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Zusammenfassung

Diese Arbeit mochte maschinelle Beweise einem breiteren Publikum zugénglich
machen. Die hierzu eingefiihrte formale Sprache Isar erlaubt Beweis Dokumente
auf einem fiir menschliche Leser angemessenen Niveau zu verfassen. Die logische
Fundierung erfolgt durch Interpretation als abstrakte Inferenzen im Isabelle Sy-
stem. Die Isabelle/Isar Umgebung ist generisch beziiglich Objekt-Logiken und
Beweiswerkzeugen, und unterstiitzt gleichermaflen Natiirliches Schlieen sowie
algebraische Umformungen. Anwendungen aus der Logik, Mathematik und In-
formatik belegen die Vielseitigkeit und Praxistauglichkeit der Isar Konzepte.



Abstract

The basic motivation of this work is to make formal theory developments with
machine-checked proofs accessible to a broader audience. Our particular ap-
proach is centered around the Isar formal proof language that is intended to
support adequate composition of proof documents that are suitable for human
consumption. Such primary proofs written in Isar may be both checked by the
machine and read by human-beings; final presentation merely involves trivial
pretty printing of the sources. Sound logical foundations of Isar are achieved
by interpretation within the generic Natural Deduction framework of Isabelle,
reducing all high-level reasoning steps to primitive inferences.

The resulting Isabelle/Isar system is generic with respect to object-logics and
proof tools, just as pure Isabelle itself. The full Isar language emerges from a
small core by means of several derived elements, which may be combined freely
with existing ones. This results in a very rich space of expressions of formal
reasoning, supporting many viable proof techniques. The general paradigms of
Natural Deduction and Calculational Reasoning are both covered particularly
well. Concrete examples from logic, mathematics, and computer-science demon-
strate that the Isar concepts are indeed sufficiently versatile to cover a broad
range of applications.
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Chapter 1

Introduction

1.1 Motivation

The general idea of “formalizing” human reasoning already has a long tradition,
reaching at least back to ancient Greek philosophy. The “calculemus” manifest
of Leibniz may be seen as a more recent incident, aimed to supersede philo-
sophical disputes by a formalized process to “decide” the truth of statements.
Purely syntactic underpinning of formal reasoning (with mechanical checking
of proofs) has finally matured during the 20th century, although the claims on
universal truth had to be dismissed. Roughly speaking in the first half of the
century, logicians have demonstrated that mathematics could in principle be
completely reduced to a few logical principles. In the second half of the cen-
tury, the advent of computers has enabled to build systems for actually doing
non-trivial developments in formal logic.

At some point in the history of computer-based reasoning, visionaries of “ar-
tificial intelligence” proclaimed that it was possible to build fully automated
theorem provers that would be able to conduct substantial mathematical proof
developments without human intervention! Whereas many automated reason-
ing techniques have been devised over several decades, they have proven to be
rather limited in practice, being useful only for restricted technical problems.

Over the last 10-20 years, a different tradition of interactive theorem proving
has become quite successful in supporting reasonably sized formal theory devel-
opments. Interactive proving proceeds by instructing the machine (the “proof
checker”) step-by-step, until the intended result is achieved eventually. The
individual reasoning steps may vary in granularity, ranging from single rules
to invocations of automated proof procedures (for local problems). Such semi-
automated reasoning systems have been able to cover significant applications
from areas of pure logic, mathematics and computer-science (e.g. mathematical
background theories, abstract models of hardware and software systems, pro-
gramming language semantics, algorithms and functional programs). Note that
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new (deep) mathematical results are normally not discovered by proof develop-
ment on the machine. There are also some practical limits on verifying concrete
hardware or software systems at large (this market has basically moved over
to model-checking and testing lately, trading actual verification for systematic
finding of errors).

Despite the relative success of theorem proving in certain areas, there are still
fundamental obstacles in addressing a broader range of users, even those with
some interest in formal logic and proof itself. The full potential of applications
of semi-automated reasoning has probably not been unleashed yet.

The rather paradoxical problem is that most interactive proof systems do not
support an adequate notion of proof (speaking from the human perspective).
Major systems are still too much oriented towards technical issues of certain
logical calculi and their implementation on the machine. The input is given by
slightly arcane languages of proof scripts, which are difficult to understand later
on; proof developers typically need to replay existing scripts to recover some
idea of the actual reasoning process. This situation is bad enough for proof
maintenance, but is impossible for communicating formal proofs to a wider
audience. It also poses a particular problem for derivative work, based on the
formal theory development of previous authors.

From the methodological viewpoint, interactive proof development is similar to
programming, although proving is slightly more involved in practice. Successful
proof checking typically demands a good portion of experimentation, either to
convince the machine of “obviously correct” reasoning steps, or to figure out
“minor omissions” in the initial claim (or the underlying definitions). On the
other hand, theorem proving has the fundamental advantage that the intended
results (i.e. theorems) are usually completely specified in advance, so the sub-
sequent proof may only fail, but not produce a wrong result (at least for sound
implementations of proof checkers). In principle, this enables proof scripts to
be expressed in an arbitrarily “bad” manner without affecting the result.

From the perspective of programming language design, which has undergone
several decades of research itself, proof development still seems to be stuck
at the assembly language level. There have been several attempts to improve
the technological backdrop of theorem proving, again by drawing from com-
mon ideas of program development. Notable approaches include various user
interfaces for theorem provers, presentation and management of sources (e.g. as
in “literate programming”), visualization or verbalization of machine-oriented
proof structures (e.g. by natural language generation), specific infrastructure
for “proving in the large” (via module systems, change management of proofs
etc.), and large-scale repositories of theory developments (e.g. “mathematical
knowledge bases”). All of these are legitimate research issues within the vicin-
ity of formal proof development, but they do not address the core problem of
low-level proof representations in the first place.

We shall illustrate this discrepancy again in terms of programming. The effort
required to work with a slightly low-level language like “C” may be consider-
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ably reduced by external tool support, e.g. by automatic code generation from
abstract graphical presentations that are composed by means of a nice user-
interface. Such an environment merely uses “C” as a fronted, but does not
overcome its inherent deficiencies, which become again relevant if the output
needs to be augmented manually. In contrast, a considerably more powerful
programming language (like ML or Haskell) could have provided first-class pre-
sentations of high-level concepts itself, eliminating the need for heavy tool sup-
port in the first place. (Some kind of tool support could still become useful at
a later stage.)

Our work is motivated by the perceived lack of accessible proof representations
for semi-automated reasoning. The Isabelle/Isar environment to be introduced
here is intended as a viable basis for human-readable proof documents, which
are composed by the user and checked by the machine. The main focus will
be on the theory and practice of the Isar proof language (“Isar” abbreviates
“Intelligible semi-automated reasoning”). We particularly aim at preserving
important factors that have made interactive theorem proving a success so far.
We also intend to cover at least the same range of applications as existing
interactive provers, but expect to unleash further potential of semi-automated
reasoning due to the new quality of formal proofs achieved by Isar.

1.2 Related work

Over the last few decades, a large number of systems have been built that
are intended for “theorem proving” in one way or the other. The overview
of “mathematics in the computer” [Wiedijk, 2001a] lists over 130 entries in
the categories of “First Order Prover”, “Logic Education”, “Proof Checker”,
“Tactic Prover”, or “Theorem Prover”. This list only covers systems that are
sufficiently significant and still available.

In order to point out relevant related work of Isabelle/Isar we shall briefly
review a few notable systems, both “real” working environments and some recent
studies on human-readable proof representations. Further discussions of existing
approaches will be given later on, alongside of our exposition of Isar itself.

1.2.1 Real theorem proving environments

Theorem proving systems that qualify as “real” working environments are typ-
ically based on expressive formal languages (type theory or set theory), feature
user-guided proof development (usually interactive), and have been successfully
applied “in reality” by a considerable number of users. Below we consider im-
portant representatives of this category: HOL, Coq, Isabelle, PVS, and Mizar.
There certainly exist a few further contenders in the same league, such as Nuprl
[Constable et al., 1986] or ACL2 [Kaufmann et al., 2000].
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HOL

There is a whole family of HOL systems, which all share the same logical foun-
dations and system architecture. The “official” line is represented by HOLS8
[Gordon, 1988] [Gordon and Melham, 1993], HOL90 (K. Slind), and the still cur-
rent HOL98 (K. Slind and M. Norrish). There have been a few side branches as
well, including the commercial implementation Proof Power (R. Arthan of ICL
Secure Systems), and HOL-Light [Harrison, 1996a] which has been successfully
employed for industrial verification tasks of floating point arithmetic. See also
[Gordon, 2000] for further background information on HOL and its relatives.

The HOL logic is based on a version of Church’s “Simple Theory of Types”
[Church, 1940] [Henkin, 1950] [Andrews, 1986], which has been extended by
schematic polymorphism, first-order type constructors, and a semantic type
definition scheme [Gordon, 1985a] [Gordon, 1985b] [Pitts, 1993]. The HOL
methodology emphasizes a strictly definitional discipline of theory development;
arbitrary axiomatizations are largely considered harmful by the user commu-
nity. Starting from the rather small axiomatic basis of primitive HOL, standard
mathematical concepts may be developed with reasonable effort. Over the years,
HOL users have collected a large body of material.

The system architecture of HOL follows the pioneering approach of LCF [Gordon
et al., 1979], based on Milner’s “Correctness by Construction” principle. Here a
small trusted kernel implements primitive inferences of the basic logic, using a
strongly-typed functional programming language such as ML. Any further func-
tions written by users may never “invent” new theorems, but are restricted to the
abstract theorem constructors of the kernel (by virtue of type-safety of the pro-
gramming language). Thus one achieves a high degree of reliability, while avoid-
ing to store actual proof objects for independent checking (which is required for
systems implemented in untyped languages like LISP, such as AUTOMATH [de
Bruijn, 1980] [Nederpelt et al., 1994]). The “LCF architecture” has enabled
efficient implementation of many advanced proof tools (e.g. rewriting, classical
proof procedures) and derived specification mechanisms (such as inductive sets
and types, cf. the discussion in [Harrison, 1995]), without affecting soundness of
the logical core. Even more importantly, contributors need not understand the
underlying logic in full detail.

HOL does not enforce a standard paradigm to produce proven results. In prin-
ciple, primitive and derived rules (written in ML) may be invoked directly,
mapping existing theorems to new ones. Nevertheless, most users follow the
goal-oriented view of tactical theorem proving: an initial claim is refined by
backwards steps until a solved form is achieved. The ML specification for such
transformation steps is quite hard to follow in general, even if the original writer
has refrained from any ad-hoc programming, restricting the script to standard
tactics and tactic combinators. HOL is often perceived as rather cryptic for
outsiders, not only due to the inherent complexities of tactical proof scripts,
but also due to the details of concrete syntax within raw ML. There is also no
clear distinction between extending and using the system, as both involves ML.
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There have been several attempts to organize HOL proofs in a more accessible
manner, e.g. by generating textual reports on the dynamic evolution of goal
states [Cohn, 1995]. Alternative proof styles (still within the tactical approach)
have been proposed as well, e.g. a generalized version of calculational reason-
ing called “window inference” [Grundy, 1991]. Some notable experiments on
structured proof languages within HOL have been conducted as well, see §1.2.2.

Coq

Coq [Barras et al., 1999] essentially draws from the same tradition of interactive
theorem proving as the HOL family, but follows a rather different philosophy in
many respects.

The logical foundation of Coq is the “Calculus of Inductive Constructions”
(CIC), i.e. a constructive type theory with builtin notions of inductive types
and recursive functions [Pfenning and Paulin-Mohring, 1990] [Paulin-Mohring,
1993]. Proofs are internally represented as dependently typed A-terms, which
are explicitly stored for separate checking by a distinctive system component.
Even though Coq has been implemented in a type-safe programming language,
Milner’s “Correctness by Construction” of LCF/HOL has been given up in favor
of the venerable “de-Bruijn principle”, with independent checking of static proof
objects [de Bruijn, 1980] (see also the survey of [Barendregt and Geuvers, 2001]).
In practice, both Coq and HOL achieve a similar level of reliability, but Coq
demands significantly more time and space resources in realistic applications.

Coq provides particular infrastructure to extract functional programs from con-
structive proofs. In principle, the internal A-term structure of proof objects may
be automatically compiled to produce ML code. In practice, users interested in
program extraction need to be careful to conduct proofs properly, in order to
arrive at programs conforming to their intention. In particular, concepts need
to be arranged appropriately at the level of inductive Set or logical Prop types.

Coq renounces the free programmability of HOL, but offers separate languages
for theory specifications (called “Gallina”) and tactical proof scripts, respec-
tively. Here the raw ML view has been successfully replaced by sane concrete
syntax. Users may still implement their own proof tools, but this is rarely re-
quired in practice. Coq generally provides much less automated proof support
than HOL: whereas existing classical first-order techniques of automated rea-
soning may be used within classical higher-order logic quite easily, proof search
within a constructive setting is much more involved. Interestingly, many Coq
users who are interested in large applications tend to introduce non-constructive
axioms in the very beginning in order to ease the formalization effort (even
though this breaks the program extraction facility). This constructively incor-
rect tuning of the formal basis would in principle admit more powerful proof
procedures, but official Coq does not support classical reasoning specifically.

Coq tactic scripts and primitive proof terms are both largely inaccessible to
human readers. Traditionally, some of the key developers of Coq have been
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more interested in getting formal proofs accepted by the machine at all (and
maybe extract programs later), rather than achieve nice presentations for human
readers. Nonetheless, significant work on rendering primitive proof objects (A-
terms) in natural language (English or French) has been undertaken in the past
[Coscoy et al., 1995]. A similar verbalization facility is provided by the Minlog
system [Benl et al., 1998] (for its own proof terms). The HELM project [Asperti
et al., 2001] aims at WWW access of formal theories at large (currently working
mainly for Coq), but the fundamental problems of adequate representation of
proof terms are still there, despite the XML document view provided here.

Isabelle

Isabelle [Paulson and Nipkow, 1994] is positioned as a “generic theorem proving
environment” according to the LCF/HOL tradition of interactive systems, but is
aimed to support many logics. According to its original author the early history
of Isabelle is a “tale of errors, not grand designs” [Paulson, 1990]. Apart from the
generic framework (Isabelle/Pure), the Isabelle distribution includes concrete
object-logics that are ready for immediate applications, notably Isabelle/HOL
[Nipkow et al., 2001] [Nipkow and Paulson, 2001] (simply-typed classical set-
theory), Isabelle/HOLCF [Regensburger, 1995] [Miiller et al., 1999] (domain
theory within HOL), and Isabelle/ZF [Paulson, 1993] [Paulson, 1995] (untyped
set-theory according to Zermelo-Fraenkel).

The Isabelle/Pure framework implements minimal higher-order logic, with un-
restricted universal quantification “A”, implication “=", and equality “=".
Rules formulated via A /== may be composed by higher-order resolution (which
also involves higher-order unification) [Paulson, 1986]. Resolution is the most
fundamental reasoning principle of Isabelle, it admits both forward and back-
ward chaining of natural-deduction rules [Paulson, 1989]. Derived rules are rep-
resented directly as meta-level theorems, eliminating the need for hand-written
ML code as in the LCF/HOL family. Generic higher-order rewriting (by means
of = rules) is also available, as well as classical reasoning tools [Paulson, 1997]
[Paulson, 1999] that may be instantiated for many important logics.

Formalizing new object-logics (following natural-deduction principles) is quite
easy in Isabelle, merely by providing a few declarations of abstract and concrete
syntax, and primitive proof rules. On the other hand, a realistic working en-
vironment like Isabelle/HOL demands many years of further work in order to
develop a sufficiently rich library of standard mathematical concepts. Practi-
cal applications also demand advanced specification mechanisms (which need to
be implemented separately), notably inductive sets and types [Paulson, 1994]
[Berghofer and Wenzel, 1999], and recursive functions [Slind, 1996] [Slind, 1997].

The majority of Isabelle users only refer to Isabelle/HOL, ignoring the other
object-logics and the facilities to define new ones. Nevertheless, Isabelle/HOL
benefits from the generic framework, which provides a cleaner view on general
logical concepts than the more specialized implementations of the original HOL
family. Isabelle generally appears slightly less cryptic to its users. Separate
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concrete syntax for theory specifications has been provided early [Paulson and
Nipkow, 1994]; proof scripts have become more and more stylized as well, using
a few generic tactics (parameterized by theorems) instead of a large collection of
special invocations. Worldwide Isabelle/HOL users have been able to conduct
many significant applications over the past few years. Presently the biggest
one is probably the formalization of the Java programming language by the
Isabelle/Bali project [Oheimb, 2001] [Bali]. Further “official” examples and
significant applications are included in [Isabelle library] (which also covers other
object-logics than Isabelle/HOL).

The standard way of formal reasoning in Isabelle resembles the tactical back-
wards style of HOL and Coq. Some past experiments on improved presentations
[Simons, 1996] [Simons, 1997] have covered a literate programming view for the-
ories and proof scripts, and special tactics to support idioms of calculational
reasoning (following the approach of [Dijkstra and Scholten, 1990]).

PVS

PVS [Owre et al., 1996] (distributed by the SRI) is advertised as a tightly in-
tegrated environment for specification, proof checking, and model checking. Its
most prominent features are predicate subtypes, a collection of well-integrated
algebraic decision procedures, and an easily accessible user-interface for inter-
active theory and proof development.

The logic of PVS is usually presented as another version of “higher-order logic”,
although it considerably deviates from the one of HOL. In particular, HOL’s
distinctive view on schematic polymorphism and semantic type definitions is
unavailable in PVS. In fact, the PVS logic is better understood as a version
of set-theory, where certain aspects of set-membership reasoning have been sin-
gled out as a specific concept of “predicate subtypes”. Type checking conditions
(TCCs) are extracted and solved automatically, although the user needs to in-
teract in difficult cases (by means of ordinary PVS proof tools). The resulting
discipline approximates the casual treatment of typing in informal mathematics
reasonably well. Furthermore, there is specific notation for subtypes of Carte-
sian products and function spaces, which are presented as “dependent types”,
analogous to ¥ and II in real type theories.

PVS offers powerful definitional mechanisms for algebraic datatypes and well-
founded recursive functions. These have been based on set-theoretic principles
according to a later paper on the “official” PVS semantics [Owre and Shankar,
1997]. The handsome integration of algebraic proof tools (including arithmetic
semi-decision procedures) enables users to “grind” many everyday proof prob-
lems, without demanding much insight into logical details. PVS also provides
a language of “strategies” that resembles the tactical ones of HOL, Coq, or
Isabelle, but does not admit arbitrary programming or proof search.

The PVS implementation is monolithic, consisting of a large body of LISP code.
The sources are not generally available, although interested parties may take



8 CHAPTER 1. Introduction

a look at the SRI (and sometimes even change a few details). The advanced
proof tools and specification mechanisms are hardwired, without full reduction
to basic logical concepts inside. Over the years, seasoned users of PVS have
encountered a number of serious problems in practice, not just soundness issues
of proving false results, but also unexpected failures. The known soundness bugs
of PVS are not considered a real problem by its proponents. The focus of PVS
has been changed from a “Prototype Verification System” to a tool for finding
errors in formal models of software and hardware systems, which is actually
falsification instead of verification. Indeed, PVS has been quite successful in
this respect, attracting a considerable number of users lately.

PVS shows how far the paradigm of interactive theorem proving may get to
the pragmatic side of “computer-aided verification”. Most users only have a
marginal interest in formal logic and proofs themselves. So far there has been
rather little interest in human-oriented representations of proofs in PVS.

Mizar

Mizar [Rudnicki, 1992] [Trybulec, 1993] has emerged from a project on pro-
gram verification for Algol in the 1970’s (both “Algol” and “Mizar” are Arabic
names for certain stars). At some point it was felt that a reasonably body of
mathematical background theories are required before being able to verify ac-
tual programs. The main focus of the Mizar project has shifted towards further
development of the enormous [Mizar library], while the Mizar system itself has
changed very little recently. New library entries are periodically published in
the “Journal of Formalized Mathematics”.

The most notable aspect of Mizar is its structured proof language, which has
been designed to represent common mathematical proof patterns in a formal
setting. The Mizar language is tightly integrated with its particular logical
background, namely classical first-order logic with an axiomatic basis of typed
set-theory (according to Tarski-Grothendieck), some special support for “second
order” schemas (e.g. induction), and a particular notion of mathematical struc-
tures. The proof language provides separate elements to cover proof principles
from raw first-order logic, e.g. universal introduction, existential introduction
and elimination (two versions), and disjunction elimination by cases. Further-
more, there is a builtin notion of “obvious” reasoning steps in order to finish
terminal situations. The latter also covers first-order steps that lack a separate
proof language element (e.g. universal elimination and disjunction introduction).

According to its authors, Mizar is “notorious for lack of documentation”. New
users are typically instructed directly by Mizar experts. Some partial documen-
tation has eventually become available [Muzalewski, 1993]. The more detailed
overview of [Wiedijk, 1999] provides an approximation of the main Mizar proof
language elements in terms of plain natural deduction. The full details of Mizar
proof processing have not been published so far; even the sources of the imple-
mentation are unavailable.
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Apparently, Mizar represents a rather different tradition of theorem proving
than the mainstream tactical systems (HOL, Coq, Isabelle, PVS etc.), with re-
spect to the logic, the proof language, and the system architecture. The Mizar
project has been very successful in building up a large body of machine-checked
mathematical theories. On the other hand, Mizar also has some inherent limi-
tations, mostly due to its “closed” approach. For example, there is no practical
way to add new proof tools (say a flexible rewriting engine), or provide new
specification mechanisms (say inductive sets and recursive functions). Conse-
quently, many advanced concepts need to be simulated directly in the text by
existing Mizar elements: rewriting is typically expressed by long chains of single
equational reasoning steps, and inductive definitions are constructed manually
on top of primitive set-theoretic concepts over and over again [Mizar library].

The structured proof language of Mizar is the main communication format be-
tween the user and the machine, and also between users themselves (e.g. when
composing new theories based on existing ones). Nevertheless, the default view
of the WWW presentation of [Mizar library] omits proofs. There have also been
some past experiments on rendering Mizar texts in natural language [Bancerek
and Carlson, 1993], but this output format is rarely encountered in practice.

1.2.2 Experiments on human-readable proofs

The relative success of flexible tactical theorem provers on the one hand, and
structured mathematical proofs in Mizar on the other hand have stimulated
some further research on human-readable proofs in recent years. This has even-
tually resulted in several experimental systems that focus on accessible repre-
sentations of formal proofs themselves.

The “Mizar mode for HOL” [Harrison, 1996b] provides an alternative inter-
face for interactive proof composition in HOL (notably HOL-Light [Harrison,
1996a]), transferring useful ideas from the Mizar proof language into the tacti-
cal setting of HOL. Harrison introduces separate concrete syntax for structured
proof commands that are translated to special tactics inside, which perform
basic transformations according to natural deduction schemes of raw first order
logic. Harrison also spends substantial effort on automated reasoning support,
for solving “trivial” situations implicitly (the concrete procedure may be ex-
changed by the user). The Mizar mode also covers a calculational reasoning
style, which refers to a collection of mixed transitivity rules declared in the
context (of =/</< or similar relations). The system has been sufficiently de-
veloped to conduct some example proofs from classical analysis, covering a few
pages of text; it has not been applied any further, though.

