

A Framework for Distributed Collaborative
Software Design Meetings

 Dissertation

 Naoufel ben Ahmed Boulila

 Technische Universität München

 Institut für Informatik

Institut für Informatik
 Der Technischen Universität München

Lehrstuhl für Informatik I

A Framework for Distributed Collaborative Software
Design Meeting

Naoufel ben Ahmed Boulila

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr.rer.nat)
genehmigten Dissertation.

 Vorsitzender Univ. -Prof. Dr. Hans-Joachim Bungartz
 Prüfer der Dissertation:
 1. Univ. -Prof Bernd Brügge. Ph.D.
 2. Univ. -Prof. Dr. Johann Schlichter

Die Dissertation wurde am 11.07.2005 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 10.10.2005 angenommen.

Abstract

Over the last decade, software development in large enterprise organiza-
tions has witnessed an increasing tendency towards globalization and global out-
sourcing, seeking lower costs and access to skilled resources.

Globalization has made distributed software development collaborating at
the same time over multiple geographical sites a major challenge because of sev-
eral issues, including language and cultural differences, communication across
temporal and spatial distances, trust factors, and the lack of shared contextual
awareness. These issues have been identified through several studies conducted
on globally distributed software development. However, none of these studies
have considered global and distributed real-time group software design.

The distribution of software design introduces new aspects of cooperative
work in which a greater emphasis is placed upon effective methods and the tech-
nological support of the software development process. Most software develop-
ment activities and in particular software brainstorming and design, are carried
out in a group context, such as collaborative meetings, rather then individually.
Globalization has further accentuated the necessity of group collaboration.

This research focuses on the specific problem of distributed collaborative
brainstorming and design for object-oriented software analysis and design activi-
ties. In particular, the thesis explores the requirements for synchronous collabo-
rative UML modeling and the accumulation of associated design knowledge
through iterative distributed team meetings.

The main hypothesis of this thesis is that distributed software brainstorming
and design meetings are feasible in distributed sites collaborating at the same
time.

The thesis hypothesis is evaluated in a case study developing a software
architecture called SCOOP (Synchronous Collaborative Object-Oriented Pro-
cess) to support distributed collaborative conceptual software modeling meet-
ings. The architecture uses techniques of object-oriented components and a
contract-based style. Applications such as distributed mind mapping or distrib-
uted collaboration over concept maps can reuse the SCOOP framework by
instantiating and extending its components.

A formative approach was adapted and used to conduct an experimental
evaluation of the case studies to validate the research hypothesis. The use of the
formative approach was facilitated with a bootstrapping concept that led the
development of a new agile-based design style method called

BID

 (Bootstrap-
ping Incremental Design), which was elaborated and used in developing the
SCOOP framework.

A reference implementation of SCOOP has been developed based on the
BID approach and tested in many distributed software design meetings.

Kurzfassung

Im Laufe des letzten Jahrzehnts hat der Bereich der Softwareentwicklung in
Großunternehmen auf der Suche nach Kostenreduzierung und Zugang zu qualifi-
ziertem Personal eine zunehmende Tendenz zur Globalisierung und weltweiten
Auslagerung erfahren.
Die Globalisierung hat die gemeinsame verteilte Softwareentwicklung an mehre-
ren Standorten, die auf der ganzen Welt verteilt sind, vor verschiedene Heraus-
forderungen gestellt. Dazu gehören unter anderem sprachliche und kulturelle
Unterschiede, die Kommunikation über Zeitzonen und große Entfernungen hin-
weg, Vertrauensfaktoren und das Fehlen von gemeinsamem Kontextbewusstsein.
Diese Faktoren wurden durch mehrere Studien festgestellt, die global verteilte
Softwareentwicklung untersucht haben, allerdings hat keine dieser Studien global
verteilten Softwareentwurf in Echtzeit berücksichtigt.
Die Verteilung des Softwareentwurfs führt neue Kooperationsaspekte ein, bei
denen effektive Methoden und die technische Unterstützung des Softwareentwick-
lungsprozesses an Bedeutung gewinnen.

Diese Arbeit konzentriert sich auf das spezielle Problem der verteilten Ideensam-
mlungen und Entwurfsbesprechungen bei Analyse und Entwurf objektorientierter
Software.
Insbesondere untersucht die Dissertation die Anforderungen an synchrone gemein-
same UML-Modellierung und die Sammlung des dabei entstehenden Entwurfswis-
sens durch iterative verteilte Teambesprechungen.
Die zentrale Hypothese der Dissertation ist die Annahme, dass verteilte, gleichzeit-
ige Ideensammlungen und Entwurfsbesprechungen über verschiedene Standorte
hinweg machbar sind.
Die Hypothese wird in einer Fallstudie überprüft, in der eine Softwarearchitektur
namens SCOOP (Synchronous Collaborative Object-Oriented Process) entwickelt
wird, die verteilte konzeptionelle Entwurfsbesprechungen unterstützt. Die
Architektur setzt objektorientierte Komponenten und einen vertragsbasierten Stil
ein. Anwendungen wie verteilte Mind-Maps oder verteilte Zusammenarbeit über
Concept-Maps können das SCOOP-Framework wiederverwenden, indem sie des-
sen Komponenten instanziieren und erweitern.
Mit Hilfe eines angepassten formativen Ansatzes wurde die Fallstudie selbst exper-
imentell evaluiert, um die Hypothese weiter zu überprüfen.
Der formative Ansatz wurde durch ein Bootstrap-Konzept unterstützt, das die
Entwicklung einer neuen agilen Entwurfsmethode BID (Bootstrapping Incremen-
tal Design) einleitete, die bei der Entwicklung von SCOOP eingesetzt wurde. Eine
Referenzimplementierung von SCOOP wurde auf der Basis des BID-Ansatzes
entwickelt und in einigen verteilten Softwareentwurfs-Besprechungen getestet.

Acknowledgment

This is the only place in the dissertation where one does not tell about the disserta-
tion but about the people who made it possible to shape the dissertation.

I thank God for everything, including the direction to arrive to this task, the
strength to finish it, for all the good ideas and insights, and for giving me the
chance to know the following great people:

Prof. Bernd Brügge, PhD. who believed in me and my ability to do scientific work
from the very first meeting. I deeply thank him not only for helping me overcom-
ing many bureaucratic issues but also for the continual support and inestimable
guidance throughout the years i spent in his chair. I am forever thankful to prof.
Brügge for the countless hours of virtual and real “brainstorming meetings” that
took place even during the holidays, the sundays, over the phone, in restaurants
and everywhere we could have a meeting.

I would like to thank my second reviewer, Prof. Dr. Johann Schlichter, for his sup-
port, the careful and precise comments, and the valuable review on the final draft.

I thank Fr. Dr. Reiser Angelika who was my first contact with TUM and gave me
the right address to start with and showed me the right persons to contact.

I thank Prof. Dr. Arndt Bode for his support during the recognition process of my
diploma.

I thank Prof. Rudolf Bayer PhD. for hosting my 6 months stay in his chair for fur-
ther development of a FORWISS project.

I thank Prof. Dr. Christoph Zenger for letting me using his silicon graphics
machines for 3 months, and for accepting to be my examiner for the theoretische
informatik pillar.

I would like to acknowledge the assistance and guidance of Allen Dutoit, Ph.D.,
for being always available to all of us, for the long calls and discussions over the
phone even in the weekend, for the moral support, and for being the co-author of
most of the publications.

I also thank the following great people:
Tom Ellman, PhD (Vassar College NY) and Andrea Zisman PhD (city university
london), and Miguel Baptista Nunes, PhD (the university of Sheffield) for their
valuable feedback and support during the two doctoral symposiums i attended.

I thank Diane H.Sonnenwald, PhD (Göteburg University) for her support and for
lending me her printed dissertation.
I thank Bonnie John, PhD. (CMU) for her support and for confirming that there
was not any formal description of the formative approach yet:)

I thank Mark Roseman for being available to support me with feedback.

I also want to thank my fellow colleagues in the chair of Applied Software Engi-
neering and especially the members of the Global Software Engineering (GSE)
research group, and all the staff, Dr. Christian Herzog, Fr. Monika Markl, Fr.
Helma Schneider, and Fr.Uta Weber for their valuable support.

A very special thank to Frau Barbara Kalter, for her support in solving the many
bureaucratic issues in many ways.

 I thank Donald Arthur for the proof reading and the many suggestions for improv-
ing the writing in english.

 I thank Sghaier Guizani (Universite de Quebec) for the feedback on earlier draft of
the thesis.

I deeply thank Christian Quinto and his family for the continual support since my
early coming to Munich. I owe them much.
I also thank Bernhard Schwab (Fujitsu-Siemens) for the his valuable support dur-
ing many years.
A special thank to my colleague Michael Nagel for the SAP-days in Wacker che-
mie and for his support in many situations.

Finally i deeply thank my wife and family for their continual support, and i apolo-
gize for not having enough time for them.

Table Of Contents

CHAPTER 1 Introduction. 1

1. Objectives . 4
2. Scope . 5
3. Problem and Solution Domains of the SCOOP Framework 8
4. Approach . 11
5. Contributions . 13
6. Thesis Structure. 14

CHAPTER 2 Definitions and Terminology . 15

2.1. Introduction . 15
2.2. Distributed Software Development . 15
2.3. Distributed Collaborative Software Development Meetings 21

2.3.1 Group Memory of Meetings . 25
2.3.2 Enabling technologies for software development meetings 26
2.3.3 Global software development meetings: levels of distribution 27
2.3.4 Distributed synchronous collaborative software modeling meetings . . 28
2.3.5 Importance of software models . 29

2.4. Model- Driven Development . 29

2.4.1 Model-Driven Development goals and benefits 30

CHAPTER 3 Problem Statement. 33

3.1. Global Software Development Issues and Challenges. 38
3.2. Design rationale challenges in distributed meetings. 40
3.3. Approach. 41
3.4. Research Hypothesis . 43

CHAPTER 4 A Conceptual Model For Distributed Modeling Meetings. . 45

4.1. Requirements. 48

Collaborative Work Aspects . 49
Pluggability of Components . 51

4.2. Brainstorming and Software Design Activities Model 52

4.2.1 Software Design Exploration . 52

4.2.2 Initial Model Creation Activity . 55
4.2.3 Model Transformation Activity . 55
4.2.4 Conflict identification and Resolution Activity. 56
4.2.5 Consolidation Activity. 56

4.3. SCOOP Object Models .56

 Views . 57
User interaction with the workspace. 62

 Floor Control. 63
 Location . 67
 Group Memory . 67
 Design Activity . 70
 Group Awareness . 70

Workspace awareness . 71
 Communication. 71
 Rationale . 72
 Objects collaboration . 75

CHAPTER 5 The SCOOP Framework. 77

5.1 SCOOP Framework Development .77

5.1.1 Component-based Framework Design . 78

Contract-based components of SCOOP . 78
Floor Control component requirement and considerations. 80
Location Component requirement and considerations 83
Views Component requirement and considerations 86
GroupMemory Component requirement and considerations 91
Activity Component requirement and considerations. 94
Awareness Component requirement and considerations 95
Communication Component requirement and considerations 99
Rationale Component requirement and considerations 100

5.2 Framework Instantiation and reuse .101

CHAPTER 6 Case Studies . 103

6.1 Quantitative and Qualitative research methods .104

6.1.1 Data collection using qualitative methods . 105

6.2 Software developments approaches .106

6.2.1 Formative Approach . 107

6.3 Case studies: purpose and approach . 111

Communication and coordination issues .113
 Awareness and control issues .113
 Rationale knowledge and memory issues .113

6.3.1 Experimental Context . 114
6.3.2 Experimental Case Study I: communication and coordination issues . 116

Results and interpretation (Case study I) . 120
Lessons learned (Case study I) . 122

6.3.3 Case Study II: Awareness issues . 123

Results and interpretation (Case Study II) . 124
Lessons learned (Case Study II) . 128

6.3.4 Case Study III: rationale knowledge and memory issues 129

Results and interpretation (Case Study III) . 129
Lessons learned (Case Study III) . 133

6.4 Results and Discussion . 135

CHAPTER 7 The BID Approach. 139

7.1 Bootstrapping: Definitions and Concept. 140
7.2 Users of distributed software design support systems. 142
7.3 The Bootstrapping Incremental Development Approach 144

Step 0: bootstrap start . 144
Step 1: first step in the bootstrapping process . 146
Step N: Nth step in the bootstrapping process . 147

7.3.1 Related Work to the BID approach. 148
7.3.2 Applying the BID Approach. 153

Step 0: bootstrap start . 154
Step N: Nth step in the bootstrapping process . 156

7.3.3 Conclusion for the BID approach . 157

CHAPTER 8 Conclusion and Outlook . 161
Appendix A . 165
Appendix B. 171
Bibliography. 173

List of Tables

4.1 The assessment matrix in SCOOP: The options O1 and O2 are evaluated against
criteria C1 and C2. the ‘+’ value means that option O1 meets the requirement C1,
but not the requirement C2 shown with the ‘-’ value. ‘na’ is used for not applicable
or neutral. ... 73

6.1 Subjects participating in the case studies .. 115
A.1 Analysis of the answers of participants to the Questionnaire I: the categories reflect

the requirements for collaborative software design and brainstorming identified in
chapter 4 ... 166

A.2 Summary of the qualitative data about communication issues, the corresponding
envisaged solutions, their successive resulting issues, the improvement, and the fi-
nal result and impact on the collaboration process .. 166

A.3 Summary of the qualitative data about floor control issues, the corresponding en-
visaged solutions, their successive resulting issues, the improvement, and the final
result and impact on the collaboration process .. 167

A.4 Analysis of the answers of participants to the Questionnaire of figure 15: we notice
more emphasis on awareness issues than on floor control or rationale management
issues. ... 168

A.5 Summary of the qualitative data about awareness issues, the corresponding envis-
aged solutions, their successive resulting issues, the improvement, and the final re-
sult and impact on the collaboration process ... 168

A.6 Analysis of the answers of participants to the Questionnaire of figure 15 169
A.7 Summary of the qualitative data about rationale issues, the corresponding envis-

aged solutions, their successive resulting issues, the improvement, and the final re-
sult and impact on the collaboration process ... 170

List of Figures

1.1 Dynamic Model of SCOOP Showing the Repository-Client Interaction . . . 8
1.2 SCOOP framework is built on top of a set of loosely coupled components. Do-

main applications such as GroupUML are built on top of SCOOP. 9
1.3 Initial Meta-Model of SCOOP. 10
1.4 A meta-model of the feature-driven development approach followed in build-

ing a basic implementation of SCOOP . 11
1.5 Initial Incremental design method used to develop SCOOP 12
2. 1 Iterative brainstorming activities (UML Activity Diagram). 24
3. 1 Horizontal process model: distributing the process of development over mul-

tiple sites . 34
3. 2 Collaboration dimensions of multiple-site development projects. The dashed

ellipse (I) shows the Horizontal process model, the dashed ellipse (II) shows
the Vertical process model.. 35

3. 3 Vertical process model of distributed software development. 36
3. 4 The Process of Distributed Development of Software Within Alcatel Data Net-

works. 38
3. 5 The design process of the framework, used in the thesis 42
4. 1 Brainstorming and Design activities (UML Meta-Model) 53
4. 2 Initial brainstorming and software design activities. 55
4. 3 A conceptual model for brainstorming and software design activities (UML

Statechart diagram) . 57
4. 4 SCOOP Workspace (UML class diagram): an aggregation of the Workspace-

View object and the WorksapceModel object. 58
4. 5 The views object model of SCOOP: several sub-views are communicating

through a mediator WorkspaceView object . 59
4. 6 Abstract representation of Knowledge related to a domain context 60
4. 7 Artifact structure in SCOOP (composite pattern). 60
4. 8 Communication forms in SCOOP (UML class diagram’) 62

4. 9 Actions initiated by users that has different impact on models (UML Use Case
diagram) . 63

4. 11 Floor Control in synchronous activities in SCOOP (class diagram) 64
4. 10 Visual and Persistent actions: the two different actions that can be initiated by

the user (UML Collaboration diagram) . 64
4. 12 User-Artifact interaction via FloorControl (Collaboration diagram): the user

selects an artifact or a group of artifacts, requests a lock, then edit the artifact,
then releases the artifact to other users. 65

4. 13 A task definition in SCOOP. 67
4. 14 The interaction between a client (view) and the remote server where the model

resides (UML Use Case diagram) . 68
4. 16 Group Memory capture object and its dependencies (UML class diagram) . .

69
4. 15 Long and short term memory (UML class diagram) 69
4. 17 Design activity of SCOOP (UML class diagram) 70
4. 18 Group awareness class diagram. 71
4. 19 Rationale issue model in SCOOP (UML class diagram). 74
4. 20 Associating rationale elements to instant messaging and vice-versa. The asso-

ciation makes possible the navigation to rationale elements from instant mes-
sages and the navigation from the instant messages to the rationale on the
diagrams. . 75

4. 21 Summary of all SCOOP object showing the full-cycle of their collaboration
and interaction after initiating an action by the user (Collaboration diagram) .
76

5. 1 SCOOP Components: during the requirements analysis we identified these
components . 79

5. 2 Components of SCOOP: the views component provides interfaces to talk to
each component. Each component updates its corresponding view through its
interface.. 80

5. 3 Floor Control Component in SCOOP: the Lock and TimeSlicing components
implement the generic FloorControl component. . 81

5. 4 Components interacting with the FloorControl components (UML Components
diagram): The Workspace component provides the artifacts that can be access-

ed using the floor control strategy provided by the context of the application.
The User component uses the interface provided by the FloorControl to regu-
late the access to artifacts of the WorkspaceView.. 82

5. 5 Location Component and its interaction with the WorkspaceView and Work-
spaceModel components . 84

5. 6 A modified Broker pattern to which we added a strategy object that makes dif-
ferent implementations protocols for remote object calls possible, such as
RMI, CORBA, RPC and so on. . 85

5. 7 Views Component of SCOOP interacting with the User component and the
WorkspaceModel component. . 86

5. 8 Views components and their inter-dependencies . 88
5. 9 Question Option Criterion tree to table transformation 89
5. 10 Models and Views collaborate via the observer pattern 91
5. 11 GroupMemory Component and its interaction of the WorkspaceView, the

WorkspaceModel, and the user components . 92
5. 12 Collective short term memory is the collection of the individual short term

memory of the meeting participants . 92
5. 13 The activity Component in SCOOP interacting with the User, Workspace-

View, WorkspaceModel components . 94
5. 14 Awareness Component interacting with the FloorControl, User, and Commu-

nication components . 95
5. 15 Awareness information in SCOOP . 96
5. 16 Awareness research framework as described by Greenberg& Gutwin . . 97
5. 17 Awareness development cycle adopted and modified from Framework by

Greenberg and Gutwin (UML Activity Diagram) 98
5. 18 Floor Control Component . 99
5. 19 Rationale Component interacting with the Activity component, Communica-

tion component, and the Awareness component. 100
5. 20 GroupUML deployment diagram . 102
6.1 Formative approach (UML Activity Diagram): involves the following tasks:

the identification of evaluation goals, the planning of data collection and anal-
ysis. Then follows a rapid feedback on how the work is going, making value
judgments and generating evaluation findings. After, documenting rationale

about conflict management and resolution work is proceeding what techniques
are used, and what problems encountered. Afterward, planing next step of im-
proving the underlined system, refining goals and data collection and analysis.
Finally, executing the plan of making decisions and actions. 110

6.2 Case study structure: a one semester development cycle consists of a set of case
studies. A case study can take several iterations (meetings) to complete.. 115

6.3 Initial requirements given to participants . 116
6.4 Experimental setup for distributed same time / different place software design

and brainstorming meetings: two different groups located in two different
rooms, are videotaped, and collaborating over software design using Grou-
pUML. The remote users use Smart boards to interact with GroupUML and
their peers. GroupUML updates the model located in a remote server through
remote notifications. The model server propagates the change to all Grou-
pUML applications. 117

6.5 Single room meeting: in the initial meeting, participants were in the same room
but can’t communicate only using GroupUML . 118

6.6 Initial context-free questionnaire composed of opinion-type and attitude-type
questions. 119

6.7 Relevance of issues in the initial meeting: communication issues were most im-
portant to the users and consequently were targeted for the second meeting. . .
120

6.8 Lock use cases built during the case studies. 121
6.9 Lock model designed during the case studies. 122
6.10 The user interface for the lock mechanism: a red ticker showing who is cur-

rently locking the workspace. . 122
6.11 Subsequent questionnaire given to students in Case study II 124
6.12 Awareness and floor control requirements given to the participants (Case study

II) . 125
6.13 Relevance of issues according to current experiment. 126
6.14 Awareness use case model designed during case studies: according to the user

action, awareness information events are triggered. 126
6.15 Initial awareness model designed during case studies 127
6.16 Group awareness: Magenta color used for remote user and the green for local

user . 127
6.17 workspace awareness - Radar view - . 128
6.18 Relevance of issues according to current experiment 130
6.19 Rationale use cases model designed during case studies. 130
6.20 Initial rationale model designed during case studies 132
6.21 Assessment table: evaluating options against criteria 133
6.22 QOC tree representation: for a project, questions have one or several diagrams

associated to them. This gives a quick view of the different issues and their re-
lated solutions . 134

6.23 Attaching QOC elements to artifacts . 135
6.24 GroupUML user interface . 136
7.1 Compiler bootstrapping: C1 is the initial handcrafted compiler for a subset S1

of a language L on a target machine M. C1 is used for code generation for S1
into M. C2 is the compiler for S2 written in S1 for the target machine M. We
perform this process till getting a compiler for the full subsets of the language
L on the target machine L. . 141

7.2 bootstrapping SCOOP: GroupUML0 is a handcrafted version of SCOOP1. It
was used to develop the next version SCOOP2, which in turn was used to de-
velop the subsequent version. The bootstrapping process continue further until
getting a stable version of SCOOP. . 142

7.3 Bootstrap abstract method (UML activity state diagram): initially, the require-
ments are ill-defined but as we progress in the development cycles, we gain
better understanding of issues and requirements. 143

7.4 Bootstrapping Incremental Design Process (BID): BID is a bootstrapping, a se-
quence of BID Steps, each of them is also a bootstrap process called inner
bootstrap process. 145

7.5 A Bootstrapping Meta-Model . 148
7.6 An elaborated model of the inner bootstrapping process of the BID approach

(UML activity diagram). 149
7.7 RUP Process . 152
7.8 Process of FDD . 153
7.9 bootstrapping initial step Step0: using user-centered design approach . . . 154
7.10 Participative design with the bootstrapping approach 157

7.11 Applying the bootstrapping design approach in designing the SCOOP frame-
work . 158

1 A Framework For Distributed Collaborative Software Design Meetings

CHAPTER 1

Introduction

Over the last decade software development in large organizations has wit-
nessed an increasing tendency towards globalization and outsourcing, aiming at
decreasing costs and facilitating access to skilled resources.

 Several studies have been conducted on globally distributed software
development [92, 91, 94, 67, 68, 118, 55, 56] and have identified several issues,
which are widespread across projects, including language and cultural differ-
ences, communication across temporal and spatial distances, trust factors, and
the lack of shared contextual awareness. This way, globalization has made soft-
ware development distributed over multiple geographical sites difficult and chal-
lenging.

Distributed software development introduces new aspects of cooperative
work in which a greater emphasis is placed upon effective methods and the tech-
nological support of the software development process. Most software develop-
ment activities are carried out in a group context, such as collaborative meetings,
rather then individually. Even coding can be performed by a group of two devel-
opers in distributed settings as well, such as in a distributed version of XP [2].

 Chapter 1 - Introduction -

2 A Framework For Distributed Collaborative Software Design Meetings

Globalization has further accentuated the necessity for group collaboration.
While several researchers have been able to conduct distributed formal

reviews and meetings in several distributed projects [6], distributed synchro-
nous problem solving, such as brainstorming, the development of an architec-
ture or specifying requirements, has been much more limited.

Model-based software development is complex; Software development
activities deal with the complexity by constructing and validating models of the
application domain. Models are important artifacts used for communication
within the organizations, and among developers and stakeholders as well. Con-
structing correct, complete, consistent, and unambiguous models and artifacts
calls for the involvement of multiple stakeholders, customers, developers and
even organizations.

The only modes of collaboration that have worked so far have been the
asynchronous interaction among a small group of people who knew each other
beforehand [120]. Current research on synchronous software development
across multiple sites is limited to few experiences, e.g. Damian [29] investi-
gated support for distributed requirement engineering; L. Brothers has investi-
gated distributed code inspection [18], Gaoyan et al.[46] have investigated
distributed code debugging; finally Dewan [114] presented an environment for
concurrent software development that could be used in distributed settings.

The possible geographical dispersion of the organizations makes collabo-
rative software development more complex [39]. Little has been done to support
distributed object-oriented model-driven development. It is our thesis that
efforts in supporting distributed software development meetings improve dis-
tributed development. Distributed meetings typically play a critical role in
teamwork, during which large amount of implicit knowledge is exchanged
through negotiation and conflict resolution.

Designing models through synchronous meetings is a communication-
intensive activity, in which much emphasis is placed on brainstorming ideas and
intensive discussions of different design alternatives. Moreover, group commu-
nication and knowledge produced during distributed meetings deserve to be

A Framework For Distributed Collaborative Software Design Meetings 3

Chapter 1 - Introduction -

considered as important artifacts aligned with the software architecture and the
requirements that the group is developing. This can happen many ways, captur-
ing the design rationale, short-term and long-term collaborative support that
involves the sharing of ideas, artifacts, knowledge, and group memory in real-
time. Therefore, issues like group awareness, floor control, and multi-user inter-
faces as well as user-system interactions are crucial and have to be considered a
solution. These issues lays the ground for the specification and the design of the
CSCW framework to support distributed brainstorming and software design.

In [23] Clever states that on the one hand, most of the existing CSCW
frameworks are ad hoc developed and activity-centered (e.g. workflow manage-
ment, coauthoring systems,...). They make little or no use of elaborate compo-
nents, and have taken pragmatic approaches in dealing with CSCW key aspects
like group awareness information, group activity, and floor control policies.
They are tightly coupled with the activity undertaken. On the other hand, Clever
states that most of the conceptual CSCW frameworks are too general to be of
any practical use or too restricted to a particular application. This is mostly
caused by the complexity of the application and solution domains. Nierstrasz
and Tsichritzis [111] state that object-oriented techniques promise to cope with
that complexity.

SCOOP is an object-oriented framework that supports distributed synchro-
nous brainstorming and software design [107]. The development of SCOOP
object model served at capturing the concepts present in the application domain
under investigation such as group brainstorming, group awareness, floor control,
knowledge and rationale management. SCOOP is composed of several sub-
object models for the activity, communication, collaboration, and coordination.

Although this is not the main concern of this thesis, we have used the
object-oriented techniques for several reasons. Among these, first, in using
object-oriented analysis and design techniques we seek to build a reliable design
and a sturdy architecture for distributed development. Secondly, we aim to sup-
port the developers who would reuse SCOOP framework specifications. This is

 Chapter 1 - Introduction - Objectives

4 A Framework For Distributed Collaborative Software Design Meetings

why applications derived from SCOOP can benefit from the object-oriented
reuse in redefining their own behavior.

The main idea in the design and implementation of the SCOOP framework
is to map the identified concepts of the application domain into object compo-
nents. This is why the abstract models of the activity, the collaboration, the
communication, the coordination, and the rationale management are repre-
sented by object components. For example, different implementations of aware-
ness information aspects can be used to show different behaviors according to
the application needs without affecting the underlined activity of the group.
Abstracting a key aspect of the application domain as a set of objects, makes
possible the alternative use of different implementations of the key aspect
within the framework even at run time. Applications (re)using SCOOP may
profit from this possibility to load different implementations of object compo-
nents representing a key aspect at run-time. A mediator coordinates the inter-
object components interaction and communication. Similar approaches were
used in OVAL [89] by Malone and in OOActSM by Teege [139] which is cen-
tered around the concept of activity. Both aim at providing an integrated frame-
work for CSCW systems. Although these approaches are already useful, they
are too general in use. OOActSM does not make group collaborative aspects
like group awareness, floor control or rationale management explicit; these con-
cepts and their logic have to be implemented as activities. OVAL belongs to a
category of systems called meta-groupware used to build cooperative systems,
which are not necessarily domain-driven systems and have to be refined accord-
ingly[23].

1. Objectives

The objectives of this thesis are manifold. The proposed solutions, the dis-
sertation specific aims are:

!!!!

""""

To conduct and evaluate the feasibility of distributed synchronous collabora-
tive software brainstorming and design meetings.

A Framework For Distributed Collaborative Software Design Meetings 5

Chapter 1 - Introduction - Scope

!!!!

""""

To define a conceptual model that describes the cooperative activities of glo-
bal software development meetings and study the application of the model dur-
ing several cases studies, incrementally adapting and improving the model to
cope with the issues encountered during the experiments.

!!!!

""""

To propose a flexible object-oriented framework that makes possible synchro-
nous distributed cooperative work over composite artifacts (UML artifacts aug-
mented with knowledge creation, group awareness, group memory, Rationale,
and history information). The flexibility of the framework consists of providing
a reusable and extensible software architecture that can be deployed and config-
ured according to the developers featured activity; such as distributed mind
mapping, which needs different tools than those for UML design (e.g. a different
toolbar).

!!!!

""""

To introduce an experimental-based empirical approach to identify the
requirements for a framework investiture to support distributed synchronous
collaborative software design meetings; to investigate the implications of this
kind of approach in an environment where the user-involvement is a criterion, to
build frameworks within the related problem and solution domains.

!!!!

