.8) into fR.

In case (iii) π ′p = π i < π(i + 1) and it remains to show that π ′p ∈
uri-Mπ(i+1),y′′

Q, f . We have by Lemma A.7 that ∃ f ′R ∈ Runsr j , f [π i1]...f [π in] and
in(lab( f ′R[π ′(p + 1)])) ∈ T. From fR and f ′R it results (by grafting f ′R into fR at
π) that ∃ f ′′R ∈ Runsr0 , f2 s.t. in(lab( f ′′R [π ′(p + 1)])) ∈ T and lab( f ′′R [π(i + 1)]) =

y′′, thus π ′p ∈ uri-Mπ(i+1),y′′
Q, f .

Right-to-left

Let π ′p < π i and π ′p ∈ uri-Mπ i,y
Q, f . Let f2 be a right-completion of f at π

obtained by adding on every level from the root to π inclusively an arbitrary
number of right siblings ?〈〉, as depicted in Figure A.5, where ? is a symbol not
occurring in any of the rules in the grammar. Since π ′p ∈ uri-Mπ i,y

Q, f it follows
that ∃ fR ∈ RunsG, f2 s.t. in(lab( fR[π ′(p + 1)])) ∈ T and lab( fR[π i]) = y.

Also, since ? does not occur in any rule fR must label all the ancestors of
the π i node with right-ignoring states, i.e. rightIgn(lab( fR[π1(k + 1)]))∀π1k ∈
ancestors f (π i), where ancestors f : N( f ) 7→ N( f ) is defined as follows:

ancestors f (i) = /�
ancestors f (π i) = {π} ∪ ancestors f (π)

It follows that ∃ f ′R ∈ RunsG, f s.t. in(lab( f ′R[π ′(p + 1)])) ∈ T and
lab( f ′R[π i]) = y. Suppose that y ∈ Y j. Since y is part of a run ( f ′R), it obvi-
ously holds that ∃c ∈ Su fπ i,y.

Also, since rightIgn(lab( fR[π1(k + 1)]))∀π1k ∈ ancestors f (π i), we obtain by
using the NFA transitions in f ′R at the corresponding steps in our construction
that all content models of the elements enclosing π i are right ignoring, thus
r j ∈ π i.ri.



APPENDIX A. PROOFS 199

Given that π ′p < π i it follows that there is an ancestor of π ′p which is
either (i) a sibling of an ancestor a of π i or (ii) an ancestor a of π i. In any
case it follows by using the NFA transitions in f ′R at the corresponding steps
in our construction that π ′p is propagated down at location a until π i, thus
π ′p ∈ π i.m(y).

We have proven thus that π ′p ∈ π i.m(y), y ∈ π i.q ∩ Y j, ∃c ∈ Su fπ i,y and
r j ∈ π i.ri.

This completes the proof of Theorem A.1.
�

Theorem 7.3 follows now directly from Theorem A.1.
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Appendix B

The Funtional Document
Model

The signature of the structure including the FDM code gives an overview of
the provided features. The names are mostly self-explaining, however a de-
scription of the FDM features is given bellow the signature.

signature FDM =
sig
type Attribute
datatype Tree =

ELEM of int * Attribute vector * Forest
| TEXT of UniChar.Vector
| PI of UniChar.Vector * Forest
withtype Forest = Tree vector

val emptyTree : Tree
val emptyForest : Forest

val hasElementType : Unicode.Vector -> Tree -> bool
val text : Unicode.Vector -> Tree
val element : Unicode.Vector -> Attribute vector -> Tree vector

-> Tree
val processingInstruction : Unicode.Vector -> Unicode.Vector

-> Tree
val isElement : Tree -> bool
val isText : Tree -> bool
val isProcessingInstruction : Tree -> bool
val getElementType : Tree -> Unicode.Vector
val getElement : Tree -> (Unicode.Vector * Attribute vector

* Tree vector)
val getText : Tree -> Unicode.Vector
val hasTextContent : Tree -> bool
val getTextContent : Tree -> Unicode.Vector
val getProcessingInstruction : Tree -> (Unicode.Vector

* Unicode.Vector)
val hasAttribute : Unicode.Vector -> Tree -> bool

201
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val getAttribute : Unicode.Vector -> Tree -> Unicode.Vector
val Tree2UnicodeVector : Tree -> Unicode.Vector
val sons : Tree -> Forest

val getAttributes : Tree -> Attribute vector
val getAttributeValue : Attribute -> Unicode.Vector
val getAttributeName : Attribute -> Unicode.Vector
val makeAttribute : Unicode.Vector -> Unicode.Vector