DECLARE [Syme, 1997a] [Syme, 1998] is a stand-alone prototype system for
“declarative” proof development, which acts like a compiler for formal docu-
ments consisting of theory specifications and structured proof outlines. The
proof language is based on three main principles, namely “first-order decom-
position and enrichment”, “second-order schema application”, and “appeals to



10 CHAPTER 1. Introduction

automation”. DECLARE has been advertised as “three tactic theorem prov-
ing” [Syme, 1999]. The system draws from the general experience of the HOL
family (and Harrison’s Mizar mode), but renounces established principles like
full reduction to basic logical principles inside. DECLARE has been success-
fully applied by its author in some significant case-studies on Java type-safety
and operational semantics [Syme, 1998]. In fact, many concepts of DECLARE
have been specifically designed towards such typical applications of language
modeling, with particular support for inductive definitions and proof schemes.
DECLARE did not aim at more general applications, and has not been evalu-
ated any further in practice (the system is not publicly available).

The “Structured Proof Language” (SPL) [Zammit, 1999a] [Zammit, 1999b] aims
at providing another interface for proof construction in mainstream HOL, draw-
ing from general Mizar ideas and the experience with Harrison’s Mizar mode.
SPL has been intended for larger scale applications, just like DECLARE, but
is more careful to stay within the logical foundations of HOL. All high-level
concepts of SPL are reduced to primitive HOL tactics. Zammit also spends
significant effort on powerful first-order proof tools in HOL, in order to sup-
port reasoning in large steps. Another focus is on implicit simplifications (via
rewriting). The SPL/HOL system has been evaluated by its author by formal-
izing some portions of group theory, attempting to achieve the same level of
“abstraction” encountered in the informal proofs of a certain textbook.

“Mizar-Light for HOL-Light” [Wiedijk, 2001b] represents a minimal system ex-
periment (implemented in 42 lines of ML) that achieves a readable view on
first-order tactical proof schemes, mainly by exhibiting propositions explicitly
in the text instead of implicitly in goal configurations.

Systems in the important class of “teaching tools for formal logic” often provide
readable textual representations of proofs as well, although most seem to prefer
graphical views. In any case, such systems are typically restricted to primitive
inferences in pure logic, where users may occasionally specify their own set of
rules, but advanced proof procedures are unavailable.

The teaching tool ProveEasy [Burstall, 1998] provides an interactive editor for
primitive natural-deduction proof texts presented in a strictly backwards man-
ner; the underlying structure is oriented towards the established A-calculus view
of type theory. Here the main idea is to make the types of sub-terms (i.e. propo-
sitions of local facts) visible in the text.

Tutch [Abel et al., 2001] is a strictly text-oriented proof-checker intended for
teaching constructive logic. The system deliberately excludes any kind of user
interface, but acts like a batch-mode compiler of proof texts written in plain
ASCII. Thus students are encouraged to focus on the task of actually writing
proofs, rather than play with fancy interfaces. Proof steps in Tutch range from
primitive natural deduction to more abstract arrangements of the “assertion
level”. Nevertheless, the system refrains arbitrary proof search, but implements
an efficient algorithm for structured proof checking.
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1.3 The Isar approach to formal proof documents

The primary subject of the present work is a particular approach to human-
readable formal proof documents called “Isar”, which abbreviates “Intelligible
semi-automated reasoning”. Isar covers the following levels of discourse.

1. A specific view on the problem space of formal proof (see §1.4 and §1.5).
We shall introduce the categories of primitive, primary, and presentation
formats of proofs. Thus we are able to identify the most basic compo-
nents of our architecture, including the notion of human-readable proof
documents that Isar places into the very center.

2. A concrete design of the Isar proof language as a viable basis for high-
level proof texts following the general paradigm of natural deduction (see
chapter 3). A number of additional concepts, mostly extra-logical ones,
lift the underlying logical framework to a sufficiently abstract level that is
adequate for human consumption.

Particular care has been taken to keep the Isar language succinct. In fact,
substantial parts of the language are defined as derived elements on top of
simpler notions. The resulting framework is highly compositional, with a
large combinatorial space of useful expressions ranging from simple idioms
to advanced proof patterns (see also chapter 5 and chapter 6).

3. A system implementation called Isabelle/Isar [Wenzel, 2001a], which has
been built on top of the generic natural deduction framework as provided
by Isabelle/Pure [Paulson and Nipkow, 1994] (see also chapter 2). Being
rooted at this generic level, common Isabelle object-logics may benefit
directly from Isar without requiring any substantial changes (apart from
some minor adaptations of existing theory libraries). New object-logics
may be commenced by using Isar proof elements from the very start (e.g.
see chapter 4 and chapter 8).

Isabelle/HOL [Nipkow et al., 2001] shall serve as the main workhorse for
concrete examples to be presented later on. Such an advanced working en-
vironment demands a few further logic-specific provisions, notably proper
integration with derived specification mechanisms (see also chapter 7).
Taking the existing Isabelle/HOL setup as a starting point, we are able to
provide viable support for “realistic” applications from mathematics and
computer-science (e.g. see chapter 9 and chapter 10).

Isar aims at a truly versatile environment, with the following particular goals.

e Succinct language design, with few basic principles that may be combined
freely. Maximum modularity of all language concepts.

We shall only take the most fundamental language elements as primitive,
and define further concepts as derived ones (while preserving the potential
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for combined use with existing elements). Beyond this basic language layer
we refrain from any further special abbreviations, but prefer simple idioms
consisting of a few “words” in Isar. Generally speaking the Isar language
is intended to support lively expression of formal reasoning, based on a
relatively small vocabulary and some universal grammatical rules.

Incremental proof processing, as suitable for interactive development.

As a lesson learned from interactive tactical proving we observe that real-
istic development of “semi-automatic” proofs demands some experimenta-
tion by the writer. Step-wise evaluation of Isar proof texts may also enable
beginning users to experiment with key logical concepts, e.g. the discharge
behavior of assumptions in a particular context. From the perspective of
readers, the incremental way of Isar proof processing induces some bias
towards left-to-right interpretation, corresponding strictly to the order of
language elements given in the text.

Independence of particular object-logics, within the general framework of
natural deduction.

Our rationale is to cover all “mainstream” object-logics of Isabelle (FOL,
ZF, HOL, HOLCEF etc.), essentially by arranging the Isar concepts at the
generic level of the Isabelle/Pure framework. This does not mean that
“unusual” representations of object-logics benefit from Isar in the same
way, though. For example, existing formalizations of linear and modal
logics simulate sequent-calculus rules within the pure natural deduction
framework, which would result in slightly impractical Isar proof texts.

Independence of particular automated reasoning techniques.

Automated proof search shall be never seen as a core issue of Isar proof
processing, although existing procedures may be easily incorporated as
“proof methods”. The Isar proof language shall enforce a well-defined
structure of proof texts, despite potentially ill-behaved proof tools involved
in individual steps; proof methods may only operate on isolated portions
of the main Isar proof configuration.

Guarantee soundness by full reduction to basic logical principles.

We intend to make actual formal proofs available in practice, which means
that a reasonable form of internal proof presentation (in terms of basic
logical principles) needs to be achieved eventually.

Reduce accidental “formal noise” in common reasoning patterns, avoid
unnecessary cluttering of proof texts.

The danger of obscuring formal proof texts by irrelevant detail is ever
present. Interestingly, tactical systems have occasionally been apt to let
certain technical details intrude the course of reasoning performed by the
user, which did not necessarily change the situation of unstructured proof
scripts fundamentally. In Isar we need to be more careful, as reasoning
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steps appear explicitly in the text. Adequate structured proof patterns
typically demand a few subtle details to be got right. (A particularly illus-
trative example of successful formal-noise reduction is that of “induction
with non-atomic statements”, see §5.4.5).

e Provide a stable working environment that is usable by other people (apart
from the original architect).

Arriving at a realistic system is not just a matter of spending considerable
efforts on mere implementation issues. Even more importantly, the very
Isar concepts themselves need to be sufficiently simple and mature, pro-
viding a faithful model structured proofs. This certainly requires feedback
from concrete applications conducted in Isabelle/Isar.

Isar follows a few general design principles, so the resulting framework is not just
an arbitrary arrangement of certain ingredients, but acquires a distinctive style.
Such slightly more philosophical underpinning certainly does have an impact on
achieving our goals, although this is not always spelled out explicitly.

e Primacy of readability over writability.

As we intend to produce human-readable proof texts eventually, we really
need to take the (potentially large) audience of readers more seriously than
writers (who are usually more versed in formal-logic and technical details
of the proof system anyway). Composition of accessible presentations
certainly does demand some effort in any case, not just in the context of
formal reasoning. The task of being an author of Isar proof documents
should not be taken lightly.

Another consequence is that readers do not need any special tools to access
proof texts, but may refer to traditional printed paper (or the “electronic
paper” of PDF). In contrast, writers usually do require some specific tool
support for interactive proof development.

e Refer to common principles of “sane” language designs.

We generally draw from the standard repertoire of minor issues that have
emerged over the last decades in high-level programming language design,
e.g. block structure and static scoping of local variables.

e Liberality, or abusus non tollit usus.

We generally prefer rather generic concepts that admit useful applications
in many situations, despite a potentially pending danger of “inadequate”
uses under certain circumstances. A notable instance of this principle is
the flexible way that arbitrary proof methods (based on tactics inside)
may be incorporated into Isar proofs. There are also a few “improper”
language elements that enable Isabelle/Isar to absorb the old tactical style
of Isabelle completely.
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The open design of the Isar language enables proofs to be written in al-
most arbitrarily bad style. Nevertheless, it should be easier to compose
adequate texts by default, although this requires some taste of the author.

e Separation of primitives versus policy.

We explicitly distinguish two different aspects of Isar proof processing,
namely logical primitives and the policy enforced by interpreting certain
language elements. In particular, we refrain from treating the Isar lan-
guage as another “calculus” itself, despite its inherent relation to formal
logic. Thus we achieve a clear separation of concerns, enabling us to think
about the Isar language in extra-logical categories.

1.4 Notions of proof according to Isar

The very notion of “proof” is hard to pin down exactly, depending on the
context of discourse. We refrain from attempting a universal definition, but
merely provide specific views on the problem space as relevant for Isar.

First of all, proofs shall be always required to be fully formal in the strong
sense that any resulting theorems are guaranteed to be actually reduced to
basic logical inferences (within a well-defined background theory). In practice,
this means that proofs need to be processed mechanically by a (trusted) proof
checker component. Nevertheless, users should not necessarily bother about the
actual internal representations of proofs. (Just like ML programmers normally
do not need to know about the machine-language that is executed eventually.) In
fact, that low-level view would be quite counter-productive for our objective of
human-readable proofs. Primitive derivations are apt to obscure the intentions
of formal reasoning, which has historically made many people reject the idea of
proof formalization altogether, if they have ever been exposed to it anyway.

In Isar we differentiate the following three levels of formal proof.

1. Presentation format.
This is the final material given to recipients, i.e. the audience of (human)
readers of proofs.

2. Primary proofs.
The main communication format between the proof development system
and the user, i.e. the (human) writer of proofs.

3. Primitive representation.

The internal structure of basic inferences that serves as the very foundation
of correct results.



1.4.  Notions of proof according to Isar 15

Various theorem proving systems exhibit quite different ideas of proofs at these
three levels. Even a single system may offer different options for these categories.

For example, the Coq system [Barras et al., 1999] is based on dependently-
typed A-terms as the primitive format. The primary view is that of tactical
proof scripts. Moreover, Coq provides two formats for presentation, either a
pretty-printed output of the primary script, or a rendering of primitive A-terms
in natural language [Coscoy et al., 1995].

The HOL system [Gordon, 1985a] [Gordon and Melham, 1993] [Gordon, 2000]
provides a rather different view on the these levels of proof. Here the primitive
layer consists of abstract theorem constructors of the inference kernel, according
to “Correctness by Construction” by Milner. HOL offers several primary views
on top, ranging from direct access to forward inferences to the goal-centered
paradigm of tactical proving (users may also implement their own proof con-
struction mechanisms). The standard presentation format of HOL provides a
pretty-printed version of the sources, with some visual enhancement of mathe-
matical symbols [Gordon and Melham, 1993].

In Isar we shall take the following particular view on these three levels of proof
(see also the example in §1.5).

1. Presentation produces “formal proof documents”, consisting of a beauti-
fied version of the primary sources. The Isabelle/Isar document prepa-
ration system automatically takes care of this, as a side-effect of formal
proof processing. The final documents are meant to resemble traditional
mathematical texts, with high-quality typesetting based on ITEX. No at-
tempt is made on any significant transformations of the primary text, e.g.
we refrain from natural language generation. This makes the presentation
layer of Isabelle/Isar appear as very thin.

2. The primary layer of Isar shall absorb our main efforts on reasonable
concepts of human-readable proof texts. The formal proof language given
here is designed to be ready for human consumption and machine-checking
at the same time. Development of primary proofs is facilitated by fine-
grained incremental interpretation of the source text, with meaningful
output of intermediate states. Further user-interface support is provided
by the generic Proof General environment (see also §1.5). Despite inter-
active development, the course of reasoning is expressed statically in the
final text.

3. The primitive layer is treated abstractly in Isar, merely demanding a few
basic principles as an interface for the upper language level (notably com-
position of facts and goals via higher-order resolution). The primary Isar
interpretation process essentially “drives” these primitive inferences, but
never lets the results intrude the text directly. As a consequence, the in-
ternal details of primitive proofs do not really matter, so Isar may both use
Isabelle’s traditional notion of “Correctness by Construction” or primitive
proof terms of the meta-logic.
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This particular division of the problem space of formal proof shall be now illus-
trated by a concrete example.

1.5 Example: the Knaster-Tarski Theorem

We consider a simple formulation of the Knaster-Tarski fixed-point theorem for
complete lattices. The informal statement and proof outline is given below,
following the textbook presentation of [Davey and Priestley, 1990, pages 93-94|
with only minor notational changes.

The Knaster-Tarski Fixpoint Theorem. Let L be a complete
lattice and f: L — L an order-preserving map. Then [[{z € L |
f(z) < z} is a fixpoint of f.

Proof. Let H={z € L| f(z) <z}and a =[|H Forallz € H we
have a < z, so f(a) < f(z) < z. Thus f(a) is a lower bound of H,
whence f(a) < a. We now use this inequality to prove the reverse
one (!) and thereby complete the proof that a is a fixpoint. Since
f is order-preserving, f(f(a)) < f(a). This says f(a) € H, so a <
f(a).

This informal exposition shall merely serve as a guideline for our subsequent
formal development in Isar. Despite being rather small, the example already
shows many key elements of Isar proof composition.

As is often done in “realistic” proof formalizations, we specialize the statement
to cover the concrete lattice of power sets only, which happens to be readily
available in our background theory of Isabelle/HOL [Nipkow et al., 2001]. The
main ideas of the proof will still be presented faithfully; see [Wenzel, 2001b] for
a similar proof within an abstract version of lattice theory.

1.5.1 Presentation format: typeset document output

The canonical proof (and theory) presentation format of Isabelle/Isar resembles
traditional mathematical documents, either printed on paper or in a simple
browsable format using PDF. Such documents are meant to be accessible to
readers at large, without requiring any sophisticated tools. Some understanding
of the formal languages encountered here is required, though, both the basic
logic and Isar proof elements.

The subsequent Knaster-Tarski proof is based on very simple facts of set-theory
only, using some lattice properties of general intersection “(”. Note that “A”
stands for universal quantification; the remaining logical notation is fairly stan-
dard. The concrete syntax of Isar proof elements should at least admit the text
to be read aloud, even without an exact idea about the formal semantics.
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theorem Knaster-Tarski: (Nzy. ¢ Cy = f2z C fy) = Ja. fa=a
proof

assume mono: Az y.c Cy = fz C fy

let ?H = {u. fu C u}

let 20 = ?H
have ge: f ?a C %a
proof

fix x assume H: z € ?H
then have %a C z ..
also from H have f ... C z ..
moreover note mono
finally show f %0 C z .

qged

also have %a C f %a

proof
from mono and ge have f (f %a) C f %a .
then show f %a € ?H ..

qed

finally show f %0 = %a .

qed

The Isabelle document preparation system is able to produce high-quality out-
put from the primary text given by the user (see also §1.5.2). Informal expla-
nations may be included as well, which may refer to arbitrary BTEX markup.
Thus adequate presentations of fully formal theory developments become read-
ily available, leaving behind the unappealing typewriter style that still persists
in many theorem provers. Formal developments do not have to look ugly!

1.5.2 Primary proof: human-readable source

The format of primary proofs is what the Isabelle/Isar system uses directly for
input. Below we exhibit this “real source” of the same Knaster-Tarski proof.

theorem Knaster_Tarski:
"(\<And>x y. x \<subseteq> y \<Longrightarrow> f x \<subseteg> f y)
\<Longrightarrow> \<exists>a. f a = a"
proof
assume mono:
"\<And>x y. x \<subseteg> y \<Longrightarrow> f x \<subseteq> f y"
let ?H = "{u. f u \<subseteg> u}"

let 7a = "\<Inter>7H"
have ge: "f 7a \<subseteg> 7a"
proof

fix x assume H: "x \<in> ?7H"
then have "7a \<subseteg> x" ..
also from H have "f \<dots> \<subsetegq> x" ..
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moreover note mono
finally show "f 7a \<subseteg> x" .

qed

also have "7a \<subseteq> f 7a"

proof
from mono and ge have "f (f 7a) \<subseteq> f 7a" .
then show "f 7a \<in> 7H" ..

gqed

finally show "f 7a = 7a" .

qed

Apparently, the above Isar source is not far removed from the presentation for-
mat given before (§1.5.1). The raw text lacks highlighted keywords, proper
printing of mathematical symbols, and contains additional quotation marks
(which are required in Isabelle to delimit the inner syntax of types and terms
from the primary theory and proof language), but the key structure of Isar
proofs is already present.

Incidently, Isabelle/Isar sources somewhat resemble (stylized) IXTEX input. In
fact, Isabelle/Isar and BTEX share the basic idea of producing typeset docu-
ments from decent textual descriptions, with the big difference that ETEX does
not perform any formal checking, of course.

In reality, users need not directly work with raw ASCII texts as shown above, al-
though this is possible in principle. Additional conveniences are provided by the
generic Proof General environment [Aspinall, 2000] [Proof General|, which essen-
tially provides an interface for automatic cut-and-paste (including undo opera-
tions) between the source text and the underlying prover process. Proof General
has been built around the XEmacs editing environment, including the X-Symbol
package to take care of mathematical symbols.

Several provers are supported by Proof General, such as Coq, LEGO, PhoX,
Plastic, traditional Isabelle (with the old ML top-level), and Isabelle/Isar (both
for structured proof texts and proof script emulation). A typical Proof General
session for Isabelle/Isar is shown in figure 1.1.

There are two main views: “script” and “proofstate”, which we prefer to call
static proof text and dynamic proof state in Isabelle/Isar. The former presents
the source with some visual enhancements, including an indication of the proof
text processed so far (which is marked as read-only in the editor in order to
ensure consistency with the state of the prover process). The remaining unpro-
cessed text may be manipulated by standard editing means of XEmacs, until
the system is told to step over it by continued formal checking.

The second window provides feedback on the present Isar interpreter config-
uration, probably providing some clues to users on how to proceed, or figure
out problems. Nevertheless, the dynamic state is significantly less important
in structured proof texts than in unstructured scripts. Isar proof development
really means to work on the primary text under construction, with some occa-
sional peeks at the results achieved so far (including facts and goals).
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File Edit Mule Apps Options Buffers Tools ¥X-Symbol Proof-Gemeral Isabelle/Isar

IR P = ] T

theoren khaster_Tarskiz "0y, » Sy = F x S Fy) = Ja, Fa=a"
proof

assme nora: "My, xSy = Fx S Fy"

let PH = "{u, f u S u}"

let ?a = "[?H"
hawe gey "f 7a = Pa"
proof

fix x assume H: "x € "H"
then have "7a C x" .
also from H have "f ... € =" L.
moreover note mona
finally show "f %a S =" ,
qed
also hawve "7a S f 7a"
proof
from mono and ge hawe "f (f 7a) S f 7a" .
then show "f Ya € TH" .,

qed

Finally show "f %2 = 7a" .
qed ¥
I508---—- HEmacz: Knaster_Tarski.thy (Izabelle/Isar script #S:isabelle Font Scripting )-—l
proof [state): step 15 A

fixed variablesy x = x

prems}
Tl E P2 = f ™l S f Ty
x € {u, fuSul

thiz:
fxCEx

goal Chave gel:
FiMu, FusSul) S M. Fugur
LA efu, FuCul = F(MHu, Fucup) C¥

1508--—-—- KEmacz? *izabelledizar-goala* (Izabelleslsar proofstate)-—-L1--CO--All-————— |

Figure 1.1: Interactive development with Proof General

Strictly speaking, such a user-interface view of the primary Isar source is already
another “presentation” issue, although an even more degenerate one than the
document preparation system covered before (§1.5.1). In fact, only little struc-
ture of Isar proof texts is exploited by Proof General, which has been intended
as a generic front-end for existing interactive provers with unstructured scripts.
For example, there is no support for actual hierarchic editing of proof texts,
which Isar would easily admit due to separate checking of sub-proofs.

Independently of user-interfaces and development tools, the raw ASCII input
of Isar is relevant for long-term integrity of formal proof developments. By
retaining a human-readable format at the primary level, proof texts may be
kept “alive” more easily, even if some of the present system components become
unavailable eventually (Proof General, XEmacs, X-Symbol etc.). For example,
losing X-Symbol could be amended by switching back to plain ASCII (replacing
“\<Longrightarrow>” by “==>" etc.).
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Such casualties do happen in reality, as may be seen from the history of Mizar
[Rudnicki, 1992] [Trybulec, 1993]. Many years ago, Mizar has been tied to
the now obsolete PC font (to exploit special symbols). Further development of
Mizar has ever since been encumbered by the seemingly trivial issue of proper
character encoding.

From a more philosophical perspective, the primary source format of Isar has
the important virtue to confer meaningful formal content, even without the
actual proof processor at hand. In contrast, traditional tactic scripts tend to be
a one-way road only: once that existing (informal) material has been presented
to the system, it has become essentially inaccessible at large, except for the
original proof checker. Further derivative work in a slightly different context
would typically require to go back to the informal literature, provided that can
be still figured out. With inaccessible sources, there is always a pending danger
of losing the results of past formalization efforts!

Certainly, the aspect of adequate archiving of theory sources becomes only rel-
evant after formalized mathematics has been more widely accepted in practice.

1.5.3 Primitive format: internal proof terms

The Isar proof processor inherits any primitive notion of formal proofs directly
from the generic Isabelle/Pure framework. Traditional “secure derivations” of
the Isabelle inference kernel (due to Milner’s “Correctness by Construction”) are
hard to visualize, though, since they only exist as an idea outside of the run-time
environment of the system implementation. Instead we show the forthcoming
alternative proof term format of Isabelle [Berghofer and Nipkow, 2000], which
is based on typed A-calculus (this requires Isabelle2001 or later).

AMH:Nzy.z2Cy=fzCfy).
HOL.exl - Xz. fz =z - ({u. fu C u} -
(Ord.order.order-antisym - f (N {u. fu C u}) - N{u. fu C u} -
(subset.Inter-greatest - {u. fu C u} - f (N{u. fu C u}) -
A (X :: a set).
A(Ha : X € {u. fu C u}).
Calculation.order-subst2 - {u. fu Cu} - X - Az. fz - X -
(subset.Inter-lower + X - {u. fu C u} - Ha)
- (HOL.iffD1 - X e {z. fz Cz} - fX C X -
(Set.mem-Collect-eq - X - Au. fu C u)
- Ha)
- H)
- (subset.Inter-lower - f (N {u. fu C u}) - {u. fuCu}-
(HOL.iffD2 - f (N{u. fu Cu}) € {z. fz C z} -
J (N fuCuh) (O fuCab)
- (Set.mem-Collect-eq - f (N {u. fu C u}) - Au. fu C u)
C(H - f (O fu C ) N {u fuC ol
(subset.Inter-greatest - {u. fu C u} - f (N{u. fu C u}) -
A (X i a set).
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A(Ha : X € {u. fu C u}).
Calculation.order-subst2 - ({u. fu Cu} - X - Az. fz

- X

- (subset.Inter-lower - X - {u. fu C u} - Ha)

- (HOL.iffD1 - X € {z. fs C 2} - fX C X -
(Set.mem-Collect-eq - X - Au. fu C u)
- Ha)

L 1))

We see that most of the primary proof structure has been lost after reduction
to primitive concepts. For example, the local result of “have ge: f 2a C ?a”
(internally f (N {u. fu C u}) C ) {u. fu C u}) is used twice in the Isar text,
and appears in two independent copies in the primitive proof due to internal
(B-normalization. Another problem is posed by the seemingly trivial issue of
adequate naming of bound variables, due to arbitrary a-conversion inside.