""""

To refine the empirical approach to an innovative high-level design method
outlining a process of designing software platforms for distributed software
development meetings.

2. Scope

This dissertation addresses a research problem that embraces several fields:
object-oriented software development, computer supported cooperative work,
and human-computer interaction. As stated by Nierstrasz and Tsichritzis in [111],
object-oriented software development has reached a relative maturity that
enables software developers to have a shared understanding of an oriented soft-
ware development process and a life cycle. Computer supported cooperative
work (CSCW) on the other hand, is a multidisciplinary research area

involving a
number of fields including computer science, sociology, psychology and linguis-
tics, although it does not have a universally accepted definition. According to
Bannon [83], there are at least five distinct ways of viewing CSCW:

 Chapter 1 - Introduction - Scope

6 A Framework For Distributed Collaborative Software Design Meetings

•

CSCW as a loose agglomeration of cooperating and at times competing
communities. This view sees CSCW as an umbrella term with little content
other than something that has to do with people, computers and coopera-
tion. Hence, CSCW can be seen as a forum where people from different
disciplines and with partially overlapping concerns can discuss issues of
mutual interests.

•

CSCW as a paradigm shift. This focuses largely on the organization
aspects and human factors that are taken into account when designing com-
puter support systems, as opposed to the technology-focused design of
computer support systems.

•

CSCW as software for groups. This view sees CSCW as a research field
focusing on people working with computers in groups. The term

group-
ware

is often used to name this area of CSCW.

•

CSCW as technological support of cooperative work forms. Here the
emphasis is on understanding cooperative work as a distinctive form of
work, and on supporting these cooperative work forms with appropriate
technology.

•

CSCW as participative design. This view of CSCW is an alternative to
traditional system design, where end users are involved more thoroughly in
the design process.

CSCW and Software Engineering follow different strategies in organizing
cooperative work. In software engineering, formal structure and methods are
used to structure the software development process. CSCW, on the other hand,
supports information management and cooperation within groups. CSCW sup-
ports cooperation in software engineering on two levels, the macro-level and
the micro-level:

•

Macro level: cooperation between different divisions or groups (technical
and analysis divisions)

•

Micro level: cooperation within a group (implementation, modeling etc.)

This dissertation shows how software engineering methods and techniques
can support the micro-level. Vice-versa, the CSCW concepts are used to foster
support to group software development in specific situations such as global

A Framework For Distributed Collaborative Software Design Meetings 7

Chapter 1 - Introduction - Scope

software development projects.
To cope with the distribution constraints, the CSCW researchers have sug-

gested several topologies [34], such as the replication of data (decentralized), or
sharing the data (centralized). In both situations, several disadvantages arise and
can make the feasibility of global meetings difficult. This shows in particular, in
distributed brainstorming and software design meetings, at which users create,
update, and interact with complex and huge models, which may cause an impor-
tant network traffic and a slower response-time.

Large and complex software models and artifacts cannot be replicated with-
out causing a slower feedback of the system to the users [117, 37], who may
think the system has crashed or is not able to handle their actions. That’s why the
response-time of the users interaction with the system may contribute to the suc-
cess or failure as well (that is, the acceptance or not) of the real-time groupware
systems. To provide good response-time, we suggest to use a centralized-like
architecture in which no data are sent to the users apart from a notification to
create the same data locally. That is, we replicate the users actions, which yields
data locally if needed. A similar technique called

Active Replication

 is used in
distributed database replication [84]. Existing systems that replicate data among
the distributed participants, leads to a substantial network traffic in sending all
data back and forth between users.

From the experiments we conducted, we noticed an improvement of the
response-time and the reduction of many interaction conflicts. As a result users
share only a description of the model, which in return is displayed the same way
to all of the users. Figure 1.1 shows a description of the notification flow and
communication between a central repository, which contains the model, built by
the different users, and the clients.

 Chapter 1 - Introduction - Problem and Solution Domains of the SCOOP Framework

8 A Framework For Distributed Collaborative Software Design Meetings

3. Problem and Solution Domains of the SCOOP
Framework

SCOOP is a component-based framework [105]. Its main domain activity
is software brainstorming and design in distributed synchronous meetings.
SCOOP breaks down the domain activity into several cooperating components,
such as

Activity, GroupAwareness, GroupMemory, Location, FloorControl,
Communication, Rationale,

 each with a responsibility. This way, components
can be substituted with diverse implementations matching the context of the
applications built on top of SCOOP. Examples of applications that are based on
the same abstraction domain activity are GroupUML, GroupConceptMap,
GroupBrainstorm, and GroupMindMap. These applications make possible the
sharing and sketching of ideas, the identification of requirements, sharing use
cases and scenarios between geographically dispersed users who can not meet
in a single site.

Figure 1.2 describes the SCOOP framework, its components, and the

FIGURE 1.1.

Dynamic Model of SCOOP Showing the Repository-Client Interaction

A Framework For Distributed Collaborative Software Design Meetings 9

Chapter 1 - Introduction - Problem and Solution Domains of the SCOOP Framework

related applications built on top. Figure 1.3 shows an initial meta-model of
SCOOP.

FIGURE 1.2.

SCOOP framework is built on top of a set of loosely coupled

components. Domain applications such as GroupUML are built on top of SCOOP.

 Chapter 1 - Introduction - Problem and Solution Domains of the SCOOP Framework

10 A Framework For Distributed Collaborative Software Design Meetings

FIGURE 1.3.

Initial Meta-Model of SCOOP

A Framework For Distributed Collaborative Software Design Meetings 11

Chapter 1 - Introduction - Approach

4. Approach

To deal with the issues described above, we conducted a series of explor-
atory case studies of distributed synchronous collaborative brainstorming meet-
ings.

 The formative experiments are conducted using SCOOP itself and served
to the iterative exploration of requirements of SCOOP, and incrementally
designing and developing new features of SCOOP. The new features were then
used to support the subsequent experimental meetings. This cooperative design
approach led to the development of an abstracting design method that uses the
framework to develop and improve the framework itself.

Participative design elevates users from being objects of study to a role
more intimately involved in the design process [22]. Cooperative design
involves finding new ways for users to learn, participate, and cooperate with
software designers. Since users play a central role in learning how a software
system should operate, we adopted a participatory design methodology to
include motivated users to codetermine how the framework will affect their
activities in real life.

The first version of the SCOOP framework was initially developed using a
feature-driven development process as shown in Figure 1.4.

FIGURE 1.4.

A meta-model of the feature-driven development approach followed in

building a basic implementation of SCOOP

 Chapter 1 - Introduction - Approach

12 A Framework For Distributed Collaborative Software Design Meetings

We built a groupware called GroupUML [106] providing such basic fea-
tures as the sharing of visual graphic artifacts between dispersed users, used in
the early stages of the identification of the requirements in building SCOOP.
With GroupUML, it was possible to conduct distributed synchronous brain-
storming meetings with senior computer science students in the Technische
Universität München. Once the initial version was built, GroupUML was devel-
oped based on a participative design approach, by adding one feature at a time.
Each feature was the outcome of one or more brainstorming and design meet-
ings with users. Users spread over different locations and cooperated in brain-
storming the requirements and designing the features. Users used the current
version of SCOOP to implement and design the next version. This repetitive
and incremental bootstrapping design cycle where an initial partial solution
(version 1) is used to build a partial solution (version 2) is shown in figure 1.5.

FIGURE 1.5.

Initial Incremental design method used to develop SCOOP

A Framework For Distributed Collaborative Software Design Meetings 13

Chapter 1 - Introduction - Contributions

We have termed this process as the BID approach [108]; described as fol-
lows: having initially an issue, we start by building a trivial and simple partial
solution. In our case, the initial partial solution was built upon a user-centered
design paradigm. The next step consists of using the partial solution to identify
current issues and try to identify a possible solution to each. The possible solu-
tion is then built on one available solution from the previous cycle. The process
takes as many cycles as necessary until it reaches a level of user acceptance.

This also means that all newly identified issues and faced problems (result-
ing from a regression, for example or a conflict between previous and current
partial solutions) could be solved or workrooms have been found without com-
promising any functional requirement or functionality of the system.

5. Contributions
The core contribution of this dissertation is a flexible component-based

framework support called SCOOP [107], for real-time distributed group soft-
ware brainstorming and design meetings. The second contribution is a reference
implementation and evaluation of a groupware called GroupUML[105]. Grou-
pUML enables the sharing of graphical artifacts in real-time and capturing his-
tory and rationale knowledge. The artifacts are UML models augmented with
rationale knowledge, group memory, history, and awareness information that
supports concurrent management. GroupUML was used to explore several dis-
tributed software brainstorming and design meetings.

A third contribution is the design and conduction of a series of case studies
as a proof-of-concept of the research hypothesis, that distributed real-time soft-
ware design and brainstorming meetings (same-time/different-place) are feasi-
ble. A fourth contribution is the design of a conceptual framework process for
incremental and self-improving tool development.

 Chapter 1 - Introduction - Thesis Structure

14 A Framework For Distributed Collaborative Software Design Meetings

6. Thesis Structure
The structure of the thesis is described as follows:
In chapter 2, we introduce various definitions and terms used in the disser-

tation. We discuss global and distributed software development projects, group-
work and collaborative software brainstorming and design meetings. We
introduce distributed model-driven development meetings.

In chapter 3, we describe the application domain. We introduce global and
distributed software development activities and formal meetings. We identify
issues of distributed meetings, the problem domain and the solutions envi-
sioned. We explain why supporting software design activity in distributed soft-
ware development projects is important.

In chapter 4, we describe the requirement for the SCOOP framework, then,
we describe distributed group meetings activities for software brainstorming
and design. In particular, we elaborate a conceptual model of brainstorming and
design-based activity life cycle as the basis for developing and improving the
SCOOP framework.

In chapter 5, we provide a detailed description of SCOOP as a contract-
based component framework and the reference implementation.

In chapter 6, we describe three sets of case studies and the experimental
settings and context, finally we discuss the results.

In chapter 7, we discuss and describe our reflection on the particular
design process we used and extended it into an agile approach bootstrapping in
the design and development of frameworks. We start our discussion by an
exploration of the approach using SCOOP to improve the design of SCOOP. We
generalize the bootstrapping concept in groupware development.

In chapter 8, we conclude the dissertation and we outline future directions
that can be explored based on the results of this research and summarizes the
implications of the results for distributed and global software development.

A Framework For Distributed Collaborative Software Design Meetings 15

CHAPTER 2 Definitions and Terminology

2.1.Introduction
 Globalization has pushed software development into a new and more diffi-

cult dimension. Large software systems are no longer developed on a single site,
but are rather developed across sites, cities, countries, and even continents. Thus,
new aspects of collaboration, communication, and coordination complexity have
been introduced. Hence, the complexity of developing software systems has
increased.

In the next section we will define and outline our main concepts of distrib-
uted software engineering, and in particular distributed software development.

2.2.Distributed Software Development
The term “distributed software engineering” is ambiguous. In an attempt to

cover the research aspects of distributed software engineering, Kramer [62] pro-
vided the following description: “Distributed software engineering includes both
the engineering of distributed software, possibly local, and the process of distrib-

 Chapter 2 - Definitions and Terminology

16 A Framework For Distributed Collaborative Software Design Meetings

uted development of software, such as cooperative work”. The former deals
with software products that are destined to be deployed in a distributed environ-
ment (distributed computers, distributed databases, networks, etc.). The latter
deals with the process of distributing the activities of software development
within a scattered groups of developers.

Although the two definitions seem independent, they are related. In the
first definition, although the concern is about developing software deployed in a
distributed environment, it can be developed according to the second definition,
that is, within a geographically distributed development team. Vice-versa, the
software product that is developed according to the second definition may also
be destined to support distributed deployment.

We can, therefore, distinguish two definitions depending on whether the
concern is on software product engineering or the process of software develop-
ment.

Definition 1.1. Distributed software engineering is a field that covers the
issues of software products that are deployed in a distributed environment.

Definition 1.2. Distributed software development is the process of distribut-
ing (concurrent) collaborative software development activities within a geo-
graphically dispersed group of developers.

This dissertation is concerned with distributed software development as
described in definition 1.2. It focuses on investigating the special case of dis-
tributed collaborative software brainstorming and design, identifies and
addresses the related issues. It presents solutions towards resolving these issues.

 Several factors are contributing to the dissemination of distributed devel-

opment projects, technological, technical, economical, organizational, and
social as well. The increasing quality and availability of internet-based technol-

A Framework For Distributed Collaborative Software Design Meetings 17

Chapter 2 - Definitions and Terminology

ogies (such as high-speed ATM-based platforms), makes distributed software
development a more viable option for many organizations. The improvement of
technological support in communication infrastructure (e.g. groupware tools,
video conferencing), the development of internet technologies, bandwidth and
performance, have dramatically changed the way software is developed. Another
reason for distributing software development is the availability of technical
resources such as specialized hardware, which may only be available at certain
locations, for example confidential prototypes or supercomputer platforms which
are very expensive to replicate. Thus, many projects have to be developed by geo-
graphically distributed teams.

 For economic or organizational reasons, projects cannot always be limited
to one company or a single location. For instance, time to market needs to be
reduced in the internet-time: business success is much more strongly determined
by being the first to sell and market a new technology [54].

 Moreover, strategic partnerships, joint ventures, and global companies
share a need in supporting distributed software development efforts. Companies
can develop software products, which are then promoted by other partner com-
panies. Existing products may need to be customized and supported by compa-
nies other than the original developers. Global companies with offices in many
countries may conduct joint product development among divisions.

French [44] studied five commercial software development and mainte-
nance projects to identify the advantages and disadvantages of the distributed
work model. The following organizational factors contributing to the distribution
of software development efforts were identified:

•Client may request or require on-site support. It may be necessary to have
some project members located on or near a client site.

•Project members are unwilling or unable to travel or relocate to other sites.
•Skilled workers necessary to the success of a project are based at different

sites.
•Travel or relocation costs for moving a large number of project members to

a different site could be exorbitant.
•Technical resources such as specialized hardware are only available at cer-

 Chapter 2 - Definitions and Terminology

18 A Framework For Distributed Collaborative Software Design Meetings

tain locations.
•Organizations feel uneasy about having staff from another company work

at its site, or the software development organization did not want to have
its staff working at a customer site.

•There is a shortage of office space at a given location.
 In spite of the many reasons requiring a distributed development

approach, distribution alone does not automatically represent a gain in produc-
tivity and quality. For instance, Microsoft considers developing new products
on site as an advantage because whenever problems occur, caused by work
interdependencies, developers can efficiently discuss and solve them in infor-
mal face-to-face meetings [93, 137], which presents numerous advantages as
stated in [44].

However, several advantages in distributed work have been identified as
well. The enhancement of organizational productivity, delivery of customer ser-
vices, reduction of traveling time are frequently mentioned benefits. In [58] E-
mail is noted to be an important technology supporting telework. Broadcasting
capability, management of communications, access to information resources,
low communication cost, file transfers, and temporal and spatial flexibility are
all communication benefits original to E-mail and the web which helps to make
distributed work possible. In [112], a software design experiment was con-
ducted to compare the quality and creativity of system designs for groups with
two different meeting environments. Forty-one groups of about five participants
each took part in the study. One set of groups held traditional face-to-face meet-
ings, while the other set used distributed asynchronous computer conferencing
meetings. The study showed that the distributed asynchronous groups produced
more creative designs than the designs produced by the face- to-face groups.
Another observed outcome was that the quality of the designs produced by the
distributed asynchronous groups were higher in quality than face-to-face
groups. This research suggests that the more creative and higher quality results
of the distributed groups may be attributed to several factors. The use of a col-
laborative writing tool, the ability to work in parallel to combine ideas, the pro-

A Framework For Distributed Collaborative Software Design Meetings 19

Chapter 2 - Definitions and Terminology

duction of a written memory reducing the number of lost ideas, and the increased
connectivity using computer support are all factors that may have led to better
results from the distributed groups in the study. Similar findings are described
also in [4].

Different sites can be allocated to different functions. For example, separat-
ing testing from development is an interesting opportunity for having solid tests:
the less testing is influenced by development, the more independent test scenar-
ios will be, giving a greater chance of running into errors that many developers
have ignored or missed. Distributed work requires more discipline to keep track
of documents and deliverable. Processes have to be well defined and understood,
which leads to a more stable project environment [44]. Since most of the com-
munication and collaboration within distributed teams is supported by computer
and video conferencing tools, a larger part of the project history and the underly-
ing artifacts can be made explicit and recorded. Such a record can be (re)used by
the project participants to document and justify decisions better and by the com-
pany to accumulate corporate knowledge [7]. Staff from a broader pool of skills
can be assigned to virtually any project.

Several issues and difficulties are resulting from distributing software
development over multiple sites. In the following we discuss some of these.

 In [55, 56], an embedded system product at Lucent Technologies that is
described, was developed in two locations: Germany and the UK. This project
revealed many problems resulting from the distributed development process.
Unit testing and development was disturbed by incomplete specifications. Imple-
mentation diverged from the design document, and the design document was not
updated. Bug reports were generated from out-of-date design documents that
identified ill-functioning components. While the components were working as
implemented, the tests generated at other sites used design documentation that
was never updated after designs changed. Many of the coordination problems
observed in this project can be attributed to communication losses incurred
because of distributed development. These are the same communication losses

 Chapter 2 - Definitions and Terminology

20 A Framework For Distributed Collaborative Software Design Meetings

that can occur with all distributed work. In [44], French has found that on the
one hand, project members tend to be less committed to a project when a lot of
the communication takes place by E-mail, that is in an asynchronous way. On
the other hand, sites can communicate too much and spend more time commu-
nicating than doing useful work [44]. Collaboration breakdown happens also
when distributed groups do not know whom to contact about particular issues
because of the difficulty of making contacts.

As a result, communication and coordination issues complicate distributed
work and have to be dealt with when designing groupware supporting distrib-
uted teamwork. Synchronous groupware makes communication and coordina-
tion issues and their corresponding solutions explicit.

 Several technical issues and difficulties result from distributed software
development. We describe in the following the relevance to this research.

One of the difficulties in distributed software development is that the range
of issues to be addressed cover many disciplines, including CSCW (Computer
Supported Cooperative Work), process improvement, software configuration
management, project management, organizational theory. Moreover, there are
few experience reports in the literature on distributed development.

While there have been considerable recent advances in CSCW technology
[32], the advancement of framework support for collaborative distributed soft-
ware development has been neglected.

Several issues have to be considered in developing groupware support to
distributed software development, among these we cite the most important ones
related to our research:

Meetings. This area includes the issues related to making distributed syn-
chronous meeting possible, in particular those that are intended to support col-
laborative brainstorming and software design.

 Collaboration. This area includes the issues related to supporting the col-
laboration of different individuals and teams over distance, time and communi-
ties. This includes issues of increasing awareness, supporting communication,

A Framework For Distributed Collaborative Software Design Meetings 21

Chapter 2 - Definitions and Terminology

and supporting negotiation.
Artifact management. This area includes the issues related to supporting the

exchange and tracking of different work products at different stage of develop-
ment. Work products include system related artifacts, such as specifications,
designs, code, test scripts, as well as work-related artifacts, such as project plans,
status reports and process descriptions.

Project management. This area includes the issues related to planning,
coordinating, tracking, and controlling different parts of a project. In particular,
workflow management and process modeling fall into this area.

Knowledge management. This area includes the issues related to managing
the knowledge assets of an organization, including experts, lessons learned doc-
uments, artifact templates, best practices and process improvement.

Localization. This area includes the issues related to customizing artifacts,
work, and tools to a specific site to support its local needs better while enabling
the site to remain part of the global organization.

In the following, we will focus on the role of meetings in distributed soft-
ware development, in particular the issues related to distributed synchronous
collaborative software development meetings.

2.3.Distributed Collaborative Software Development
Meetings

 Meetings are the most important vehicle for human communication. They
are so common and pervasive in organizations, that many take them for granted
and forget that, unless properly planned and executed, meetings can be a terrible
waste of precious resources.

There are two types of meetings, formal meetings and informal meetings.
Formal meeting have agendas known in advance to all participants. The meeting
has a specific agenda and take place at a predefined location considering time
constraints of the participants. The participant’s relationship results from social

 Chapter 2 - Definitions and Terminology

22 A Framework For Distributed Collaborative Software Design Meetings

aspects, their company’s culture, their hierarchical structure, their affiliations.
 Informal meetings are meetings that have very few or no constraints at all

upon meeting location, participants, and subjects of discussion. There are two
types of informal meetings:

Casual meetings are held in a pleasant atmosphere with subtly hierarchical
structures. Casual meetings are held without or with low ceremony (process), in
casual attire, and often with beverages or snacks to support a convenient feel-
ing. The expectations on the findings and outcome of the meeting are reduced.
Casual meetings are difficult to capture. They are often used as a kick-off to
introduce people to each other, or as an ice-breaker.

Ad-hoc meetings are unscheduled (or unpredictable) meetings in terms of
time and place. Examples include people meeting each other by chance in the
coffee-room or in the hallway. This kind of meeting, while fostering teamness
and social relationships of colleagues, is totally unstructured (no agenda, no
schedule, no list of participants, no expected outcome) and therefore much of
the content or information is lost after the meeting is off. The conversation is
also not available to team members who did not attend the meeting. There is no
expectation on the outcome of ad hoc meetings. Ad hoc meetings, however, can
strengthen human bindings and foster a sense of community.

Software developments organizations schedule meetings as one of the

most important frequent activities. Meeting participants may undertake long
trips for attending a meeting. The activity undertaken within a meeting is one of
the characteristics that define the type of the meeting. Discussion meetings deal
with discussing issues in a given context of the meeting. Software development
meetings are specially dedicated to software development activities.

Definition. Distributed meetings are meetings where participants are geo-
graphically dispersed and use a computer and networking infrastructure for
communicating.

A Framework For Distributed Collaborative Software Design Meetings 23

Chapter 2 - Definitions and Terminology

We extend the previous definition to define distributed software develop-
ment meetings.

Definition. Distributed software development meetings are distributed meet-
ings where participants conduct software development activities.

Definition. Brainstorming is an organized approach for producing ideas by
letting the mind think without interruption. Brainstorming can be done either
individually or in a group; in group brainstorming sessions, the participants are
encouraged, and often expected, to share their ideas with one another as soon as
they are generated. The key to brainstorming is not to interrupt the thought pro-
cess. As ideas come to the mind, they are captured and stimulate the develop-
ment of better ideas. Brainstorming has some limited use in enhancing creativity
in that generating a broad selection of ideas may lead to a unique and improved
concept.

Brainstorming is concerned with more than idea generation. Osborn [113]
considered idea evaluation to be an essential element. The rules he came up with
are the following: no criticism of ideas, go for large quantities of ideas, build on
each others ideas, encourage wild and exaggerated ideas, and evaluate and select
relevant ideas.

The brainstorming activity is composed of three sub-activities.
The Fact finding activity contains two sub-activities: problem definition,

and preparation. First, we define the problem to solve, where we may need to
break it down into smaller problems. Next, we gather any information that might
relate to the problem.

In the Idea generation activity we generate and find ideas without any con-
straints.

In the Solution finding activity we evaluate and select the best ideas among
the ones generated.

 Chapter 2 - Definitions and Terminology

24 A Framework For Distributed Collaborative Software Design Meetings

Brainstorming works well for problems that have many possible answers
such as design. In exploratory design meetings, we often iteratively jump from
the solution finding activity to the fact finding activity till we meet an accep-
tance criterion to the underlined problem like described in Figure 2.1.

Based on this definition we define object-oriented brainstorming activity
as follows:

Definition. Object-Oriented Brainstorming: is the act of brainstorming
within object-oriented analysis and design activities. It is concerned with find-
ing objects, components, systems, evaluate findings and consolidate ideas.

Figure 2. 1: Iterative brainstorming activities (UML Activity Diagram)

A Framework For Distributed Collaborative Software Design Meetings 25

Chapter 2 - Definitions and Terminology

2.3.1 Group Memory of Meetings
Group memory represents the knowledge produced during group meetings.

It takes two forms, short-term memory and long-term memory.
Both are crucial to run meetings and to enable long-term collaborative sup-

port within projects where necessary information are stored to describe artifacts,
their history, the rationale behind them, and the users who created them.

Short-Term Memory. It has a short life-time and is useful only during the
meeting itself. It helps individuals to contribute to the meeting the right
way and efficiently. Short-term memory constitutes the information such as
what is said, and the events happening during the meeting which is crucial
for the continuation of the meeting. Meeting attendees are usually taking
notes for themselves and each is acting as a self-minute taker. The result is
that each one has his own description of facts happening during the meet-
ing, and each has his or her own interpretation of what happened and what
was decided. This leads to some conflicts in the group. To cope with these
issues, Michael Doyle & David Straus in their book “How to Make Meet-
ings Work”, presented a trivial solution which consist in to adopt a collec-
tive short-term memory.

Long-term memory. In formal meetings, the minutes as recorded by the
minute taker constitutes the long-term memory of the group.

Collective short and long-term memory. Distributed software developers
in particular, need to deal with both short-term memory as well as long-
term memory to coordinate their activities during and after distributed
meetings. Short-term memory can be individual so every one has his own
description of what he or she is going to say or what has been short said or
decided. Long-term group memory is generally recorded by the minute
taker and will not be available until the next meeting.

Collective or shared short-term memory can be used to cope with the dif-
ferent individual recordings. It consists in writing instantly all short-term mem-

 Chapter 2 - Definitions and Terminology

26 A Framework For Distributed Collaborative Software Design Meetings

ory informations in front of the group, using a white or a black board. There
several benefits from using this technique:

•Individuals are no more overwhelmed with information and figures and
charts that are brought up.

•Concentrating on own ideas is no more necessary since this can be shown
on the collective memory and one is open to the group’s new ideas.

Distributed Group memory. Such a concept is not known yet. In our view,
distributed group memory is the extension of the single site (same-time/
same-place) group memory into a shared distributed memory in distributed
settings. In the following we provide its definition:

Definition. Distributed Group Memory is the collective or shared memory
of a physically distributed group of individuals.

Several issues arise from the definition we provide. For instance, how to
design and represent distributed group memory, how to integrate it into a meet-
ing system, what is the impact using it in distributed group meetings, what kind
of enabling technologies that can support implementing distributed group mem-
ory. These questions are answered along the thesis.

2.3.2 Enabling technologies for software development meetings
Recent developments in networking and multimedia technologies are

promising for the wide dissemination and use of video conferencing technology
and services in software development meetings [28].

Electronic meeting systems (EMS) are communication means including
teleconferencing, computer conferencing, and group decision support systems,
which utilize information technology to support distributed meetings. These
systems support electronic brainstorming as well as various decision making
processes. Electronic meeting systems aim to make group meetings more pro-
ductive by applying information technology. EMS technology is designed to

A Framework For Distributed Collaborative Software Design Meetings 27

Chapter 2 - Definitions and Terminology

directly impact and change the behavior of groups to improve group effective-
ness, efficiency, and satisfaction of the users with the outcome of the meeting.

Electronic meeting systems are used for meetings that requires the coordi-
nation of several people. As long as the activities are of general nature or simple
ones, meetings can be conducted successfully. Complex tasks need more prepa-
ration and an effective planification to conduct successful meetings. The goal
has been to understand how to build computer tools to make such meetings more
effective.

In [109] it is argued that EMS are not confined to supporting only meetings
that occur in the same place at the same time. Using modem information technol-
ogy, people can come together for a meeting even though they are separated in
time or space. There are a few published reports of rapid and wide adoption and
diffusion of this technology. The most deployed class are Group Support System
(GSS) technologies, include products such as Lotus Notes and Microsoft Net-
Meeting. However these systems were little or not used within distributed soft-
ware development organizations [12].

For distributed software brainstorming and design meetings we need to
develop and use more dedicated software infrastructure to support the associated
activities. For example object-oriented software design requires support of UML
tools as well as for rationale knowledge accumulation and management.

2.3.3 Global software development meetings: levels of distribution
Global and distributed software development activities can occur at differ-

ent places and at the same time where synchronous software developing meet-
ings can take place. It can also take place in different time where asynchronous
activities can be conducted. We can not talk about ‘asynchronous meetings’
since meetings suppose that people come together wether in the same place or
different places.

 Researchers distinguish between three dimensions where distributed soft-
ware development meetings become more difficult:

 Chapter 2 - Definitions and Terminology

28 A Framework For Distributed Collaborative Software Design Meetings

• Geographical distribution . In CSCW, this dimension is typically referred
as “same place vs. different place.” The distances between the sites and the
number of different sites impact on the difficulty for the sites to communicate
and exchange information. This is because increasing distance between sites
may lead to a reduced face-to-face meetings. Consequently, electronic means,
such EMS, have to be used for communication and coordination between sites.

Moreover, mobile communications and the mobility of individuals and
groups have introduced another dimension to the time-place Matrix [51, 14].

• Temporal distribution . In CSCW, this dimension is typically referred as
“same time vs. different time.” If the working schedules of different sites over-
lap, synchronous tools (e.g., phone, video conference, and synchronous group-
ware) can be envisioned for supporting collaboration. Otherwise, asynchronous
tools (e.g., E-mail, fax, and asynchronous groupware) must be used, which
result in a much higher latency in communication and decision making.

• Community distribution . Groups from different organizational cultures
work together on a single project. Each group may have developed its own ter-
minology, tools, and methods, making it difficult for them to coordinate their
work, even if they are within driving distance or within the same time zone. In
the case the different groups are forced together (e.g., as a result of a merger),
cultural clashes may degrade the communication to the point of project failure.

