
Institut f�ur Informatik, Lehrstuhl XII

Teams as Types

- A Formal Treatment of Authorisation in Groupware -

Wolfgang Naraschewski

Vollst�andiger Abdruck der von der Fakult�at f�ur Informatik der Technischen Uni-

versit�at M�unchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Johann Schlichter

Pr�ufer der Dissertation:

1. Univ.-Prof. Bernd Br�ugge, Ph.D.

2. Prof. Dr. Dana Scott,
Carnegie Mellon University Pittsburgh,
Pennsylvania / USA

Die Dissertation wurde am 18.1.2001 bei der Technischen Universit�at M�unchen

eingereicht und durch die Fakult�at f�ur Informatik am 7.3.2001 angenommen.

Acknowledgement

I would like to thank my supervisor Bernd Br�ugge for giving me
the opportunity to work in this interesting project and for his
visions which helped me guiding the way.

I also thank Dana Scott for being my referee and for getting
involved into the topic of this thesis.

I am deeply indebted to Markus Wenzel who greatly in
u-
enced my work. In particular I would like to thank him for his
patience and for his fruitful discussions.

I thank the { former and current { members of the Isabelle
working group, namely Tobias Nipkow, David von Oheimb, Cor-
nelia Pusch, Markus Wenzel and Leonor Prensa Nieto for their
constructive collaboration and Manfred Broy for giving me the
opportunity to work in this group.

This work would not have be possible without the patience of
my wife. I am very grateful to her for giving me support. I also
would like to thank Felix for giving me the creative moments.

Last but not least I would like to express my gratefulness to
my parents Beate and Siegfried Naraschewski and to my parents
in law Regina Hiller and Klaus Hiller for their continuous support
of my work.

To my family Birgit, Felix and Kristina

Abstract

In the �rst part of the thesis we present a generic framework called Logos
that may serve as a formal basis for investigations of authorisation issues
in applications of groupware systems. Logos has been formalised within
HOL { a well-known higher-order logic which is supported by a number of
wide-spread theorem provers as e.g. Isabelle/HOL.

In the second part we present two applications of Logos. First we show,
how it can be used to formalise the key authorisation concept of Lotus Notes
{ the groupware system currently dominating the market of commercial
groupware solutions. Second we develop a case study (namely discussion
bboards shared by a number of independent teams) demonstrating the usage
of Logos as speci�cation and veri�cation environment for concrete safety
critical applications.

Contents

1 Introduction 4

2 Foundations 10
2.1 The HOL logic . 10

2.1.1 Syntax and semantics 11
2.1.2 Theories . 11
2.1.3 Constant de�nitions 11
2.1.4 Type de�nitions . 12

2.2 Object-oriented concepts in HOL 12
2.2.1 Extensible records . 13
2.2.2 HOOL . 18
2.2.3 Encoding . 22
2.2.4 Veri�cation . 25

2.3 Memories and References . 27

3 Framework Logos 36
3.1 Groups . 38

3.1.1 Subjects . 38
3.1.2 Members . 46
3.1.3 Subgroups . 54

3.2 Databases . 59
3.2.1 Data space . 60
3.2.2 Pro�le Documents . 61
3.2.3 Roles . 62
3.2.4 Access control list . 63
3.2.5 States . 71
3.2.6 Operations and guards 72
3.2.7 Name and address book 78
3.2.8 Object-oriented concepts 80

3.3 Groupware systems and applications 85
3.3.1 Databases . 86
3.3.2 States . 87
3.3.3 Access control . 89

2

4 Modelling Lotus Notes in Logos 94
4.1 About Lotus Notes . 95

4.1.1 Functionality . 95
4.1.2 Components . 96
4.1.3 Security . 97

4.2 Authorisation in Lotus Notes 99
4.2.1 Name and address book 100
4.2.2 Databases . 101
4.2.3 Documents . 103
4.2.4 Fields . 104
4.2.5 Forms and views . 104

4.3 The model . 104
4.3.1 Documents . 105
4.3.2 Groups . 107
4.3.3 Roles . 107
4.3.4 Access control list . 108
4.3.5 Readers and authors �elds 111
4.3.6 Operations and guards 111
4.3.7 Name and address book 115

5 Case study: Shared discussion bboards 116

5.1 About . 116
5.2 Real world projects . 118

5.2.1 German Scholarship Foundations 119
5.2.2 Global Student Projects 119

5.3 Realization in Lotus Notes . 120
5.4 Modelling in Logos . 123

5.4.1 References . 123
5.4.2 Groups . 126
5.4.3 Global and local NABs 127
5.4.4 Bboard . 133
5.4.5 Application . 137

5.5 Sample correctness proof . 141
5.5.1 Proof sketch . 142
5.5.2 Proof realization . 143
5.5.3 Extensions . 149

6 Conclusions 152

3

Chapter 1

Introduction

\Entia non sunt multiplicanda praeter necessitatem"
(Wilhelm von Ockham 1285 - 1349)

Formal methods in computer science have bene�ted a lot from the security
community. On the one hand, security issues have drawn attention to for-
mal methods and on the other hand a lot of work has been funded by the
security community. All formal methods that are developed to this end aim
at developing correct and secure systems. Since 100% security can never be
reached, we have to ask the question which approximations can be achieved.
This question is too complex to be answered at hand and hence it is di-
vided and conquered at lower levels. It is obvious that the problem can
be best reduced to the di�erent layers which distributed systems consist of.
Ideally, the problem is defeated at the layers independently, but of course
interactions can not be excluded.

Figures 1.1 and 1.2 depict the di�erent layers of systems and their respec-
tive security guarantees. In [48] these layers and guarantees are discussed
in more detail { we summarise the arguments in short words.

applications

systems and languages

protocols

crypto

Figure 1.1: System layers

crypto

applications

protocols

systems and languages

Figure 1.2: Security Guarantees

A solid cryptographic base, which provides means for encryption, decryp-
tion, signatures . . . , is a precondition for any distributed, secure system. On
top of this layer, protocols are used which serve the communication between
the distributed entities. The systems and languages (built in the next layer)

4

use the services provided by the protocols and implement frameworks in
which the applications (i.e. the programs that the users see) are realized.

Ironically, the degree of what we can guarantee is inversely proportional
to the size of the layer (Figure 1.2). There are fundamental and deep
results in cryptography. At the protocol level we have a handful of formal
methods. For the systems and languages there is an increasingly but yet
unsatisfactory degree of security. At the application layer we don't have
much security guarantees at all. This thesis aims at tackling this gap for
the special case of groupware (and in particular Lotus Notes) applications.

Of course, there is a good reason why the applicability of formal methods
decreases as the applicability and size of the systems increases. Formal meth-
ods are only applicable to comparably small and clearly de�ned problems.
Consequently, the major issue for formal investigations of system applica-
tions is to identify the core of the problem and to make quite a number of
assumptions about the environment. Furthermore, the goal of completeness
(which is a phantom anyway) has to be dropped.

But how to reduce the complexity? Figure 1.1 helps to answer this
question systematically. The complexity can be reduced in the following
three steps.

1. Focus only on the layer of the application taking all other layers as
assumptions (environment).

2. Identify the security critical core of the application layer.

3. Find an adequate and pragmatic mathematical model.

Decisions taken at each of these steps have dramatic impact on the complex-
ity and thus the applicability of the formal method. That's why we want
to investigate the \design rationale" of the decisions we have taken in more
detail.

Focus on application layer

There are two major security issues to be addressed by any groupware sys-
tem:

� authentication: If a groupware system interacts with a subject who
pretends to be \p" then authentication has to guarantee that the sub-
ject really is \p" and not someone else.

� authorisation: Authorisation assumes correct authentication. De-
pending on the subject's status the system decides if the subject may
or may not perform a requested operation (e.g. read or write a docu-
ment).

5

In actual groupware systems, authentication usually is guaranteed by public
and private keys (as e.g. RSA) together with protocols used to control the
interactions between the groupware system and the user. The details of
authentication are dealt with in the layers \crypto" and \protocols" and
hence can be ignored for the layer of the applications. Correct authentication
is taken as axiom for the further development.

As far as authorisation is concerned, its realization is spread over the
layers \systems and languages" and \applications".

Static vs. dynamic authorisation There are two ways of dealing with
authorisation, which we call static and dynamic. Authorisation is static if it
is determined globally for a larger part of an application and it only changes
rarely over time. Usually, the access control is provided by the system itself
and an application's manager only needs to apply the control mechanisms.
For example, the database manager statically determines in the access con-
trol list of a Lotus Notes database which subjects may read documents. This
assignment usually concerns all documents and remains unchanged through-
out the life-time of the application. In contrast, authorisation is dynamic if
access rights are context and time dependent and the implementation has to
be provided explicitly for the application. For example, in on-line registra-
tions for events, the right to submit a registration expires once the deadline
has passed. To realize this requirement, a formula has to be implemented
that is evaluated at runtime by the system.

As far as static authorisation is concerned, the groupware system is re-
sponsible for its correctness. This correctness can be checked once for the
whole system and consequently holds for all of its applications. For dy-
namic authorisation the situation is di�erent. The responsibility is imposed
on the implementor. Correctness with respect to some speci�cation has to
be checked individually for each application. In security critical applica-
tions (which are standard in groupware) dynamic authorisation is a major
stumbling block in providing security.

Dynamic authorisation: examples In the following we sketch two real
world examples that illustrate the concept of dynamic authorisation (see
Section 5.2).

The �rst example deals with a web-based intranet collectively shared by
a set of scholarship foundations each of them o�ering a speci�c net for their
own students and alumni. Each student may decide on a document basis
which information is shared with other foundations.

The second example deals with a series of trans-atlantic academic
student-projects involving students from Carnegie Mellon University and
the Technische Universit�at M�unchen. All student projects are performed
in cooperation with industrial partners. The students need to access

6

proprietary information that is subject to non-disclosure agreements.
The problem is that part of the information needs to be shared between
di�erent project phases or projects with new team members whereas
other con�dential information needs to be kept secret. The author of
each document determines if it needs to be treated according to the
non-disclosure agreement. As the non-disclosure agreements impose
hard security restrictions on the supporting groupware application, its
correctness needs some certi�cation. In this case, we have to ensure that
con�dential information may only be accessed by students who have signed
a non-disclosure agreement.

Dynamic authorisation cannot be investigated isolated from the surround-
ing groupware system. Hence any formal method dealing with groupware
applications also has to deal with the standard authorisation concept of the
underlying groupware system.

Security critical core of the application

At the level of applications only authorisation issues are relevant for the
security model. It is possible (and reasonable) to abstract away from all
other security aspects which are hidden in the layers below.

As we have mentioned already, authorisation issues at the level of appli-
cations involve programs that are used to compute the access rights. Each
groupware system supports its own language that is used to this end. Try-
ing to imitate this language in the formal model would unnecessarily blow
up the e�ort. From a pragmatically point of view it is much more reason-
able to use an abstract programming or even only speci�cation language
and to leave the correspondence between the abstract model and the con-
crete programming language as a separate (not necessarily formally treated)
problem.

Pragmatic mathematical model

Models for authorisation in groupware can { just as any other formal model
{ be achieved di�erently (the quotation goes back to C.A.R. Hoare):

\There are two ways of constructing a software design: One way
is to make it so simple that there are obviously no de�ciencies
and the other ways is to make it so complicated that there are
no obvious de�ciencies"

This quotation describes two quite opposite approaches to formal models:
deep or shallow embeddings. In a deep embedding syntax and semantics
are formulised explicitly as inductive sets. Deep embeddings are suitable
for investigations of the meta-theory of the framework itself, but ponderous

7

for its applications. Since our focus lies on applications, we have decided
to ground on a shallow embedding, which reuses the syntax and semantics
of the underlying logic by de�nitional extensions. In contrast with deep
embeddings (e.g. see [1]), shallow embeddings inherit well-formedness prop-
erties from the underlying logic for free. By this decision we have taken
Wilhelm von Ockham's razor quite seriously.

Framework Logos

\Logos" is a Greek term meaning \word". In history it has been used as
a metaphor for human communication in general. The word \logic" has
been derived from \logos", as \logic" originally had been concerned with
formal argumentations. Groupware, which nowadays deals with electronic
communication, is no longer connected with formal logic.

Re-connecting these two orthogonal topics requires bridging a wide gap
between theory and practice. Each of the two communities of researchers
has developed its own ideas and culture. The following example demon-
strates how di�erent contextual backgrounds hinder communication: In
theory, type constructors are well-known. Type constructor \memory" for
example constructs memories with data of a given, arbitrary type. A \group
memory" then is a particular memory that stores groups. In contrast,
\group memory" is often used in groupware to summarise all the knowledge
a group has. In this thesis we try to establish a connection between these
two orthogonal scienti�c lines of research (as indicated by the title \Teams
as Types"). We propose a logical framework called \Logos" that may serve
as a formal basis to investigate security (to be more precise authorisation)
issues in groupware applications. Particularities of individual systems as
Lotus Notes or BSCW then may be expressed within this framework (see
Chapter 4).

The central question to be answered for Logos is which logical basis to
take for the model. Since we want to develop a generic framework, the
logical basis has to be
exible. We have decided upon HOL { a higher order
logic. HOL can be understood as a version of typed set theory, with two
distinct kinds of objects: terms denoting set theoretic individuals (numbers,
tuples, functions etc.) and types denoting corresponding sets classifying
the individuals. We have chosen HOL as it is well-known in theoretical
computer science and it is supported by a number of wide-spread theorem
provers as e.g. Isabelle/HOL. This allows for rigorous and machine checked
speci�cations and correctness proofs of groupware authorisation issues.

8

Road map

In the next chapter (Chapter 2) we develop two groupware-independent
theories as foundations for the subsequent sections. One is a theory of se-
lected object-oriented concepts (see Section 2.2) which is the basis for Section
3.2.8 and the other is a theory of references (see Section 2.3) which we use
throughout the paper. In Chapter 3 we introduce the framework Logos
which serves to express and validate authorisation issues in groupware sys-
tems and applications. The remaining chapters provide case studies which
stress the applicability of Logos to concrete groupware systems and appli-
cations. Chapter 4 re�nes the de�nitions of Logos to account for the core
authorisation model of Lotus Notes { the leading system in the groupware
market. The next chapter (Chapter 5) shows how concrete groupware
applications are modelled in Logos. To this end a case study of shared
discussion bboards is developed and a sample security property is proved
formally. We conclude the thesis with some remarks on further and related
work in Chapter 6.

9

Chapter 2

Foundations

In order to de�ne the framework Logos for authorisation in groupware and
to apply it to Lotus Notes and shared bboards the following groupware-
independent theories are required. One is a theory of selected object-oriented
concepts (see Section 2.2) which is the basis for Section 3.2.8 and the other
is a theory of references (see Section 2.3) which we use throughout the pa-
per. To stress that the theories are general and thus independent from our
particular environment the running example for the section dealing with
object-oriented concepts is the standard example from object-oriented liter-
ature (points) rather than a standard example from groupware.

Most mathematical papers take an informal understanding of the under-
lying logic as basis without making the employed logic explicit. This way
reasoning gets simpler, frequently using so called \hand-waving" arguments.
We wish to stress that this approach does not at all imply that the results do
not withstand a rigorous formal investigation. Nevertheless, this approach
eludes the chance to check the proofs with a mechanical proof-checker with-
out extensive additional e�ort which is a great advantage in environments
close to programming. In such environments the theorems usually are not
profound but the proofs are quite extensive which often leads to careless
mistakes. In this paper we make a compromise. Our theories have not been
fully implemented in a theorem prover { thus omitting painful odds and
ends. Nevertheless, we always have a particular formal logic (that is HOL
{ see [4]) in mind guaranteeing that all of our de�nitions and proofs could
(with some straightforward e�ort) be certi�ed in a theorem prover (that is
Isabelle/HOL { see e.g. [27, 47, 31, 28]). The underlying logic HOL has also
been implemented in several other theorem provers (see e.g. [9, 11]).

2.1 The HOL logic

In the following we sketch the underlying logic HOL. This short introduction
is also published in [26].

10

2.1.1 Syntax and semantics

The syntax of HOL is that of simply-typed �-calculus with a �rst-order
language of types. Types are either variables �, or applications (�1; : : : ; �n) t;
we drop the parentheses for n 2 f0; 1g. Binary constructors are often written
in�x, e. g. function types �1 ! �2 (associating right). There is no way to
bind type variables or make types depend on terms in HOL.

Terms are either typed constants c� or variables x� , applications t u or
abstractions1 �x: t. As usual, application associates to the left and binds
most tightly. An abstraction body ranges from the dot as far to the right
as possible. Nested abstractions like �x: � y: t are abbreviated to �x y: t.
Terms have to be well-typed according to a standard set of typing rules.

HOL can be understood as a very simple version of typed set theory, with two
distinct kinds of objects: terms denoting set theoretic individuals (numbers,
tuples, functions etc.) and types denoting corresponding sets classifying
the individuals. In ordinary untyped set theory everything is just a set,
of course. We will often use lists rather than sets since lists are �nite by
de�nition. In �nite cases, we will deliberately ignore their di�erences and
use them interchangeably, though.

2.1.2 Theories

HOL theories consist of a signature part (declaring type constructors
(�1; : : : ; �n) t and polymorphic constant schemes c : �) and axioms. All
theories are assumed to contain a certain basis, including at least types bool
and � ! � and several constants like logical connectives ^ ; _ ;) : bool !
bool ! bool , quanti�ers 8; 9 : (�! bool)! bool and equality = : �! �!

bool .
Any theory induces a set of derivable theorems, depending on a �xed set

of deduction rules that state several \obvious" facts of classical set theory.

Arbitrary axiomatisations are considered anathema in the HOL context. It
is customary to use only de�nitional extensions (guaranteeing certain nice
deductive and semantic properties) and honestly toil in deriving the desired
properties from the de�nitions. HOL o�ers de�nition schemes for constants
and types [35].

2.1.3 Constant de�nitions

The basic mechanism only admits introducing some axiom ` c = t for a
new constant c not occurring in t (and some further technical restrictions).
We generalise the pure scheme to admit arguments of function de�nitions

1Binder � is well-known in theoretical computer science. It allows for function de�ni-
tions without having to introduce explicit names for the functions. The common de�nition
f (x) = t can be written equivalently f = � x : t .

11

applied on the l. h. s. rather than abstracted on the r. h. s.: ` f xy = t instead
of ` f = �x y: t. Furthermore, tuple abstraction, de�nitions by cases etc.
may be written using ML-style pattern matching, e. g. ` f (x; y) = t (which
applies the pair eliminator split : � � � ! (� ! � !
) !
 behind the
scenes).

Later we will also use a proper extension of the HOL constant de�ni-
tion scheme, namely overloading [46]. Currently only the theorem prover
Isabelle/HOL implements this. Here is a sample overloaded de�nition of
some polymorphic constant 0 : �:

0nat = zero

0��� = (0�; 0�)
0�!� = �x�: 0�

Note that we do not have to cover all types of 0 here; additional clauses
may be added later, provided overall consistency of the set of equations is
preserved.

2.1.4 Type de�nitions

New polymorphic type schemes may be introduced in HOL systematically
as follows: exhibiting a non-empty representing subset A of an existing type
(with further technical restrictions) one may introduce a new axiom stating
that (�1; : : : ; �n) t, for a new type constructor t, is in bijection with A. This
basically identi�es the new type with the representing subset.

HOL type de�nitions are peculiar as they only state equivalence up to
isomorphism. There is no way to enforce actual equality, as do type con-
versions in type theories. As a consequence, the HOL algebra of types can
be considered as freely generated (without loss of generality), always admit-
ting an initial model where types of di�erent names denote di�erent sets.
This freeness property will be quite important later for distinctness of record
types. Even more fundamental, it underlies overloading [46], which is used
in Section 2.2.2 to implement methods.

Paradoxically, more powerful logical systems like full set theory or the
HOL-version underlying PVS (see [30]) are not quite suitable for our way
of encoding methods, mainly because they no longer admit the freeness
assumption of types.

2.2 Object-oriented concepts in HOL

Although HOL is a quite weak type theory, it is su�ciently expressive
to model object-oriented concepts like inheritance or late-binding. These
results have been published in [26] and are summarised in the following.

12

The encoding that is used is merely based on extensible records which we
shall introduce now.

2.2.1 Extensible records

Extensible records are not new in literature (e.g. see [10]). Though we use
a shallow encoding for Logos we may not use any calculus-based model as
the one mentioned. We rather present a shallow encoding i.e. a merely de�-
nitional extension of our logic. Clearly, such an encoding has its drawbacks
as far as expressivity is concerned, but from a pragmatic point of view it is
much more applicable.

What are extensible records anyway?

Tuples and records Records are a minor generalisation of tuples, where
components may be addressed by arbitrary labels (strings, identi�ers, etc.)
instead of just position. Our concrete record syntax is borrowed from ML
(see [32] for a textbook): e. g. fx = a; y = b; z = cg denotes an individual
record of labels x, y, z and values a, b, c, respectively. The corresponding
record type would be of the form fx : A; y : B; z : Cg. Note that the labels
contribute to record identity, consequently fx = 3; y = 5g is completely
di�erent from ffoo = 3; bar = 5g.

Just as records are no more than labelled products, there are also labelled
sums: co-records. A co-record of type fj x : A; y : B jg is either a value of
type A or a value of type B . Each co-record comes with a set of constructors
(one for each �eld). Our sample co-record would have constructors x : A!

fj x : A; y : B jg and y : B ! fj x : A; y : B jg.

Record schemes Unlike ordinary tuples, records are better suited to a
property oriented view in the sense of \record r has �eld l". As a concise
means to refer to classes of records featuring certain �elds we introduce
schemes, both on the level of records and record types. Patterns of the form
fx = a; y = b; : : :g refer to any record having at least �elds x, y of value a, b,
respectively. The corresponding type scheme is written as fx : A; y : B; : : :g.
The dots \: : :" are actually part of our notation and are pronounced \more".
The more part of record schemes may be instantiated by zero or more further
components. In particular, the concrete record fx = a; y = bg is considered
a (trivial) instance of the scheme fx = a; y = b; : : :g.

As an example of relating records consider schemes fx = a; y = b; : : :g

and fx = a; y = b; z = c; : : :g. These are related in the sense that the latter
is an extension of the former by addition of �eld z = c. On the level of
types, one might say that any fx : A; y : B; z : C; : : :g is a structural subtype
of fx : A; y : B; : : :g. Note that (in our framework) record subtyping may
only hold if the parent is an extensible record scheme. As a counterexample,

13

instances of fx : A; y : B; z : C; : : :g are not considered extensions of the
concrete record type fx : A; y : Bg.

With record schemes at the term and type level we have already \exten-
sible records" at our disposal. In particular, we can de�ne functions that op-
erate on whole classes of records schematically, like f fx = a; y = b; : : :g = t.
Here the l. h. s. is supposed to bind variables a, b and \: : :" by pattern match-
ing. To improve readability, we occasionally abbreviate fx = x; y = y; : : :g
by fx; y; : : :g, even on the r. h. s. provided this does not cause any ambiguity.

Before discussing encodings of this general concept of extensible records
in formal logical systems we demonstrate its use by an example.

Example: abstract algebraic structures

Consider some bits of group theory: A monoid is a structure with carrier �
and operations � : �! �! � and 1 : � such that � is associative and 1 is
a left and right unit element (w.r.t. �). A group is a monoid with additional
operation inv : � ! � such that inv is left inverse (w.r.t. � and 1). An
agroup (abelian group) is a group where � is commutative.

A well-known approach to abstract theories in HOL [9] uses n-ary pred-
icates over the structures' operations (carrier types are included implicitly
via polymorphism). Then monoid would be a predicate on pairs and group ,
agroup on triples as follows (below we use fancy syntax �, 1 for variables):

monoid : (�! �! �)� �! bool

monoid (�; 1) = 8x y z: (x � y) � z = x � (y � z) ^ 1 � x = x ^ x � 1 = x

group : (�! �! �)� �� (�! �)! bool

group (�; 1 ; inv) = monoid (�; 1) ^ 8x: (inv x) � x = 1

agroup : (�! �! �)� �� (�! �)! bool

agroup (�; 1 ; inv) = group (�; 1 ; inv) ^ 8x y: x � y = y � x

Note that monoid and group, acting on di�erent signatures, do not admit
an immediate notion of inclusion. To express that any group is a monoid
one has to apply an appropriate forgetful functor �rst, mapping (�; 1 ; inv)
to (�; 1).

We now use extensible records instead of �xed tuples to model algebraic
structures. This will eliminate above problem of incompatible signatures, as
record subtyping automatically takes care of this. Monoids are de�ned as
follows:

record � monoid-sig =
� : �! �! � (in�x)
1 : �

monoid : f� : �! �! �; 1 : �; : : :g ! bool

monoid f�; 1 ; : : :g =
8x y z: (x � y) � z = x � (y � z) ^ 1 � x = x ^ x � 1 = x

14

The record declaration introduces type scheme f� : � ! � ! �; 1 : �; : : :g
together with several basic operations like constructors, selectors and up-
dates (with the usual properties). Selectors are functions of the same name
as the corresponding �elds, e. g. 1 : f� : � ! � ! �; 1 : �; : : :g ! �. Thus
(1 M), which we often also write as M:1 , refers to the unit element of
structure M . The update operation for any �eld x is called update-x .

Based on this abstract theory of monoids, we may now introduce derived
notions and prove generic theorems. For example, consider the following def-
inition of exponentiation (by primitive recursion), together with an obvious
lemma stating that xm+n = xm � xn holds in monoids:

pow : f� : �! �! �; 1 : �; : : :g ! nat ! �! �
pow f�; 1 ; : : :g 0 x = 1

pow f�; 1 ; : : :g (Suc n) x = x � (pow f�; 1 ; : : :g n x)

monoid M)M:pow (m + n) x = (M:pow m x)M:� (M:pow n x)

Next we de�ne groups as an extension of monoids as follows:

record � group-sig = � monoid-sig +
inv : �! �

group; agroup : f� : �! �! �; 1 : �; inv : �! �; : : :g ! bool

group f�; 1 ; inv ; : : :g = monoid f�; 1 ; inv ; : : :g ^ 8x: (inv x) � x = 1

agroup f�; 1 ; inv ; : : :g = group f�; 1 ; inv ; : : :g ^ 8x y: x � y = y � x

The group-sig type scheme has been de�ned as child of monoid-sig and
directly inherits all primitive and derived operations (in particular selectors
etc.). Apparently, any f�; 1 ; inv ; : : :g is also an instance of f�; 1 ; : : :g.
Therefore, functions operating on the latter, also work on the former. For
example consider the instance pow f�; 1 ; inv ; : : :g for exponentiation on
group structures.

By using extensible records we got for free what had to be done by
explicit coercions (type casts) in other systems. Even more: apart from
adapting argument types, result types are instantiated as well in our setting.
As an example consider the following \functor" that reverses the binary
operation of monoids:

rev f�; 1 ; : : :g = f� = �x y: y � x; 1 = 1 ; : : :g

This function generically maps objects of type monoid-sig to monoid-sig
and group-sig to group-sig :

rev : f� : �! �! �; 1 : �; : : :g ! f� : �! �! �; 1 : �; : : :g
rev : f� : �! �! �; 1 : �; inv : �! �; : : :g

! f� : �! �! �; 1 : �; inv : �! �; : : :g

Note that a naive approach with type casts would have yielded only group-sig
to monoid-sig in the latter case.

15

In our setting, the type system will always take care of adapting the
signatures of the mathematical structures automatically. Actual structures
are restricted by additional logical properties, though, as expressed by the
predicates monoid , group, agroup . Using simple properties of monoids and
groups, like x � (inv x) = (inv x) � x, we may actually prove that all three
kinds of structures are logically invariant under the rev functor:

monoid M) monoid M:rev
group G) group G:rev
agroup G) agroup G:rev

In general, functors may not propagate that nicely down the hierarchy of
algebras. If so, one might want to consider changing the meaning of such
operations depending on the actual type of the argument structure. For
example, some functor on monoids might be rede�ned on groups in order
to take the additional inv �eld into account. Rede�ning functions this way
amounts to overriding methods in object-oriented parlance (see Section 2.2.2
of how to achieve this).

Basic usage

A representation in untyped set theory Thinking in ordinary math-
ematics one may model extensible records as follows [16, Section 2.7.2]:
�xing a set L of labels and a family of sets of values (Al)l2L, the set of
extensible records over these shall be the (dependent) partial function space
l 2 L * Al. That is, any record r is a partial function such that r(l) 2 Al,
if r(l) is de�ned. For example, record fx = 3; y = 5g would be the function
r: x 7! 3; y 7! 5, unde�ned elsewhere.

This encoding is rather \deep", labels and values are both �rst class
individuals. We can express many notations of extensible records directly
within the system as set theoretic functions or predicates. In particular,
the relation \r has component l" would be \r(l) is de�ned". Furthermore,
relation \r0 extends r" and operations \add component l = x to r", \merge
r and r0" could be expressed via set inclusion, insertion, union, respectively.
Also note that these records are commutative: records fx = 3; y = 5g and
fy = 5; x = 3g are equal.

Encoding

A deep encoding in HOL? Above encoding of records would in principle
also work in HOL. We could encode partial functions as relations, or total
functions to a range type with explicit unde�ned element. There is a snag,
though, making this version of records very awkward to use in practice: it
doesn't �t very well within the HOL type system. In particular, the sets
of values Al from above would have to be within the same type! If one

16

wanted to have di�erent HOL types for di�erent �elds, explicit injections
were required (via disjoint sums).

A better encoding of records in HOL should try to exploit the type
system as much as possible. Such a representation would be much preferable
even if it lost some of the properties and expressiveness of the set theoretic
version. This is yet another example of applied logic within a concrete
working environment where pure expressiveness may be quite unrelated to
usefulness.

Shallow encoding of records in HOL To make a long story short,
extensible records are just tuples that contain an extra \more" variable for
possible extensions. Ignoring the fact that �eld names contribute to record
identity for a while, the representation of fx = 3; y = 5; f = true ; : : :g
is just (3; (5; (true;more))) where more is a suitable term variable. The
corresponding type fx : int ; y : int ; f : bool ; : : :g is a nested product (int �
(int � (bool � �))), for some free type variable �.

Re�ning the more slot yields instances with additional �elds, for ex-
ample fx = 3; y = 5; f = true ; z = 42; : : :g represented by the tuple
(3; (5; (true; (42;more 0)))). Containing free variables, record schemes are
not basic values. Typically, they only appear in de�nitions of generic func-
tions where more is bound by functional abstraction. On the level of types,
the more position amounts to polymorphism.

Actual concrete record values can be achieved by instantiating the more
slot to (), the sole element of the unit type, thus terminating the chain of
record �elds properly without a�ecting the semantics. For example, record
fx = 3; y = 5; f = trueg would be (3; (5; (true; ()))), and consequently its
type fx : int ; y : int ; f : boolg would be (int � (int � (bool � unit))).

We now focus again on labels. These shall act as a means to distinguish
records with di�erent �eld names. As we have already said earlier, HOL's
algebra of types is so weak that it admits a freeness assumption: types
of di�erent names can never be enforced to be actually the same within
the logic. This gives rise to the following technique to make �eld names
contribute to record identity without having to bother about labels as �rst-
class individuals.

For any �eld x : � we introduce an isomorphic copy of the HOL pair
type � by type de�nition, calling it �x. We also obtain copies of the pair
constructor and projections etc., with their usual properties. The copied
constructor shall be x-�eld : � ! � ! � �x �. It is declared only at an
instance of the general scheme � ! � ! � �x � in order to obey the type
constraint for �eld x as speci�ed in the record type declaration.

Using a separate pair type for any �eld we now get the follow-
ing shallow encoding of records: record fx = 3; y = 5; f = true ; : : :g is

17

(x-�eld 3 (y-�eld 5 (f-�eld true more))), its type fx : int; y : int ; f : bool ; : : :g
becomes (int �x (int �y (bool �f �))). Constructing records this way is
like building inhomogeneous lists, with a separate cons operator for each
�eld. The system implementation can easily provide concrete syntax for
our records and do the conversion to the representation. In fact, extensible
records have been implemented in Isabelle/HOL as a result of the just
presented work.

There are several distinguishing features of our encoding of extensible
records in HOL, as compared to the set theoretic one presented earlier.

Most prominently, labels are not �rst class, but part of constant and
type names (x-�eld and �x). Thus we can no longer refer directly to �elds
within the logic, \record r has �eld l" is not a HOL relation in our setting.
Yet this does not prevent us to write generic functions f fx = a; y = b; : : :g
that expect certain �elds. This is actually the way we get record subtyping
for free, in the guise of ordinary polymorphism. So we gain a lot by directly
employing the HOL type system for record types.

Also, our records are not commutative: records fx = 3; y = 5g and
fy = 5; x = 3g are di�erent, even of incompatible types. So one has to
ensure that records obey a canonical order of �elds, which is not considered
an actual limitation.

Furthermore, we do not provide a record merge operation. This would
be basically concatenation of record types, requiring an associative operator.
HOL with its free �rst-order type system cannot express this. We merely
loose multiple inheritance because of this.