-> Attribute
val replaceAttribute : Attribute vector -> Unicode.Vector

-> Unicode.Vector -> Attribute vector
val addAttribute : Attribute vector -> Unicode.Vector

-> Unicode.Vector -> Attribute vector
val addAttributes : Attribute vector -> Attribute vector

-> Attribute vector
val deleteAttribute : Attribute vector -> Unicode.Vector

-> Attribute vector
val changeAttribute : Tree -> Unicode.Vector -> Unicode.Vector

-> Tree
val insertAttribute : Tree -> Unicode.Vector -> Unicode.Vector

-> Tree
val removeAttribute : Tree -> Unicode.Vector -> Tree

val fromList : Tree list -> Forest
val toList : Forest -> Tree list
val length : Forest -> int
val lengthPred : (Tree -> bool) -> Forest -> int
val sub : Forest * int -> Tree
val extract : Forest * int * int option -> Forest
val concat : Forest list -> Forest
val app : (Tree -> unit) -> Forest -> unit
val map : (Tree -> ’a) -> Forest -> ’a vector
val foldl : (Tree * ’a -> ’a) -> ’a -> Forest -> ’a
val foldr : (Tree * ’a -> ’a) -> ’a -> Forest -> ’a
val appi : (int * Tree -> unit) -> Forest * int * int option

-> unit
val mapi : (int * Tree -> ’a) -> Forest * int * int option

-> ’a vector
val foldli : (int * Tree * ’a -> ’a) -> ’a

-> Forest * int * int option -> ’a
val foldri : (int * Tree * ’a -> ’a) -> ’a

-> Forest * int * int option -> ’a
val deleteAll : (Tree -> bool) -> Forest -> Forest
val deleteFirst : (Tree -> bool) -> Forest -> bool * Forest
val deleteFirstN : int -> (Tree -> bool) -> Forest

-> int * Forest
val deleteLast : (Tree -> bool) -> Forest -> bool * Forest
val deleteLastN : int -> (Tree -> bool) -> Forest

-> int * Forest
val deleteIth : int -> Forest -> Forest
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val filter : (Tree -> bool) -> Forest -> Forest
val filterFirst : (Tree -> bool) -> Forest -> Tree

val countTreeNodes : Tree -> int
val countForestNodes : Forest -> int

val sort : (Tree*Tree -> bool) -> Forest -> Forest
(* use (>=,&lt;=) functions to preserve the order

of elements with equal keys *)

val concatForests : Forest vector -> Forest

val putTree : Tree -> string -> string option -> unit
val putForest : Forest -> string -> string option -> unit
val printTree : Tree -> unit
val printForest : Forest -> unit

end

where:

Tree the abstract representation for an XML document or for some part of an
XML document

Forest a sequence of XML trees (as for example the sons of an element node)

Attribute the type of the attributes of XML elements

emptyTree, emptyForest values provided as representation of the empty
XML tree and forest respectively.

hasElementType returns true if the element supplied as the first argument
is a node element and has the name supplied as the second argument.
If applied on a non node element or if the node element on which it is
applied has not this type (name) false is returned.

text creates a text node with the specified content.

element creates an element node with the name, attributes and the sons vec-
tor given as arguments.

processingInstruction creates a processing instruction node for a pro-
cessor given as the first argument and the content given as the second.

isElement, isText, isProcessingInstruction returns true if the
node given as argument is an element, text or processing instruction re-
spectively.

getElementType returns the type of the element node given as argument. If
the node is not an element an exception is thrown.

getElement returns for an element node a triplet formed of its type, the at-
tributes and the vector of sons. If the node is not an element an exception
is thrown.
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getText returns for a text node the content of the node. If the node is not a
text an exception is thrown

hasTextContent returns true for a text node or for an element node which
only contains a text node

getTextContent if applied on a text node returns its content. If applied on
an element node which only contains a text node returns the content of
this text node. Otherwise an exception is thrown.

getProcessingInstruction returns for a processing instruction node a
pair containing the corresponding processor and instruction. If the node
is not a processing instruction an exception is thrown.

hasAttribute applied on an element node given as its second argument re-
turns true if the element has an attribute with the name given as the first
argument. If the node argument is not an element an exception is thrown.

getAttribute returns for an element node given as the second argument
having the attribute given as the first argument the value of this argu-
ment. If the node is not an element or if it has not a such attribute an
exception is thrown.