2.3.4 Distributed synchronous collaborative software modeling meetings
When working hours overlap, distributed developers can conduct synchro-

nous collaborative brainstorming meetings as defined. Developers can not only
collaborate asynchronously on activities independently from each other (e.g.
coding, testing, integration) but also can collaborate synchronously on activities
such as brainstorming and designing architectural models.

A Framework For Distributed Collaborative Software Design Meetings 29

Chapter 2 - Definitions and Terminology

2.3.5 Importance of software models
Models help us understand a complex problem and its potential solutions

through abstraction. However, Selic in [16] states that for historical reasons,
models often play a secondary role in software development. Nevertheless, mod-
els merit better consideration as the potential benefits of using models are signif-
icantly greater in software development than in any other engineering discipline
[16]. Models are more than visual diagrams. Models encapsulate a wealthy
bunch of information about brainstorming, analysis, specification, and function-
ality of software design issues. Models should not end up as documentation like
in most traditional software development projects. Documentation easily
diverges from reality because it’s difficult to maintain it synchronized with
requirements or code that change frequently.

 The major advantage in focusing on models instead of implementation is
that models are expressed using concepts that are much less tied to the underly-
ing implementation technology and are much closer to the problem domain than
the most used programming languages. This makes the models easier to specify,
understand, and maintain. Selic claims that in some cases, it might even be pos-
sible for domain experts rather than computer professionals to produce systems
through models.

In the next section we present model-driven development concepts and its
relation to this thesis.

2.4.Model- Driven Development
 Model-driven development (MDD) is an OMG initiative to develop stan-

dards based on the idea that modeling is a better foundation for developing and
maintaining systems [135].The aim of Model-driven development is to drive the
entire software engineering process through models and to reduce the impor-
tance of code, and focus on building applications reliably and according to
requirements. Model-driven development is part of a much broader concept

 Chapter 2 - Definitions and Terminology

30 A Framework For Distributed Collaborative Software Design Meetings

called Model-Driven Architecture (MDA). MDA represents a conceptual
framework for an approach to model-driven development. Models are con-
structed, viewed, developed, and manipulated via UML in a standard way at
analysis and design time. UML models allow an application design to be evalu-
ated, reviewed, and modified before it is coded, when changes are easier and
less expensive to make. The Meta-Object Facility (MOF) standardizes a facility
for managing models in a repository. XML Metadata Interchange (XMI) is an
interchange format for models, based on the MOF and the language XML.

2.4.1 Model-Driven Development goals and benefits
The goal of MDD is to have as much as 90% of an application to be auto-

matically generated from UML diagrams [60]. Specifications, implementation,
building, debugging and testing can all be done at the model level.The impor-
tant message of model-driven development is that it allows developers to focus
on solving the design challenges and adding new functionality, instead of
spending most of their time fixing syntax errors, stopping memory leaks or over
low level bugs.

The underlying motivation for MDD is to improve productivity, that is, to
increase the return (ROI) a company derives from its software development
effort.

The benefits of model-driven development are significant to business lead-
ers and developers as well.

Integrated support environments to MDD (that is, environments that allow
the development of domain-models, code generation from these models, and the
generation of models from code through reverse-engineering) are still not avail-
able and the very few that exist are not mature [64]. To date, most commercial
tool support for MDD focus their effort on automating code production from
visual models. However, a number of researcher have developed tools (e.g.
ArgoUML, Eclipse Modeling Framework, AndroMDA) in an attempt to enable
‘round-trip’ engineering where users can switch seamlessly between a UML
model and corresponding implementation source code. Several researcher even

A Framework For Distributed Collaborative Software Design Meetings 31

Chapter 2 - Definitions and Terminology

argue that from models we can produce good enough code that can be main-
tained; but generating models from code can not equal the quality and the
abstraction level of the original models designed by software developers.

MDD researchers are focusing more on tool support and are neglecting the
underlying activities of development. In particular there is no support to model-
driven software development for distributed and multi-team developments. This
thesis provides a first step towards a support to distributed Model-Driven Devel-
opment activities.

 To support distributed Model-Driven Development meetings we focus on
object-oriented brainstorming, analysis, and design meetings using UML in dis-
tributed settings. In particular, we focus on the collaborative creation and manip-
ulation of graphical UML artifacts within distributed development meetings. The
artifacts are used as a vehicle of communication among the various stakeholders,
and helps bridge the complexity of the system.

GroupUML is a research prototype that focuses on UML modeling, it does
not support code generation nor round-trip engineering. It is intended to investi-
gate the initial requirements for distributed support to UML modeling and con-
current management of visual artifacts. Systems developed with GroupUML are
not made up just from the UML models, but also from other artifacts. This
includes requirements, rough sketches of the system, rationale, and business
cases.

 Chapter 2 - Definitions and Terminology

32 A Framework For Distributed Collaborative Software Design Meetings

A Framework For Distributed Collaborative Software Design Meetings 33

CHAPTER 3 Problem Statement

We distinguish two different types of global software development process

models: Horizontal process models and vertical process models. Software process
models are abstract representations of software processes. A software process is a
set of activities that are performed by the project participants toward a specific
goal and the dependencies between activities. In the following we describe the two
different process models.

In the horizontal process model (see Figure 3.1), the distributed software
development process refers to the distribution of independent or loosely coupled
activities that are spread over different locations. That is, the process consists of
loosely coupled activities that can be performed independently from each other.
For example, the design of a system architecture, the implementation, and the
testing activities could be conducted independently in different sites by different
development groups. Every single site is fully responsible for its deliverable.
This type of process model is adequate for different sites that are located in dif-
ferent time-zones where communication an collaboration take place asynchro-
nously (see Figure 3.2, dashed ellipse I).

 Chapter 3 - Problem Statement

34 A Framework For Distributed Collaborative Software Design Meetings

In the vertical process model, each activity of the development process is
simultaneously shared and performed synchronously by different groups of
developers located at geographically distributed locations (see Figure 3.3). As a
result, brainstorming and software design, coding, debugging, inspecting, and
documenting can be jointly performed by several participants in the same time.
Sites that share the same time-zone and being in different locations can perform
concurrent synchronous work (see Figure 3.2, dashed ellipse II).

 Sites that are in different time-zones (see Figure 3.2, dashed ellipse I) can
perform synchronous work only when scheduling special meetings where one
site compromises in attending meetings very late or very early with respect to
their local time.

The vertical process model with focus on concurrent software brainstorm-
ing and design in global software development projects, provides the context
for this dissertation

Figure 3. 1: Horizontal process model: distributing the process of development
over multiple sites

A Framework For Distributed Collaborative Software Design Meetings 35

Chapter 3 - Problem Statement

Alcatel is an example of companies that use the horizontal process [21].
Alcatel Telecom is a global telecommunications supplier with a large number of
research and development projects that typically involve several countries
around the world. Alcatel Data Networks (ADN) is the business division for
switching and routing line of products. Software development in this business
division is handled in a central R&D group of several thousand of multifarious
software engineers who are distributed throughout the globe in more than 20
development centers in Europe, the US, North Africa, Asia, and Australia.

Figure 3. 2: Collaboration dimensions of multiple-site development projects. The
dashed ellipse (I) shows the Horizontal process model, the dashed ellipse (II)

shows the Vertical process model.

 Chapter 3 - Problem Statement

36 A Framework For Distributed Collaborative Software Design Meetings

Alcatel distributes its software development process over different continents.
Software systems are designed and developed in one site, tested and integrated in
another site, deployed to the client at third site. Several travels on site are sched-
uled to solve issues. Problems that were not discovered and solved during the
development are fixed on the client-site. This necessitates additional mobilization
of many people that are involved in the project.

 ADN Clients (usually a government, group of Banks, telecommunication,
and space companies) have the opportunity to get a specific-software-system
that matches their needs. Usually new clients visit the main (Management) site,
where a running demo platform composed of a hardware platform (Alcatel PSX
switches, Alcatel ACX concentrators, 10 to 20 SUN workstations and NCD/
Tektroniks Terminals) and a distributed peer-to-peer software platform (Alcatel
1100 Network Management Unit NMU, VPN Graphical Station VGS, Network
Management System NMS). The demo platform is a complete replication of the
development site platform. The client checks wether a customization is needed
and specifies additional client-specific-functionalities through RFCs (Request

Figure 3. 3: Vertical process model of distributed software development

A Framework For Distributed Collaborative Software Design Meetings 37

Chapter 3 - Problem Statement

For Change) that are communicated to the executive site. The negotiation of new
or changed requirements happens at both the executive site and the development
site.

 The executive site coordinates all the different sites and serve as an official
relay between all parties. In this site, all the major interactions with the client
take place. In practice, all parties are encouraged to directly communicate with
each other and with the client.

 The development site is involved in all the activities of negotiating require-
ments, designing and developing the software. As a result here an intensive inter-
action and collaboration takes place with the clients. Several predictable travels
to client-sites are scheduled each year. Often the development site acts on behalf
of the executive site, where software development team leaders share decisions
about software deliverable and deal with RFCs and clients requests. Additional
interactions with the system and integration test site happens each time there is a
client-software release.

 The role of system & integration test site ensures that the system fulfills
the quality requirements defined by the executive site and the client require-
ments. Regression tests are performed by the team in this site. The development
site and the system and integration site have platforms that are a replication of
the client platform to lessen compatibility problems and to discover hidden bugs.

Fault reports describe bugs and missing functionalities.They are the com-
munication means between the development site and the system & integration
test site.

Collaboration between the sites happens through E-mails, audio-conferenc-
ing and if necessary, traveling and meetings. Often travel has to be scheduled in
a short time frame. Because of the high cost of travels, whole team of developers
is often sent to the client-site to pursue development and bug-fixes for a period
of time. Figure 3.4 outlines the collaboration process between involved sites in
the parallel model used by ADN.

 Chapter 3 - Problem Statement

38 A Framework For Distributed Collaborative Software Design Meetings

3.1.Global Software Development Issues and Challenges
In the following we outline the major issues faced by researchers in global

distributed software developments.
As developers and stakeholders have started to collaborate in projects

across global distances similar to the process described for Alcatel, new chal-
lenges have emerged [118]. Many researchers have pointed out many issues that
surfaced in their research on distributed, remote collaboration. For example less

Figure 3. 4: The Process of Distributed Development of Software Within Alcatel
Data Networks

A Framework For Distributed Collaborative Software Design Meetings 39

Chapter 3 - Problem Statement

frequent and predictable collaboration, and the loss of social contact.
In [91], Meadows describes several challenges that make managing

requirements analysis process with remote sites difficult. He found that connect-
ing people across sites, including channeling of communications is complex, and
dividing work, and managing interdependencies in global projects is difficult
[92].

Millar in [94] states that on-site visits and liaisons play a crucial role. On-
site visits, in particular, help to lessen the difficulties resulting from getting
deliverable from people at counterpart sites. Another issue resulting from distrib-
uted development is the lack of informal, direct communications that are more
common in collocated work settings. This leads to lack of understanding of
counterpart’s context as described by Cramton in [27]. For successful communi-
cation using electronic media, new skills and attitudes are required [67]. Distribut-
ing the work processes result in delays that are described by Jarvenpaa &
Leidner in [68]. Finally Majchrzak in [88] emphasizes on the role of groupware
in solving issues in distributed development projects.

Exploratory studies have investigated geographically distributed collabora-
tion as a new scientific research area. However, these studies have not addressed
areas of synchronous joint software development, in particular joint brainstorm-
ing and software design. The literature shows that only very few experiences are
conducted in supporting synchronous software development activities. For
instance, Damian [29] reported on the use of an industrial groupware tool
(TeamWave) for the requirements engineering phase. The tool has been tailored
to support collaborative negotiation of requirements between geographically
separated agents. The requirements engineering process can be structured via
customized virtual rooms while the discussion of multiple perspectives is facili-
tated by specific TeamWave tools.; L. Brothers presents ICICLE (“Intelligent
Code Inspection Environment in a C Language Environment”) a software system
intended to support distributed asynchronous code inspection by augmenting the
process of formal code inspection. It offers assistance in a number of activities,

 Chapter 3 - Problem Statement

40 A Framework For Distributed Collaborative Software Design Meetings

including knowledge-based analysis and annotations of source code, and com-
puter supported cooperative discussion and finalization of inspectors' comments
during inspection meetings; distributed code inspection [18], Gaoyan et al.
present Codebugger a cooperative debugging tool for Java that supports distrib-
uted group developers to participate in one debugging session and cooperate on
solving problems at the same time [46].

Although it is not explicitly stated, most of the above described studies of
global and distributed collaborative software development occur in the context
of distributed meetings, during which large amount of implicit as well as
explicit knowledge is exchange. Making tacit knowledge explicit, such as
design rationale, helps to maintain consistency during meetings and to deal with
change during the project life.

In the following we describe the issues and challenges of rationale in dis-
tributed meetings.

3.2.Design rationale challenges in distributed meetings
Design rationale is the justification behind the design decisions. It may

include the assumption made about the system, the alternative considered, and
the reasoning that led to these alternatives. Rationale information may also
include the problems developers encountered, the options they investigated, and
the criteria they selected to evaluate options.

Rationale can serve three different purposes:
 Improve the quality of decision. by making explicit the main decision

making elements, rationale improves the quality of decision making by system-
atically clarifying the possible options and their evaluation against well-defined
criteria.

 Help deal with the complexity of systems. by capturing rationale, the
dependencies among decisions spanning multiple aspects of the system are
made explicit, and the structure of the argumentation process is made explicit
and visible in the system as well, thus developers ca better deal with the com-

A Framework For Distributed Collaborative Software Design Meetings 41

Chapter 3 - Problem Statement

plexity of the system.
Support efficient evolution of systems. with emphasis on system evolution,

design rationale is particularly important. To support evolving a system effi-
ciently, as much as possible of the design should be reuses. Immediate access to
the design rationale can help in this process by following designers to review
decisions made during the original design in the light of the changed require-
ments. They can then make decisions about wether parts of the system should be
adapted or completely redeveloped.

The potential benefits of dealing with rationale capture within meetings are
manifold [18]; In the short term, it could give designers a better memory of their
meetings by exposing previous discussions points, and in the long term, it could
help system evolution by the system maintainers through the access and the
understanding of the system history and reasoning [94].

In distributed meetings, dealing with rationale capture and management is
difficult and significant challenges arise. Rationale information is spread over
different locations and users. Representation of rationale information has to be
efficient and easy to access and manage as in single site meeting. It must support
concurrent and distributed authoring.

3.3.Approach
Our main interest in this dissertation is to investigate the issues in support-

ing distributed synchronous model-driven development meetings of geographi-
cally distributed developers and stakeholders according to the vertical process
model. Second, to identify the requirements for a system that supports synchro-
nous meetings involving object-oriented brainstorming, analysis and design and
the accumulated rationale knowledge. Third, to build an extensible and adapt-
able framework that serve as a reference model.

To provide flexible software framework support for distributed software
design meetings, we used design process of the framework for the thesis outlined
in figure 3.5.

 Chapter 3 - Problem Statement

42 A Framework For Distributed Collaborative Software Design Meetings

The different components of this process are described as follows:

 Conceptual Model . Here we determine what kind of activities people
conduct when designing software in distributed settings. We first identify
them, then describe them via models. Therefore, this part focuses on iden-
tifying an abstract model describing the activities of a distributing brain-
storming meetings. The models serve as a basis to build a prototype
application GroupUML.

 Prototyping. The prototype GroupUML plays several roles. First,
through its deployment in real experiences of distributing meetings, we
can observe how participants behave. Logging their activities helped us to

Figure 3. 5: The design process of the framework, used in the thesis

A Framework For Distributed Collaborative Software Design Meetings 43

Chapter 3 - Problem Statement

identify common behavior of the participants spread over different loca-
tions. Second, the prototype is used to design the prototype itself so the
design produced served both identifying the requirements for features
needed by the participants, and improving the design of the tool. The newly
available designed architecture is then used to improve the prototype.

Process. The framework supports the activities as described by the model-
activities of software brainstorming and design (described in chapter 4),
which in turn contributed to improve the model itself, and finally to identify
an approach for developing similar systems. The approach has evolved to a
process of guidelines of how to design software systems for distributed
activities. We call this process the Bootstrapping Incremental Design pro-
cess (BID).

Software Architecture. As a final output of the design process, we provide
a software architecture as well as a run-time infrastructure. The software
architecture was built taking into consideration the activity model for soft-
ware brainstorming and design meeting and the issues of distributed collab-
orative software brainstorming meeting activities (described in the next
chapter 4).

3.4.Research Hypothesis
Our hypothesis is that distributed brainstorming and software design activ-

ity can be conducted according to the vertical process model described above.

 Chapter 3 - Problem Statement

44 A Framework For Distributed Collaborative Software Design Meetings

A Framework For Distributed Collaborative Software Design Meetings 45

CHAPTER 4 A Conceptual Model For
Distributed Modeling Meetings

In the following we describe a distributed brainstorming scenario involving

several software developers, Patrick, Jane, Allen, and John. They are located in
different sites and have scheduled a set of meetings to brainstorm ideas, to
sketch out and identify requirements for a software system, and to design the
software architecture using UML. They can not meet in person.

In each site, the developers have a networked desktop computer and elec-
tronic white boards. GroupUML is installed on each used computer. Communi-
cation happens via GroupUML. Patrick is located in one site in France, Jane in
another site in England, Allen and John are located together in another site in
Germany.

Patrick and Jane are using computer desktops while Allen and John are
using an electronic White board to talk to each other. GroupUML enables them
to share a workspace based on the white board metaphor.

 Everyone is connected and ready to start. Only Jane has excused herself
and informed the meeting participants that she will join them later.

Patrick has already posted questions about the initial goal of the meeting.

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

46 A Framework For Distributed Collaborative Software Design Meetings

Allen and John are trying to answer the questions by sketching some ideas.
Patrick is pointing to a UML class created by John and has attached a question
to. The question is automatically posted into the shared chat area where all par-
ticipant can see who asked which question. Allen creates a different description
of the problem using UML objects. Now the participants have different alterna-
tive views of the solutions to the initial questions.

Patrick, still not convinced of the current available alternatives, scrolls
down the shared view and creates his own model not to overlap with the already
created models. Allen and John realizes that Patrick is not looking at the same
work area. They can do this through the radar view showing the whole work-
space, the hidden and the visible views. Allen scrolls down to check the hidden
view, and they find out what Patrick has built. Patrick tries to convince John and
Allen of his alternative solution, attaches an explanation to his model.

Jane now joins the meetings, she connects to the system and retrieves all
data created by the participants. Her picture is added to GroupUML so everyone
is aware of her presence.

Jane examines what the others have so far accomplished. To understand
why such models were created, she uses GroupUML replay feature to watch the
animation session and the history of the meeting in speed mode but without
replaying the audio. She watches how the different actions were conducted and
by whom as if she has attended the meeting from the start. The reason for each
creation and its author is shown with the models. This makes it possible for Jane
to follow and grasp the contents of the shared workspace where the group mem-
ory is displayed and every step is described in the history window.

At the end of the meeting, several ideas in the form of sketches (a brief
description of unfinished informal drawings), scribbling, UML models are cre-
ated. Everything is saved for a subsequent meeting. The following meeting is
planned two weeks later.

In the following meeting Patrick has already cleaned up the shared work-
space from the scribbles that are not needed any more. After all participants join

A Framework For Distributed Collaborative Software Design Meetings 47

Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

the meeting, they start discussing what has been done in the previous meeting.
John forgot to attach the rational information to some sketched ideas he created
and now he has to try to remember them to explain why he decided for that idea.
Otherwise his idea can not be considered when consolidating ideas.

Now it is time to rework the models created in the previous meeting ses-
sion. Allen moves to building complete UML models, transforms all his scrib-
bling into objects and classes. While refining his ideas, Patrick locks some of his
models to prevent the other from changing them the time he is transforming the
models.

At the end of the meeting, the created models are well structured, docu-
mented and sorted into groups of alternatives. The subsequent meeting is
planned in three weeks.

Third Meeting. Conflict identification and resolution.
Allen is to leaving for one week to another meeting that take place in a

neighbor country. Nevertheless he can still join the third d meeting with the rest
of the developers from his place.

During the second meeting, Patrick sketched some ideas that present con-
flicts to the ones of Jane. Jane was at that time building a detailed model and is
not aware of the problems caused by contradicting ideas.

 Allen retrieves the models from the repository. When the meeting starts,
Patrick mentions that during his offline reviewing of the shared workspace, he
notices that Jane’s models are presenting some conflicts with his. So they decide
to solve the issues encountered by using the table of ‘option against criteria’ of
the GroupUML. It is used to evaluate which alternative to consider according to
the criteria and argumentation of each participant.

New ideas are found in the meanwhile and the corresponding models are
created. So participants are just brainstorming as in the initial meeting. Then, the
new models are incorporated into the already developed models. The newly
added sketches are transformed to UML models. Conflicts happens again when
the participants have to discard the ones that caused problems and transformed

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

48 A Framework For Distributed Collaborative Software Design Meetings

the ones that are necessary for the final models.
Eventually, however, participants succeed to agree on to a final set of mod-

els that meet the requirements they identified during the initial meeting.
 The fourth meeting is intended to wrap up the previous meetings. The aim

is also to review of decisions, examine open issues, and eventually close them.
Unfortunately, a last-minute change in the requirements pushes the participants
to review some models of the previous meetings. Now they have to jump back
to the creation of models and ideas. Some new models are created as they have
enough understanding of the issues from the different meetings. After jumping
from one activity to the other, participants agree upon the initial architecture of
the system they designed. The meeting ends up with restructuring and docu-
menting the rationale captured during the meetings, to serve as a basis for sub-
sequent discussions, and the final architecture of the system developed.

The above scenario describes roughly how a distributed brainstorming and
software design is conducted. Of course, we can’t assume that such a scenario
can help to identify all the needed requirements. The above elaborated scenario
activities are reflected in the brainstorming meeting model described later in
this chapter. In the following we describe the preliminary functional and non
functional requirements to support such a scenario.

4.1. Requirements
We have to consider two main aspects in identifying the requirements of a

framework to support such a scenario. First the framework must provide the
necessary collaborative functionalities for group software design. Second, since
we design for reuse, the framework must be flexible to be customized to support
applications that are similar to those supporting distributed synchronous meet-
ings.

In the following we present detailed description of the functional require-
ments of both aspects.

A Framework For Distributed Collaborative Software Design Meetings 49

Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

Collaborative Work Aspects
The main area of functionality of the framework is to provide support for

group activity, Group memory, Group awareness, Floor control, Multi-user
interface, Communication, Sharing artifact, and Rationale Knowledge manage-
ment.

Multi-user Support. The framework must enable multiple users from phys-
ically dispersed locations to connect and use the system simultaneously.

Group activity. The main activities to be supported are object-oriented
software brainstorming, analysis and design. The system must provide the
necessary tools to support the management of the UML artifacts such as
creation, deletion, copy, paste, undoing, and redoing modeling actions of
multi-users. The system must enable the support of creating mixed formal
artifacts (such as UML) with informal artifacts (such as sketches and scrib-
bling). In addition, it must enable the export of the UML models (to a for-
mat such as XMI) to be used in other UML editors, and export the models
containing informal artifacts as well. The creation of multiple versions of
alternative models must be supported.

Group memory. The framework must enable multiple-users to share and
enter their questions, notes, thoughts, and comments into the shared work-
space. This information can be attached to an artifact in the workspace
(such as a UML class) and can be stored as a whole. Each recorded infor-
mation and its related models become the group memory and knowledge
accumulated for the users.

Group awareness. The framework must provide capabilities to identify
individual users and track their status; their actions, and their history. It
should support several levels of awareness information such as informal
awareness and workspace awareness. Informal awareness provides infor-
mation about local and remote meeting participants (such as user’s picture
and name, status active or inactive) to guide their work.Workspace aware-

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

50 A Framework For Distributed Collaborative Software Design Meetings

ness provide up-to-the-minute knowledge about other person's interactions
with the shared workspace and with users (such as current user’s focus,
activity, and task) to help them coordinate their work.

Floor control. To prevent conflicting operations that may happen when
users access shared data simultaneously, floor control is a mechanism that
is used to define which user has access to which resource. It coordinates
the relationship between different users performing the same activity.
Floor control is crucial in synchronous groupware used for joint drawing
where potential problems associated with interleaving input events from
multiple users may happen. The framework must provide support mecha-
nisms to manage floor control policies such as locking mechanism and its
level of granularity. The level of granularity can be defined for an artifact,
a group of artifacts, a view, or the whole workspace.

 Multi-User Interface. The framework must provide a user interface that
supports and manages multi-user tasking and maintain What-You-See-Is-
What-I-See (WYSIWIS) mode or a relaxed one among distributed users,
that is, synchronization of the users’s views of the shared data model.
Moreover, providing a flexible management mode to access and act on the
shared data, for example, allowing deletion of artifacts created by another
user, and to undo and redo all actions.

Communication. In distributed meetings, communication takes place
explicitly/directly, by means of explicit such as using phone or chat tools,
or by implicit means of manipulating shared artifacts. The framework must
provide communication means such as chat or multi-cast audio.

Sharing artifacts. Facilitating sharing of artifacts among the group mem-
bers is necessary to enable collaboration over models.

Rationale knowledge management. The framework must provide tools
to record, structure, and reuse rationale knowledge.To achieve these bene-
fits within distributed modeling meetings, significant challenges must be

A Framework For Distributed Collaborative Software Design Meetings 51

Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

met:
• designers must be able to express their design reasoning in a natural way,
as it is generated during design meetings
• The representation must be formal enough to be processed for classifica-
tion, browsing, and enabling search methods.
• The representation must support concurrent and distributed authoring.

 Pluggability of Components
The framework has to cope with several non-meeting related issues and

requirements such as platform-independence, extensibility, reusability, and loca-
tion transparency.

In the following we describe these requirements.

Platform independence. The framework must support its deployment on
different platforms. This is because it is rarely that different users located in
different organizations share the same operating system or hardware.

Extensibility. The framework must provide support to enhance its func-
tionality and extend its capabilities by providing explicit hook methods and
abstract classes that allow applications to extend its interfaces described
through contracts.

Reusability. The framework must provide interfaces to enhance reusability
by defining generic or semi-generic object-oriented components that can be
reapplied to create new or derived applications.

Interoperability. The framework must enable remote components of a sys-
tem to interact transparently on different networked platforms.

Distributed and multi-user systems are likely to suffer from various
expected and unexpected types of failures. This is due to network, hardware fail-
ure, or a non-robust component added to the system. The framework should be
able to handle the following non functional requirements:

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

52 A Framework For Distributed Collaborative Software Design Meetings

Fault Tolerance. The framework should enable the recovery from session
failure. A centralized-like architecture style should enable different clients
to reset their session and retrieve artifacts from the repository server.

Scalability. Although the framework is intended to support small group
meetings, it should support and manage any number of users that connect
to the system. The resources such as memory and network bandwidth are
the physical limit of the system.

Late joiner Support. Participants must be able to join and an ongoing
meeting. and grasp the content created by their peer using a replay func-
tionality. It should allow a user who didn't attend the meeting or simply
joined it late, to replay the session to see what have been done so far, who
did what and who was present. It should show all the activities the models
went through till the current status of the brainstorming session.

Variable WYSIWIS. The framework should make possible to change the
collaboration mode from tight WYSIWIS to relaxed WYSIWIS and on the
fly, that is, at run-time. This is useful for users who do not want to see
changes made by their peers in real-time.

Security. The framework should provide a mechanism to secure connec-
tion between different clients if the meeting is confidential.

4.2. Brainstorming and Software Design Activities Model
 During meetings, developers explore, discuss, argue, negotiate, and reach

decisions via compromise and consensus. Knowledge is created, conflicts are
identified and resolved, and social networks are formed. A UML meta model of
the software design activities is presented in Figure 4.1.

4.2.1 Software Design Exploration
During the phases of brainstorming, software design, and software con-

struction, developers and other stakeholders cooperate on the investigation and

A Framework For Distributed Collaborative Software Design Meetings 53

Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

identification of the requirements and functionalities of the underlined system.
Because of the lack of clear requirements or ill-defined requirements, design
activities often show deficiencies in the knowledge about the complete under-
standing of the system. Software design activities become directed toward find-
ing, understanding, and refining the requirements of software systems.

The design activities involving systems whose requirements are well
defined, are not exploratory design activities and are more about constructing a
specific solution or architecture of the system. Exploratory software design [15]
[143] is used whenever a complete understanding of the situation is not avail-
able. Whenever designers don't know exactly what to do next, they will engage
in an exploration phase. For example, Wirfs-Brock, et al. [143], use the term
‘exploratory design’ to describe the initial discovery of objects and their respon-

Figure 4. 1: Brainstorming and Design activities (UML Meta-Model)

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

54 A Framework For Distributed Collaborative Software Design Meetings

sibilities during object-oriented design.
The exploratory design includes phases that are characterized by explora-

tion of the relationship between the application domain and the solution
domain, creation of scenarios of use, discovery of implementation constraints,
and the generation of design alternatives.

Exploratory design allows the introduction of possible solutions before the
problem is fully defined [33] by clarifying the problem and identifying promis-
ing approaches.

 Developing groupware to support exploratory design constitutes an
important design problem in its own right. To maintain the flexibility of explor-
atory design, such groupware must feel as natural as a white board as stated by
Karat et. all in [75], Rosson et.al in [124], and Krueger in [78].

While several tools suitable for use in exploratory design have been devel-
oped in other context, Winograd points out that there is a need for integrated
environments that support software design [142]. Tools that could be integrated
in such an environment include: knowledge tools that offer alternative designs
where appropriate, responsive prototyping media, design language support
tools, tools to help determine user conceptual models, and tools to facilitate
communication between collocated and remote designers. Such integrating
design environments are not available, however some groupware such as Con-
versionBuilder or Grove provide limited support to facilitate software design by
enabling communication among designers and users as described in [134, 78,
1].