2.2.2 HOOL

We now introduce a logical environment HOOL that supports object-
oriented concepts like classes, instantiation and inheritance. Our theory
syntax will be similar to conventional object-oriented languages, like the
one proposed in [23]. In this section we will only give some hints on how
all of this can be implemented in terms of ordinary HOL declarations and
de�nitions, see 2.2.3 for more details.

We use points, coloured points and rectangles as a running example.
The root class point has x- and y-coordinates as �elds, method move for
moving points by a given o�set and methods re
ect-X , re
ect-Y , re
ect-O
for re
ecting them along the abscissa, ordinate, origin, respectively. Class
cpoint adds a colour component to points. Class rectangle is a subclass of
cpoint and speci�es rectangles, which are determined by a reference point
(bottom-left) together with the width and height. Rectangles are always
in parallel to the x/y-axes. We also introduce a class rectangle-hilite of
rectangles that set the colour to red when being moved.

18

Classes

To begin with the example, we de�ne a root class point .

class point =

�elds x; y : int

�nal methods

re
ect-O : fx : int ; y : int ; : : :g ! fx : int ; y : int ; : : :g
re
ect-O = this:re
ect-Y � this:re
ect-X

methods

move : fx : int ; y : int ; : : :g ! int ! int ! fx : int; y : int ; : : :g
move fx; y; : : :g dx dy = fx+ dx ; y + dy ; : : :g

re
ect-X : fx : int ; y : int ; : : :g ! fx : int ; y : int ; : : :g
re
ect-X fx; y; : : :g = this :move fx; y; : : :g 0 (�2 � y)

re
ect-Y : fx : int ; y : int ; : : :g ! fx : int ; y : int; : : :g
re
ect-Y fx; y; : : :g = this:move fx; y; : : :g (�2 � x) 0

speci�cation

move p 0 0 =x;y p (1)
(move p dx dy):x = p:x+ dx (2)
(move p dx dy):y = p:y + dy (3)
this:move (re
ect-X p) dx dy =x;y (4)
re
ect-X (this:move p dx (�dy))

re
ect-Y (re
ect-X p) =x;y re
ect-X (re
ect-Y p)
re
ect-X (re
ect-X p) =x;y p
re
ect-Y (re
ect-Y p) =x;y p
re
ect-O (re
ect-O p) =x;y p

We refer to methods in two ways, written with or without a pre�x this .
This distinction plays a vital rôle for inheritance, but can be ignored at the
moment. Note that we use a particular equality =x;y which expresses that
two points coincide on the coordinates, but not necessarily on the remain-
ing �elds. To improve readability, correctness proofs are not shown here.
Veri�cation issues are discussed in Section 2.2.4.

Since we are within a functional setting, state-modifying methods are
modeled as functions mapping states to states. To be more precise, methods
do not operate on particular states but on arbitrary instances of a given state
scheme.

Mutual dependencies of methods are acceptable as long as they are non-
circular. Recursive de�nition of methods is not supported as a primitive.
The user has to express this using appropriate operators from the underlying
logic (e. g. well-founded recursion).

Objects, instantiation, and method invocation

Objects are instantiated from classes by specialisation. Instantiating some
concrete object MyPoint from class point is achieved by specialising the
state-space from fx : int ; y : int ; : : :g to fx : int ; y : intg and determining

19

the initial values for the coordinates. For instantiation we write MyPoint =
new point fx = 3; y = 5g.

Method invocation is simply achieved by function application. For ex-
ample, we can reset the object MyPoint by move MyPoint (�MyPoint :x)
(�MyPoint :y).

Inheritance

Inheritance means being able to reuse code of superclasses in subclasses
without explicit alteration. At �rst sight, this problem seems to be triv-
ial just by duplicating code, but the problem is slightly more complicated.
Consider, for example, the point methods, which operate on an x- and y-
coordinate whereas the same methods (seen as methods of coloured points)
have to operate on an extended state-space, which contains a colour �eld,
too. Using extensible records we are able to write code for point methods
generically such that the methods can operate on any state-space which con-
tains at least x- and y-coordinates. Hence our implementation of the point
methods can be used in a class of coloured points cpoint without alteration.
This is what we achieve by the following de�nition:

datatype colour = Red j Green j Blue

class cpoint = point + �elds col : colour

As suggested by above \+" notation, class cpoint includes all �elds and
methods from point .

Overriding

To continue with the example, we de�ne a new class rectangle, adding �elds
w, h and method area . Re
ecting a rectangle cannot be achieved by simply
re
ecting the reference point. When re
ecting the bottom-left point along
the x-axis it becomes the top-left point, so we have to subtract the height
of the rectangle from its y-value to �x this. An analogous correction has to
be performed for the re
ection along the x-axis.

class rectangle = cpoint +

�elds w; h : nat

methods

area : fx : int ; y : int ; col : colour ; w : nat ; h : nat ; : : :g ! nat

area fx; y; col ; w; h; : : :g = w � h

override methods

re
ect-X fx; y; col ; w; h; : : :g =
this:move (point :re
ect-X fx; y; col ; w; h; : : :g) 0 (�h)

re
ect-Y fx; y; col ; w; h; : : :g =
this:move (point :re
ect-Y fx; y; col ; w; h; : : :g) (�w) 0

20

speci�cation

area (move fx; y; col ; w; h; : : :g dx dy) = area fx; y; col ; w; h; : : :g

Apart from re
ect-X and re
ect-Y all methods and all lemmas of cpoint
are inherited. At �rst sight it appears evident what we mean by saying \all
other methods are inherited". But life is not as easy as it seems. Recall the
de�nition of re
ect-O in point : re
ect-O = this:re
ect-Y � this :re
ect-X .
On the one hand we have inherited this method, on the other hand we have
overridden the methods re
ect-X and re
ect-Y in rectangle. If this:re
ect-X
and this:re
ect-Y referred statically to the methods de�ned in point the
method re
ect-O would not behave as expected for rectangles. Instead, the
references to re
ect-X and re
ect-Y in the inherited method re
ect-O must
refer dynamically to the rede�ned methods. In the following section we will
have a closer look at this dynamic binding of methods which sometimes is
also called late-binding.

Late-binding

Late-binding of methods is a powerful mechanism, making reuse of code
very
exible. To back up this claim we extend rectangles by a class
rectangle-hilite. The idea is that relocated rectangles are highlighted in
red colour. Without late-binding of methods we would have to rede�ne
all methods (except for area). The impact of these modi�cations on the
correctness proofs would be disastrous: almost all proofs about rectangles
would have to be repeated, quite redundantly though. Using late-binding of
methods, the de�nition of rectangle-hilite is very simple because all methods
relocating rectangles are de�ned directly or indirectly in terms of the generic
move .

class rectangle-hilite = rectangle +

override methods

move = (update-colour Red) � rectangle:move

speci�cation

col (re
ect-X fx; y; col ; w; h; : : :g) = Red

col (re
ect-Y fx; y; col ; w; h; : : :g) = Red

col (re
ect-O fx; y; col ; w; h; : : :g) = Red

The fact that we can prove these properties of re
ect-X , re
ect-Y and
re
ect-O is remarkable. Without having rede�ned any of these methods,
the change of the move method has been propagated automatically. This
demonstrates that object-oriented veri�cation really does work in our
environment.

Now we have arrived at a point where we can clarify the distinction between
those methods pre�xed by this and those which are not. Methods pre�xed

21

by this are late-bound and may change in subclasses whereas the others are
�xed. For a better understanding of the distinction recall equation (4) from
point :

this:move (re
ect-X p) dx dy =x;y re
ect-X (this:move p dx (�dy))

This equation expresses that all implementations of the late-bound method
this :move in subclasses are well behaved together with the particular imple-
mentation re
ect-X of point . Expanding the de�nition of re
ect-X | we
cannot expand any de�nition of this :move since it is late-bound | in point
yields:

this:move (this:move p 0 (�2 � (y p))) dx dy =x;y

this:move (this:move p dx (�dy)) 0 (�2 � (y (this:move p dx (�dy))))

Of course, there are implementations of this :move invalidating this equation.
However, it is true for all implementations satisfying the equations for move
given in point . Assuming that equations (1){(3) hold for all implementations
of this:move in subclasses, we can always show equation (4). This implies
that (4) can be inherited in rectangle-hilite although method move has been
overridden. Of course, we do not get all proofs for free. Since we have
overridden move, we have to redo the proofs for all equations containing a
particular implementation of move (without pre�x this , that is).

2.2.3 Encoding

We now show that the object-oriented concepts presented in Section 2.2.2
are only a stone's throw away from a rigorous encoding in HOL.

States are represented as extensible records and methods as state trans-
forming functions. As we have already seen, we can achieve inheritance
simply by record subtyping. Things are getting much more complicated
when taking late-binding into account. What makes it hard to model is
that the semantics of late-bound methods changes relatively to the position
in the inheritance hierarchy. Assuming di�erent �eld types for di�erent lev-
els of the hierarchy, we can use overloading to achieve di�erent meaning of
methods in di�erent contexts. Assuming di�erent �eld types for di�erent
levels is no real restriction, since we can always enforce them by adding
dummy �elds.

Classes

First of all, the �elds of any class de�nition become a record type de�nition:

record point =
x; y : int

22

Methods are more involved. The simplest method of point is move , because
it is not late-bound.

First attempt One might try to realize method move in HOL directly as
suggested in the point class de�nition:

move : fx : int ; y : int ; : : :g ! int ! int ! fx : int ; y : int ; : : :g
move fx; y; : : :g dx dy = fx+ dx ; y + dy ; : : :g

The problem with this de�nition is that it is too generic. Since move is
de�ned for all records containing x- and y-coordinates, we cannot override
this de�nition in subclasses any more.

Second attempt To remedy this problem one might declare the method
generically, but de�ne it on concrete records only:

move : fx : int ; y : int ; : : :g ! int ! int ! fx : int ; y : int ; : : :g
move fx; yg dx dy = fx+ dx ; y + dyg

With this de�nition we are able to express overriding and late-binding. Over-
riding is achieved simply by de�ning move on a di�erent concrete instance
of the scheme fx : int ; y : int; : : :g, say on fx : int ; y : int ; col : colourg. To
see, how we can achieve late-binding consider the de�nition of a method
reset which sets points to the origin:

reset : fx : int ; y : int; : : :g ! fx : int; y : int ; : : :g
reset fx; y; : : :g = move fx; y; : : :g (�x) (�y)

Since we have given no de�nition of move on the extensible record type, its
semantics and hence the semantics of reset is unspeci�ed. Restricting the
extensible record type to the concrete one fx : int ; y : intg, determines a
meaning as given by de�nition of move. Restricting it to a di�erent concrete
record may result in a di�erent meaning, depending on the de�nition ofmove
given there.

There is still a snag: we have ruled out inheritance. By de�ning move
on a concrete record type we lose the ability to reuse code in subclasses.

The solution To achieve all (overriding, late-binding and inheritance), we
de�ne two constants point :move and this:move rather than a single con-
stant move, allowing the character \:" to be part of identi�ers. The actual
implementation of the move method in HOL is as follows:

point :move ; this:move :
fx : int ; y : int; : : :g ! int ! int ! fx : int ; y : int ; : : :g

point :move fx; y; : : :g dx dy = fx+ dx ; y + dy ; : : :g
this :move fx; yg = point :move fx; yg

23

Apart from re
ect-O, the remaining methods are de�ned analogously. Since
re
ect-O is a �nal method, we have to guarantee that it cannot be overrid-
den. De�ning it on an extensible record type achieves this:

point :re
ect-O; this:re
ect-O :
fx : int ; y : int ; : : :g ! fx : int ; y : int; : : :g

point :re
ect-O = this:re
ect-Y � this :re
ect-X
this:re
ect-O = point :re
ect-O

The need of two de�nitions for one method is no real problem for the user.
These de�nitions can be generated automatically by some extra-logical sys-
tem support.

Objects and instantiation

Instantiation is trivial in our framework. Just letMyPoint = fx = 3; y = 5g.
The simplicity of instantiation stems from the fact that we generate both
generic class methods and concrete object methods in classes. In a sense, we
have anticipated instantiation already by the way we de�ne classes.

Inheritance

Inheritance is just as simple as instantiation. For inheritance, all we have
to do is specialise the class methods of the superclass to concrete object
methods of the subclass. Class cpoint leads to the following de�nitions in
HOL:

record cpoint = point +
col : colour

this:move fx; y; colg = point :move fx; y; colg
this:re
ect-X fx; y; colg = point :re
ect-X fx; y; colg
this:re
ect-Y fx; y; colg = point :re
ect-Y fx; y; colg

Interestingly, we do not have to give a de�nition for re
ect-O once more.
Since re
ect-O was de�ned for the scheme fx : int ; y : int ; : : :g, its def-
inition works equally well on the concrete type fx : int ; y : int ; col : colourg.

Since the methods have not been altered in cpoint , lemmas proved for points
also hold for coloured points. Sticking to object-oriented terminology, we
might say that the proofs are inherited. In a type-theoretic framework with
explicit proof-terms this terminology �ts perfectly well (see also [12]).

Overriding

Class cpoint serves as an example for inheritance, but it does not demon-
strate overriding. Overriding is achieved simply by de�ning new meth-
ods. In case of class rectangle we de�ne methods rectangle:re
ect-X and
rectangle:re
ect-Y :

24

record rectangle = cpoint +
w; h : nat

rectangle:re
ect-X fx; y; col ; w; h; : : :g =
this:move (point :re
ect-X fx; y; col ; w; h; : : :g) 0 (�h) (5)

this:re
ect-X fx; y; col ; w; hg = rectangle:re
ect-X fx; y; col ; w; hg

rectangle:re
ect-Y fx; y; col ; w; h; : : :g =
this:move (point :re
ect-Y fx; y; col ; w; h; : : :g) (�w) 0

this:re
ect-Y fx; y; col ; w; hg = rectangle:re
ect-Y fx; y; col ; w; hg

Late-binding

Class rectangle-hilite is a good example for late-binding of methods. Apart
from late-binding, class rectangle-hilite is interesting because it introduces
no new �elds. Since we have identi�ed class membership with �eld types, we
have to tell the �eld types of rectangle-hilite and rectangle apart by adding
an arti�cial �eld dummy of type unit . For simplicity we omit some obvious
method de�nitions.

record rectangle-hilite = rectangle +
dummy : unit

rectangle-hilite:move :
fx : int ; y : int ; col : colour ; w : nat ; h : nat ; dummy : unit ; : : :g !
fx : int ; y : int ; col : colour ; w : nat ; h : nat ; dummy : unit ; : : :g

rectangle-hilite:move = (update-col Red) � rectangle:move (6)

this:move fx; y; col ; w; h; dummyg =
rectangle-hilite:move fx; y; col ; w; h; dummyg (7)

this:re
ect-X fx; y; col ; w; h; dummyg =
rectangle:re
ect-X fx; y; col ; w; h; dummyg (8)

In this class, method move additionally sets the colour to Red . All methods
de�ned in terms of move show the same e�ect, as can be seen by expansion
of their de�nitions. Take for example method this :re
ect-X (we abbreviate
the term point :re
ect-X fx; y; col ; w; h; dummyg by �):

this:re
ect-X fx; y; col ; w; h; dummyg = by (8)
rectangle:re
ect-X fx; y; col ; w; h; dummyg = by (5)
this:move �0 (�h) = by (7)
rectangle-hilite:move�0 (�h) = by (6)
((update-col Red) � rectangle:move)� 0 (�h)

Be aware, that this:re
ect-X may have a completely di�erent meaning on
di�erent state spaces.

2.2.4 Veri�cation

Subsequently we investigate up to what extent object-oriented concepts,
developed to structure programs, provide means to structure veri�cation,

25

too. Since we have introduced two kinds of methods, class methods and
object methods, we naturally expect two kinds of lemmas. In the end,
though, we are only interested in those lemmas about object methods.

Object methods What distinguishes object methods and class methods,
anyhow? There are two main characteristics for object methods: they are
pre�xed by this (which is merely a syntactic convention) and they are only
de�ned on concrete records. Proving lemmas about object methods does
not require any particular methodology. Take for example the following
equation

this :move fx; yg 0 0 =x;y fx; yg

which is immediately proven by rewriting. Proving lemmas on object meth-
ods directly, though possible in principle, is not very clever: we do not
exploit object-oriented structuring principles for veri�cation. We argue now
that veri�cation of class methods entails abstract and thus structured veri-
�cation.

Class methods There are both late-bound and �xed class methods. Late-
bound methods are pre�xed by this (again, this is only a syntactic con-
vention). More importantly, they are only pre-declared, without �xing a
concrete de�nition yet, e. g this :move : fx : int ; y : int ; : : :g ! int ! int !
fx : int; y : int ; : : :g. Fixed class methods are pre�xed by class names, de-
clared and de�ned on extensible record types and may use late-bound meth-
ods for de�nition. As an example consider:

point :re
ect-X : fx : int ; y : int ; : : :g ! fx : int ; y : int ; : : :g
point :re
ect-X fx; y; : : :g = this:move fx; y; : : :g 0 (�2 � y)

For �xed methods not referring to late-bound methods we can prove lem-
mas directly. Take for example equation (1) with every occurrence of move
replaced by point :move | we write (1)[point:move=move]. This lemma is
immediately proven by rewriting. Since the lemma expresses a property
for all state-spaces which contain at least x- and y-coordinates, this lemma
holds in all subclasses as long as method point :move is inherited. The same
holds for the next three equations. By restricting the state-space to concrete
records, we get the corresponding lemmas for object methods for free (by
HOL type instantiation).

What happens if �xed methods refer to late-bound methods? Since late-
bound methods are only declared, we canot expect non-trivial lemmas to
hold for such methods. To prove interesting lemmas we have to assume
properties of the late-bound methods. For class de�nitions we apply the
convention that the lemmas are ordered by position and (implicitly) have
the preceding lemmas as assumptions. To be precise, the n-th lemma of

26

point is translated to the following formula in HOL (where (i) stands for
the i-th lemma of point , and [this:m=m] or [point :m=m] for pre�xing all
non-pre�xed methods by this or point , respectively):

n�1V
i=1

(i)[this:m=m]) (n)[point:m=m]

The question arising immediately is how to get rid of assumptions. On the
one hand, we cannot discharge them in classes (which are basically abstract
theories). On the other hand, assumptions can be eliminated in any concrete
instance, where class methods are specialised to object methods.

Finally, we explain observational equality =x;y which is de�ned as follows:

=x;y : fx : int ; y : int; : : :g ! fx : int; y : int ; : : :g ! bool

p =x;y q = (x p) = (x q) ^ (y p) = (y q)

We use observational equality =x;y rather than ordinary equality for
speci�cation in cases when we only want to �x the meaning of methods
on the coordinates. To see why this is more appropriate than actual
equality, recall the de�nition of move in rectangle-hilite: for full equality,
equation (1) would no longer hold in rectangle-hilite because the col �eld is
manipulated there.

Let us leave our running example and see what we have achieved. We
can specify non-late-bound class methods generically and thus inherit the
proofs in subclasses immediately. To deal with late-bound methods we have
to add assumptions to the equations to be proven. But we know that in all
subclasses we can discharge the assumptions.

What happens if we override methods? Depending on which kind of
method is used we get di�erent consequences. If a method is late-bound,
we cannot use any information about its implementation for the correctness
proof and hence we can inherit the proof even if the method is overridden.
If a method occurs non-late-bound at least once, we have to perform a new
proof.

So to cut a long story short, appropriate use of late-bound methods does
not only cater for
exible reuse of code, it also provides a mechanism for
generic and thus reusable correctness proofs.

2.3 Memories and References

The quotation at the beginning of the introduction, which goes back to
Wilhelm von Ockham (1285 - 1349), was already a sign that our framework
Logos can not do without an explicit model of memories and references.
Indeed, we will see later that memories and references are fundamental for

27

Logos. Since these constructs are not provided by HOL itself, we have to
de�ne a theory of memories and references ourselves.

We strictly distinguish between objects and references. Formalising these
notions, it is intuitive to de�ne objects and references side by side in mem-
ories and to de�ne standard operations on these memories as allocating
new objects and dereferencing references. Since we are working in a typed
environment, we de�ne memories for typed objects, entailing polymorphic
de�nitions for the theory of references.

As we intend to use references in di�erent contexts we have to take
care of great
exibility. One way to achieve
exibility is by polymorphic
de�nitions, which you may call the syntactic way. Another way is to ensure
well-behaviour by axiomatic type classes, that is logical formulas, which you
may call the semantic way. These logical formulas { if applied properly {
gives rise to abstract theories which allow for implementation-independent
reasoning. Semantic restrictions may be expressed by predicates which have
to be dealt with explicitly in formulas.

An axiomatic type class simply is a class of types that all meet cer-
tain axioms. Thus, type classes may also be understood as type predicates
i.e. abstractions over a single type argument �. Class axioms typically con-
tain polymorphic constants that depend on this typ �. The characteristic
constants behave like operations assocciated with the carrier �. Axiomatic
type classes are incorporated in Isabelle/HOL (see [46]) with two restric-
tions: axiomatic type constructor classes as well as multiple type arguments
are not supported.

We will use axiomatic type classes to de�ne an abstract theory of refer-
ences. As our theory of references ought to be able to store objects of any
type � , memories are polymorphic in this type � . The axiomatic type class
we de�ne for references expresses certain important properties that have to
be shared by all implementations of memories and references.

To be precise, though, axiomatic type classes are not su�cient to express
our theory. Since memories and references are meant to be polymorphic
we have to apply axiomatic type constructor classes. Let's see why. As we
have said, our memories are to be polymorphic and so are the references.
Formally, this means, that the types of memories are formed by type con-
structors with arity one (i.e. one type parameter: the type of the objects).
The same holds for references, too. Focusing on one of the most important
operations dref for dereferencing references, we see why constructor classes
are necessary. The type of dref : � Ref ! � memory ! � option mentions
memories, references and also objects (please ignore type constructor
option for the moment). Modelling this operation with type classes would
require the type of the memory � memory and the type of the references
� Ref to be replaced with type variables � and �. The resulting type
� ! � ! � option breaks two important rules, though. First, we have lost

28

the information that the memories and references are polymorphic in � and
second we have type variables (namely �) in addition to the type variables
� and � of the type class. The solution to this problem is, as already
mentioned, to use constructor classes [15, 29] rather than type classes.
Constructor classes are, as the name already suggests, polymorphic in type
constructors rather than types themselves. For our references this means
that we have to de�ne a constructor class polymorphic in memory and Ref .
Any instance of this constructor class has to provide two concrete type
constructors with respective operations and proofs that these operations
meet the speci�cation given in the axiomatic constructor class.

In order to express certain properties of references we have to de�ne the
signatures of the operations involved. Signatures are de�ned in our setting
by declaring constants with the signatures as types. We call the declared
constants abstract operations and postulate important properties by means
of an axiomatic type constructor class Ref axclass. The intended behaviour
of these abstract operations is described in the following. Please note that
objects are never addressed directly; they are only accessed by means of
references.

� newmemory: Creates a new, empty memory { to account for easy
composition it is modeled as a function with input of type unit

� allocate: Allocates a new object in the memory { the new object is
added to the objects and a new reference is created and added to the
references

� freshref: Returns the �rst fresh i.e. yet unused reference { as a special
case it may be used to compute the reference to a newly allocated
object

� dref: Returns the object denoted by the reference if exists; raises error
otherwise

� lift: Overwrites the value of an object (denoted by a reference) by a
new value (depending on the old value of the object)

� store: Overwrites the value of an object (denoted by a reference) by
a new value (independently of the old value of the object)

� objects: Computes the set of all active objects { only those objects
are included that are denoted by references; all other objects are of no
relevance and are expected to be wiped o� by garbage collection

� objects all: Computes the set of all objects in a memory { including
objects that are no longer denoted by references

29

� references: Computes the set of all references

� references obj: Computes the set of all references that are part of
some object

Operation dref deals with errors explicitly. To do so a standard datatype
called option is used.

datatype �option = None j Some �

Any element of type � option is either an explicit error (represented by
constructor None) or some valid value of type � (represented by constructor
Some). Datatype option is equipped with a set of standard operations:

bind : � option ! (�! � option)! � option
bind None f = None

j (Some x) f = f x

map : (�! �)! � option ! � option
map f None = None

j f (Some x) = Some (f x)

peeloption : �option ! �
peeloption None = arbitrary

j (Some x) = x

For convenience we abbreviate bind o (� x : f x) as x := o; f x . Please note
that we will also use operator \; " for ordinary functional composition (see
footnote in Example 3). This coincidence is intended since in both cases
operator \; " composes elements. In the just de�ned case, though, operator
\; " also takes care of error handling.

In the following we will ignore error handling quite often. Explicit error
handling by type option in
ates the de�nitions (even if monads were
used { see [45, 44]) and thus is opposed to a comprehensive presentation.
Nevertheless, all de�nitions could be corrected easily.

Above informal speci�cation of the operations translates directly to signa-
tures (i.e. constant declarations).

De�nition 1 (Signature of references) The general theory of references
contains operations with following types:

newmemory : unit ! � memoryvar
alloc : � ! � memoryvar ! � memoryvar
freshref : � memoryvar ! � Refvar
dref : � Refvar ! � memoryvar ! � option
lift : (� ! �)! � Refvar ! � memoryvar ! � memoryvar
store : � ! � Refvar ! � memoryvar ! � memoryvar
objects : � memoryvar ! � list
objectsall : � memoryvar ! � list
references : � memoryvar ! (� Refvar) list
referencesobj : � Refvar ! (� : myreferencesaxclass)memoryvar ! (� Refvar) set

30

Please note that memoryvar and Refvar are variables standing for type con-
structors. The signatures are thus polymorphic in these type constructor
variables.

In the just listed constant declarations we have used an axiomatic type
class myreferencesaxclass that we have not introduced so far. This axiomatic
type class is required since operation referencesobj does not make sense for all
types � . To be implementable, we have to know how to extract the references
from objects of type � . Of course, we also have to know how to add, re-
move and modify these references. Axiomatic type class myreferencesaxclass
provides operations to deal with references contained in objects of type � .

De�nition 2 (Signature of types with references)

myreferences : � memoryvar ! � ! (� Refvar) list
myreferencesadd : � memoryvar ! � Refvar ! � ! �
myreferencesremove : � memoryvar ! � Refvar ! � ! �
myreferencesmap : � memoryvar ! (� Refvar ! � Refvar)! � ! �

In order to de�ne the type class class, we have to state the properties to be
satis�ed. These properties are expressed as predicates over the just listed
functions.

De�nition 3 (Axiomatic type class of types with references) For
propositions (1) and (2) assume r 2 references m. For propositions (4) and
(5) assume r 62 references m.

axclass myreferencesaxclass =

myreferences (myreferencesaddm r o) = (myreferences m o) [frg (1)
myreferences (myreferencesremovem r o) = (myreferences m o)� frg (2)
myreferences (myreferencesmapm f o) = ff x j x 2 myreferences m og (3)
myreferences (myreferencesaddm r o) = myreferences m o (4)
myreferences (myreferencesremovem r o) = myreferences m o (5)

We are now ready to de�ne an axiomatic type constructor class for our
theory of references.

De�nition 4 (Axiomatic type constructor class of references) The
axiomatic type constructor class referencesaxclass is polymorphic in the type
constructors memoryvar and Refvar . It provides a list of properties shared
by all theories of references.

axclass referencesaxclass =

(newmemory ()):references = fg ^ (newmemory ()):objectsall = fg (1)
m:objects � m:objectsall (2)
m:objects = fo j 9r 2 m:references: dref r m = Some og (3)
dref m:freshref (alloc o m) = Some o (4)
r 2 m:references) dref r m 2 fSome x j x 2 m:objectsg (5)

31

In order to account for a complete de�nition of references we have to de-
�ne concrete type constructors memory and Ref , implement the operations
(i.e de�ne them for the concrete type constructors) and show that the op-
erations meet the speci�cation of referencesaxclass .

Memories are de�ned intuitively as pairs consisting of lists of objects
and lists of references (represented as natural numbers). At each position of
a reference-list a reference (a natural number) is stored which denotes the
position of the referenced object in the objects-list. Assume e.g the reference
(natural number) 1 being stored in the head of the reference list and object
1 holding value u. You may read this as \reference 0 points to object 1
which currently holds value u".

0 1 2

references

objects of type τ

1 1 2

t u v

1

0 1 2 3

Taking this idea as basis, it is easy to de�ne polymorphic memories consist-
ing of object-lists and reference-lists.

De�nition 5 (Memories) Memories are polymorphic in the type of ob-
jects � . Objects and references are stored in � memory as lists.

record � memory =
objs : � list
refs : nat list

Lists over type � can be seen as �nite functions from nat to � . This is stressed
by function nth : nat ! � list ! � which computes the nth element in a list
(hence the name). Since any function in our setting is total, function nth
is de�ned for any natural number even if the number exceeds the length of
the list. If the argument exceeds the length of the list an arbitrary element
of type � , called arbitrary , is returned. You may wonder, why we have
not chosen functions directly to represent objects and references. Indeed
this alternative de�nition would have been possible leading to the following
de�nition:

record � memory =
objs : nat ! �
refs : � Ref ! nat

The empty memory then would be de�ned as fobjs = � x : arbitrary ; refs =

� x : arbitraryg and function dref r fobjs; refsg = (refs; objs) r would only
amount to functional composition of refs and objs . All other operations on
references could be de�ned easily as well. Why haven't we chosen this repre-
sentation then instead of the list representation? First of all, it would indeed

32

have been possible to use this representation instead. The major drawback of
the functional representation is that it also admits in�nite memories whereas
memories formed by lists are �nite by de�nition. We will see in Section 3.1.2
why �nite memories are crucial for our approach.

Finiteness of lists is due to construction of the datatype { the �niteness
is thus syntactic, if you like. Ensuring that functions are �nite requires
logical predicates, hence you may call this solution semantic. It is folklore
that dealing with syntactic restrictions is much easier when working in a
computer-related and hence rigorously formal environment whereas seman-
tic restrictions are much easier to handle when dealing in a non-rigorous
intuitive environment as in ordinary mathematics. As we have set our
environment to be rigorously formal, the syntactic approach and hence the
list representation is more convenient.

The central idea behind references is that they store the locations of the
referenced objects. It is natural to represent the locations as natural num-
bers (just as the memory cells in a computer are numbered). We follow this
standard approach with a subtle, yet striking di�erence. For each type � we
de�ne a � -indexed isomorphic copy of the natural numbers. Instead of rep-
resenting references to objects of type � by natural numbers, we represent
these references by � -indexed isomorphic copies of the natural numbers.

De�nition 6 (References)

datatype � Ref = Ref nat

Datatype Ref induces a simple function peelRef to peel o� constructor Ref
(which we often skip to improve readability):

peelRef : � Ref ! nat

peelRef (Ref n) = n

At �rst sight datatype Ref seems overkill, but if you look at it more
closely you will �nd { besides the improved readability { a quite pow-
erful and surprising e�ect. With this simple trick references are taking
advantage of overloading (writing polymorphic functions that behave
di�erently on references of di�erent types). Take for example a function
add-ref : � Ref ! � Ref ! � Ref ! � memory ! � memory which \adds"
the objects denoted by the �rst two references and stores the result
in the third reference. For di�erent types you may implement add-ref
di�erently. Taking the natural numbers as type instances you might add the
numbers whereas taking lists of natural numbers you might append the lists.

Since we have de�ned references as axiomatic type classes, the whole
development (of course except for the de�nitions of the operations and

33

the proofs that these operations meet the speci�cation of referencesaxclass)
carries over to the functional representation { if required.

Once we have determined the representation of the memories it is up to
us to de�ne operations and to prove that they meet the speci�cation of
referencesaxclass. First the operations. Given the concrete representation of
memories memory , the de�nition of the operations is straightforward and
requires almost no explanation.

There is one issue, though, that requires attention: objects themselves
may contain references and these references need not be well-formed (in the
sense that they may refer to non-existing objects). There are two ways of
dealing with this problem.

First is to ensure that only those objects are allocated that are well-
formed. But even then you can not be sure if objects are stored by means
other than allocation { hence you can not be completely sure that all objects
are well-formed. The only way to render this approach feasible was to add a
so called \closed world" assumption restricting storage of objects to a well
de�ned set of operations and disallowing any other means to store objects.
Again, this approach is semantic and thus inconvenient for a rigorously
formal treatment. It will come as no surprise that we follow a more syntactic
approach.

Second is to allow non-well-formed references in objects but to ignore
those references when observing memories. The idea for this approach stems
from process theory (see [21] for a standard text book). The state of the
system (in our case the memory) is assumed being a black box { don't
bother which rubbish is contained inside! All you can see is what prede�ned
operations turn visible. In case of memories, ill-formed references may be
contained within objects but operation referencesobj only enumerates those
references that are well-formed. As long as you observe the black box only by
means of operation referencesobj you will not notice if objects are ill-formed
internally at all.