It would indeed be hard to recover a readable Isar text from the primitive
representation, even though Knaster-Tarski is still a very simple example. Note
that we intend to cover much larger applications as well. In fact, this is the
deeper reason why Isar takes high-level texts as a starting point, and produces
low-level proof representations via interpretation from top to bottom.

1.6 Overview of the thesis

1.6.1 Part I: Foundations

The main objective of Isar foundations is to turn existing formal-logic concepts
into a viable language environment for natural deduction proof texts, with-
out requiring extensive theoretical studies first. Isar particularly draws from
known principles of natural deduction reasoning in minimal higher-order logic,
with specific support for higher-order resolution and higher-order unification
(chapter 2). The Isar proof language itself provides a qualitatively different
view, following general concepts of high-level programming languages and leav-
ing behind raw logic. These two levels of discourse are bridged by the Isar/VM
interpreter (chapter 3). The basic structure of natural deduction proof texts is
explored by the example of pure first-order logic (chapter 4).

1.6.2 Part Il: Techniques

The generic Isar framework has substantial potential for “advanced” techniques
of formal proof composition, beyond raw natural deduction. We give a sys-
tematic exposition of practically relevant Isar proof patterns, including derived
elements like generalized elimination, cases and induction (chapter 5). The
important paradigm of calculational reasoning (within natural deduction) is ex-
plored as well (chapter 6). All of these techniques have been distilled from
concrete Isabelle/Isar applications, and have already proven viable in practice.



22 CHAPTER 1. Introduction

1.6.3 Part lll: Applications

Isabelle/Isar is able to cover a broad range of applications. We include concrete
examples from pure logic (chapter 8), mathematics (chapter 9), and computer-
science (chapter 10). The latter two make use of the Isabelle/HOL application
environment (chapter 7), which gives rise to some further logic-specific Isar proof
techniques. As a general rule, we never “explain” concrete proofs informally,
but let the formal Isar text stand on its own. Nevertheless, specific Isar proof
techniques may well be discussed separately. All formal theory developments are
given complete and unabridged, so the included applications provide evidence for
“realistic” Isabelle/Isar proof documents (as produced with the official version
of Isabelle99-2 from February 2001).
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Chapter 2

Preliminaries

We briefly review a few foundational issues that are relevant to the Isar frame-
work to be introduced later on. This includes basic mathematical notions, and
an abstract model for generic natural deduction based on minimal higher-order
logic. The latter eventually leads to a viable environment for primitive logical
inferences due to the Isabelle tradition, with the notable inclusion of fundamen-
tal tool support via higher-order unification and back-chaining. Some details of
the existing view have been simplified and generalized for the purposes of Isar.

2.1 Basic mathematical notions

We outline the main aspects of our semi-formal background language for tra-
ditional “pen-and-paper” treatment of mathematical concepts. We basically
employ a standard version of classical set theory, using common mathematical
notation as far as possible, with some bias towards conventions of higher-order
functional programming (according to Haskell or ML) and higher-order logic as
in Isabelle/HOL [Nipkow et al., 2001] (see also chapter 7). Although many of
the formal logical elements to be introduced later on (such as A-calculus and
higher-order logic) will share substantial parts of the notation introduced here,
these are still different levels of discourse with quite different formal status.

Sets. Some basic sets are taken for granted: truth values bool = {true, false}
and natural numbers nat = {0, 1, 2, ...}. Common set constructions like
comprehension {z € A. P z}, power sets set of A and finite set of A, Cartesian
products A x B and disjoint sums A | B are available as well. We closely stick
to standard set theory notation for further operations, such as x € A, A U B,
AN B, A— B.

Compound expressions. Common functional programming notation is used
for conditional expressions if b then z else y (where b may be a proposition

25
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or boolean value), as well as let 1 = y1; ...; ,, = y, in e[z1, ..., T,] which
abbreviates e[y1, ..., yn]-

Vector notation. Vectors are finite sequences of elements treated as a separate

notational device. We write @ for the vector of elements a1, ..., a,. A single
element z may be identified with a singleton vector Z. Vectors may be appended
by juxtaposition: ¥ § = 1, ..., Tm, Y15 - Yn-

Lists. A* shall denote the set of finite lists over a given set A. Lists are built
up inductively from the empty list ] (“nil”) and z o zs (“cons”) for z € A and
zs € A*. We write [21, ..., Z,] to denote the list 1 o --- o x, o [] (the cons
operator is nested to the right). The append operation is defined as [z1, ...,
Tm] Q [y1, -y Yn)] = [®1, -+ s Tm, Y1, ---, Yn]. The flat function iteratively
appends lists of lists: flat [zs1, ..., xs,] = xs1 @ ... @ zs,,. The difference of
lists zs — ys means to remove individual occurrences of members of ys from zs
(from left to right), in particular (as @ bs) — as = bs.

The map combinator lifts a function to operate on lists, i.e. map f [z1, ...,
z,] = [f 1, ..., f x,]. The iterate operator generalizes map by maintaining an
additional result: dterate f (zq, [a1, ..., an]) = let (z1, b1) = f (20, a1); ..
(T, bn) = [ (Tn—1, an) in (zp, [b1, ..., by]).

AT = A* — {]]} shall denote the set of non-empty lists over A. Functions first
and last defined on AT shall select the first and last elements, respectively.

Functions. Let A — B denote the set of total functions from sets A to B, and
A — B denote the set of partial functions (which share the same notation as
total ones). Following common practice “f € A — B” is written “f: A — B”.
As usual in set theory, functions are identified with their graph; thus we may
also use plain set notation, e.g. {} for the completely undefined function.

We use A-notation Az € A. f(z) to refer to the function mapping any = € A
to f(z). Function application is simply written as f z, omitting parentheses as
far as possible. Both abstraction and application may be iterated: A\Z. f(Z) =
AZ1. oo A&y f(&) and f Z = (... (fz1) ...) z,. An alternative notation for
application is z > f, which may be pronounced as “feed z into f”; the > operator
is left-associative and binds strongly (but weaker than plain application).

Point-wise update of functions is written in postfix notation, using f(z := y) to
denote the function mapping z to y and any other a to f a. The special notation
f(z := undefined) means to delete an entry, i.e. f — {(z, fx)}. Tterated update
f ++ g of with a collection g of pairs (z, y) is defined in the obvious manner,
for g being either a list (counted from left to right) or a partial function.

Left-to-right sequential composition of functions f and ¢ is written as f; g,
which is defined as (f; g) © = ¢ (f ). The dual notation g o f for right-to-left
composition is available as well.

Procedures. Let A and B be sets. A partial function s: nat — B is called a
sequence iff Vi. s i undefined — (Vj. i < j — s j undefined), i.e. once that
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an undefined position is encountered only undefined positions may follow. A
sequence is infinite iff it is a total function nat — B.

Let canonical s = s 0 refer to the head element of a sequence, which is considered
the “canonical” one in the denumeration. Furthermore, let truncate s i = s i for
1 = 0 and undefined for ¢ > 0, i.e. truncate restricts a sequence to its canonical
result. Finite sequences coincide with lists; we extend the append operation on
sequences accordingly, such that s; @ sy = s for s; being infinite. The flat
operations on lists of lists is transferred to sequences of sequences analogously.

A function p: A — (nat — B) is called a procedure iff any p z is a sequence
(for x € A). We write A —** B for the set of procedures from A to B. Note
that procedures need not necessarily be computable functions. Procedures p:
A — (nat — B) and ¢: B — (nat — C) may be composed in a canonical
fashion as follows: any result sequence p z is mapped through ¢ (by function
composition) and the emerging sequence of sequences is flattened; consequently
we define (p; q): A — (nat — C) as (p; ¢) = = flat (¢ o p z). Alternative
choice of procedures p | ¢ means to append the individual result sequences (with
left-to-right preference): (p | ¢) c = pz @Q ¢ z.

A function f: A — B may be turned into a procedure A —** B by replac-
ing any y = fz (for z € A) by a singleton sequence with canonical result y.
Furthermore, a procedure may be converted back into a (partial) function by
truncating each individual result sequence. In order to avoid excessive detail
later on, we usually treat procedures and (partial) functions uniformly, assuming
that implicit conversions are inserted as required. In particular, this convention
admits to refer to complex operations succinctly in functional expressions (e.g.
higher-order unification which enumerates all possible solutions).

Records. Tuple structures with explicitly labeled fields are expressed in a
concise manner by using record notation. In reminiscence of ordinary tuples
(21, ..., ) € Ay X -+ X Ay, let (ay € Ay, ..., an, € A,]) denote the set of
records over fields @ with values from /Y, and write individual record expressions
as (a1 = z1, ..., an = z,)). To accommodate large record specifications we also
use the declaration format record R = aq :: A1 ... a, : A,.

For any record R with some field a € A the following standard operations are
available: field selection get-a: R — A, field update put-a: A — R — R, and the
functional map-a: (A — A) — (R — R) for lifting field operations to records,
which is defined as map-a f = Ar. put-a (f (get-a r)).

2.2 Minimal Higher-Order Logic

We briefly outline simply-typed minimal higher-order logic, which shall serve
as the very basis for formal-logic issues to be covered later on. The subsequent
presentation draws from similar formulations of the generic framework under-
lying Isabelle/Pure [Paulson, 1989] [Paulson, 1990], with further influences of
type theory presentations like [Barendregt and Geuvers, 2001].
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2.2.1 Types and terms

The basic syntactic framework of the logical environment introduced below is
that of simply-typed A-terms modulo a3n-conversion, following the established
practice of higher-order abstract syntax [Pfenning and Elliott, 1988].

Let name be a globally fixed (infinite) set of names, e.g. the set of strings over
a finite alphabet. Subsequently, we use implicit “copies” of name to achieve
separate naming of various syntactic categories (variables, constants, etc.).

Types T are inductively defined as first-order “term” structures: 7 = ?a | a |
(t1, ..., Tn)c, with schematic type variables ?a € name, fixed type variables «
€ name, and type constructors ¢ € name X nat. Type variables may be also
represented by identifiers prefixed by a prime, e.g. writing ‘a for a. The second
component of a type constructor is called its arity; it is usually suppressed as
it is clear from the context, e.g. we write bool instead of (bool, 0). The special
type constructor (=, 2) is written as infix and nested to the right, as in the
“curried” type expression 71 = 79 = ... = T, = 0; the latter may be also
abbreviated as 7 = o. For 0-ary type constructors we write ()c merely as c.
Let type be the set of all well-formed types.

Terms t are simply-typed A-terms which are built over schematic variables 7z,
€ name X type, fixed variables x, € name X type, and constants ¢, € name X
type as follows: t = %2z, | & | ¢ | Azr. t | t1 ta. The typing relation ¢: 7 is
defined inductively, with a,: 7 for atomic terms (variables and constants) and
the subsequent rules for abstraction and application:

t: o t1: 7T =0 to: T
ANer t)T =0 (t1 t2): 0

Note that this form of type assignment does not require a separate context of
variable typings, since all atomic terms are already equipped with type anno-
tations beforehand. A term ¢ is called well-typed iff 7. t: 7. Apparently, each
well-typed term has a unique type. Let term be the set of all well-typed terms.

The usual notions of substitution and instances are taken for granted. Using
postfix notation we write (simultaneous) substitution as 7[r1/a1, ..., Tn/ay]
for types, and t[t1/z1, ..., tn/xy,] for terms (which has to respect types). Fur-
thermore, A\-terms shall be considered equal modulo the usual equational theory
of afn-conversion.

A signature ¥ is a collection of declarations of type constructors (with arities)
and constants (with types), such that constant declarations are closed wrt. type
instances and only refer to already declared type constructors. A signature may
be specified by giving schemes of type constructor arities (i, ..., a,)c and
constant declarations ¢ :: 7.

A type is called well-formed wrt. a signature 3 iff it is well-formed and only refers
to type constructors of . Likewise, a term is called well-typed wrt. a signature
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> iff it is well-typed and only refers to type constructors and constants of . In
practice, we refer implicitly to the standard signature of the present context.

Finally note that “fixed” versus “schematic” variables as introduced above are
just separate syntactic expressions of the very same formal concept of variables.
The difference is merely one of a policy in certain logical operations to be in-
troduced later on (notably higher-order resolution, see §2.4) [Paulson, 1989):
schematic variables may get instantiated on the fly, while fixed ones need to be
left unchanged in the present scope.

2.2.2 Propositions and theorems

Well-typed terms of the special type prop are called propositions; the set of
propositions is called prop as well. Statements of minimal higher-order logic
involve separate logical connectives of A (universal quantification) and = (im-
plication). From now on, we assume that the signature of the current context
contains at least the following declarations:

prop type of propositions
N (o = prop) = prop universal quantifier (binder)
= :: prop = prop = prop implication (right-associative infix)

The common binder notation Az; -+ x,. ¢ refers to nested application of
universal quantifiers and abstractions A(Az;. - -+ A(Azy. ). “Curried” impli-
cation Ay = --- = A,, = C is occasionally abbreviated as A — C.

The set theorem is defined inductively as a certain subset of derivable “sequents”
from (finite set of prop) x prop. We write I' b ¢ for (T', @) € theorem, and
write F ¢ for {} F . The subsequent inductive definition of T' - ¢ depends on
a fixed set of propositions (also called azioms) which is required to be closed
wrt. type instantiation.

(if ¢ is an axiom)

axiom ——— (assumption
T (e o | !
IR ) NFep=1Y Iyl ;
- t -
T (o Fp—= g (i) AR TS
rL o tf inT '+ .
¢ (if 2 not free in I') (\-intro) M (\-elim)
T Ae o T (i3]

An alternative presentation of these rules is given below, according to common
inference notation for natural deduction (e.g. see the exposition in [Thompson,
1991] or [Basin and Matthews, 2001]). Local contexts involved in the rules are
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treated implicit here; the axiom and assumption schemes are suppressed.

(]
1:# : p=19 ¢ ,
= (=>-intro) " (=-elim)

(]

(':0 ) —/\:c 1 -elim
Ao o (A\-intro) [t/7] (\-elim)

To achieve succinct presentations later on, logical inference rules are occasionally
treated like functions (taking scheme parameters or premises as arguments), e.g.
assumption ¢ = {p} F ¢. Also note that meta-level theorems (especially those
of non-atomic statements involving A\ /=) are occasionally called “rules” as
well. This liberal terminology makes some sense, because theorems give rise to
canonical inference rules via higher-order back-chaining (see also §2.4).

A theory © consists of a signature ¥ (cf. §2.2.1) plus a set of axioms (closed
wrt. type instantiation). A theory may be specified by giving declarations for
the signature part and stating axioms - ¢. We usually refer implicitly to the
standard theory (and signature) of the present context.

As a general convention (following [Paulson and Nipkow, 1994]), free variables
occurring in theorems presented at the top-level theory context shall be con-
sidered as implicitly generalized. This may be expressed by replacing fixed
variables z (for terms) and « (for types) by schematic ones %z and ?a. Outer-
most quantification “Az” achieves an equivalent effect, but does not work for
type variables. SoF A = A may beread as - YA — Aor - ANA. A = A.

The inference system given above supports schematic polymorphism, in the sense
that arbitrary type instances of theorems are guaranteed to be derivable as well
(which requires well-typedness of terms and propositions to be preserved in the
first-place). The deeper reason for this is that both the declarations of constant
schemes and axioms are closed by type instantiation. The following (admissible)
rule captures schematic polymorphism succinctly; it is quite easy to establish
by induction over derivations.

o]
'y (if anotinT) <p
'k plr/al or: wlr/a]

Minimal higher-order logic considered so far is sufficiently expressive to represent
further standard logical connectives (3, A, V, = etc.) directly within the existing
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system. For example, dz. P £ may be represented according to its canonical
elimination form as AC. (Az. Pz = C) = C (see also chapter 8).

Immediate extensions like this are not the primary intention of the pure logi-
cal framework, though. An actual working environment like Isabelle/HOL (see
chapter 7) is embedded as an object-logic instead. This involves separate ax-
iomatization of a “derivability judgment” that coerces object-level statements to
meta-level propositions. Isabelle [Paulson and Nipkow, 1994] traditionally uses
the functional constant Trueprop, which is suppressed in the concrete syntax.
So “F ¢” may actually refer to = Trueprop ¢, if ¢ is an object-level formula.

Nevertheless, it is good to know that the pure framework is able to represent
standard logical connectives directly. The Isar framework introduced later on
(see chapter 3) essentially provides a reflection of minimal-logic concepts to the
level of structured proof texts. The previous observation on connectives may
serve as a guideline for advanced reasoning patterns (e.g. see chapter 5), like the
“existential” proof context element that is based on the general idea underlying
ANC. (Az. Pz = C) = C (see §5.3).

Theorems routinely occur in finite collections, so we define fact = theorem™ as
the set of lists of theorems, which shall be used wherever results of derivations
arise in the present context. Technically, this serves as a (partial) replacement
for multiple result sequents, as available in the slightly more complex setting of
DECLARE [Syme, 1997a] [Syme, 1998] [Syme, 1999]. The immediate view of
conjunction as AC. (A = B = () = (' is occasionally helpful as well.

2.3 Definitional theory extensions

Theories may be extended by abstract syntax declarations (§2.2.1) and axioms
(§2.2.2). Given a theory ©, we may specify an extension ©’ as follows: ©' = ©
U (&)c U ¢ :: 7 Uk ¢, which is meant to introduce new type constructors, term
constants, or axioms. Note that the actual end-user environment will provide
a higher-level view on theory specifications, with concrete syntax for primitives
(see chapter 3) as well as derived extension mechanisms (see chapter 7). In
reality, only those theory extension schemes are considered “appropriate” that
qualify as definitional ones for meta-theoretical reasons.

As a prerequisite for definitional equations expressed within the framework itself,
we introduce a notion of (extensional) equality by axiomatic means. From now
on, all theories shall contain the following constant and axiom declarations.

D= a = prop equality relation (infix)
T=x reflexivity law
r=y= Pz= Py substitution law

T T T T

ANz. fe=gz) = f=g extensionality
(A= B) = (B= A) = A =B coincidence with equivalence
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Various notions of definitional extensions may now be identified as restricted
axiomatizations over “=".

2.3.1 Simple definitions

The most basic discipline of constant definitions essentially just introduces ab-
breviations for concrete expressions within the logic; see also [Pitts, 1993] for
the HOL point of view. Let ¢ :: 7 refer to a “new” constant declaration wrt.
the current theory context ©. Furthermore, let ¢, = t be a well-typed equation
such that ¢ neither contains the constant ¢ nor any term variables, and the type
variables of ¢ are already covered by its type 7 (i.e. ¢ must not contain any
“hidden” type dependencies). Then the extension ® = Q@ U c 17Uk ¢, = ¢
qualifies as a simple definition.

This strict form of definition enjoys a number of common meta-theoretical prop-
erties, e.g. preservation of completeness, decidability, consistency, and standard
models (according to [Pitts, 1993]). The key property of simple definitions is
that - ¢ in O iff - [t/c] in © (where ¢[t/c] has all type instances of ¢, ex-
panded by the corresponding type instance of ). A basic consequence is the
important property of syntactic conservativity, in the sense that any theorem
of the new context that is formulated in the old syntax already holds in the
old context. The old syntax does not mention the constant ¢ so conservativity
follows trivially from the previous expansion property.

Simple definitions may be presented slightly more liberally without changing
their meta-theory. In particular, the important special case of function defini-
tions may be written succinctly as - ¢ & = t instead of the raw - ¢ = A\Z. ¢
(recall that “=” is extensional).

2.3.2 Weakened definitions

Let ' =© U ¢ :: 7T Uk ¢, = t be a simple definitional extension. Any other
extension ©” = © U ¢ = 7 U @, for b @ being derivable in ©’, is called
weakened definition. The most common instance of this scheme are conditional
definitions of the form © U ¢ :: 7 U XY = ¢, = t for arbitrary conditions ¥.
Another useful instance are loose specifications © U ¢ :: 7 U F P ¢, provided
that = P t is derivable in the original context.

It is easy to see that weakened definitions still enjoy the basic properties of
syntactic conservativity, and preservation of consistency and standard models
as before (all consequences of O are already covered by ©’). On the other
hand, the exact correspondence of F ¢ versus the expansion - ¢[t/c] has been
lost, only the left-to-right implication holds in general. Weakened definitions
turn out as a fairly liberal specification mechanism that merely happens to be
“topped” by exact definitions outside of the formal context.
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The two most extreme cases of weakened definitions are unspecified constant
declarations of the form © U ¢ :: 7 (like arbitrary :: « in Isabelle/HOL, see
chapter 7 and chapter 8), and initial axiomatizations of full object-logics (all
object-rules are derivable from a hypothetical definition - Trueprop A = T).

2.3.3 Overloaded definitions

The scheme of overloaded constant definitions [Wenzel, 1997] renounces the
requirement to have declarations ¢ :: 7 and definitions ¢, = ¢ agree on the type
scheme 7, instead several (non-overlapping) type instances of ¢ may be specified,
eg. OUcaUl cpet =0UF cpoop = False UF caxpg = (ca, cg). See [Wenzel,
1997] for further details on well-formedness conditions of overloaded definitions;
the end-user view is covered in §7.1.2.

This rather liberal definition scheme offers interesting ways to specify generic
operations, depending on the structure of (simple) types. It even covers “object-
oriented” concepts like “method overriding” and “late-binding” [Naraschewski
and Wenzel, 1998]. A slightly more conventional view on overloading is ex-
ploited by the concept of “axiomatic type classes”, which offers a light-weight
mechanism for abstract theories (see also §7.2.4).

Overloading does not lose any further meta-theoretical properties beyond those
given up by weakened definitions already. Note that the tradition of relatively
weak meta-theoretical properties goes back to the Gordon/HOL system [Gordon
and Melham, 1993] [Pitts, 1993], which covers loose specifications (but no over-
loading). Isabelle/HOL [Nipkow et al., 2001] (see also chapter 7) routinely uses
overloading in its main library. Designers of different object-logics may choose
to ignore such exotic features, but restrict themselves to simple definitions.

2.4 Higher-order resolution

The main purpose of minimal higher-order logic (§2.2) as a logical framework
[Paulson, 1989] [Paulson, 1990] is to represent nested natural deduction rules
as formulas over \/=. According to Paulson, the idea of extending original
(first-order) natural deduction [Gentzen, 1935] to arbitrary nesting goes back to
[Schroeder-Heister, 1984]. In the Isabelle framework, the presentation becomes
slightly more elegant, though, since low-level syntactic notions like Skolem con-
stants and textual inferences are recast via handsome /\ /= connectives.

As a consequence of this particular view on minimal logic, the primitive intro-
ductions and eliminations (§2.2.2) lose some significance in practice, but get
replaced by the derived concepts of higher-order resolution (for composing rules
in a natural manner) and proof by assumption (for finishing a situation).

We will write r - @ for the resulting theorem of resolving fact @ in parallel into
a rule r. Resolution may indeed be read like a generalized application of A-
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calculus, but it covers implicit lifting over local contexts of A\/=>, as well as
higher-order unification (see §2.4.2).