A. Newell & H. Simon in [1] states that humans do not start think in a lin-
ear way, but rather think and act in a non linear way. Figure 4.2 depicts the ini-
tial conceptual model of software design activities.To validate it we conducted
several experiments and videotaped them to check if really people start the way
we describe it or just do different things.

In the following we provide a detailed description of each of these activi-
ties.

A Framework For Distributed Collaborative Software Design Meetings 55

Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

4.2.2 Initial Model Creation Activity
 During this activity, participants propose and explore a broad range of

solutions using sketches such as white board drawings to create an initial model.
In distributed meetings, creating a shared understanding of the initial design
model happens by overcoming the barriers of the physical distribution through
fostering communication and making possible the discussion of ideas among
developers and the generation of alternatives. In a distributed settings, support
for sharing such drawings and being able to point at various details is needed.

4.2.3 Model Transformation Activity
Once a sufficient number of ideas have been explored, participants detail a

small number of promising ones and eventually refine them through several
transformations. Transforming available source code through reverse engineer-
ing to produce a model is part of this activity. The model is also a composition of
formal artifacts, e.g. UML diagrams.

The transformation of models and the discussion surrounding the diagrams
is a communication-intensive activity, everyone attempts to talk and point to dia-

Figure 4. 2: Initial brainstorming and software design activities.

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

56 A Framework For Distributed Collaborative Software Design Meetings

grams at the same time. In a distributed setting, floor control and the ability to
identify remote counter parts is needed for constructive discussions. Moreover,
during the modeling activity, team members discuss several options and suggest
different design views for each option.

4.2.4 Conflict identification and Resolution Activity
During design and model refinement, participants raise several issues and

propose options with different argumentations.These issues need to be resolved
after the evaluation of the pro and cons with respect to criteria. Due to different
opinions and misunderstandings about the relative importance of criteria, con-
flicts often occur and need to be addressed.Therefore, structuring issues and the
different options and making criteria explicit enables team members to quickly
identify the source of the conflict and focus on new options to address them and
agree on an objective assessment of the different options under consideration.
Hence techniques to capture and maintain rationale can be used to support this
negotiation.

4.2.5 Consolidation Activity
During this activity, participants review and discuss their decisions, exam-

ine open issues, and if possible close them. This activity ends with restructuring
and documenting the rationale captured during the meeting, to serve as a basis
for subsequent discussions.

Figure 4.3 shows a refined model of brainstorming activity as super state
of all other activities. We adopted this conceptual model in designing SCOOP
support to distributed synchronous software brainstorming meetings.

4.3. SCOOP Object Models
The object model of SCOOP consist of objects organized according to the

Model-View-Controller (MVC) model to ensure separation of concerns. The
Model objects encapsulate the application data. The Views objects are the repre-

A Framework For Distributed Collaborative Software Design Meetings 57

Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

sentation of the Model objects, which update themselves when the model
changes. The Controller objects are encapsulated within FloorControl, Group-
Memory, GroupAwareness, Rationale, Location, and Activity objects. They pro-
vide various interaction methods between the user and the applications built on
top of SCOOP.

Views
The SCOOP Workspace (see Figure 4.4) consists of an aggregation of

WorkspaceView and WorkspaceModel objects. WorkspaceView is a mediator
object that makes communication among MeetingView objects possible (see
Figure 4.5). The WorkspaceModel and the WorkspaceView objects communicate
according to the observer pattern.

Figure 4. 3: A conceptual model for brainstorming and software design activities (UML
Statechart diagram)

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

58 A Framework For Distributed Collaborative Software Design Meetings

The ActivityView is a view containing the visual objects resulting from
the activity of software design, in particular the brainstorming and software
modeling activities using UML. Users build high-level software architecture,
which is composed of use cases, class diagrams, interfaces, objects and so on.

An important type of ActivityView is the ScribblingView. It is overlaid on
the UML pane and enables participants to scribble free handwritten annotations
to the UML diagrams, add signs, circles, and so on, any mean that enables a
communication in a team. The scribbling view enables participants to draw
attention on certain details of the model and can be erased independently of the
model.

RationaleView: This view consists of several related sub-views, which
are associated with a rationale model. These views can be overlaid on the UML
models of the WorkspaceView. An issue model is used as a way to organize
meetings and diagrams and to manage their rationale. A pane view depicts the
list of questions that are currently under consideration and, for each question, a

Figure 4. 4: SCOOP Workspace (UML class diagram): an aggregation of the Workspace-
View object and the WorksapceModel object.

A Framework For Distributed Collaborative Software Design Meetings 59

Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

list of options. Each option can have one or more diagrams associated with it.
This enables participants to switch back and forth between different options and
to pursue them concurrently. During the conflict resolution and consolidation
phases of the meeting, participants use the workspace view for a collaborative
argumentation to draw diagrams similar to models such as rIBIS-like [121] rep-
resentation of the questions options and criteria which is translated semi-auto-
matically to an assessment matrix to record the criteria causing the conflict and
the current assessment of each option. The matrix represents another rationale
sub-view that describe in a structured way the Questions that are raised while a
brainstorming session, the different Options that could be envisaged and the Cri-
teria that influence a decision. Through the assessments matrix, GroupUML sup-
ports conflict resolution activity that regroups the different options versus
criteria. Criteria are used to selectively identify the acceptance or differentiation
of an option. Positive assessment indicates an option satisfies a criterion. A neg-
ative assessment indicates an option hurts a criterion.

To each artifact being modeled, a related rationale view is created to track
its history and the knowledge related to its existence and its relation to other arti-

Figure 4. 5: The views object model of SCOOP: several sub-views are communicating
through a mediator WorkspaceView object

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

60 A Framework For Distributed Collaborative Software Design Meetings

facts. We define knowledge as an aggregation of the theoretical or practical
understanding of a subject, the underlined facts and context (see Figure 4.6).

In SCOOP an artifact is a successive composition of Text objects, Drawing
objects, UML element objects, and sub-artifacts as shown in Figure 4.7.

AwarenessView. This view exhibit several aspects of group awareness
such as location and activity. To every awareness information level (user, work-

Figure 4. 6: Abstract representation of Knowledge related to a domain context

Figure 4. 7: Artifact structure in SCOOP (composite pattern)

A Framework For Distributed Collaborative Software Design Meetings 61

Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

space, view, task, artifact) there is a related awareness view that depicts the
underlined behavior of the corresponding awareness model. For example, sev-
eral users can simultaneously interact with SCOOP. Each user who joins a mod-
eling meeting has a photo added to the list of participants. When the participant
starts interacting with the tool, the photo is selected and highlighted for other
sites to see. This feature provides the remote site with awareness information
about who is currently modifying the diagram. This provides user awareness
within a remotely working group.

Users need to know if remote users are also looking at the same artifact or
model, in order to have a meaningful discussion about it. RadarView is aware-
ness view that shows a miniature overview of the workspace to all remote users.
It is tightly coupled to the ActivityView and any changes are immediately
reflected. A usability study has shown radar overviews to be an effective way for
people to maintain awareness of others in a spatial layout task [52]. They see
changes as they occur, they know where others are working, this way, users are
able to know about current focus of their peers.

FisheyesView distorts a two-dimensional space to provide the viewer with
both a high-level overview of the data and fine detail around a particular location
with multiple focal points to show where others are in the global context, and to
magnify their area of work on all displays.

CommunicationView. Informal communication that takes place in meet-
ings is not recorded. A CommunicationView, such as instant messaging presents
several advantages such recording communication and linking it to the under-
lined created artifacts. The relationship between related actions like creation of
artifacts are used to extract the rationale behind users activity.

A derived functionality of using instant messaging to discuss related arti-
facts, is that the artifacts can be used to post messages about the artifacts in the
artifacts themselves. Each artifact contains a field that can be used for short mes-
sages that concern only the artifact itself. This is shown in Figure 4.8 of the com-
munication diagram as ArtifactNote object. This way, an instant messaging view

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

62 A Framework For Distributed Collaborative Software Design Meetings

and communication through artifacts provide participants with a simple and
informal way to coordinate their actions in the case of audio quality is not suffi-
ciently good or too many people are talking at the same time.

User interaction with the workspace
 In interacting with SCOOP the user can initiate two different main

actions:
•Actions that change the data model: this type of action generates events

that cause a change to the persistence of the WorkspaceModel (see Figure
4.4) and its visual description as well. The action includes for example a
creation, deletion, modification of UML artifacts. However, this action can
be undone.

•Actions that do not change the data model: this type of action does not have
an impact on the data model itself. Examples of these actions are the cre-
ation of temporary artifacts that do not belong to the model such as geo-
metrical shapes, freehand annotations and scribbles, dragging artifacts.

Figure 4.9 shows a set of use cases that describe the different types of
actions that can be initiated by the user. Actions are persistent or visual. Undo
and Redo actions impact the model and generate awareness events. Both
actions, that is, persistent and visual, generate visual events (awareness events)
that serve to attract the attention of the other users.

Figure 4. 8: Communication forms in SCOOP (UML class diagram’)

A Framework For Distributed Collaborative Software Design Meetings 63

Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

Figure 4.10 depicts a collaboration diagram showing action objects initi-
ated by the user, which generate two different types of events: a type of event
that cause an update to the model, another type of event which serves to notify
the views objects, in particular the AwarenessViews, of the users action.

Floor Control
Floor control governs how participants interact in a shared computing envi-

ronment whilst working simultaneously on a common task. Floor control is
derived from the common social-model of turn-taking, such as the right or
opportunity to speak next in debate or in a conversation. In the human-machine
interaction model, floor control is abstracted into mechanisms by which access
to a shared object is mediated. For example, to control access to a shared elec-
tronic white board (so that only one person can draw or write at a time) or to

Figure 4. 9: Actions initiated by users that has different impact on models (UML Use Case
diagram)

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

64 A Framework For Distributed Collaborative Software Design Meetings

determine who can speak during a chat session. In synchronous groupware sys-
tems, floor control can be applied to a particular access permission of an arti-
fact. It refers to the right to edit an artifact (determining who “has the floor”)
while all users are able to view the artifact.

Figure 4. 10: Visual and Persistent actions: the two different actions that can be initiated
by the user (UML Collaboration diagram)

Figure 4. 11: Floor Control in synchronous activities in SCOOP (class diagram)

A Framework For Distributed Collaborative Software Design Meetings 65

Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

Participants. The floor control object interacts with the User object and the
Artifact object as shown in Figure 4.11.The floor component provides lock
mechanism for the User to access (edit) and control the Artifacts.

Floor Control Policies. While we don’t focus on the floor control per se,
we describe briefly the different pattern behavior of its policy. Floor control pol-
icies vary from cooperative (open, free) to preemptive (assignable, requested).

Cooperative (optimistic). This is a default and simplest and easy way to
handle behavior of the floor control policy. Basically any user can take the
floor as soon as he or she generates input events such as selecting an arti-
fact on the shared workspace. Users can interrupt each other at will. This is
a typical behavior of people working together around a white board. As
described in the chapter 6, and during our observations of the participants
while brainstorming (through videotaping the meetings), we noticed that
they were behaving spontaneously and implicitly taking the floor without
thinking explicitly about it. Interrupting each other is quite common and
accepted behavior in many cultures and groups. However, in a collaborative

Figure 4. 12: User-Artifact interaction via FloorControl (Collaboration diagram): the user
selects an artifact or a group of artifacts, requests a lock, then edit the artifact, then

releases the artifact to other users.

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

66 A Framework For Distributed Collaborative Software Design Meetings

groupwork environment spontaneous interruption should not abort atomic
actions like creating or updating artifacts and their properties. This kind of
floor control policy presents advantages in a flat hierarchy of groups or
communities. However, this may lead to the inconsistency of data if there
is not a mechanism that prevents it to happen.

Preemptive (pessimistic). An explicit and assignable role-based or time-
slicing-based floor control policy. The moderator of the group or the
administrator assign floor control level to each user according to their
roles within the community or the group they belong to for example. The
time-slicing-based floor control policy consists in assigning an explicit
lock of the artifacts under task (see Figure 4.13 for the definition of Task in
SCOOP) to each user for a given amount of time. After it expires, the next
user takes the floor whether he needs it or not to access the underlying arti-
facts (token-ring). However, a user can release the floor if he or she wishes
to.
The total time assigned to each operation should be as following: total
Time = userAssignedTime + timeForAtomicTask.
userAssignedTime is the amount of time assigned to each user.
timeForAtomicTask is the amount time needed to accomplish an atomic
task such as the creation or update of artifacts and their properties. It can
have the value of null if the userAssignedTime expires while the user is
not performing any atomic task.

This type of floor policy is interesting to deploy in highly-organized
groups or communities.

Preemptive (Requested). This type of floor control is an explicit policy
too. It is implemented as a part of SCOOP’s user interface where an
explicit lock functionality is presented to the users. Users have simply the
possibility to choose the granularity of the lock and then request it explic-
itly. Granularity can vary from the level of artifact, a part of the artifact, a

A Framework For Distributed Collaborative Software Design Meetings 67

Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

set of artifacts, a view, several views, or the whole workspace. The advan-
tages of floor control policy are that it is explicit enough to avoid confusion
of the distributed users [100]. It prevents other users to access the locked
artifacts and may cause some frustrations of some users as observed during
the experiments described in chapter 6. Even though, this policy guaranties
consistency of the artifacts.

 Location
The location object is responsible for coordinating communication between

remote objects residing on different machines and possibly running on heteroge-
neous system, such as forwarding requests, as well as transmitting results. This
object will locate the appropriate data model server, forward the request to it and
transmit results and exceptions back to the client. It is used to structure calls
among distributed independent cooperating objects by decoupling views objects
and the data model objects that interact only through remote service invocations.
The interaction among clients (views objects) and server (Model) are shown in
Figure 4.14.

Group Memory
Short-term memory information reflects what happened a short while ago

in a meeting.It serves to conduct several subsequent actions. Not like in real life

Figure 4. 13: A task definition in SCOOP

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

68 A Framework For Distributed Collaborative Software Design Meetings

where psychologists consider that “short-term memory erases itself” and “has a
short life-time”, short-term memory in engineering groups and software system
support have to be recorded for several reasons. First, short-term memory can
encapsulate valuable rationale information that is crucial for further develop-
ment and maintenance. Second, several short-term memory pieces can be
assembled together to build long-term memory, and the history of the meeting
group as well. Long and short term memories are shown in Figure 4.15. For
SCOOP, group memory is synonym of knowledge that is recorded and reused
each time when users face similar issues.

Figure 4. 14: The interaction between a client (view) and the remote server where the
model resides (UML Use Case diagram)

A Framework For Distributed Collaborative Software Design Meetings 69

Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

The capture of long-term memory and short-term memory happens through
several ways. Logging the users actions along the meeting, recording the ratio-
nale information, which is generated semi-automatically from the rationale
objects such as questions, options, criteria, decision matrix. Figure 4.16 show the
GroupMemoryCapture object and its dependency with GroupBackTrackAction
and GroupMattingAction objects.

Figure 4. 15: Long and short term memory (UML class diagram)

Figure 4. 16: Group Memory capture object and its dependencies (UML class diagram)

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

70 A Framework For Distributed Collaborative Software Design Meetings

Design Activity
The software design activity in SCOOP is mainly an object-oriented brain-

storming activity. It consists in finding ideas, objects, components, sub-systems,
creating models, transforming models, managing conflicts, and consolidating
the results. All these sub-activities are interdependent.

The activity object is transient, it used to record the state of the meeting
and steps users went along the meeting. The recording serves as an input to the
group memory object. Figure 4.17 shows the design activity object, the sub
activities and their dependencies.

Group Awareness
Group awareness is an aggregation of various sources of knowledge and

perception information of the workspace, users, their activities, and tasks.

With SCOOP, we focus on workspace awareness, which provides neces-
sary knowledge about participants, their tasks, and their focus, which helps in
coordinating their activities.

Figure 4. 17: Design activity of SCOOP (UML class diagram)

A Framework For Distributed Collaborative Software Design Meetings 71

Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

Workspace awareness
Workspace awareness is participants’s up to-the-minute perception of what

others are doing and on which part of the workspace they are working. In distrib-
uted settings, social awareness such as visual cues are not available to all partic-
ipants, especially when participants are allowed to have different viewports into
a large workspace. Consequently, workspace awareness support must be pro-
vided that inform a participant about where other people are working in the
shared workspace and what they are doing. RadarView and FisheyesView make
showing current focus of remote users possible.

Communication
SCOOP supports real-time communication such as instant messaging,

scribbling and communication through artifacts. Scribbling allows users to write
and draw quickly messages that overlap other artifacts such as UML models,
typed text and so on. It makes possible to connect different artifacts of the work-
space that can have different semantics, such as connecting a UML class to a
geometrical artifact of any form. Communication through artifacts (Artifact-
Note, see Figure 4.8), is a handy way of posting messages concerning the artifact

Figure 4. 18: Group awareness class diagram

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

72 A Framework For Distributed Collaborative Software Design Meetings

itself. Each artifact has an editable text field that enables users to write text in,
so that it is shared and viewed instantly. The message can be overwritten or
scrolled down. As a consequence, artifacts are not mute any longer, and the
users discussion about the artifacts is attached to the artifacts themselves.

Rationale
In investigating solutions to the issues related to Rationale management in

distributed collaborative software design meetings, SCOOP uses a hybrid
method for capturing the design rationale:

Process-oriented design rationale capture. Capturing rationale as it
happens, through informal and /or formal artifacts where developers discuss
different options, draw incomplete diagrams (high level UML or simple dia-
grams) and provide their argumentation,

Structure-oriented design rationale capture . Developers try to identify
and resolve conflicts through available criteria and options using ICAA (Issue,
Criteria, Argument, Alternative) graph synchronized with an assessment Matrix
for design decision [101]. The argumentations ensure the capture of design
rationale. Hence design-decisions and design rationale are linked together and
evolve simultaneously.

Post-mortem design rationale capture. To avoid design process disrup-
tion, developers can delegate the management of the structured design rationale
and modeling spaces to the facilitator that fill out and restructure the ICAA

A Framework For Distributed Collaborative Software Design Meetings 73

Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

space whenever needed.

 SCOOP uses an argumentation-based rationale management, which is an
approach that represents rationale as a graph of abstract steps, also called issue
model (see Figure 4.19). Structuring issues and the different options and criteria
enables users to quickly identify the source of the conflict and focus on new
options to address them [102]. A simple representation of the rationale is the
QOC (Question, Option, Criteria) [10], which can be represented as a matrix
such as described in Table 4.1.It is used for the evaluation of the different alter-
native solutions and conflict resolution.

The use of the instant messaging feature enables the users to choose to
check a box with a “Q:” prefix whenever they need to ask a question or to post
an issue; users check a “O:” prefix when posting a message as an alternative.
This is useful to make possible the semi-automate filtering of knowledge during
chat and populating the assessment matrix (see Figure 4.20).

Using ArtifactNote to attach informal notes to UML elements is an efficient
collaboration tool. The notes could then be used as a basis for populating the
more structured issue model of the meeting. On the other hand, by attaching an
Option, a Criteria, and an Issue to a UML artifact, users are able to construct for-
mal notations during modeling in the same way they connect UML artifacts.

Issues (expressed through questions), Options, and Criteria associated with
UML artifacts are inserted automatically into the assessment matrix that sup-
ports decision-making through the evaluation of each option manually.

Question Criterion C1 Criterion C2

Option O1 + -

Option O2 - 0

Table 4.1: The assessment matrix in SCOOP: The options O1 and O2 are evaluated
against criteria C1 and C2. the ‘+’ value means that option O1 meets the requirement C1,
but not the requirement C2 shown with the ‘-’ value. ‘0’ is used for not applicable or neutral.

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

74 A Framework For Distributed Collaborative Software Design Meetings

Integrating rationale capture at a reasonable cost without disrupting the
meeting and applying this to distributed meetings has many advantages such as:

•Developers need to identify the source of contributions, in terms of authors
and roles, as they usually do not know each other

•Collaboration through a tool (as opposed to face to face), provides users
with more information, such as the recordings or the logs of the meeting, to
work with that can be reused for subsequent meetings.

•The cost of rationale capture or post processing might become acceptable
comparing with the cost of mistakes resulting in not considering rationale.

•Distributed development meetings remove informal communication, which
may lead to misunderstandings of the developers’ respective goals and
intentions, especially if the developers have never met before. Rationale
helps make this missing information explicit.

Figure 4. 19: Rationale issue model in SCOOP (UML class diagram)

A Framework For Distributed Collaborative Software Design Meetings 75

Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

Objects collaboration
Figure 4.21 shows a summary of all SCOOP objects and their collabora-

tion. The summary shows also a full-cycle of collaboration among all objects
after a user initiates an action on the workspace.

Figure 4. 20: Associating rationale elements to instant messaging and vice-versa. The
association makes possible the navigation to rationale elements from instant messages

and the navigation from the instant messages to the rationale on the diagrams.

 Chapter 4 - A Conceptual Model For Distributed Modeling Meetings

76 A Framework For Distributed Collaborative Software Design Meetings

Figure 4. 21: Summary of all SCOOP object showing the full-cycle of their collaboration
and interaction after initiating an action by the user (Collaboration diagram)

A Framework For Distributed Collaborative Software Design Meetings 77

CHAPTER 5 The SCOOP Framework

5.1.SCOOP Framework Development
The design of any type of framework requires the consideration of many

issues. Although frameworks have several benefits such as design reuse, there
are also drawbacks, such as the increased cost of building a good object-oriented
framework as compared to a single application.

The need to our framework has arosen from examining the domain knowl-
edge of the early stages of distributed software development. In particular to
setup distributed meetings of brainstorming.

Brainstorming necessitates concurrent input and collaborative thinking.
Brainstorming meetings are difficult to manage because of the way people
think and react to counterpart ideas. People’s behavior and the amount of ideas
generated vary within a meeting and from one meeting to another. Therefore, the
quality and amount of knowledge produced during a meeting is variable. As a
first consequence, artifacts produced during meetings have to be managed and
dealt with for subsequent meetings.

 Chapter 5 - The SCOOP Framework

78 A Framework For Distributed Collaborative Software Design Meetings

5.1.1 Component-based Framework Design
SCOOP is designed as a collection of reusable component objects [107].

We emphasize on building reusable components because this is a requirement
for the flexibility of SCOOP framework. The concrete classes provide the reus-
able components while the design provides the context in which they are
used.We use contracts to describe the behavior of components within SCOOP
framework.

The reasons of using components are manifold. Using components that are
built and tested and verified reduce the risk of using code written from scratch.
Components that are mature present higher quality and reliability then writing
own code. Through generic interfaces, components can be adapted to cope with
special requirements of systems having similar domain applications. This
reduces the effort of development and makes possible to keep focus on more
difficult issues then coding.

 Contract-based components of SCOOP
“The main purpose of contracts is to help us build better software by orga-

nizing the communication between software elements through specifying, as
precisely as possible, the mutual obligations and benefits that are involved in
those communications.” Betrand Meyer [11].

 We concentrate on describing contracts of high-level components and
their underlined design rather than classes. We see contracts as a useful formal-
ism to express high-level specifications of components behavior, because it
facilitates the management and reuse of the SCOOP’s components. They are the
replaceable part of SCOOP that conforms to the well defined interfaces.

Different implementations can be provided that show different behavior
(e.g., different locking mechanisms within the same application) or adapting a
component to fulfill a special requirement in an application having the same
domain as SCOOP.

 Figure 5.1 shows the components that make up SCOOP.

A Framework For Distributed Collaborative Software Design Meetings 79

Chapter 5 - The SCOOP Framework

A formal presentation of a components meeting model (as described in

chapter 4) using the BNF notation [13]:
<Component>::=<Activity>|<Communication>|<Location>|<Rationale>|
 <FloorControl>|<GroupMemory>|<GroupAwareness>
<Activity>::=<Design>|<ConceptMapping>|<MindMapping>
 <Design>::=<ObjectOrientedBrainstorming>|<Modeling>
<Communication>::=<Scribble>|<InstantMessaging>|ArtifactNote
<GroupAwareness>::=<InformalAawareness>|<SocialAwareness>|
 <WorkspaceAwarenesss>
 <WorkspaceAwarenesss>::=<PeripheralAawareness>|
 <ActivityAawareness>|<FocusAawareness>

<FloorControl>::=<Preemptive>|<NonPreemptive>
 <Preemptive>::=<Requested>|<Assignable>
 <Assignable>::=<TimeSlicing>|<RoleBased>|<FirstComeFirst-

Figure 5. 1: SCOOP Components: during the requirements analysis we identified these compo-
nents

 Chapter 5 - The SCOOP Framework

80 A Framework For Distributed Collaborative Software Design Meetings

Served>
 <NonPreemptive>::=<Cooperative>
<Location>::=<Distributed>|<Local>
<DesingMeeting>::=<Location>{<Component>}

In the following we describe the main components of SCOOP as outlined
in Figure 5.2:

Floor Control component requirement and considerations
As described in the analysis model for SCOOP (see chapter 4), this com-

ponent encapsulates the behavior of floor control policies. It is intended to be
easily substituted for other components that meet the same specification.

Figure 5. 2: Components of SCOOP: the views component provides interfaces to talk to each
component. Each component updates its corresponding view through its interface.

A Framework For Distributed Collaborative Software Design Meetings 81

Chapter 5 - The SCOOP Framework

Hence, different implementations of floor control are provided with the
framework and can be loaded as needed and according to the type of the activity
conducted by the group. In a distributed groupwork, choosing a floor control
policy at runtime presents several advantages for coordinating and conducting a
smooth interactions between remote users. Free or open or cooperative form of
floor control policy for example can be of advantage when brainstorming ideas,
where every user can interrupt at will each user without asking for a floor or
waiting till having explicitly the floor. Whilst transforming design models or
restructuring the design space, the moderator can load different floor control pol-
icy such as based on locking artifacts under task, which presents advantages.

For developers, the floor control component presents interfaces enabling to
implement and deploy new and different floor control policies within SCOOP
framework.

Figure 5. 3: Floor Control Component in SCOOP: the Lock and TimeSlicing components imple-
ment the generic FloorControl component.

 Chapter 5 - The SCOOP Framework

82 A Framework For Distributed Collaborative Software Design Meetings

Contract description. The contract is about the responsibilities and the
needs of the floor control component.

Floor control component defines an interface for single global floor con-
trol policy. That is, it enables turn-taking within physically distributed group of
participants conducting a common task. When invoked, the available policy is
applied and the underlined artifact is made available only to the invoker.

 Pertinent Design Pattern. The strategy pattern is used enabling floor con-
trol component to load the policy corresponding to the context provided by the
application. The pattern also enables the switching from one floor control policy
to the other at rune time as well.

 Participants. Two main components are interacting with the floor control
component: the component representing the User and the artifacts of the View
workspace component. Figure 5.4 depicts the interactions among the User com-
ponent, the FloorControl component, and the WorkspaceView.

Figure 5. 4: Components interacting with the FloorControl components (UML Components dia-
gram): The Workspace component provides the artifacts that can be accessed using the
floor control strategy provided by the context of the application. The User component
uses the interface provided by the FloorControl to regulate the access to artifacts of the
WorkspaceView.

A Framework For Distributed Collaborative Software Design Meetings 83

Chapter 5 - The SCOOP Framework

 Invariants. In a synchronous groupwork, floor control policy provides
mechanisms to manage and control access of the underlined artifacts. The floor
control policy maintains the consistency of the artifact, that is, changes made by
a client under the use of current floor control policy, are not lost and can not col-
lide with other changes made by other clients. As a result only one consistent
copy of the artifact is available at a time.

In SCOOP we experimented with two different floor control policies. First,
an optimistic floor control strategy, which allows users to manipulate objects
without locking, relying on socially accepted practices. Users take their cue from
the facilitator and awareness mechanisms to synchronize themselves and facili-
tate the meeting. This approach allows supporting different meeting styles and
avoids disrupting the flow of conversation by requiring users to perform addi-
tional actions (e.g., explicit locks). Second, the pessimistic floor control policy
of locking, where users can lock an artifact, a group of artifacts, a view, or the
whole WorkspaceView. Note, that the lock policy implements a concurrency
control within SCOOP that resolves concurrency hazards and ensure that the
shared model is the same for all users.

 Location Component requirement and considerations
This component is responsible for making possible the communication

between remote components residing on different machines and possibly run-
ning on heterogeneous system. It makes inter-object communication transpar-
ency possible, such as forwarding requests, as well as sending back results. It is
used to structure calls among distributed independent or loosely-coupled cooper-
ating components by decoupling ViewsComponents and the data ModelCompo-
nent, which interact only through remote service invocations.

Contract Description. The contract of the location components describes
the responsibilities of the views and their needs. The location component is a
broker component. Its role is to enable inter-remote-objects invocation to happen
in a transparently. This behavior achieves better decoupling of clients objects

 Chapter 5 - The SCOOP Framework

84 A Framework For Distributed Collaborative Software Design Meetings

and servers objects. yet, the location component ensures the location transpar-
ency behavior as an important requirement to enable distributed synchronous
meetings to happen as the same simplicity as in single-site meetings. the Model-
Component register itself with the location component and make its service
available to client objects, that is the views components. The views components
access the functionary of Model component by sending requests to the location
component.

Pertinent design patterns. The Broker pattern [42] is specialized case of
the mediator pattern [40]. The only difference is that it coordinates communica-
tion between distributed objects instead of single-side located objects. Objects
do not have to concern themselves with the details of remote communication
that is encapsulated into the broker component.