Taking this idea, we de�ne the operations on references whose signatures
we have listed above. Additionally to these operations we de�ne an auxiliary
function cell which returns the number of the cell that a reference is pointing
to { if exists; otherwise it raises an error.

cell : � Ref ! � memory ! nat option

cell (Ref x)m = if length m:refs � x then None

else Some (nth x m:refs)

The operations on references are de�ned for type constructors memory and
Ref as follows:

34

De�nition 7 (Operations on references)

newmemory () = fobjs = []; refs = []g

alloc o m = fm:objs++o; m:refs++(length m:objs)g

freshref m = Ref (length m:refs)

dref r m = x := cell r m;
if length m:objs � x then None

else Some (nth x m:objs)
lift f r m = mfobjs := updatenth (cell r m) (f (dref r m))m:objsg

store o = lift (�x: o)

objects m = fo j x < length m:refs ^ dref (Ref x)m = Some og

objectsall m = fo j o 2 m:objsg

references m = fRef x j x < length m:refs ^ dref (Ref x)m = Some og

referencesobj r m = myreferences m (dref r m)

Function updatenth : nat option ! � option ! � list ! � list updates the
nth position of a list with a new element { provided the position and the
new element are error-free. Otherwise it leaves the list unchanged. The
de�nition of updatenth is a standard list de�nition and thus omitted.

As a last step we have to establish that the operations on references meet
speci�cation referencesaxclass.

Lemma 1 (Operations on references meet referencesaxclass) The op-
erations on references de�ned for type constructor memory meet speci�cation
referencesaxclass.

This lemma was the last missing bit to establish that type constructor
memory is an instance of axiomatic type constructor class referencesaxclass.

De�nition 8 (Instance of referencesaxclass) Type constructors memory
and Ref are instances of axiomatic type constructor class referencesaxclass.

instance memory; Ref of referencesaxclass

This de�nition entails that the signature of references with type � memory
replacing � memoryvar and � Ref replacing � Refvar (see De�nition 1) can
be used freely in terms { as long as type � is an instance of type class
myreferencesaxclass. The same holds for the proofs, too. Due to this instance
declaration we can be sure that the operations meet the speci�cation given
in axiomatic type constructor class referencesaxclass (see De�nition 4)
including all of its consequences.

Please note that axiomatic type constructor classes are (as already men-
tioned) not part of Isabelle/HOL. The de�nitions of this section have to
be understood as meta-de�nitions that can be instantiated with true HOL
de�nitions (de�ning memories and references directly as operations without
the abstraction of axiomatic type constructor classes).

35

Chapter 3

Framework Logos

In order to give a formal underpinning of authorisation in groupware, we
ought to have at least some understanding what groupware is. To this
end, we �rst develop some thoughts on this issue and then show how they
in
uence the design rationale of our authorisation model.

As a result of modern communication technologies, information can be
spread freely over the internet, at the risk of far too many people getting
access to highly sensitive information. Even if all recipients were a�liated
with the same organisational entity, most information was not allowed to
exceed a clearly de�ned set of recipients. In personal meetings only a few
people are involved and each person decides individually whom to talk to
and thus whom to share information with. Deciding in the internet whom
to share information with and guaranteeing that people not concerned are
excluded from information is a non-trivial task. The only way to restrict
access is by specialised programs (so{called \groupware") which control the

ow of information.

Although groupware systems di�er in many details, there are two major
questions to be answered by any groupware system:

� \Which person may perform which kind of action?" and

� \Which person may gain access to which kind of information?"

Obviously it would be most
exible to determine access rights on an indi-
vidual basis as far as documents and persons are concerned. This solution,
though, would by no means be practical. On the one hand, the set of re-
cipients may be considerably large and may even change over time. On the
other hand the author may not even know of many of the recipients. The
decision to address a particular person is often based on the person's posi-
tion in the organisational hierarchy, whose line{up is subject to permanent
changes. A groupware system thus can only be supportive if it dependably

36

models the organisation's current structure and access rights are de�ned for
sets of people1 rather than individual persons.

Like any other computer program, groupware needs to model reality in-
ternally by data structures. In case of groupware, organisational structures
are represented as so-called groups. Membership in a group expresses a�li-
ation with a particular substructure. In the real world, the overall structure
of an organisation is controlled by a small, highly trusted set of people and
so is the graph of groups in a groupware system, which is often called the
name and address book (NAB). The model of an organisational structure
in a groupware system is correct and complete if each person (to be concise
the internal representation of a person) is member of a group if and only if
in the real world the person is a�liated with the organisational substructure
represented by the group.

So far we have only been talking about organisational structures but we
have not mentioned the tasks performed within such structures. Each task
(which we will later call database) possesses a task manager (the manager
of the database) which oversees the task. Of course there a number of
responsibilities within a task. Although it would, at least in principle, be
possible to represent these responsibilities as groups, such a choice would
not be reasonable: the task manager may not have the right to change the
group-structure relevant for the task. Letting each task manager change
the overall group structure, though, would violate an important principle
in system's design: modularity. Local changes may only a�ect adjacent
areas but not the whole system. In order to deal with local responsibilities,
these are represented as so-called roles. The task manager assigns subjects
or groups to roles in a database. This assignment is often also called access
control list (ACL). Roles then are local to a particular task and therefore
do not a�ect the remaining system.

In the following section we will introduce a mathematical model which we
call Logos and which serves to express and validate authorisation issues in
groupware systems and applications. Groupware systems modelled by Logos
consist of a number of databases and of a single name and address book
(NAB). In the NAB all registered subjects are stored together with their
assignments to groups. The scope of the NAB extends over all databases.
Each database is maintained by a database manager who controls the access
control list (ACL). The ACL is the place where access rights are determined
locally for this particular database. Access rights are assigned to groups by
detour of roles. Besides the ACL a database also comprises a data space,
which holds a collection of (possibly heterogeneous) data.
The structure of the groupware systems under consideration (and thus of

1We will speak of \subjects" instead of \people" subsequently since rights might also
be assigned to machines (servers)

37

RoleDataspace

ACLDatabase

GroupSubject

Groupware

GroupMember

NAB

*

*
*

*

*

Figure 3.1: Logos framework (UML diagram)

the framework Logos) is depicted in Figure 3.1 as an UML diagram which
coincidentally serves as a road map through this chapter. In the following
we describe the components in more detail and show how to model them in
Logos.

3.1 Groups

Traditional authorisation models control which subjects may perform which
operations on which objects. If a subject may perform a particular operation
the subject is said to have the right to execute the operation. In applications
it would be too in
exible to de�ne access rights for subjects individually.
Therefore subjects are summarised to groups, i.e. sets of subjects that have
equal rights. Rights are then assigned on the level of groups rather than the
level of subjects. Groups may only consist of a single subject, hence { at
least from a theoretical point of view { there is no need to de�ne rights on
the level of subjects, too. Subjects are assigned to groups in the name and
address book (see Section 3.2.7). This assignment applies to all databases.
In the following we traverse all of these issues starting with subjects.

3.1.1 Subjects

For Logos the names of the subjects are of no relevance (just as it does not
make any di�erence if subjects are persons or objects as e.g. servers). One
might simply use the natural numbers as an in�nite set of names. We even
go a step further and do not even assume that the set of subjects is in�nite.
We simply assume that subjects form a type.

38

De�nition 9 (Subjects)

type subject

For this section we use a simple example to illustrate the de�nitions. Though
it is only a toy example, it is complex enough to demonstrate important
features.

Example 1 (Subjects)

datatype subject = Harry j Tom j Dick j Peter j Jenny

Groups are at the heart of Logos. In order to model hierarchic organisa-
tional structures, the obvious thing to do is to impose some structure on the
groups in the sense that groups recursively may contain subgroups i.e. the
groups themselves form a hierarchical structure. Of course, hierarchical
group structures are not new in literature (e.g. see [41]). The proposed so-
lutions di�er less in their intentions than in their realizations and in the
degree of their formalism.

One would expect the most natural de�nition of groups to be the follow-
ing (the de�nition is taken from [41]):

� A (single) user is a user group.

� A set of user groups is a user group.

This de�nition can be translated directly into a datatype2 de�nition (taking
lists of user groups to form new user groups rather than sets of user groups,
which does not make much of a di�erence since we are not interested in
in�nite sets of subgroups anyway).

De�nition 10 (Groups - alternative I)

datatype group = User subject j Subgroups (group list)

Indeed, this de�nition allows for hierarchical group structures as the follow-
ing example demonstrates.

Example 2 (Groups { alternative I)

h = User Harry; t = User Tom; p = User Peter ; j = User Jenny

g1 = Subgroups [h; t]; g2 = Subgroups [p; g1]; g3 = Subgroups [j ; g1]

2Datatypes are a well-known de�nition principle in typed functional programming lan-
guages as ML, Haskell or Gofer (see [32, 13, 14]). Take for example the natural numbers
which are de�ned as: datatype nat = Zero j Succ nat. This de�nition introduces a new
type called \nat" whose elements are only formed by the following constant or function,
respectively: 0 : nat and Succ : nat ! nat.

39

g1

g2 g3

Peter

Harry Tom

Jenny

Figure 3.2: Group structure { alternative I

Problems arise when changing this group structure dynamically. See what
happens if we try to add Dick to group g1 . First of all we would de�ne a
generic function addmember for adding new members to groups. Applying
function addmember Dick to g1 yields a new group say g1

0, but this applica-
tion leaves the de�nitions of g2 and g3 (and of course also g1) una�ected.

addmember : subject ! group ! group

addmember p g = Subgroups [g ; User p]

g2 g3

Peter Jennyg1

Harry Tom

g1’

g1 Dick

Figure 3.3: Group structure { alternative I (Dick added to g1)

Even if we would update these de�nitions

g2
0 = Subgroups [p; g1

0]; g3
0 = Subgroups [j ; g1

0]

we might not be done. Assume any other group containing g1 as subgroup.
Its de�nition would have to be updated, too. 2

Clearly, this is in con
ict with modularity. The necessity to lift several
de�nitions entails the danger of inconsistencies in case of any lifting being
forgotten. The original structure, which establishes that g1 is a subteam of
both g2 and g3 , may not be preserved.

As we have seen, the presented model of groups violates one fundamental
paradigm in system design: modularity. In order to account for a reason-
able model of dynamic group structures this de�ciency has to be remedied.
The solution to the problem suggests itself: references. To this end, the

40

de�nition of groups only requires a minor change. The list of subgroups has
to be exchanged with a list of references to subgroups.

De�nition 11 (Groups - alternative II)

datatype group = User subject j Subgroups ((group Ref) list)

Let's recall above example and see how to model it with the renewed de�-
nition of groups. Because we have incorporated references to groups rather
than groups themselves, we have to deal with memories3 to store groups and
references.

Example 3 (Groups { alternative II) The group memory mem is con-
structed by the term4

mem = newmemory; alloc h; alloc t ; alloc g1 ; alloc p; alloc g2 ; alloc j ; alloc g3

using the following abbreviations:

h = User Harry; t = User Tom; p = User Peter j = User Jenny

g1 = Subgroups [Ref 0 ; Ref 1]; g2 = Subgroups [Ref 3 ; Ref 2];
g3 = Subgroups [Ref 5 ; Ref 2]

g2 g3Harry Tom g1

0 1 2 3 4

Peter Jenny

5 6

Figure 3.4: Group structure { alternative II

Let's see what happens now, if we try to add Dick to group g1 . Again we
de�ne a generic function

addmember : subject ! group Ref ! group memory ! group memory

addmember p r = alloc p;

�m: alloc (dref r m)m;

�m: store (Subgroups [(freshref m)� 2 ; (freshref m)� 1]) r m

to add new members to groups. Adding Dick to g1 transforms the previ-
ous memory into a new memory mem 0 = addmember Dick (Ref 2)mem as
indicated in Figure 3.5.

3 To form valid group memories we had { strictly speaking { to show that type group

is an instance of axiomatic type class myreferencesaxclass. We postpone this issue for a
while (to page 45) where we discuss it in more detail.

4We sometimes write f ; g instead of g � f to ease readability. As for newmemory , we
sometimes also write x ; f instead of f (x).

41

g2 g3Harry Tom new g1

0 1 2 3 4

Peter Jenny

5 6

Dick old g1

7 8

Figure 3.5: Group structure { alternative II (Dick added to g1)

Although we are working in a functional environment, this model allows for
invariable group names that remain constant even if the group structure was
modi�ed. Take for example group g1 and de�ne5 g1 = dref (Ref 2). We
then can access this group in mem or mem 0 uniformly: g1mem or g1mem 0,
respectively. 2

From a theoretical point of view the new de�nition of groups with references
is satisfactory. It remedies the de�ciency inherent in the original de�nition:
lack of modularity. Take function addmember as an example. Applying the
function to some subject, say Dick, yields a function that is entitled to add
Dick (if desired) to any group regardless its structure or occurrence in the
group structure.

From a more practical point of view, though, addmember operates pon-
derously. It is not at all intuitive why this operation needs to allocate two
new groups (one for the subject to be added and one for the former value of
the group) just to add a subject to a group. In fact, the de�nition of groups
can be adapted to account for a more intuitive behaviour.

De�nition 12 (Groups)

datatype group = Empty j
AddMember subject group j
AddSubgroup (group Ref) group

In some applications it is desirable to have a number of administrators a�li-
ated with a group. The administrators' task is to administrate the group (as
the name already suggests). Administrated groups can be captured quite
easily by a minor generalisation of the just given de�nition. In the sequel
we will always found on administrated groups rather than ordinary groups.
All de�nitions can be adapted quite easily to account for non-administrated
groups.

We use the same names for the type and constructors as for groups
without administrators. In concrete applications it should be clear from the
context which de�nition was meant.

5To be precise, we have used up name g1 already. Consistently renaming the previous
occurrences of g1 would solve the naming con
ict.

42

De�nition 13 (Administrated Groups)

datatype group = Admins (group Ref) list j
AddMember subject group j
AddSubgroup (group Ref) group

You may wonder why administrators need to form groups rather than just
lists of subjects. Imagine a group of highly trusting people (as the project-
team in project \Daidalos" { see Section 5.2.1) who may want to achieve
highest
exibility, assigning each member administrator rights. This can be
realized as a group with self-referring administrator group (i.e. the reference
to the administrator group points to the group itself). Once a new member
is added to the group, it is assigned administrator rights automatically {
avoiding painful inconsistencies.

Taking lists of administrator groups rather than one single group leaves
empty administrator groups as an option. In this case the group collapses
{ as a special case { just to ordinary, non-administrated groups.

Let's turn back now to our previous example. With this new de�nition of
groups our example still works, without having to introduce separate groups
for each individual subject.

Example 4 (Groups) The group memory m is given by the term

m = newmemory; alloc g1 ; alloc g2 ; alloc g3 ;

using the following abbreviations:

g1 = Admins [Ref 0]; AddMember Tom; AddMember Harry

g2 = Admins [Ref 0]; AddSubgroup (Ref 0); AddMember Peter

g3 = Admins [Ref 2]; AddSubgroup (Ref 0); AddMember Jenny

Again, we visualise this group structure by means of a �gure (see Figure
3.6). In contrast with the former �gures we have to deal with administrators
and explicit members additionally to subgroups. We indicate administrator
groups at the top, shallow members (i.e. members who are included directly
in a group and not collected recursively in subgroups) in the middle and sub-
groups at the bottom. Please note that group g1 is administrating itself and
group g2 . As a simple consequence we could postulate that only the members
of group g1 (i.e. currently Harry and Tom) were permitted to change the
group structure of group g2 .

Once more, we add Dick to g1 . One might expect that we are done since
we have already de�ned a function AddMember : subject ! group ! group,
which is a result of the datatype de�nition of group, for adding members to
groups. But we are only half way through, since we have to use function
lift : group Ref ! (group ! group) ! group memory ! group memory to
lift the function from groups to group structures.

43

0 1 2

Peter Jenny
Harry
Tom

admins

subgroups

memberssh

Figure 3.6: Group structure

De�nition 14 (Adding subjects to groups)

addmember : subject ! group Ref ! group memory ! group memory

addmember p = lift (AddMember p)

Adding Dick to g1 is then as simple as addmember Dick (Ref 0)m which is
visualised in the following �gure.

0 1 2

Peter Jenny

admins

subgroups

memberssh
Harry
Tom
Dick

Figure 3.7: Group structure (Dick added to g1)

Please note, that Dick has automatically become administrator both for
group g1 and g2 . 2

It is often argued to lay responsibility with an individual subject rather than
a group of subjects. The model also allows for single-user administrator
groups, hence responsibility can be laid to a single subject { if required.
Beyond that, our model is quite
exible since the administrator group is
only referenced and not included literally.

De�ning a function that allocates a new single-user group with given
administrator group is straightforward.

De�nition 15 (Single-user groups)

single-usergroup : subject ! group Ref ! group mem ! group mem

single-usergroup p r = alloc (AddMember p (Admins [r]))

Example 5 (Single-user groups) As an example we add some single-
user group consisting of Dick only and having self-referring administrator

44

group to the group structure m which is depicted in Figure 3.6. This is
achieved by the term single-usergroup Dick (freshref m)m and shown in Fig-
ure 3.8. 2

0 1 2

Peter
Harry
Tom

admins

subgroups

memberssh

3

Jenny Dick

Figure 3.8: Group structure (single-user group \Dick" added)

Excursion: Groups are instances of myreferencesaxclass

In footnote 3 we have mentioned that strictly speaking we had to show
that type group is an instance of axiomatic type class myreferencesaxclass .
This is due to the fact that only those types � memory are instances of
type constructor class referencesaxclass and thus may use the de�nitions and
axioms of references freely where type � is an instance of axiomatic type class
myreferencesaxclass. Again we have to de�ne operations and prove their well-
behaviour with respect to the propositions given in the axiomatic type class.
First the operations6.

De�nition 16 (Types with references { operations) The de�nitions
of myreferencesremove and myreferencesmap are just standard and therefore
omitted.

myreferences m (Admins []) = fg
j m (Admins (x :: xs)) = (if x 2references m then fxg else fg) [

myreferences m (Admins xs)
j m (AddMember p g) = myreferences m g

j m (AddSubgroup r g) = if r 2references m
thenfrg [myreferences m g

elsemyreferences m g

myreferencesaddm r g = if r2references m thenAddSubgroup r g else g

The proofs are standard inductions.

Lemma 2 (Types with references { operations meet speci�cation)
The operations on types containing references de�ned for type group meet
speci�cation myreferencesaxclass. This is shown by an easy induction on the
datatype groups.

6We write x :: xs for concatenation of element x with list xs

45

Once more we are in the position to declare an instance of an axiomatic
type class.

De�nition 17 (Instance of myreferencesaxclass) Type group is an in-
stance of axiomatic type class myreferencesaxclass.

instance group of myreferencesaxclass

You might have wondered how groups can have self-referring references (as
e.g. the administrator group of g1). In all of these cases the reference to the
administrator group and the group itself coincide. At �rst sight this might
suggest that our de�nitions are not well-founded. In the next section where
we deal with membership we will see that self-references do not necessarily
give rise to circular de�nitions.

3.1.2 Members

So far all of our de�nitions have been well-founded. Even the de�nition

�m: alloc (Admins [freshref m])m is well-founded, though you might think
at �rst sight it isn't. From a syntactic point of view (which is the only
adequate point of view) the newly created object simply happens to contain
a natural number. It's only in our mind that we interpret this (semantically)
as being a self-reference. Problems arise, though, when trying to de�ne
recursive functions that make the \self-referring structure" explicit. A good
candidate for such an ill-formed de�nition is \members". A straightforward
attempt to de�ne members fails for exactly this reason:

members : group memory ! group Ref ! subject list

members m r = membersaux m (dref r m)

membersaux : group memory ! group option ! subject list

membersaux m None = fg
j m (Some (Admins [])) = fg

j m (Some (Admins (x :: xs))) = (membersaux m (dref x m)) [

(membersaux m (Some (Admins xs)))
j m (Some (AddMember p g)) = fpg [(membersaux m (Some g))

j m (Some (AddSubgroup r g)) = (membersaux m (dref r m)) [

(membersaux m (Some g))

Evaluating the expression

members (alloc (Admins [freshref m])m) (freshref m)

for any memory m would loop forever as the following reduction demon-
strates (with x ;r y meaning \x reduces to y due to r" and m0 abbreviating
the term alloc (Admins [freshref m])m):

46

members m0 (freshref m) ;de�nition of members

membersaux m
0 (dref (freshref m)m0) ;de�nition 4

membersaux m
0 (Some (Admins [freshref m])) ;de�nition of membersaux

membersaux m
0 (dref (freshref m)m0)

Of course, function membersaux is not well-founded due to the recursive but
not primitive recursive call membersaux m (dref r m), which is highlighted by
surrounding boxes. There are three ways to remedy this ill-formed de�nition.
First avoiding the recursive call at all, second semantically guaranteeing that
the structure of references is non-circular and third admitting circularities
in memories, ignoring all circularities, though for functions dealing with
memories.

Avoiding the recursive call at all seems more like a patch. Indeed, in
most cases the result would be patchwork. In case of constructor Admins,
though, it is reasonable to avoid the recursive call at all. Being member of
the administrator group gives rise to some additional rights and thus is more
kind of an administrative issue which does not necessarily imply membership
in the group. If you really want to ensure that members of the administrator
group are also members of the whole group, you are free to restrict group
memories by some predicate that has to be invariant for all updates of the
group memory.

Guaranteeing that the structure of references is non-circular is a seman-
tic argument. We have pointed out several times already that semantic
arguments are quite adequate in informal mathematical settings but are
cumbersome in rigorous formalisations. This is true for this solution, too.
Requiring memories to be non-circular requires carrying around the respec-
tive predicate and proving invariance of the predicate for any update since
any change of the memory might violate this property. This way all formulas
are getting in
ated.

Once more the preferable solution in our rigorous formal setting is of
syntactic nature. The idea behind this solution is similar to the intuition
behind the de�nition of function referencesobj (see De�nition 7). Group
structures may be cyclic. The de�nition of membership takes care, though,
that the algorithm refrains from calling the function recursively each time a
cycle occurs. This way the de�nition gets well-founded even if the underlying
group structure was not. Let's see now, how to turn these solutions in a
concrete and well-founded de�nition of membership.

As we have said, we avoid the recursive call in case of constructorAdmins
at all by de�ning membersaux m (Some (Admins xs)) = fg. In case you would
like to restrict group structures only to those where the administrators really
are members of the respective group you have to ensure this property using
a predicate.

47

Excursion: Administrators are members

To ensure that administrators of a group are members too, de�ne a function
admins which extracts the references to the administrator groups from a
group.

De�nition 18 (Administrator groups of a group)

admins : group Ref ! group memory ! (group Ref) list
admins r m = adminsaux (dref r m)
adminsaux : group ! (group Ref) list
adminsaux (Admins xs) = xs

j (AddMember p g) = adminsaux g

j (AddSubgroup r g) = adminsaux g

Next de�ne a predicate admins-are-members , expressing that the adminis-
trators of a group are also members7 of the group itself.

De�nition 19 (Admins are members) Relation admins-are-members
decides for a particular group if all members of the administrator group are
members of the group, too.

admins-are-members : group Ref ! group memory ! bool

admins-are-members r m =
8p: p 2

S
x2admins r m members m x) p 2 members m r

The following lemma is a trivial consequence of this de�nition:

Lemma 3 (Self-referring administrator groups well-formed) All
groups where the administrator group and the group itself coincide satisfy
predicate admins-are-members.

8r m: admins r m = [r]) admins-are-members r m

This lemma, though quite trivial in nature, has a surprising consequence. It
guarantees the existence of empty groups as well as single-user groups that
are administrated and well-formed w.r.t predicate admins-are-members.

Lemma 4 (Empty groups well-formed) There are empty adminis-
trated groups, i.e. groups with no members but non-empty set of admin-
istrator groups, that satisfy predicate admins-are-members.

8r m: dref r m = Admins [r]) members m r = fg ^
admins-are-members r m

7For the de�nition of admins-are-members we fall back upon De�nition 21 of members
which is deferred to page 50.

48

Ref n Ref m

subject

empty group single-user group

Figure 3.9: Empty groups and single-user groups

Lemma 5 (Single-user groups well-formed) There are single-user
groups, i.e. groups with exactly one member, that satisfy predicate
admins-are-members.

8r m p: dref r m = AddMember subject (Admins [r]))
members m r = fsubjectg ^
admins-are-members r m

Please note that there are a number of groups containing zero or one mem-
ber that do not satisfy the predicate admins-are-members. Well-formedness
thus is only guaranteed for \canonical" groups.

Predicate admins-are-members seems to capture our intuition to include
administrators into groups. Unfortunately, it is not structure persevering as
far as the adding of subjects to groups is concerned. Figure 3.10 shows an
counterexample.

admins

subgroups

memberssh
Tom

0 1

Peter
Tom

Harry

1

Peter
Tom
Harry

Tom
Dick

0

add Dick (Ref 0)

Figure 3.10: admins-are-members not structure preserving

There is a stronger predicate (in the sense that it admits less group struc-
tures) which is structure preserving in the just mentioned sense and still
captures the essence of our intuition.

De�nition 20 (Admins are subgroup) Relation admins-are-subgroups
decides for a particular group if the administrator group is also a subgroup8

of the group.

8For the de�nition of admins-are-subgroups we fall back upon the De�nition 23 of
subgroups which is deferred to page 54.

49

admins-are-subgroups : group Ref ! group memory ! bool

admins-are-subgroups r m = admins r m � subgroups m r

Both states in Figure 3.10 violate predicate admins-are-subgroups { hence
the �gure is no counterexample for admins-are-subgroups . Changing the
example slightly by taking the left group to be subgroup of the right one, the
transition preserves the structure. Apart from the concrete example we can
prove that predicate admins-are-subgroups generally is structure preserving
in the above mentioned sense.

Lemma 6 (admins-are-subgroups structure preserving)

admins-are-subgroups r m) admins-are-subgroups r (addmember p r m)

Finally we show that admins-are-subgroups really is more restrictive than
admins-are-members.

Lemma 7 (admins-are-subgroups stronger than admins-are-members)

admins-are-subgroups r m) admins-are-members r m

After the detour on administrator groups let's turn back to a correct de�ni-
tion of members. Recall that we have eliminated the recursive function call
for constructor Admins but the non-primitive-recursive call for construc-
tor AddSubgroup still remains. To account for a well-founded de�nition of
members we have to ignore all cycles in computations. In order to recognise
when a cycle has been reached, all previously visited groups are stored in
an auxiliary parameter.

De�nition 21 (Members)

members : group memory ! group Ref ! subject list

members m r = membersaux m frg (dref r m)

membersaux : group memory ! (group Ref) list ! group option ! subject list

membersaux m v None = fg

j m v (Some (Admins xs)) = fg

j m v (Some (AddMember p g)) = fpg [(membersaux m v (Some g))

j m v (Some (AddSubgroup r g)) =

if (r2v) _ (r 62 references m)
then membersaux m v (Some g)
else (membersaux m (v [frg) (dref r m)) [

(membersaux m (v [frg) (Some g))

Before we turn to the technicalities of the well-formedness proof for this
de�nition we shall illustrate the functionality of members by example (see
Example 4 for the de�nition of \m").

50

Example 6 (Members)

members m (Ref 0) = fTom; Harryg
members m (Ref 1) = fTom; Harry; Peterg
members m (Ref 2) = fTom; Harry; Jennyg

Now the technicalities. Even this de�nition of members is not primitive
recursive, though it is certainly total. In order to achieve a well-formed
de�nition we have to use a stronger de�nition principle: \total recursion".

Excursion: primitive and total recursion

We shall explain total recursion now and show that primitive recursion is
just a special case of the more general total recursion. Let's recall primitive
recursion �rst. Primitive recursion is based on the idea that each func-
tion call within the function body has to be structurally smaller than each
function call in the head of the function. Take for example the inductive
de�nition of lists over type �

datatype � list = [] j Cons � (� list)

and of a primitive recursive function to concat two lists:

concat : � list ! � list ! � list
concat [] ls = ls

concat (Cons l ls) ls0| {z }
head

= Cons l (concat ls ls 0)| {z }
body

In the primitive recursive function call concat ls ls0 in the body the argu-
ment ls is structurally smaller than the corresponding argument Cons l ls
in the function head concat (Cons l ls) ls0 in the sense that one occurrence
of constructor Cons has been peeled o�. Given that any term is �nite and
thus may only be composed of �nitely many constructors, the process of
peeling o� constructors by recursive function calls eventually must termi-
nate rendering the de�nition of concat well-founded. Please note that this
argument is once more purely syntactic. That's why it can be recognised
automatically by a machine.

In contrast, total recursion is based on a semantic argument { hence
it is more general but not as schematic as primitive recursion. The user
has to give a semantic termination proof { requiring intuition, which a ma-
chine does not posses. To account for a complete de�nition of a function
the programmer has to accompany the de�nition with a measure function
that maps the arguments of the function to an ordered set (to be precise,
the ordering has to be Noetherian, i.e. it must not contain any in�nitely
descending chain). The requirement is that in each de�ning equation the
measure of the arguments in the function head has to be strictly greater than

51

the measure for any occurrence of the function in the body of the equation.
For our example of concatenating lists the measure function is as trivial as:

measureconcat : � list ! nat

measureconcat = length

Function length counts the number of occurrences of constructor Cons in a
term. Each time constructor Cons is peeled o�, the length is diminished.

In general, a measure function can be computed for each inductive
datatype such that the measure strictly decreases in all primitive recursive
function de�nitions (and the proof for this proposition can be constructed
uniformly). This way, primitive recursion is always well-founded and can
be seen as a special case of total recursion. 2

After this detour we return to the de�nition of the function membersaux and
show that above De�nition 21 is an instance of total recursion. To do so, we
have to de�ne a measure function �rst and then to show that the measure
decreases for every recursive function call. The function de�nition contains
the following recursive function calls in the head and body respectively:

Head Body

membersaux m v (Some (AddMember p g)) membersaux m v (Some g)
membersaux m v (Some (AddSubgroup r g)) membersaux m v (Some g)
membersaux m v (Some (AddSubgroup r g)) membersaux m (v [frg) (dref r m)
membersaux m v (Some (AddSubgroup r g)) membersaux m (v [frg) (Some g)

Looking at the recursive function calls more closely you notice two di�erent
kinds of calls. The recursive calls in the �rst two lines are in principle
primitive recursive (except for the nesting within datatype option). The
recursive calls in the third and fourth line are not at all primitive recursive
and require an explicit termination argument. In these cases termination is
guaranteed by the auxiliary �rst argument which logs the set of all previously
visited references. Subtracting this set from the set of all valid references
results in a set which shrinks as membersaux goes by. This process might not
terminate if the set of references was in�nite. At this point we realize why it
was reasonable to represent references in memories by lists rather than sets
(see discussion in Section 2.3). Lists are �nite by de�nition and hence do
not require any additional semantic argument (which is quite cumbersome
in a rigorously formal setting).

In parallel with the two di�erent kinds of function calls the measure
function has to provide two ways of decreasing its value (depending on the
respective function call). These two alternatives have to be combined in such
a way that they do not interfere improperly. The second alternative, which
deals with the set of all previously visited references, is dominating, whereas
the �rst one only plays a secondary role. This kind of dependency reminds
of lexicographical orderings where the leading positions are dominating over
the subsequent ones.

52

Indeed, this intuition immediately leads to a suitable Noetherian order-
ing. We use a binary lexicographical ordering (i.e. each word consists of
exactly two letters) based on natural numbers:

< : nat � nat ! bool

(n; m) < (n 0; m0) () n < n0 _ (n = n0 ^ m < m0)

Strictly speaking, measure functions do only map exactly one argument of
the function under consideration to an ordered set. We weaken this require-
ment allowing measure functions to map several arguments to the ordered
set. From a theoretical point of view this \weakening" is unproblematic,
since we could combine these multiple arguments into a single argument
using product types.

De�nition 22 (Measure function for membersaux)

measure : group memory ! (group Ref) list ! group option ! nat � nat

measure m v None = (jreferences m � v j; 0)

j m v (Some (Admins xs)) = (jreferences m � v j; 0)

j m v (Some (AddMember p g)) = (measure m v (Some g)) + (0 ; 1)

j m v (Some (AddSubgroup r g)) = (measure m v (Some g)) + (0 ; 1)

It is quite obvious that the measure function stores the number of all yet
unvisited references in its �rst component.

Lemma 8 (Measure for membersaux constant in �rst component)
The �rst component of measure computes the cardinality of the set of all
yet unvisited references.

(measure m v x):1 = jreferences m � v j

Proof: Nested induction on option (�rst induction) and group (second in-
duction).

This auxiliary lemma is required for the following lemma which shows that
any increase in the set of already visited references strictly decreases the
�rst component of the measure function and hence also the whole measure
function.

Lemma 9 (Visited references decrease measure) Let r 62 v and r 2
references m.

(measure m v x):1 > (measure m (v [frg) y):1

Proof: Lemma 8 transforms the proposition to j references m � v j >
j references m � (v [frg j. This is trivial due to set theoretic arguments
using the assumptions.