2.4.1 Hereditary Harrop Formulas

The language of A\ /= formulas admits to represent different classes of “rules”,
depending on the intended kind of inference framework, see also the literature
on A-Prolog for further details [Miller, 1991].

In particular, the set of Horn Clauses merely consists of curried implications
of atomic formulas, with a flat prefix of outer parameters. This set may be
specified succinctly as Az*. A* = A, where x shall represent variables and
A atomic propositions (not containing A or =). Since outermost parameters
are usually expressed by free variables (both in Prolog and Isabelle tradition),
the presentation may be simplified to A* = A. This nicely corresponds to the
common two-dimensional format of inference rules:

A .o A,
A

Propositions in Hereditary Harrop Format (HHF') [Miller, 1991] generalize such
rules by admitting arbitrary nested statements as assumptions (conclusions are
still atomic); we define the set H of HHF formulas inductively as follows: H
= Az*. H* = A. Outermost parameters are usually suppressed as before;
generalize presents the generality of a rule in terms of schematic variables.

Ne. Hi— Az .
— (generalize)
H % = A%

HHF admits general proof schemes to be represented succinctly. For example,
mathematical induction may be stated directly at the meta-level as - P 0 =
(An. Pn = P (Suc n)) = P n, instead of a typical object-level encoding like
FPO= (Vn. Pn — P (Suc n)) = P n, which is slightly awkward since
v /— need to be treated by explicit rule applications later. Any proposition of
minimal higher-order logic may be presented in HHF normal form, because the
lawF (P = (Az. Q z)) = (Az. P = Q z) allows A and = to be commuted
such that parameters occur as a flat prefix at each level of rule nesting.

In Isabelle [Paulson and Nipkow, 1994] a goal is represented as a theorem,
which is F ¢ = ¢ in the beginning and gets transformed to become F ¢
eventually. A tactic is any procedure theorem —** theorem that does not affect
the main conclusion ¢, nor the implicit assumption context. Intermediate goal
configurations are of the form F Y = ¢, where the subgoals ¥ that are again
HHF formula AZ. H # = A Z. Here the parameters Z need to be treated as
“arbitrary, but fixed”, while the premises H 7 may be assumed as local facts
during the sub-proof of the pending obligation A Z.
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This goal representation works out smoothly, as long as the main conclusion
is atomic. Isabelle provides special provisions to derive non-atomic rule state-
ments, which is treated as an “advanced method” in the Isabelle documentation
[Paulson, 2001a] (here the system essentially decomposes the initial statement
into an outer context and an atomic conclusion; the rule emerges implicitly by
discharging the context again after finishing the proof).

The deeper reason for this inconvenience is the “improper list” representation
of the outer goal structure according to HHF, which would misinterpret a non-
atomic conclusion “... = H” as if the premises of H would be separate sub-
goals. In order to admit the rightmost position to hold arbitrary HHF formulas
as well, we need to preserve the initial structure somehow. For our purposes
of Isar proof composition (see chapter 3) we introduce additional proposition
markers “#” (without any logical meaning) that formally turn a general “H”
expression into an “A” one. Marked HHF formulas are of the form G* = G,
where G = H | #H. Only the topmost implication structure may carry markers;
the outer parameter prefix is again omitted. The following derived rules admit
to initialize and conclude a goal configuration (see also §3.2.3).

o — #o (init) # (conclude)

Here we only require a marker for the main conclusion. Optional markers en-
countered in rule premises shall play a second role to achieve proper treatment
of general HHF assumptions in local goal refinements (see refine in §2.4.2).

2.4.2 Fundamental inference rules

Higher-order resolution composes rules via “back-chaining”, while taking care of
local \/= contexts and instantiations automatically. Raw composition turns
FA=— BandF B = Cinto- A — C, essentially performing modus ponens
(in reverse order), while passing through an implication prefix A. The compose
rule given below also covers implicit instantiation of the conclusion of the first
rule and the premise of the second one.

A— B B'— C B# = B'#
A) = C0

(compose)

Here 6 shall refer to a substitution that exclusively operates on schematic vari-
ables (of types and terms, see also §2.2.1). A real implementation would typ-
ically enumerate possible solutions for 6 by higher-order unification [Paulson,
1989] [Paulson, 1990], but the exact operational details do not matter here.

Actual resolution is similar to compose, but observes the HHF structure of the
premise of the second rule. Instead of B’ above the general structure may now
be AZ. H £ = B’ Z. In order admit back-chaining as indicated before, the
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first rule needs to be adapted accordingly, which is called “lifting” in Isabelle
jargon [Paulson and Nipkow, 1994]. Lifting over a context AZ. H 7%= ...may
be performed by the following (derived) rules. The A-lift rule is particularly
subtle, since all schematic variables ?d of the original rule need to be adapted
to depend on the new outer parameters.

_ Avi=DBva ift

(ANZ. A (?a ¥)) = (A\Z. B (?d X)) (A-tift)
A— B

(ﬁ = /f) E (ﬁ = B)

(=-lift)

The resolve scheme is now acquired from A-lift, =>-lift, and compose.
A %= B ?d
(N2. HZ = B' &) = C
(\Z. B (?a %))0 = B'0

(Nt. HZ — A (23 7))0 = C0

(resolve)

We usually prefer to write resolve a r in applicative order as r - a, which may be
pronounced as “r of a” (see the related operation “OF” introduced in §3.3.2).
Resolution may be easily generalized to several argument rules @ applied in
parallel to a single rule r, covering a certain prefix of premises of 7.

Proof-by-assumption solves a subgoal by projecting a local premise (after in-
stantiation). Note that this may only take atomic assumptions into account,
since the conclusion is atomic as well.

(N&. HZ = A %) — C A0 = H;0 (for some i)
co

(by-assumption)

Isar goal refinements essentially work just by plain resolution; the subsequent
version allows arbitrary HHF assumptions to be solved at the same time. Below
the first argument G %4 = B ?a represents a local conclusion that has just
been exported from a context of additional assumptions; any (optional) markers
in the premises indicate immediate proof-by-assumption. The second argument
(A\Z. H # = B’ ¥) = C represents an enclosing goal state with first subgoal
NZ. H# = B’ Z; further subgoals and the conclusion are subsumed by C.

G %= B 7

(N HZ = B'%) = C

(M\Z. B (?a £))6 = B'0

(AZ. G; (?d Z))0 = #H,; 0 (for all marked G, for some 1)

(NZ. HZ = G’ (?a ©))0 = C0

(refine)
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Recall that G' may consist of marked and unmarked HHF formulas (§2.4.1).
The marked ones are immediately solved against existing premises H;, while
the result G’ merely covers the remaining non-marked premises of G (which
become new subgoals in the result).

The refine operation will be hidden in the very core of the Isar proof processor
(see also §3.2.3); it enables arbitrarily structured assumptions and conclusions
in proof texts. Note that direct goal transformations by users (e.g. via existing
tactics) never encounter the subtleties of marked versus unmarked propositions,
but work with plain resolve or by-assumption steps (see also §3.3.2).

2.5 The Isabelle/Pure framework

The logical framework introduced so far may be understood as a reformed pre-
sentation of the existing Isabelle/Pure environment [Paulson, 1989] [Paulson,
1990] [Paulson and Nipkow, 1994], which will serve as the formal background
for the Isar concepts introduced later on (see chapter 3). The actual Isabelle/Isar
implementation [Wenzel, 2001a] has been built around the Isabelle/Pure sys-
tem, too. Subsequently, we briefly review the main differences of our framework
of minimal higher-order logic (§2.2) to traditional Isabelle/Pure.

The original view of higher-order logic in Isabelle/Pure [Paulson, 1989] [Paulson,
1990] is somewhat closer to older formulations [Church, 1940] [Andrews, 1986]
[Gordon and Melham, 1993] [Pitts, 1993], while omitting any classical principles
and choice operators, of course (see also chapter 8). The following rules have
been stated by Paulson, and implemented as primitive theorem constructors in
Isabelle [Paulson and Nipkow, 1994].

2] 2]

12) p=1v ¢ @ Nz. ¢
o =1 (2 Nz o olt/a]

t=u u=wvw t=u
t=t t=wv u=t
2] X

f=g t=u tE:’LL fze=gz
ft=gu Az. t = Az. u Az, t) u = tlu/z] f=g
ol [yl

Y o p=9¢ ¢

=1 G
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Here introduction and elimination of A /= is the same as before (§2.2).

Definitional equality is characterized by low-level rules as an equivalence, with
congruence properties wrt. A-term formation, S-conversion, and extensionality;
the correspondence to logical equivalence is expressed via explicit rules as well.
In contrast, our presentation of extensional equality in §2.3 merely adds a few
basic axioms to the existing framework. No rules are added, although these may
be easily derived (e.g. see chapter 8). Our more compact treatment consider-
ably simplifies meta-level studies of definitional extensions (§2.3), although the
details have not been shown here.

Moreover, type instantiation is included as another primitive in Isabelle/Pure
[Paulson and Nipkow, 1994]. In contrast, we have been able to acquire the same
rule as an admissible one (§2.2.2), essentially due to the initial closure of axioms
by type instantiations. Thus we have kept schematic polymorphism out of the
core inference system (§2.2.2). Treating type instantiation as a primitive rule
causes many technical subtleties of the resulting structure of derivations, much
unnecessary effort has been required for the original meta-theory of overloaded
definitions [Wenzel, 1994] [Wenzel, 1997].

Note that the additional concept of order-sorted type classes of Isabelle/Pure
[Nipkow, 1993] [Nipkow and Prehofer, 1993] has been treated as an admissible
extension of the basic inference system before [Wenzel, 1997]; see also §7.2.4 for
the end-user view of type classes and overloading.

Generally speaking, our presentation of the “pure” framework has been made
more conforming to common presentations of natural deduction proof systems
according to typed A-calculus. In fact, our formulation resembles the presen-
tation of “AXHOL” within Pure Type Systems [Barendregt and Geuvers, 2001].
AHOL consists of three layers of typed A-calculus, with separate abstractions,
applications, and (potentially dependent) arrow types. In our notation (§2.2)
the arrows for the three layers are written as =/ A\ /=, corresponding to syntac-
tic function types, universal quantification, and implication, respectively. Only
/\ may actually depend on its abstraction argument (this is an inherent property
of AHOL [Barendregt and Geuvers, 2001]). The corresponding introduction and
elimination rules of =//A/= are essentially those of simple type assignment
(§2.2.1), modified to operate with local typing contexts, and the basic logical
inferences of higher-order natural deduction (§2.2.2).

[1::. 7]
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[h: ¢

pi:w . P =1 pa
(Mh: . p): o = ¢ (= -intro) (p1 p2): ¥

(=>-elim)

This unified view on minimal higher-order logic is able to improve the gen-
eral theoretical understanding of the framework considerably. It has certainly
influenced our simplified presentation given before (§2.2). Note that recent im-
provements of the Isabelle inference kernel [Berghofer and Nipkow, 2000] follow
a similar perception of multi-level A-calculus, too.

Nevertheless, the user-experience of the “real” Isabelle/Pure system differs from
AHOL in a few important details. First of all, the level of mere syntactic types
(“=") is left implicit most of the time, with additional conveniences like au-
tomatic type inference and polymorphism (see also §3.4.3). Moreover, the two
logical levels (“A” and “=") do not expose primitive proof terms to the user,
but only propositions. Essentially, a derivation object “F ¢” may be read as
a “theorem” or “abstracted primitive proof” interchangeably. Primitive proofs
never occur in actual primary proof texts of the Isar layer (cf. §1.4).
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Chapter 3

The Isar proof language

We give a detailed exposition of the Isar proof language, covering syntax and
operational semantics according to the Isar/VM interpretation scheme. Only
the most basic elements of high-level natural deduction proof texts are hardwired
as Isar primitives, further concepts are generally introduced as derived ones on
top of the core system. The proof language is embedded into a generic notion
of theory specifications.

Isar proof processing essentially imposes a certain policy on a selection of prim-
itive logical operations. In particular, Isar does not introduce yet another log-
ical calculus, but provides a conceptually different view on existing concepts
of generic natural deduction, focusing on incremental language interpretation
rather than primitive inference systems.

3.1 Introduction

The Isar language provides a general framework for human-readable natural
deduction proofs, see also [Wenzel, 1999] for an earlier version. The Isabelle/Isar
implementation [Wenzel, 2001a] enhances the Isabelle/Pure logical framework
[Paulson and Nipkow, 1994] to cover actual proof texts as well. While Isar
is generally somewhat biased towards that particular infrastructure of higher-
order nested natural deduction, most of the basic ideas could be transferred to
other foundations of mechanized logic as well.

An important philosophical issue of the Isar approach is the primacy of a high-
level formal language, with an operational semantics provided by incremental
interpretation. In particular, we do not invent a new logical calculus and estab-
lish a number of standard meta-theoretical results. Taking the very foundations
of logic for granted, we build a conceptually different layer on top. As already
pointed out by our terminology, the techniques to be developed here are more
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appropriately related to the field of high-level programming languages, rather
than mathematical logic.

Roughly speaking, the Isar language may be divided into two separate parts,
for theory and proof descriptions. The latter includes both “proper” language
elements for declarative proof texts, and “improper” ones for experimentation
and emulation of unstructured proof scripts.

The key to viable support for human-readable formal proof texts is the design
of the proper part of the Isar proof language, which consists of 12 basic ele-
ments (see also §3.2.1): “fix z :: 77 and “assm <r> a: A” augment the logical
context, then indicates forward chaining of previous facts, “have a: A” and
“show a: A” claim local statements (the latter includes solving of some pend-
ing goal afterwards), “proof m” performs an initial proof step by applying some
method, “ged m” concludes a (sub-)proof, “{”, “}” and next manage block
structure, “let p = t” introduces term abbreviations via higher-order matching,
and “note a = b” names reconsidered facts.

Common context elements are represented as particular instances of the generic
assm primitive, notably assume for the usual kind of “strong” assumptions and
def for local definitions (see also §3.3.1). Furthermore, there are a number of de-
rived proof commands (see §3.3.3), most notably “by my msy” for proofs with an
empty body, “..” for single-rule proofs, “.” for immediate proofs, hence/thus
for claims with forward chaining indicated, and “from @” /“with @’ for explicit
forward chaining from (additional) facts.

A few standard abbreviations are available as well: ?thesis for the original
claim at the head of the current proof, ?this for the latest finished statement,
and “...” for its left-hand side (if available). The special name this refers to
any fact established in the previous step (then happens to be the same as
“from this”). Fundamental proof methods are “this” to resolve facts directly,
“(rule r)” to apply a rule resolved with facts, and “—” to insert previous facts
without applying any rule yet (see also §3.3.2).

The natural deduction kernel of Isar directly corresponds to the underlying
logical framework (cf. §2.2). For example, a meta-level rule statement may be
established as follows.

have Az y2. A= B = C
proof —

fixzyz

assume A B

show C (proof)
qed

Here the basic idea is to build up an Isar proof text corresponding directly to the
logical connectives, using fix for A and assume/show for =—>. In practice such
proof problems usually emerge from a different claim being refined by an initial
proof method, which is used instead of “—” encountered here. See chapter 4 for
further basic examples on natural deduction in Isar.
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Despite being primarily focused on plain natural deduction proof descriptions,
the Isar framework turns out as sufficiently flexible to support a rich environment
of linguistic expressions that both readers and writers may find satisfactory as
a primary representation of formal documents. See chapter 5 and chapter 6 for
a systematic exploration of the resulting space of useful proof patterns.

3.2 Syntax and semantics

The syntax of the Isar theory and proof specification language is defined via a
set of primary commands, as defined by the syntactic category command below
(§3.2.1). From the syntactic viewpoint, any sequence of commands is already a
well-formed Isar document. The semantics of each command is determined by a
transition of the underlying configuration, which may be either the background
library of theories, an individual theory, or a proof state (which is again subdi-
vided into three different modes). From the basic typing of commands induced
by the transition semantics we impose a certain structure of Isar documents,
which achieves a block structured formal language that may be presented in the
usual form via a context free grammar retrospectively (see §3.2.4).

By having the Isar language emerge in this bottom-up manner we emphasize
its incremental interpretation, such that the process of formal proof checking
coincides with that of interactive development and debugging (commands turn
out as sufficiently fine-grained to support this in reality).

Moreover we may easily extend the basic language by derived commands, which
are defined as abbreviations of existing ones (potentially depending on the cur-
rent state). Derived elements may be freely combined with the rest of the
language, according to the typing determined by the semantics of the underly-
ing primitives. Thus we achieve a maximal degree of language compositionality
for free, without having to maintain a fixed global grammar.

Consequently, the Isar primitives may be restricted to the bare minimum re-
quired to bootstrap the language environment. A number of standard derived
elements introduced later on (see §3.3.3) are indispensable even for the most ba-
sic applications. Further canonical slots for extensions are that of proof methods
(goal refinement schemes) and attributes (operations involving facts); the most
basic ones are included in the general Isar setup (see §3.3.2).

In the subsequent definitions of syntactic categories related to the basic Isar
language, we are using the following notation for regular expressions, namely
parentheses “(...)” for grouping, z* for zero or more occurrences of a language
element z, likewise 1 for one or more, and z° for zero or one occurrences of .
Furthermore, recall the following basic formal items introduced in §2.1 and §2.2:
nat for natural numbers, bool for truth values, name for basic names, type for
well-formed (simple) types, term for well-typed A-terms, prop for propositions
(terms of type prop), and theorem for derivable propositions.
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3.2.1 Isar commands

The Isar proof language consists of three main layers, with these sub-languages:

command  primary proof commands
method operations on goals
attribute  operations involving facts

Presently our main focus is on the primary command language. The secondary
ones of method and attribute may be considered as a parameter of the whole
Isar framework. Later on we will merely specify a few fundamental methods
and attributes (see §3.3.2), while leaving it to concrete working environments
to incorporate any further tools as appropriate (like the collection of automated
proof methods of Isabelle/HOL, see §7.3).

The primary language command defines a number of primitives (both for theory
and proof operations) as follows.

command =
theory name = name (+ name)*:
end

types (name nat)™

consts (name :: type)™

axioms (name-atts: prop)™
theorems (name-atts =)’ name-atts*
theorem (name-atts:)* prop

apply method
done

|
|
|
|
|
|
|
|
| proof method’

| ged method’

I q

|}

| next

| let term = term (and term = term)*

| note (name-atts =)° name-attst (and (name-atts =)° name-atts™)*
| fix var™t

| assm <rules (name-atts:)’ propt (and (name-atts:)” prop™)*

| then

| have (name-atts:)” prop

| show (name-atts:)? prop

Some additional basic categories are defined below.

var = name X type

case = war* x prop*

fact = theorem™

rule = theorem — theorem

name-atts = name [attribute*]’
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In order to simplify the subsequent treatment of commands, we fix the default
values for any optional arguments as follows.

proof default method rule (see §3.3.2)
qged default method succeed (see §3.3.2)
name-atts default name this with empty list of attributes

Also note that the rule argument of assm is treated in a special way, such that
Isar proof texts given by users may not refer to it directly (there is no concrete
syntax for rule available). Thus assm may only occur indirectly via derived
commands, such as the basic context elements assume, presume, def, and
case introduced in §3.3.1.

3.2.2 Basic types of commands

A formal Tsar text is syntactically correct iff it conforms to the (degenerate)
grammar command’. Certainly, this does not yet impose any specific struc-
ture on formal texts, which will be only determined as part of the operational
semantics of commands, involving fine-grained typings.

Assume the types library (for the background storage of theories), theory (for
theory contexts), and proof (for proof configurations). Isar commands are given
the following types expressed in the signature diagram of figure 3.1.

types consts
axioms theorems
Y Y

theory theorem

-

) apply done
library theory proof proof ged
{} next

let note
ged fix assm

have show

end done

Figure 3.1: Basic types of Isar commands

Corresponding to these basic typings, we also introduce the following classifica-
tion of Isar commands.

theory setup commands theory, end

theory specifications types, consts, axioms, theorems,
theorem

improper proof commands apply, done

proper proof commands proof, ged, {, }, next, let, note,

fix, assm, then, have, show



46 CHAPTER 3. The Isar proof language

Naturally, proof commands and proof configurations are the main focus of Isar,
see §3.2.3 for further details.

Presently we shall point out a few aspects of how the Isar concept of proof may
be embedded into theory specifications, including integration with an enclosing
library of theories. The underlying concepts of theory and library happen to be
closely related to those of recent versions of Isabelle [Paulson, 2001b] [Berghofer
and Wenzel, 2001]. Nevertheless, this particular model mainly serves as a work-
ing example, obviously the Isar proof language could be also embedded into
rather different theory concepts as well.

A theory consists of purely logical declarations (according to §2.2), together
with an explicit environment of facts, and an additional slot to keep any kind
of auxiliary information data.

record theory =

types ;o set of (name X nat)
consts o set of (name X type)
azxioms i name — prop
theorems 1 name — fact

data : data

The data slot is left unspecified for our present purpose. While it is kept along
with the theory, it does not affect its meaning from the purely logical point
of view. Nevertheless, the concept of extra-logical theory data proves an in-
dispensable tool to support advanced theorem proving environments (e.g. for
separate contexts of rules to be used with automated proof procedures, as well
as high-level theory specifications; see also chapter 7).

Commands types, consts, axioms shall maintain the corresponding primitive
theory fields in the obvious manner; theorems provides a direct interface to
update the theorem environment; theorem is conceptually quite different from
the previous ones as it first enters a proof configuration, eventually resulting in
an actual theorem, and then updates theorems accordingly. The theorem names
“” and nothing shall be considered as reserved, with the standard assignments
of H AA. A = A and the empty fact, respectively.

A library shall represent any kind of background storage of individual theory
objects, usually with some inherent notion of (acyclic) dependencies.

record library =
theories :: mname — theory
deps . name — set of name

Viable theory management for large-scale applications is still an issue of ongoing
research, both from the logical perspective (e.g. [Pollack, 2000]) and the change
management view (e.g. [Reif, 1992] [Hutter, 2000]). Concerning Isar we only
demand the primitive “theory a = b + ... + b,:” for commencing a new
theory context from the merge of existing ones, and end to put the result
back into the library. Independently of any automatic mechanisms of update,



3.2.  Syntax and semantics 47

change management, synchronization with external repositories etc., the core
Isar commands operate on theory and proof configurations in a linear fashion.
We deliberately rule out unstructured interaction with the theory arrangement
once that a particular context has been entered. For example, there is no
command for ad-hoc import of existing theories into the present context. The
idea is to provide commands to compose a collection of well-defined theory
documents, rather than ad-hoc manipulations of formal entities.

3.2.3 Isar/VM transitions

We are ready to define the operational semantics of the actual Isar proof com-
mands, by interpretation as transitions of the Isar virtual machine (Isar/VM).