The Broker pattern is used to structure distributed software systems with
decoupled components that interact by remote method calls.The requirements
for the location component is to enable coordinating communication between
views components, and also to encapsulate the protocol and middle ware for

Figure 5. 5: Location Component and its interaction with the WorkspaceView and Workspace-
Model components

A Framework For Distributed Collaborative Software Design Meetings 85

Chapter 5 - The SCOOP Framework

implementing the remote call strategy through RMI protocol, a traditional RPC
protocol, a CORBA protocol, or a SOAP call. As a consequence, the location
component is combination of the broker pattern and the strategy pattern as
shown in Figure 5.6.

Figure 5. 6: A modified Broker pattern to which we added a strategy object that makes different
implementations protocols for remote object calls possible, such as RMI, CORBA, RPC
and so on.

 Chapter 5 - The SCOOP Framework

86 A Framework For Distributed Collaborative Software Design Meetings

Participants. The location component collaborates with the views compo-
nent and the Model component.

This component encapsulates the behavior of locating remote model
server, using the necessary protocol to forward the request to the server. An
instance of this component is the RemoteObjectLocator component that ensures
a location transparency of the remote objects and their interactions.

Invariant. Independently from the protocol and middleware used such as
CORBA, RMI, SOAP, RPC, etc...., the Location component ensures to route
inter-objects calls in the same way and therefore guaranties that the call reach
its callee.

Views Component requirement and considerations
The main visual view (WorkspaceView) of the framework consists of sev-

eral separate single views. Views are designed as components representing the
visual interactive capability of the framework. Breaking down the main view
into fundamental abstract single views enables their reuse in different systems

Figure 5. 7: Views Component of SCOOP interacting with the User component and the Work-
spaceModel component.

A Framework For Distributed Collaborative Software Design Meetings 87

Chapter 5 - The SCOOP Framework

with similar context. RationaleView (see chapter 4) for example, can be reused
to support similar groupware enabling distributed user activities such as mobile
maintenance where a worker can get help from a remote expert and the system
can capture and show rationale information of current issues.

Independently from the used display device, all users see the same view
currently being manipulated in a flexible way according to the MVC pattern
(Model View Controller). Each user has control over his current view, however,
all users share the same model (WorkspaceModel) and any modification of a
local view is spread out to all other views. In presenting data to the users, most
of current synchronous CSCW systems have adopted either a strategy of a
relaxed of WYSIWIS (What You See Is What I See) or a tight one. A relaxed
strategy implies that users do not see changes of the shared Model immediately
but deferred or on demand. The tight strategy means that all users get the same
data almost instantly. SCOOP views implement a behavior of model presentation
levels that vary from a relaxed to tight at run time. Hence, different users can
have different artifacts presentation strategies. As a result, users can have the
same view or different description views of the same model.

All artifacts created by each user are stored in the WorkspaceModel object
that resides in the model server. The model is shared across the views composing
SCOOP framework.

The relationship between views components and model components are
described through the observer-observable pattern. Updating Views are updated
through notifications as soon as a model data change.

Participants are provided with four other view panes for collaboration that
can be optionally shown or hidden.

To each view created and its artifacts, a related rationale view is created to
track its history, its rationale, and its relation to other artifacts. Figure 5.9 depicts
two related rationale sub-views. In the tree-like QOC representation, we notice
that for example that to a given question or issue, we identify several options that
meet some criteria that are attached to them. SCOOP translates the relationship

 Chapter 5 - The SCOOP Framework

88 A Framework For Distributed Collaborative Software Design Meetings

into the assessment matrix following the rules:

1.Questions.
The questions and their corresponding options are entered as they are in

natural language. That is SCOOP is not pre-processing users entries.

2.Option
One or many options can be attached to each question.

3.Criteria.

Figure 5. 8: Views components and their inter-dependencies

A Framework For Distributed Collaborative Software Design Meetings 89

Chapter 5 - The SCOOP Framework

For each criterion that is attached to an option is assessed positively, that is
identified as accepted, all other criteria (that are attached to other options) are
assessed negatively or as non relevant or not applicable. However, according to
the context, criteria attached to different options may have common background.
This should be updated manually by the users.

 Contract description. The contract of the view components describes the
responsibilities of the views and their needs. Views update their state based on a
event-driven mechanism.Views register with the model component, which plays
the role of event dispatcher, and get notified whenever the model changes. The
primary role of the views is to update their state and update the data model
(WorkspaceModel) via the broker component after a user initiates an action.

 Each view component defines interfaces and abstract classes that can be
reused by developers to develop own views or to extend existent ones. Each
view represents is related to the corresponding data model according to MVC
pattern.

Figure 5. 9: Question Option Criterion tree to table transformation

 Chapter 5 - The SCOOP Framework

90 A Framework For Distributed Collaborative Software Design Meetings

Pertinent design patterns. Several design patterns were used in modeling
the views component, their inter-communication. A requirement in designing
the views components is that views should be able to communicate with each,
new views can be added and removed without any impact on the structure of the
whole system. Moreover, the context in which the views interact can be com-
plex and unstructured such as in distributed settings. Views describe different
kinds of informations that are dependent or partially dependent on each other.
For example communication views do not need to know about rationale infor-
mation views, however rationale views need to know about communication and
the underlined artifacts in the workspace views. Hence, their interdependencies
are unstructured and difficult to understand, their communication and behavior
is also complex to maintain. SCOOP uses a mediator object that encapsulates
the cooperation between different views. The views do not need to know about
the different views, and they do not communicate directly with the other views,
instead they route their calls through the mediator

Views also need to be notified whenever the data model changes. Using
the observer pattern to maintain consistency across the state of the data model
component and the views components is a straightforward solution. Moreover,
the data model objects reside on a different machine as the views (see Figure
5.20 deployment diagram), thereby, we extended the observer pattern behavior
with remote capabilities through a broker component described in the next sec-
tion.

Participants. The user component interacts directly with the views com-
ponents. The user initiates actions that can impact the persistence of the model
components. The model components in turn notify the views components when-
ever they change state.

 Invariants. Adding new view components or removing them does change
the data model nor influence the functioning of the system.

A Framework For Distributed Collaborative Software Design Meetings 91

Chapter 5 - The SCOOP Framework

Figure 5.10 show the relationship between the ModelComponent, which is
composed of several data models, and the ViewsComponent.

GroupMemory Component requirement and considerations

As described in the analysis model of SCOOP, during meetings, groups
need memory. Short-term memory and long-term memory as well. Both are cru-
cial to run meetings and to enable long-term collaborative support within
projects where necessary information are stored to describe artifacts, their his-
tory, the rationale behind them, and the users who created them.

Group short-term memory is also the information that were said and the
events happened during the meeting, which are crucial for the continuation of
the meeting. When recorded, it constitutes the history of the meeting. The
GroupMemory component can replay the meeting using every piece of the short-

Figure 5. 10: Models and Views collaborate via the observer pattern

 Chapter 5 - The SCOOP Framework

92 A Framework For Distributed Collaborative Software Design Meetings

term memory information recorded during the meeting. In traditional informal
meetings, meeting attendees are usually taking notes for themselves. SCOOP
supports recording collective short-term memory which is the collection of indi-

Figure 5. 11: GroupMemory Component and its interaction of the WorkspaceView, the Work-
spaceModel, and the user components

Figure 5. 12: Collective short term memory is the collection of the individual short term memory
of the meeting participants

A Framework For Distributed Collaborative Software Design Meetings 93

Chapter 5 - The SCOOP Framework

vidual short-term memories that are exposed to all participants. Hence, group
memory represents a wealthy knowledge produced during meetings by the users.
It is crucial for long-term collaborative support within projects where necessary
information are stored to describe artifacts, their history, the rationale behind
them, and the users who created them. In traditional meetings, long-term group
memory is generally recorded by the minute taker and will not be available until
the next meeting. SCOOP makes long-term memory available and explicit to all
distributed users instantly.

Contract Description. GroupMemory component role is to help facilitate
the meeting by making the collective short-term memory explicit to distributed
users and to record it for subsequent uses. Collective short-term memory can be
used to cope with the different individual recordings. Participants write instantly
all short-term memory information in front of the group, using a white or a black
board. This has several benefits, first, individuals are no more overwhelmed with
information, figures, and charts that are brought up, second, concentrating on
own ideas only, which prevents from giving full attention to the group, is no
more necessary since own ideas can be shown on the collective memory and one
is open to the group’s new ideas. Figure 5.12 shows the collective short term
memory, short term memory abstractions and their relationships to the Meeting
and rationale knowledge

GroupMemory component has the responsibility to track every single
action and record it to enable users to undo or redo according to their needs. It
also records the whole meeting history

Pertinent Design Patterns. GroupMemory component implements the
Command pattern to enable to queue and execution of requests of undoing or
redoing actions, replaying actions of creation, deletion, motion, communication
etc.

Participants. The participants in making the work of this component suc-

 Chapter 5 - The SCOOP Framework

94 A Framework For Distributed Collaborative Software Design Meetings

cessfully are the WorkspaceView component, User components, and the Work-
spaceModel component as shown in Figure 5.11. Through the user action,
actions are performed and the result is sent to the views components to display
them.

Invariants. Since GroupMemory records in background what happens dur-
ing the meeting, it does not influence the running of the meeting.

Activity Component requirement and considerations

We focus in this research on the synchronous brainstorming and software
design activity across multiple-sites. Participants can create formal UML arti-
facts and informal artifacts such as freehand annotations, scribbling etc.

Contract Description. The contract of the Activity components are about
the responsibilities of the activity and their needs. This component support dif-

Figure 5. 13: The activity Component in SCOOP interacting with the User, WorkspaceView,
WorkspaceModel components

A Framework For Distributed Collaborative Software Design Meetings 95

Chapter 5 - The SCOOP Framework

ferent stages of software design activities as defined in chapter 4.

Pertinent Design Patterns. The Activity components behavior depends on
state of the current sub-activity. Therefore we use the State pattern to describe
and model this component. As described in chapter 4, the four activities present
several dependencies that we modeled using mediator pattern that manage and
keep the dependency centralized in one object rather than spread all over the
activities objects. The composite pattern serves to describe a conceptual model
of the brainstorming activity.

Participants. This component interact with the User component, the Work-
spaceView component, and the WorkspaceModel component as shown in Figure
5.13.

Awareness Component requirement and considerations

This component presents an abstraction of collective awareness informa-

Figure 5. 14: Awareness Component interacting with the FloorControl, User, and Communication
components

 Chapter 5 - The SCOOP Framework

96 A Framework For Distributed Collaborative Software Design Meetings

tion. In SCOOP we designed and implemented the awareness component in par-
ticular for group collaboration in synchronous settings. Therefore, we were
concerned with several aspects of awareness information, such as navigation,
artifact manipulation, and view representation for group work. Because aware-
ness information is concerned with explicit information presentation, the devel-
opment of the awareness component had be handled with care. We adopted and
modified a research strategy based on a framework developed by Carl Gutwin
and Saul Greenberg as illustrated in Figure 5.16. The framework defines a cycle
of research and development of awareness information. Our modified approach
is described in Figure 5.17. The approach presents a way to identify the differ-
ent presentation elements of awareness information, see Figure 5.15 for the
meta-model (location, activity level, actions, intention, artifacts, abilities,
etc....) that are crucial to identify techniques for designing implementing wid-
gets (radar views, peripheral information,...).

Group workspace awareness component is crucial in the process of guid-

Figure 5. 15: Awareness information in SCOOP

A Framework For Distributed Collaborative Software Design Meetings 97

Chapter 5 - The SCOOP Framework

ing users’s activities by providing up-to-the-minute knowledge about other per-
son's interactions with the shared workspace and with users. Hence it helps users
to understand and coordinate their work [53, 127]. Although SCOOP consider
the flow of awareness information from social to, workspace, to peripheral
awareness information, only workspace awareness was presented as a reference
implementation.

Contract Description. The contract of the awareness component is about
its ability of presenting awareness information and its needs to accomplish its
task. Awareness information in SCOOP is presented in several ways. Awareness
update its state based on a event-driven mechanism. This component collaborate
with floor component to display information about artifacts state (locked,
unlocked,...). It collaborates with the user component, to show current user state,
his current activity etc. It collaborates with communication component to get
notified with messages that were posted by a user.

Pertinent Design Patterns. Awareness component implements the
observer pattern. This component registers with the model component to get
notified of the model state change and displays the right information accordingly

Figure 5. 16: Awareness research framework as described by Greenberg& Gutwin

 Chapter 5 - The SCOOP Framework

98 A Framework For Distributed Collaborative Software Design Meetings

into the radar view (see chapter 4).

Participants. This component cooperates closely with several components
at the same time. the floor control component, communication component, user
component, model component, and rationale component.

Invariants. Awareness component role is to convey events resulting from
the user action, happening in a sporadic way to the workspace view. Usually
awareness information is transient, however, important data that have to be
stored is transmitted to group memory, rationale components, and history com-
ponents that store necessary information. As consequence, Awareness informa-
tion does not change the state of the model.

Figure 5.17 depicts the awareness development approach that we adopted
to identify important information and their materialization as multiple and inte-
grated views within the workspace.

Figure 5. 17: Awareness development cycle adopted and modified from Framework by Green-
berg and Gutwin (UML Activity Diagram)

A Framework For Distributed Collaborative Software Design Meetings 99

Chapter 5 - The SCOOP Framework

Communication Component requirement and considerations

The communication component encapsulates both the views and the model
behavior of the communication in SCOOP framework.

Contract Description. Communication component role is to enable differ-
ent forms of instant communication between users of SCOOP to happen. These
forms of communication can be switched off and on. We implemented several
widgets of communication such as chat (instant messaging), scribbling and com-
munication through artifacts (ArtifactNote class in the analysis model in chapter
4).

 Participants. Communication component collaborate with Awareness
component, Rationale component, and WorkspaceView component. It sends
information about current user to awareness component that in turn displays the
right information in views workspace. It transmits related information to the
rationale component about which user saying what, about current artifact.

Figure 5. 18: Floor Control Component

 Chapter 5 - The SCOOP Framework

100 A Framework For Distributed Collaborative Software Design Meetings

Invariants. Communication component does not influence the model state
of the artifacts created.

Rationale Component requirement and considerations
This component deals with the rationale information generated during the

meeting.

 Contract Description. Rationale component encapsulates the rationale
model and the rationale views as well. It extracts rationale information from
several cooperating components.

 Participants. This component collaborates with the Communication com-
ponent, Awareness component, and the Activity component.

Invariants. Rationale component collects and stores data in its model. It

Figure 5. 19: Rationale Component interacting with the Activity component, Communication
component, and the Awareness component.

A Framework For Distributed Collaborative Software Design Meetings 101

Chapter 5 - The SCOOP Framework

does not influence the artifacts model.

5.2.Framework Instantiation and reuse
A default or reference behavior of the framework is provided to support

distributed modeling activity without having the need to develop any compo-
nent.

 However, any component can be implemented according to the needs of a
specific organization and the inter-components interaction is maintained accord-
ingly.

At run-time, new components can be loaded to support a special kind of
activities. The same components can be overloaded as well with different possi-
ble implementations. The framework allows the switching between one imple-
mentation and the other. For example, different implementations for awareness
or floor control can be provided.

Awareness information can be as simple as showing a list of the attendee or
complex in showing the focus and nimbus information of each user. Floor con-
trol can be implemented as explicitly locking an artifact at hand or simply use an
optimistic strategy in using awareness information to let users coordinate their
tasks.

The interaction between several components (e.g., Activity, awareness,
user, floor control…) is set in a central component (i.e., Meeting component)
that enables an automatic inter-components communication transparently. This
behavior provides a great flexibility in changing the behavior of the application
at compile-time and at run-time as well.

 Chapter 5 - The SCOOP Framework

102 A Framework For Distributed Collaborative Software Design Meetings

Figure 5. 20: GroupUML deployment diagram

A Framework For Distributed Collaborative Software Design Meetings 103

CHAPTER 6 Case Studies

Empirical studies in software engineering are gaining recognition in the

software engineering community. Software is not only a matter of computers but
is also a matter of humans. Software is developed and used by humans and the
human role can no longer be neglected anymore. Software engineering empiri-
cists are considering human aspects now as a major component in software
development [19].

 In disciplines like social science, qualitative research methods have been
developed and are used to deal with the complexities of issues surrounding
human behavior [126]. In this chapter we start by introducing qualitative data
collection and analysis methods. Next, we show how these qualitative methods
are adapted and used in empirical studies in software development. Finally we
describe the qualitative methods used in the case studies of this dissertation.

 Chapter 6 - Case Studies

104 A Framework For Distributed Collaborative Software Design Meetings

6.1 Quantitative and Qualitative research methods
Quantitative research methods were originally developed in the natural

sciences to study natural phenomena. Examples of quantitative methods
include survey methods, laboratory experiments, formal methods and numerical
methods such as mathematical modeling. They produce statistical results by
counting feature, activities, tasks, logging, and measuring certain values of
interest in user actions and groups interactions.

Quantitative data are represented numerically or on some other discrete
finite scale such as yes/no or true/false.

 Quantitative methods are best suited to statistically evaluate a hypothesis
that can be translated to a quantifiable value. For example: “groups using a
Group Decision Support System perform tasks more quickly than those groups
not using it”. The time to perform a task can be measured, giving the possibility
to support or refute the hypothesis. Quantification may cause the lost of impor-
tant information. Kaplan and Maxwell argue that the goal of understanding a
phenomenon from the point of view of the participants and its particular social
and institutional context is largely lost when textual data are quantified [72].

 Qualitative research is used to understand, study and explain social and
cultural phenomena. It involves the use of qualitative data sources such as sur-
veys, interviews and questionnaires, documents and texts, the observation of
participants, and the researcher’s impressions and reactions.

Qualitative data is any non-numerical information, represented as words
and pictures [65]. Qualitative analysis methods are designed to analyze qualita-
tive data such as observations, interviews and diaries. These methods tend to be
used when it is necessary to evaluate and understand end user perspectives of a
situation.

In contrast to quantitative methods, qualitative methods allow the identifi-
cation of human-related aspects such as motivation, thinking, attitudes, values,
and satisfaction with a product.

A Framework For Distributed Collaborative Software Design Meetings 105

Chapter 6 - Case Studies

 The term case study has multiple meanings. It can be used to describe a
unit of analysis (for example, a case study of a particular organization) or to
describe a research method. In this dissertation we are concerned with the use of
the case study as a qualitative research method.

6.1.1 Data collection using qualitative methods
Qualitative methods use one or more techniques to collect data. These tech-

niques include interviews, observational techniques such as participant observa-
tion and fieldwork. Written data sources include published and internal
documents, company reports, memos, letters, reports, E-mail messages, faxes,
newspaper articles and so on. The most common techniques in collecting data
are participant observation and interviewing.

Participant observation refers to a technique, during which data are sys-
tematically and unobtrusively collected.” [126]. This does not mean that the
observer takes part in the activities. It means only that the observer is visibly
present and is collecting data. However, in software development, observation
techniques alone are of limited use and should be complemented with other qual-
itative techniques such as think aloud protocols [8] and field notes [19].

Think aloud protocols require subjects to talk while using the system so the
observer can understand the thought process of the participant.

Field notes are written after the observation while listening to or watching
the recording of the observation. Then, as soon as possible, the notes are aug-
mented with as many details as the observer can remember. All relevant informa-
tion contained in the field notes such as place, time, and participants in the
meeting, discussions and any other events that took place either as part of the
meeting or that impacted the meeting, the tone and mood of the meeting, should
be included.

An alternative to this recording method, is to videotape the activities so that
the field notes can be collected and written later.

 Chapter 6 - Case Studies

106 A Framework For Distributed Collaborative Software Design Meetings

Interviewing is a qualitative data query technique that asks questions to
the interviewee. The questions are used to collect opinions or impressions about
the activities. They are sometimes used in combination with participant obser-
vations where they serve to clarify things that happened or were said during an
observation, for example to elicit impressions of a meeting or to collect infor-
mation on relevant events that were not observed.

There are two types of interviews, structured and unstructured interviews.
In structured interviews the questions are controlled by the interviewer and the
response rests with the interviewee; in unstructured interviews the interviewer
is the source of both, questions and answers and the interviewee simply has to
choose one of these answers [144].

Coding Some researchers [45], [73] suggest to combine quantitative and
qualitative to achieve a goal. This process is called triangulation. A commonly
used technique called coding extracts values for quantitative variables from
qualitative data (collected from observations or interviews) in order to perform
some type of quantitative or statistical analysis.

6.2 Software developments approaches
Brainstorming and software design meetings in single sites are well

known, but geographically distributed meetings are not well understood. As a
result the requirements for building software that supports distributed meetings
are not clearly defined either. The behavior of participants during same time /
different place meetings is not necessarily predictable and we are not able to
state clear hypotheses that can be tested and validated experimentally. We,
therefore, have chosen to explore and discover the issues surrounding distrib-
uted brainstorming meetings, evolve the solutions and investigate their impact
on the way meetings are conducted. Thus, as an overall approach, we adopt an
exploratory qualitative case study [41].

The lack of clear requirements specification and the lack of development

A Framework For Distributed Collaborative Software Design Meetings 107

Chapter 6 - Case Studies

alternatives leads us to the consideration of an exploratory approach. This is
especially applicable, when both customers and developers do not yet have a
clear view of their needs. Developers might not be able to make critical design
decisions or might not know how to best solve certain implementation problems.
By experimenting with prototypes both customers and developers can gain new
insights into the problem and may come closer to better solutions.

 Instead of exactly planning the various phases of the life cycle, exploratory
software development takes small development steps, through which a single
step results in an enhancement or extension of the current version of the system.
However, the system is not developed based on the prototypes but rather from
scratch. The prototypes are used only to improve the developers’ understanding
of the system requirements [63].

Evolutionary development is an iterative and incremental approach to soft-
ware development. Rather than creating a comprehensive artifact, such as a
requirements specification, that is reviewed and accepted before creating a com-
prehensive design model, developers evolve the critical development artifacts
over time in an iterative and incremental way. The system is released incremen-
tally over time instead of building and then delivering the system in a single
release.

In the evolutionary development approach, requirements, modeling, cod-
ing, and testing are all continuously evolving together. Evolutionary approaches
to software development are supported in agile processes like Extreme Program-
ming (XP), Feature Driven Development (FDD), Dynamic System Development
Method (DSDM).

6.2.1 Formative Approach
 The formative evaluation approach takes an economical and social science

research perspective to assess efforts prior to their completion for the purpose of
improving the efforts. It is a method that has become well developed in the edu-

 Chapter 6 - Case Studies

108 A Framework For Distributed Collaborative Software Design Meetings

cation and training evaluation literature [123], [130].
The formative approach is used in the context of usability studies, rapid

prototyping as well as user interface design approaches. Prototypes are built,
based on the current stage of the design, then tested with users, and the results
are fed into the next stage of development to improve the design. The formative
evaluation aims to guide the evolution of the iterative design of the system by
providing rapid feedback to the designers to provide a base for the next deci-
sions [57]. This happens by examining, amongst other things, the strengths and
weaknesses and the quality of the prototype system, and by generating under-
standings about how it could be better implemented. By gradually gaining a bet-
ter understanding of the system and its requirements. The formative evaluation
is particularly relevant to systems whose specification is not clear or not fully
defined in advance or is likely to change over time.

In software development, the formative evaluation approach can be used to
define the scope of a development project and to identify suitable goals and
objectives. Formative evaluations can also be used to pre-test ideas and strate-
gies.

The formative method is used for several purposes. In [87] Ramage pre-
sents the formative approach as one of five evaluations methods of Computer-
Supported Cooperative Work (CSCW) systems. Grudin [70] states that evalua-
tion of CSCW applications is complex and hard, and requires formative
approaches based on the methodologies of social psychology and anthropology.
Bannon [82] emphasizes the use of formative evaluation in improving aspects
of the design of groupware systems during the design process itself. In particu-
lar, case studies of interactive CSCW framework incremental design and devel-
opment can benefit from formative evaluation approach using a qualitative
mode of inquiry [61].

Formative Evaluation Activities Formative evaluation activities include
the collection and analysis of data over life cycle of the system development
and early feedback of evaluation findings to stakeholders ongoing decision-

A Framework For Distributed Collaborative Software Design Meetings 109

Chapter 6 - Case Studies

making and action. Methods used to collect data and feedback include open-
ended and exploratory questionnaires. The questionnaires are aimed at uncover-
ing the processes by which the prototype takes shape, establishing what has
changed from the original design and investigate the relationship between inputs
and outcomes. Formative evaluation involves several tasks shown in Figure 6.1.

Several evaluation techniques can be used during formative evaluation, for
example, observation, in-depth interviews, surveys, focus groups, and dialogue
with participants. Depending on the goals of the formative evaluation, it may
emphasize one or more of these techniques. Other methods which might be used
according to the evaluated process and situation include stakeholder analysis,
concept mapping, nominal group techniques, observational techniques, input-
output analysis, questionnaires such as context-free questionnaires, and categori-
zation methods such as the content-analysis method.

Recent forms of formative evaluation -for example, the mutual catalytic
model of formative evaluation outlined recently by Moscoso in [20]- emphasize
a more inclusive approach to the involvement of stakeholders, and seek to elicit
their participation as collaborators in the evaluation process rather than simply
as providers of information. Thus, there is increasing interest in participatory,
collaborative, and learning-oriented formative evaluations.

We applied the formative approach to the development of the SCOOP
framework through several case studies where we used the outcome of each case
study to identify design alternatives for subsequent experiments.

We adapted the formative approach to cover not only testing and improving
a sequence of prototypes but also identifying new requirements, testing them
with users, and eliciting new ideas. The result of these activities is incorporated
in evaluation prototypes, which, in turn, influence the formulation of new exper-
iments in which the newly identified and developed functionalities lead to yet
another experiment. In other words, we used SCOOP prototype to design and
improve SCOOP itself.

 Chapter 6 - Case Studies

110 A Framework For Distributed Collaborative Software Design Meetings

The initial requirements for SCOOP were vague and not fully defined for
many reasons such as the lack of full knowledge of distributed synchronous

Figure 6.1: Formative approach (UML Activity Diagram): involves the following tasks: the
identification of evaluation goals, the planning of data collection and analysis.
Then follows a rapid feedback on how the work is going, making value judgments
and generating evaluation findings. After, documenting rationale about conflict
management and resolution work is proceeding what techniques are used, and
what problems encountered. Afterward, planing next step of improving the
underlined system, refining goals and data collection and analysis. Finally, exe-
cuting the plan of making decisions and actions.

A Framework For Distributed Collaborative Software Design Meetings 111

Chapter 6 - Case Studies

software design meetings and of the potential users and their needs.

The Context-Free questionnaire requires the researchers to listen before
attempting to invent or describe a potential solution.The goal is not to influence
the users feedback, the initial questions are about the nature of user's problem
without context for a potential solution. This approach was suggested by Gause
and Weinberg in [140].

The opinion-type questions ask the interviewee what they think about a
certain problem. Attitude-type questions ask the interviewee what their attitudes
are when working with a particular product.

The content analysis method is a research method that uses a set of cate-
gorization procedures for making valid and replicable inferences from data (text
or images) to their context [140]. This method combines qualitative defining the
categories and quantitative aspects, namely determining numbers within catego-
ries. For example, answers are categorized into different types, and the numbers
of each type are added.

For our case studies we use the content analysis method to categorize col-
laboration aspects and issues, faced by the subjects and assess their relevance
relative to the current step of the software development.

The following section describes our case studies and the empirical experi-
ments.

6.3 Case studies: purpose and approach
Our hypothesis for the case studies was: “Using GroupUML improves dis-

tributed synchronous software design and makes requirements engineering in the
target development environment possible”. This can be evaluated qualitatively.
For our case studies we use techniques of participants observations, interview-
ing and coding.

 Chapter 6 - Case Studies

112 A Framework For Distributed Collaborative Software Design Meetings

The main goal of the case studies was to demonstrate that our research
hypothesis holds, that is, that distributed synchronous software brainstorming
and design meetings using SCOOP are feasible.

The second goal was to validate the SCOOP framework, and to prove its
viability and usefulness for the domain of software systems that require distrib-
uted meeting management.

The third goal was to use SCOOP to identify the issues of distributed soft-
ware design, classify them into categories, and to discover requirements for
SCOOP. The categorized issues are then mapped into requirements.

The fourth goal was show the ability of SCOOP to deal with ill-defined
requirements making distributed requirements engineering and design in the
target environment possible, where developers and users discover requirement,
and cooperate incrementally improving SCOOP using SCOOP itself.

 Throughout the case studies, we followed a formative approach, not only
as an evaluation method, but as a process of designing and developing coopera-
tive software for distributed synchronous software brainstorming and design.

The evaluation methodology involves iterative cycles in which a SCOOP
prototype is used, new requirements are discovered and analyzed, revised
designs are put forward and the SCOOP prototype is further developed. The
prototype is then assessed to refine the requirements and design alternatives.

Through iterative deployment of the prototype in the target environment,
participants responses to the use of the prototype are analyzed through observa-
tions, questionnaires, and group discussions. By including the participants in
the review of the development of SCOOP, the design and the implementation
can reflect more accurately the participants ideas, as well as getting more usable
feedback. The review process relies mainly on qualitative methods to gather
issues, analyze requirements, and evaluate alternative solutions continuously.

The case studies were conducted in an environment described in section

A Framework For Distributed Collaborative Software Design Meetings 113

Chapter 6 - Case Studies

3.1 and can be categorized as a set of three main issues: communication and
coordination, awareness and control, and rationale management.

Communication and coordination issues
In distributed meetings, communication takes place explicitly, by means of

formal such as using phone or chat tools, or by informal means of manipulating
shared artifacts. The framework must provide communication means such as
chat or multi-cast audio. In the first case study, we discuss the set of communica-
tion and coordination issues the participants encountered during the initial meet-
ings. We discuss the functionalities implemented, such as instant messaging, live
annotations, and the lock mechanisms.