53

Lemma 10 (Measure for membersaux strictly decreases) For all re-
cursive function calls of function membersaux the measure function strictly
decreases. For Cases (3) and (4) the propositions only hold provided that
r 62 v and r 2 references m.

measure m v (Some (AddMember p g)) > measure m v (Some g) (1)
measure m v (Some (AddSubgroup r g)) > measure m v (Some g) (2)
measure m v (Some (AddSubgroup r g)) > measure m (v [frg) (dref r m) (3)
measure m v (Some (AddSubgroup r g)) > measure m (v [frg) (Some g) (4)

Proof: The proofs of Propositions (1) and (2) are trivial by de�nition of
measure. For the proofs of Propositions (3) and (4) it su�ces to show {
by de�nition of the ordering { that the corresponding proposition holds for
the �rst components. Lemma 9 completes the proofs. The side conditions
of this lemma are respected since the corresponding recursive function calls
of membersaux are guarded by the expression \(r 2v) _ (r 62 references m)"
and are only executed if the guard is negated.

This lemma together with the property that each lexicographic ordering is
Noetherian ensures the well-formedness of De�nition 21.

3.1.3 Subgroups

Function subgroups, which determines the subgroups of a given group, is
quite analogous to function members. The proof of well-formedness is based
on the same measure function measure and is conducted in complete analogy.
Again, ill-formed references are simply ignored.

De�nition 23 (Subgroups)

subgroups : group memory ! group Ref ! (group Ref) list
subgroups m r = frg [(subgroupsaux m frg (dref r m))

subgroupsaux :
group memory ! (group Ref) list ! group option ! (group Ref) list

subgroupsaux m v None = fg

j m v (Some (Admins xs)) = fg

j m v (Some (AddMember p g)) = subgroupsaux m v (Some g)

j m v (Some (AddSubgroup r g)) =

if (r 2v) _ (r 62 references m)
then subgroupsaux m v (Some g)
else frg [

(subgroupsaux m (v [frg) (dref r m)) [
(subgroupsaux m (v [frg) (Some g))

Again, we shall illustrate the functionality of the function �rst:

54

Example 7 (Subgroups)

subgroups m (Ref 0) = fRef 0g
subgroups m (Ref 1) = fRef 1 ; Ref 0g
subgroups m (Ref 2) = fRef 2 ; Ref 0g

Please note that function subgroups is re
exive, i.e. r 2 subgroups m r .

The syntactic analogy between functions members and subgroups suggests
that there is a correspondence between these functions. Indeed this cor-
respondence can be captured formally by a simple theorem (simple to be
expressed but not quite as easy to be proved).

Primitive recursive function memberssh plays a vital role in the lemma.
The function computes the set of all shallow members (see page 43 where we
have called all members that are not due to subgroups \shallow members")
of a group.

memberssh : group memory ! group Ref ! subject list

membersshm r = membersshaux (dref r m)

membersshaux : group option ! subject list

membersshaux None = fg
j (Some g) = membersshaux 0 g

membersshaux 0 : group ! subject list

membersshaux 0 (Admins xs) = fg
j (AddMember p g) = fpg [(membersshaux 0 g)
j (AddSubgroup r g) = membersshaux 0 g

This function is kind of a mediator between the functions members and
subgroups: the members of a group can be computed by collecting the shal-
low members of all subgroups.

members m r =
S
r 02subgroups m r memberssh m r 0

The proof of this proposition is not immediate because the principle of struc-
tural induction does not su�ce for this purpose. But which induction prin-
ciple is su�ciently expressive, then? Each recursive de�nition scheme comes
together with a corresponding induction scheme. Structural induction, the
most famous induction scheme, corresponds to primitive recursion, which
undoubtedly is the most famous de�nition scheme. In the de�nition of
members and subgroups we have used total (or sometimes also called well-
founded) recursion. The corresponding induction principle is called well-
founded induction. Just as primitive recursion turned out to be a special
case of total recursion, structural induction is a special case of the more
general well-founded induction.

55

Excursion: structural and well-founded induction

Let's recall structural induction. Assume you would like to prove a proposi-
tion P n for all n that are elements of a previously de�ned inductive datatype
N . To establish 8n:P n it su�ces to show that P is an invariant for all con-
structors of N . Take for example inductive datatype list with constructors
[] and Cons. In order to prove a proposition 8ls : list:P ls it su�ces to prove
that P holds for the constant constructor [] and that Cons preserves P .

(P [] ^ (8l ls:P ls) P (Cons l ls)))) 8ls:P ls

In the induction step you may assume that the same proposition holds for
terms with one occurrence of the constructor stripped o�. Obviously, induc-
tion still would work if in the induction step more than one constructor was
stripped o�. Well-founded induction takes up this point.

De�nition 24 (Well-founded induction) Let P : �! � be an arbitrary
predicate and < : �! �! bool a Noetherian relation.

(8x < y :P x) P y)) 8x :P x

You may read this as follows: To prove P y in the induction step you
may assume that proposition P holds for all x < y . Please note that this
induction principle can do without explicit induction basis. 2

On our way to the desired theorem we need one further (simple) lemma
which expresses that all shallow members are also proper members.

Lemma 11 (memberssh subset membersaux)

membersshaux 0 g � membersaux m v (Some g) (1)
membersshaux gopt � membersaux m v gopt (2)

Proof: Proposition (1): induction on g ; proposition (2): nested induction
{ �rst induction on option and second on group

Finally, we prove above mentioned theorem which characterises the relation-
ship between members and subgroups. Please note that subgroups returns
lists rather than sets and hence this equation could be taken as de�nitional
equation for members (using list comprehension rather than set comprehen-
sion).

Theorem 1 (Alternative de�nition of members)

members m r =
S
r 02subgroups m r membersshm r 0

Proof: Taking advantage of the set theoretic equation
S
r 02frg[S f r 0 =

(f r) [
S
r 02S f r 0 this theorem is a special case of Lemma 12 instantiating

gopt ; dref r m and v ; frg.

56

As we have pointed out earlier, we have to use well-founded induction instead
of structural induction for the correctness proof of Lemma 12. Induction is
performed on triples of type group memory � (group Ref)list�group option .
The required ordering is de�ned on the basis of measure.

< : (group memory � (group Ref)list � group option)�
(group memory � (group Ref)list � group option)! bool

(m; v ; gopt) < (m 0; v 0; gopt
0) () (measure m v gopt) < (measure m 0 v 0 gopt

0)

The theorem could not be proved directly by induction. The proposition
has to be strengthened �rst to be a valid invariant in the induction steps of
the proof. Lemma 12 proves a strengthened version of the theorem.

Lemma 12 (Alternative de�nition of members { strengthening)

membersaux m v gopt =
(
S
r 02subgroupsaux m v gopt

membersshaux (dref r
0m)) [(membersshaux gopt)

Proof: First well-founded induction on (m; v ; gopt) and then case distinc-
tion on gopt . Let m; v ; gopt be arbitrary and assume the proposition being
true for all m0; v 0; gopt 0 strictly smaller than m; v ; gopt .

Cases gopt = None and gopt = Some (Admins xs): trivial

Case gopt = Some (AddMember p g):

In this case we have to prove the following equation:

membersaux m v (Some (AddMember p g)) =
(
S
r 02subgroupsaux m v (Some (AddMember p g)) membersshaux (dref r

0m))[

(membersshaux (Some (AddMember p g)))

Expanding the de�nitions of membersaux , subgroupsaux and membersshaux
this equation rewrites to:

fpg [(membersaux m v (Some g)) =
(
S
r 02subgroupsaux m v (Some g) membersshaux (dref r

0m))[

fpg [(membersshaux 0 g)

Due to Lemma 10 Proposition (1) we may apply the induction hypothesis
resulting in the following subgoal and hence we are done for this case.

fpg [(membersaux m v (Some g)) =
(membersaux m v (Some g)) [fpg

Case gopt = Some (AddSubgroup r g):

We have to prove the following equation:

membersaux m v (Some (AddSubgroup r g)) =
(
S
r 02subgroupsaux m v (Some (AddSubgroup r g)) membersshaux (dref r

0m))[

(membersshaux (Some (AddSubgroup r g)))

57

Expanding the de�nitions of membersaux , subgroupsaux and membersshaux ,
this equation rewrites to:

if (r2v) _ (r 62 references m)
then membersaux m v (Some g)
else (membersaux m (v [frg) (dref r m)) [

(membersaux m (v [frg) (Some g)) =
(
S
r 02S membersshaux (dref r

0m)) [(membersshaux 0 g)

with S = if (r2v) _ (r 62 references m)
then subgroupsaux m v (Some g)
else frg [

(subgroupsaux m (v [frg) (dref r m)) [
(subgroupsaux m (v [frg) (Some g))

This horrendous term simpli�es when performing case distinction on r . As-
sume (r 2 v) _ (r 62 references m) { we then have to prove the following
goal.

membersaux m v (Some g) =
(
S
r 02subgroupsaux m v (Some g)membersshaux (dref r

0m)) [(membersshaux 0 g)

Similar to case \Some (AddMember p g)" we may apply induction hypothesis
due to Lemma 10 Proposition (2) and then we are done for this path of the
current case. Assume now :((r 2 v) _ (r 62 references m)) which equals
(r 62v) ^ (r 2 references m) and leads to the following subgoal

(membersaux m (v [frg) (dref r m)) [(membersaux m (v [frg) (Some g)) =
(
S
r 02S membersshaux (dref r

0m)) [(membersshaux 0 g)

with S = frg [
(subgroupsaux m (v [frg) (dref r m)) [
(subgroupsaux m (v [frg) (Some g))

Splitting the indexed union along the index set results in

(membersaux m (v [frg) (dref r m)) [(membersaux m (v [frg) (Some g)) =
(membersshaux (dref r m))[
(
S
r 02subgroupsaux m (v[frg) (dref r m)membersshaux (dref r

0m))[

(
S
r 02subgroupsaux m (v[frg) (Some g)membersshaux (dref r

0m))[

(membersshaux 0 g)

In order to apply Lemma 10 Propositions (3) and (4) we have to ensure
that r 62 v and r 2 references m. These conditions, though, are guaranteed
by above assumption. Applying the induction hypothesis twice resolves the
path of the current case and also �nishes the proof of the whole lemma.

Q.E.D.

You might have wondered why we have not taken the theorem as de�nition
of function members . The theorem gives us some kind of certainty that our

58

de�nitions were right. Indeed, we had to improve our previous de�nitions
(the preliminary de�nitions are not documented in this paper) twice in
order to get the theorem through: in the de�nition of subgroups the starting
reference r had been forgotten and in the case distinction one recursive call
of the function had been missed.

After all these technicalities let's stand back and see what we have achieved
so far. We have de�ned an inductive datatype of groups which may be
used as internal representation for organisational structures. Furthermore
we have implemented standard operations to compute the members of a
group and to establish the set of subgroups. All of these operations take a
�xed group structure for granted. In reality, though, group structures are
subject to permanent changes. There are a number of questions to be raised
for changing group structures:

� How is update on groups represented?

� Which kinds of changes are permitted?

� Who may perform changes?

� How to prevent inadmissible changes?

� How to prevent un-authorised access?

We could answer all of these questions right away, but we postpone the
answers to these questions for a moment. We will see later that changing
group structures are just a special case of ordinary databases (taking groups
as data).

3.2 Databases

Databases represent particular communication threads that are performed
collaboratively by a multitude of users. Each database consists of a collection
of data that is shared among the users. Just as for the changing group
structures there are a number of (analogous) questions to be raised.

1. How is data represented?

2. How is update on data represented?

3. Which kinds of changes are permitted?

4. Who may perform changes?

5. How to prevent inadmissible changes?

59

6. How to prevent un-authorised access?

The �rst question is answered easily. Logos does not rely on any particu-
lar data structure. In powerful groupware systems one could even imagine
higher-order structures (like higher-order functions) as data. Nevertheless,
in most cases data will simply be tuples of values.

The answer to the second question is quite straightforward in a functional
setting like ours. Just as in any other functional model, update on states
has to be represented as functions mapping states to states. In our case,
databases are characterised by the current state of the data space and by
functions (operations) updating and accessing the data spaces (later we will
see, that databases also map ACLs to updated ACLs).

The third question is a bit more subtle. Since we are building a general
framework for authorisation in groupware systems, it is not our intention to
anticipate concrete implementations. The possible changes are either deter-
mined by the groupware system itself or by the implementors of the database.
For our purpose it is irrelevant who (groupware system or database imple-
mentor) provides the functionality. We simply assume that there is some
instance which provides the underlying implementation.

The fourth question is at the heart of our model since authorisation is
our major issue. The answer is a two layered approach. First layer is in
the ACL. In the ACL the database manager assigns subjects to roles. If a
subject is excluded from a role it can not have the respective access rights.
But even if a subject is assigned some role this does not necessarily have
any impact on the database. In order to be relevant, the implementation
of the database must provide operations that are enabled for this role and
disabled for others.

The �fth and sixth question are somewhat related. Both questions as-
sume the existence of a set of operations (for update and access) and they
raise the questions how to guarantee that these operations are the only way
to update and access the state. The solution to this problem is to add a
so-called \closed world assumption" which is a standard \trick" in theoret-
ical computer science. Formally, closed world assumptions can be achieved
by inductive de�nitions. Induction principles exactly capture the idea of
closed worlds. Indeed, we will show later how to answer the �fth and sixth
question using inductive sets.

In the sequel we will answer these six questions in greater detail. We
will see that the answers do not anticipate any concrete groupware system
and hence Logos truly deserves the denomination \framework".

3.2.1 Data space

The data space is the place where all the data is collected. Speaking in
the terminology of typed functional languages, the data space has to be

60

polymorphic in the type of data in order to be independent of any particular
type of data. This does not imply, though, that data spaces do not possess
any uniform structure. On the contrary, all data spaces have the same
structure: memories polymorphic in the type of data.

De�nition 25 (Type of data spaces) Assume any database d with data
of type datad . The corresponding data space possesses type datad memory.

For sake of illustration we develop a running example which will be our
companion over the next sections.

Example 8 (Discussion bboards { Data space) The example deals
with discussion bboards. Discussion bboards are a commonly accepted appli-
cation of groupware systems. They allow for postings of notes and responses
to these notes. Though postings and responses are similar in nature, they
are di�erent in content. Responses comprise a link to the original posting
which the original posting does not. Furthermore the original posting deter-
mines the category it belongs to. The reply does not have this choice { it is
assigned exactly the same categories the original document was assigned to.

In order to de�ne a data space for discussion bboards, we have to de�ne
the data (postings and responses) �rst. Original postings are tuples consist-
ing of the following �elds: author, date, categories and note. Responses do
not contain �eld categories, but �eld parent, instead. This informal speci�-
cation directly translates into record declarations.

record main =
author : subject
date : date
categories : string list
note : string

record response =
parent : main Ref
author : subject
date : date
note : string

Given the type of data, it is easy to de�ne the data space for discussion
bboards.

data-space
bboard = data

bboard
memory with

databboard = fj main : main ; response : response jg

2

3.2.2 Pro�le Documents

Amongst the many documents of a database one kind of documents is
special: the pro�le documents. Pro�le documents collect user-speci�c or
database-speci�c values. Data stored in the pro�le documents can be ac-
cessed particularly easily from other parts of the database. In spite of this
special treatment of pro�le documents, they are just like any other document
subject to access control.

61

From what we have said about pro�le documents you can see that there
is basically no restriction on how pro�le documents look like. Since we are
in a typed environment the only restriction is that pro�le documents are
typed.

De�nition 26 (Pro�le documents) Assume d being the name of a
database.

type pro�le
d

Example 9 (Discussion bboards { Pro�le documents) For our ex-
ample of discussion bboards we have only one database-speci�c document
and a row of user-speci�c documents. The database-speci�c document con-
tains a list of categories { the set of categories users may select from when
editing documents. For each user we provide a user-speci�c document which
determines whether the user wants to be noti�ed9by eMail once a new doc-
ument has be stored in the database. Since we are working in a functional
environment, we may simply represent the set of user-speci�c documents as
a function.

type pro�le
bboard = fcategories : string list; noti�cation : subject ! boolg

2

3.2.3 Roles

Roles are a means to distinguish di�erent responsibilities locally within a
particular database. Technically speaking, roles are no more than sets of
distinguishable entities. Formally, we de�ne for each database a separate
type of roles.

De�nition 27 (Roles) Assume d being the name of any database. The
type of roles for this database is given by the following type declaration.

type role
d

You may interject that by this de�nition roles are merely syntactic entities
without meaning. The de�nition of roles nevertheless is meaningful because
access control is spread over two levels of the Logos framework. The �rst
level is the so-called access control list (ACL) of a database. In the ACL the
database-manager assigns subjects to roles. If a subject is excluded from a
role it cannot have the respective access rights. The second level concerns
the operations of the database: Even if a subject is assigned a role this
does not necessarily have any consequence for the database. In order to be

9We will not treat eMail noti�cation in the remainder of the chapter any further.
Noti�cation only serves to demonstrate user-speci�c pro�le documents at this point.

62

relevant, the implementation of the database must provide operations that
are enabled for this role and disabled for others. We will deal with ACLs
and operations explicitly in the next sections.

Example 10 (Discussion bboards { Roles) For the particular example
of bboards we have chosen the following four roles:

� Manager: Managers have the most far-reaching rights of all roles. In
particular, they may change the ACL (and only managers may change
the ACL) and perform all operations that editors, authors or readers
are permitted to.

� Author: Authors may post new documents (original postings just as
responses). They are permitted to edit and delete their own documents.
Furthermore they may read all documents.

� Editor: Editors are like authors with the di�erence that they may edit
or delete any document - not just their own documents.

� Reader: Readers may read any document. Beyond that they have no
additional rights.

De�ning the type of roles is canonical:

datatype rolebboard = Manager j Editor j Author j Reader
2

In the literature there are a number of meanings assigned to the notions of
groups, teams and roles { sometimes some of the notions even coincide. In
our framework Logos we do di�erentiate between roles, teams and groups
{ their di�erence is subtle, though. As we have said, groups are a means
to structure the overall set of subjects into entities. Some of these enti-
ties are assigned rights others serve only as interim entities to support the
structuring. We will call those groups that have rights on their own also
teams.

Since we present a rigorous formal model, we will be able to de�ne all
of theses notions precisely (in a mathematical sense). Regardless whether
our de�nitions will get commonly accepted or not, our rigorous formal model
can serve as a basis for a concise and hence fertile discussion of theses issues.

3.2.4 Access control list

The access control list (ACL) is the place where subjects are assigned roles.
We have pointed out already that even if a subject is assigned a role this
does not necessarily have any consequence for the database. In order to be
relevant, the implementation of the database must provide operations that
are enabled for this role and disabled for others.

63

One of our fundamentals is that we deal with groups rather than indi-
vidual subjects. This decision is a strict generalisation in that individuals
may always be represented as single-subject groups. This idea together with
the already presented de�nition of roles (see Section 3.2.3) almost immedi-
ately leads to a canonical representation of ACLs in Logos. ACLs simply
are functions mapping roles (names of roles) to sets of groups. Since we are
only interested in �nite sets of groups we choose lists of groups, instead.

Just as we have admitted hierarchic group structures in the NAB, we
permit hierarchic role structures locally within databases. In order to ac-
count for changing group members we map roles to lists of group references
rather than lists of groups themselves.

De�nition 28 (ACL) Assume d being the name of a database. The type
of the ACL is given as (roled ACL) with type constructor ACL.

type �ACL-groups = �! (group Ref) list
type �ACL-roles = �! � list
type �ACL = fgroups : �ACL-groups; roles : �ACL-rolesg

As we have said, ACLs map roles to both lists of group references and lists of
roles. The lists of roles represent dependencies between roles. For example
they express that all managers are also readers of a database.

Example 11 (Discussion bboards { ACL) There are a number of de-
pendencies between the roles of the discussion bboards which are expressed
by function acl-rolesbboard.

acl-rolesbboard : rolebboard ACL-roles

acl-roles
bboard

Manager = []
j Editor = [Manager]
j Author = [Editor]
j Reader = [Author]

Managers are maximal in the ordering of roles in the sense that no other
role implies membership in the manager role (�rst case). The second case
expresses that all managers also have editor-rights. In the third case we
assign both managers and editors author rights. The last case, �nally, states
that members of all roles may read any document i.e. readers are minimal
in the hierarchy of roles.

Managers may change the ACL while execution. For our example we
therefore can only give a sample con�guration of the ACL. Since this con-
�guration is reached in two steps from the initial con�guration we annotate
the name with double \apostrophe".

acl-groupsbboard
00
: rolebboard ACL-groups

acl-groups
bboard 00

Manager = [Ref 0]
j Editor = [Ref 1]
j Author = [Ref 2]
j Reader = []

64

Given acl-rolesbboard and acl-groupsbboard
00
, it is easy to de�ne the value of

the corresponding ACL called ACLbboard
00
.

ACLbboard
00
: rolebboard ACL

ACL
bboard 00 = fgroups = acl-groups

bboard 00;

roles = acl-roles
bboardg

2

The dependencies between roles are established by the implementors of a
database and are not subject to changes during execution. The lists of
groups, in contrast, may be updated while execution. This distinction is
stressed by the following function liftACL which allows for updates in the
lists of group references while leaving the lists of roles untouched. We will
always use this function to achieve updates on ACLs.

De�nition 29 (Group update in ACLs)

liftACL : ((group Ref) list ! (group Ref) list)! �ACL! �ACL
liftACL f acl = fgroups = �r : f (acl :groups r); roles = acl :rolesg

ACLs themselves are subject to access control, which in turn is determined
by the ACL itself. There is kind of a circularity here which has a funda-
mental consequence. In order to be able to account for changes in the ACL,
there must always be at least one subject having the right to change the
settings in the ACL. Otherwise the ACL is stuck forever. This property is
an invariant that has to be ensured by any system's implementation. In
real systems this subject (or non-empty group of subjects) often is called
manager of the database.

In order to determine if a subject may perform some operation we need a
function assignees that computes all subjects assigned a particular role in
the ACL. After a short detour we de�ne function assignees formally.

Excursion: re
exive and transitive closure

As an auxiliary function we de�ne transclosure which computes the re
exive
and transitive closure of a relation. We use a non-standard representation
of relations representing binary relations over type � as functions of type
� ! � list . Assume f being a function of type � ! � list and x1 and x2
being two elements of type � then x1 and x2 are related by f if and only if
x2 is in the set f x1.

65

De�nition 30 (Re
exive and transitive closure)

transclosure : (�! � list)! (�! � list)
transclosure = transclosureaux fg

transclosureaux : � list ! (�! � list)! (�! � list)
transclosureaux v f r = frg [

S
x2f r if x 2 v thenfg

else transclosureaux (fxg [v) f x

As long as � is �nite, this de�nition is well-founded. As a measure func-
tion subtract the set of already visited elements (�rst argument of function
transclosureaux) from the (�nite) set of all elements of �. It is easy to see
that this measure function strictly decreases in the recursive function call.
Function transclosure actually computes the re
exive and transitive closure
of a relation as the following lemma shows.

Lemma 13 (Re
exive and transitive closure) Assume any binary re-
lation f : �! � list.

8r : r 2 transclosure f r ^
8r1 r2 r3: r2 2 transclosure f r1 ^ r3 2 transclosure f r2) r3 2 transclosure f r1

As an example we de�ne the re
exive and transitive closure of function
acl-rolesbboard .

Example 12 (Re
exive and transitive closure)

transclosure acl-rolesbboard Manager = [Manager]
j Editor = [Editor; Manager]
j Author = [Author; Editor ; Manager]
j Reader = [Reader ; Author ; Editor ; Manager]

Function assignees, which computes the assignees of a role, �rst computes
the transitive closure of the role and then maps function members over the
groups corresponding to the closure's roles.

De�nition 31 (Assignees)

assignees : group memory ! �ACL! �! subject list

assignees mem fgroups = g ; roles = f g r =S
x2transclosure f r (

S
y2g x members mem y)

Example 13 (Discussion bboards { Assignees)

assignees m ACLbboard
00
Manager = [Tom; Harry]

j Editor = [Tom; Harry; Peter]
j Author = [Tom; Harry; Peter ; Jenny]
j Reader = [Tom; Harry; Peter ; Jenny]

Function assignees naturally induces relation is-subrole, which we discuss in
the following. If a role r1 is a subrole of r2 then r2 dominates r1 in the sense
that if a subject is assigned role r2 then it automatically is also assigned r1.

66

De�nition 32 (Is Subrole? { Non-modular)

is-subrole
0 : �ACL! group memory ! �! �! bool

is-subrole
0
acl mem r1 r2 = assignees acl mem r2 � assignees acl mem r1

Lemma 14 (is-subrole0 is a pre-ordering) For any ACL acl and group
memory mem relation is-subrole0 acl mem is a pre-ordering.
Proof: Re
exivity and transitivity are lifted from the partial equivalence
relation \subset".

At �rst sight this de�nition seems to capture our intuition properly. But
at second sight you see that it heavily violates modularity. Relation
is-subrole0 acl mem crucially depends upon the surrounding group structure
which basically represents the name and address book (see Section 3.2.7).

Take for example the following ACL where group Ref 0 is assigned role x
and group Ref 1 is assigned role y . If accidentally Ref 0 and Ref 1 happen
to consist of the same members then x is a subrole of y and vice versa.
Assume now that the ACL remains totally unchanged, whereas subject \A"
is added to group Ref 0 and subject \B" is added to group Ref 1 in the
global name and address book. Suddenly neither x nor y is subrole of the
other.

Changes in the name and address book, though, should not a�ect relation
is-subrole0. The decision whether a role is a subrole of another ought to be
taken locally in the ACL. Relation is-subrole remedies this weakness. As
you can see from its type, it does no longer depend upon any concrete
surrounding name and address book. It does not even depend upon the
complete ACL of the database but rather only on the second component
concerning the hierarchic structure of roles.

De�nition 33 (Is Subrole?)

is-subrole : (�ACL-roles)! �! �! bool

is-subrole f r1 r2 = 8mem g : assignees mem (�r :fgroups = g r ; roles = f rg) r2 �
assignees mem (�r :fgroups = g r ; roles = f rg) r1

Lemma 15 (is-subrole is a pre-ordering) Given any function f mapping
roles to lists of roles, relation is-subrole f is a pre-ordering.
Proof: Re
exivity and transitivity are lifted from the partial equivalence
relation \subset".

Let's continue with our example and see which roles are subroles of other
roles.

Example 14 (Discussion bboards { Is subrole?) Figure 3.11 depicts
relation is-subrole acl-rolesbboard . As you can see from the graph, this re-
lation is { besides being a pre-ordering { also a partial equivalence relation
(PER). To be precise it is even a linear ordering. 2

67

Manager

Editor

Author

Reader

Figure 3.11: Is-subrole for bboards

It is not at all by coincidence that relation is-subrole acl-rolesbboard is a PER
in the previous example. To see why, let's analyse which consequences follow
from the fact that a relation is-subrole f is antisymmetric (by Lemma 15 it
is re
exive and transitive anyway). Relation is-subrole f is antisymmetric if
and only if

8r1 r2: (is-subrole f r1 r2 ^ is-subrole f r2 r1)) r1 = r2

Expanding the de�nition of is-subrole and applying simple set theoretic
lemmas we get the following equivalent proposition

8r1 r2: (8mem g : assignees mem (�r :fgroups = g r ; roles = f rg) r2 =
assignees mem (�r :fgroups = g r ; roles = f rg) r1)) r1 = r2

If a relation is-subrole f is not antisymmetric then there are two distinct
roles that are not distinguishable (as far as their assignees are concerned)
for any name and address book and any group assignment in the ACL. In
other words one of these two roles is redundant. If there are no redundant
roles then we call a relation minimal.

De�nition 34 (is-subrole minimal) Given any function f mapping roles
to lists of roles. Relation is-subrole f is minimal if and only if it is a partial
equivalence relation.

In the above example of bboards we have seen an example of a linear relation
is-subrole f . De�ning the notion of linearity is obvious.

De�nition 35 (is-subrole linear) Given any function f mapping roles to
lists of roles. Relation is-subrole f is linear if and only if it is a linear
ordering.

As you can see from above example it is not always obvious if a relation
is-subrole f is minimal or linear, which is due to the universal quanti�cation
in the de�nition of is-subrole. It will turn out, though, that there is an alter-
native formulation of this relation which is decidable and hence can serve as

68

a decision procedure. In a sense, relation is-subrole f is the speci�cation and
the decision procedure is an implementation which meets the speci�cation.
In the following we present the decision procedure and show that it is both
correct and complete.

Theorem 2 (Alternative de�nition of is-subrole) Given any function
f mapping roles to lists of roles. Furthermore assume that the set of roles
is �nite.

is-subrole f r1 r2 = (transclosure f r2 � transclosure f r1)

Proof: Expanding the de�nition of is-subrole yields

(8mem g : assignees mem (�r :fgroups = g r ; roles = f rg) r2 �
assignees mem (�r :fgroups = g r ; roles = f rg) r1) =

(transclosure f r2 � transclosure f r1)

and rewriting the de�nition of assignees results in

(8mem g :
S
x2transclosure f r2

(
S
y2g x members mem y) �S

x2transclosure f r1
(
S
y2g x members mem y)) =

(transclosure f r2 � transclosure f r1)

Since the required equation is a boolean equation, we can split the goal into
two implications.

Case 1 (\(") This direction is considerably simple due to the set theoretic
implication

A � B)
S
x2A f x �

S
x2B f x

Case 2 (\)") The converse of this set theoretic implication does not hold
in this generality. It is valid, though, if restricted to injective functions
f . In order to apply the converse implication, we have to �nd an adequate
instantiation both for the name and address book mem and for the group
assignment g.

First of all we have to determine the type of subjects which we just take
to be natural numbers. The name and address book is constructed as follows,
where n is the cardinality of the (�nite) set of roles.

mem = fobjs = [(single-user 0 0); : : : ; (single-user (n � 1) (n � 1))];
refs = [0 ; : : : ; (n � 1)]g

with single-user s r = AddMember s (Admins [r])

We take any injective function mapping roles to one-element lists of group
references as group assignment function g. The existence of such an injective
function is guaranteed by the �niteness of the set of roles.

Taking these particular instances of the name and address book and of the
group assignment, it remains to show that the following function is injective.

69

�x : (
S
y2g x members mem y)

Since g maps roles to one-element lists of group references there is trivially
a function g 0 that maps roles to group references and which is directly con-
nected with g by the equation 8x :[g 0 x] = g x. Of course, injectivity is lifted
directly from g to g 0. Taking g 0 rather than g, the function to be proved
injective simpli�es to

�x :members mem (g 0 x)

As injectivity is composable, it su�ces to show that function members mem
is injective. By construction of mem there are no circular dependencies
between groups. It is easy to see, that the following lemma holds since
dref mem (Ref m) = single-user m m for any m 2 f0 ; : : : ; n � 1g.

members mem (Ref m) = [m]

By induction on Ref we succeed in proving that members mem is injective.
To be concise, we need lemma [m] = [n]) m = n, additionally. Q.E.D.

This theorem has simple corollaries which make it easy to decide if a relation
is-subrole f is minimal or linear.

Corollary 1 (is-subrole minimal { decision procedure) Given any
function f mapping roles to lists of roles.

minimal (is-subrole f)() (8r1 r2: r1 6= r2) transclosure f r1 6= transclosure f r2)

Corollary 2 (is-subrole linear { decision procedure) Given any func-
tion f mapping roles to lists of roles.

linear (is-subrole f)() 8r1 r2: transclosure f r1 � transclosure f r2 _
transclosure f r2 � transclosure f r1

With these decision procedures in hand we can return to our previous exam-
ple and certify that relation is-subrole acl-rolesbboard is minimal and linear.

Example 15 (Discussion bboards { ACL minimal and linear) In
order to apply Corollaries 1 and 2, we have to recall the re
exive and
transitive closure of relation acl-rolesbboard (see Example 12).

transclosure acl-roles
bboard

Manager = [Manager]
j Editor = [Editor; Manager]
j Author = [Author; Editor ; Manager]
j Reader = [Reader ; Author ; Editor ; Manager]

One can easily see that the conditions of minimality and linearity are satis-
�ed by this re
exive and transitive closure.

70

3.2.5 States

So far we have de�ned the data space, the pro�le documents and the ACL
of databases. It's time now to combine them to the state which is that part
of a database that may change over time. All other parts remain invariant.

De�nition 36 (States) Assume d being the name of a database. The type
of possible states for this database is stated .

type stated = fdata-space : datad memory ;

pro�le : pro�led memory;

acl-groups : roled ACL-groupsg

Please note that the acl-part of states only contains the group- but not the
role-structure. As already mentioned, states represent the variable part of
a database { the role structure, though, is static. We might as well have
integrated the roles in the states at the price of having to use function
liftACL (see De�nition 29) for any state update. It's a design decision to
give applicability higher priority than uniformity.

Example 16 (Discussion bboards { States)

type statebboard = fdata-space : databboard memory;

pro�le : pro�lebboardmemory ;

acl-groups : rolebboard ACL-groupsg

When a database is created, the database contains an initial state which is
uniform for all new databases. The dataspace is empty, the pro�le docu-
ments contain some default value and the ACL contains one single group {
the database managers. Since the role representing the database managers
may be disjoint in di�erent databases, this role is { in addition to the refer-
ence to the manager group and the default pro�le document { a parameter
for function initial-state which creates the initial state of a database.