According to definitions to be given later on, Isar/VM configurations have type
proof, mainly consisting of a static proof context plus dynamic goal information.
C shall fix the semantics of proof commands (together with initial and terminal
linking with the theory context), while interpretations M for proof methods
(with and without additional case bindings) and A for attributes (both for
proof and theory contexts) are left as parameters.

command — theory — proof

command — proof —** proof

command — proof — theory

method — context — fact — tactic X (name — case)
method — context — fact — tactic

attribute — context x theorem — context x theorem
attribute — theory x theorem — theory X theorem

SR e0O00

A proof configuration is defined as a stack of basic proof states: proof = state*.
The stack represents the block structure of the proof text; proof commands
usually operate on the head of the stack only, except those that affect the block
structure itself.

record state =

mode : prove | state | chain
context 1 context
goal ;. goal | none

Modes of operation

We distinguish three fundamental modes of operations of the Isar/VM, with the
following informal meaning:

prove awaiting direct transformation of the present claim (by method
application)

state ready to state new local items (assumptions, local claims etc.)

chain  awaiting a new claim, with previous facts being indicated for
later use
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Isar proof commands acquire certain typings according to these three modes,
as shown in figure 3.2. This imposes an inherent structure on Isar proof texts,
according the role that proof commands may play in a particular situation.
Only those sequences of proof commands may get successfully processed by the
Isar/VM interpreter that correspond to legal paths of this diagram. Note that
further structural constraints are achieved via proper nesting of blocks, which
is not encoded into the mode field, but determined from the stack structure.

theorem {3
next

proof '\’) let

done note

have fix

apply C prove show state O assm

have then

show :) ged
done qed

Figure 3.2: Transitions of Isar proof processing

This inherent fine-grained typing of proof states is a key concept of Isar/VM
proof processing. Thus we achieve both well-structured texts and incremental
checking of individual commands. In contrast, traditional tactic scripts would
operate only on a single kind of state, as may be even expressed within the Isar
framework. By restriction to improper proof commands the original Isar/VM
diagram of figure 3.2 degenerates to that of figure 3.3.

theorem

apply C prove

done

Figure 3.3: Transitions of tactical theorem proving

Apparently, tactical theorem proving is like holding your breath, until the
present claim has been solved completely by direct goal refinements via meth-
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ods. Proper Isar proof texts would usually only perform one or zero direct steps,
in order to change quickly into the rich landscape of state mode in order to ex-
plore the present context in a casual manner. See §4.2.3 for further discussion
of the issue of “operational” versus “declarative” theorem proving in practice.

State components

Apart from the mode field, Isar proof states have clearly separated components
of “static” proof context versus “dynamic” goal information. As a general prin-
ciple, the context keeps all those items that directly correspond to declarations
given in the text (assumptions, finished claims, term and fact bindings etc.),
while the goal state contains the leftover claim that may have undergone sev-
eral direct refinements beforehand. In the operational semantics we take care
that results of proof methods may never intrude the subsequent proof text.

record contert =

theory ::  theory

fixes o var®

assms :: rule*

terms 1 name — term
cases I name — case
facts . name — fact
data : data

Here theory is kept for reference to the enclosing context; it will only be changed
in a final proof step, just before handing over back to the theory level.

The fizes and assms fields correspond to logical contexts AZ. H = ... in HHF
normal form (cf. §2.4.1). Instead of plain propositions H we rather keep the
corresponding discharge rules of assumptions (see also §3.3.1).

In addition, we maintain auxiliary environments of terms, cases, facts, which do
not have any immediate logical significance, but are indispensable to support the
course of reasoning in a well-structured high-level manner, as it enables proof
commands to refer to bits and pieces of logical entities under construction.
The slot for arbitrary data, which is inherited from the theory, may hold any
further information, e.g. separate contexts for dedicated proof tools (see §7.3).

record goal =

solve = bool
name o name
atts o attribute”
statement 1 prop
using i fact
problem ;1 theorem

The goal fields mostly contain bookkeeping information to capture the present
state of pending claims: solve distinguishes have from show (the latter is
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intended to refine an enclosing claim when finished); name and atts keep the
original declaration, which is applied to the result eventually; statement holds
the original claim; wusing tracks any facts indicated for forward chaining (as
indicated via then), otherwise the empty list; problem holds the internal goal
state, represented as a theorem of the underlying logical framework (cf. §2.4).

Incidently, the order of individual constituents of Isar proof configurations pre-
sented above roughly corresponds to their significance in practical application
of the framework: the static context (which corresponds to a piece of proof
text up to a certain position) is of more interest than the dynamic goal infor-
mation (which is only relevant in isolated situations where direct refinement
takes place). In contrast, traditional tactical proving mostly revolves around
the goal/problem part, while being ignorant of the rest.

Nevertheless, the very purpose of that “redundant” apparatus of Isar/VM proof
configurations is to support an interpretation model of formal proof texts that
enables the writer to arrange the course of reasoning in such a way that the
reader is liberated from taking into account any accidental behavior of primitive
operations underlying arbitrary proof methods.

Interpreting commands

We are ready to define the interpretation C of proof commands as Isar/VM
transitions; recall that M and A are still left open. Refer to chapter 2 for basic
operations, such as record field manipulations, composition of theorems (rules)
of the logical framework etc.

In order to avoid excessive notational detail, we use the convention that record
operations may be also applied to more complex structures (such as the stack
over state, or the record state over context and goal). Furthermore, partial
functions and procedures (cf. §2.1) shall be converted implicitly as required,
so plain functional notation may be used throughout our specification. For
brevity the main definition of C is presented in combinatorial style, without ever
mentioning the configuration to be transformed explicitly. Recall procedural
composition p; ¢ and alternative choice p | ¢ from §2.1.

C (theorem ¢: ) = init-proof; open-block; prepare-term ¢; bind-goal;
init-goal false q; put-mode prove

C (apply m) = assert-mode {prove}; transform-goal m; put-using [|

C (done) = assert-mode {prove}; conclude-goal; refine-enclosing;
(store-result | (bind-result; set-this; put-mode state))

C (proof m) = assert-mode {prove}; transform-goal m; put-mode state

C (ged m) = assert-mode {state}; assert-goal true; transform-goal m;
transform-goal finish; conclude-goal; refine-enclosing;
(store-result | (bind-result; set-this; put-mode state))
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C ({) = assert-mode {state}; open-block; put-goal none; open-block
C (}) = assert-mode {state};
export-this (close-block; assert-goal false; close-block); set-this
C (next) = assert-mode {state}; close-block; open-block;
reset-this; put-mode state
C (let py = t; and ... and p,, = t,) = assert-mode {state};

prepare-terms [t1, ..., tp]; bind-terms [p1, ..., pn]; reset-this

C (note ¢y = 7 and ... and ¢, = 7,) = assert-mode {state};
prepare-facts [F1, ..., Tn); bind-facts [q1, ..., qn]; set-this

C (fix ¥) = assert-mode {state}; map-fizes (Afizes. fires Q Z); reset-this

C (assm <r> ¢qi: ¢1 and ... and ¢,: @,) = assert-mode {state};
prepare-termss [p1, ..., Pnl; add-assms r; bind-facts [q1, ..., qn]; set-this

C (then) = assert-mode {state}; put-mode chain

C (have q: p) = assert-mode {state, chain}; open-block;
prepare-term ; bind-goal; init-goal false ¢; put-mode prove

C (show q: @) = assert-mode {state, chain}; open-block;
prepare-term ; bind-goal; init-goal true q; put-mode prove

The special proof method finish encountered above ensures that a goal config-
uration = ¥ = # is reduced to F #¢ with all remaining subgoals solved
by-assumption (§2.4.2), either directly or after applying a single rule from the
current prems via resolve (§2.4.2).

Several auxiliary functions for C still need to be defined (see below). This will
ultimately provide a mathematical model of the Isar/VM interpretation process
of Isabelle/Isar [Wenzel, 2001a]. The above presentation of C may already serve
as a semi-formal exposition of the general idea of Isar proof processing.

Internal operations

For the subsequent definitions of internal operations encountered in C above,
we use the notational conventions of © for a theory argument, ¢ for theorem,
J for fact, o for state, and & for proof. Also recall backwards application = > f
(binding tightly) from §2.1.

A few names of the Isar language shall be reserved, in the sense that these may
never be bound directly in proof texts by users, but only internally by (primitive
or derived) commands. These are ?thesis, ?this, “...” for terms, this, prems for
facts, and antecedent for cases.

An initial proof configuration merely consists of an initial context, which in turn
contains the enclosing theory (which is never changed until the very end of the
main proof), and inherits the global theorem environment and auxiliary data.

ingt-proof © = [(mode = state, context = init-context ©, goal = nonel)]
ingt-context © = (theory = O, fizes = [|, assms = [|, terms = {},
cases = {}, facts = (get-theorems ©)(prems := []), data = get-data O)
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Basic block management is mediated by the inherent stack structure of proof
configurations.

open-block (0 0 ) =coocod

o
close-block (o 0 ) =&
The following assertions ensure certain types of proof configurations encountered
during operation of the Isar/VM, the interpretation process simple stops on
failure of any such condition. Note that a goal record is always kept behind an
additional level of nesting, which enables next to jump blocks as expected.

assert-mode M o =
if get-mode o € M then o else undefined
assert-goal b (01 0 09 0 &) =
if b = (get-goal oo # none) then o1 o 0y o & else undefined

The special fact binding this is maintained to hold the most recent result, other-
wise it is undefined in order to cause failure on forward-chaining out of nothing.

set-this (o, ¥) = o > map-facts (\e. e(this := 0))
reset-this = map-facts (Xe. e(this := undefined))

The export operation performs fundamental adjustments required to move a
theorem out of a context of local parameters and assumptions, essentially the
context difference is discharged inside-out. The A-intro rule is from §2.2.2 and
generalize from §2.4.

ezport o o’ ¥ =

let [z1, ..., z,] = get-fires o — get-fizes o’
[r1, ..., o] = get-assms o — get-assms o’
ind>r, > > A-intro z, > - > N-intro 21 > generalize T

Terms entered into the text are always normalized with respect to the current
environment of term bindings. The basic operation norm e ¢ shall replace all
occurrences of schematic variables ¢z by the term norm e (e ?x), i.e. lookup
the binding and normalize recursively; this operation fails for unbound vari-
ables. Moreover, unify shall perform simultaneous higher-order unification on
pairs of terms, enumerating possible result bindings. Note that immediate term
bindings are covered by degenerate patterns consisting of a single variable only.
The special dummy pattern “-” refers to a “fresh” schematic variable for each
occurrence; this allows to specify patterns where certain positions are skipped.

prepare-term t o = (o, norm (get-terms o) t)
prepare-terms ts o = (o, map (norm (get-terms o)) ts)
prepare-termss tss o = (o, map? (norm (get-terms o)) tss)
bind-terms [p1, ..., pa] (0, [t1, ... tn]) =

o > map-terms (Ae. e ++ unify [(p1, t1), -+, (Pn, tn)])

Explicit statements in the text give rise to automatic bindings of reserved names,
depending on the present role as a goal or result statement. It is important to
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note that we never peek at theorems (neither facts nor goals), but merely analyze
terms stemming from the text. A proposition ¢ of the form AZ. Hi=— AZ
is decomposed as follows: conclusion-of ¢ yields the term A, and antecedent-of
 yields the case (Z, H ), and argument-of ¢ yields the right-hand side of A if
that is an application (otherwise undefined).

bind-goal (o, p) = (o

> map-terms (A\e. e(?thesis := conclusion-of ¢))

> map-cases (Ae. e(antecedent := antecedent-of ¢)), @)
bind-statement ¢ 0 = o

> map-terms (Xe. e(7this := conclusion-of ¢)(“...”

:= argument-of ¢))

The goal operations given below manage the dynamic component of a proof con-
figuration. Initially, we setup a goal record consisting of the result specification,
the presently chained facts, and a trivial proof state represented as a theorem.
The init rule is from §2.4.

init-goal solve (name, atts) (o, p) =
o > put-goal (solve = solve, name = name, atls = atls, statement = ¢,
using = if get-mode o = chain then get-facts o this else [],
problem = init @|) > reset-this > open-block > put-goal none

Goal transformations are the only occasion for application of proof methods,
which may refer to arbitrary tactics inside (cf. §2.4).

transform-goal m (o1 0 05 0 &) =
let (tactic, cases) = M m (get-contert o1) (get-using o2);
add-cases = map-cases (Ae. e ++ cases)
in (01 > add-cases) o (o2 > map-problem tactic > add-cases) o &

The operation of concluding a goal exhibits the finished result in two ways, both
for export into the enclosing goal (if applicable), and for immediate binding in
the present context. The generalize and conclude rules are from §2.4.

conclude-goal (o1 0 09 0 &) =
let goal = get-goal o2;
¥ = generalize (conclude (get-problem goal));
result = (get-name goal, get-atts goal, get-statement goal, )
in ((¢, (get-solve goal, export oq, 1)), result)

In order to refine the enclosing problem (the innermost according to the struc-
ture of sub-proofs), we search the stack of proof states upwards and apply the
given theorem after export with respect to the context difference. The all-
important refine rule encountered here is from §2.4.2, which takes care of both
the conclusion and assumptions of a subgoal (according to the “#” markers
attached to premises after export). The select operation shall traverse subgoals
from left-to-right, enabling the subsequent refine to succeed on the first match.



54 CHAPTER 3. The Isar proof language

refine-enclosing (&, (solve, exp, ¥)) =

if = solve then &

else & > map-enclosing (Ao’. map-problem (refine (exp o’ ¥) o select))
map-enclosing f (o o &) =

if get-goal o # none then map-goal (f o) o & else o o map-enclosing f &

Export of facts without a goal context is covered below. The purge operation
shall remove any “#” markers (§2.4) that may have got introduced by export
(markers are only significant for actual goal refinements).

export-this outer & = (&, purge (export & (outer &) (get-facts & this)))

Any facts emerging in the proof text (assumptions, finished goals etc.) may
be modified by attribute expressions. Recall that A interprets attributes as
context x theorem — context X theorem or theory x theorem — theory X
theorem, depending on the context. A is lifted to lists of attributes via sequential
composition (left-to-right): A* [aq, ..., am] = A aq; .. .; A auy,. The apply-facts
function given below evaluates lists of pairs of facts and attributes, returning
the modified context and accumulated results. For a single theorem this works
as follows: apply-facts (¢, [([9], @)]) = let (¢, ¥') = A* & (¢, 9) in (¢, [[¢7]).
The general definition uses the iterate combinator from §2.1.

apply-facts = iterate (A(c, (9, &@)). iterate (A* @) (c, U))

Referenced facts are retrieved from the environment and modified by attributes.
Binding of facts may involve additional attributes on the left-hand side of the
specification, which are applied just before the actual environment update.

prepare-facts [(a1, @1), ..., (an, Gp)] 0 =
apply-facts (o, [(get-facts o a1, @), ..., (get-facts o an, @y)])
bind-facts [(a1, @), ..., (an, @n)] (0, [01, ..., Un]) =
let (o, [51, ce 571]) = apply-facts (g, [(51, a1), o (3,5 an)l) B
in (o' > map-facts (Ne. e ++ [(a1, C1), -+, (an, (n)]), C1 @ ... Q ()

The proven result of a finished proof is either put back into the enclosing theory
(concluding the main proof altogether), or bound in the local proof context for
continued proof operation.

store-result ([o], (a, @, ¢, ¥)) =
let © = get-theory o; (©, [¥']]) = apply-facts (O, [([9], &)])
in ©' > map-theorems (Ae. e(a = [91))

bind-result (o, (a, @, ¢, 9)) =
(o > bind-statement ¢, [[¥]]) > bind-facts [(a, @)]

Assumptions are introduced in chunks, giving a list of proposition lists. This
additional structure merely serves for separate naming of the resulting local
facts, premises are flattened internally. The assumption rule is from §2.2.2 and
generalize from §2.4.
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add-assms r (o, [@1, - .-, @n]) =
let [0y, ... J,] = map? (generalize o assumption) [y, ..., Bn)
in (o > map-assms (Aassms. assms Q [r]) > bind-statement (last @)
> map-facts (e. e(prems == e prems @ 9, @ ... @ 9,)), [d1, ... 9,])

An example interpretation

We briefly review the operation of the Isar/VM interpreter on a small synthetic
example, which particularly illustrates the policy of interpretation that eventu-
ally leads to application of primitive inferences (notably refine given in §2.4.2).
The proof text fragment below merely covers the main elements of generic assm
and show in the context of a different goal (have). In fact, most other Isar
commands mostly perform bookkeeping steps only, which essentially serve as a
preparation for such fundamental incidents of actual goal refinement.

1. have A =— B

2. proof succeed

3. assm <disch> A Fu{Atr e .
—————— (disch)

4. show B 'k #A = ¢

5 (proof )

6. qed

Here we are still confined to certain “raw” expressions of Isar commands that
would normally not occur in reality, i.e. the identity method succeed (see §3.3.2)
and the assm primitive supplied with an inference rules for discharging (and
marking) the assumption. See also §3.3 for definitions of derived commands and
proof methods for actual end-user applications.

Subsequently, we give the generated sequence of internal operations, while sup-
pressing successful assertions (which merely result in identities). The second
column below exhibits the trace of primitive inferences encountered during in-
terpretation. The initial proof configuration shall be in state mode. We further
assume that “(proof)” refers to a successful sequence of commands ending with
done or ged (returning to the original nesting level of the corresponding show).

1. C (have A = B):

open-block

prepare-term (A = B)

bind-goal

init-goal false (this, [])  init (A = B) =F (A = B) = #(4A = B)
put-mode prove

2. C (proof succeed):

transform-goal succeed
put-mode state
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3. C (assm <disch> A):

prepare-termss [[A]]

add-assms disch assumption A = {A} F A
bind-facts [(this, [])]

set-this

4. C (show B):

open-block

prepare-term B

bind-goal

init-goal true (this, [|) init B =F B = #B
put-mode prove

5. C (proof):
conclude-goal conclude ({A} v #B) = {A} - B
refine-enclosing disch ({A} - B) =F #A =B

refine (F #4 = B)
(F (A= B) = #(A = B)) =+ #(A = B)
bind-result
set-this
put-mode state
6. C (qged):
transform-goal succeed
transform-goal finish
conclude-goal conclude (- #(A = B)) =+ A= B
refine-enclosing
bind-result
set-this
put-mode state

The terminal context now holds a fact assignment of this = - A = B].

3.2.4 Recovering static syntax

As the most basic property of the Isar/VM transition system we shall see how
“static” syntax of proof texts may be recovered, by deriving a context-free gram-
mar that approximates the language of legal proof texts. To this end we inspect
the definition of C (§3.2.3) from an abstract viewpoint, such that only the mode
field and the stack structure (block nesting) is taken into account.

The only commands that may actually affect blocks are either goals (theorem,
have, show), conclusions of proofs (done, ged), or separate block commands
(“{”, “}”, next). Blocks are always opened in pairs, with an optional goal
placed in between. So we may either get a “goal sandwich” of the form “{goal(”
as produced by goal commands, or a plain block opening “({” produced by “{”.
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We also see that proof conclusions exactly match goal sandwiches and “}” plain
openings, while next copes with either case (preserving it). Consequently, proof
and statement blocks are always properly nested, without interfering each other.

Now consider the mode behavior of proof commands given in figure 3.2. Let
proof-statement refer to the sub-language of commands that are successfully
processed in state mode. Apparently this category consists of properly nested
blocks, basic context statements, or goal statements with a complete proof (af-
ter an optional chain indicator then). The category proof is unfolded from
prove mode in a similar fashion: it consists of (optional) initial scripts of apply
elements, followed by properly nested proof texts, or the done terminator.

Together with the linking of the proof language to the theory level (as indicated
in figure 3.1) we may now easily complete a syntactic approximation of well-
formed Isar proof texts by giving the following grammar (below we also omit
command arguments for clarity).

theory-statement types | consts | axioms | theorems
theorem proof
apply™ (proper-proof | done)
proof proof-statement™ qed
{ proof-statement™ }
next | let | note | fix | assm
then’ goal-statement
have proof | show proof

proof
proper-proof
proof-statement

goal-statement

This grammar could be refined further, e.g. to include the state of current facts
as well. Consequently, legal use of then could be specified more explicitly by
grammatical means, ruling out malformed phrases like “next then”.

Note that the above presentation only covers the core language of Isar, stemming
from the basic set of commands considered here. Further language extensions
to be introduced later on (see §3.3, chapter 5, chapter 6, chapter 7) may either
provide concrete method and attribute definitions, or extend the primary com-
mand language itself. The former may never affect the integrity of the previous
Isar grammar, since methods and attributes are always clearly delimited by their
enclosing syntax. In contrast, derived commands could easily lead to syntactic
conflicts, due to the non-modular nature of arbitrary grammar specifications.

In practice, we may achieve robust syntax extensions by restricting the “defini-
tional” pattern for derived Isar commands essentially to a new keyword (with
optional arguments) that expands to a sequence of existing command phrases;
complete (local) proofs may be safely incorporated as well (e.g. see the syntax
of obtain introduced in §5.3.1).

This disciplined way of building up the Isar language results in a syntactic
environment that is both very clean and open-minded towards extensions.



58 CHAPTER 3. The Isar proof language

3.3 Generic support for natural deduction

The abstract Isar framework covered so far still needs a few standard elements
to enable users to express actual natural deduction concepts properly. This
includes concrete context elements (like assumptions, see §3.3.1), attributes and
proof methods (for composition and rule application, see §3.3.2), as well as basic
derived commands that allow Isar texts to be written more fluently (see §3.3.3).

3.3.1 Context elements

Speaking in terms of the pure A-calculus model of natural deduction, context
elements closely correspond to abstraction. Recall that our primitive frame-
work (§2.2) actually provides three different layers, with abstraction of the term
language (function space =), universal parameters (quantification /), and hy-
pothetical proofs (implication =).

No explicit contexts are required when building up the abstract syntax language,
terms are built-up and type-checked directly (§2.2.1). Furthermore, universal
parameters merely introduce local elements in the present proof (via fix, see
83.2.3), which are just generalized on export without imposing any additional
hypotheses on the result (see also §5.2.1 for practical issues).

In contrast, actual logical hypotheses need to be taken care of specifically. As-
sumptions at the propositional level are “discharged” in a specific manner even-
tually, depending on the particular context element involved. To this end the
basic operational model of Isar (§3.2.3) provides the generic assm primitive that
is parameterized by an inference rule to determine the exact behavior. Based
on this core element, we shall now define actual user-level context commands,
namely assume for “strong” assumptions, presume for “weak” assumptions,
def for local definitions, and case for invoking symbolic contexts. We first
extend the primary Isar language (§3.2.1) as follows.

assume (name-atts:)’ propt (and (name-atts:)” prop™)*
| presume (name-atts:)’ prop™ (and (name-atts:)* prop™)*
| def (name-atts:)” var = term
| case name-aits

The conventions for default arguments (§3.2.1) are augmented for def: the
standard name (of name-atts) shall be z-def, where z is the defined variable.

The three most basic Isar context elements are directly defined in terms of assm,
via the rule schemes of discharge#, discharge, and expand given below.

assume ¢i1: ¢ and ... and ¢,: @, =

assm <discharge# @1 ... Pp> q1: p1 and ... and ¢, @,
presume ¢i: ¢, and ... and ¢,: g, =

assm <discharge @1 ... > q1: $1 and ... and q,: @,

def ¢: z =t = fixzassm <expandz =t> ¢ x =t
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These rules are clearly derivable within the basic logical framework (§2.2). First
strengthen the local contexts to make sure they actually mention the additional
assumptions as stated above. To get discharge iterate the = -intro rule, the
same works for discharge## (recall that “#” marks do not have any logical
significance §2.4.1). In order to derive expand discharge the equality and gen-
eralize over = (which does not affect the context nor the right-hand side), then
specialize with [z/t] and apply modus ponens with reflexivity F ¢ = .

We also observe that any of these rules really get rid of the assumptions intro-
duced beforehand: given “assm <r> @” the rule r needs to map I' U @ F 9 to
I' - ¢/, in order to guarantee that the Isar/VM interpretation process (§3.2.3)
does not fail unexpectedly due to pending hypotheses.

The only difference of assume and presume is how the result is treated in a goal
context (cf. §3.2.3). Asindicated by the “#” markers, the new premises resulting
from discharged strong assumptions are forced to unify with the original goal
context, while the weak version simply leaves former hypotheses as new goals (cf.
refine in §3.2.3). See also §5.2.1 for practical use of these Isar context elements.