 Awareness and control issues
In this study, we brainstorm requirements to deal with awareness and con-

trol issues such as the capability to identify individual users and track their sta-
tus; their actions, and their history. We describe the support several levels of
awareness information such as informal awareness and workspace awareness.
Informal awareness provides information about local and remote meeting partic-
ipants (such as user picture and name, status active or inactive) to guide their
work. Workspace awareness provides up-to-the-minute knowledge about other
person's interactions with the shared workspace and with users (such as current
user focus, activity, and task) to help them coordinate their work. We evaluate
the functionalities implemented, such as radar view, interactive user awareness
list view, ticker, and fader. Finally, we assess the status of the prototype and its
evolution.

 Rationale knowledge and memory issues
In this case study, we describe the set of rationale knowledge and memory

issues participants encountered during the meetings. The challenges that have
been considered such as:

• designers have to be able to express their design reasoning in a natural way,

 Chapter 6 - Case Studies

114 A Framework For Distributed Collaborative Software Design Meetings

as it is generated during design meetings

• the representation must be formal enough to be processed for classifica-
tion, browsing, and enabling search methods.

Finally we describe and the functionalities implemented (such as the QOC
assessment matrix).

6.3.1 Experimental Context
The case studies that took place within the university program for post-

graduate participants and Master students of the computer science curriculum in
the Technische Universität München. We conducted the experiments over a
duration of four semesters with a total of seven groups averaging six partici-
pants each see (Table 6.1). A full cycle of development lasted a semester long,
during which a series of experiments were conducted consisting of a regular
series of distributed meetings to design and develop cooperatively the SCOOP
framework.

During each semester we had two separate groups of six participants
each1. This enabled us to conduct two independent series of meetings running
simultaneously. Each group was split into two sub-groups of three users each.
During each meeting, each sub-group of participants was provided a different
room and the necessary hardware and software to run the meetings.

 The hardware consisted of Smart Boards [133] connected to networked
computers via the internet (see Figure 6.4). Each computer ran the application
prototype GroupUML [103] enabling different groups in different locations to
collaborate over system architectural design using UML. A short tutorial about
how to use GroupUML and the Smart Board was provided at the beginning of
each development cycle.

1.with the exception of the summer semester 2004 where only one group was conducting
the experiment

A Framework For Distributed Collaborative Software Design Meetings 115

Chapter 6 - Case Studies

In the first development cycle (see Figure 6.2 for the distinction between
case study, iteration, and development cycle), a minimal basic architecture was
built to support collaborative brainstorming and sharing of graphical representa-
tions of UML artifacts. This step involved only the researcher of this work.

In each subsequent development cycle, a prototype was incrementally
developed, tested and deployed in the target environment. Current features were

Semester Year Groups Size total

Winter 2003 2 groups 2 x 7 14

Summer 2003 2 groups 2 x 8 16

Winter 2004 2 groups 2 x 5 10

Summer 2004 1 group 1 x 5 5

45

Table 6.1: Subjects participating in the case studies during the four semesters.

Figure 6.2: Case study structure: a one semester development cycle consists of a set of
case studies. A case study can take several iterations (meetings) to complete.

 Chapter 6 - Case Studies

116 A Framework For Distributed Collaborative Software Design Meetings

used to identify and design missing features. Features of the prototype were
then added or removed according to the requirements. The prototypes evolved
dynamically till getting closer to a final version that fulfilled a given require-
ment. The SCOOP framework evolved also in an incremental way where asso-
ciated components designed were added or modified. Therefore, the prototypes
and the framework evolved incrementally together over time.

6.3.2 Experimental Case Study I: communication and coordination issues
 Based on the initial version of GroupUML, participants were provided

with the problem (see Figure 6.3) to improve distributed collaborative design
utilizing GroupUML itself. The design activities varied from brainstorming to
system modeling.

The participants were actually put in the same room but with two Smart
Boards that were put back to back in a way that each group of participants faced
one Smart Board but could not see the other group (see Figure 6.5).

Problem definition (Case study I)
Along the semester you will brainstorm requirements and design a model for
distributed application enabling synchronous editing of graphical artifacts. The
system should help people in different locations to share and discuss ideas using
UML and scribbling. For the moment skip implementation issues.

For this task use GroupUML and collaborate with your colleagues located in
room2.

Establish the following functionalities:

1- communication with your colleagues

2- sharing artifacts

3- accessing artifacts

4- storing artifacts

Hint: try to model your current activity and your needs while you are brain-
storming with colleagues.

Figure 6.3: Initial requirements given to participants

A Framework For Distributed Collaborative Software Design Meetings 117

Chapter 6 - Case Studies

Figure 6.4: Experimental setup for distributed same time / different place software design
and brainstorming meetings: two different groups located in two different rooms,
are videotaped, and collaborating over software design using GroupUML. The
remote users use Smart boards to interact with GroupUML and their peers.
GroupUML updates the model located in a remote server through remote notifi-
cations. The model server propagates the change to all GroupUML applications.

 Chapter 6 - Case Studies

118 A Framework For Distributed Collaborative Software Design Meetings

While we (the researchers of this work) could observe both groups simul-
taneously, the two groups were not allowed to speak directly to each other, only
GroupUML was allowed for communication and collaboration.

The participants were videotaped during the meetings and surveyed with a
questionnaire afterwards. The answers to the questionnaire served as a basis for
a group meeting in which encountered issues were discussed.

Several iterations, that is, meetings, are needed to solve an issue. The pur-
pose of each iteration was to identify issues, propose solutions, develop, deploy,
and valid functionalities, then move to the next iteration.

 During this first iteration, participants had neither floor control mecha-
nism nor communication means so that they could experience the difficulty in
coordinating their actions in a distributed setting. The only views available dur-
ing this case study were the UMLView and ScribbleView.

The participants had little knowledge about SCOOP requirements. During
the initial phase of discovering ideas and brainstorming, one participant from
one side tried to rename a UML class at the same time another participant from
the other side pointed to the same class and moved it away. As a result, the
action of the first participant was canceled and he had to try again.

Figure 6.5: Single room meeting: in the initial meeting, participants were in the same
room but can’t communicate only using GroupUML

A Framework For Distributed Collaborative Software Design Meetings 119

Chapter 6 - Case Studies

The participants faced such a incident several times and tried to solve the
problem their way using the scribbling to highlight the artifact under consider-
ation although it was not defined for such a purpose. Another solution they tried
was to duplicate classes and then decide which one to keep. In the end, partici-
pants were asked to fill in a questionnaire where they were guided to express
their impression and their views and suggestions of what they have just experi-
enced.

We provided a context-free questionnaire composed of opinion-type ques-
tions and attitude -type questions. Figure 6.6 shows the questionnaire given to
the participants.

 Questionnaire (Case study I)

Opinion -type questions

•What does GroupUML enable you to do?
•What do you like/dislike in this groupware?
•What do you expect from GroupUML?
•What's missing according to you?
•What do you suggest to make GroupUML better support users?

Attitude-type questions

•Do you feel being efficient when working with GroupUML for collaboration?
•To which degree you like the GroupUML?
•How helpful do you feel GroupUML is in collaboration?
•To what extent do you feel in control of the interactions with GroupUML?
•Do you feel you can learn more about GroupUML by using it?
•Did you manage to solve the issues under investigation?
•Could you take profit from the collaboration with your peers

Figure 6.6: Initial context-free questionnaire composed of opinion-type and attitude-type
questions.

 Chapter 6 - Case Studies

120 A Framework For Distributed Collaborative Software Design Meetings

Results and interpretation (Case study I)
 We noticed that with small groups, case studies are easier to manage and

control. It was also interesting to observe that the participants organized them-
selves: two to three participants interacted with the system using the Smart
board (to create, move, and select graphical artifacts) and one participant used
the keyboard to enter text.

Figure 6.7 represents the relevance of issues from the viewpoint of the par-
ticipants. These results form the basis for our second iteration. For example,
communication issues were considered most important, thus, for the second
iteration we emphasized the support for communication means.

From analysis of the responses to the questionnaires, we conjecture that
participants enjoyed using such a system even if it lacks many features that they
would expect to see. While the participants were aware of the presence of their
colleagues, most of them emphasized communication issues and synchroniza-

Figure 6.7: Relevance of issues in the initial meeting: communication issues were most
important to the users and consequently were targeted for the second meeting.

A Framework For Distributed Collaborative Software Design Meetings 121

Chapter 6 - Case Studies

tion issues. Others expressed a need for a mechanism that enables concurrent
access to artifacts. One of the participants expressed a wish to see a lock and
unlock feature to enable the control of flow of events.

During subsequent meetings, participants were asked to brainstorm and
design models that solves these issues.

Several use cases were designed to describe the locking functionality (Fig-
ure 6.8). In addition, the UML class model of GroupUML was designed and
refined to describe the lock functionality according to the select strategy context
(Figure 6.9).

In the second meeting of the initial case study, two functionalities were rap-
idly built into GroupUML: a chat feature to enable communication and a lock/
unlock mechanism for explicit synchronization of participants' actions.

Figure 6.10 depicts the user interface of the lock mechanism which shows a
locked workspace (selection palette is greyed) for the current user and a red
ticker that gives a hint about who is currently owns the lock. The hint enables
users to ask explicitly the one who owns the lock, to unlock it.

Figure 6.8: Lock use cases built during the case studies

 Chapter 6 - Case Studies

122 A Framework For Distributed Collaborative Software Design Meetings

According to the selection strategy, selected artifacts or views, can be
locked by the user owning the floor. If nothing is selected, the user can lock the
whole workspace.

Lessons learned (Case study I)
The case study consisted of three iterations. In the second iteration, partic-

ipants were shown the newly added features and were asked to keep on carrying
their tasks with the new features.

The chat feature was straightforward but not the lock/unlock feature a par-

Figure 6.9: Lock model designed during the case studies

Figure 6.10: The user interface for the lock mechanism: a red ticker showing who is cur-
rently locking the workspace.

A Framework For Distributed Collaborative Software Design Meetings 123

Chapter 6 - Case Studies

ticipant on one side can lock the workspace until he is ready with his modifica-
tion and then unlock the workspace. At that moment, participants from the other
side can only wait and use the instant messaging to ask the other side to unlock
the workspace. This new situation generated new constraints and criticism of
participants. A refinement of the solution was suggested that involves the lock-
ing of the artifact under access only and not the whole workspace.

In the third iteration, participants tested and evaluated the refined solutions.
This iteration ended with the review and validation of the new functionally

The participants were using GroupUML to collaborate over designing the
GroupUML itself. They were involved in suggesting solutions to issues, that
they not only know theoretically but also faced in the reality while using the tool.
They designed initial solutions to problems that were refined and implemented.
Using the improved groupware with more functionality. The participants were
using the features over several meetings and faced less difficulties, a sign for the
acceptance of the solutions the participants came up with and the emerging
maturity of the groupware.

6.3.3 Case Study II: Awareness issues
The participants of the second case study had some background knowledge

of awareness but did not yet realize what kind of concrete information they
needed to see on the Smart Board to support distributed real-time meetings. The
participants noticed that if they receive no instant messages from the other side,
they just keep still and observe the views on the Smart Board. They had no idea
what the others are doing and why are they silent. Discussing about these
moments of silence they realized that they need more information about their
remote peers. The questionnaire (see Figure 6.11) was designed to establish what
kind of levels of information they wished to see on the Smart Board to coordi-
nate their actions and avoid the “silence periods”.

In the second iteration, participants were asked to brainstorm (see Figure
6.12) and design awareness models that solves the awareness issues they faced
in the experiment and sketch possible implementations.

 Chapter 6 - Case Studies

124 A Framework For Distributed Collaborative Software Design Meetings

Results and interpretation (Case Study II)
The analysis of the answers is summed up in Table A.1 (see appendix A).

Most of the participants requested to get more awareness information about the
current task, a few of them mentioned presence awareness. As a whole, aware-

Questionnaire (Case Study II)

Communication
• Do the communication means of GroupUML enable you to collaborate with your remote
colleagues in conducting brainstorming and modeling tasks?

•Do you prefer other means of communication you think they improve collaboration? please
enumerate them.

Awareness
•Do you get enough awareness information provided by GroupUML?

•Which level of awareness information you need in conducting your task (user, activity,
atomic task, and so on)?

•Do awareness information enable you coordinate your task with remote colleagues?
Floor control

What do you think about the following ways to deal with floor control
issues (who has the turn to talk, communicate, draw, access.):

•Implicit (without locking): rely on your social behavior

•Explicit (lock button): locking workspace, group of artifact, an artifact

•Any other suggestion to these issues?
Rationale management
•Do you know “the why” behind design models you created in previous meetings?

•Do you capture the design decisions and the reasons behind them?

•What mechanisms you need to support you dealing with knowledge and history informa-
tion?

Synchronous behavior
Does GroupUML enable you to handle real-time interaction with your

peers. What do you think about the responsiveness?
Functionalities

What functionalities are needed according to you to improve the collabo-
ration process with GroupUML? please give your suggestions and opinion.

Figure 6.11: Subsequent questionnaire given to students in Case study II

A Framework For Distributed Collaborative Software Design Meetings 125

Chapter 6 - Case Studies

ness issues were more apparent. Mostly because participants used the improved
functionalities of GroupUML in communication and floor control management
but had little support of awareness information.

Figure 6.13 shows the relevance of issues of the current experiment. Partic-
ipants are now paying attention to issues that were not yet addressed completely.
Awareness and rationale management are gaining more attention from the partic-
ipants. Most of communication issues were solved as well as floor control issues,
as can clearly be seen in Table A.4.

 Two solutions were retained and implemented for the third iteration. Sev-
eral use cases were designed to describe the awareness functionality (Figure
6.14). In another step, an initial UML class model was designed and refined to
describe the possible awareness functionalities according to the provided selec-
tion strategy context (Figure 6.15).

As a result, two awareness concepts were immediately built into the Grou-
pUML: First, user awareness functionality to enable propagation of user pres-
ence across the meeting groups (see Figure 6.16). Second, radar view that shows
a miniature of the desktop, overlapped with current focus of the local and remote
participants (Figure 6.17).

Interactive user awareness functionality: Before starting any action,
every participant must click his icon. The icon is then highlighted in green (for

Problem definition (Case Study II)
 You have seen many different ways of dealing with awareness as well as floor
control in distributed settings. The goal of this meeting is to identify or improve
current support of these functionalities to GroupUML.

Task:
Use GroupUML to express your ideas. Collaborate with your local and remote team-members to:

1- Brainstorm and design an awareness system support to GroupUML

2- Brainstorm and design a floor control system support to GroupUML

Figure 6.12: Awareness and floor control requirements given to the participants (Case
study II)

 Chapter 6 - Case Studies

126 A Framework For Distributed Collaborative Software Design Meetings

local user) in magenta (for remote user). In one site there is always one active
icon (highlighted in green) and one or several icons are highlighted in magenta
for the remote user (see Figure 6.16). This feature is also used to document the
group history and the design rationale.

According to some participants, knowing who is currently working on the

Figure 6.13: Relevance of issues according to current experiment

Figure 6.14: Awareness use case model designed during case studies: according to the
user action, awareness information events are triggered.

A Framework For Distributed Collaborative Software Design Meetings 127

Chapter 6 - Case Studies

board is of less importance then knowing the current action. Whereas other par-
ticipants argue that knowing the current user is of importance since they may be
able to anticipate his future actions.

Radar feature: This is an implementation of the Nimbus/Focus model. It
shows in real time the current user workspace area of focus. If the user scrolls to
a direction, the corresponding radar is updated so other users are aware of his or
her current focus (Figure 6.17: blue area, at the lower left corner of the radar tab,

Figure 6.15: Initial awareness model designed during case studies

Figure 6.16: Group awareness: Magenta color used for remote user and the green for
local user

 Chapter 6 - Case Studies

128 A Framework For Distributed Collaborative Software Design Meetings

shows where the remote site group focus is, and the gray one, at the upper right
corner of the radar tab, shows the current area of focus of the local site).

Lessons learned (Case Study II)
The initial idea behind the radar feature was that a participant highlight an

object and ask the remote user if it can be deleted. Without the radar feature
users send messages to the other side, but if the remote participants have
scrolled to another area of the workspace they didn't realize that they don't look
to the same view. Consequently, participants were asked to give their sugges-
tions to solve this issue and to mention what kind of category of issue it belongs
to.

Most of the participants suggested synchronizing the scrolling of all views,
but then they realized that this could disturb a user currently working on an arti-
fact in a different view. Finally, a solution was adopted to have a global view of
the workspace and the focuses of each site.

This feature made collaboration considerably easier. On the other hand, the
interactive user list provides some drawbacks: if a participant forgets to click
the icon, the previous participant will be considered as the initiator of the cur-

Figure 6.17: workspace awareness - Radar view -

A Framework For Distributed Collaborative Software Design Meetings 129

Chapter 6 - Case Studies

rent action. This is can be an issue in case of a distributed meeting where roles
are of significant importance. The main drawback of the radar feature is having
multiple views (i.e.; tabbed views e.g., each representing an alternative): First, it
is hard to overlap many focusing areas (we use different colors to show the focus
of different views); second, it is hard to determine which area radar belongs to
which view in a given workspace.

Finally, several awareness features were experimented with and imple-
mented in GroupUML such as ticker and fader interfaces.

6.3.4 Case Study III: rationale knowledge and memory issues
 Although design rationale is of great importance, it is very often neglected

[10]. One way to make participants aware of its importance, is to challenge them
to answer questions such as “why did you decide for this design?” Or “why use
this pattern?”. The answer is often that they did not remember their decisions
made two months ago and even two weeks. The questions aim to let participants
think and feel that they need a mechanism to document their decisions, the alter-
natives and the options they considered.

Also they were encouraged to think about adopting rationale management
as an integral part of distributed meetings, and not as an optional activity. To do
this, several issues were presented to the participants in the form of three tasks:

""""Define rationale management activity for distributed meetings

""""Determine the deliverable of the rationale management activity

""""Link rationale information to brainstorming artifacts

Results and interpretation (Case Study III)
After several brainstorming meetings and discussion of the different alter-

natives to solve these problems, participants were asked to fill out a guided ques-
tionnaire.

Figure 6.18 shows the relevance of issues of the current experiment. One
can see that participants are paying attention to rationale issues that were not yet
addressed completely.

 Chapter 6 - Case Studies

130 A Framework For Distributed Collaborative Software Design Meetings

Two preliminary design models were produced, rationale use case model
(see Figure 6.19), and a rationale class diagram model (see Figure 6.20). These
models were used as a starting point to design the rationale component of the
SCOOP framework (see chapter 5, SCOOP subsystem decomposition).

Figure 6.18: Relevance of issues according to current experiment

Figure 6.19: Rationale use cases model designed during case studies

A Framework For Distributed Collaborative Software Design Meetings 131

Chapter 6 - Case Studies

 Participants approached different ways to support rationale. For example,
some suggested to force the user to fill in a text area with all steps that better
they can perform another action (such as the creation or deletion of an artifact).
This was against the principle of motivating users to integrate rationale manage-
ment in groupware and at the same time reducing the overhead in capturing
rationale by not requiring any substantial change in the designer's activities.

The different ways considered to integrate and manage rationale within dis-
tributing brainstorming activities are discussed below:

""""Manually rationale information entry
Users enter rationale information about current artifact, group of artifacts,

or view in an assessment table that is used to store rationale information and to
manage conflicts during the consolidation and conflict resolution phases (see
Figure 6.21).

 Attaching a question, an option, or criteria to an artifact, so every artifact in
the workspace, being a formal (UML) or informal (other), represents not only
the artifact itself but also its history and its raison d'être. Participants select the
kind of link they like to attach to an artifact, and then point to the artifact and
type in a question, an option, or a suggestion. The benefit of this feature is to cre-
ate self-contained artifacts and at the same time, sharing the attached questions
and suggestion with other users, (see Figure 6.23).

Arranging the project under development, the issues identified, the options
that are represented through diagrams, as a tree-like representation (see Figure
6.22). Users can point to the project and with a double-click a question container
is created with the corresponding sub-options inserted. Each option is pointing to
a diagram or set of diagrams that shows the different alternatives that were con-
sidered. The advantage of this representation is that participants can have a quick
view of the issues and their options at a glance.

""""Semi-automatic rationale information entry
Users can switch on this feature (described below) to trigger a semi-auto-

matic entry of different rationale information from three different resources:
A simple presentation of the rationale as a QOC (Question, Option, Crite-

 Chapter 6 - Case Studies

132 A Framework For Distributed Collaborative Software Design Meetings

ria) matrix for evaluation of the different alternatives and conflict resolution.
Each question/option/criteria attached to an artifact by participants, is automati-
cally inserted into the QOC matrix. This shows a clear and concise presentation
of the issues discussed and the option chosen. Participants need only to enter a
“+” or “-“to evaluate an option against a criteria. GroupUML then computes the
final choice of alternatives automatically.

Users post messages to each other using the instant messaging view, that
contains rationale information (see Figure 6.24). When posting a question that
concerns a current view or currently selected artifacts, users need to mark a
check box mentioning that the message is about a question, an option, or a crite-
rion. Messages are parsed and automatically inserted into the QOC Matrix.

Users can enter text description about artifacts directly into the workspace
area. Text placed on the workspace is analyzed and parsed periodically. Every
identified rationale information is entered automatically into the matrix.

We conducted three iterations with these rationale methods, and observed
that there is a need for a meeting role that cleanups the workspace, and manu-
ally enters rationale information, that was not detected automatically by the sys-

Figure 6.20: Initial rationale model designed during case studies

A Framework For Distributed Collaborative Software Design Meetings 133

Chapter 6 - Case Studies

tem, manually into the assessment matrix.

Lessons learned (Case Study III)
The rationale aspects were not obvious for participants to assimilate,

although they were aware of the short-term and long-term benefits of the ratio-
nale.

At first glance, participants were not able to imagine the integration of
rationale as seen during the tutorials and discussions into their meeting activi-
ties. Some of them though that the documents such as SDD (System Document
Design) are sufficient to document rationale but then they realized it's not possi-
ble to put each alternative and each decision into the same document. Partici-
pants understood mapping the rationale into a QOC matrix and contributed with
some visionary-scenarios of managing rationale. Use cases and class diagram of
rationale models were then developed jointly by participants and improved to fit
into a rationale component within the SCOOP framework.

 Rationale should not be considered as an independent or optional activity
but should be part of all brainstorming activities and developers have to be con-
cerned with it from start. GroupUML was used to model its support to rationale
using previously developed functionalities such as scribbling, communication,

Figure 6.21: Assessment table: evaluating options against criteria

 Chapter 6 - Case Studies

134 A Framework For Distributed Collaborative Software Design Meetings

awareness information. Associated models generated by GroupUML were
developed and integrated within GroupUML, tested and validated and finally
adopted as a main component of SCOOP framework.

The GroupUML user interface with the features lock mechanism, aware-
ness, communications, and rationale management views is shown in Figure 6.24

Figure 6.22: QOC tree representation: for a project, questions have one or several dia-
grams associated to them. This gives a quick view of the different issues and
their related solutions

A Framework For Distributed Collaborative Software Design Meetings 135

Chapter 6 - Case Studies

6.4 Results and Discussion
 In this chapter, we have presented a formative empirical method for con-

ducting experiments of distributed synchronous collaborative software design
and brainstorming meetings.

 A set of case studies were conducted during four semesters involving a

Figure 6.23: Attaching QOC elements to artifacts

 Chapter 6 - Case Studies

136 A Framework For Distributed Collaborative Software Design Meetings

Figure 6.24: GroupUML user interface

A Framework For Distributed Collaborative Software Design Meetings 137

Chapter 6 - Case Studies

total of forty-five senior-level and graduate students with industrial experience
background. The emphasis of the case studies were on collaborative issues like
group awareness, communication, floor control, and rationale management and
their relationships. The subjects were confronted to collaboration issues through
the accomplishment of tasks, which lead them into cognitive conflicts and reso-
lutions. The iterative formative evaluation of the case studies was tied to the
incremental evolution of the SCOOP prototype, where the results of one itera-
tion of the study were used to modify the prototype before the next study. The
final prototype and its design meet the requirements as outlined in chapter 4
(conceptual model)

The SCOOP system is the result of the collaboration of users spread over
different locations, which supports the hypothesis of the thesis stating the feasi-
bility of distributed software design and brainstorming according to the vertical
process model and requirements engineering in the target development environ-
ment.

The case studies have shown that SCOOP framework is a viable solution
and validate its ability to support users in carrying out tasks of distributed syn-
chronous software brainstorming and design meetings.

Systems involving remote design, maintenance or diagnosis, such as those
including remote expert-worker dialog and communication, are similar to those
supporting distributed synchronous meetings. The users of such systems such as
blue color workers or road warriors, need to be on the target environment to ana-
lyze and understand the problems. They need to experience the system, which is
built to support the users carrying their tasks, to discover and identify new
requirements and then use these as feedback to improve the system. These sys-
tems can use SCOOP's distributed meeting management core component.

We believe that the requirements engineering for such systems, their
design, use, and evaluation are interleaved and not as distinct steps in a linear
development process that moves from analysis through design to implementa-
tion, use and, finally, evaluation.

 Chapter 6 - Case Studies

138 A Framework For Distributed Collaborative Software Design Meetings

Consequently, the vision in conducting the case studies in this dissertation
is, first, to show that systems based on SCOOP's distributed meeting manage-
ment core concept can be built and improved using the systems themselves.
Second, to show that SCOOP is the mechanism to discover and communicate
requirements, and to develop and evaluate alternative solutions for these sys-
tems. In particular, distributed synchronous software brainstorming and design
needs to be conducted this way.

A Framework For Distributed Collaborative Software Design Meetings 139

CHAPTER 7 The BID Approach

 We started this research with ill-defined requirements for distributed soft-
ware design meetings. We used a formative and evolutionary approach where we
developed a prototype for distributed real-time software brainstorming and
design meetings. Once we had a stable and usable prototype, we shifted our
focus on how to evolve the prototype using the prototype itself. New features
were designed during a set of case studies organized as a set of distributed meet-
ings.

 The lack of requirements prevented us from following approaches like Fea-
ture-Driven Design, SCRUM, or RUP. These approaches assume that require-
ments have already been identified. In our case, we followed an empirical
approach to identify the requirements.

During the process of building the prototypes and the underlying SCOOP
framework, we also developed a method to understand the requirements identifi-
cation process, as an incremental self-improving process, and the interaction of
the users with the evolving system. This method enabled us to identify the
requirements and the design of a flexible architecture to support global brain-
storming meetings. We call this method the Bootstrapping Incremental Design

 Chapter 7 - The BID Approach

140 A Framework For Distributed Collaborative Software Design Meetings

(BID).

7.1 Bootstrapping: Definitions and Concept
Bootstrapping is a general term, that describes any operation which allows

a system to generate itself from a small well-defined subset [125].
 The term bootstrapping has several connotations in computer science,

ranging from binary loaders to compiler construction. Bootstrap most com-
monly refers to a program that begins the initialization of an operating system,
such as GRUB, Lilo or ntldr. A small amount of code is required to start the
computer, and it progressively loads more complex code, until the full operating
system is available.

 In the context of compilers, it is common to define one language as a sub-
set of another, so that subset (S1) is contained in subset (S2) which in turn is
contained in subset (S3) and so on, that is:

One can first write a compiler (C1) translating a subset (S1) of Language
(L) in machine code (M). Then write a compiler (C2) translating a subset (S2)
of (L) using the language subset (S1) of (L), and so on (see Figure 7.1). This
defines the compiler bootstrapping process by which a simple compiler for a
subset of a programming language is used to translate a more powerful compiler
for a larger subset of the language, which in turn may handle an even more com-
plex compiler and so on.

Many compilers for popular languages were first written in another imple-
mentation language, and then rewritten in their own source language using this
process.

Civil engineers use this concept as well. For instance the highest suspen-
sion bridge in the world “Le viaduc de Millau” in France was recently built

A Framework For Distributed Collaborative Software Design Meetings 141

Chapter 7 - The BID Approach

using the concept of bootstrapping. Engineers built first the pillars of the bridge,
then draw a thin cable across the both hills, then they used that cable to elevate a
larger one. Eventually, cables were used to pull a third bigger one and eventually
to join both hills. On top of hills, engineers put another layer of pillars that are
used to join the wires.

Figure 7.2 shows the application of the bootstrapping process to the devel-
opment of the SCOOP framework. SCOOP1 (by analogy to the compiler for
subset1) is the initial version of SCOOP and GroupUML0 is its initial realization
(by analogy the machine language). The result of the use of GroupUML0 are
new design and requirements (by analogy to the machine code for the target

Figure 7.1: Compiler bootstrapping: C1 is the initial handcrafted compiler for a subset S1 of a lan-
guage L on a target machine M. C1 is used for code generation for S1 into M. C2 is the
compiler for S2 written in S1 for the target machine M. We perform this process till getting
a compiler for the full subsets of the language L on the target machine L.

 Chapter 7 - The BID Approach

142 A Framework For Distributed Collaborative Software Design Meetings

machine)

Figure 7.3 depicts a UML activity state diagram to describe a general boot-

strapping abstract method.

In the next section we introduce and discuss the target community for the
SCOOP framework and the use of the bootstrapping approach for designing dis-
tributed meeting frameworks.

7.2 Users of distributed software design support systems
 Most research systems are built and used by the people who need them. In

this section we describe the relevance of our research on developers for distrib-
uted systems.