Of course, we could also have omitted the pro�le document as parameter,
starting with an empty memory as initial con�guration. Again, our choice
is a design decision which aims at easing the model: often it su�ces to keep
the initial con�guration constant (see Section 5.4.3). In this case no explicit
operations are required to deal with the pro�le documents. Easier theories
and correctness proofs are the consequences.

De�nition 37 (Initial States) Assume d being the name of a database.
Function initial-stated creates the initial state for some database d.

initial-state :
 ! � ! group Ref ! (�; �;
)state
initial-state Manager p r = fdata-space = newmemory;

pro�le = alloc p newmemory;
acl-groups = � x : if x = Manager then [r] else []g

71

For the database of discussion bboards we have called the manager role
\Manager" and in Example 11 we have determined group Ref 0 to be the
manager group. The initial set of categories is empty and eMail noti�cation
is initially disabled for all users. This leads to the following initial state for
discussion bboards.

Example 17 (Discussion bboards { Initial state)

initial-statebboard : statebboard

initial-state
bboard = initial-state Manager

fcategories = []; noti�cation = �x: falseg
(Ref 0)

3.2.6 Operations and guards

Each database contains a set of operations in order to modify dataspace,
pro�le documents and ACL. Some of these operations are part of the group-
ware system which provides a set of standard operations (as e.g. adding data
or assigning groups to roles). Beyond these standard operations, each con-
crete application may implement additional application-speci�c operations
(as e.g. computing the number of responses to a posting).

For our formal framework Logos we do not di�erentiate between standard
operations of the groupware system and application-speci�c operations. We
simply assume that for a concrete application there is a set of operations to
deal with the databases.

Nevertheless, we do di�erentiate between two kinds of operations { de-
pending on the impact the operation has on the database. The �rst kind of
operations, which we call internal, modi�es the state of the database but is
invisible from outside (assuming the database to be a black box). The second
kind, which we call observable, leaves the state of the database unchanged
but renders parts of the database visible to the outer world.

De�nition 38 (Internal operations) Each database d contains a �xed
number internald (0 � internald) of internal operations. Internal operations
f di (1 � i � internald) posses the following uniform structure with function
speci�c arity ai (0 � ai).

f di : subject ! �1 ! : : :! �ai ! stated ! stated

De�nition 39 (Observable operations) Each database d contains a
�xed number observabled (0 � observabled) of observable operations. Ob-
servable operations gdi (1 � i � observabled) posses the following uniform
structure with function speci�c arity ai (0 � ai).

gdi : subject ! �1 ! : : :! �ai ! stated ! �ai+1

72

We call type �ai+1 the observable type of the operation.

Example 18 (Discussion bboards { Operations) In this example we
continue our running example of bboards by dynamically changing the state
of the discussion bboards. First we create an initial bboard and then we
con�gure the database by constituting the set of categories in the pro�le.
Next we edit the ACL, letting Harry assign group one editor and letting
Tom assign group two author rights (see acl-groupsbboard

00
in Example 11).

Peter then writes a posting, which Jenny responses to. Finally we compute
the categories of the response.

To achieve this, we de�ne general operations for our intended groupware
system and concrete operations for our application of discussion bboards.
Precisely, we de�ne seven operations (see below). Clearly, this set of op-
erations is not su�cient to account for bboards in their full generality,
but we keep this set (arti�cially) small to slim our presentation. Please
note that operations add-docsystem and assign-group-rolesystem are opera-
tions of the groupware system whereas all other operations are application
speci�c. To ease readability we use the type abbreviation (�; �;
)state =
fdata-space : �memory ; pro�le : �memory ; acl-groups :
ACL-groupsg.

add-docsystem : subject ! �! (�; �;
)state ! (�; �;
)state
add-doc

system
s d st = stfdata-space := alloc d st :data-spaceg

new-mainbboard : subject ! main ! statebboard ! statebboard

new-mainbboard s d = add-doc
system

s (main dfauthor := sg)

response-tobboard : subject ! main Ref ! response ! statebboard ! statebboard

response-tobboard s p r = add-docsystem s (response rfparent := pgfauthor := sg)

map-categoriesbboard :
subject ! (string list ! string list)! statebboard ! statebboard

map-categoriesbboard s f st =
stfpro�le := st :pro�lefcategories := f st :pro�le:categoriesgg

assign-group-role
system :

subject ! group Ref !
 ! (�; �;
)state ! (�; �;
)state
assign-group-rolesystem s g r st =

stfacl-groups := � x : if x = r then (st :acl-groups x)++[g]
else st :acl-groups xg

assign-group-rolebboard :

subject ! group Ref ! rolebboard ! statebboard ! statebboard

assign-group-role
bboard = assign-group-role

system

categories-rebboard : subject ! databboard Ref ! statebboard ! string list

categories-rebboard s r st = (dref ((dref r st :data-space):parent)
st:data-space):categories \

st :pro�le:categories

The operations of the groupware system are polymorphic and thus we are able

73

to reuse them in the context of other databases. The corresponding database
speci�c operations add-docbboard : subject ! data bboard ! statebboard !

statebboard and assign-group-rolebboard : subject ! rolebboard ! group Ref !
statebboard ! statebboard are just instances of these polymorphic de�nitions.

Operation new-mainbboard adds a new posting and response-tobboard a
new response to the data space. The categories in the pro�le of the database
are managed by operation map-categoriesbboard . The ACL is modi�ed by
operation assign-group-rolebboard which assigns some group a given role.
The just mentioned operations are all internal operations, i.e. they update
the state of bboards. The last operation categories-rebboard is the only ob-

servable operation. It computes the set of categories a response is assigned
to (restricted to those categories that are prede�ned in the pro�le document).

A subtlety is involved in the de�nition of operation categories-rebboard , con-
cerning the type of �eld parent. In the declaration of type response we did not
declare parent to be of type fj main : main; response : response jg. Of course
this would be a circular and thus invalid declaration. As long as responses
only point to postings and not to responses themselves we avoid circular type
de�nitions taking main Ref as type of parent. In order to compute the cat-
egories from a response, we �rst extract the pointer to the original posting
and then convert the type of the reference as required (this type conversion
has been omitted in the de�nition to ease readability).

If we were really intending to allow responses to point to the responses
themselves we were stuck with our proposed solution. A solution to the
problem is obvious since references are (at least in principle) nothing but
natural numbers. Declaring parent to be of type nat remedies the problem
of circular typing. Please note that although we have lost elegant typing
for �eld parent, we still are able to deploy elegant typing for functions as
categories-rebboard .

This weakness of our model is a consequence of the weakness of the type
system of HOL. Please note that there are type systems (see discussion
in [34]) that do permit circular i.e. recursive type declarations. These
circularities are resolved using �xed point constructions.

Let's continue with our running example. Starting form the initial state we
�rst con�gure the pro�le of the database adding a set of categories. Next,
we extend the ACL by assigning Ref 1 editor and Ref 2 author rights. To
be precise, manager Harry assigns the editor and manager Tom the author
rights. Finally, Peter posts the following note

myposting : main
myposting = fauthor = arbitrary; date = 03=16=2000;

categories = [\meetings"; \travel"];
note = \My travel expenses to the last meeting were 200$"g

74

which is replied to by Jenny

myresponse : main Ref ! response

myresponse r = fparent = r ; author = arbitrary; date = 03=17=2000;
note = \200$ is waste! I only spent 100$!!"g

The resulting state { after application of the internal operations { is repre-
sented by the term

main-response : statebboard

main-response =

st := initial-statebboard ;
st0 := map-categoriesbboard

Harry (� xs: xs++[\meetings"; \travel"; \project"]) st

st00 := assign-group-role
bboard

Harry (Ref 1)Editor st 0;

st000 := assign-group-rolebboard Tom (Ref 2)Author st 00;
st0000 := new-mainbboard Peter myposting st 000;

response-tobboard Jenny (myresponse (freshref st 000:data-space)) st 0000

Please note that main-response:acl-groups = acl-groupsbboard
00
(for the de�-

nition of acl-groupsbboard
00
see Example 11). The proof of this lemma is an

easy exercise.
In the end, Jenny computes the categories of her response as denoted by

the term

categories-rebboard Jenny (freshref st 0000:data-space)main-response

which results in the list [\meetings", \travel"]. 2

So far we have not modelled access control at all. For example, Peter could
have posted his note before group Ref 1 (which is the only group he belongs
to) was assigned editor rights. In the following we tackle this problem.

Any functional programming language (and the sublanguage of \executable"
terms of HOL can be understood as a functional programming language)
permits application of any two terms at any time { as long as parameter
and argument type match. To account for access control in a programming
language, any desired restriction would be programmed as conditional state-
ment and be incorporated in the functions. In a formal logic as HOL the
restriction can also be stated as a logical predicate i.e. the restriction need
not necessarily be computable. Furthermore the restricting predicate, which
we will call guard in the following, can be separated from the function itself
enabling the notions of permitted and prohibited function applications. In
this section we will introduce guards and in Section 3.3.3 we will see how to
formalise the notions of permitted and prohibited applications of functions
(or equivalently operations).

75

Although operations might as well have several guards, we assume for
simplicity and without loss of generality10 that there is exactly one guard
per operation.

Basically a guard is just a predicate on the arguments of the operation.
Any operation knows from its �rst argument who is liable for invoking the
operation but it has no knowledge (and needs not to have any) of the sur-
rounding context (ACL and NAB). This information, though, is required
for access control. Hence the guard is stu�ed with this information, too { in
addition to the arguments of the operation. This additional information is
represented as two functions: �rst a function mapping group references to
sets of subjects (the members of the group) and second a function mapping
roles to sets of subjects (the assignees of the role).

De�nition 40 (Guards for internal operations) Assume internal op-
eration f di : subject ! �1 ! : : : ! �ai ! stated ! stated of database d.
The corresponding guard Pd

fi
has type

Pd
fi
: (group Ref ! subject list)! (roled ! subject list)!

subject ! �1 ! : : :! �ai ! stated ! bool

De�nition 41 (Guards for observable operations) Assume observ-
able operation gdi : subject ! �1 ! : : :! �ai ! stated ! �ai+1 of database
d. The corresponding guard Pd

gi
has type

Pd
gi
: (group Ref ! subject list)! (roled ! subject list)!

subject ! �1 ! : : :! �ai ! stated ! bool

Assume any guard Pd
h (internal or observable) of type (group Ref !

subject list) ! (roled ! subject list) ! subject ! �1 ! : : : ! �an !

stated ! bool . In case Pd
h nab acl s x1 : : :xan st = true we say that subject s

is permitted to execute operation hd with arguments x1; : : : ; xan in state st
and context nab and acl .

Example 19 (Discussion bboards { Guards) In Example 18 we have
de�ned the following bboard operations: new-mainbboard , response-tobboard ,
assign-group-rolebboard , map-categoriesbboard and categories-rebboard . For all
of these operations we de�ne corresponding guards.

� new-main : This operation creates a new posting. Authors or above
should be permitted to invoke the operation.

� response-to : Similar to operation new-mainbboard ; responses are
created, though.

10If there is no guard for a function then the constant guard false is used. In case of
multiple guards, these are transformed into a single guard by conjunction.

76

� assign-group-role : This is the only operation for the ACL. No other
subject than a manager is permitted to change the ACL, hence usage
of this operation is restricted to managers only.

� map-categories : Its purpose is to prede�ne the set of available
categories. Editors may apply this operation which has e�ect on the
database pro�le.

� categories-re : So far all operations have been internal. This is the
only observable operation and it computes the set of categories a re-
sponse document is assigned to. We restrict access to the authors of
the respective documents (please note that this decision is arti�cial {
it was only taken to demonstrate access control for authors of docu-
ments).

Now we de�ne the corresponding guards11.

Pbboard
new-main : (group Ref ! subject list)! (rolebboard ! subject list)!

subject ! main ! statebboard ! bool

Pbboard
new-main nab acl s d st = s 2 (acl Author)

Pbboard
response-to nab acl s r d st = s 2 (acl Author)

Pbboard
assign-group-role nab acl s g r st = s 2 (acl Manager)

Pbboard
map-categories nab acl s f st = s 2 (acl Editor)

Pbboard
categories-re nab acl s r st = (s = (dref r st :data-space):author)

Earlier on we asked if Peter really was permitted to post his note. Assum-
ing the surrounding name and address book from Figure 3.6 we can now
answer the question with a formal argument: Taking functions members m
and assignees m ACLbboard

00
(see Example 13) to compute the surrounding

context, the guard

Pbboard
new-main (members m) (assignees m ACLbboard

00
)Peter myposting st 00 =

Peter 2 (assignees m ACLbboard
00
Author)

reduces to true which means that Peter was right. At the same time, Peter
was not permitted to change the ACL

8g r : Pbboard
assign-group-role (members m) (assignees m ACLbboard

00
)Peter g r st 00 =

Peter 2 (assignees m ACLbboard
00
Manager) = false

since he was no manager of the database. 2

11To ease readability we omit some of the type declarations. The type declarations
should be clear from the de�nitions of the operations

77

3.2.7 Name and address book

In groupware systems, the name and address book (NAB) is the central
database where subjects and groups are stored. In order to get access to
some application a user has to be registered within the NAB (except for
anonymous access which has to be dealt with explicitly). For each subject a
document (personal document) is kept which at least contains the name of
the user. Often the personal document also contains key data as password or
eMail address. Analogously, there is a document (group document) for each
group listing members and subgroups. Often the group documents contain
further information as e.g. the name of the administrator who created the
group.

As far as our framework Logos is concerned, we store group documents
but no explicit personal documents in the NAB. Personal documents are
taken as a special case of group documents consisting only of a single mem-
ber. In the following we nevertheless will speak of personal documents in
Logos meaning the degenerated group documents.

Just as in many real groupware systems (e.g. as in Lotus Notes) the
NAB is an ordinary database with personal and group documents taken
as documents of the database. The dataspace is uniform for all name and
address books: a collection of group documents.

De�nition 42 (NAB - Data space)

type data-spaceNAB = group memory

The roles, pro�le documents and operations are { as for any database {
freely de�nable within the restrictions explained in the previous sections.
Each groupware system may de�ne its own structure. The states of NABs
are as expected:

De�nition 43 (NAB - States)

type stateNAB = fdata-space : data-spaceNAB ;

pro�le : pro�leNAB ;

acl-groups : roleNAB ACL-groupsg

There is one peculiarity, though, concerning initial states. In De�nition 37
we have de�ned the dataspace of initial states to be empty. No user was
then able to work with the NAB since no user was registered in the NAB.
The same holds for any other database, too. The groupware system would
be stuck even before it had started to become alive. For the special case of
the NAB, we have to have some initial data in the dataspace { the manager
of the whole application.

78

De�nition 44 (NAB - Initial States)

initial-stateNAB : roleNAB ! pro�leNAB ! subject ! stateNAB

initial-stateNAB Manager p s =
fdata-space = single-usergroup s (Ref 0) newmemory;
pro�le = p;
acl-groups = � x : if x = Manager then [Ref 0] else []g

Once more we illustrate the de�nitions by our running example of discussion
bboards. To do so, Harry creates a new groupware application in which Tom,
Peter and Jenny are registered step by step. For each of them a personal
document is generated in the name and address book and all of them are
getting organised in a group hierarchy as indicated in Figure 3.6.

Example 20 (Discussion bboards { NAB) The �rst thing to do is to
generate a groupware application. As already mentioned, Harry will generate
the application. To this end he will use function initial-stateNAB . All we
then need to know is how the roles and the initial pro�le document for the
NAB look like. We simply assume that the roles of the name and address
book are the same as for the database of bboards (type roleNAB = rolebboard)
and that the pro�le is empty i.e. has type unit .

nab = initial-stateNAB Manager ()Harry

Next, Harry registers Peter and then appoints Tom administrator for the
whole application (in addition to himself). Tom in turns takes on his duty
and registers Jenny.

In order to realize these steps, we need a number of operations. We reuse
operation add-docsystem which we have de�ned polymorphically and which {
as a consequence { may be instantiated for our NAB.

add-docNAB : subject ! dataNAB ! stateNAB ! stateNAB

add-docNAB = add-docsystem

Beyond that we only need one further operation to add members to groups
in our NAB:

addmemberNAB : subject ! subject ! (group Ref)! stateNAB ! stateNAB

addmemberNAB s s0 r st = stfdata-space := addmember s 0 r st :data-spaceg

We do not spell out the guards for these operations literally, but it would be
easy to �ll this gap: authors of the NAB may add new groups whereas only
editors are permitted to edit existing groups.

Now we are ready to de�ne the sequence of NAB registrations12:

12To be precise, we also had to de�ne personal documents for Harry, Tom, Peter and
Jenny (i.e. for all single-user groups) which we have omitted for sake of simplicity

79

nab
0 = add-doc

NAB
Harry g1 nab;

nab00 = addmemberNABHarry Tom (Ref 0) nab0;

nab000 = add-docNAB Tom g2 nab
00

with

g1 = Admins [Ref 0]; AddSubgroup (Ref 0); AddMember Peter

g2 = Admins [Ref 2]; AddSubgroup (Ref 0); AddMember Jenny

Name and address book nab000 then realizes the group memory as indicated
in Figure 3.6. 2

3.2.8 Object-oriented concepts

The de�nitions we have given so far are complete in the sense that they
su�ce to model groupware systems and their applications. The mechanisms
we introduce in this section have no impact on the expressivity of Logos
but rather improve its applicability by helping to structure operations and
correctness proofs.

Object-orientation has established in software engineering as a means to
structure programs and to reuse code. In Chapter \Foundations" (see 2.2.2)
we have shown how to embed object-oriented structuring mechanisms as
inheritance, overriding of methods, abstract methods and late-binding into
HOL and how to deal with veri�cation of such object-oriented programs.
The resulting logical environment was called HOOL.

In this section we apply HOOL to Logos attaining a way to organise
groupware applications along the lines of object-oriented concepts while at
the same time retaining the full
exibility of veri�cation in HOL. The def-
initions of Section 2.2.3 su�ce to account for object-oriented structuring
of groupware applications. All that remains to do is to show by means
of example how to apply these mechanisms to Logos. We do not demon-
strate all mechanisms but rather restrict ourselves to the most important
ones: self-reference, abstract methods13, method overriding, inheritance and
late-binding.

Example 21 (Discussion bboards { Object-oriented concepts)

So far we have only dealt with discussion bboards as the only kind of
databases which meant that a hierarchy of databases was non-existent. In
this example we introduce some hierarchy { introducing a new database:
response documents. The hierarchy is summarised in Figure 3.12.
The database of response documents generically provides two kinds of
documents: main documents and response documents. Response documents

13We will use the terms \method" and \operation" as well as \class"and \database"
interchangeably.

80

response documents
(abstract class)

discussion bboards
(class)

main = {author:string, ...1}
response = {parent:main Ref, author:string, ...2}

main = {author:string, date:date, categories:string list, note:string}
response = {parent:main Ref, author:string, date:date, note:string}

categories
response

categories
main

categories
response

categories
main

late-binding

self-reference

overriding inheritance

abstract operation

Figure 3.12: Object-oriented concepts

can only coexist with their corresponding main documents. In this sense,
each response document contains a link to its main document. The �rst
thing we do is to de�ne the data, data space and state of this database.

There is not much structure inherent in the data of response documents.
All we postulate is that the name of the author is stored both for main doc-
uments and response documents and that response documents contain a ref-
erence pointing to the corresponding main document.

record main =
author : string

record response =
parent : main Ref
author : string

In Section 2.2.1 we have explained how records are translated to HOL (using
a shallow encoding). Recall that main and response are declared as extensible
records, i.e. we may use types main = fauthor : string; : : :g and response =
fparent : main Ref ; author : string; : : :g from now onwards.

As we have said, the database of response documents contains two kinds
of documents: main documents and response documents. This is re
ected
in the de�nition of the data by a co-record composed of main and response.

81

(: : :1 ; : : :2)data
response =

fj main : fauthor : string; : : :1g;
response : fparent : main Ref ; author : string ; : : :2g jg

Admittedly, the notation : : :1 and : : :2 is quite unusual, but this is a sim-
ple consequence from our decision in Section 2.2.1 to introduce \: : :" as a
syntactic part of HOOL (in particular as abbreviation for type variables).
The extensible records main and response might be instantiated di�erently
in \subclasses" { hence we need subscripts to di�erentiate them.

Once you got accustomed to the unusual notation, you will �nd the type
of states quite standard. Since we do not want to anticipate the pro�le
documents and the roles at all, the states are polymorphic in their types.

type (: : :1 ; : : :2 ; �; �)stateresponse =
fdata-space : (: : :1 ; : : :2)data

response
memory;

pro�le : �;
acl-groups : � ACL-groupsg

Next we introduce our �rst operation: categoriesresponsemain . Its purpose is to
compute the categories a main document is assigned to. In contrast with the
next operations it is abstract, i.e. no implementation is given. Please note
that implementations would not make sense at this stage either since main
documents at this level of the hierarchy do not make any statement about
their categories.

categories
response
main : subject ! (: : :1 ; : : :2)data

response Ref !
(: : :1 ; : : :2 ; �; �)stateresponse ! string list

Taking any implementation of categoriesresponsemain for granted { referring to
methods (operations) of the same class (database) is often called \self-
reference" in object-oriented programming languages { we can de�ne an op-
eration categories-reresponse , which computes the set of categories a response
document is assigned to. Basically, it �rst picks out the corresponding main
document and then applies operation categoriesresponsemain to this document.

categories-reresponse : subject ! (: : :1 ; : : :2)data
response

Ref !
(: : :1 ; : : :2 ; �; �)state

response ! string list

categories-reresponse s r st = categories
response
main s (dref r st :data-space):parent st

As far as our example is concerned, we have concluded the database of re-
sponse documents. Let's progress now in our hierarchy and rede�ne dis-
cussion bboards on the basis of response documents. In the database of
bboards we want to override the abstract operation categoriesresponsemain with
a concrete implementation for bboards. Operation categories-reresponse gets
inherited from the response documents falling back upon the newly imple-
mented categoriesresponsemain due to late-binding.

82

Overriding the abstract method categoriesresponsemain amounts to de�ning it
for concrete instantiations of the type variables. Overloading permits dif-
ferent implementations in di�erent levels of the hierarchy provided the type-
instantiations di�er. We instantiate the type-variables to achieve the same
types of data and data space as in Example 8.

type ext1 = (fdate : date ; categories : string list; note : stringg;
fdate : date ; note : stringg)

type ext2 = (ext1; pro�le
bboard ; rolebboard)

categories
response
main s (r : (ext1 data

response)Ref) (st : ext2 stateresponse) =
(dref r st):categories \ st :pro�le:categories

The following trivial lemma shows that late-binding really works in Logos:

Lemma 16 (Late-binding)

categories-rebboard s r st � st:pro�le:categories

with

categories-rebboard s r st =
categories-reresponse s (r : (ext1 data

response)Ref) (st : ext2 stateresponse)

Please note that instantiation ext2 is more speci�c than needed { for the
pro�le documents and the roles we have unnecessarily chosen particular,
concrete types. All that is required is that the pro�le documents contain a
document categories : string list. A more general instantiation would use the
following type instantiation ext3 in spite of ext2.

type ext2 = (ext1; fcategories : string list : : :g; �)

Using overloading to express late-binding is pretty unusual and has some
quite unexpected consequences. Looking at operation categories-reresponse

you will notice that it is polymorphic in operation categoriesresponsemain . The
realization of this feature, though, is quite di�erent from what you probably
would expect: polymorphism by higher-order functions (see e.g. [12] where
late-binding really has been modelled by higher-order functions). Overload-
ing paves the way to write higher-order functions without having higher-
order functions explicitly at hand. We believe that this is one of the reasons
why late-binding has become so popular in object-oriented programming lan-
guages: it allows (at least to some extend) for the expressiveness of higher-
order functions without having to enrich the language with explicit higher-
order functions. Furthermore it enables users to use higher-order functions
without ever having heard of this powerful mechanism. 2

Please note that guards (see De�nitions 40 and 41) are ordinary functions in
HOL and hence are subject to object-oriented concepts just as operations.

83

Excursion: Dependent types

In the previous de�nitions we have freely indexed over the name of the
database. For example, we have stated in De�nition 36:

type stated = fdata-space : datad memory;

pro�le : pro�led memory ;

acl-groups : roled ACL-groupsg

To be honest, this is not a valid de�nition in HOL since in HOL there is no
mechanism to instantiate \d" with the name of the desired database. The
reason is that HOL possesses a simple type system which does not permit
any dependencies between types and terms. This is no real obstacle, though,
since our de�nition can be read as a meta-de�nition (or more precisely meta
de�nition-scheme) with valid HOL-instantiations in applications. Being an
instance of above meta-de�nition, the de�nition

type statebboard = fdata-space : databboard memory;

pro�le : pro�lebboardmemory ;

acl-groups : rolebboard ACL-groupsg

from Example 16 is a valid de�nition in HOL.

Had we taken a type theory with dependent types (as e.g. Calculus of Con-
structions { see [20]) as formal basis for Logos, we would have been able
to formalise the meta-de�nitions in the logic itself. The de�nition of stated

would then have been rewritten as

state : database-names ! �
state d = fdata-space : (data d)memory ;

pro�le : (pro�le d)memory ;
acl-groups : (role d)ACL-groupsg

with database-names being some universe for database names. Please note
that no corresponding type exists in Logos since the set of database names
is part of the meta-language and not part of Logos itself.

The declaration state : database-names ! � expresses that state is a
type constructor which, given a database name, returns a type (by the way,
data and role are type constructors of the same kind). In the de�nition of
state the de�ning term is abstracted over the database name.

As a consequence, the following de�nition of statebboard is a valid type
de�nition in a type theory with dependent types { applying type constructor
state to bboard (assuming bboard : database-names):

statebboard : �
statebboard = state bboard

84

Although expression \bboard" occurs twice in this de�nition, its meaning is
completely di�erent in each case. On the right hand side of the equation
\bboard" occurs as a typed term of the logic, whereas the same expression
on the left hand side of the equation is a syntactic sub-term with \bboard"
typeset in subscript (rather than typesetting \statebboard") only to ease
reading in the presentation.

Being able to represent database names within Logos would also have
consequences for the operations. Function initial-state, for example, would
be assigned the following type.

initial-state : 8d : role d ! pro�le d ! group Ref ! state d

The implementation of initial-state would have to be abstracted over
the name of the database { in addition to the abstractions of the former
De�nition 37. De�ning a function to generate the initial state of discussion
bboards would amount to functional application: initial-state bboard .

In a sense, these remarks justify our previous meta-de�nitions with true
HOL-instantiations in Logos. In contrast with dependent types, this in-
stantiation can only take place on a meta-level, whereas it could take place
within the logic, if we had chosen dependent types as foundation for Logos.

The superiority of type theories with dependent types over the type
system of HOL in the just mentioned sense might suggest to use such a type
theory rather than HOL as formal basis for Logos. As far as the expressivity
of de�nitions is concerned, the argument is justi�ed. In particular we would
come up against limiting factors if we tried to prove meta-theory of Logos
within HOL itself. All meta-de�nitions would evade such investigations
in HOL { even though such investigations still were possible on a meta-
mathematical level, i.e. beyond HOL.

Experience (see [12, 22, 23, 24, 25, 26]) has shown that the expressiveness
of systems with dependent types in turn is a burden in concrete applications.
When dealing with applications pragmatically, systems that implement the
simple type system of HOL (like Isabelle/HOL [28]) are superior to systems
that implement dependent types theories (like LEGO [36] or Coq [5]).

3.3 Groupware systems and applications

So far we have dealt with single databases but we have not made explicitly
clear how to deal with particular groupware systems or concrete applications
consisting of a number of databases. At some points we have pointed out
already that from the Logos point of view groupware systems and applica-
tions do not make much of a di�erence: both of them provide databases
including data spaces and operations.

85

From a more practical point of view, though, groupware systems and
applications di�er. A groupware system is implemented only once and then
applied for di�erent purposes. Its correctness is proven (or at least investi-
gated) once and forever. The situation is completely di�erent for concrete
applications. For each application a new implementation including correct-
ness proof is required.

Later in this paper we will deal with both issues (groupware systems
and applications) explicitly. In Chapter 4 we show how to model the key
authorisation concept of Lotus Notes in Logos. In the subsequent chapter
we re�ne this model and present a concrete application of discussion
bboards shared by several teams.

For this section we do not di�erentiate between groupware systems and ap-
plications. An application is viewed as a concrete extension of a groupware
system by application speci�c peculiarities. In case of this extension being
empty, the just given notion of \application" collapses with the notion of
\groupware system". We therefore use the terminology \application" uni-
formly to denote true applications as well as groupware systems.

Any application consists of a number of databases. The state of a con-
crete application is the product of the states of its databases. Transitions
of the application's state are regulated by access control mechanisms.

3.3.1 Databases

Although we have de�ned all constituents of databases already in the last
section, we will have a closer look at databases again. As a repetition recall
that any database comprises:

� Dataspace: Collection of data

� Pro�le Documents: Con�guration

� ACL: Access rights

� Operations: Dynamic behaviour

� Guards: Access control

For each of these notions we have given a complete de�nition in HOL, but
we have not given a precise HOL de�nition for databases as a whole yet.
The reason is that there are a number of alternatives { each of them with
far-reaching consequences. We discuss two extreme alternatives and vote for
one of them which we will follow throughout this paper.

The major question that arises is which components may be subject
to change and which are invariant. An extreme position was to have no
invariant components at all. In this case even the implementation (i.e. the
operations) could be changed by users. Clearly, this model would be most

86

exible at the prize of complicating all de�nitions heavily. Furthermore, the
type system of HOL would not be su�cient. A type system with dependent
types (as e.g. [20]) would be required to achieve full
exibility.

From a more pragmatic point of view most applications can cope without
this full generality. For these applications a simpler solution su�ces and {
which is much more important { is much more manageable. With our deci-
sion to choose HOL rather than a sophisticated type theory with dependent
types we have already preferred pragmatic arguments to theoretical ones.
It is only consequent to have as many static components as possible and to
reduce the variable part of a database to a minimum. In this sense we have
de�ned the state (i.e. the variable part) only to consist of the dataspace, the
pro�le documents and the group assignment in the ACL. We believe that
this is the minimal con�guration needed for true applications while at the
same time covering most cases. We will back up this claim in Chapter 5
where we develop a non-trivial application of shared bboards in Logos.

To summarise, there is no single HOL de�nition for databases. Each
database comprises a set of HOL de�nitions { each of them describing a
particular aspect of the database. Combining these aspects into a single
de�nition is only possible on a meta-level.

Please note, that Section 3.2.8 substantially bene�ts from this decision.
Modelling late-binding by overloading requires individual HOL de�nitions
for each operation and would fail if all operations were packed together in a
vector.

3.3.2 States

Just as we have reduced the variable part in single databases to a minimum,
we do the same for whole applications. Although it would be in principle
possible to change the mixture of databases while execution (as it is feasi-
ble in real groupware systems like Lotus Notes) we assume that the set of
databases is invariant (for an example of a dynamically changing database
structure see the case study in Chapter 5 where we allow dynamic generation
of a particular kind of databases { namely the so-called local NABs).

The states of applications hence are records with the states of the sin-
gle databases as �elds. Each application contains at least one particular
database: the name and address book.

De�nition 45 (States) Assume d1; : : : ; dn being the names of databases
which application a consists of. The type of possible states for this applica-
tion is statea .

type statea = fnab : stateNAB ; std1 : stated1 ; : : : ; stdn : statedng

Allowing the mixture of databases to change while execution still would
require that the set of possible databases was �xed i.e. no new kinds of

87

databases were implemented while execution { only new instances of already
existing databases were derived. The set of possible databases (to be precise
their states) would have to be summarised into one single sum type all-states .

type statea = fnab : stateNAB ; st : all-states listg

The requirement of a �xed set of possible databases even could be dropped
using existential types (see [17, 18] for �rst-class abstract types) assigning st
type (9�:�) list. But unfortunately, existential types are not incorporated
into HOL.

In Section 3.2.6 we have de�ned operations for single databases. Lifting
these operations to whole applications is generic and simple.

De�nition 46 (Lifting internal operations) Assume d being the name
of a database and f di : subject ! �1 ! : : : ! �n ! stated ! stated be-

ing an internal operation. The corresponding lifted operation f a; di (lifted to
application a) is de�ned as follows:

f
a;d
i : subject ! �1 ! : : :! �n ! statea ! statea

f
a;d
i s x1 : : : xn st = lift

a;d (f di s x1 : : : xn)

with

lift
a;d : (stated ! stated)! (statea ! statea)

lift
a;d

f st = stfstd := f st :stdg

De�nition 47 (Lifting observable operations) This de�nition is anal-
ogous to the lifting of internal operations, though using the following lifting
function instead.

lift
a ;d : (stated ! �n+1)! (statea ! �n+1)

lifta ;d f st = f st :std

In the previous sections we have developed some pieces of a jigsaw but we
have not shown how the pieces �t together. In the following example we will
put the pieces together { a uniform picture appears. To keep indices small,
we call the application of bboards simply \b".