Tree2UniCodeVector gives the Unicode string representation for a tree

sons given a tree, returns the forest of itssons

getAttributes returns for an element node a vector containing its at-
tributes. If the node is not an element an exception is thrown.

getAttributeValue returns the value of the attribute given as argument.

getAttributeName returns the name of the attribute given as argument.

makeAttribute creates an attribute with the name given as the first argu-
ment and the value given by the second.

replaceAttribute returns a vector obtained by replacing in the vector of
attributes given as the first argument the attribute with the name and the
value given by the second and the third attribute. If there is no attribute
with the given name the vector is returned unchanged as the result.

addAttribute returns a list obtained by adding to the vector of attributes
given as the first argument the attribute with the name and the value
given by the second and the third attribute. If the vector has the attribute
with the given name already the value of this attribute is set to the given
value in the returned vector.

addAttributes returns a list obtained by adding to the list of attributes
given as the first argument the list of the attributes given as the second
argument. If in both lists, attributes of the second list will overwrite those
in the first in the returned list.
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deleteAttribute returns a vector obtained from the vector of attributes
given as the first arguments by deleting the attribute with the name given
as the second argument. If no attribute with the given name is present in
the input vector the vector is returned unchanged as the result.

changeAttribute returns for an element node the element node obtained
by replacing in its attributes list the value of the attribute given as the
first argument with the value given as the third argument. If no attribute
with the given name is present in the attribute list of the input element
node, it is added to the attributes list of the output node. If the input
node is not an element an exception is thrown.

insertAttribute returns for an element node the element node obtained
by inserting in its attributes list an attribute with the name given as the
second argument and the value given as the third. If the attribute with
the given name is already present in the attribute list of the input element
node, it is changed to the new value in the output node. If the input node
is not an element an exception is thrown.

removeAttribute returns for an element node the element node obtained
by removing from its attribute list the element with the name given as
the second argument. If no attribute with the given name is present in
the attribute list of the input node, the input node is returned unchanged
as the result.

fromList,length, sub, extract, concat, app, map, foldl,
foldr,appi, mapi, foldli, foldri have the SML meaning, given that the
type Forest is represented as a vector of Trees.

toList transforms a forest in a list of trees

lengthPred given a predicate working on trees and a forest, returns the
number of trees in the forest that satisfy the predicate.

deleteAll given a predicate working on trees and a forest, returns a forest
obtained from the input forest by eliminating all the trees that satisfy the
predicate.

deleteFirst given a predicate working on trees and a forest, returns a pair
formed of a boolean and a forest. The boolean indicates if the predicate
was fulfilled by any of the trees in the forest. The output forest is ob-
tained from the input forest by eliminating the first tree that satisfy the
predicate.

deleteFirstN given an integer number, a predicate working on trees and a
forest returns a pair formed of an integer and a forest. The output forest
is obtained from the input forest by eliminating the first trees that satisfy
the predicate, in a number that is not greater than the indicated number.
The integer value returned indicates how many trees in the input forest
were actually deleted (may be less than the requested number).

deleteLast given a predicate working on trees and a forest, returns a pair
formed of a boolean and a forest. The boolean indicates if the predicate



206

was fulfilled by any of the trees in the forest. The output forest is obtained
from the input forest by eliminating the last tree in the forest that satisfy
the predicate.

deleteLastN given an integer number, a predicate working on trees and a
forest, returns a pair formed of an integer and a forest. The output forest
is obtained from the input forest by eliminating the last trees that satisfy
the predicate, in a number which is not greater than the indicated num-
ber. The integer value returned indicates how many trees in the input
forest were actually deleted (may be less than the requested number).

deleteIth returns a forest obtained by deleting the i-th tree (i given as the
first argument) in the forest given as the second argument.

filter given a predicate over trees and a forest returns the trees in the forest
that satisfy the predicate.

filterFirst given a predicate over trees and a forest returns the first tree in
the forest that satisfies the predicate.

countTreeNodes counts the nodes in a tree.

countForestNodes counts the nodes in a forest.

sort given an order relationship as a predicate working on a pair of trees and
a forest, returns a forest where trees are sorted such that the predicate
order is fulfilled.