 Open-source software is usually created by geographically dispersed
developers. Most of these volunteer developers are also the users of the soft-
ware they create. Open-source programmers rarely meet in person [95]. They
rely heavily on electronic media such as electronic mail, the world-wide web
and software configuration management systems such as CVS [25]. Open-

Figure 7.2: bootstrapping SCOOP: GroupUML0 is a handcrafted version of SCOOP1. It was
used to develop the next version SCOOP2, which in turn was used to develop the subse-
quent version. The bootstrapping process continue further until getting a stable version of
SCOOP.

A Framework For Distributed Collaborative Software Design Meetings 143

Chapter 7 - The BID Approach

source communities lack synchronous collaboration support and have little real-
time knowledge about each other. According to Yamauchi, face-to-face meetings
within the open-source community would lead to a drastic improvement to the
actual software development process. We believe that providing groupware sup-
port for synchronous collaboration to the open-source community helps to mini-
mize several collaborative issues, such as duplicate work and misunderstanding,
and to enforce achieving agreement and building consensus among developers.
Hence, among primary target users of the SCOOP framework could be the open-
source community benefiting from synchronous collaborative software design
meetings.

Figure 7.3: Bootstrap abstract method (UML activity state diagram): initially, the requirements are
ill-defined but as we progress in the development cycles, we gain better understanding of
issues and requirements.

 Chapter 7 - The BID Approach

144 A Framework For Distributed Collaborative Software Design Meetings

 Researchers in the field of distributed software development can benefit
from SCOOP as well to conduct activities that are based on distributed meetings
management. SCOOP may be also used in designing and conducting controlled
experiments based on distributed synchronous meetings.

Researchers of Model-Driven Development (MDD) may use SCOOP and
the BID approach to design new functionalities by building models, compile the
models at design time and integrate the executable into the system that generate
them at run-time. That is, without shutting down the used system, one can
design a functionality, automatically compile it and the executable integrated
into the system whilst running.

 Researchers investigating distributed applications such as DWARF [85]
may also use SCOOP and BID to design mobile augmented reality applications.
In particular, augmented reality systems for mobile remote maintenance could
benefit from the BID approach [108] to design and improve tools used for simi-
lar tasks. This is because mobile remote maintenance applications are similar to
distributed collaborative meetings, which are supported by SCOOP.

7.3 The Bootstrapping Incremental Development Approach
 In this section we describe steps of the BID empirical approach as shown

in Figure 7.3. A step in the BID approach (BID-step) is a case study as
described in chapter 6 (case studies, see figure 6.5).

Step 0: bootstrap start
Step 0 is the start point of the bootstrapping process. We use the scenario

described in chapter 3 and the user-centered-design approach to design and
build the initial prototype system [98]. The initial prototype had basic capabili-
ties enabling synchronous shared scribbling and text writing using smart boards
[99]. Different meeting rooms accessing the same server could manipulate the

A Framework For Distributed Collaborative Software Design Meetings 145

Chapter 7 - The BID Approach

Figure 7.4: Bootstrapping Incremental Design Process (BID): BID is a bootstrapping, a sequence
of BID Steps, each of them is also a bootstrap process called inner bootstrap process.

 Chapter 7 - The BID Approach

146 A Framework For Distributed Collaborative Software Design Meetings

same artifacts by drawing and clicking on the smart board. A keyboard enabled
users to enter text elements associated with the artifacts. Changes were immedi-
ately propagated to the other sites.

Step 1: first step in the bootstrapping process
Based on the knowledge gained from Step0, we conduct a Step1 meeting.

A Step is a set of case study that consists of n iterations, that is, n meetings.

Each of these iterations is a distributed meeting conducted to brainstorm

and design the requirements of the prototype itself with the goal of getting the
desired state of the design, an improved design artifact, and an improved proto-
type [104].

The prototype evolves from one meeting to another, eventually having n
times improved a given functionality or developing new ones. Prototype n
denotes the n-th prototype.

Design artifacts are the revised SCOOP models designed by the partici-
pants utilizing the prototype to improve the behavior of the prototype. The mod-
els describe functionalities that the participants need at that moment but are not
yet available. For example, a design artifact can be the awareness model
designed during an iteration, incorporated into the system prototype, used in a
subsequent iterations. In n iterations, a design artifact can be changing n times.
Design artifacts may exist only temporarily and disappear as soon as the func-
tionality is built and is incorporated into the system. However, its creation and
evolution history is kept as another design artifact in the system.

With knowledge we denote the improved understanding of the require-
ments of the system. Knowledge can be accumulated over a set of meetings.
Knowledge is used in redesigning the prototype in subsequent BID-steps, that
is, subsequent case studies. Typically, knowledge n in Step 1, which is produced
after n iterations, will serve as the basis for a BID-step 2 and will evolve to

A Framework For Distributed Collaborative Software Design Meetings 147

Chapter 7 - The BID Approach

Knowledge m after (m-n) iterations.

Step N: Nth step in the bootstrapping process
BID-step N takes place based on the results of the previous BID-step N-1,

which takes p-1 iterations to complete (see Figure 7.5).
Using the prototype and knowledge from Step N-1, one or several design

artifacts are produced and are fed back to the prototype. The knowledge pro-
duced during iterations (p..q) is used to redesign the prototype utilizing the
design artifacts. At this level, we iterate over Step N (q-p+1) times until we have
the desired state of the prototype. A desired state is an accepted functionality of
the system.

Although the design process is not predictable, the knowledge p necessarily
remains the same in the worst case and evolves to knowledge q in the best case.
Knowledge is not quantifiable. But still, we can prove the assumption that in
general:

 knowledge (q) (Step(N)) >= knowledge(p) (Step(N-1)).

This is a straightforward claim, since we need more knowledge to move
from current Step N-1 to the Step N; if we don’t produce more knowledge, we
are stalled in step N-1.

It is interesting to notice that each Step of the BID approach is a bootstrap-
ping process in itself. To arrive a final system, we conduct several meetings in
which we incrementally iterate using an inner bootstrapping process, hence the
name Bootstrapping Incremental Design process.

 The bootstrapping process is shown in figure 7.5. A UML meta-model
description of the bootstrap process is shown in figure 7.6. A bootstrapping pro-
cess is basically a set of activities that are build upon each other starting from a
basic state. Knowledge acquisition and system improvement are the characteris-
tics of a bootstrapping step. The System improvement activity yields an improved
prototype for the subsequent bootstrapping step using knowledge acquired dur-

 Chapter 7 - The BID Approach

148 A Framework For Distributed Collaborative Software Design Meetings

ing the current bootstrapping step.

Each of the case studies described in chapter 6 were based on a complete
step of the BID process described above. It consisted of several development
meetings. An elaboration of the iteration Step N in the inner bootstrapping pro-
cess is presented in figure 7.5.

7.3.1 Related Work to the BID approach
We will now argue that the BID approach can be integrated into other

methodologies such as Scrum, RUP, and FDD.
The term “Scrum” denotes a teamwork strategy in the game of rugby with

the goal of “getting an out-of play ball back into the game” [138].
 It was first proposed for managing industrial processes by Takeuchi and

Nonaka who presented an adaptive, quick, self-organizing product development
process [138]. It is an empirical approach applying the ideas of industrial pro-
cess control theory to systems development that introduces the ideas of flexibil-
ity, adaptability and productivity. It does not define any specific software
development techniques for the implementation phase. Scrum concentrates on
how the team members should function in order to produce the system flexibly
in a constantly changing environment.

The main idea of Scrum is that systems development involves several

Figure 7.5: A Bootstrapping Meta-Model

A Framework For Distributed Collaborative Software Design Meetings 149

Chapter 7 - The BID Approach

environmental and technical variables (e.g. requirements, available time frame,
resources, and technology) that are likely to change during the process. This
makes the development process unpredictable and complex, requiring flexibility

Figure 7.6: An elaborated model of the inner bootstrapping process of the BID approach (UML
activity diagram).

 Chapter 7 - The BID Approach

150 A Framework For Distributed Collaborative Software Design Meetings

of the systems development process to be able to respond to the changes.
Scrum has been used to improve existing engineering processes such as

testing practices in an organization, because it involves management activities
aiming at consistently identifying any deficiencies or impediments in the devel-
opment process as well as the practices that are used. Scrum process includes
three phases: pre-game, development and post-game.

 During the pre-game phase, the planning and architecture take place.
Planning includes the definition of all open issues for the system being devel-
oped. this is called the product backlog list is created containing all the require-
ments that are currently know.

The Scrum user scrutinizes the backlog list, which is considered as a con-
tainer for the requirements, based on the current items in the list, plan and build
a high level design of the system. In the BID approach, the requirements are
identified according to the current step and are further identified and developed
during subsequent steps. Therefore, BID can be used to discover and then
enrich the backlog list with new requirements when designing the system.

During development phase, the system is developed in Sprints. Sprints are
incremental cycles where the functionality is developed or enhanced to produce
new increments.

The post-game phase contains the closure of the release. This phase is
entered when an agreement has been made that the environmental variables
such as the requirements are completed. In this case, no more items and issues
can be found nor can any new ones be invented. The system is now ready for the
release and the preparation for this is done during the post-game phase, includ-
ing the tasks such as the integration, system testing and documentation

In the BID approach, the incremental identification of the requirement and
the development of the system happens at the same time. Moreover, require-
ments helps to improve the development of the current system and the system is
used to identify or improve the requirements process. Hence, BID can be inte-
grated into Scrum to support the design and improvement of systems at run-

A Framework For Distributed Collaborative Software Design Meetings 151

Chapter 7 - The BID Approach

time also.

The Rational Unified Process (RUP) was developed by Phillipe Kruchten,

Ivar Jacobson and others at Rational Corporation to complement the UML, nota-
tion with an industry-standard software modeling process [77].

RUP is an iterative approach for developing object-oriented systems, and it
strongly embraces use cases for modeling requirements and building the founda-
tion of the system.

A typical project is divided into four phases called Inception, Elaboration,
Construction and Transition (see Figure 7.5). These phases are split into itera-
tions, each having the purpose of producing a demonstrable piece of software.
The duration of an iteration may vary from two weeks or up to six months.

The BID approach can be used in the elaboration and construction phases
of RUP. During the elaboration phase, RUP assumes that requirements are stable
enough to build a solid architecture and a solid software project plan. After this
phase, most use cases and all actors should have been identified and described,
the software architecture is described, and an executable prototype of the archi-
tecture is created.

In the construction phase, all remaining components and application fea-
tures are developed and integrated into the product, and tested. RUP considers
the construction phase a manufacturing process. By making the developed proto-
types available to the construction phase, BID can be used as an extension to
RUP. BID can improve the elaboration phase by helping in identifying and
developing the requirements and preparing to move the construction phase.

Feature Driven Development (FDD) is another agile approach for develop-
ing systems. However, unlike the RUP, the FDD approach does not cover the
entire software development process, but rather focuses on the design and build
phases [115]. FDD was first reported by Peter Coad and Jeff Luca in [24] and
further developed by, Peter Coad and Stephen Palmer [115].

 Chapter 7 - The BID Approach

152 A Framework For Distributed Collaborative Software Design Meetings

FDD consists of five sequential processes during which the design and
build of the system is carried out (see Figure 7.7) by developing an overall
object model, and a feature list. From this list a small group of features is
selected and feature teams are formed to develop the selected features. The
design and build by feature processes are conducted iteratively, during which
the selected features are produced.

 BID and FDD share the focus on the design and building processes. FDD
is built upon a well defined set of activities, whereas BID influences the activi-

Figure 7.7: RUP Process

A Framework For Distributed Collaborative Software Design Meetings 153

Chapter 7 - The BID Approach

ties by the current state of the requirements, the prototypes, and the models cre-
ated. FDD is based on a features list that is created after walkthrough of each
domain areas. The feature list serves to create high-level plans in which the fea-
ture sets are sequenced according to their priority and dependencies. BID can
support FDD in improving the understanding of the requirements by making
them explicit through prototyping.

7.3.2 Applying the BID Approach
 Up to this point, we presented an approach for software design and devel-

opment where requirements are ill-defined. A large part of the BID approach is
based on experimental processes, where users are part of the development pro-
cess.

We now go one step further into making the BID approach explicit by
applying it to the design and development of the SCOOP framework.

For the initial Step we used the user-centered design approach to design the
handcrafted version of SCOOP. For the rest of the bootstrapping BID-Steps we

Figure 7.8: Process of FDD

 Chapter 7 - The BID Approach

154 A Framework For Distributed Collaborative Software Design Meetings

used a participative design approach, where users use the current version of
SCOOP to design next version of SCOOP.

Step 0: bootstrap start
To trigger the bootstrapping process, we conducted an initial distributed

session of problem solving and gathering requirements through interviews
using the following questions:

•What sorts of tasks must be supported and mediated by the initial proto-
type?

•What types of infrastructure and technology are acceptable for use to users
in carrying out their tasks?

 The first question was answered through the scenario described in chapter
4. From the scenario we derived the core requirements such as support for shar-
ing artifacts among distributed developers, supporting communication, and
enabling awareness information.

Figure 7.9: bootstrapping initial step Step0: using user-centered design approach

A Framework For Distributed Collaborative Software Design Meetings 155

Chapter 7 - The BID Approach

To answer the second question, we used hardware such as electronic white
boards (smart boards) for input and networked computers for distributed com-
munication. The smart boards in particular were helpful to conduct design and
brainstorming meetings because users cold user them like traditional white
boards.

As mentioned earlier, User-Centered Design approach (UCD) was used in
the an development of the initial as shown in Figure 7.10.

UCD is an approach that places the user at the center. UCD focuses on the
artifacts being designed (e.g., the object, communication, space, interface, ser-
vice, etc.). Looking for ways to ensure that it meets the needs of the user. UCD
seeks to answer questions about users and their tasks and goals, then use the
findings, that is, the answers, feedback, and the initial exploration, to drive
development and design. UCD seeks to answer questions such as:

""""Who are the users of this system?

""""What are the users’ tasks and goals?

""""What are the users’ experience levels with this system?

""""What functions do the users need from this system?

""""What information might the users need, and in what form do they need it?

""""How do users think this system should work?

""""How can the design of this system facilitate users' cognitive processes?

UCD can be used to drive the improvement of the usability and usefulness
of everything from “everyday things” [35] to the usefulness of software. Useful-
ness of a system relates to its relevance to the user, whereas usability of a sys-
tems relates to its ease-of-use. A researcher collects primary data or uses
secondary sources to learn about the needs of the user. This information is often
interpreted in the form of design criteria or requirements. The designer interprets
these criteria, typically through concept sketches or scenarios. The focus moves

 Chapter 7 - The BID Approach

156 A Framework For Distributed Collaborative Software Design Meetings

on to the development of the solution.
In user-centered design, the roles of the researcher and the designer are

distinct, but still interdependent. The user is usually not part of the team, but is
represented by the researcher. To test a specific design, the team puts together a
preliminary version which can be as simple as pieces of paper with proposed
design sketches, or designs that look like finished products

Step N: Nth step in the bootstrapping process

The initial step Step0 described above triggered the bootstrapping process
of the design of SCOOP. Now we describe Step N of the bootstrapping
approach.

The main issue is how to use the prototype from Step N-1, how to develop
the increments, how to contribute to design, and to evolve of the whole system.

The initial prototype of SCOOP served as a platform to conduct distributed
software design meetings where the design challenge was the design of SCOOP
itself.

For the bootstrapping step N we are benefiting from the participative
design approach. Since the users of the system can express and can model their
requirements in a better way than designers [3], involving potential and skilled
users in the design is important.

 The field of participatory design grew out of work beginning in the early
1970s in Norway, when computer professionals worked with members of the
Iron and Metalworkers Union to enable the workers to have more influence on
the design and introduction of computer systems into the workplace.

In participatory experiments, the roles of the designer and the researcher
may overlap and the user becomes a critical component of the process. People
express themselves and participate directly and operatively in the development
process. The new situation requires adaptation. In particular, there is a need to
new tools and new methods taking into consideration the active user participa-

A Framework For Distributed Collaborative Software Design Meetings 157

Chapter 7 - The BID Approach

tion into the process.
Figure 7.11 shows a description of SCOOP design using the BID approach.

The user-centered design process corresponds to the initial bootstrapping
step that triggers the bootstrapping process. The participative design process is a
design process “augmented” with user participation. The iterative and participa-
tive nature of the bootstrapping process is an improvement of the traditional par-
ticipative process to a bootstrapping participative process.

7.3.3 Conclusion for the BID approach
We presented in this chapter the BID (bootstrapping Incremental Design)

Figure 7.10: Participative design with the bootstrapping approach

 Chapter 7 - The BID Approach

158 A Framework For Distributed Collaborative Software Design Meetings

approach, an approach applying the idea of bootstrapping theory to systems

Figure 7.11: Applying the bootstrapping design approach in designing the SCOOP framework

A Framework For Distributed Collaborative Software Design Meetings 159

Chapter 7 - The BID Approach

development.
The BID method provides explicit guidance on eliciting the architectural

requirements, designing the architecture, and analyzing the resulting design.
Moreover, it provides software architects with a framework for understanding
the technical trade-off and risks they face as they make architectural design deci-
sions.

 Chapter 7 - The BID Approach

160 A Framework For Distributed Collaborative Software Design Meetings

A Framework For Distributed Collaborative Software Design Meetings 161

CHAPTER 8 Conclusion and Outlook

This thesis explored the requirements for a framework for global and dis-

tributed software development, and in particular for distributed collaborative

software brainstorming and design meetings in same time/ different place set-

tings. Our hypothesis was that distributed software brainstorming and design

meetings can be conducted according to the collaborative vertical process model

defined in chapter 3.

To show the feasibility of distributed modeling meetings, we designed and

conducted several case studies. This led to the identification of several collabo-

rative work issues, from which we derived requirements for the development of

GroupUML and the SCOOP framework. GroupUML is a groupware application

that enables distributed participants to conduct distributed synchronous software

brainstorming and design meetings. It supports collaborative work aspects such

as group awareness, group communication, group activity, group memory, floor

control, location transparency, and rationale knowledge management.

These collaborative work aspects, issues, and requirements have laid the

 Chapter 8 - Conclusion and Outlook

162 A Framework For Distributed Collaborative Software Design Meetings

ground for the following achievements:

We developed -through a scenario-driven requirements elicitation method-

an initial model describing the collaborative activities of distributed software

brainstorming and design meetings. The break down of these activities into

sub-activities such as Initial Model Creation, Model Transformation, Conflict

Identification and Resolution, and Consolidation is described in chapter 4. We

also developed a SCOOP object model based on the Model View Control

(MVC) pattern to ensure the separation of concern: Each of the identified col-

laborative work aspects corresponds a set of model objects, which encapsulates

the application data, and view objects for the corresponding visual representa-

tion.

We designed SCOOP as a collection of reusable component objects repre-

senting Activity, Location, FloorControl, Rationale, GroupAwareness, Commu-

nication, and GroupMemory, each with well defined responsibilities described

via contracts. Contract-based style components development is a useful formal-

ism that expresses high-level specification of the components' behavior. Differ-

ent implementations can be provided that show different behavior (for example,

different locking mechanisms within the same application) or adapting a com-

ponent to fulfill a special requirement in an application having the same domain

as SCOOP.

 We conducted a series of exploratory case studies following a formative

empirical method not only as an evaluation approach but also as a process of

exploring, incrementally designing, and evaluating new functionality of

SCOOP.

Starting with deployment of the initial SCOOP prototype in the target

environment, namely the distributed sites, the participants used the prototype to

design new activities and new functionalities for another version of SCOOP.

This way, the participants used the initial SCOOP prototype to improve SCOOP

itself in an iterative way resulting in the incremental evolution of SCOOP.

A Framework For Distributed Collaborative Software Design Meetings 163

Chapter 8 - Conclusion and Outlook

At the end of the dissertation we described a process resulting from the case

studies we conducted throughout this research and from the development of

SCOOP framework.

We used a formative and evolutionary approach to develop the prototypes

used during cases studies in an attempt to identify the requirements for distrib-

uted real-time software brainstorming and design meetings. The current state of

each prototype and the knowledge gained from the case studies influenced the

subsequent design meetings. The new features were designed and added during

the case studies. The improvements were made incrementally while conducting

distributed meetings for designing the missing features.

 During the process of building the framework, we were made aware of the

possibility in shaping the method we were using to understand the requirements

identification process. We identified an incremental approach with three key

ingredients: user participation, evolutionary experimentation, and a bootstrap-

ping-like design method. This mix enabled the identification of the requirements

and the design of a flexible architecture to support distributed brainstorming

meetings. We call this method the Bootstrapping Incremental Design (BID).

 Future directions
The models, the case studies, and the SCOOP framework described in this

dissertation, can be developed in several directions. First, SCOOP can be evalu-

ated in other application domains such as remote maintenance, diagnosis, or

expert systems, where the users are mobile and need the expertise of remote

experts. The requirements for such systems place emphasis on knowledge

exchange; differ from software design meetings, where the emphasis is on soft-

ware design activity, yet both share the distributed meeting management as a

crucial component. As such, SCOOP could be investigated for its feasibility as a

 Chapter 8 - Conclusion and Outlook

164 A Framework For Distributed Collaborative Software Design Meetings

support tool for remote meetings with experts.

 The integration of SCOOP and applications such as augmented reality-

based maintenance systems, involving remote expertise, data exchange, and dis-

tributed coordination is another possible area for investigation.

Another possibility is the integration of BID with the Unified Process, and

agile methods such as SCRUM, to assess the impact of the use of BID in dis-

tributed agile-based development projects.

The extension of the case studies to population different from software

developers, for example, to blue collar workers is another challenging problem.

Blue collar workers have different practices, motivations, and interests than

developers. This can be investigated in a study of SCOOP’s ability to handle

acceptance issues not only of technical nature. Social issues, working habits,

tight schedules, and peoples’ reluctance and inflexibility may question the

acceptance of the SCOOP framework where collaboration and learning within

the group is mandatory.

Finally, it might be interesting to study the implications of the deployment

of SCOOP applications for privacy and security issues. Conducting geographi-

cally distributed meetings may raise privacy issues, because users may be

unwilling to participate actively in brainstorming and sharing ideas, their ideas

are recorded and made available for unauthorized users. Even within the distrib-

uted team, they might be reluctant to use SCOOP because of confidential meet-

ings, sensitive business data, and non-disclosure agreements. This might also

have an impact on the acceptance of the SCOOP framework.

A Framework For Distributed Collaborative Software Design Meetings 165

Chapter 8 - Conclusion and Outlook

 Chapter 8 - Conclusion and Outlook

166 A Framework For Distributed Collaborative Software Design Meetings

165

Appendix A

Research Material

166

Issues categories

Group A: number of
users mentioned
issues out of total
users.

Group B: number of
users mentioned
issues out of total
users.

Proposed
Solutions

Retained
Solutions

Communication 6/7 5/7 3 2

Awareness 1/7 1/7 0 0

Floor control 1/7 0/7 1 1

Rationale Management 0 0 0 0

Collaboration with
peers (as a whole)

2/7 3/7

Satisfaction with Grou-
pUML use

4/7 3/7 4 3

 A .1: Analysis of the answers of participants to the Questionnaire I: the categories reflect the
requirements for collaborative software design and brainstorming identified in chapter 4

Iterations Communication issues (Summary)
Analysis of the
participants
answers and
suggestions to
the
questionnaires

•Chat possibility
•Integrating communication within diagram models
•Communication mean should not be tied to a particular view but to all

workspace
•Chat window integrated into workspace and not as standalone
•Possibility to hide and show communication window
•Voice/audio channel

Implemented
Functionality

•Chat/instant messaging window available to all views
•Connect temporary messages to diagram models
•Hide & show chat window

Direct resulting
issues of the
incorporation of
functionalities

•Crowded text in chat window
•Cannot distinguish sent and received messages of local/remote partic-

ipants
•No private messages among participants

Further
Improvement
steps

•Added colors to distinguish remote and local group messages.
•Added context of message: users, relative view, model, and possibly

current object under update.
•Added audio conference channel.
•Private messages are not relevant in synchronous collaboration.

 A .2: Summary of the qualitative data about communication issues, the corresponding solutions,
successive resulting issues, further improvements, and the final result and impact on the
collaboration process

167

Final results /
Impact on
collaboration
process

From the analysis of the videotaped sessions and the answers to ques-
tionnaires, it is noticed that chat is used most of the time along the
meetings. Audio channel is only used when dealing with difficult issues

Positive impact of the current communication issues iteration on col-
laborative software brainstorming and design:

• Integration of chat and communication within the design activity:
• Improved and enabled a fluid collaboration.
• Lead to a stable communication mean in GroupUML has been iden-

tified
• Provided awareness information (indirect side effect)

Phases Floor Control issues (Summary)
Analysis of the
participants answers and
suggestions to the
questionnaires

•Introduce a synchronization mode
•Introduce role or moderator to manage turn taking
•Introduce an explicit lock/unlock functionality
•Introduce a timer when initiating an update of an artifact

Implemented
Functionality

• Lock/unlock functionality (several levels: artifact, group of arti-
facts, a view, or workspace)

Direct resulting issues of
the incorporation of
functionalities

•Artifacts are locked until the initiator unlock them. This cause
other participants to wait till artifact are released

• Users forget to unlock when finishing an update
• Lock the whole workspace caused the interruption of the work

process

Further Improvement
steps

•Added a timer to the lock functionality so the initiator does not
keep the floor as more than as necessary

•Added blinking behavior to the lock to remind users of their
locking

•Fine grained lock
•Name of the current user having the current floor is displayed to

all users

Final results / Impact on
collaboration process

•From the analysis of the videotaped sessions and the answers to
questionnaires, it is noticed that the floor control policies were
well welcomed by participants.

•Positive impact of the current floor control policies on collabora-
tive software brainstorming and design:

•Provided support to coordinate users actions and to avoid waste
of time and frustration of the users

•Provided awareness information (indirect side effect)
 A .3: Summary of the qualitative data about floor control issues, the corresponding solutions,

successive resulting issues, further improvements, and the final result and impact on the
collaboration process

 A .2: Summary of the qualitative data about communication issues, the corresponding solutions,
successive resulting issues, further improvements, and the final result and impact on the
collaboration process

168

Categories
Group A (number of
users mentioned
issues out of total
users)

Group B (users num-
ber mentioned
issues out of total
users)

Proposed
Solutions

Retained
Solutions

Communication issues
identified

0/7 1/7 0 0

Awareness issues identi-
fied

5/7 4/7 5 2

Floor control issues iden-
tified

1/7 0/7 1 1

Rationale Management
issues identified

2/7 3/7 0 0

Collaboration with peers
(as a whole)

4/7 5/7

Satisfaction with Grou-
pUML use

5/7 6/7 6 3

 A .4: Analysis of the answers of participants to the Questionnaire of chapter 6, figure 6.15: we
notice more emphasis on awareness issues than on floor control or rationale
management issues.

Phases Awareness issues (Summary)

Analysis of the
participants answers
and suggestions to
the questionnaires

•Integrating a list of users names and pictures participating in the
collaboration

•Highlighting current user picture
•Highlight objects being updated
•Current activity status (e.g. “syncing”, “editing”, “creating”, and so

on.)
•Multi-pointers
•Bird view

Implemented
Functionality

•Integrating a list of users names and pictures participating in the
collaboration

•Highlighting active user picture
•Highlight objects being updated

Direct resulting issues
of the incorporation of
functionalities

•Users forget sometimes to highlight their picture when starting an
action. Therefore, other users actions can be accounted for the
users already highlighted.

Further Improvement
steps

•Radar view
•Current activity status
•Highlighted users are reset after a time-out so users have to high-

light their
•Blinking objects being updated

 A .5: Summary of the qualitative data about awareness issues, the corresponding envisaged
solutions, their successive resulting issues, the improvement, and the final result and impact
on the collaboration process

169

Final results / Impact
on collaboration
process

From the analysis of the videotaped sessions and the answers to
questionnaires, it is noticed that awareness information is the most
useful information that enabled the coordination of the design
activities of users.

Positive impact of the current communication issues iteration on
collaborative software brainstorming and design:

• Integration of awareness information within the design activity:
• Improved and enabled a more reliable collaboration.

Phases Rationale Management issues (Summary)
Analysis of the
participants
answers and
suggestions to
the
questionnaires

•Integrating rationale to the models themselves
•Adding text description to current view of the created models
•Forcing users to enter rationale before moving to another activity straight

after having created objects

Implemented
Functionality

•Integrating rationale management within the design activity
•Added text description of reasons for creating artifact when it is not obvi-

ous
•Forcing user to enter rationale is ignored
• Added a gIBIS support

Direct resulting
issues of the
incorporation of
functionalities

• Crowded models
•Manual entry of rationale in the assessment matrix is not considered fully

as part of design activity

Further
Improvement
steps

•Connect rationale in the form of issues, options, and arguments to design
models

•Connected rationale information is parsed automatically and entered to the
assessment matrix

•Show and hide rationale information helps to avoid a crowded workspace

Final results /
Impact on
collaboration
process

The analysis of the videotaped sessions and the answers to questionnaires,
showed that rationale management is difficult to manage in the first glance
but vital to support short-term and long-term meetings where decisions and
argumentation are made explicit and are part of the models created through
collaboration.

Positive impact of the current rationale issues iteration on collaborative
software brainstorming and design:

• Integration of rationale information management within the design activ-
ity and not as an activity apart as rationale management systems used to
be.

•Improved support to users in documenting their design process and pro-
vide necessary information background to built and history of the meet-
ings.