The case command provides an abbreviation for several fix/assume elements.
It invokes a local context according to the assignment of the current proof state
o. Given name a and (¥, \Z. @) = get-cases o a, we define case as follows.

case ¢ [@] = fix ¥ assume a [d]: @

Recall that there is no separate Isar command to bind case names. Apart from
the automatic antecedent case (§3.2.3, see also §5.2.5), further cases may be only
introduced by suitable proof methods (like cases and induct covered in §5.4).

3.3.2 Methods and attributes

Method combinators

Proof methods may refer to arbitrary procedures that operate on primitive goal
configurations. Potentially infinite sequences of results may represent multiple
choices, e.g. from a fixed collection of rules, or enumeration of higher-order
unifiers, or arbitrary internal proof search. Isar provides a standard collection of
method combinators to compose such procedures in a simple fashion (analogous
to regular expression operators).
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my, my  sequential composition of methods
my | mg  alternative choice of methods

m? try method

m+ repeat method (at least once)
succeed  identity method

W

Sequential composition “,” and repeat “+” are most frequently used in practice;
“m?” coincides with “m | succeed”, repeating a method including zero times
may be expressed as “(m+)?”, there is no separate “mx”.

Note that excessive use of method combinators is actually an indication for
highly operational expressions of unstructured proof scripts. In principle, a
very long “script” of proof methods (my, ..., my,) may be included in a single
proof step. Structured Isar texts involve very simple method expressions only.

Basic methods

We introduce a few generic proof methods below. The syntactic category of
method (§3.2.1) is extended as follows.

“(” rule name-atts™ “)”
rule

this

assumption

|
|
|
| —
| “(” insert name-atts™ «)”

| “(” unfold name-atts™ )"

|« fold name-atts™ “)”

The rule method provides a direct interface to the primary inference mechanism
of the pure framework, namely higher-order resolution (cf. §2.4). The general
form “(rule @)” takes an explicit collection of rules to be tried from left to right.
The (complete) list of chained facts this is taken into account as well. Given
some rule r of @, the method performs goal (r - this) on the current goal state
(i.e. the rule is reduced by applying all facts in parallel, and the result applied
to the first subgoal).

Omitting the argument of the rule method means to refer to “standard” rules
declared in the present context. The attributes of intro and elim take care of
appropriate rule declarations; dest declares eliminations presented in “projec-
tion” format, applying - A = (A = () = C first (e.g. - V2. Pz = Pt
is turned into F Vz. Pz = (Pt = (') = (). Eliminations are tried before
introductions, unless there are no chained facts at all, which is interpreted as a
pure introduction pattern.

The this method applies all chained facts immediately (from left to right), with-
out any rule in between; given chained facts this = [, ..., ¥,], the method
performs (goal - V1) - ... - ¥y, ie. just goal - this in the common case of a
singleton chained fact.
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The assumption method applies exactly one rule immediately, either a sin-
gleton chained fact, or one of the current prems of the proof context. New
premises emerging from application of non-atomic rules are solved locally using
by-assumption (§2.4.2).

The “—” method merely inserts all chained facts into the goal configuration (the
do-nothing form with zero facts is mostly encountered in practice). The insert
method inserts exactly the argument facts, but ignores the chained ones.

The unfold method normalizes a problem by a given collection of equalities
(by repeated application of the substitution and extensionality rules of “=” cf.
§2.3). Its counterpart fold normalizes by swapped rules.

Incidently, the most common instances of the methods this, assumption, and
“—” may be expressed in terms of the basic rule one as follows.

this = (rule - NA. A = A)
for singleton facts

assumption (rule prems)

for empty facts and atomic assumptions
— = (ruleF NAC. A= (A= C) = ()

-

for atomic facts (same length as A)

Basic operations on facts

The following attributes operate on theorems, without changing the current
context. We extend the syntactic category attribute (§3.2.1) as follows

of term™

|  OF name-atts™
| THEN name-atts
| symmetric

The attribute of provides the primitive operation of positional instantiation,
as in the fact expression “a [of t; ... t,]”. The OF attribute performs “ap-
plication” of a number of facts via higher-order resolution (cf. §2.4), as in the
expression “r [OF ay ... ay]”; the THEN attribute does the same, but ex-
changes the roles of operator and operand (which needs to be singleton), as in
“a [THEN r]”. The symmetric attribute swaps equality facts. The method
expression “(fold @)” is actually the same as “(unfold a@ [symmetric])”.

3.3.3 Derived commands

We shall introduce a few very simple derived commands on top of the set of
primitives provided so far. First of all, the primary syntax of Isar commands
(cf. §3.2.1) is extended as follows.
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lemmas (name-atts =)’ name-atts*
emma (name-atts:)" pro
|1 ( tts:)* prop
ence (name-atts:)’ prop
h tts:)?
us (name-atts:)’ pro
| thus ( tts:)* prop
| from name-atts™ (and name-atts™)*
|  with name-attst™ (and name-atts™)*
| by method method’
|
|

The default of the second method argument of by shall be succeed (just as for
the ged constituent, cf. §3.2.1). The derived commands are defined as follows.

lemmas a [@] =7 = theorems a [@, tag lemma] = 7
lemma a [@]: ¢ = theorem a [@, tag lemmal: ¢
hence = then have
thus = then show
from ¢ = note ¢then
with ¢ = from ¢ and this
by m1 me = proof m; qed mo

= by rule
= by this

This collection of seemingly trivial shorthands has emerged from practical work
performed in Isar, achieving significant improvements in both reading and writ-
ing of proof texts. Nevertheless, some care has to be taken whenever any further
abbreviations shall be added, since excessive use of specific elements may even-
tually obscure the meaning of texts for casual readers.

Below we observe some further equalities of Isar commands due to the opera-
tional semantics (§3.2.3). First of all, we achieve alternative characterizations
of basic operations involving the important then primitive.

from this = then
from this have = hence
from this show = thus

The following equality of by enables writers to take apart the individual phases
of terminal proof steps in a fine-grained manner. This turns out as quite hand-
some in interactive development and debugging.

by m; me = apply m; apply mo apply (assumption+)? done

3.4 Further concepts

In principle, the Isar/VM interpretation process presented so far (§3.2.3) is
already sufficiently powerful to support high-level proof texts. The real im-
plementation of Isabelle/Isar [Wenzel, 2001a] covers a few fine points, though,
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that turn out as quite important to improve overall usability of Isar in practice.
Below we briefly review these further issues, which are all outside of the core
logical framework (§2.2).

3.4.1 Casual term abbreviations

Substantial parts of structured proofs consist of propositions (and sub-terms)
given explicitly in the text. This is an important prerequisite to achieve human-
readable presentations in the first place, unlike operational proof scripts that
refer to internal goal transformations only. On the other hand, an excessive
amount of concrete A-terms in the text tends to degrade readability in its own
right. Adequate syntactic abstractions turn out as a key issue of expressing
formal reasoning succinctly. Isar already provides the concept of term abbrevi-
ations via the let command (§3.2.1). In practice, the extra overhead of separate
abbreviation statements in the text is often too cumbersome.

Isabelle/Isar offers the additional is element that admits term abbreviations
to be introduced on the fly. The basic syntax of Isar commands (§3.2.1) is
augmented to include optional is-patterns after any occurrence of term or prop.
The concrete syntax of these casual abbreviation forms is as follows:

term-patterns = “(7 (is term)T )"
prop-patterns = “(” (concl’ is prop)* “)”

By using “(is p)” any term mentioned in the text may get immediately analyzed
by (higher-order) matching against some pattern p. This essentially provides an
immediate benefit in return of the duty to write explicit statements in the first
place. For example, the annotated claim “have a = b (is ?lhs = ?rhs)” enables
succinct references to the (potentially unwieldy) terms a and b later on. Say
the proof proceeds by an antisymmetry argument, then the body may just state
“show ?lhs < ?rhs” and “show ?rhs < ?lhs”. Such an abstract presentation
may also clarify the actual proof pattern involved.

The concl specifier for prop-patterns indicates matching against the conclusion
of a nested meta-level implication, e.g. “have A => C (concl is ?X)” has the
same effect as “have A = C (is - = ¢X)” (which uses the dummy pattern
“7cf. §3.2.3). The form “have ¢ (concl is ?thesis)” documents the builtin
binding of ?thesis (cf. §3.2.3), but only if ¢ does not have any outer parameters.

Likewise does “have ¢ (concl is - = ...)” represent the implicit argument
binding of “...” at least in the common case of equational propositions. Recall
that “...” technically acts like a schematic term variable (§3.2.3).

The full power of term abbreviations is exhibited by actual higher-order match-
ing against complex statements. Here the main application is proof by induction
(see also §5.4). The idiom of “have ¢ (is ?P n)” essentially decomposes a state-
ment o =...n...n...into a predicate 7P that abstracts over the occurrences
of the fixed variable n in the original body. The standard procedure of enumer-
ating higher-order unifiers in Isabelle [Paulson, 1989] ensures that ?P really
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abstracts over all occurrences of n (as is normally intended by the user). For
example, this binding of P enables succinct expressions of relevant statements
of mathematical induction, with 2P 0 for the base case, ?P n for the induction
hypothesis and ¢P (Suc n) for the conclusion of the step case. See also §5.4 for
further advanced proof patterns.

Casual term abbreviations of Isabelle/Isar generally have the great virtue to
reduce the need for special proof language constructs. For example, DECLARE
[Syme, 1997a] [Syme, 1998] [Syme, 1999] requires separate provisions of “ihyp
macros” for induction patterns. Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muza-
lewski, 1993] [Wiedijk, 1999] includes dummy goal statements like existence or
uniqueness to cover certain proof obligations arising in particular specification
mechanisms (see also the related discussion in §7.5.1).

Moreover, analyzing term structure by higher-order matching serves as a vi-
able replacement for “direct term manipulation”, potentially with heavy user-
interface support, as proposed in [Bertot and Thery, 1996] [Bertot et al., 1997].
In contrast to interactive manipulations performed at run-time by the user,
casual abbreviations in Isar may easily document advanced structural decom-
positions within the primary text, just by a few A-term patterns.

3.4.2 Formal comments and antiquotations

From the perspective of recipients the ultimate intention of the Isar language
is to describe formal documents, which consist of several theories with both
specifications and proofs alike (cf. §3.2.1). In reality, such theory texts may
also contain additional information outside the formal logic, like sectioning and
informal explanations by the writer.

To this end, Isabelle/Isar [Wenzel, 2001a] provides several “markup commands”
like chapter, section, subsection, and text (each taking a text argument).
Concerning Isar itself, markup commands do not have any formal meaning, but
are still part of the syntax of the language. Actual formal commands considered
so far may also include “marginal comments” of the form “— text” that are
related to particular entities, like individual declarations of consts (cf. §3.2.1).

consts
¢1 :: 71 — blah

Cp i Tp — blub

Markup commands and marginal comments qualify as formal comments since
there is an explicit relationship to formal elements, despite being devoid of
any logical semantics themselves. Note that in commonly encountered “source
comments” of existing languages there is usually no clear indication of the rela-
tionship with formal entities. Such comments may typically float around in the
input text in a completely undisciplined manner.
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The content of formal comments is ultimately passed to the document prepa-
ration front-end, which is (PDF)ETEX in Isabelle/Isar. The text essentially
consists of source code for the typesetting system, but is passed through a
preparatory stage in Isabelle. Text specifications in Isabelle/Isar may contain
embedded references to formal entities, such as well-typed terms and proposi-
tions, or theorems of the present context.

The concept of embedding interpreted parts into uninterpreted (“quoted”) text
is called anti-quotation, following existing concepts of LISP folklore. The basic
syntax of anti-quotations in Isabelle/Isar is “@Q{name args}” (see also [Wenzel,
2001a]). In practice, the most important antiquotations are as follows.

@{term t}  well-typed term
@{prop ¢} well-typed proposition
@{thm a} facts (lists of theorems)
@{text s}  uninterpreted text

These anti-quotations process their argument within the formal contexzt (§3.2.3),
and emit the (checked) result into the document output in a pretty-printed form,
just like any other Isar text. The degenerate text anti-quotation merely outputs
the argument string directly, but treats mathematical symbols according to the
Isabelle/Isar style (cf. §1.5) rather than raw IATEX. Thus unchecked “formal”
descriptions may use the same notation as real Isabelle/Isar objects, without
demanding ad-hoc tweaks of the IMTEX math mode.

The overall effect of this seamless integration of formal and informal portions of
text into a single Isabelle/Isar source considerably reduces the effort to report
about theory developments in a consistent manner. Unlike existing approaches
for “literate programming” (notably Knuth’s WEB system) there is no need to
filter the formal and informal views separately. In Isabelle/Isar, finished proof
documents are output as a side-effect of formal proof processing, which in turn
merely ignores certain parts of the text.

3.4.3 Type inference and polymorphism

In theory, we may easily pretend that all terms given in Isar proof texts are
fully annotated with types, according to the type-checking rules of the under-
lying framework (§2.2). In practice, users may be spared from explicit type
annotation chores via the well-established technique of automated type recon-
struction, which is also known as type inference. This happens to be already
present in the Isabelle/Pure implementation [Paulson and Nipkow, 1994].

It is important to note that such syntactic typing issues need not be considered
within the actual logical framework, but only as an “accidental” feature of the
implementation. This is analogous to the concept of parsing, which automati-
cally reconstructs abstract syntax trees from user input presented in handsome
concrete syntax. The theory of parsing was considered an issue of formal logic
long ago, but it has lost its relevance eventually, as standard parser tools have
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become well-established.

In order to make simple type inference available to Isar proof texts, we maintain
the following additional fields of variable typings and used type variables in the
proof context structure (§3.2.3).

typing-frees ::  mame — type
typing-vars :  name — type
used-types : set of name

Here the environments typing-frees and typing-vars determine the types for
variables, as encountered in the proof text processed so far. Whenever new terms
are prepared for inclusion in the text, we first perform standard (mutual) type
inference within the present context of typings, and then use the resulting fully-
typed term to extend these declarations. In order to guarantee most general
results, type inference occasionally needs to invent “new” type variables; these
are chosen as apart from the set of used-types, which is maintained accordingly.

The resulting discipline of type reconstruction proceeds sequentially from left
to right through a given list of Isar commands (while observing block structure
in the obvious manner). The scope of mutual type inference is limited to the
arguments of each individual Isar command, e.g. “assume ¢1 ... ¢,” covers the
propositions @ simultaneously. In practice, this scheme is fair enough most of
the time, although rather annoying situations may occur whenever the inferred
typing is more general than intended by the writer (due to lack of typing infor-
mation from future text). This may cause unexpected failure of both further
type checking and logical inferences (e.g. with rules that only work for specific
type instances, probably due to overloading).

Certainly, writers may always fall back on explicit type annotations, without
requiring readers of Isar proof texts to care very much. On the other hand,
Isabelle users generally expect typing issues to be treated automatically be-
hind the scenes. Any failures encountered here are apt to cause considerable
confusion, until the actual problem is figured out by hand eventually.

The refined type inference scheme according to Hindley-Milner (also known
as “let-polymorphism”) [Hindley, 1969] [Milner, 1978] is slightly more flexible.
This improved typing discipline needs to extend pure A-calculus by a separate
let-binder: in the term let x = ¢ in u the variable z is bound locally to t
within the body wu; the canonical conversion rule is (let x = t in u) — u[t/z].
This operational idea could be simulated in pure A-calculus as a [-redex (Az.
u) t, but the key point of Hindley-Milner polymorphism is to have let as a
separate primitive and provide a specific typing rule to achieve a localized form
of schematic polymorphism.

Hindley-Milner polymorphism also extends the language of simple types by type
schemes, which include “generalized” type variables that may be instantiated
arbitrarily. In the literature this is usually represented by a flat prefix of uni-
versal type quantifiers “Va”. In Isabelle/Pure we may express the same idea
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via schematic type variables ?a (§2.2.1), so the canonical typing rule for let
expressions becomes this:

[z 3 ]

t:o  urT

(letx =tinu): 7

Here the inferred type o of the local binding is replaced by a most general type
scheme ¢ when type-checking the body; all fixed type variables « in ¢ that do
not occur in any fixed term variable of the context become schematic ones ?a
in 6. Thus the typing of z may be instantiated in the body later on.

In order to incorporate this refined typing discipline into the Isar/VM interpre-
tation process, we merely introduce another field in the proof context.

fixed-types 1 set of name

During Isar proof processing, the fized-types component is maintained to hold
the set of type variables that are still considered “fixed”, due to occurrences in
types of term variables that are manifest in the previous text (bound variables
and constants do not matter here). Now we only need to identify suitable kinds
of let-bindings in Isar where type schemes may be generalized locally.

Recall that the Isar/VM interpretation process (§3.2.3) may be understood as a
certain policy for composing proofs according to general A-calculus concepts (cf.
§2.2, and see §5.2 for the user-level view). From this perspective, it is easy to see
that two kinds of Isar context elements qualify as polymorphic let binders: term
abbreviations introduced via let (§3.2.1) or is (§3.4.1), and local facts emerging
from the primitives note, have, or show (§3.2.1).

Note that polymorphic treatment of proper abstraction elements like fix and
assume (§3.3.1), would demand actual “polymorphic A-calculus”, such as A2 or
beyond (e.g. see [Barendregt, 1992]), which would quickly lead into a substan-
tially more complex situation (with undecidable problems). On the other hand,
variables introduced by unconstrained fix statements in isolation need not be
typed until their actual occurrence in the subsequent text; the stages of binding
and typing of variables may be kept separate without further ado.

Local definitions “def z = ¢” (§3.3.1) could in principle be treated as polymor-
phic, too, but our present formulation within Isar makes def appear like the
monomorphic “fix £ assume z = t”. This minor drawback is hard to fix in
reality, mainly because the Isabelle/Pure implementation [Paulson and Nipkow,
1994] does not admit fixed variables at different type instances within theorems.
Note that let and is are significantly more important in practice (§3.4.1).

In order to get an idea of how Hindley-Milner typing works out in Isar, we
consider the following synthetic example.
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let 9f = Az. z
— ?f = fa=> %«
have ?f ?f = (Az. z)
— first occurrence ?f :: (@ = a) = (o = )
— second occurrence ?f o = «
by (rule refl)
—this=F (Az = ?a. z) = (A\z 2 ?a. )

Here ?f is bound to the identity function, with types being generalized fully.
When checking the subsequent goal statement the typing of ?f is instantiated
twice, and held fixed during the proof. In the resulting theorem types are again
fully generalized.

In reality, actual polymorphic proof texts are rarely encountered at all. The
key virtue of Hindley-Milner polymorphism in Isar is to achieve a well-defined
discipline that is able to amend (most of) the problems with overly general
inferred types due to incremental processing of the text. Recall that the original
problem has been caused by lack of syntactic relationship of previous proof text
with potential follow-up material. In such a situation naive type inference would
invent new (fixed) type variables, expressing unrestricted generality. The refined
typing discipline due to Hindley-Milner is able to generalize these variables
for the very same reason they got introduced in the first place, which gives
subsequent typing stages a chance to instantiate these as required.

Experience with Isabelle/Isar shows that this fine-tuned discipline is really able
to relieve proof writers from most typing issues in practice. Certainly, the
situation would be much simpler with batch-mode proof processing, where the
whole text may be covered at once, such as in DECLARE [Syme, 1997a] [Syme,
1998] [Syme, 1999]. Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski, 1993]
[Wiedijk, 1999] even requires users to give type annotations themselves.



Chapter 4

Example: First-Order Logic

We present a formulation of intuitionistic first-order logic as canonical instantia-
tion of the generic Isar framework. This demonstrates how the existing tradition
of object-logic declarations in the Isabelle environment may be extended to cover
readable presentations of formal proofs as well. Handling both specifications and
proofs in a high-level manner, Isabelle/Isar qualifies as a truly complete logical
framework.

By the example of first-order logic we also discuss the most basic techniques of
basic natural deduction proofs, both within Isar as well as some other systems.

4.1 Formal development

theory First-Order-Logic = Pure:

The present theory development introduces single-sorted intuitionistic first-
order logic with equality. We are giving common abstract and concrete syntax,
basic axioms, definitions and derived rules, together with readable formal proofs
of standard derived rules and further examples.

4.1.1 Syntax

There are two categories of higher-order abstract syntax for the object language
under consideration: ¢ for “individuals” and o for “object statements”; the
latter shall be implicitly used as a meta-logical judgment of derivable sentences.

typedecl i
typedecl o

69
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judgment
Trueprop :: 0 = prop (- 5)

4.1.2 Propositional logic

The basic propositional connectives are axiomatized canonically as follows.

consts
false :: 0 (1)
imp :: 0 = 0= o (infixr — 25)
conj :: 0 = 0 = o (infixr A 35)
disj :: 0 = 0 = o (infixr Vv 30)

axioms

falseE [elim]: L = A

impl [intro]: (A = B) = A — B
mp [dest]: A — B =—= A= B

conjl [intro]: A= B = ANB
conjDi: ANB = A
conjD2: AN B = B

disjE [elim]: AVB —= (A= C) = (B= (C) = C
disjly [intro]: A = AV B
disjly [intro]: B = AV B

The following derived rule of simultaneous conjunction elimination is usually
more convenient to use than referring to the individual projections separately.

theorem conjE [elim]: ANB— (A— B = (C) = C
proof —
assume ab: A A B
assume 1 A =— B = C
show C
proof (rule r)
from ab show A by (rule conjD:)
from ab show B by (rule conjDs)
qed
qed

Furthermore, we introduce the derived concepts of plain truth and negation.

constdefs
true :: 0 (T)
T=1— 1

not :: 0 = o (— - [40] 40)
A=A — L
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theorem truel [intro]: T

proof (unfold true-def)
show 1L — 1 ..

qed

theorem notl [intro]: (A = 1) = - A
proof (unfold not-def)

assume A = |

thus A — 1 ..
qed

theorem notE [elim|: = A= A = B
proof (unfold not-def)

assume A — | and A

hence | .. thus B ..
qed

4.1.3 Equality

Equality of individuals is axiomatized in a high-level manner, using reflexivity
and substitution as primitive. The remaining equivalence properties are easily
established as derived rules. Congruence properties are already covered by the
substitution rule, so these are not stated explicitly.

consts
equal :: 1 = 1 = o (infixl = 50)

axioms
refl [intro]: x = x
subst: © = y = P(z) = P(y)

theorem trans: c =y — y =2 — z =2
by (rule subst)

theorem sym [elim]: e =y = y ==z
proof —

assume z = y

from this and refl show y = z by (rule subst)
qed

4.1.4 Quantifiers

Within the underlying logical framework quantifiers are simply certain opera-
tors on predicates, while concrete syntax for “binders” recovers commonly used
notation.

consts
All :: (1 = 0) = o (binder V 10)
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Ez :: (1 = 0) = o (binder 3 10)

axioms
alll [intro]: (Az. P(z)) = Vz. P(z)
allD [dest]: Vz. P(z) = P(a)

exl [intro]: P(a) = Jz. P(x)
exE [elim]: 3z. P(z) = (A\z. P(z) = C) = C

Here is a simple example of reasoning with quantifiers; the statement has been
taken from a [Paulson, 2001a].

lemma (3z. P(f(2))) — (3. P(y))
proof
assume Jz. P(f(z))
thus Jy. P(y)
proof
fix z assume P(f(z))
thus %thesis ..
qed
qed

Subsequently, we establish another well-known result of quantifier reasoning
(naturally the converse statement does not hold in general).

lemma (3z. Vy. R(z, y)) — (Vy. 3z. R(z, y))
proof
assume Jz. Vy. R(z, y)
thus Vy. 3z. R(z, y)
proof
fix z assume a: Vy. R(z, y)
show %thesis
proof
fix y from a have R(z, y) ..
thus 3z. R(z, y) ..
qed
qed
ged

end

4.2 Discussion

4.2.1 Generic proof support for object-logics

Our basic formulation of FOL as an Isabelle object-logic closely follows a similar
example given in [Paulson, 2001a], while proofs have been expressed in the Isar
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proof language, rather than traditional tactic scripts.