concatForest concatenates a vector of Forests

putTree given a tree, a file name and an encoding option, writes the tree to
the specified file in the specified encoding. If the encoding specified is
NONE, UTF8 is used.

putForest given a forest, a file name and an encoding option, writes the for-
est to the specified file in the specified encoding. If the encoding specified
is NONE, UTF8 is used.

printTree given a tree prints it at the standard output.

printForest given a forest prints it at the standard output.
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· binary patterns 160
· command line 112
· compilation 112, 148
· current 122
· default action 115
· default pattern 114
· fxt:addAttribute 119
· fxt:apply 116
· fxt:applyKey 128
· fxt:copyAttributes 119
· fxt:copyContent 118
· fxt:copyKey 128
· fxt:copyTag 120
· fxt:copyTagApply 120
· fxt:copyType 118
· fxt:current 120
· fxt:forAllKeys 128
· fxt:get 124, 125
· fxt:getKey 128
· fxt:global 123
· fxt:groupBy 128
· fxt:if 123
· fxt:name 122
· fxt:pop 125
· fxt:push 124
· fxt:pushForest 125
· fxt:setForest 125
· fxt:tag 122
· implementation 145
· iterations 128
· pre-processor 145
· primer 111
· select patterns 117
· system architecture 149
· variables 123

G
general purpose programming

languages see GPL
GPL 107, 155
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grafting 52
grammar queries 4, 41, 57
graphical user interface see GUI
grep 17
grouping 127, 142
· in Fxt 128
· via binaries 143

GUI 17, 65

H
Haskell 107, 157
heap image 147
hedge automata 31, see forest

automata
horizontal path formulas 63

I
ID 131
IDREF 131
incremental compilation 147
initial state 8
initial states 37
intermediate path formula 63
internal 14
iterations 128

J
Java 98, 107, 156
· and SML 98
· API for XML Processing see

JAXP
· just-in-time compiler see JIT

JAXP 151
JIT 152
joins 163, 168
JWig 156

K
keyed tables 128, 131
keys 127

L
L-attributed 101
label 11
labeling 43, 94
lazy evaluation 56

leaf 11
left sibling 11
left-to-right pushdown forest

automaton see LPA
LegalXML 3
lexicographic order 11, 91, 94, 196
Linux 97
locations 12
logical formalism 62
LPA 36–38, 87, 89
· deterministic see DLPA
· for XML streams 87

LPath 28

M
µ-formulas 38
mappings 132
match patterns 113, 159, 160
match-relevant non-terminals 88
matches
· alternative definition 193
· of k-ary queries 42
· of extended k-ary queries 74
· of extended unary queries 72
· of unary formula queries 79
· of unary queries 42

matches of k-ary queries 43
MathML 3
metalanguage 3
mixed content 13
MLton 148
monadic second order logic see

MSO
MoscowML 148
MSO 43, 59–64, 85, 86
· guarded 63
· Presburger MSO 64

N
nearest common ancestor 50, 78,

193
NFA 8–10, 37, 38, 55, 56, 88, 189,

196
nil 35, 43
node 11
nodes 11
non-deterministic finite automaton

see NFA
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non-terminal symbols 29
non-terminals 31
numerical document queries 64

O
OCaml 148
one-match policy 55
one-pass query evaluation 85
OpenOffice.org XML 3
ordered 11, 64

P
parser 98
parsers 14
path 11
pattern matching
· with variable bindings 158

pattern translation 57
pattern-language 27
PDF 3, 107
Presburger formulas 64
Presburger tree automata 64
primaries see primary match
primary match 48, 76
processing instruction 24
processing instruction nodes 13
processing instructions 30
productions 29, 33
· extended see extended

productions
· meaning 32, 33
· simple see simple

productions
PSD 3, 97
pushdown forest automata 35, 56
· languages of 37
· right-to-left see RPA

Q
queries
· k-ary queries 4, 41, 56, 60, 62,

63, 65
· definition 42
· evaluation 55

· binary formula queries
· definition 81
· evaluation 82, 83

· binary queries 42, 54, 55, 133
· evaluation 54

· extended k-ary queries 74
· extended unary queries
· definition 72
· evaluation 75

· grammar queries 41, 59, 85
· linguistics 28
· logical formalisms 62
· numerical document queries

64
· right-ignoring 86, 87, 90
· unary formula queries
· definition 79
· evaluation 80