 A .6: Summary of the qualitative data about rationale issues, the corresponding envisaged solutions,
their successive resulting issues, the improvement, and the final result and impact on the
collaboration process

 A .5: Summary of the qualitative data about awareness issues, the corresponding envisaged
solutions, their successive resulting issues, the improvement, and the final result and impact
on the collaboration process

170

Categories
Group A (users num-
ber mentioned
issues out of total
users)

Group B (number of
users mentioned
issues out of total
users)

Proposed
Solutions

Retained
Solutions

Communication
issues identified

3/7 2/7 0 0

Awareness issues 2/7 1/7 0 0

Floor control issues 0/7 0/7 0 0

Rationale Manage-
ment issues

7/7 6/7 8 3

Collaboration with
peers (as a whole)

6/7 5/7

Satisfaction with Grou-
pUML use

5/7 6/7 8 3

 A .7: Analysis of the answers of participants to the Questionnaire of figure 6.6 chapter 6.

171

171

Appendix B

Abbreviations

172

AND Alcatel Data Network

BID Bootstrapping Incremental
Design

COM Component Object Model

CORBA Common Object Request
Broker

CSCW Computer Supported Coop-
erative Work

CVS Concurrent Version System

DWARF Distributed Wearable Aug-
mented Reality Framework

EMS Electronic Meetings Systems

FDD Feature-Driven Design

FR Fault Report

gIBIS Graphical representation of
IBIS

GSD Global Software Development

GSE Global Software Engineering

HCI Human Computer Interaction

IBIS Issue-Based Information
System

ICICLE Intelligent Code Inspection
Environment in a C Language
Environment

LAN Local Area Network

MDA Model-Driven Systems

MDD Model-Driven Development

MOF Meta Object Facility

MVC Model View Controller

OMG Object Management Group

OOActSM Object-Oriented Activ-
ity Support

QOC Questions, Options and Criteria

RAD Rationale Analysis Document

RFC Request For Change

rIBIS Real-time IBIS

RMI Remote Method Invocation

ROI Return On Investment

RPC Remote Procedure Call

RUP Rationale Unified Process

SCOOP Synchronous Object-Ori-
ented Process

SDD System Design Document

SOAP Simple Object Access Protocol

UML Unified Modeling Language

WAN Wide Area Network

WYSIWIS What You See Is What I
See

WYSIWITYS What You See Is What
I Think You See

XMI XML Metadata Interchange

XML extensible Markup Language

XP eXtreme Programming

173

173

Bibliography

[1] A.Newell & H. Simon, The Theory of Human Problem Solving; reprinted
in Collins & Smith (eds.), Readings in Cognitive Science, section 1.3.

[2] Adams, Paul (2004) A Collaboration Environment to Support Distributed
eXtreme Programming. In: FACS PhD Poster Workshop, 11 Nov 2004,
Lincoln.

[3] Andrew Clement, Peter Van den Besselaar: Proceedings of the Eighth Con-
ference on Participatory Design: Artful Integration: Interweaving Media,
Materials and Practices, PDC 2004, Toronto, Ontario, Canada, July 27-31,
2004

[4] Aoyama, M. Agile Software Process Model. In Proceedings of the 21st
IEEE International Computer Software and Applications Conference
COMPSAC '97 (1997), 454-459.

[5] Archer, L.B., “Systematic method for designers,” in Developments in
Design Methodology, Cross, N., Ed. John Wiley & Sons, 1984, chap. 1.3,
pp. 57-82, Originally published by The Design Council, London (1965).

[6] B. Bruegge, A.H. Dutoit, R. Kobylinski, G. Teubner.Transatlantic Project
Courses in a University Environment 7th Asia-Pacific Software Engineer-
ing Conference (APSEC 2000), Singapore, December, 2000.

[7] B.Brügge, A. Dutoit Distributed Software Engineering: Research Issues &
State-of-the-art.

[8] B.G. Glaser and A.L. Strauss, The Discovery of Grounded Theory: Strate-
gies for Qualitative Research. Aldine Publishing, 1967.

[9] Beck, K. and R. Johnson (1994). Patterns Generate Architecture. European
Conference on Object Oriented Programming. Berlin: Springer-Verlag.

[10] Bellotti, V., & MacLean, A. (1994). Integrating and Communicating Design
Perspectives with QOC Design Rationale. Esprit Basic Research Action
7040, AMODEUS-2, Working Paper, ID/WP29.

[11] Bertrand Meyer in “A Conversation with Bartering Meyer, Part II by Bill
Veneers December 8, 2003”.

174

[12] Bjørn Erik Munkvold, Robert Anson. Organizational Adoption and Diffu-
sion of Electronic Meeting Systems: A Case Study.

[13] BNF and EBNF : What are they and how do they work? http://www.gar-
shol.priv.no/download/text/bnf.html (June 2005).

[14] Borghoff, U. M. and Schlichter, J. H. (2000). Computer-Supported Cooper-
ative Work: Introduction to Distributed Applications.

[15] Bradley, G, “Control vs. Creativity: Software Engineering at a Crossroads,”
in Human Aspects in Computing: Design and Use of Interactive Systems
and Work with Terminals, Bullinger, H.J., 1991, pp. 561-565.

[16] Bran Selic. The Pragmatics of Model-Driven Development IBM Rational
Software http://doi.ieeecomputersociety.org/10.1109/MS.2003.1231145 .
Copyright 2004 IEEE Inc.

[17] Brooks, F. P. (1995). The Mythical Man-month. Addison Wesley, San
Diego, 2nd. edition.

[18] Brothers, L., Sembugamoorthy, V., Muller, M., “ICICLE: Groupware for
Code Inspection.” CSCW 90: Proceedings of the Conference on Computer-
Supported Cooperative Work, Los Angeles, CA: ACM, 1990, pp. 169-181.

[19] Carolyn B. Seaman, Qualitative Methods in Empirical Studies of Software
Engineering. IEEE transactions on software engineering, vol. 25, no. 4,
july/august 1999.

[20] Chacon-Moscoso, S., M. T. Anguera-Argilaga, J. Antonio, P. Gil and F.P.
Holgado-Tello (2002), 'A mutual catalytic role of formative evaluation: the
interdependent roles of evaluators and local programme practitioners', Eval-
uation 8(4): 413-432.

[21] Christof Ebert, Philip De Neve Surviving Global Software Development.
IEEE Software Magazine 2001-03 pp 62-69

[22] Clement, A. and den Besselaur, P.V., “A Retrospective Look at PD
Projects,” Communications of the ACM, vol. 36, no. 4, 29-37, Jun. 1993.

[23] Clever. Guareis de Farias, L. Ferreira Pires, M. van Sinderen. A conceptual
model for the development of CSCW systems. 4th International Conference

175

on the Design of Cooperative Systems (COOP 2000). Sophia Antipolis,
France, May 2000.

[24] Coad, P.,LeFebvre, E. and De Luca, J. (2000). Java Modeling In Color With
UML: Enterprise Components and Process. Prentice Hall.

[25] Concurrent Version System http://www.gnu.org/software/cvs/ (june 2005)

[26] Conference Report, Building for People, 1965 UK Ministry of Public
Building and Works, London, 1965.

[27] Cramton, C. D. (1997). Information Problems in Dispersed Teams. Paper
presented at the Annual Meeting of the Academy of Management (Best
Papers Proceedings), Boston, MA.

[28] D. Dutta-Roy. “Virtual meetings with Desktop”, IEEE Spectrum, Vol. 35,
No. 7, July 1998, pp. 47-56.

[29] Daniela E.H. Damian, Mildred L.G. Shaw, Armin Eberlein, Brian R.
Gaines, Brian Woodward An Empirical Study of Facilitation of Computer-
Mediated Distributed Requirements Negotiations in Fifth IEEE Interna-
tional Symposium on Requirements Engineering (RE'01) pp. 0128 August
2001.

[30] Darke, J , “The primary generator and the design process,” Design Studies,
vol. 1, no. 1, 36-44, 1979.

[31] Dasgupta, S., “The structure of design processes,” in Advances in Comput-
ers, Yovits, M.C., Ed. Academic Press, 1989, pp. 1-67.

[32] David Marca,Geoffrey Bock, Groupware: Software for Computer Sup-
ported Cooperative Work (Chapter 4)., IEEE Computer Society Press.

[33] DeGrace, P. and Hulet-Stahl, L., Wicked Problems, Righteous Solutions :
A Catalogue of Modern Software Engineering Paradigms. Englewood
Cliffs, New Jersey: Yourdon Press, 1990.

[34] Dewan, P., Architectures for collaborative applications. In Beaudouin-
Lafon, M. (Ed.), Computer Supported CooperativeWork, Trends in Soft-
ware Series 7:169-193. JohnWiley & Sons, Chichester, 1999.

[35] Donald A. Norman. The Design of Everyday Things . NY. Basic books
1988.

176

[36] Douglas C. Engelbart, Bootstrap Institute June 1992 (AUG-
MENT,132811,)Toward High-Performance Organizations: A Strategic
Role for Groupware.

[37] Dourish, P.,Software infrastructures. In Beaudouin-Lafon, M. (Ed.), Com-
puter Supported Cooperative Work, Trends in Software Series 7:195-219.
John Wiley & Sons, Chichester, 1999.

[38] Dubs, S. & Hayne, S. Distributed Facilitation: A Concept Whose Time Has
Come? In Proc CSCW'92 Conference on Computer Supported Cooperative
Work, ACM/PRESS, N.Y., 1992, pp. 314-321.

[39] E James D. Herbsleb, Audris Mockus: An Empirical Study of Speed and
Communication in Globally Distributed Software Development. IEEE
Trans. Software Eng. 29(6): 481-494 (2003)

[40] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design
Patterns Elements of Reusable Object-Oriented Software. Addison-Wesley,
1995

[41] Evert Gummesson, Quality Management in Service Organizations. New
York: St. John's University and The International Service Quality Associa-
tion (ISQA).

[42] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
Michael Stal, Peter Sommerlad, Michael Stal Pattern-Oriented Software
Architecture, Volume 1: A System of Patterns. Wiley-VCH Verlag GmBH,
June 2001.

[43] Freeman, P, “The nature of design,” in Tutorial on Software Design Tech-
niques, Freeman, P. and Wasserman, A.I., Eds. IEEE, 1980, pp. 46-53.

[44] French, A. A Study of Communication and Cooperation in Distributed Soft-
ware Project Teams. In Proc. International Conference on Software Mainte-
nance. (1998), 146-154.

[45] Gable, G., "Integrating Case Study and Survey Research Methods: An
Example in Information Systems," European Journal of Information Sys-
tems, (3:2), 1994, pp. 112-126.

[46] Gaoyan Xie, Yongsen Xu, Yu Li, Qian Li. Codebugger - A Software Tool
for Cooperative Debugging. SIGPLAN Notices 35(2): 54-60 (2000).

177

[47] Gause, Donald and Gerald Weinberg, 1989, Exploring Requirements: Qual-
ity Before Design. New York: Dorset House Publishing.

[48] Gorton, I., Hawryszkiewycz, I., Ragoonaden, K., Chung, C., Lu, S., and
Randhawa, G. Groupware Support Tools for Collaborative Software Engi-
neering. In Proceedings of the 30th IEEE International Conference on
System Sciences. (1997), 157-166.

[49] Gorton, I, and Motwani, S., Towards a Methodology for 24 Hour Software
Production Using Geographically Separated Teams, in Proceedings of the
First IFIP International Conference on Software Quality and Productivity,
Hong Kong, December 5-7th, Chapman and Hall, pages 50-55, 1994.

[50] GRINTER R. E. Recomposition: Putting It all Back Together Again. In
Proceedings of CSCW'98, Seattle WA, pp. 393-402, 1998.

[51] Grudin, J. (1994). Cscw: History and focus. IEEE Computer, 27(5):16-19.

[52] Gutwin, C., Roseman, M., and Greenberg, S., A usability study of aware-
ness widgets in a shared workspace groupware system. In Proceedings of
the ACM CSCW'96 Conference on Computer Supported Cooperative
Work, Boston, Mass., November 16-20, 1996.

[53] Gutwin, Carl ; Greenberg, Saul: "Workspace awareness for groupware" in:
Proceedings of the CHI '96 conference companion on Human factors in
computing systems: common ground, Vancouver, BC, Canada, 1996, pp.
208-209.

[54] Harald Holz, Sigrid Goldmann and Frank Maurer. Working Group Report
on Coordinating Distributed Software Development Projects.

[55] Herbsleb, J., and Grinter, R. Architectures, Coordination, and Distance:
Conwayís Law and Beyond. IEEE Software 16, 5 (September/October
1999), 63-70.

[56] Herbsleb, J., and Grinter, R., Splitting the Organization and Integrating the
Code: Conwayís Law Revisited. In Proceedings of the 1999 international
conference on Software Engineering. (1999), 85-95.

[57] Hewett, T. T. (1986). The role of iterative evaluation in designing systems
for usability. Proceedings of British Computer Society Human Computer
Interaction Specialist Group Conference - University of York, 196-214

178

[58] Higa, K.Understanding Relationships Among Teleworkers' E-Mail Usage,
E-mail Richness Perceptions and E-Mail Productivity Perceptions Under a
Software Engineering Environment. IEEE Transactions on Engineering
Management 47, 2 (May 2000), 163- 173.

[59] Hoover, S.P.and Rinderle, J.R., “Models and abstractions in design,”
Design Studies, vol. 12, no. 4, 237-245, 1991.

[60] IBM Online, 2003 Scalable Model-Driven Development with UML 2.0
http://www-306.ibm.com/software/sw-events/webcast/print/
R562411U95151E41.html

[61] Internet-based collection of materials for Evaluating Socio Economic
Development, Final Materials December 2003 www.evalsed.info

[62] J. Kramer. Distributed Software Engineering Invited State-of-the-Art
Report. Proceedings of the 16th International Conference on Software Engi-
neering, May 16-21, 1994, Sorrento, Italy. IEEE Computer Society / ACM
Press, 1994.

[63] J. Sametinger and A. Stritzinger. Exploratory software development with
class libraries. In Proc. 7th Joint Conference of the Austrian Computer Soci-
ety, Klagenfurt, Austria, 1992.

[64] J.Bettin. Model-Driven Software Development - An emerging paradigm for
Industrialized Software Asset Development. SoftMetaWare Ltd http://web-
design.ittoolbox.com/documents/document.asp?i=4335.

[65] J.F. Gilgun, “Definitions, Methodologies, and Methods in Qualitative
Family Research,” Qualitative Methods in Family Research. Thousand
Oaks: Sage, 1992.

[66] Jacobsen, I. (1994). Object-Oriented Software Engineering. New York,
Addison-Wesley.

[67] Jarvenpaa, S. L., Knoll, K., & Leidner, D. E. (1998). Is anybody out there?
Antecedents of trust in global virtual teams. Journal of MIS, 14(4), 29-64.

[68] Jarvenpaa, S. L., & Leidner, D. E. (1998). Communication and Trust in
Global Virtual Teams. Journal of Computer-Mediated Communication
(Online at http://www.ascusc.org/jcmc), 3(4).

179

[69] Joey F. George, Joseph S. Valacich, J.F. Nunamaker, Jr.. “THE ORGANI-
ZATIONAL IMPLEMENTATION OF AN ELECTRONIC MEETING
SYSTEM: AN ANALYSIS OF THE INNOVATION PROCESS”.

[70] Jonathan Grudin. (1988). Why CSCW Applications Fail: Problems in the
Design and Evaluation of Organisational Interfaces. Proceedings of the
Conference on Computer- Supported Cooperative Work (CSCW '88).

[71] Jorn Bettin. Model-Driven Software Development An emerging paradigm
for Industrialized Software Asset Development Version 0.8 June 2004

[72] Kaplan, B. and Maxwell, J.A. "Qualitative Research Methods for Evaluat-
ing Computer Information Systems," in Evaluating Health Care Information
Systems: Methods and Applications, J.G. Anderson, C.E. Aydin and S.J.
Jay (eds.), Sage, Thousand Oaks, CA, 1994, pp. 45-68.

[73] Kaplan, B. and Duchon, D. "Combining Qualitative and Quantitative Meth-
ods in Information Systems Research: A Case Study," MIS Quarterly (12:4)
1988, pp. 571-587.

[74] Kaplan, S.M. , “ConversationBuilder: An Open Architecture for Collabora-
tive Work,” in Human-Computer Interaction - INTERACT '90, 1990, pp.
917-922.

[75] Karat, J.and Bennett, J., “Supporting effective and efficient design meet-
ings,” in Human-Computer Interaction - INTERACT '90, 1990, pp. 365-
370.

[76] Kent McPhee. Design Theory and Software Design. Technical Report TR
96-26 October 1996 (Revised May 1997) The University of Alberta Edm-
onton, Alberta, Canada.

[77] Kruchten, P. (2000). The Rational Unified Process: an Introduction. Addi-
son-Wesley

[78] Krueger, M.W., “Environmental Technology: Making the Real World Vir-
tual,” Communications of the ACM, vol. 36, no. 7, 36-37, Jul. 1993.

[79] Kurland, N. B. & Egan, T. D. (1999). Telecommuting: Justice and Control
in the Virtual Organization. Organization Science, 10(4), 500-513.

[80] Lammers, S, Programmers at Work. Microsoft Press, 1986.

180

[81] Lawson, B.,How Designers Think. The Architectural Press Ltd.: London,
1980.

[82] Liam Bannon . (1993). Use, Design, and Evaluation: Steps towards an inte-
gration. Shaerding CSCW Workshop.

[83] Liam J. Bannon. CSCW: An Initial Exploration. Scandinavian Journal of
Information Systems, 5:3-24, August 1993.

[84] M Wiesmann. Understanding Replication in Databases and Distributed Sys-
tems Proceedings of the The 20th International Conference on Distributed
Computing Systems (ICDCS 2000) Page: 464 - 2000.

[85] M. Bauer, B. Bruegge, G. Klinker, A. MacWilliams, T. Reicher, S. Riß, C.
Sandor, and M. Wagner, Design of a Component-Based Augmented Reality
Framework, in Proceedings of ISAR 2001, New York, USA, 2001, IEEE
Computer Society, pp. 124-133. 120

[86] MacLean, A., Bellotti, V., and Young, R., “What rationale is there in
design?,” in Human-Computer Interaction - INTERACT '90, 1990, pp. 207-
212.

[87] Magnus Ramage, CSCW Evaluation in Five Report CSEG/17/96, Co-oper-
ative Systems Engineering Group, Lancaster University, UK.

[88] Majchrzak, A.,Rice, R. E., King, N., Malhotra, A., & Ba, S. (2000a). Com-
puter-mediated interorganizational knowledge-sharing: Insights from a vir-
tual team innovating using a collaborative tool.

[89] Malone, T. W. : 1992, Experiments with Oval: A Radically Tailorable Tool
for Cooperative Work, in J. Turner and R. E. Kraut (eds), Proc. of the Conf.
on Computer Supported Cooperative Work CSCW'92, ACM Press, New
York, pp. 289{297.

[90] Matthew Bass, Daniel Paulish Global Software Development Process
Research at Siemens

[91] Meadows, C. J. (1996b). Globework: Creating Technology with Interna-
tional Teams (thesis)., Harvard University, Boston.

[92] Meadows, C. J.(1996a). Globalizing Software Development. Journal of
Global Information Management, 4(1), 5-14.

181

[93] Michael Cusamano, Richard Selby, Microsoft Secrets: How the worlds
most powerful software company creates technology, shapes markets, and
manages people. New York Free Press, 1995.

[94] Millar, J. (1999). International Software Trade: Capability Building
Through Client Relationships. A submission to: The Information Society.

[95] Mills, H. D., O'Neill, D., et all 1980. The management of software engineer-
ing. IBM Sys. J., 24(2), 414-77. (Ch. 3).

[96] Minneman, S.L. , “The Social Construction of a Technical Reality: Empir-
ical Studies of Group Engineering Design Practice,” Ph.D. thesis, Stanford
University, 1991.

[97] Mostow, J.,“Toward better models of the design process,” AI Magazine,
vol. 6, no. 1, 44-57, Spring 1985.

[98] N. Boulila. Supporting Distributed Software Development with RD-UML
Fachwissenschaftlicher Informatik-Kongress - Informatiktage 2002, Bad
Schussenried: Nov 8-9, 2002. Konradin Verlagsgruppe und Stepstone AG
Deutschland. Pp 107-111.

[99] N. Boulila, A. Braun, O. Creighton, T. Zhang. Tech report for SMART
Technologies Inc., iBistro: Supporting Informal Meetings in Distributed
Software Development. 2002.

[100] N. Boulila, A.H. Dutoit, , B. Bruegge. Group Support for Distributed Col-
laborative Concurrent Software Modeling. In intern. conference on Auto-
mated Software Engineering (ASE) Linz Austria 2004.

[101] N. Boulila, A.H. Dutoit, , B. Bruegge. Towards a support of Rationale-
based Distributed Cooperative Group Modeling of SoftwareIn intern. con-
ference on Automated Software Engineering (ASE) Linz Austria 2004.

[102] N.Boulila .Towards an Object-Oriented CSCW Framework for Supporting
Distributed Software Modeling Fachwissenschaftlicher Informatik-Kon-
gress - Informatiktage 2003, Bad Schussenried: Nov 8-9, 2003. Konradin
Verlagsgruppe und Stepstone AG Deutschland.

[103] N.Boulila, A.Dutoit, B.Bruegge. CSCW-based Software Engineering
Course: A Case Study Of Distributed Collaborative Software Modeling in

182

Education. Proc. Intl. Conf. on Applied Computing (Pedro Isaias, Miguel
Baptista Nunes eds.), IADIS, pp. 271-278, Lisbon, Portugal, Mar. 2004..

[104] N.Boulila, A.H. Dutoit, B. Bruegge D-Meeting: an Object-Oriented Frame-
work for Supporting Distributed Modelling of Software International Work-
shop on Global Software Development, International Conference on
Software Engineering. Portland, Oregon, May 9, 2003.

[105] N.Boulila, A.Dutoit, B.Bruegge. Towards a Unified Object-Oriented
CSCW-Framework for Supporting Distributed Group Modeling Of Soft-
ware. Proc. Intl. Conf. on Applied Computing (Pedro Isaias, Miguel Bap-
tista Nunes eds.), IADIS, pp. 613-621, Lisbon, Portugal, Mar. 2004.

[106] N.Boulila. Computer Supported Cooperative Software Engineering: A
framework for supporting distributed concurrent group modeling of soft-
ware. In Doctoral Consortium Proc. Intl. Conf. on Applied Computing
IADIS, pp. IV11-15, Lisbon, Portugal, Mar. 2004.

[107] N.Boulila. SCOOP: A framework for supporting Synchronous Collabora-
tive Object-Oriented Software Design Process. Cooperative Support for
Distributed Software Engineering Processes ASE Linz 2004.

[108] N.Boulila. Bootstrapping Incremental Design: An Empirical Approach For
Requirements Identification and Distributed Software Development. in the
International Workshop on Distributed Software Development, in conjunc-
tion with 13th IEEE Requirements Engineering Conference 2005 Paris
France.

[109] Nakanishi, H.,Yoshida, C., Nishimura, T., and Ishida, T. (1999). Freewalk:
A 3d virtual space for casual meetings. IEEE Micro.

[110] Naur, P, “Programming as theory building,” Microprocessing and Micro-
programming, vol. 15, 253-261, 1985.

[111] Nierstrasz, O. and Tsichritzis, D.: 1989, Integrated O ce Systems, in W. Kim
and F. Lochovsky (eds), Object-Oriented Concepts, Databases and Applica-
tions, ACM Press and Addison- Wesley, pp. 199{215.

[112] Ocker, R. , Hiltz, S.R., Turoff, M. Fjermestad, J., Computer Support for Dis-
tributed Asynchronous Software Design Teams: Experimental Results on
Creativity and Quality. In Proceedings of the 28th IEEE International Con-
ference on System Sciences. (1995), 4-13.

183

[113] Osborn, A. (1957), Applied imagination: Principles and procedures of cre-
ative thinking (rev. ed.), New York: Scribner's.

[114] P. Dewan, J. Riedl. (1993) “Toward Computer-Supported Concurrent Soft-
ware Engineering”, IEEE Computer, Vol. 27, pp. 17-27, Jan. 1993.

[115] Palmer, S. R. and Felsing, J. M. (2002). A Practical Guide to Feature-Driv-
enDevelopment. Upper Saddle River, NJ, Prentice-Hall.

[116] Parnas, D.L. and Clements, P.C., “A rational design process: how and why
to fake it,” IEEE Transactions on Software Engineering, vol. 12, no. 2, 251-
257, Feb. 1986.

[117] Prakash, A., Group editors. In Beaudouin-Lafon, M. (Ed.), Computer Sup-
ported Cooperative Work, Trends in Software Series 7:103-133. JohnWiley
& Sons, Chichester, 1999.

[118] Rajkumar, T.,& Dawley, D. (1997). Problems and Issues in Offshore Devel-
opment of Software. In L. Willcocks & M. Lacity (Eds.), Information Sys-
tems Sourcing: Theory and Practice. Oxford: Oxford University Press.

[119] Rebecca E. Grinter From Local to Global Coordination: Lessons from Soft-
ware Reuse Proceedings of the 2001 International ACM SIGGROUP Con-
ference on Supporting Group Work . Boulder, Colorado, USA Pages: 144 -
153 Year of Publication: 2001

[120] Rebecca E. Grinter, James D. Herbsleb, Dewayne E. Perry: The geography
of coordination: dealing with distance in R&D work. GROUP 1999: 306-
315

[121] Rein, G.L.and Ellis, C.A., rIBIS: A real-time group hypertext system. Inter-
national Journal of Man-Machine Studies, 34(3): 349-367, 1991.

[122] Robert D. Battin, Ron Crocker, Joe Kreidle Leveraging Resources in Global
Software Development.

[123] Rossi, P. H , Freeman, H. E., & Lipsey, M. W. (2004). Evaluation: A sys-
tematic approach (7th ed.). Thousand Oaks, CA: Sage.

[124] Rosson, M.B , Maass, S., and Kellogg, W.A., “The designer as user: build-
ing requirements for design tools from design practice,” Communications of
the ACM, vol. 31, no. 11, 1288-1298, Nov. 1988.

184

[125] Rudolf K. Bock, Bootstrap. 7 April 1998 http://rkb.home.cern.ch/rkb/
AN16pp/node22.html

[126] S.J. Taylor and R. Bogdan, Introduction to Qualitative Research Methods.
New York: John Wiley & Sons, 1984.

[127] Schlichter, Johann, Michael Koch, Martin Berger, Workspace Awareness
for Distributed Teams , Proceedings of Workshop Coordination Technol-
ogy for Collaborative Applications, Singapore, Wolfram Conen(ed.), 1997.

[128] Schwaber, K. and Beedle, M. (2002). Agile Software Development With
Scrum. Upper Saddle River, NJ, Prentice-Hall.

[129] Schwaber, K. (1995). Scrum Development Process. OOPSLA'95 Workshop
on Business Object Design and Implementation. Springer-Verlag.

[130] Scriven, Michael. "Beyond Formative and Summative Evaluation." In In
M.W. McLaughlin and ED.C. Phillips, eds., Evaluation and Education: A
Quarter Century. Chicago: University of Chicago Press, 1991.

[131] Simon, H.A., “The structure of ill-structured problems,” Artificial Intelli-
gence, vol. 4, 181-200, 1973.

[132] Simon, H.A., The Sciences of the Artificial, 2 ed.. Boston, Mass.: The MIT
Press, 1981.

[133] Smart Tech Inc. http://www.smarttech.com

[134] Stefik, M., Foster, G., Bobrow, D.G., Kahn, K., Lanning, S., and Suchman,
L., “Beyond the Chalkboard: Computer Support for Collaboration and
Problem Solving in Meetings,” in Computer-Supported Cooperative Work:
A Book of Readings, Greif, I., Ed. Morgan Kaufmann Publishers, Inc.,
1988, chap. 13, pp. 335-366.

[135] Stephen J, et. al. MDA Distilled - Principles of Model-Driven Architecture.
Addision Wesley. Boston 2004.

[136] Stephen J. Mellor, Marc J. Balcer, Stephen Mellor, Marc Balcer Model
Driven Architecture with Executable UML (TM) - Addison Wesley 2002.

[137] Steve McConnell, Rapid Development: Taming Wild Software Schedules,
Microsoft Press, 1996, pp. 449-463. ISBN 1-55615-900-5

185

[138] Takeuchi, H., and I. Nonaka, "The new new product development game,"
Harvard Business Review, pp. 137-146, January-February 1986.

[139] Teege, G.: Object-Oriented Activity Support: A Model for Integrated
CSCW Systems. Computer Supported Cooperative Work (CSCW): The
Journal of Collaborative Computing, 5(1), pp. 93-124, 1996.

[140] Weber, R. P. (1990). Basic Content Analysis, 2nd ed. Newbury Park, CA.

[141] Willem, R.A., “Varieties of design,” Design Studies, vol. 12, no. 3, 132-
136, 1991.

[142] Winograd, T, “From Programming Environments to Environments for
Designing,” Communications of the ACM, vol. 38, no. 6, 65-74, Jun. 1995.

[143] Wirfs-Brock, R., Wilkerson, B., and Wiener, L., Designing Object-Oriented
Software. Prentice Hall, 1990.

[144] Y.S. Lincoln and E.G. Guba, Naturalistic Inquiry. Thousand Oaks Calif.:
Sage, 1985.

[145] Yin, R. K.(1994). Case Study Research: Design and Methods (Vol. 6).
Newbury Park, CA: Sage.

[146] Yutaka Yamauchi, Makoto Yokozawa, Takeshi Shinohara, and Toru Ishida.
Collaboration with Lean Media: How Open Source Succeeds. In Proceed-
ings of CSCW, pages 329--338. ACM Press, 2000.