Example 22 (States of applications) In this example we �rst perform
the registrations from Example 20 and then deal with the database of bboards
as shown in Example 18.

88

state1 := fnab = initial-state
NAB

Manager ()Harry;

bboard = initial-statebboardg;

state2 := (add-docb;NAB Harry g1) state1;

state3 := (addmember b;NABHarry Tom (Ref 0)) state2;

state4 := (add-docb;NAB Tom g2) state3;

state5 := (map-categoriesb; bboard Harry (� x : x++C)) state4;

state6 := (assign-group-roleb; bboard Harry (Ref 1)Editor) state5;

state7 := (assign-group-roleb; bboard Tom (Ref 2)Author) state6;
state8 := (new-mainb; bboard Peter myposting) state7;
state9 := (response-tob; bboard Jenny (myresponse (Ref 0))) state8;

with

g1 = Admins [Ref 0]; AddSubgroup (Ref 0); AddMember Peter

g2 = Admins [Ref 2]; AddSubgroup (Ref 0); AddMember Jenny

C = [\meetings"; \travel"; \project"]

The resulting state of the application is depicted in Figure 3.13. 2

2

Jenny

1

Peter

0

Harry
Tom

Manager
Editor
Author
Reader

nab

bboard

()

parent: Ref 0
author: Jenny
data: 03/17/2000
note: ’200$ is ...’

author: Peter
date: 03/16/2000
categories:
 [’meetings’,’travel’]
note:
 ’My travel ...’

10

acl data-space profile

Manager
Editor
Author
Reader [’meetings’,

 ’travel’,
 ’project’]

Figure 3.13: State of application

3.3.3 Access control

In Section 3.2.6 we have done solid groundwork for a comprehensive model
of access control. For each operation we have de�ned a corresponding guard

89

that decides under which circumstances the operation may be used by some
subject. In the de�nition of guards we have taken functions (the context)
of type group Ref ! subject list (NAB) and roled ! subject list (ACL) as
input without explaining in detail how to generate input functions of this
kind. When lifting guards to applications (see subsequent de�nition) we �ll
this gap.

De�nition 48 (Lifting guards) Assume any guard Pdk
h for internal or

observable operation hdk of database dk with input types (group Ref !

subject list); (roledk ! subject list); subject ; �1; : : : ; �n and statedk . The

lifted guard (lifted to application a) is called Pa;dk
h and has type

P
a;dk
h : subject ! �1 ! : : :! �n ! statea ! bool

It is de�ned as

P
a;dk
h s x1 : : : xn st = P

dk
h (members st :nab :data-space)

(assignees st :nab :data-space acl)
s x1 : : : xn st :st

dk

with

acl = fgroups = st :stdk :acl-groups; roles = acl-rolesdkg

Please note that Pa;dk
h does { in contrast with Pdk

h { not depend upon any
context. The context is hidden in the NAB of the application and in the
ACL of the database, equally.

Example 23 (Lifting guards) In Example 19 we have de�ned guard
P bboard
new-main for operation new-mainbboard . We have mentioned that this guard

depends upon the surrounding context. The surrounding name and address
book and access control list, though, was only sketched. Using lifted guards
we con�rm that Peter was permitted to post his note:

P
b; bboard
new-main Peter myposting state7 =

Pbboard
new-main (members state7:nab :data-space)

(assignees state7:nab:data-space acl)
Peter myposting state7:bboard =

Peter 2 (assignees state7:nab:data-space acl Author) = true

with

acl = fgroups = state7:bboard :acl-groups; roles = acl-roles
bboardg

2

Lifting guards to applications has lead us one step further but we have not
hit the target yet. We are able now to express and prove that single steps
of the application meet some requirements. In order to prove properties
of the whole application, we �rst have to determine the potential steps of
the application. To this end a \closed-world assumption" is used: the set

90

of operations and guards of the application is enumerated { the closed-
world assumption guarantees that the application exactly consists of these
operations and guards. Formally, we de�ne an inductive set: the set of
potential steps (or transitions, if you like).

De�nition 49 (Transition relation) Assume any application a. The in-
ductive set transitiona : (statea � subject � statea)set is de�ned by the fol-
lowing introduction rules (we write st

s
�!a st 0 rather than (st ; s ; st 0) 2

transitiona).
For each database dk and for each operation f a; dk of the database (with

corresponding guard Pa;dk
f) de�ne an introduction rule.

P
a;dk
f s x1 : : : xn st

st
s
�!a f

a;dk s x1 : : : xn st

Additionally de�ne a rule st
s
�!a st (re
exivity of the transition relation)

which expresses that any subject s may invoke no operation i.e. leave the
state st unchanged at any time.

We read st
s
�!a st 0 as: subject s may transform state st of the application

a to state st 0.

Example 24 (Transition relation) Among the many introduction rules
for bboards we pick the one for operation new-mainbboard of database bboard.
See Example 19 for the de�nition of P bboard

new-main .

P
b; bboard
new-main s x st

st
s
�!b new-main

b; bboard s x st

All variables in this introduction rule for new-mainbboard are universally
quanti�ed. Instantiating subject s with Peter, posting x with myposting and
the state st with state7 we get a precondition, which we already encoun-
tered: P b; bboard

new-main Peter myposting state7. In Example 23 we have answered
this precondition positively already.

Example 24 demonstrates that we are able now to express and verify the
correctness of single transitions. Furthermore we know from the inductive
de�nition of transitiona which transitions the application consists of. All
that remains is to put the pieces together and to de�ne the set of admissible
states of the application (i.e. the states that can be reached from admissible
initial states applying admissible transitions only).

De�nition 50 (Admissible states) Assume some application a. The set
of admissible states admissiblea : statea set for this application is de�ned by
the following introduction rules.

91

All initial states of the application are admissible. Initial states of an
application consist of all initial states admissible for single databases.

fnab = initial-stateNAB ManagerNAB pNAB sNAB ;
std1 = initial-state Managerd1 pd1 rd1 ;
� � �
stdn = initial-state Managerdn pdn rdng 2 admissible

a

The second introduction rule expresses that admissible states are invariant
under transitions of relation transitiona .

st 2 admissiblea ^ st
s
�!a st

0

st 0 2 admissible
a

Example 25 (Admissible states) De�ning the set of admissible states
for bboards is straightforward. See Example 22 for the de�nition of state1.

state1 2 admissible
b st 2 admissible

b ^ st
s
�!b st

0

st 0 2 admissible
b

In a remark to De�nition 49 we have stated that we read st
s
�!a st 0 as:

subject s may transform state st of the application a to state st 0. Assume
st not being admissible. In this case we wouldn't call such a transition
admissible. The de�nition of admissible transitions takes care of this issue.

De�nition 51 (Admissible transitions) Assume some application a.
Relation =)a of admissible transitions is de�ned as

st
s

=)a st
0 = st 2 admissible

a ^ st
s
�!a st

0

Analogously we de�ne a number of transition relations for admissible obser-
vations.

De�nition 52 (Admissible observations) Assume some application
with name a. For each observable type � (i.e. each type which is observable
type of some observable operation) de�ne an inductive transition relation
=)a; � : (statea � subject � �)set. For each observable operation gdk of
database dk with observable type � state an introduction rule:

st 2 admissiblea ^ Pa;dk
g s x1 : : : xn st

st
s

=)a; � g
a ;dk s x1 : : : xn st

Example 26 (Admissible transitions and observations) All of the
transitions (statei to statei+1) from Example 22 are admissible. Apply-
ing function categories-reb; bboard Jenny (Ref 1) to state9 also is admissible
i.e. Jenny may compute the categories of her response provided the applica-
tion is in state9. 2

92

All de�nitions we have introduced so far serve the same purpose: modelling
access control for groupware applications. What we have not shown yet is
how to deploy these de�nitions to state properties of applications and how
to prove their correctness w.r.t the properties. The following simple lemma
�lls this gap.

Example 27 (Discussion bboards { Authors registered in NAB)
First we state the proposition to be proved. It expresses that all subjects
entered in the author �elds of postings or responses are registered in the
NAB.

8st 2 admissibleb: 8d 2 objects (st :bboard :data-space):
d :author 2

S
g2objects groups membersaux (Some g) groups

with

groups = (st :nab :data-space)

The proof �rst requires induction on the set of admissible states and then
elimination of the relation transitionb.

The base case for the induction on the set admissibleb is conceivably
simple: the dataspace of state1 is empty. For the induction step we may
assume that st 2 admissibleb and that st

s
�!b st

0. As we have some transi-
tion in our assumptions we may use elimination which basically amounts to
case distinction. In each case we may assume that the corresponding guard
holds.

Case 1: st 0 = new-mainb; bboard s d 0 st
As we have said, we may assume that the corresponding guard holds i.e.

Pbboard
new-main (members st:nab:data-space)

(assignees st :nab:data-space acl)
s d 0 st :bboard = s 2 (assignees st:nab:data-space acl Author)

with acl = fgroups = st:bboard :acl-groups; roles = acl-roles
bboardg

This case follows from

assignees st :nab :data-space acl �S
g2objects (st:nab:data-space)membersaux (Some g) (st :nab:data-space)

together with

objects(st 0:bboard :data-space) =
d 0fauthor := sg

S
objects(st:bboard :data-space)

Case 2: st 0 = response-tob; bboard s r d st
Similar to Case 1.

Cases 3{5: Trivial since the operations do not a�ect the dataspace of
bboard.

2

93

Chapter 4

Modelling Lotus Notes in

Logos

As far as groupware solutions are concerned, there are essentially three com-
petitors which share the market: Lotus Notes, Microsoft Exchange and Nov-
ell Groupwise { in the given order. In Europe, for example, over 50% of all
groupware systems that have been installed in the �rst quarter of the year
2000, have been based on Lotus Notes; another 38% have been based on
Microsoft Exchange.

All three of them have been used for a long time, but nevertheless
they are quite di�erent with respect to their functionality. Over the
years, Lotus Notes has evolved from a simple database application to a
comprehensive groupware application platform which o�ers much more than
ordinary workgroup functionality (like email, calender or task and resource
management) and which can be used as basis for knowledge management
in large enterprises. In contrast with Lotus Notes, Microsoft Exchange and
Novell Groupwise are developed by companies which are mainly focused on
operating systems. Likewise restricted are their functionalities.

In the last chapter we have proposed Logos as a model for authorisation
in groupware systems. Clearly, a theoretical model cannot capture all
subtleties involved in such a wired system as Lotus Notes or Microsoft
Exchange. Trying to �nd a complete model for these real life systems
is hopeless from the beginning. Nevertheless, real-life security-critical
applications provoke the need for at least some formal methods to improve
their quality (being aware that full veri�cation is far beyond what can
be achieved). Even a formal language in which to specify central aspects
of security critical applications would be a huge step towards a more
systematic and hence less error-prone software-engineering. We do not
claim that Logos is a ready to use product to this end, but we would like to
push forward towards a more formal treatment of access control in real-life

94

groupware applications.

In this section we focus on Lotus Notes { the leading system in the group-
ware market. We have not chosen upon this system for its dominance in the
market but for its
exibility with respect to security critical applications.
Being a
exible platform in which to implement applications with sophisti-
cated levels of access rights distinguishes Lotus Notes from the competitors
and makes it an ideal candidate for our investigations.

4.1 About Lotus Notes

Lotus Notes may well be called \pioneer" with respect to groupware systems.
It was the �rst system to support computer based cooperation between work-
ing groups. Nowadays, Lotus Notes is a modern messaging system, which
aims at e�cient communication, information exchange and knowledge man-
agement and thus is used to support project work and intranet or extranet
solutions.

4.1.1 Functionality

Although Lotus Notes provides a huge variety of functionalities, the key
functionalities can be categorised as follows.

� Data storage: Documents in a Lotus Notes database may contain
objects that belong to quite a number of datatypes { including text,
rich text, numbers, pictures, audio and video �les and many more.
The integrated full-text search engine permits indexing and searching
of documents. The presentation of the stored objects can be deter-
mined dynamically, depending on the user's name, status or personal
preferences.

� Directory: All information concerning servers, con�guration, admin-
istration, user registration and security are stored in a single database
(directory) which can be dealt with like any other database. The di-
rectory is the basis for robust and secure applications.

� Replication: The purpose of replication is to synchronise informa-
tion (documents) and application (databases) that are spread spatially.
Replication concerns all aspects of applications down to the smallest
entities like �elds.

� Messaging: Messaging comprises working group functionalities such
as shared project management, calendars, newsgroups, discussion
bboards and email, which is the core functionality for intranets in
enterprises. All these messaging tools are implemented as ordinary

95

databases in the framework Lotus Notes and hence may be adapted
freely for concrete applications.

� Integration: Lotus Notes, which itself is not a relational database,
may be connected to relational databases, transaction systems or ap-
plication programs. To this end it supports a wide variety of standards
as e.g. CORBA.

� Work
ow: A special work
ow engine helps to distribute documents,
to forward them and to track their way as they process in a work
ow.
Part of the work
ow support is also a version control.

� Agents: Agents are program parts the help to automatise repeatedly
occurring tasks. They may be triggered manually, by events or period-
ically. Recently, a java virtual machine has been integrated to support
java agents.

This functionality is spread over a number of tools which can be used to
implement and administrate applications that are tailored to the demands
of the customers.

4.1.2 Components

Lotus Notes is a client-server architecture { hence the server plays a vital
role for a robust application. The Lotus Notes server is administrated by
means of commands edited in a console (local or remote). Typical tasks
that are performed by an administrator are broadcast messages, releasing
resources or shutting down the server. Since administrating a server on a
console is cumbersome, there is a special client called administrator client
which provides a graphical user interface to support administration.

Usually the Lotus Notes Server is accessed over a local area network or
the internet using a special client { the Lotus Notes Client. The Lotus Notes
client is a graphical interface controlling the communication between the
users and the system. A word processor for editing documents is integrated
as well as a formula language to automatise tasks that occur repeatedly.

Recently, the Lotus Notes Server has been opened for web standards,
which in particular means that it can be accessed over the internet protocol
HTTP. When invoked over this protocol, the server dynamically generates
HTML pages that are transferred over the internet and can be displayed by
any standard web-browser (such as Netscape Communicator or Microsoft
Explorer). In this case the web-browser plays the role of the client and
hence an explicit installation of the Lotus Notes Client is obsolete. The
part of the Lotus Notes server which deals with web-requests is called Lotus
Domino server.

Application development is supported by a separate tool called Domino
Designer. It is used for the development of databases and allows to adjust

96

all Lotus Notes design elements: forms, views, pages, outlines, framesets
and agents.

� Forms: Forms are used to determine the structure data is stored in.
Data stored by a form is called a document and consists of a number
of �elds. This way forms determine how data is edited and displayed.
Please note that the same document can be displayed by di�erent
forms, which of course leads to di�erent presentations of the same
document.

� Views: Views are lists of documents sorted by particular criteria.
They help users to �nd the documents they want and serve as sum-
maries of the database contents. Every database must have at least
one view, although most databases have more than one view.

� Pages: Pages make it possible to display text documents without
having to de�ne special forms. Each database contains a folder with
pages where static pages may be deposited.

� Outlines: Outlines are navigation elements similar to classical folder
structures. They are totally
exible in that the developer may inte-
grate views, folders, links to other databases or homepages. Outlines
can be used to build navigation structures which help the users to
oversee some aspects of an application.

� Framesets: Framesets are well-known from web applications. They
are used to split the user interface into clearly de�ned subareas.

� Agents: Agents are used to automatise tasks (see above).

4.1.3 Security

Security in Lotus Notes is achieved by a bunch of coalescent tasks which
are part of the security management: secure transmission of data, authen-
tication, authorisation, certi�cation, con�guration, backups and protection
against hardware failure.

Levels

The security tasks are distributed over a number of levels up from the net-
work down to single �elds. For each of these levels, which are listed in more
detail below, the system administrator, database developer or database man-
ager may protect the system against unwanted access.

� Network: Many companies use �rewalls to protect their internal net-
work and data against unwanted access. In order to permit external
access to the Lotus Notes (or Lotus Domino) server by Lotus Notes

97

Clients or web-browsers the con�guration of the network has to enable
port 1352 or port 80, respectively. Any other port may be blocked.

� Operating system: The Lotus Notes server supports a number
of server platforms: Windows NT, Windows 2000, OS/2, AIX,
Linux, Sun Solaris, HP-UX, OS 390 and OS/400. Since Lotus Notes
databases are stored as ordinary �les on the operating system, the
security of the operating system (including the underlying hardware)
plays a vital role.

� Servers: An important step towards a secure system is the con�gura-
tion of the server document. The administrator determines if anony-
mous access to the server is forbidden. To increase security, anonymous
access ought to be denied. In case anonymous access is intended ex-
plicitely for a concrete database (e.g. for the home-page of a company)
this database is to be replicated to a separate partition of the server
where anonymous access is permitted. Since remote access to the
server for the purpose of con�guration is permitted, the access rights
to the server document have to be set with great care { otherwise the
core of the system may be opened unintentionally.

� Databases, forms, views, documents and �elds: Security at
these levels mainly consists of authorisation issues which we describe
in detail in Section 4.2.

Responsibility

Responsibility is laid to a number of people or groups whose duty is to pro-
vide security at their respective levels. The following table gives an overview:

Level Responsible

Network network administrator

Operating system operating system administrator

Server server administrator

Database database manager

Views database developer

Forms database developer

Document author of the document

Section author of the document

Field database developer

Please note that in some cases the responsibility is limited to the respective
level (as for the network administrator) whereas in other cases (as e.g. the
database manager) it extends over all lower levels.

98

Transaction monitoring

Orthogonal to the above listed security levels is the mechanism of transaction
monitoring. Its purpose is to keep track of all access and communication
processes, and it is used to locate disturbances once they have occurred.
All information is stored in a number of log{books, which (among others)
monitor: certi�cations (by the server), actions of particular users, reading
or writing access to databases, eMmail activities, usage of communication
ports and server threads.

Authentication

Authentication is quite di�erent for Lotus Notes Clients and for web-
browsers { depending on the protocol used for communication between client
and server.

Lotus Notes Clients use a proprietary communication and security pro-
tocol which is not applicable to web browsers. The user name and password
are encrypted in a so{called ID{�le which is generated by the server ad-
ministrator and installed by the user on his or hers client. The ID{�le also
contains public and private key of the user.

Web-clients communicate with the server by means of the open HTTP-
protocol, which entails some restrictions as far as Notes-speci�c security
mechanisms are concerned. Authentication is achieved by basic authentica-
tion i.e. user name and password (the password is stored in the name and
address book on the server). As HTML is a page-description language, se-
curity at the level of �elds is not available for web-applications. When using
web clients, Lotus Domino provides the wide spread SSL (secure sockets
layer) security protocol which is based both on public and private keys.

Since the protocols used for authentication are so much di�erent, there
can not be a uni�ed theory dealing with all protocols equally (see [2] for
meta-theoretic investigations of authentication). Each protocol has to be
investigated in detail in order to be certi�ed as being secure. Indeed, there
is a line of theoretical research in its own right dealing with the correctness
of individual security protocols { e.g. see [33, 3]). Authentication is not in
the scope of this thesis and hence taken for granted in the remainder.

So far we have dealt with all security mechanisms { except for authori-
sation. Since authorisation is the major focus of this thesis, we devote the
treatment of authorisation in Lotus Notes a full section.

4.2 Authorisation in Lotus Notes

Authorisation, in contrast to authentication, is a concept which is imple-
mented on the server and does not depend on any communication protocol
used for communication between the server and the clients. In the process

99

of authentication the server gains certainty that the user operating from
a particular client is the person he or she pretends to be. In the process
of authorisation the server chooses { depending on the type of person (in
particular depending on his or hers a�liations) { the information which is
transmitted to the user or changed in databases, depending on the respective
request.

The security concept of Lotus Notes is realized on several layers. This
also applies to authorisation which is realized on the following levels: servers,
databases, forms, views, documents and �elds. Within the several layers
Lotus Notes distinguishes between di�erent kinds of access rights. On the
level of databases, for example, Lotus Notes de�nes managers or developers
which are equipped with extensive rights to modify documents but also
readers which do not possess any means to modify documents. A more
extensive description of the authorisation model implemented in Lotus Notes
can be found in [6].

Prior to focusing on the levels in more details, we have to deal with the
fundamental name and address book { i.e. the database in which to register
all users authenticated for interaction.

4.2.1 Name and address book

All users have to be registered within a central database, which is called
the name and address book (NAB). Being at the heart of any Lotus Notes
application, it is of great importance; access needs to be restricted to a small
number of authorised administrators. The NAB is the central administra-
tion tool comprising documents for users, servers, con�gurations, groups,
connections and many more. Being a database like any other, the NAB
contains documents, ACLs, forms, views etc. (see below).

Each personal document describes the name, �rst name, user name, pass-
word, environment, email-server etc. for a particular user. For unambiguous
identi�cation, the user names have to be unique throughout the NAB. The
HTTP password, which is used for authentication with web-clients, is en-
crypted before storage. Personal documents, which require at least user
name and password, may be created by administrators or { if desired ex-
plicitly { by users themselves. Beyond that, personal documents may be
created by agents, i.e. programs that are executed periodically or manually.

Group documents contain lists of users, servers or groups themselves.
Usually, group documents are created by administrators or agents who
determine the desired group structure. In case ordinary users (i.e. non-
administrators) are permitted to modify group documents, this is achieved
indirectly: these users may modify group documents in di�erent databases
which in turn are copied to the NAB by agents.

Once the �rst Notes server has been installed, Notes automatically cre-
ates a new NAB with the �le name \names.nsf". In case additional servers

100

are added, this NAB gets replicated for each server.

4.2.2 Databases

The NAB is a database like any other { equipped with some special meaning.
We will describe common features of Lotus Notes databases �rst and then
see later how these features apply to the NAB.

Databases are containers collecting data (documents) that are edited by
forms and stored in the �le-system with the extension .nsf. A database
\discussion bboard", for example, contains postings and responses (docu-
ments) that are edited by forms \Posting" and \Reply" respectively. Each
document comprises a number of �elds (e.g. author, title, date or body)
of di�erent types as e.g. text, date, rich text. Documents are accessed by
views, i.e. lists of documents �ltered and sorted by view-speci�c criteria.

The person who creates a new database is assigned manager-rights which
means that he or she may perform any action on that database (de�ning
new forms or views, editing documents, adjusting the access control list, . . .).
Each newly created database initially is empty. The manager implements
the components (mainly forms and views) himself or delegates these tasks
to database developers. It is possible to develop all components from the
scratch, achieving highest
exibility, or to inherit components from database
templates.

Generating a Lotus Notes application is kind of a boot-strapping process.
The initiator of the application �rst installs a new Lotus Notes server. The
system then creates a �le names.nsf (NAB) and assigns manager-rights to
the initiator. The initiator (manager) may generate new personal documents
and thus is in the position to register users. By creating group documents
the initiator may summarise people to di�erent groups - a hierarchic group
structure emerges. After creating new databases, the initiator may delegate
manager-rights (just as other rights) to single people or groups of people
which in turn start developing the database { the whole application emerges.

Access control list

Each database contains an access control list (ACL), which controls the
access rights users posses. Consequently, the ACL is a security mechanism
of Lotus Notes which rules access and actions to the documents, components
and the ACL itself. Single users, groups of users and servers may be listed
in any ACL as long as they are registered in the NAB. Responsible for
the administration of the ACL is the database manager (or the managers
respectively) who may change the entries of the ACL.

Access rights for anonymous users are regulated by entry of the arti�cial
person Anonymous. In order to prevent anonymous users from accessing the
database, person Anonymous has to be excluded from any access rights.

101

Access rights

Access rights are classi�ed along the lines of access levels which users or
groups may achieve. In Lotus Notes there are seven prede�ned possibilities:
managers, developers, editors, authors, readers, deliverers and no access.

� managers: Managers are equipped with the most far-reaching rights
in this hierarchy. They are responsible for the whole database and
hence may edit all documents, change the entries of the ACL or even
delete the database. In particular, managers may perform any action
other users of the database are entitled to.

� developers: Developers may change the structure of the database
(�elds, forms, views, agents, . . .) and may perform any action that
the remaining lower access levels are permitted, too.

� editors: Editors may create new documents and edit all documents {
including documents created by other users. The purpose of editors is
to administrate the contents of the database, that is the documents.

� authors: Authors may create new documents and edit or delete their
own documents. They may not change any other document. Authors
are intended to contribute documents to a database and to adminis-
trate these documents without interfering with other users.

� readers: Readers may only read documents. They may not create,
edit or even delete any document.

� deliverers: Deliverers may create new documents but not change or
read even their own documents. This access right e.g. is suitable for
handing in exams.

� no access: Users that are assigned this status may not access the
database at all. In security critical applications this is recommended
as standard option.

The access rights a user or user group has, can be re�ned in the ACL by dis-
abling certain standard tasks as creating documents or deleting documents.

Besides the above levels, access to forms, views, documents or even single
�elds can be controlled on a grain basis. In each case the access rights can
be re�ned by restricting access to certain users or groups only.

Roles

Since re�nement of access rights can be spread widely over the components,
there is a means to structure and modularise the re�nement: roles. Roles can
be freely de�ned in the ACL of a database. A role summarises a set of users

102

or user groups that posses equal access rights with respect to a database. In
a sense roles are similar to groups which also summarise users. The striking
di�erence between groups and roles is that the central administrators assign
users to groups in the NAB whereas the local manager of a database assigns
users to roles in the ACL of the database.

In the implementation of a database the developers may use roles to
enable or disable concrete access rights as reading or editing documents in
certain cases. If users are added to or removed from roles, these changes can
be implemented easily by recon�guring the ACL. Furthermore, the manager
of a database can detect all di�erent kinds of access rights just by inspecting
the ACL.

Of course, access control can also be achieved directly without usage of
roles by \hard{encoding" names of users or groups. In case of any change
occurring for the access rights, the whole development of the database would
have to be updated. To this end, the manager would have to oversee the
whole, extensive development of the database rather than the local and
compact ACL.

4.2.3 Documents

Readers �elds and authors �elds are particular kinds of �elds that control
access on the level of documents (in addition to form access lists, which
strictly speaking are no true security mechanism { see Section 4.2.5). If a
document contains several authors or readers �elds, their contents is summed
up.

Readers �elds

A readers �eld of a document explicitly lists the users who are permitted to
read the document. As a consequence, a user cannot see a document in a
view without reader access to the document.

Entries in a readers �eld cannot give a user more access rights than
what is speci�ed in the access control list (ACL) of the database; they can
only further restrict access. Users who have been assigned \no access" to
a database can never read a document, even if they are listed in a readers
�eld. On the other hand, users with editor access or above in the ACL can
be restricted from reading documents if they aren't included in a readers
�eld.

Users who have editor (or higher) access to a particular database can
read a document if

� they are listed in any readers �eld or authors �eld or

� the document contains no readers �elds and no authors �elds.

103

Authors �elds

Authors �elds work in conjunction with author access rights in the access
control list (ACL) of the database. Assigning users author access in the
ACL, the users can read documents in the database but cannot edit even
their own documents. Listing users in an authors �eld expands access rights
by allowing the listed users to edit the document.

Entries in an authors �eld cannot override the access control list of the
database; they can only re�ne it. Users who have been assigned \no access"
to a database can never edit a document, even if they are listed in an authors
�eld. Users who already have editor (or higher) access to the database are
not a�ected by an authors �eld (provided they are permitted to read the
document). Authors �elds a�ect only those users who have author access
to the database. Please note that authors �elds di�er from readers �elds at
this point: readers �elds may well a�ect users with editor access or above.

4.2.4 Fields

Access control on the levels of �elds is realized by encryption. The encrypted
contents of a �eld is only accessible to people who are in possession of the
required key { all other users face an empty �eld. Since we are not dealing
with encryption explicitly in this paper, we omit a detailed discussion of this
issue.

4.2.5 Forms and views

If the developer wants only some users to see a view or to control access to
the documents created from a form, the developer may create a view access
list or form access list, respectively.

Creating view or form access lists hinder access but are no true security
features. For this reason, we do not investigate these features in more detail.

4.3 The model

Above we have listed the design elements for Lotus applications: forms,
views, pages, outlines, framesets and agents. Pages, outlines and framesets
are of no relevance for authorisation { hence they are ignored in this sec-
tion. Forms and views provide means to create, edit, display and summarise
documents. In our framework Logos we need not provide special support
for these design elements since they can just be seen as special operations.
Agents are programs that are executed by servers. In Logos, agents are no
more than operations. As far as access control is concerned, agents do not
require any special treatment since servers may be included in the set of

104

subjects (and consequently server groups in the group hierarchy) and hence
access control easily also extends to servers.

Lotus Notes applications consist of a numbers of databases { each of
them realizes some aspect of the application. The core of any database are
the documents.

4.3.1 Documents

In Lotus Notes documents are just collections of �elds. Depending on the
form used for creation, the �elds may di�er completely for di�erent docu-
ments. In Logos, though, the documents have to be typed. We have decided
to model documents as records consisting of all �elds occurring in any form
of the application. Of course, for concrete documents there will be a multi-
tude of empty �elds { depending on the respective form.

Modelling documents as co-records labelled with the names of the forms
(as in Example 8) would not be adequate. Assume for example document
x which was created by form F1. Later it was edited by form F2. If the
�elds of F1 and F2 were disjoint (at least for some parts) then the document
would both contain �elds from F1 and F2. No label of the co-record (i.e. no
name of a form) would match exactly the new set of �elds. The only way to
model Lotus Notes documents with co-records was to postulate closedness
of the co-record w.r.t all unions (the union of two forms would be a new,
auxiliary form comprising the union of the �elds of both forms). On the
one hand, this closedness property would blow up the type of documents
unbearably and on the other hand the relabelling of the sum constructors
(for the co-record) was practically unmanageable. Our decision to have one
single type for all documents amounts to using the union of all forms for
each document { saving e�ort at the prize of \weakening" typing.

Lotus Notes prede�nes two �elds that have to be shared by any docu-
ment: $UpdatedBy and form . These two �elds1 are also the starting point
for Lotus Notes documents in Logos. Documents additionally may contain
readers and authors �elds readers and authors . These �elds are investigated
in more detail in Section 4.3.5.

De�nition 53 (Lotus Notes { Minimal �elds)

record lotus-notesd =

$UpdatedBy : subject lotus-notes

form : string
readers : authors-readers
authors : authors-readers

with authors-readers = fsubjects : subject lotus-notes list;
groups : (group Ref) list;

roles : roled listg

1Type subjectlotus-notes is introduced in Section 4.3.2.

105

For any application, the types of the documents are extensions of type
lotus-notes. Pro�le documents in Lotus Notes are ordinary documents as
any other { hence they do not need any special treatment with respect to
their types.

Documents can not be accessed directly in Lotus Notes. Forms are required
to this end. Basically, a form determines the set of �elds that can be edited.
Any database d in Lotus Notes provides of a set of forms F d

1 ; : : : ; F
d
n . Each

form F d
k comprises a number ak of �elds x

k
1 ; x

k
ak

of type � k1 ; �
k
ak
. As we have

mentioned above, the documents in Logos collect �elds from all forms.

De�nition 54 (Lotus Notes applications { Documents)

type data
d = lotus-notes

d + fx11 : �11 ; : : : ; x
1
a1

: �1a1 ; : : : ; x
n
1 : �n1 ; : : : ; x

n
an

: �nang

There is one peculiarity, though, which is not captured by this equation and
which has to be taken into account additionally for concrete applications.
Assume �eld x occurring multiply in di�erent forms. Such a �eld is listed
only once in datad . Its type is a sum type composed of all individual types of
the �eld in the di�erent forms. In case of multiple occurrences of the same
type, the type is only listed once in the sum type.

Example 28 (Lotus Notes applications { Documents) Recall Exam-
ple 8 where we have de�ned two records main and response. These records
can easily be translated to corresponding Lotus Notes forms. Any application
that uses these two forms is modelled in Logos { as far as the documents are
concerned { as follows.

record databboard = lotus-notesbboard +

author : subject lotus-notes

date : date
categories : string list
note : string
parent : nat

Assume the types of �eld author were di�erent for main and response:
author : subject in main and author : group Ref in response. Field author
then was assigned type fj main : subject; response : group Ref jg in record
databboard . In Lotus Notes �elds may have di�erent types { depending on
the form that was used for the most recent storage of the document. This
heterogeneity is represented in the fully typed framework Logos as a sum
type.

When de�ning operations for the forms it will be helpful to have some-
thing like an \empty document" at hand. Empty document emptybboard is a
record of type data bboard with value arbitrary for each individual �eld. 2

106

4.3.2 Groups

In the previous example we have used type subject lotus-notes without ex-
plaining properly how subjects look like in our model of Lotus Notes. In
Lotus Notes there are basically two kinds of subjects: users and servers.
Both of them have to be registered in the public name and address book {
to this end a document is stored for each of them which contains essential
information for registration.