· unary queries 41, 61, 62, 64
· definition 42

query automata 59

R
ranked 11, 35, 60, 61
reference constraints 34
register automata 62
regular expressions 7, 17, 37, 39,

63
· languages of 8

regular forest languages 29, 32, 35
· and XML languages 29, 40

regular hedge expressions 61
regular path expressions 18
regular ranked tree languages 43
regular string language 8
regular tree grammars 35, 43
regular tree languages 35
regular vertical path 58
relabeling 31
RelaxNG 33, 34
right sibling 11
right-completion 91
right-ignoring 87, 88
· match 196

right-to left pushdown forest
automaton see RPA

root element 12
RPA 37
RSS 3
rule-based transformations 113
· current tree 113

run 60, 194
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· suffix run 196
runs 31, 59

S
SAX 85, 107
Saxon 151
schema 15
schema languages 15
SDI 101
secondaries see secondary match
secondary match 48, 76
select patterns 117, 135
· removing 138

selecting automata 64
selecting states 59
selecting tree automata 59
selective dissemination of

information see SDI
Sequential XPath 102
SFG 68
SGML 157
Shakespeare 152
siblings 11
side-relation 37
simple binary query 48
simple forest grammars see SFG
simple productions 68
single quotes 13
SMIL 3
SML 98, 107, 108, 111, 120, 122,

128, 129, 145, 146, 155, 170
· and Java 98
· incremental compilation 147
· Standard ML of New Jersey

147
· compilation manager 147

SML.NET 148
SPEX 97, 100, 102
SQL 108, 156, 162
start expression 29
start tag 12, 90
start-tag 85, 86, 89
states 8, 31
static data value comparison 25
stay transitions 59
StreamGlobe 102
strings 7
structural constraints 57
· conjunctions 57

STX 102
stylesheet 107
suffix run 196
SVG 3
sym 9
symbols 7

T
tag 12
target processor 13
terminal symbols 29
text 13
text content 13
text nodes 24, 32, 33
tgrep 28
tgrep2 28
top-down 60, 64
TransformX 101
transition relation 8, 9
tree derivation 30, 43
tree derivations
· with external predicates 33

tree grammars 60
tree queries 64
tree states 36, 37
tree-walking automata 61
· marble/pebble automata 62

TurboXPath 102
two-way tree automata 59
type checking 154, 156–158
type inference 154

U
unambiguous 42, 60, 101
· content models 34

unary formula query 79
Unicode 13, 32, 33, 120
uniqueness constraints 34
universal queries 60
universdal queries 59
unordered 64
unranked 11
unranked trees 59
up-relation 37
UTF-8 14

V
valid 14
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validation 14
· XML streams 90, 100

vertical path formulas 63
very large documents 85
very large XML documents 36
visXcerpt 65
VoiceXML 3

W
W3C 3
white spaces 12
wildcards
· in grammars 33

WML 3, 107
WSDL 3

X
X2 64
XACT 156
XAlan 97
Xalan 100, 151
XDuce 55
XDuce 157, 158
XFilter 102
XHTML 3
Xing 65
XJ 156
XMI 3
XML 3
· and functional programming

157
· and GPLs 155
· streams 65

XML 1.1 14
XML applications see XL

languages3
xml declaration 14
XML element 24
XML language 14
XML languages 3
XML queries 4
XML Schema 33, 34, 41, 156
XML schema languages 15
XML Stream Attribute Grammars

101
XML streams 4, 85, 86, 89, 97
XML transformations 4
· type checking 156, 158

XML-GL 65
XMLambda 157
XMLPull 107
XOBE 156
XPath 23, 24, 41, 42, 63, 65, 85, 86,

97, 108, 156, 157, 163
· abbreviated syntax 24
· and Fxgrep 26
· and Fxgrep 160
· axes 163
· forward 24
· reverse 24

· Core 27
· dynamic data value

comparison 25
· node test 24
· predicate 24, 25
· qualifiers 25
· static data value comparison

25
· XPath 2.0 170

XPush 102
XQuery 41, 108, 155, 159, 162
· and Fxt 162
· for 163
· use cases 166

XSL:FO 3
XSLT 13, 41, 97, 108, 155, 159, 162
· and Fxt 159, 162
· keys 162
· templates 159
· XSLT 2.0 170

XSLTC 152
XSM 102
XStreamQuery 102
Xtatic 157
XTrie 102

Y
YFilter 102