Purely declarative specification of logical syntax and axioms, together with de-
rived rules expressed as explicit theorem statements within the meta-logic, have
been the key concepts of the basic Isabelle/Pure framework from its very begin-
nings [Paulson, 1986] [Paulson, 1989] [Paulson, 1990]. In contrast, the original
tradition of the “LCF” and “HOL” family of systems would have required ex-
plicit programming of derived rules as functional programs written in the ML
“meta-language”; see also the historical account given in [Gordon, 2000].

From this perspective, the Isar approach to readable proof documents continues
this mission to overcome low-level technical presentations of formal logic. The
framework of Isabelle/Pure + Isar is able to support all of logical syntax, axioms,
derived rules, and readable formal proof texts in a declarative manner.

As an illustration of the different conceptual levels of proof construction in
traditional Isabelle/Pure versus Isabelle/Isar, reconsider the very same FOL
example given in [Paulson, 2001a]. Before presenting any proof scripts, Paulson
sets out on a lengthy exposition of a number of internal features of the Isabelle
system, covering details about higher-order unification, composition of rules via
higher-order resolution (“back-chaining”), lifting of rules into logical contexts,
representation of proof states as rules, and basic concepts of the tactic language.

While these technical issues are still present in the Isar framework, they are
mostly covered “under the hood” — only the higher-level concepts of the Isar
proof language are exposed to recipients. Consequently, we have been able to
present our theory in a rather casual manner with both specifications and proof
texts. Recipients familiar with natural deduction techniques should be basically
able to read these proofs without much further explanations required. On the
other hand, additional insights into the formal proof language would certainly
be needed to write proof texts of this kind. Recall that Isar follows the principle
of “primacy of readability over writability” (§1.3).

Another notable issue is that of automated proof tools, especially as it is com-
pletely absent from the present example! While the Isabelle environment [Paul-
son and Nipkow, 1994] provides a number of powerful proof tools, such as the
Simplifier and Classical Reasoner, these have not been used here (new object-
logics would have to configure these tools explicitly in the first place).

Apart from some explicit proof method specifications of unfolding definitions
and applying basic rules, we have merely used a simple (default) proof tool
which supports single natural-deduction rule applications in an implicit manner
(§3.3.2): rules have been determined according to the theory declaration, which
includes a few hints such as “[intro]”, “[elim]”, “[dest]”. Less pure applications
(e.g. chapter 9 and chapter 10) certainly demand additional advanced tools (see
also §7.3).

As a general principle, Isar has been made independent of any particular notion
of automated reasoning (§1.3), while being able of any such tools that happen to
be available. This is in notable contrast to common believe on high-level proof
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checking. Consequently, Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski,
1993] [Wiedijk, 1999] has certain notions of “obvious” inference steps hardwired
into the proof checker. Likewise, much of the discussion of the “Mizar mode for
HOL” [Harrison, 1996b] is dedicated to the issue of justification of proof steps
by the Meson proof procedure; substantial parts of the work on the “struc-
tured proof language” SPL [Zammit, 1999a] [Zammit, 1999b] covers first-order
automated reasoning.

In contrast, Isabelle/Isar demonstrates both that meaningful applications may
be conducted with plain higher-order resolution (in single steps) alone, and that
arbitrarily complex tools may be incorporated in a non-intrusive manner (see
also §7.3).

4.2.2 Natural deduction schemes

The present first-order theory provides a number of rules for the canonical treat-
ment of logical connectives according to natural deduction (cf. [Gentzen, 1935]).
Together with the appropriate declarations of their role as introductions and
eliminations (or destructions), this basic setup already enables us to write Isar
proof texts that directly correspond to these natural deduction schemes.

The resulting presentation illustrates the most basic techniques of writing Isar
proof texts. At the same time it also provides a nice textual explanation of how
natural deduction reasoning works in the first place.

The trivial introduction of T and elimination of L:

have T ..

assume |
hence A ..

Introduction of —, and its elimination (“proof by contradiction”):

have - A
proof
assume A
thus L (proof)
qed

assume - A and A
hence B ..

Canonical — introduction, and elimination (“modus ponens”):

have A — B
proof
assume A
show B (proof)
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qed

assume A — B and A
hence B ..

Introduction of A, its two projections, as well as simultaneous elimination:

have A A B
proof
show A (proof)
show B (proof)
qed

assume A A B
hence A4 ..

assume A A B
hence B ..

assume A A B
hence C
proof
assume A and B
thus C (proof)
qged

Elimination of V (i.e. propositional case split), as well as its two introductions:

assume A V B
hence C
proof
assume A
thus C (proof)
next
assume B
thus C (proof)
qged

assume A
hence AV B ..

assume B
hence AV B ..

The basic equality rules of reflexivity (introduction), substitution (elimination),
and the derived forms of transitivity and symmetry:

have z = z ..
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assume z = y and P(z)
hence P(y) by (rule subst)

assume z = y and y = 2
hence = = z by (rule trans)

assume z = y
hence y =z ..

Canonical introductions and eliminations of the V and 3 quantifiers:

have Vz. P(z)
proof

fix z

show P(z) (proof)
qed

assume Vz. P(z)
hence P(a) ..

assume P(a)
hence Jz. P(z) ..

assume Jz. P(z)
hence C
proof
fix z assume P(z)
thus C (proof)
qed

While the above proof schemes follow common expositions of natural deduc-
tion rules quite closely (e.g. [Thompson, 1991]), in actual applications they are
not always as “natural” as advertised. In particular, the equality rules and 3
elimination are typical candidates for further refinements.

An important point of the Isar language concept is that the course of reasoning
may be rearranged in numerous ways, as well will see in further examples later
on. Furthermore, Isar supports a number of derived concepts that address fur-
ther inconveniences of pure natural deduction encountered in realistic proofs.
These advanced techniques include generalized elimination schemes (see chap-
ter 5), and proper support for equational reasoning via calculations (chapter 6).

4.2.3 Declarative versus operational theorem proving

We shall now investigate a few basic issues of “declarative” proof texts versus
“operational” proof scripts, as far as plain natural deduction is concerned.
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The fundamental aspects of proof construction in a natural deduction framework
like Isabelle/Pure are that of statements (propositions), rules (probably with
instantiations), and composition of partial results (determining the overall proof
structure). Roughly speaking, declarative proofs prefer to state propositions
explicitly and provide rich text structure, rather than specify rules of inference;
on the other hand, operational scripts merely give rules (or other proof method
specifications). From this perspective, declarative versus operational proofs
would be exactly dual to each other, by emphasizing complementary aspects of
formal proofs.

Nevertheless, this characterization turns out to be slightly oversimplifying. In
practice, Isar proofs may be declarative or operational to rather different de-
grees. Actual readability of the result depends on many factors, including the
intention of the writer addressing a certain audience of readers. This may de-
mand to highlight either “declarative” or “operational” aspects of the reasoning,
depending on the present context. Just consider the example of large induction
proofs (§5.4) involving inductively defined sets (§7.2.1). Here it is usually prefer-
able to suppress explicit propositions from the text, but give a quasi-operational
specification of the induction scheme (via a proof method) plus some structure
on the emerging cases (see chapter 10 for typical examples). Thus we may gain
readability by shifting the focus from explicit propositions over to proof methods
and very abstract structure.

For the moment, we stay within plain natural deduction and illustrate the most
basic declarative and operational techniques of Isar proof construction. Several
variations for the propositional fact A A B — B A A will be discussed.

Proof texts

Our first version follows more or less the standard idiom of plain natural deduc-
tion in Isabelle/Isar, with mixed forward and backward reasoning, cf. the basic
introduction and elimination schemes given in §4.2.2.

lemma AANB — BAA
proof
assume A A B
thus B A A
proof
assume B and A
thus %thesis ..
qed
qed

Apparently, we have been able to complete the proof without ever naming rules
explicitly, or even just local facts. The deeper reason for this is twofold. First, we
have explicitly stated assumptions and intermediate claims by giving an actual
proposition as a term. This may sound like a rather obvious thing to do, but in
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the tactical theorem proving tradition one would attempt to suppress explicit
terms as much as possible. Second, our proof has been quite detailed about its
overall structure, although this information is given quite implicitly, by nesting
of sub-proofs, and performing suitable “gestures” to indicate what to do next.
In particular, we have indicated forward chaining from existing facts as opposed
to mere backward reasoning where appropriate (via then as involved in thus).

In order to see better how this kind of implicit processing of basic inferences
works out in detail, we shall now expand the above proof further, until sufficient
operational detail is exhibited. First of all, a few basic abbreviations have been
used routinely; by expanding these we arrive at a slightly more explicit scheme.

lemma ANB — BAA
proof (rule)
assume A A B
then show B A A
proof (rule)
assume B and A4
then show ?thesis by (rule)
qed
qed

By default, the rule method figures out the actual rule to be used implicitly (cf.
§3.3.2), which is usually quite easy based on the explicit goal statement given,
together with the indication for forward chaining of facts (using then). The
rules determined here are named explicitly in the next version.

lemma AANB — BAA
proof (rule impI) — canonical introduction of —
assume A A B
then show B A A — canonical elimination of A
proof (rule conjE)
assume B and A
then show ?thesis by (rule conjI) — canonical introduction of A
qed
qed

We see that canonical introductions may be simply performed by stating a goal
an performing a single default proof step; likewise, canonical elimination works
by indicating a fact for forward chaining, as before. As we may see in the
third step above, forward chaining may result in introduction steps as well, if
the proof is forced to be finished afterwards; here introductions are tried after
all eliminations (cf. §3.3.2), so this scheme would still work if facts B and A
provided separate logical structure, which may have become eliminated as well.

The subsequent version is even more obfuscated, as we include explicit instan-
tiations of rules as well. Certainly, we would normally leave it to the builtin
unification of Isabelle [Paulson and Nipkow, 1994] to work out such syntactic
details.
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lemma ANB — BAA
proof (rule impl [of AN B B A A])
assume A A B
then show B A A
proof (rule conjE [of A B B A A])
assume B and A
then show ?%thesis by (rule conjl [of B A])
qged
qed

From the highly redundant proof texts above we also see that that Isabelle/Isar
proof checking actually involves a twofold book-keeping process, with explicit
statements and structure on the one side, and operational steps on the other
side. While, the common Isar idiom usually prefers the former (declarative)
parts over the latter (operational) ones, we may as well choose otherwise — the
Isar framework is sufficiently flexible to support rather “improper” uses of the
language. This liberal attitude certainly demands some taste and distinction of
the user, lest the system be abused in uncouth manners.

Proof scripts

The next version follows a purely operational style of tactical proving, by ex-
pressing the main reasoning steps via a string of proof methods alone; only the
main statement is left as an explicit proposition.

lemma ANB — BAA
by (rule impl, erule congE, rule conjl)

Apparently, this way of emulating traditional tactic scripts stretches the Isar
method language (cf. §3.3.2) a bit far, using sequential composition of methods
to express the whole course of reasoning by a single command. Even worse, that
form would be rather impractical for interactive development and debugging,
since the by command succeeds (or rather fails) in a single atomic transition of
the Isar/VM interpreter (cf. §3.2.3 and §3.3.3).

Proof scripts are more appropriately represented via “improper” proof com-
mands apply and done (cf. §3.2.1), which support step-by-step goal refine-
ments and do not refer to any implicit Isar reasoning steps (such as the implicit
finishing by assumption, cf. §3.2.3).

lemma ANB — BAA
apply (rule impI)
apply (erule conjE)
apply (rule conjl)
apply assumption
apply assumption
done
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While the last three commands above could be expressed as an immediate proof
“.” as well, unstructured scripts better use the null proof terminator done and
name any required assumption steps explicitly — this improves robustness and
maintainability.

We see that operational scripts as above mostly consist of method specifications;
explicit propositions only occur in the very beginning, structural hints are very
limited (e.g. erule used instead plain rule basically amounts to a limited form of
the forward chaining gesture as indicated by then in proper Isar proof texts).

Furthermore, our proof scripts do not provide any immediate information about
the inherent tree structure of proof problems emerging by new subgoals as we
proceed. While it is customary to indent script commands accordingly, this
merely counts as a “comment” that is not processed formally. Note that this
particular problem is specific to Isabelle [Paulson and Nipkow, 1994], being the
cost of a very flexible approach to internal goal addressing. Proof scripts in some
other systems reflect the subgoal structure directly in the text, e.g. Coq [Barras
et al., 1999] and HOL [Gordon and Melham, 1993] provide separate combinators
to fork a script into several sub-scripts, in order to address the corresponding
goals separately.

In proper Isar proof texts on the other hand, we may benefit from Isabelle’s
flexible scope on internal goals, without suffering from its potential problems
— the structure of Isar sub-proofs is already determined by explicit local state-
ments in the text (have, show etc.). A common pattern is to establish such
local claims directly by an atomic proof of “by m; ms”, involving a tiny script
of two methods only. Here the initial method m; (used with any chained facts)
splits the original goal into a number of subgoals, and the terminal method mq
solves any number of these, probably leaving a few trivial ones to be finished
implicitly by assumption at the very end of this local proof.

Another notable issue is that of bringing explicit propositions back into proof
scripts. Existing systems such as Isabelle [Paulson and Nipkow, 1994] and HOL
[Gordon and Melham, 1993] do provide a number of tactics that take term spec-
ifications as additional arguments, e.g. subgoal_tac to simulate a local claim
within the present goal state (resembling Isar’s have to some extent). Neverthe-
less, such tactical elements are only rarely used in tactical proving (cf. the dis-
cussion in [Simons, 1996]). Experts of tactical proving occasionally even include
comments with excuses about mentioning intermediate propositions during the
course of reasoning!

As has been shown by longterm experience with tactical proof scripts, there
are indeed some good reason for avoiding explicit quoting of terms: otherwise
scripts may become “unstable” and hard to maintain afterwards. Seen from
the Isar perspective, the problem is that of undisciplined intermixing of static
and dynamic parts of proof states (cf. context versus goal in §3.2.3). Explicit
propositions in scripts belong to the static text, but somehow need to refer to
the dynamic goal state emerging from several tactics applied so far. Due to the
very nature of common tactics, that dynamic result is very hard to predict, and
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easily mutates under minor changes of theory definitions and declarations. Thus
parts of a slightly obscure dynamic state would intrude the static text, which
may be both quite surprising to the reader and easily break down existing proof
scripts later on.

Unfortunately, in realistic applications even the most tuned operational proof
scripts do have to mention explicit terms occasionally, such as in explicit in-
stantiation of non-trivial rules like V elimination, 3 introduction, or induction
schemes (cf. res_inst_tac in classic Isabelle [Paulson, 2001b] and rule-tac in
the script emulation of Isabelle/Isar [Wenzel, 2001a]). Thus dynamically gener-
ated local parameters with accidental names such as z za b easily intrude proof
scripts in an uncouth manner. In principle, effects like this would better have
been accommodated by more careful usage of tactics (e.g. including rename-tac
to fix parameter names). On the other hand, this kind of odd behavior of proof
scripts is generally accepted as a matter of fact in tactical theorem proving.

Apart from using propositions as part of the control script, one may as well
consider to restrict them to documentation purposes of the dynamic evolution
of the internal goal state, in order to gain some accessibility of the result to
casual readers. [Cohn, 1995] proposes this kind of support of “proof accounts”
for HOL [Gordon and Melham, 1993]. That system includes a separate copy of
the basic collection of HOL tactics to produce suitable output of current changes
of the goal state. Any approach like this is faced with the problem of reducing
the proof state information to relevant bits. The raw goal state at arbitrary
intermediate positions of typical proof scripts easily becomes quite large (up to
several printed pages in extreme cases), but only a few local differences to the
previous steps represent the actual progress made.

Subsequently, we give a trace of the dynamic goal states encountered during our
present example proof script. Even in this rather trivial case the raw output is
already cluttered by much irrelevant information.

lemma ANB — BAA
— subgoals: 1. ANB — BAA
apply (rule implI)
— subgoals: 1. ANB = BAA
apply (erule conjE)
—subgoals: 1. A= B= B A A
apply (rule conjl)
—subgoals: 1. A= B =B 22 A= B= A
apply assumption
— subgoals: 1. A= B — A
apply assumption
— subgoals: No subgoals!
done

One of the key observations of readable Isar proof descriptions is that the general
course of reasoning is more adequately represented as a static text, without ever
referring to dynamic goal information directly (proper Isar elements do not allow
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this in the first place). Thus we are enabled to replace an internal dynamic trace
of goals (i.e. a long list of large states) by a single static text of reasonable size.
By this general approach we may expect readable proof representations that
scale up to large applications as well.

Another lesson learned here is that the Isar framework is very liberal, allowing
many ways to conduct formal reasoning. For those who know how to use the
system properly, this freedom provides powerful means for interactive devel-
opment and experimentation, as well as unusual presentations of final results.
Nevertheless, Isabelle/Isar texts may be written in almost arbitrarily bad style.
The Isar design deliberately suffers some degree of potential abuse as a price to
be paid for freedom; recall the principle of “abusus non tollit usus” (§1.3).

4.2.4 Further expressions of natural deduction

We now change the perspective from Isabelle/Isar to a few other systems and
notations for plain natural deduction. By comparing different expressions of
natural deduction with corresponding Isar proof texts we gain further under-
standing of both those alternative systems as well as Isar itself.

After the original formulation of [Gentzen, 1935], plenty of alternative systems
and notations have been devised to represent natural deduction proofs ade-
quately. Such efforts include various forms of diagrams with lines or boxes to
lay out trees of inferences (cf. the basic formats encountered in [Jape], for ex-
ample), or even more advanced graphs and pictures rendered as proposed in
[Barwise and Etchemendy, 1995] [Barwise and Etchemendy, 1998].

Several more recent systems (ProveEasy [Burstall, 1998], Mizar-Light [Wiedijk,
2000], and Tutch [Abel et al., 2001]) have rediscovered the value of plain textual
representations as a primary format for proofs. We argue that complex graphical
representations are limited to small examples of formal logic or very special
applications only. Diagrammatic presentations are inherently restricted in size
and structural complexity by their physical appearance. It is quite hard to
oversee large pictures, and even unclear where to start “reading” of a non-linear
representation in the first place. Our claim is backed by the observation that
non-textual proof formats are rarely encountered in large applications of formal
logic. Also note that traditional mathematics works with linear texts most of
the time as well (with the notable exception of highly abstract diagrammatic
proofs encountered in category theory, for example).

Plain lambda-calculus

As far as primitive proof objects are concerned, natural deduction is certainly
most adequately represented by typed A-terms (cf. §2.2). Recent work on the
Isabelle inference kernel [Berghofer and Nipkow, 2000] even provides a con-
crete programming interface based on this representation, supporting tools that
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need to externalize primitive proofs from the core system (e.g. external checkers,
storage facilities for primitive theories and theorems, facilities for proof-carrying
code). Nevertheless, the internal representation of primitive proofs is indepen-
dent of the issue of readable primary proof formats in Isar (cf. §1.4).

In Coq [Barras et al., 1999] the notion of internal proof term has been tied to
A-calculus from the very beginning. The user experience of interactive develop-
ment of goal-oriented proof scripts does not directly expose these foundations
under normal circumstances, as is illustrated by the following example.

Goal (A, B: Prop)(A /\ B) —> (B /\ M.
Intros a b ab.
Induction ab.
Split.
Assumption.
Assumption.
Save examplel.

Nevertheless, Coq admits users to construct proofs directly by giving A-terms as
well. These may be either provided as definitions of proof terms, or immediately
included in proof scripts; the latter feature is typically used by expert users to
perform small forward inferences in a casual manner.

Definition example2 := [A, B: Prop; ab: A /\ B]
(and_ind A B B /\ A [a: A; b: Bl(conj B A b a) ab).

Goal (A, B: Prop) A /\ B -> B /\ A.
Exact [A, B: Prop; ab: A /\ B]
(and_ind A B B /\ A [a: A; b: Bl(conj B A b a) ab).
Save example3.

Ad-hoc reasoning like this may be simulated in Isabelle/Isar only to a limited
extent, using theorem expressions with basic attributes like OF (composition)
or of (instantiation) (cf. §3.3.2). While composition covers plain application as
well there is no standard attribute for abstraction; below we use proper Isar
proof context commands instead.

lemma AANB — BAA
proof
assume ab: A A B
show B A A
proof (rule conjE [OF ab])
assume a: A
assume b: B
show ?thesis
by (rule conjI [OF b a])
qged
qed
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On the other hand, the very aim of the Isar proof language is to replace the
primitive notion of A-terms by a primary proof format that is more accessible
to readers. Theorem expressions with attributes as encountered above are only
rarely used in proper Isar proof texts at all.

The Agda system [Agda] [Coquand and Coquand, 1999] is positioned as a re-
formed version of Coq, being based on a different version of typed A-calculus
internally, but with a similar system philosophy. The default user experience of
Agda is quite different from Coq, exposing its A-calculus foundations directly
to the primary proof presentation format, which resembles an explicitly typed
higher-order functional programming language. Consider the following Agda
version of our running example of A A B — B A A.

example (A::Prop) (B::Prop) :: Implies (And A B) (And B A)
= ImpliesIntro (And A B) (And B A)
(\(ab::And A B) —>
AndIntro B A (AndElim2 A B B ab (\(b::B) -> b))
(AndEliml A B A ab (\(a::4) -> a)))

Alfa is a separate graphical proof editor for Agda, which has been recently
enhanced to support natural language input and output [Hallgren and Ranta,
2000] as well. Using the Alfa user-interface, A-terms may be drawn in two-
dimensional diagrams according a well-established format of natural deduction
proof trees (cf. the textbook exposition of [Thompson, 1991]). A typical proof
presentation of Alfa looks as follows (it is important to note that the formal
structure of the underlying Agda proof is quite different from the previous one).

Ab — Aa —
= b —F ab - G
B/\E2 A/\BA A/\E1

BAA

ANB —BAA

N

— 7

The Agda/Alfa environment certainly represents the basic paradigm of natural
deduction as typed A-calculus very faithfully. On the other hand, its general
approach has to face the standard issues of scaling up to larger applications:
how to incorporate advanced proof tools into its functional programming pre-
sentation of formal proofs (Agda), and how to draw large inference trees (Alfa).

ProveEasy versus bidirectional reasoning

ProveEasy [Burstall, 1998] is a small teaching tools for interactive composition
of linear textual representations of plain natural deduction proofs. The system
is generic in the sense that new rules may be added at any time (by writing func-
tions in the Tcl programming language, involving regular expression matching).
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While the basic concepts of ProveEasy are inspired by the tradition of A-calculus
and type theory, its primary format observes the most basic principle of “declar-
ative” proof texts (cf. §4.2.3) by including intermediate propositions explicitly
in the text (rules and some instantiations have to be given as well).

Here is a typical proof text produced by ProveEasy. While this form may be
entered directly by hand, it is usually composed interactively by pointing at
appropriate rules to be applied in the next step.

1 . Show {a & b} -> {b & a} by showImp
11.1 . . Given a & b
11 . . Show b & a by givenAnd 11.1
111.1 . . . Given a
111.2 . . . Given b
111 . . . Show b & a by showAnd
1111 . . . . Show b by given
1112 . . . . Show a by given
QED

We may easily reproduce this format in Isabelle/Isar as follows.

lemma ANB — BAA
proof (rule impl)
assume ab: A A B
show B A A
proof (rule conjE [OF ab])
assume A
assume B
show B A A
proof (rule congI)
show B by assumption
show A by assumption
qed
qed
qed

The natural deduction format of ProveEasy is restricted to pure backwards rea-
soning, as represented by the above slightly formalistic use of plain assume and
show without ever using forward-chaining (via then). Furthermore, ProveEasy
does not admit auxiliary facts to be established separately (cf. have in Isar),
this has to be achieved indirectly by having assumptions emerge just in the right
way to be used later on. Assumptions are indeed the only facts that may be
referenced, as may be seen from the format of labels with a dot given in the
ProveEasy text above. In contrast, Isar allows any local result to be used later
on, even those established by show (this results in non-linear reasoning with
DAG-shaped internal structure, cf. the Knaster-Tarski example in §1.5).