For users the names (�rst name and family name) are stored as well as
the hierarchic and unique user name. As far as authentication is concerned,
the ID of the user is saved for client access { analogously the HTTP-password
is stored for web-access. Additional information as the location of the user's
mail �le is added. For servers the name, ID and a long list of further
con�guration data is kept. As far as authorisation is concerned, users and
servers do not make much of a di�erence. All that is required is a unique
name to identify the user or server, respectively.

Since we do not assume that the set of subjects if �xed for a particular
application we might use any in�nite set for the subjects. We have (arbi-
trarily) decided to represent subjects as strings (natural numbers e.g. would
have been just as appropriate)2:

De�nition 55 (Lotus Notes { Subjects)

type subject
lotus-notes = string

As far as groups are concerned, Lotus Notes uses the same structure as
Logos: Groups consist of members and subgroups. Additionally, groups
may be administrated. We therefore can reuse De�nition 13 for our model
of Lotus Notes.

De�nition 56 (Lotus Notes { Groups)

type groups lotus-notes = groups

4.3.3 Roles

In Section 4.2.2 we have mentioned the access levels available in Lotus Notes:
managers, developers, editors, authors, readers, deliverers and no access. We
will ignore the developers for Logos since this access level only controls access
to the code of the implementation. We have decided for our applications,
though, that the implementations are �xed in advanced already.

Please note that there is a distinction in Lotus Notes between access
levels and roles (to be precise there is no connection between these two
issues in Lotus Notes at all). In Logos, though, we are able to model access

2In the following we will write short \subject" for \subjectlotus-notes" to ease the pre-
sentation.

107

levels by roles { access levels as a construct in its own right hence is obsolete.
Take for example access level author. We de�ne a role author and adjust
the guards for creating documents in the sense that authors may create
documents. In case an author wants to modify a document we have to
check if he or she is entered in the authors �eld.

Any Lotus Notes application that is modelled in Logos consequently has
to contain at least above mentioned roles (i.e. access levels). There are some
re�nements of the access levels which we have ignored so far. For example,
authors may be prevented from adding or removing documents. We restrict
ourselves to the just mentioned cases which are the most important ones.
For concrete applications other cases might as well be added { provided
there was a need to do so.

De�nition 57 (Lotus Notes { Roles)

datatype rolelotus-notes = Manager j Editor j Author j
Author:add j Author:remove j Author:add;:remove j
Reader j Deliverer j NoAccess

Beyond these roles, which are shared by all databases, each database may
de�ne its own set of roles. For the discussion bboards e.g. we will add a role
Pro�leEditor which determines the set of subjects that may edit the pro�le
documents: rolebboard = role lotus-notes j Pro�leEditor .

4.3.4 Access control list

Access control lists in Logos consist of two functions: acl-groups mapping
roles to sets of groups and acl-roles mapping roles to set of roles. The
�rst function corresponds to what the manager may adjust in the ACL of a
database in Lotus Notes. Hence there are no restrictions for this function in
applications of Logos (except for the minimal requirement that there must
always be some subject with manager rights { otherwise the ACL is stuck
forever). The second function expresses dependencies between roles that
are provided by the application. In case of Lotus Notes these dependen-
cies are as explained in Example 10 (extended with cases for Deliverer and
NoAccess).

De�nition 58 (Lotus Notes { ACL)

acl-roleslotus-notes : rolelotus-notes ACL-roles

acl-roles
lotus-notes

Manager = []
j Editor = [Manager]
j Author = [Editor]
j Author:add = [Author]
j Author:remove = [Author]
j Author:add;:remove = [Author:add ; Author:remove]
j Reader = [Author:add;:remove]
j Deliverer = [Author:remove]
j NoAccess = [Reader]

108

Each application of Lotus Notes has to use this function for the ACL
without change. This function may in particular not be updated while
execution. Figure 4.1 depicts the resulting graph for relation is-subrole.
Relation is almost (with exception of \Deliverer") a lattice. See [38] for
lattice-based access control models.

EditorManager

Reader DelivererNoAccess Author
no add,remove

Author
no remove

Author
no add

Author

Figure 4.1: Is-subrole for Lotus Notes

Please note that acl-roles expresses positive consequences in the sense \if s is
assigned role r2 then s is also assigned r1 { provided r2 2 acl-roles r1". One
might de�ne a function acl-roles0 analogous to acl-roles which could express
negative rights (see discussion in [41]) in the sense: \if subject s is assigned
role r2 then s must not be assigned role r1 { provided r2 2 acl-roles0 r1".
With negative rights were were e.g. able to express that all subjects that are
assigned role NoAccess may not be assigned any other role (in particular
they might not be managers, which indeed is admissible in Lotus Notes).

To ease the presentation, we have abstained from negative rights for
Logos, though they could easily be added. As Lotus Notes does not imple-
ment negative rights, the proposed framework Logos is su�ciently expressive
for the authorisation model of Lotus Notes.

There is one little peculiarity, though, which we do not intend to model
in Logos: in the ACL of any Lotus Notes database single users may be
entered as well as groups consisting of single users only. Although from a
theoretical point of view both of them are equivalent, Lotus Notes treats
them di�erently. Single entries of users are dominant over all other entries
of the same user in the sense that only the single entry is relevant to
answer the question which access level the user is assigned to. Take for
example user A which is listed personally in the ACL of a database and
who is assigned NoAccess. No matter if A was member of a group assigned
Manager level the user could not access the database. The situation was
di�erent if A was listed indirectly as the only member of a group. In this
case the access level Manager would be dominant over NoAccess { hence
user A would have manager rights.

109

Beyond what we have said so far, ACLs of Lotus Notes databases contain
some speciality: default entries. The manager of a database uses this entry
to specify some access level for default cases. This access level applies to a
subject if and only if the subject (as member of a group) is not assigned any
role explicitely in the ACL.

Some minor modi�cations of the De�nitions in Chapter 3 su�ce to ac-
count for default entries in Logos. The �rst thing to do is to store the
access level assigned to the default entry. To do so, we extend the states of
databases with an extra �eld for the default entry.

De�nition 59 (Lotus Notes applications: States) Assume d being
the name of a database.

type stated = f data-space : datad memory;

pro�le : pro�led memory ;

acl-groups : roled ACL-groups;

acl-default : roledg

The second modi�cation concerns the lifting of guards to applications. Re-
call De�nition 48 which �rst computes the assignees for all roles of the
database and then calls the corresponding guard. The de�nition basically
remains the same { only the function which computes the assignees takes the
default case into account: if the subject under consideration is not assigned
any role in the ACL, then it is added to the list of subjects assigned the role
determined by the default entry.

De�nition 60 (Lotus Notes applications: Lifting guards) Assume

any guard Pdk
h for internal or observable operation hdk of database

dk with following input types (group Ref ! subject list); (roledk !
subject list); subject ; �1; : : : ; �n and statedk . The lifted guard (lifted to the

application a) is called Pa;dk
h

and has type

P
a;dk
h : subject ! �1 ! : : :! �n ! statea ! bool

It is de�ned as

P
a;dk
h s x1 : : : xn st =

if 9r : s 2 g r then P
dk
h f g s x1 : : : xn st :st

dk

else P
dk
h f g [default := (g default) [fsg] s x1 : : : xn st:st

dk

with

acl = fgroups = st:stdk :acl-groups ; roles = acl-rolesdkg
f = members st :nab :data-space
g = assignees st :nab :data-space acl
default = st:stdk :acl-default

110

4.3.5 Readers and authors �elds

Readers and authors �elds are a means to control authorisation on the level
of single documents (see Section 4.2.3). In Lotus Notes each document may
contain any number of readers or authors �elds. The entries of the readers
and authors �elds respectively are added for authorisation. For our formal
model we assume without loss of generality that there is exactly one readers
and authors �eld. Furthermore, these �elds are given �xed names: readers
and authors .

Each readers or authors �elds may contain a set of subjects, groups or
roles. In Logos we model this as usually as a record.

De�nition 61 (Readers and authors �elds) The readers and authors
�elds of any database d have following type

readersd ; authorsd : fsubjects : subject list;
groups : (group Ref) list;

roles : roled listg

In Lotus Notes forms need not necessarily contain readers or authors �elds.
If a form contains an empty readers or authors �elds the �eld is treated as if
it was non-existent. The special treatment of empty readers or authors �elds
gives rise to the convention in Logos that all documents must contain exactly
one (possibly empty) readers and authors �eld. This justi�es De�nition 53
where we have taken readers and authors �elds readers and authors to be
constituent of any document.

Readers and authors �elds are only meaningful at the time when the set
of subjects is computed which is denoted by the entries of the �eld. Function
m-a (m-a is short for members-assignees) serves this purpose.

De�nition 62 (Meaning of readers and authors �elds)

m-a : (group Ref ! subject list)! (
 ! subject list)!
fsubjects : subject list; groups : (group Ref) list; roles :
 listg ! subject list

m-a nab acl fsubjects = s; groups = g ; roles = rg =
s [(

S
x2g nab x) [(

S
x2r acl x)

4.3.6 Operations and guards

Lotus Notes databases contain a number of standard operations to handle
the documents and the ACL of the database. Precisely they are:

� add-doc : Adds documents to a database. In Lotus Notes forms are
used to this end. For Logos we will allow any document (of proper
type) to be added. If in concrete applications the restriction to par-
ticular forms is necessary, a set of functions for adding documents is
required { each of them with the �elds of the respective form as only
input values.

111

� map-doc : Edits documents of a database. As for add-doc all �elds
may be edited. Restricting the update of documents to particular
forms requires an analogous solution as for add-doc .

� remove-doc : Removes documents from a database. Only the �elds of
the documents are deleted. The references to the (empty) documents
persist.

� read-doc : Displays documents of a database. In Lotus Notes views
are usually used to this end (although single documents may be ad-
dressed by the unique document ID and hence displayed individually).
Mimicking views in Logos again requires a set of functions { each of
them with the columns of the views as output types.

� map-acl : Edits ACL of a database. In contrast with the documents
there are no operations for creating or deleting ACLs.

Besides the operations for the documents of the dataspace there are analo-
gous operations for the pro�le documents. Since there is an exact analogy
between the operations for the data space and the operations for the pro�le
documents, the operations for the pro�le documents are suppressed for the
presentation.

In the following we de�ne above listed operations and their correspond-
ing guards. The guards are (together with the ACLs and the NAB) the heart
of any Lotus Notes application { at least as far as authorisation is concerned.

The de�nition of the �rst operation add-doc is standard: a new object is
allocated in the data space. Authors or above and deliverers are permitted in
Lotus Notes to generate new documents { authors with the restriction that
creation of documents must not be disabled for the authors. In Logos we
have modelled the re�nements of authors as roles Author:add , Author:remove

and Author:add;:remove . Only the second of these roles is permitted to add
new documents. If you look at Figure 4.1 you will �nd this to be captured
precisely by the requirement that only deliverers and above are allowed to
add new documents.

add-doc : subject ! �! (�; �;
)state ! (�; �;
)state
add-doc s d st = stfdata-space := alloc d st :data-spaceg

Padd-doc : (group Ref ! subject list)! (
 ! subject list)!
subject ! �! (�; �;
)state ! bool

Padd-doc nab acl s d st = s 2 (acl Deliverer)

Operation map-doc basically calls function lift which updates single objects
in memories. The guard is a little bit more subtle. The �rst limitation is
that only those documents are editable that are also visible. Clearly it makes
little sense to edit invisible documents. Beyond that, authors �elds come

112

into play. Please recall Section 4.2.2 where we have stated the following
conditions for authors �elds:

� Entries in an authors �eld can only re�ne the access control list of the
database

� Users who already have editor (or higher) access to the database are
not a�ected by an authors �eld (provided they are permitted to read
the document)

� Authors �elds a�ect only users who have author access to the database

The �rst condition is satis�ed since the authors �eld only shows e�ect in
conjunction with the requirement that the subject also must have at least
Author:add;:remove access.

Users who have editor or higher access may edit any document (provided
they are permitted to read it). This is expressed by the term s 2 acl Editor .
In this case the part of the disjunction which concerns the authors �eld is
of no relevance since the disjunction always reduces to true.

As we have just shown, editors or above are not a�ected by authors
�elds. Subjects with access levels NoAccess, Reader or Deliverer must not
edit any document { no matter if they are listed in the authors �eld. Subjects
assigned any of these roles can not render the guard true as one can see easily
from the de�nition.

map-doc : subject ! (�Ref)! (�! �)! (�; �;
)state ! (�; �;
)state
map-doc s r f st = stfdata-space := lift f r st :data-spaceg

Pmap-doc : (group Ref ! subject list)! (
 ! subject list)!
subject ! (�Ref)! (�! �)! (�; �;
)state ! bool

Pmap-doc nab acl s d st = Pread-doc nab acl s d st ^
(s 2 acl Editor _ (s 2 acl Author:add;:remove ^

s 2 m-a nab acl (read-doc s d st):authors))

Removing documents with operation remove-doc amounts to setting the
value of the respective document to \None". The guard is analogous to the
one for map-doc with the only exception that roles Author:add;:remove and
Author:remove are excluded.

remove-doc : subject ! (�Ref)! (�; �;
)state ! (�; �;
)state
remove-doc s r st = stfdata-space := lift (� : None) r st :data-spaceg

Premove-doc : (group Ref ! subject list)! (
 ! subject list)!
subject ! (�Ref)! (�; �;
)state ! bool

Premove-doc nab acl s d st = Pread-doc nab acl s d st ^
(s 2 acl Editor _ (s 2 acl Author:add ^

s 2 m-a nab acl (read-doc s d st):authors))

Operation read-doc dereferences a given reference in the data space. The

113

guard for this operation again is a little bit subtle since it involves readers
�elds. Please recall from Section 4.2.2 what we have said about readers
�elds:

� Entries in a readers �eld can only re�ne the access control list of the
database

� Users who already have editor (or higher) access to the database can be
restricted from reading documents if they aren't included in a readers
�eld

� Editor (or higher) access to a database can read a document if it
contains no readers and no authors �eld.

The �rst condition is satis�ed since the readers �eld only occurs in conjunc-
tion with s 2 acl Reader .

Users with editor (or higher) access are restricted from reading docu-
ments if the readers or the authors �eld is non-empty and the user is neither
listed in the readers nor in the authors �eld.

If the document contains no readers and no authors �eld then the condi-
tion for the if � then� else statement computes to true. Since editors are
higher in the hierarchy of access levels than readers, the term s 2 acl Reader
allows editors to read the document.

read-doc : subject ! (�Ref)! (�; �;
)state ! �
read-doc s r st = dref r st :data-space

Pread-doc : (group Ref ! subject list)! (
 ! subject list)!
subject ! (�Ref)! (�; �;
)state ! bool

Pread-doc nab acl s d st =
if (read-doc s d st):readers = [] ^ (read-doc s d st):authors = []

then s 2 acl Reader

else s 2 acl Reader ^ (s 2 m-a nab acl (read-doc s d st):readers _
s 2 m-a nab acl (read-doc s d st):authors)

The last operation map-acl is used to update ACL and default value at the
same time. In case only one of them is intended to be modi�ed, the identity
function is used as update function for the other component. The guard of
operation map-acl is quite trivial: only managers may change the ACL and
the default value of a database.

map-acl : subject ! (
 ACL-groups !
ACL-groups)! (
 !
) !
(�; �;
)state ! (�; �;
)state

map-acl s f g st = stfacl-groups := f st:acl-groupsgfacl-default := g st :acl-defaultg

Pmap-acl : (group Ref ! subject list)! (
 ! subject list)!
subject ! (
 ACL-groups !
ACL-groups)!
(
 !
) ! (�; �;
)state ! bool

Pmap-acl nab acl s f st = s 2 (acl Manager)

114

4.3.7 Name and address book

The name and address books of Lotus Notes applications in Logos do not
di�er much from what we have said in Section 3.2.7. NABs are ordinary
databases with groups as data (to be precise administrated groups). The
only subtlety concerns the administrators of administrated groups: they are
permitted to change the group they are assigned to. In Logos we model
this by requiring that the administrator groups have to be listed in the
authors �eld of the corresponding document. Furthermore, all potential
administrator groups have to be assigned role Author:add in the ACL of
the NAB { i.e. administrators may change and remove their groups but not
create new ones.

115

Chapter 5

Case study:

Shared discussion bboards

In the previous sections we have de�ned the general framework Logos and
have shown how to model the key authorisation concept of the groupware
system Lotus Notes within this framework. It remains to show how concrete
applications of this model look like. To this end we develop in this chapter
a case study \Shared discussion bboards" which is based on the model of
Lotus Notes developed in the previous chapter.

5.1 About

Discussion bboards are a wide-spread application of groupware systems al-
lowing short notices to be exchanged among a variety of locally dispersed
people. People who may access such a discussion bboard are assigned author
and reader rights i.e. they may read and post notes (original postings just
as well as replies). Beyond authors and readers there are also editors who
may change any note. Basically, the purpose of the editors is to care for the
quality of the postings (e.g. entries in adequate categories). On top of the
access hierarchy is the database manager who may additionally change the
ACL.

For many purposes these discussion bboards are satisfactory and quite
useful. In more complex project structures, though, simple discussion
bboards are too weak. Imagine a number of cooperating institutions (teams)
working on the same project. Assume they intend to use a discussion bboard
for their communication. Soon it will turn out, that there is information that
only concerns a subset of the teams. Even stronger, this information has to
be kept secret within the members of this subset.

Heterogeneous model The standard solution is to install several discus-
sion bboards { rather than a single one. For each of the mentioned subsets a

116

discussion bboard is installed. Figure 5.1 depicts a sample structure, as im-
plemented for the project \Daidalos" which aims at constructing an intranet
for the German National Scholarship Foundation.

Operation

Management

Test

Implementation
Remaining

Foundations

Legend

= Team

= Discussion bboard

Figure 5.1: Structure of discussion bboards for \Daidalos"

The discussion bboard for the management team serves the collection of
internal, project-relevant data. This data is meant for the management
team only. Communication between the management and the implementors
is kept track of by a second bboard. The operating team (responsible for
graphics, contents, : : :) also exchanges information with the management
by means of a bboard. The test-users give feedback and are informed by
a bboard which all of the just mentioned teams are subscribed to. Finally,
information about the progress of the project is reported in a bboard to the
remaining German scholarship foundations.

You can imagine that this multitude of bboards is source to permanent
confusion. Take for example a note which is posted by the management
team and which concerns both the operating team and the implementors.
This note has to be duplicated { once for the implementors bboard and once
for the operators bboard. If the note is edited later, it is quite likely to be
edited only in one of the bboards rendering the contents of the two bboards
inconsistent. Furthermore it is quite annoying for the management team to
�nd the right bboard where a note has been posted. This structure makes it
di�cult for the management (and for other teams, too) to keep an overview
over the project communication.

Homogeneous model The solution to the problem is { at least at �rst
sight { simple: all participants share the same database (homogeneous
model), access to documents is determined for each document individually.
We call the database also \shared bboard".

117

For example, a manager of \Daidalos" could post a note and make it
available to the implementors. Another note he could pass to the remain-
ing scholarship foundations. In this homogeneous model the manager could
see both notes in the same database without having to switch between dif-
ferent bboards as for the multitude of bboards. Even though this solution
may seem easy from the users point of view, it has two major drawbacks:
�rst, de�ning access for documents individually is orthogonal to the stan-
dard access model of Lotus Notes which de�nes access levels uniformly for
databases and second, it complicates the administration of the bboard.

Of course, Lotus Notes is expressive enough to model access control for
documents individually, but to some extend you lose the solid ground of
ACLs having to use readers and authors �elds throughout the application
and thus having to guarantee the correctness of the implementation yourself.

In a heterogeneous model there are a number of ACLs (one for each
bboard). In a sense this multitude of ACLs has to be mimicked in the single
bboard of the homogeneous model. Take for example the editors. There is
a group of editors for each individual bboard being able to read and edit
all documents of the bboard. In the homogeneous model this set of editors
has to be administrated in a single database { some new structure has to
be introduced to this end. We will see in Section 5.2.1 that we even will
have to provide a name and address book for each team individually.

You may wonder why we have chosen this example as case study for Logos.
There are two good reasons for doing so. First, the problem stems from the
real world where the homogeneous model could do good work for quite a
number of projects (see Section 5.2). Second, and even more important, the
example heavily extends the standard model (ACL-based access control) of
Lotus Notes by making extensive usage of readers and authors �elds. The
correctness of such a complicated model is by no means obvious { hence
there is a real need for a formal investigation of this security model.

In the next section we will show how the homogeneous model pays o� for
real-life projects (namely an intranet for all German scholarship foundations
and a series of global student courses). Thereafter we will model the shared
bboards in Logos and prove some properties.

5.2 Real world projects

The projects we describe in this section are slightly di�erent in nature. The
�rst project \An Intranet for the German Scholarship Foundations" has not
been realized yet. Its security model (shared databases) is meant to be based
on the same mechanisms as for the shared bboards. The case study of this
chapter hence can serve as formal basis for this project. The second project

118

\A series of Global Student Projects" is running successfully already. Its
infrastructure, which nowadays is based on the heterogeneous model, could
bene�t heavily from an implementation of the homogeneous model, though.

5.2.1 German Scholarship Foundations

The project is intended to be realized in two phases: in the �rst phase one
intranet is built for each foundation taking project \Daidalos" as a blueprint.
The project \Daidalos" (http://www.daidalos-projekt.de) currently imple-
ments an intranet for the German National Scholarship Foundation (\Stu-
dienstiftung des deutschen Volkes"). The key idea for all of the intranets is
to connect the foundation's employees and the current and former scholars
who are spread all over the world by an electronic network. More precisely,
the internet is used for establishing connections, hence the word \intranet"
does not imply installing physical wiring between participants. The word
\intranet" denotes a logical subnet of the internet which is identi�ed by
personalised authorisation (password) mechanisms. Such subnets often are
also called \virtual private networks".

In the second phase the separate intranets will be combined into one
single intranet for all foundations. From the user's point of view this step
will be invisible at �rst (a user of foundation x will only see a subnet of the
whole intranet which is tailored for foundation x). The intranet of the second
phase, though, will permit easy information exchange between the subnets
of the foundations. You can compare the shift from phase one to phase two
with a shift from the heterogeneous model to the homogeneous model for
discussion bboards. In phase two of the project information exchange be-
tween users of di�erent foundations can be regulated on a document basis.
Assume for example a discussion bboard \Politics" which is shared between
all foundations. Each author of a document then can decide which users (of
which foundations) may read the document. Please note that each founda-
tion has its own name and address book in the �rst phase and so needs to
have one also in the second.

5.2.2 Global Student Projects

This section deals { in contrast with the former project, which has not been
realized yet { with a running project (or to be precise a series of projects).
Each of these projects is concerned with a realistic software engineering task
which has to be implemented by students at the University of Technology in
Munich and the Carnegie Mellon University in Pittsburgh collaboratively. A
heterogeneous model of discussion bboards is used to this end. Since indus-
trial partners are also involved in the projects, information can not be spread
freely. In particular, the students have to sign a non-disclosure agreement
which keeps information secret. Nevertheless, some part of the information

119

(as long as it does not underly the non-disclosure agreement) would also be
relevant to subsequent projects. With a heterogeneous model information
can only be passed with a copy and paste technique which is ine�ective and
leads to inconsistent data. A shared bboard could help to exchange infor-
mation between di�erent projects. Please note that each project has its own
name and address book, hence the shared bboards have to respect the name
and address books just as they had for the German scholarship foundations.

5.3 Realization in Lotus Notes

Shared discussion bboards provide a common (shared) dataspace for a set
of teams. One of the key ideas is that each team may determine the access
rights and register its members individually. Speaking in the terminology
of Lotus Notes, each team needs its own name and address book. This
is somehow in con
ict with the requirement that all users (no matter in
which of these NABs he or she is registered) share the same database: in
Lotus Notes a database can only have one corresponding name and address
book (even stronger, each domain has exactly one NAB).

Indeed, we will only have one central (global) name and address book,
but its entries will be determined by the teams concurrently. Each team
administrates its users and groups in a database (which we will call in
the following a local NAB or the NAB of the team) which looks from the
administrator's point of view like any NAB. Entries in this local NAB are of
no direct relevance for the registration of users and groups in the whole sys-
tem. These entries in the local NABs, though, are copied periodically by an
agent (the so-called NAB agent) to the central NAB (which is a true NAB).
Entries in the global NAB then are relevant for access control. Access to
the global NAB is only granted to the central administrator and to the
NAB agent which copies the entries from the local NABs to the global NAB.

Access control for the shared bboards is not achieved by entries in the ACL
alone, but rather by a bunch of coalescent mechanisms. Take for example
author rights that are required for those users who are permitted to discuss
in a shared bboard.

The central administrator enters some group, say g , as authors in the
ACL of the database (with the rights to create new and delete existing doc-
uments). Additionally, the administrator creates a new group g (which we
will call a \shared group" since it has groups of di�erent teams as subgroups)
in the central NAB consisting exactly of subgroups g1 : : :gn (with n being
the number of teams). Each team i determines the members of group gi
individually in its local name and address book NAB i . The NAB agent
copies for each team the corresponding subgroup to the central NAB.

Take for example the intranet for the German scholarship foundations

120

 h = ...
 g = g +...+ g 1

NAB NAB

NAB

.

.

.

.

.

.

ACL

Author: g
Reader: h
...

data space

authors = ...
readers = ...

author = ...
affiliation = ...
date = ...
note = ...

bboard

1

n

n

g ,h ...
1 1

g ,h ...
n n

Figure 5.2: Shared bboards: access control

(see Section 5.2.1). Assume the foundations are sharing a bboard for dis-
cussions about science in general. Foundation f1 e.g. lets all users take part
in these discussions. It enters g1 = all1 in its NAB. Foundation f2 , in con-
trast, limits access to students only. Its entry in the local NAB looks like
g2 = students2 . By detour of the central NAB (g = g1 + : : :+ gn) these two
entries are propagated to the ACL of the database where they take e�ect.

This way the central administrator can delegate clearly speci�ed rights
in a database to \third parties". The just mentioned mechanism is faithfully
embedded in Lotus Notes in that it does not replace Lotus Notes spe-
ci�c elements like the ACL or roles { it uses them only in a non-standard way.

In the following we investigate in greater detail which \clearly speci�ed"
rights exist for shared discussion bboards and how to implement them in
Lotus Notes. On the one hand we have to treat the standard access lev-
els as Reader or Author , on the other hand we have to realize additional
application speci�c roles as the editor of the categories.

� Reader: In ordinary databases the access level \Reader" determines
who may read the documents. In our document based access model
reading access has to be modelled by readers �eld. Since readers and
authors �eld may not override but only re�ne the ACL of a database,

121

all potential readers have to be listed in the ACL. The central admin-
istrator generates some shared group { say g1 { to this end. For each
document there is a set of admissible teams which is selected by the
author of the document. For each admissible team i group g1i is added
to the readers �eld.

� Author: The treatment of authors is similar to the readers. All
potential authors have to be registered in the ACL by some shared
group { say g2 . Since authors merely may edit their own documents,
we store the names of the authors only in the authors �eld of their
own documents.

� Editor (global): The global editors may edit (i.e. read, modify or
delete) any document. The access level \Editor" of Lotus Notes almost
serves this purpose. We add some group { say g3 { (a shared group or a
group from a concrete local NAB) to the ACL of the database and then
we assign this group editor rights. This way the central administrator
can delegate the selection of editors to single teams or to all teams {
depending on whether the administrator chooses a shared group for
g3 . Since editors are not a�ected by authors �elds, we do not have
to worry about the entries in the authors �elds. In order to edit a
document, the editor must be able to read it. To this end we add the
whole group g3 to any readers �eld.

� Editor (local): The local editors are like the global editors with the
restriction that they may only edit documents of users a�liated with
the same team. Listing the local editors as editors in the ACL certainly
is wrong. Doing so would enable editors to edit any document they
can read { and quite likely there will be documents of di�erent teams
released for reading, but not for editing. The local editors hence have
to be modelled by authors and readers �elds. The �rst thing to do is
to introduce some shared group g4 . This group is given author access
in the ACL which provides at least the potential to edit documents.
For each document with author of team i group g4i is added both to
the readers and authors �eld of the document.

� Categories editor: The categories editor may change the list of pre-
de�ned categories that are stored in the pro�le. For this role we intro-
duce some group g5 which we enter in the readers and authors �eld
of the pro�le document. Additionally, we add group g1 to the readers
�eld, enabling readers of documents also to read the categories.

� Manager: None of the participating teams is superior to another.
Therefore manager rights are reserved to a third party: the central
administrator. The central administrator thus is the only person to

122

change the ACL of the database. Regardless of this right, the admin-
istrator should not modify the ACL while execution. Changes in the
ACL (as performed for any other database) have been delegated for
shared bboards concurrently to the teams.

So far we have assumed that the NAB agent respects the names of the
groups (we have used the same names in the local NABs as well as in the
global one). The names in the global NAB, though, have to be unique and
they should unveil which team they stem from. One way to achieve this
is by introducing some \meta-convention" encoding the team name in each
name of a group. We have chosen this convention in Figure 5.2 encoding the
name (number) of the team as subscript (students2 e.g. are the students of
foundation two). The NAB agent has to guarantee that each team sticks to
the convention { it only copies those groups whose names are well-formed
w.r.t. above convention.

A second way to achieve unique names was to refrain the local NABs
from the name convention but enforcing the convention by the NAB agent,
instead. In this case the names of the groups in the central NAB and in the
local ones would diverge.

5.4 Modelling in Logos

For the representation in Logos (and also for an implementation in
Lotus Notes) the second alternative is advantageous over the �rst. Since
the name convention is guaranteed by construction of the NAB agent we
avoid invariant conditions that state the well-formedness of the local NABs.
Furthermore, the memory model for the local NABs is easier in the second
than in the �rst case { as we shall see now.

5.4.1 References

Our previous de�nition of memories and references (see De�nitions 5 and 6)
implicitly assumes that multiple memories are independent i.e. there are no
cross-references pointing to objects of foreign memories. In the central NAB,
though, we have multiple memories (the local NABs) with cross-references
(shared groups).
Of course we could simply paste the local NABs together in the NAB and
merge the memories, but this would be awfully unmodular. As an example
of merging memories see Figure 5.3 where we are merging the memories
of NAB1 and NAB2 . All references of NAB2 would have to be rede�ned
to point to the new memory cells in the merged memory. Even worse;
assume some new reference was allocated for some local NAB (see e.g. Figure
5.4 where we have allocated a new object in the memory of NAB1). The
references in all subsequent NABs would have to be shifted by one. In

123

NAB
1

9876543210

9876543210 10 11 12 13 1817161514

NAB

NAB
2

0 1 2 3 87654

Figure 5.3: Merging memories

NAB

9876543210 10 11 12 13 1817161514

NAB’

9876543210 11 12 13 14 191817161510

NAB
1

NAB
2

NAB
1

NAB
2

Figure 5.4: Merging memories is unmodular

other words: allocating a new object in one local NAB a�ects the whole
application which is clearly in con
ict with modularity.

Even though we could stick to our previous memory model and merge
memories for the central NAB, such a decision would unnecessarily blow
up the de�nitions and hence the correctness proofs. Instead, we choose a
di�erent memory model for the central NAB: products of memories, which
we will call composed memories. The composed memory of the central NAB
is a list of regular memories { one memory for each local NAB. This way
both references and memories have to be redesigned.

Product references store pairs of natural numbers. The �rst natural
number indicates the referenced (sub)memory in the memory list and the
second natural number (e.g. see Figure 5.5) represents the reference locally
within this submemory.

124

NAB
n

...

NAB
k

...

NAB
1

0 1 2 3

dref (Ref k 2)c

Figure 5.5: Dereferencing product references

The de�nitions of product references and composed memories now are
straightforward.

De�nition 63 (Product references)

datatype � Ref c = Ref c nat nat

De�nition 64 (Composed memories)

type � memoryc = fobjs : � list; refs : nat listg list

In Section 2.3 we have de�ned a general theory of references. To this end
we have given a signature of operations in De�nition 1 that have to be im-
plemented by any memory model. In the following de�nition we realize the
most important operations for composed memories and product references.

De�nition 65 (Operations for composed memories)

newmemory : unit ! � memoryc
newmemory () = [fobjs = []; refs = []g]

alloc : � ! � memoryc ! � memoryc
alloc o m = updatenth 0 fobjs = m0:objs++o;

refs = m0:refs++(length m0:objs)gm
with m0 = nth 0 m

freshref : � memoryc ! � Ref c
freshref m = Ref c 0 (length (nth 0 m):refs)

dref : � Ref c ! � memoryc ! � option
dref (Ref c n r)m = x := cell r 0m0;

if length m0:objs � x then None

else Some (nth x m0:objs)
with r 0 = Ref r and m0 = nth n m

lift : (� ! �)! � Ref c ! � memoryc ! � memoryc
lift f (Ref c n r)m =
updatenth n (m0fobjs := updatenth (cell r 0m0) (f (dref r 0m0))m:objsg)m

with r 0 = Ref r and m0 = nth n m

store : � ! � Ref c ! � memoryc ! � memoryc
store o = lift (�x: o)

125

Please note that operations alloc and freshref only operate on the �rst mem-
ory (i.e. memory with index \zero"). This is adequate since all the user
expects from these operations is a fresh memory cell { the user does not
care which internal memory is used to this end.