ProveEasy follows a systematic scheme of complete labeling of intermediate
lines and facts, essentially path specifications of the underlying tree structure.
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[Lamport, 1994] proposes a similar format of names, which includes some addi-
tional notational devices to address the typical proliferation of redundant labels
emerging from this technique.

We argue that such complete path specifiers are not quite appropriate in realis-
tic applications. First of all, the tree structure of common proof texts is mostly
linear anyway, with only a few forks (typically caused by case analysis or induc-
tion). This is the deeper reason why labels in the above ProveEasy text consist
of many 1’s, but very few 2’s. As may observed from the accompanied Isar
version, only very few such names are actually used later on. The demand for
labeled facts may be reduced even further by proper use of forward-chaining,
instead of insisting on strict backward reasoning. With this basic tuning we
already arrive at a much smoother Isar version (cf. §4.2.3).

lemma ANB — BAA
proof (rule impl)
assume A A B
then show B A A
proof (rule conjE)
assume B and A
then show B A A
by (rule conjl)
qed
qed

Here the primitive composition [OF ab] has already been covered by (rule conjE)
used with the chained fact of H A A B; likewise have we have incorporated the
assumption steps into (rule conjl) as well (after adjusting the order of B and
A appropriately).

As already seen in §4.2.3, the actual rule specifications happen to be completely
redundant, since the explicit propositions and structural information of the text
already provide sufficient clues to determine these behind the scenes.

lemma ANB — BAA
proof
assume A A B
then show B A A
proof
assume B and A
then show B A A ..
qed
qed

We see that immediate forward chaining of existing facts is an important ingre-
dient to streamline natural deduction reasoning, reducing the formal noise of
labeled facts.

Here are some further variants that illustrate Isar’s liberal approach to mixed
forward and backward reasoning; depending on the structural details of the
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proof we may be occasionally forced to name facts or standard rules explicitly,
though.

lemma ANB — BAA
proof
assume A A B
show B A A
proof
show B by (rule conjDs)
show A by (rule conjD:)
qed
qed

lemma AANB — BAA
proof
assume ab: A A B
show B A A
proof
from ab show B ..
from ab show A ..
qed
qed

lemma AANB — BAA
proof
assume A A B
thus B A A
proof
assume A and B
show ?thesis ..
qed
qed

lemma AANB — BAA
proof
assume ab: A A B
from ab have b: B ..
from ab have a: A ..
from b a show B A A ..
qed

As may be observed in the last version above, an extremely forward style of
reasoning tends to demand many explicitly named local facts; on the other
hand standard rules of inference normally do not need to be named, as each line
needs to be closed separately, leaving little choice for the rules to be applied.

Nevertheless, name references may be easily reduced via the most basic derived
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Isar commands involving then (cf. §3.3.3); with is particularly useful in such
situations, as it uses the current facts together with earlier ones. Here is a tuned
version of that proof.

lemma AANB — BAA
proof

assume ab: A A B

hence b: B ..

from ab have A ..

with b show B A A ..
qed

So just by a few “peephole optimizations” we have been able to reduce the total
number of name occurrences (both defined and referenced) from 7 to 4; this is
the typical rate achieved in real applications as well. Isar also provides further
infrastructure beyond basic natural deduction (see chapter 6) to reduce the need
for labeled facts even more in large-scale applications (see §6.4.3).

Incidently, the strictly backward natural deduction presentation of ProveEasy
[Burstall, 1998] is complemented by the mostly dual one of structured forward
reasoning in [Hofstadter, 1979]. Using the latter format, our present example
looks like this (cf. [Hofstadter, 1979, chapter VII, p. 184]).

[ push
<A N B> premise
A separation
B separation
<B A A> joining

] pop

<A N B> D> <B AN A> fantasy rule

Hofstadter calls the “[ ... ]” form “phantasy mode”, where facts may be locally
invented to be discharged later on. The (formal) proof format of [Tutch] [Abel
et al., 2001] happens to be almost the same for this example.

proof andComm: A & B => B & A =
begin
[ A&B; %assumption
A;
B;
B&AIl; Yiconclusion
A&B=>B¢&A
end;

This kind of forward reasoning may be easily reproduced in Isabelle/Isar via raw
blocks (see also §5.2), although we need to name some facts and rules explicitly.

{

assume A AN B
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have a: A by (rule conjD1)
have b: B by (rule conjDs)
have B A A by (rule conjl [OF b a])

}
hence ANB — BAA..

We see that Isabelle/Isar is able to cover the whole range from purely back-
wards to purely forwards reasoning from one end to the other, including any
conceivable intermediate arrangement as well.

Mizar

Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski, 1993] [Wiedijk, 1999] has
pioneered formal proof construction according to general guidelines of estab-
lished mathematical practice. The system is tied to classical first-order logic,
with a formulation of typed set-theory for actual applications. Consequently,
both its internal foundations as well as its primary user experience are farther
removed from the pure intuitionistic look and feel of the systems we have con-
sidered so far, including the Isabelle/Pure framework of Isar (§2.2).

Mizar provides two main mechanisms of formal proof checking (as implemented
in its “verifier”): proof outlining with step-wise refinement according to basic
first-order principles, and terminal solving of left-over problems by a builtin
notion of “obviousness” [Rudnicki, 1987]. Despite being inherently classical,
the outlining mechanisms of Mizar may be used for reasonable representations
of plain natural deduction proofs as well.

Here is an attempt to emulate our preferred version of the running example of
AN B — B A Ain Mizar. As Mizar takes its first-order foundations very
seriously, we have to simulate propositional variables via set membership of
unspecified individuals.

reserve x, y, A, B for set;

theorem x € A & x € B implies x € B& x € A
proof

assume a: X € A;

assume x € B;

hence x € B;

thus x € A by a;
end;

It is important to note that the above order of assumptions and conclusions is
fixed, thus we really do need the explicit naming of fact a, in order to be able
to use it over a distance. Only the second assumption may get used directly by
“linking” | using hence instead of thus in the subsequent step.

Isar generally offers more flexibility in arranging the key elements of a proof
body. In particular, assumptions may be permuted and repeated in an arbi-
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trary manner; conclusions may be rearranged as well. Thus one may easily
arrange the text such that corresponding facts are placed next to each other, in
order to clarify the proof structure and enable forward chaining to reduce the
need for named references. Certainly, assumptions have to be always introduced
before the corresponding conclusions. In particular, we may not just state an
assumptions where it happens to get used, nested within a proper sub-proof of
the corresponding conclusion; this restriction enforces static scoping of assump-
tions (which correspond to A-abstractions), and compositional proof processing
(i-e. sub-proofs may never affect the meaning of the enclosing text).

It is not that easy to represent Mizar proofs directly within the Isar framework,
due to fundamental semantical differences of how proof outlines are processed.

First of all, we observe that Mizar’s proof and end do not have any separate
meaning, but only serve as delimiters of the proof body. Furthermore, by refers
to the builtin automatic prover used together with a number of additional facts
(Mizar’s then primitive, which is technically encountered in hence as well, would
just include the most recent fact into that specification). Also note that Mizar’s
thus actually corresponds to Isar’s show, while Isar’s thus would be hence in
Mizar.! See also [Wiedijk, 2000] for a more detailed attempt to relate the basic
Mizar and Isar language elements to each other, based on a simplified model of
either system.

Apart from such superficial differences, the basic model of processing proof out-
lines in Mizar is fundamentally different from the way that Isar builds up local
contexts within a proof body and solves some goals eventually. In case that
there is a main goal at the head of the proof (as encountered here), Mizar’s op-
eration may be understood as a structured walk through the remaining problem,
as it is transformed step-by-step via a number of outline commands: assume,
thus, hence, and further ones corresponding to basic first-order connectives
and quantifiers, such as let, take, consider, given [Trybulec, 1993] (see also
§5.5.1). A few logical connectives are treated implicitly, such as implication and
conjunction.

Mizar provides a number of additional concepts to represent common patterns of
forward reasoning encountered in mathematics, most notably iterated equality
reasoning (see also §6.4.1), as well as “diffuse” reasoning without a goal state-
ment at the head position (using “now ...end” or “hereby ...end”). Taking
these elements away from Mizar, one would basically arrive at a system that is
very close to the goal oriented paradigm of tactical proving, only that the set of
“tactics” has been chosen more carefully with readability in mind. This basic
observation has been a starting point of the “Mizar mode for HOL” [Harrison,
1996b], and has been worked out further in “Mizar-Light” [Wiedijk, 2001b).

This quasi-operational style of stepwise transformations of a single problem at
hand cannot be easily reproduced in Isar, which is slightly more “declarative”

IThis particular terminology of Mizar is not ideal for linguistic reasons: while hence would
be technically the same as then thus, the latter form had to be suppressed due to its odd
reading as quasi-natural language.
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in the sense that arbitrary goal refinements may only take place in the very
first proof step, or when performing qed. Within an Isar proof body there is
no way to work on pending goals directly (there is not even a fixed focus on
a particular one). Results that are meant to refine enclosing goals have to be
built up strictly declaratively by giving suitable assume and show statements
in the proof body.

Incidently, the treatment of Mizar’s thesis versus Isar’s ?thesis illustrates the
key difference of structured proof processing quite nicely. In Mizar, thesis is a
special placeholder for the remaining part of the problem one is currently work-
ing at in the present section of a proof body; consequently thesis is dynamically
updated after each main step. A trace of the course of value of thesis in the
above Mizar example may be given as follows.

theorem x € A & x € B implies x € B & x € A

proof — thesis = x € A & x € B implies x € B & x € A
assume a: x € A; — thesis = x € B implies x € B & x € A
assume x € B; — thesis = x € B& x € A
hence x € B; — thesis = x € A
thus x € A by a; — thesis =-
end;

In contrast, Isar’s ?thesis is just another term abbreviation that happens to be
bound automatically whenever a new claim is stated in the text (cf. §3.2.3).
Thus it always refers statically to the head of the present proof. Once that the
initial goal has been refined in a non-monotonic manner, ?thesis becomes useless
for the current piece of proof text. Updating #thesis dynamically as in Mizar
would quickly lead to unreadable proofs, as initial goal refinements may involve
just any Isar proof method. On the other hand, Mizar’s dynamic behavior
does not cause any real problems in practice, since the basic transformations
available here are limited to a few principles from classical first-order logic that
are relatively easy to oversee.

We finally give a try at emulating the present Mizar example in Isar. Recalling
one of the more or less canonical Isar versions already encountered before, we
see that we require additional nesting of sub-proofs, in order to be able to enter
the logical structure of the problem.

lemma AANB — BAA
proof
assume A A B
thus B A A
proof
assume B and A
thus ?thesis ..
qed
qed

Mizar usually requires less structural overhead to dig into first-order proof prob-
lems. On the other hand, this advantage is strictly limited to pure logic. In
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contrast, the explicit goal refinements in Isar (via initial or terminal method
specifications) may be just anything, ranging from domain-specific introduction
and elimination rules declared by the user, to arbitrary automated proof tools.
In fact, our theory of intuitionistic first-order logic has been declared as such a
“domain-specific” application in the first place.

The gain of flexibility of the Isar framework pays off even more in “realistic”
applications of formal logic (e.g. chapter 8, chapter 9, chapter 10). Certainly,
concrete applications demand some further infrastructure beyond plain natural
deduction; this is easy to achieve on top of the existing Isar framework (see also
chapter 5 and chapter 6).

Using advanced Isar techniques to be introduced later on (see §5.3) we may
easily turn the tide again in favor of Isar, even for this primitive example.

lemma AANB — BAA
proof
assume A A B
then obtain B and A ..
thus B A A ..
qed



Part Il

Techniques

93






Chapter 5

Advanced natural deduction

We explore a broad range of “advanced” natural deduction techniques in Isar.
First of all, this includes a systematic exposition of the capabilities of the exist-
ing language framework introduced so far, pointing out its practical virtues as
opposed to pure \-calculus notions of formal proof. Furthermore we introduce
additional derived concepts, notably generalized elimination as a first-class proof
context element, and specific support for common schemes of proof by cases and
induction. Any of these techniques turn out as indispensable means to support
scalable applications.

5.1 Introduction

Natural deduction has been introduced by [Gentzen, 1935] as a formalism to
represent the way that mathematicians perform proof in principle. Modern
expositions usually explain natural deduction in terms of typed A-calculus, e.g.
see [Thompson, 1991] or [Barendregt and Geuvers, 2001]. This provides a viable
formal basis for both theoretical studies and concrete implementations, but it
does not immediately offer means for human-readable presentations of formal
proof texts. Existing mathematical practice does not quite resemble the pure
A-calculus style of reasoning.

We have already explored some aspects of textual representation of basic nat-
ural deduction elements earlier (chapter 4), considering both the Isar view and
several other approaches. The Isar proof texts encountered there could be re-
lated to the most basic concepts of A-calculus, namely abstraction for context
elements fix and assume, and application (or general composition) for show
and rule applications involved in proof and qed steps. A few derived elements
of A-calculus have already been encountered as well, notably various versions of
let-expressions covered by have, note, and let. A modified view on application
has been indicated by then.

95
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Subsequently, we shall provide a systematic exposition of further elements of
natural deduction available in Isar. All of these may be expressed on top of
the existing language framework (chapter 3), and would correspond to equally
“redundant” additions to the plain A-calculus view of reasoning. Nevertheless,
the resulting Isar proof patterns turn out to be indispensable prerequisites for
advanced applications (e.g. chapter 8, chapter 9, chapter 10). Even very sim-
ple applications like the Knaster-Tarski Theorem given in §1.5 already benefit
greatly from such derived elements.

The general lesson to be learned here is that the subtle task of composing human-
readable proof texts needs to be accommodated by a considerable diversity of
the formal language. Despite our general aim to keep the very core of the Isar
language small, its highly compositional nature results in a rich environment
of meaningful proof patterns. This principle holds both for natural deduction
proper to be discussed here, as well as its light-weight cousin of “calculational
reasoning” (see chapter 6).

The following particular techniques will be explored in the present exposition
of advanced natural deduction.

1. Various basic techniques that are already inherently present in the core
proof language (chapter 3), but have not been included in the discussion
of basic natural deduction so far (chapter 4).

Speaking again in terms of A-calculus, this includes “non-standard” con-
cepts like general (cascaded) context elements (see §5.2.1), incremental let-
expressions (see §5.2.2), modified application and composition (see §5.2.3),
stand-alone parentheses (see §5.2.4), and internalized proof texts in the
form of meta-level rule statements (see §5.2.5).

2. Support for generalized eliminations via the derived obtain element (see
§5.3). This basically amounts to existential quantification at the level of
Isar proof texts, or “conservative extensions” of local proof contexts.

Instead of having context elements fix and assume emerge implicitly as
the result of previous backward reasoning, obtain allows to prove that
parameters and assumptions may be introduced at a certain point (in-
dependent of any goals). This principle admits a large number of useful
patterns, with considerable elimination of formal noise.

3. Specific infrastructure for proof by cases and induction (see §5.4) that
scales up well in practice.

Depending only on a few additional proof methods and attributes, the
existing case command (§3.3.1) is turned into a viable tool to introduce
large context elements into proof texts succinctly, corresponding to canon-
ical rules of inductive sets or types.

Interestingly, the “advanced” issues covered here will mostly revolve around
static proof contexts rather than dynamic goal configurations. This observation
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marks a distinctive difference of structured proof techniques versus existing
approaches of goal-oriented tactical theorem proving, like in traditional Isabelle
[Paulson and Nipkow, 1994], the HOL system [Gordon and Melham, 1993], or
Coq [Barras et al., 1999]). The calculational reasoning techniques of chapter 6
will drive this view to its ultimate consequence, arriving at a proof style that is
essentially devoid of goals altogether.

5.2 Basic techniques

5.2.1 General context elements

The Isar framework provides the two fundamental context primitives fix and
assm (cf. §3.2.1). Speaking in terms of A-calculus both essentially correspond
to abstraction: fix abstracts over terms (with syntactic types) and assm over
facts (or rather internal proof terms). A proof text involving “fix Z assm H”
corresponds directly to an internal context of a proposition presented in HHF
normal form A\Z. H = H (cf. §2.4.1).

As we shall elaborate below, canonical equivalence transformations of such for-
mula may be performed on Isar proof texts as well, e.g. a-conversion of pa-
rameters, permuting and repeating premises, and commuting parameters with
premises (according to the law - (P = (Az. Q z)) = (Az. P = Q z)).

The assm (§3.2.1) primitive is not directly available in Isar proof texts, but is
intended to implement user-level elements accordingly, such as assume, pre-
sume, def, and case (cf. §3.3.1). Later on we will also introduce the derived
obtain element (see §5.3), and cover advanced uses of case (see §5.4). In con-
trast, raw fix is slightly more degenerate as an individual concept, since it does
not involve any special treatment at discharge time. On the other hand, derived
context elements may refer to fix and assm simultaneously, like def or obtain.

Fixed variables

Variables introduced via fix refer to local objects that are purely syntactic: when
exporting results such elements may be generalized according to the canonical
N\ introduction rule (cf. §2.2). No additional hypotheses wrt. typing of variables
are imposed here, because the underlying framework inherently assumes types
are always inhabited (see also §8.6.1 for the analogous situation in the HOL
object-logic). Non-dependent expressions of A may be immediately simplified
according to the law - (Az. P) = P.

Portions of Isar proof texts involving fix are a-convertible, just like the cor-
responding A binder expressions of the underlying logical framework (§2.2).
Consider the following trivial example.
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have Vz. Pz
proof

fix x

show P z (proof)
qed

have Vz. Pz
proof

fix u

show P u (proof)
qed

In fact, the result of a proof body needs to conform to a pending goal only up
to higher-order unification (§3.2.3). Thus the text may actually cover a more
general statement, if it happens to be provable at that level of generality.

have Vz. P (f z)
proof

fix y

show P y (proof)
qed

We see that Isar proof texts are not bound to the accidental formulation of
goal statements, but may raise the level of abstraction at will. Most existing
proof systems are directly focused on particular goal statements instead, cf.
the Intros element of Coq [Barras et al., 1999]), for example. Interestingly,
even let/assume in Mizar [Rudnicki, 1992] [Trybulec, 1993] [Muzalewski, 1993]
[Wiedijk, 1999] are essentially based on the same procedural paradigm (see also
84.2.4 and §5.5.1) as the tactical view of Coq.

The following Isar example exploits the idea of generalized proof bodies in order
to re-use an existing proof a second time for a symmetric argument.

lemma (A V B) = (B V A)
proof
fix XY
— general propositions X, Y may get instantiated later on
— either as A, Bor B, A
assume X V Y
thus YV v X
proof
assume X
thus %thesis ..
next
assume Y
thus ?thesis ..
qged
— first result application
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thus Y v X .
— second (symmetric) result application
qed

Here we have exploited another intrinsic virtue of Isar proofs, namely “cascad-
ing” of contexts. Having exported a result (cf. the first “thus Y VvV X (proof)”
above) does not yet invalidate the existing context built up so far, including
any kind of local proof items like auxiliary facts, term abbreviations, or proper
logical context elements. The second “thus Y V X .” applies the very same
result F AX Y. X VY = Y V X. In general, later results may involve longer
/\/=> prefixes due to additional context commands issued intermediately.

This incremental behavior is an immediate consequence of the way that the
Isar/VM interpreter manages the corresponding environments of the static proof
configuration of context (cf. §3.2.3). Speaking in terms of plain A-calculus,
certain parts of nested abstractions (and other binder elements) may be shared
among several expressions, resulting in slightly less formalistic proof texts by
preferring linearized arrangements over strongly nested ones.

Strong assumptions

Unquestionably, assume is the most fundamental proof context element. It
introduces a “strong” assumption in the sense that exported results need to
unify against corresponding premises of an enclosing goal. Thus finished proof
fragments of assume/show essentially provide a balanced textual focus on
a particular open problem, covering both assumptions and conclusions. This
allows proof bodies to be commuted in many situations where conclusions alone
would cause ambiguities. Consider this basic example of V elimination.

assume A V B

hence C

proof
assume B — second case
thus C (proof)

next
assume A — first case
thus C' (proof)

qed

Furthermore, strong assumptions may be introduced in any order or even re-
peatedly, without changing the behavior of Isar proof processing (cf. §3.2.3).

assume A A B

hence B A A

proof
assume A — (unused)
assume B — (unused)

assume B and A
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thus ?thesis ..
qged

Note that this liberal treatment of assumptions is quite important in practice
to tune proof texts according to the most natural flow of information, both for
interactive development and improved readability of the final text. In particular,
properly arranged facts often avoid explicit references to facts and rules (cf. the
discussion in §4.2.4, see also §5.2.3).

On the other hand, assumptions and corresponding goal statements must not
be swapped. In the subsequent example, assume is introduced properly before
its related show (demanding an explicit label).

have A — B
proof
assume a: A
show B
proof —
from a
show ?thesis (proof)
qed
qed

In contrast, the subsequent attempt of introducing assumptions “dynamically”
when required does mot work out, since it violates scoping of logical context
elements (abstractions).

have A — B
proof
show B
proof —
assume A
— illegal “dynamic” assumption
thus ?thesis

The latter version could spare us an explicit reference to the previous fact a, but
it is unacceptable for several reasons. For example, it would break modularity
of Isar proof checking: the particular context introduced within the body of
a sub-proof would change the meaning of the main proof. Also note that the
correct use of assume before show needs to impose the resulting hypothesis
on the result independently of its actual use in the sub-proof. Generally speak-
ing, the Isar/VM interpreter (§3.2.3) implements a discipline of “static scoping”
of proof contexts in order to get these subtle details right. Such fine points
are just too easily overlooked in “real world” implementations of interpreted
languages, although it has been a well-known issue of proper programming lan-
guage semantics for several decades. The initial error of dynamic scoping in
LISP interpreters of the late 1950’s should have been overcome now (at least in
theory) [McCarthy, 1960].
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Other context elements

The presume element provides “weak” assumptions: unlike assume the dis-
charged hypotheses are not solved against any goal premises. Thus former
presumptions are left as new sub-problems to be solved later on. So presume
essentially defers sub-proofs according to a logical “cut” rule.

Just consider the following simple example, involving the rule r =+ A = C.

have C
proof (rule r)
presume B
thus A (proof)
next
show B (proof)
qed

In practice, presume turns out to be most useful in interactive development
where portions of a proof may be temporarily deferred, or to debug failed appli-
cations of assume/show due to faulty assumptions. In such situations assume
may be temporarily replaced by presume to inspect partially applied results
of show, with pending subgoals corresponding to previous presumptions.

Note that exporting results from a context of weak assumptions does not involve
any special treatment of premises in the enclosing goal context (cf. §3.3.1). Thus
the effect is essentially the same as in applications of non-atomic rule statements.

have C

proof (rule r)
show B = A (proof)
show B (proof)

qed

The def element essentially provides an abbreviation for “fix z assume z = t”
where the discharged (and generalized) equation is automatically disposed of via
reflexivity - ¢ = t. So def performs a definitional extension of the present proof
context (cf. §2.3 for a similar principle for the theory level). The def element is
best studied within a raw proof block, see also §5.2.4. Another characterization
is given in §5.3.3, reducing basic def to more the sophisticated obtain element of
generalized elimination (which corresponds to general conservative extensions).

Interestingly, let is much more relevant in practice. Unlike def it is not a logical
context element, but merely an extra-logical device of term abbreviations (§3.2.3
and §3.4.1). Its very power stems from this arrangement, including c