5.4.2 Groups

With this renewed de�nition of memories and references, the groups and
members require some minor, straightforward modi�cation. Beforehand, we
concretise the set of subjects for our application.

Subjects

As we have said already in Section 5.4.2, there are basically two kinds of
subjects in Lotus Notes: users and servers. In the just mentioned section
we have represented subjects (users or servers) as strings. For the NAB of
shared bboards we follow this decision with one minor extension: we also
store for users the team and for servers the domain as second component
which we call the a�liation (a�l). In the example of shared bboards we
will only have one server \LocalServer" and one server domain \LocalDo-
mainServers". As a convention, we store the local server at position zero of
the a�liations. Central administrators are stored at the same position.

De�nition 66 (Shared bboards: Subjects)

type subjectc = fname : string; a�l : natg

The de�nition of groups follows immediately from the new de�nitions of
subjects and references.

De�nition 67 (Shared bboards: Groups)

datatype groupc = Empty j
AddMember subjectc groupc j
AddSubgroup (groupc Ref c) groupc

Members and Subgroups

What we have said in Section 3.1 applies directly to the shared memories
and product references. For the de�nitions of members and subgroups we
have only used the operations given in the signature of references (see De�-
nition 1). Since the shared memories and product references instantiate this
signature, we can be sure that the new memory model �ts perfectly well in
the existing structure. At this point we pick the fruits of our decision in
Section 2.3 to generalise and de�ne an abstract theory of references rather
a concrete one.

126

5.4.3 Global and local NABs

As we have said, the access model for the shared bboards is non-standard
and hence deserves formal investigation. There are two issues that make it
non-standard. First, which we will treat in this section, is the distributed
administration of the name and address book by means of an agent (the
NAB agent). The second issue concerns the de�nition of access rights on
the level of documents which requires some security critical agent (the access
agent) to compute the authors and readers �elds.

Data space

In the anteceding section we have sketched already how the memories (and
thus the data spaces) for the local NABs and the global NAB look like: the
local NABs are regular in the sense that they have ordinary memories as
data spaces.

De�nition 68 (Shared bboards: Data space for local NABs) Index
i denotes the i -th team.

data-spaceNABi = group memory

The global NAB, in contrast, uses the more sophisticated composed memory
model with product references.

De�nition 69 (Shared bboards: Data space for global NAB)

data-spaceNAB = groupcmemoryc

Please note that the global NAB { in contrast with the local NABs { also
uses product references for the subgroups.

NAB agent

The NAB agent operates on the data spaces of the local NABs. Precisely, it
transforms the data spaces of a list of local NABs to the data space of the
global NAB (see Figure 5.6).
There are two steps required for this transformation. First the agent trans-
forms the list of regular memories into a composed memory and second the
agent adds a set of shared groups to the composed memory. In our model
these tasks are performed by two functions that are composed to complete
the agent. Function embed is the �rst.

127

NAB
1

NAB
n

...

NAB

shared groups

agent

agent

agent

position 0

position n-1

level 0

level 1

level n+1

...

central admins,
servers

level 2

Figure 5.6: NAB agent

De�nition 70 (Embedding: regular to composed memory)

embed : (group memory) list ! groupc memoryc
embed = embedaux 0

embedaux : nat ! (group memory) list ! groupcmemoryc
embedaux n [] = []

j (x#xs) = xfobjs := map (embedgroups n + 2) x :objsg#
(embedaux n xs)

embedgroups : nat ! group ! groupc
embedgroups n Empty = Empty

j AddMember s g = AddMember fname = s; a�l = ngm
j AddSubgroup (Ref k) g = AddSubgroup (Ref c n k)m

with m = embedgroups n g

The auxiliary natural number introduced by function embedaux counts the
position in the list of memories or the level in the composed memory, equiv-
alently. Subjects are stored in the local NABs simply by names. The
a�liation, which is also stored in the global NAB, is added by function
embedgroups . Please note that the levels in the composed memory are shifted
by two compared with the positions in the list of memories. This shift is
performed to keep space for the central administrators (stored at level zero)
and the shared groups (stored at level one). See Figure 5.6 for the levels of
a NAB.

Example 29 (Embedding: regular to composed memory) As an
example we transform the regular memory of some local name and address
book NABk (see Figure 5.7). Please note that regular and shared memories

128

are accessed di�erently and that references to subgroups1 are adapted in the
global NAB, too.

Ref (k+2) 9c

position klevel k

NAB NAB
k

embed groups

Ref 1

Ref 9

Ref k 1c

Figure 5.7: NAB agent { Embedding

Function shared-groups generates a composed memory with shared groups.
It takes two natural numbers as input values. The �rst natural number
determines the number of shared groups to be constructed. The second
natural number gives the number of levels (except for the levels of the central
administrators and the shared groups) which the composed memory consists
of (or equivalently the length of the group memory list).

De�nition 71 (Shared bboards: Generating shared groups)

shared-groups : nat ! nat ! groupc memoryc
shared-groups n m = [fobjs = shared-groupsobjs n m; refs = shared-groupsrefs ng]

shared-groupsobjs : nat ! nat ! groupc list

shared-groupsobjs 0 m = []
j (n + 1)m = (shared-groupsobjs n m) ++shared-group (n + 1)m

with

shared-group n 0 = Empty

j (m + 1) = AddSubgroup (Ref c (m + 3) n) (shared-group n m)

shared-groupsrefs : nat ! nat list

shared-groupsrefs 0 = []
j (n + 1) = (shared-groupsrefs n) + +[n + 1]

Example 30 (Shared bboards: Generating shared groups) In this
example (see Figure 5.8) the composed memory of the NAB consists of two
local NABs. The NABs share eight groups which are depicted at the top.
These groups are generated by the term shared-groups 8 2 .

The NAB agent (to be precise its core; see De�nition 75 for the complete
de�nition of the NAB agent) is composed from functions shared-groups and

1In the picture the level of the memory in the shared group and the levels of references to
subgroups diverge by two (level k but reference Ref c (k+2) 9). This is not by coincidence.
When the central administrators and the shared groups are placed in front, all levels shift
by two and the divergence vanishes.

129

level 1

NAB

level 3

level 2NAB
1

NAB
2

shared groups
0 1 2 3 7654

level 0
central admins,
servers

Figure 5.8: NAB agent { Generating shared groups

embed . It takes the number of shared groups as input and returns a memory
transformer which transforms lists of regular memories to composed memo-
ries with shared groups.

De�nition 72 (Shared bboards: NAB agent { core)

nab-agent core : nat ! (group memory) list ! groupc memoryc
nab-agent core n xs = (shared-groups n (length xs)) + + (embed xs)

Pro�le Documents

The local NABs do not contain any pro�le documents. For the global NAB
there is only one pro�le document containing exactly one �eld: the number
of shared groups. When executing the NAB agent, the server looks up this
number in the pro�le document of the global NAB.

Roles

Both local and global NABs use the ordinary roles (\access levels") from
Lotus Notes as de�ned in De�nition 54.

Access control list

As a consequence from our decision in the last paragraph to take over the
access levels of Lotus Notes without change, the ACLs of both local and
global NABs are just standard (see De�nition 58).

130

States

The major di�erence between local and global NABs is that each local NAB
only stores one (regular) memory whereas global NABs store lists of mem-
ories (composed memory). Apart from that they only di�er in the pro�les
which are empty for the local NABs and where the global NABs store the
number of shared �elds.

De�nition 73 (Shared bboards: States of local NABs)

type stateNAB local = f data-space : group memory;
pro�le : unit ;

acl-groups : rolelotus-notes ACL-groups;

acl-default : rolelotus-notesg

De�nition 74 (Shared bboards: States of global NABs)

type stateNAB = f data-space : groupcmemoryc;
pro�le : nat ;

acl-groups : rolelotus-notesACL-groups;

acl-default : role lotus-notesg

The NAB agent, �nally, is a state transformer which takes the list of local
NABs as input and transforms the list to the global NAB. Basically it applies
nab-agentcore to the list of memories of the local NABs. The number of
shared groups to be generated is determined by the pro�le of the global
NAB. The central administrators, which are stored at level zero, have to
be respected (i.e. left unchanged) by the agent. Because the NAB agent is
modelled in our formal model as an ordinary operation, it has an additional
parameter for the subject that is permitted to invoke the operation.

De�nition 75 (Shared bboards: NAB agent)

nab-agent : subjectc ! stateNAB local list ! stateNAB ! stateNAB

nab-agent s xs st =
stfdata-space := (nth 0 st :data-space) + +

nab-agent core (st :pro�le) (map data-space xs)g

It remains to show how initial states look like for local and global NABs.
There are four issues worth mentioning:

� We take the number of shared groups as input value for the global
NAB. This value is assumed �xed throughout the application although
it could be kept variable (with some extra e�ort).

� The central administrator is \Admin" and the local server is \Lo-
calServer" (they are the only subjects with administrator rights in the
global NAB). These values are determined once and forever in the ini-
tial state as we do not provide any operation to change them (such
operations could be added, complicating the case study unnecessarily).

131

� For the the local NABs we take the names of the managers as input.
These values are subject to changes in the ACLs of the local NABs.

� We set the default values for both local and global NABs to NoAccess
which excludes subjects not listed explicitely in the ACL from access-
ing the databases.

De�nition 76 (Shared bboards: Global NAB { initial state)

initial-stateNAB : nat ! stateNAB

initial-stateNAB n =
fdata-space = newmemory;

single-usergroup fname = \Admin00; a�l = 0g;
single-usergroup fname = \LocalServer00; a�l = 0g;

pro�le = n;
acl-groups = � x : if x = Manager then [Ref c 0 0 ; Ref c 0 1]else []g
acl-default = NoAccessg

De�nition 77 (Shared bboards: Initial states of local NABs)

initial-stateNAB local : string ! stateNAB local

initial-state
NAB local s =

fdata-space = single-usergroup s newmemory;
pro�le = ();
acl-groups = � x : if x =Manager then [Ref 0] else []g
acl-default = NoAccessg

Operations

The operations for the local NABs are just the standard operations from
Lotus Notes (to be more precise from our model of Lotus Notes): add-doc ,
map-doc, remove-doc, read-doc and map-acl (see Section 4.3.6). There is
only one operation for the global NAB namely the NAB agent nab-agent .
The only way to register subjects in the global NAB is by the initial con�g-
uration (registration of the central administrator) and by execution of the
NAB agent (registration of the subjects administrated in the local NABs).

Guards

Since we have used the standard operations of Lotus Notes for the local
NABs, their guards (see Section 4.3.6) can be reused without change.

The situation is di�erent for the global NAB. The only operation (the
NAB agent) requires some investigation. This agent is the core of the whole
application and hence may only be invoked by selected subjects. We as-
sume that only managers of the global NAB (central administrator and
local server) are trustworthy to this end. This is re
ected by the de�nition
of the guard for the NAB agent.

132

De�nition 78 (Shared bboards: NAB agent { Guard)

Pnab-agent : (groupc Ref c ! subjectc list)!

(role lotus-notes ! subjectc list)!
subjectc ! stateNAB local list ! stateNAB ! stateNAB ! bool

Pnab-agent nab acl s xs st = s 2 (acl Manager)

5.4.4 Bboard

In Chapter 3 we have used discussion bboards as a running example. The
case study of shared bboards in this chapter follows the lines of this example
but takes multiple, independent teams into account who administrate their
members autonomously. Nevertheless, much of what we have said in Chapter
3 is relevant for this case study.

Data space

The discussion bboards have (at least in principle) not been de�ned for any
particular groupware system. In Example 28 we have adapted the bboards
to Lotus Notes. For the shared bboards some minor modi�cations are re-
quired. Beyond the renewed de�nition of subjects for shared bboards the
data space also stores the list of teams that are permitted to read the doc-
ument. Furthermore, we omit �elds form and $UpdatedBy since they are of
no relevance for our case study.

De�nition 79 (Shared bboards: Data space of bboards)

record databboard =
author : subjectc date : date
categories : string list note : string
teams : nat list parent : nat
readers : fj subjects : subjectc list;

groups : (groupc Ref c) list;

roles : rolebboard list jg

authors : fj subjects : subjectc list;
groups : (groupc Ref c) list;

roles : rolebboard list jg

Pro�le Documents

The pro�le document only consists of one �eld { the list of categories:
pro�lebboard = string list . To keep the case study simple and to abstain
from irrelevant details we assume this list to be �xed once and for all at
creation of the application. Clearly, operations could be added to modify
this list.

Roles

Basically, this database uses the roles role lotus-notes from Lotus Notes. There
is only one role called Editor local which we add: rolebboard = role lotus-notes j

133

Editor local . This role is orthogonal to all other roles in the sense that it is
not in relation is-subrole with any other role.

acl-roles
bboard

role
lotus-notes = acl-roles

lotus-notes
role

lotus-notes

j Editor local = []

The purpose of role Editor local is to determine the local editors (see Section
5.3) of the shared bboard. Access level \categories editor" has been omitted
for this case study (as already mentioned).

Access control list

Besides the dependencies between roles, the ACL stores the assignment of
groups to roles. Although local NABs coexist with the global NAB, only
the global NAB is relevant for registration and hence for the set of avail-
able groups. Please note that the manager of a shared database may freely
decide which kind of group to choose (shared group or group of some par-
ticular team). If the manager chooses a shared group, then the members
are determined by the teams concurrently. In case the manager selects some
group of a particular team, then no other team is involved.

To keep the case study simple, we have negotiated to change the number
of shared groups while execution. We provide one shared group per rele-
vant case i.e. for the following three (see De�nition 80): Author , Reader ,
Editor local . All together we will reserve four shared groups (one extra shared
group for position zero where we store the managers of the local NABs).

Usually, the manager of a database uses the ACL to control which subject
may gain access to which kind of information. During execution, the ACL
may change. For shared bboards the situation is di�erent. The task of
ruling over rights is delegated to the the managers of the local NABs who
administrate the subjects by \remote control". The local NABs may change
over time (in analogy to changes in the ACLs of ordinary databases) whereas
the entries in the shared bboard (usually) remain unchanged. The following
initial con�guration hence is assumed to be �xed for the case study.

De�nition 80 (Shared bboards: Initial ACL of bboards)

acl-groupsbboard : rolebboardACL-groups

acl-groups
bboard

Manager = [Ref c 0 0]
j Editor = [Ref c 0 0]
j Author = [Ref c 1 1 ; Ref c 1 3]
j Reader = [Ref c 1 2]
j NoAccess = []
j Editor local = [Ref c 1 3]
j = []

Please note that the local editors are additionally entered as authors and
thus implicitly also as readers. Otherwise it could not be guaranteed that

134

they were able to read and edit the documents they are responsible for. The
managers and the editors are the only groups that are not shared between
the teams. Only the central administrators may manage the shared bboard
and edit all documents.

States

The de�nition of states for shared bboards (statebboard) is an instantiation
of De�nition 59 taking the parameter d (the name of the database) to be
bboard .

Since we do not provide any means to change the list of the categories in
the pro�le, the initial states need to have this list as input. The de�nition
of initial-statebboard is { apart from the categories { standard.

De�nition 81 (Shared bboards: Initial states of bboards)

initial-state
bboard : string list ! statebboard

initial-state
bboard

s = f data-space = newmemory;
pro�le = s;

acl-groups = acl-groupsbboard;
acl-default = NoAccessg

Operations and guards

Basically, this database only uses the standard operations from Lotus Notes:
add-doc ,map-doc , remove-doc and read-doc (see Section 4.3.6) together with
the corresponding guards. There are only two minor changes required: First,
the guard for operation add-doc additionally guarantees that only those
documents are added where �eld author really contains the name of the
author. Second, function map-doc has to respect the author of the document
i.e. must leave �eld author una�ected.

Please note that we have omitted one operation: map-acl . The sample
correctness proof in Section 5.5 crucially depends upon a constant setup
of the ACL. The ACL is con�gured properly in the initial state . Since
we do not provide any operation to update the ACL, the well-formedness
property remains invariant. Had we implemented operation map-acl , we
had to guarantee well-formedness of the ACL by some semantic invariant.

Apart from the standard operations, the database also comprises an agent
(the ACL agent) which we also model as an operation. This agent is the
core of access control for shared bboards. The access rights are assigned
granularly on a document basis (using readers and authors �elds).

135

De�nition 82 (Shared bboards: ACL agent)

acl-agent : subjectc ! statebboard ! statebboard

acl-agent s st = stfdata-space := st :data-spacefobjs :=
map(� d : dfreaders :=

fsubjects = [d :author];
groups = Managers ++Editors ++

(de local d :author :a�l)++ (da d :author :a�l)++
(dr d :author :a�l)++ (join (map dr d :teams));

roles = [] g
fauthors := fsubjects = [d :author];

groups = de local d :author :a�l ;
roles = [] g

st :data-space:objsgg
with

Managers = st:acl-groups Manager

Editors = st :acl-groups Editor
Editors local = st:acl-groups Editor local
Authors = st:acl-groups Author
Readers = st :acl-groups Reader

decompose : nat ! groupc Ref c ! groupc Ref c
decompose x (Ref c n m) = if n = 1 then Ref c n x else Ref c n m

delocal n = map (decompose n)Editors local
da n = map (decompose n)Authors
dr n = map (decompose n)Readers

It is not immediate to see why this de�nition captures our intuition. In
Section 5.5 we will therefore prove some key properties of this agent. For
the moment we feel comfortable with informal arguments only.

� Managers: Even though managers are highest in the hierarchy of
access levels, they are excluded from reading documents if they are
not listed in the readers �eld (provided the readers �eld is non-empty).
Therefore the managers have to be listed explicitely in all readers �elds.
For the authors �elds the situation is di�erent. Authors �elds are only
relevant for authors { managers may edit all documents regardless if
they are listed in the authors �eld or not (see Section 4.2.3).

� Editors: The treatment of editors is analogous to the one for man-
agers. All editors have to be listed explicitely in the readers �elds but
not in the authors �elds.

� Local Editors: The local editors are in contrast with the editors no
access level in Lotus Notes but only a role. For this reason, they have
no access rights from the beginning. All access rights have to be given
explicitely. The �rst step was to enter all local editors as readers and
authors in the ACL (see De�nition 80). This gives them the potential
to read and edit documents { depending on their appearance in the

136

readers and authors �elds. As the name suggest, the local editors may
only edit those documents whose authors are a�liated the same team.
To this end we use auxiliary function decompose which decomposes a
shared group and selects the constituent which belongs to a particular
team (in this case the team of the author of the document). The local
editors of the author's team (\delocal author :a�l") are entered both in
the readers and authors �elds.

� Authors: Authors may only edit their own documents. Hence there
is no necessity to enter authors other than the author of the current
document in the authors �eld. Authors dominate readers in Lotus
Notes in the sense that all authors are also readers. Hence it might
seem natural to enter all authors in the readers �eld. In the light of
shared bboards, though, this would be too generous. Authors should
only be permitted to read a document if the author of the document
belongs to the same team (\da author :a�l").

� Readers: Of course readers have no rights to edit documents (except
they are also authors or above). Therefore they are not mentioned
in the authors �elds. Amongst all readers of a shared bboard there
are two kinds of subjects that may read a particular document. The
�rst kind comprises all readers of the same team as the author of the
document (\dr author :a�l"). The second kind is determined by �eld
teams of the document. All readers of all teams listed in this �eld
are also readers of the document an hence entered in the readers �eld
(\join (map dr d :teams)").

� Author of the document: The author of any document may read
his or hers own document. As a consequence, the author is listed both
in the readers and the authors �eld of the document (\d :author ").

The guard for the ACL agent is considerably simple: all central administra-
tors or servers may invoke the agent. In other words, all groups at level zero
in the NAB are permitted to do so.

De�nition 83 (Shared bboards: ACL agent { guard)

Pacl-agent : (groupc Ref c ! subjectc list)!

(role lotus-notes ! subjectc list)!
subjectc ! statebboard ! statebboard ! bool

Pacl-agent nab acl s st = (s:a�l = 0)

5.4.5 Application

So far we have de�ned all constituents of shared bboards. It's time now to
put the pieces together.

137

States

The de�nition for the state of the application is along the lines of De�nition
45 with the exception that the number of local NABs may vary and hence
we have to use lists of local NABs rather than a �xed number of record
�elds.

De�nition 84 (Shared bboards: States of application)

Assume shared to be the name of the whole application of shared bboard.

type stateshared = fnab : stateNAB ;
local-nabs : stateNAB local list;
bboard : statebboardg

The list of categories is the �st argument of function initial-stateshared . The
number of local NABs is determined by the list of managers (second argu-
ment of the function). There is exactly one local NAB per manager. In the
NAB we generate a �xed number (\4") of shared groups.

De�nition 85 (Shared bboards: Initial states of application)

initial-stateshared : string list ! string list ! stateshared

initial-state
shared

c m = fnab = initial-state
NAB

4 ;

local-nabs = map initial-stateNAB local m;

bboard = initial-state
bboard

cg

Operations

As far as the operations of the NAB and the bboard are concerned, there is
almost no peculiarity. Basically, they can be treated just as any other oper-
ation of Logos along the lines of De�nitions 46 and 47. The only exception
concerns the NAB agent. When lifting the NAB agent to the application,
the auxiliary parameter (list of local NABs) is dropped since its value is
computed from the list of local NABs which is { in contrast to the level of
the respective database { available at the level of the application.

For the operations of the local NABs the situation is slightly di�erent.
The lifting of operations (and also guards) assumes that there is exactly one
�eld per database in the global state. Our decision to take lists of local
NABs in the global state violates this assumption. To remedy this weakness
we, have to use list update and list selection rather than �eld update and
�eld selection for record types in the lifting of the operations.

De�nition 86 (Local NABs: Lifting internal operations) For some
local NAB m assume internal operation f NAB local

i : subject ! �1 ! : : : !

�n ! stateNAB local ! stateNAB local . The corresponding lifted operation
f shared ;NAB local

i is de�ned as follows:

138

f
shared;NAB local

i : subjectc ! �1 ! : : :! �n ! stateshared ! stateshared

f
shared;NAB local

i fname = s; a�l = mg x1 : : : xn st =

liftNAB local m (f NAB local

i s x1 : : : xn)

with

lift
NAB local : nat ! (stateNAB local ! stateNAB local)! (stateNAB ! stateNAB)

liftNAB local m f st = stflocal-nabs := updatenth m f st :local-nabsg

De�nition 87 (Local NABs: Lifting observational operations)

This de�nition is analogous to the lifting of internal operations, though
using the following lifting function instead.

lift
NAB local : nat ! (stateNAB local ! �n+1)! (stateshared ! �n+1)

lift
NAB local m f st = f (nth m st:local-nabs)

Guards

In the last chapter we have shown how to lift guards to Lotus Notes appli-
cations (see De�nition 60). This de�nition applies directly to the NAB and
the bboard of shared bboards.

For the local NABs we have to re�ne this de�nition { in analogy to the
lifting of operations { to account for list update and list selection rather than
�eld update and �eld selection for record types. Furthermore, the guards
have to guarantee that operations are only invoked for existing local NABs.

De�nition 88 (Local NABs: Lifting guards) For local NAB m and

internal or observable operation hNAB local assume guard PNAB local

h with

the following input types (groupc Ref c ! subjectc list); (role
NAB local !

subjectc list); subject ; �1; : : : ; �n and stateNAB local . The lifted guard (lifted

to application shared) is called P shared ;NAB local

h and has type

P
shared;NAB local

h : subjectc ! �1 ! : : :! �n ! stateshared ! bool

It is de�ned as

P
shared;NAB local

h fname = s; a�l = mg x1 : : : xn st =

(if 9r : s 2 g r then P
NAB local

h f g s x1 : : : xn (nth m st :local-nabs)

else PNAB local

h f gfdefault := (g default) [fsgg s x1 : : : xn
(nth m st :local-nabs)) ^

(length (st:local-nabs) � m)

with

acl = fgroups = (nth m st :local-nabs):acl-groups; roles = acl-roles lotus-notesg
f = members st :nab :data-space
g = assignees st :nab :data-space acl
default = (nth m st :local-nabs):acl-default

139

Access control

Section 3.3.3, which guides the way to access control, also serves as road map
for this section. The �rst step is to de�ne the transition relation (i.e. the set
of potential steps the system may take).

� NAB: We have de�ned only one operation for the global NAB and
that is the NAB agent. Consequently, there is only one introduction
rule for the NAB.

� Local NABs: For the local NABs we have fallen back upon the
standard de�nitions of Lotus Notes and hence we may also use the
standard introduction rules.

� Bboard: The bboard, �nally, uses the standard operations from
Lotus Notes in addition to the ACL agent. The only exception
concerns (as already mentioned) operation map-acl which we have
skipped.

With the operations and guards of the application in hand, the de�nition of
the transition relation degenerates to a book keeping task.

De�nition 89 (Shared bboards: Transition relation) The inductive
set transitionshared : (stateshared � subjectc � stateshared)set is de�ned by
the following introduction rules (we write st

s
�!shared st 0 rather than

(st ; s ; st 0) 2 transitionshared).

Transitions for the global NAB (\appl" short for \shared ; NAB"):

P
appl

nab-agent s st

st
s
�!shared nab-agent

shared;NAB s st

Transitions for the local NABs (\appl" short for \shared ; NAB local "):

P
appl

add-doc s d st

st
s
�!shared add-doc

appl
s d st

P
appl

map-doc s r f st

st
s
�!shared map-doc

appl
s r f st

P
appl

remove-doc s r st

st
s
�!shared remove-doc

appl
s r st

P
appl

map-acl s f g st

st
s
�!shared map-acl

appl
s f g st

Transitions for the bboard (\appl" short for \shared ; bboard"):

P
appl
add-doc s d st

st
s
�!shared add-doc

appl s d st

P
appl

map-doc s r f st

st
s
�!shared map-doc

appl s r f st

P
appl
remove-doc s r st

st
s
�!shared remove-doc

appl s r st

P
appl

acl-agent s st

st
s
�!shared acl-agent

appl s st

2

140

In the second step we de�ne the set of admissible states. In De�nition 85
we have determined the initial states of the application. This together with
the just given transition relation leads to the set of admissible states.

De�nition 90 (Shared bboards: Admissible states) The set of ad-
missible states admissibleshared : stateshared set for the shared bboards is de-
�ned by the following introduction rules.

initial-stateshared c m 2 admissibleshared

st 2 admissible
shared ^ st

s
�!shared st

0

st0 2 admissible
shared

De�nition 51 (admissible transitions) can be transferred easily.

5.5 Sample correctness proof

So far we have introduced three levels of models: framework Logos,
Lotus Notes and the particular case study of shared bboards. In a sense,
each level is a re�nement of the antecedent. Many de�nitions were required
to complete all the steps and hence the following question arises naturally:
what are the de�nitions good for?

One of the targets we hit is \clear speci�cations" and thus robust soft-
ware design. Code (or speci�cations) we write in our model is much more
abstract than any code deployed for some application in a concrete group-
ware system. Hence from a conceptual point of view we have gained clarity
which in itself is a honourable goal.

Beyond clear speci�cations we have also laid ground for veri�cation of
security critical aspects of groupware applications. The usefulness of Logos
for this purpose, though, has not been shown yet in this thesis. To this
end we formulate and prove some important aspect of shared bboards: local
editors may edit and only edit all documents of authors with the same
a�liation (we have stated this as informal de�nitional property for local
editors in Section 5.3).

Of course there are many more interesting properties of shared bboards
that are worth investigating. Our intention, though, is not to develop a
complete theory of shared bboards but rather to demonstrate the proof
methodology of Logos and to show that our framework is suitable to express
and prove interesting properties. Since there are so many de�nitions (and
thus also lemmas) involved in a comprehensive theory of shared bboards,
this task is infeasible without computer support (namely theorem provers).
Indeed, one could reasonably imagine as further work a reformulation of this
thesis in Isabelle/HOL (see the concluding remarks in Section 6).

We will see in the following section that even for the selected property
the number of de�nitions and lemmas is high and renders a manual proof

141

complex. Please note that this complexity does not stem from the pro-
foundness of the theorem but from the number of de�nitions and lemmas
involved. This is a general remark that does not only refer to our framework
but rather is true for many application-oriented proofs.

5.5.1 Proof sketch

Now let's turn to the details of the envisaged correctness proof. Of course,
the �rst step is to formulate the desired theorem. As already mentioned, it
expresses that local editors may edit and only edit all documents of authors
with the same a�liation.

8st 2 admissible
shared : 8n � length st:local-nabs:

8x 2 members (nth n st :local-nabs :data-space) (Ref 3):

(read-docshared; bboard r st):author :a�l = m ^ q :a�l = q 0:a�l = 0)

m = n + 2) (st 0
s

=)shared st
00) ^

m 6= n + 2 ^ st 00 6= st 0) :(st 0
s

=)shared st
00)

with

s = fname = x ; a�l = n + 2g

st0 = nab-agent
shared;NAB

q (acl-agent shared; bboard q 0 st)

st00 = map-docshared; bboard s r f st 0

The informal term \for all local editors" is represented by the universal quan-
ti�cation 8x 2 members (nth n st :local-nabs:data-space) (Ref 3). Reference
Ref 3 stores for each team the set of local editors. In the just mentioned
term we therefore quantify over all local editors of team n (with n being
any team). Depending on whether a local editor is (n = m + 2) or is not
(n 6= m + 2) a�liated with the same team as the author of the document
under consideration, the local editor may (st 0

s
=)shared st 00) or may not

(:(st
s

=)shared st 00)) change the document.
Please note that the transition relation is semantic in the sense that it

de�nes the set of possible transitions independent of the operation used.
The just mentioned theorem hence also comprises all updates of the docu-
ment that are provoked by operations other than map-docshared ; bboard (this
is unimportant for the �rst case, but of great importance for the second).

In the second case, a local editor must not invoke map-docshared ; bboard {
not even for the purpose of leaving the document unchanged (i.e. f = id).
Nevertheless, the local editor may use any other operation (or none,
which is expressed by the re
exivity of the transition relation { see De�ni-
tion 49) to leave the document unchanged, hence the side condition st 0 6= st .

In a second step we reduce the theorem to a lemma which looks pretty much
the same as the theorem, only with the guard of map-doc exchanged for the
transition relation.

142

8st 2 admissibleshared : 8n � length st:local-nabs:
8x 2 members (nth n st :local-nabs :data-space) (Ref 3):

(read-docshared; bboard r st):author :a�l = m ^ q :a�l = q 0:a�l = 0)
m = n + 2) Pbboard

map-docs r f st
0 ^

m 6= n + 2) :Pbboard
map-doc s r f st

0

with

s = fname = x ; a�l = n + 2g

st0 = nab-agent
shared;NAB

q (acl-agent shared; bboard q 0 st)

st00 = map-docshared; bboard s r f st 0

This lemma is the core of the correctness proof and requires extensive anal-
ysis of the NAB agent, the ACL agent and the model of access control. It
does not require direct induction over the set of admissible states, though.
All induction that is needed for this lemma concerns an auxiliary lemma
that expresses that the ACL entry for the local editors remains unchanged
in the bboard.

Deriving the theorem from the lemma is easy in the �rst case. The intro-
duction rule for map-docshared ; bboard in the transition relation immediately
succeeds. For the second case the situation is di�erent. If the guard does
not hold for some operation then it need not be true that the transition
relation does not hold for the operation. Assume for example a transition
relation with two introduction rules

P st

st
s
�! f st

Q st

st
s
�! g st

with f st 0 = g st 0 and P st 0 = true; Q st 0 = false

for some st 0

From the fact that Q st 0 = false one may not conclude that st 0
s
�! g st 0

does not hold. Since f st 0 = g st 0 the transition is equivalent to st 0
s
�! f st 0

which in turn may be derived from the �rst introduction rule.
Nevertheless in this particular case, the \reverse" introduction rule holds

for operationmap-docshared ; bboard which can be established by induction over
the de�nition of the transition relation.

st
s

=)shared st
0 ^ st 6= st 0 ^ st 0 = map-docshared; bboard s r f st)

P
shared; bboard

map-doc s r f st

This lemma �nally conquers the second case of the theorem.

5.5.2 Proof realization

As we have said, the central lemma investigates the conditions under which
the guard for operation map-docshared ; bboard holds. The lemma consists of
two propositions: \local editors are correct" and \local editors are secure".
With \local editor correct" we mean that local editors really may edit doc-
uments of authors with the same a�liation. The term \local editors secure"
expresses that local editors may not edit any document of some author with
a di�erent a�liation.

143

Lemma 17 (Guard correct and secure for local editors)

8st 2 admissible
shared: 8n � length st :local-nabs :

8x 2 members (nth n st:local-nabs:data-space) (Ref 3):

(read-docshared; bboard r st):author :a�l = m ^ q :a�l = q 0:a�l = 0)

m = n + 2) P
shared; bboard
map-doc s r f st 0 ^

m 6= n + 2) :Pshared; bboard
map-doc s r f st 0

with

s = fname = x ; a�l = n + 2g

st 0 = nab-agent
shared;NAB

q (acl-agentshared; bboard q 0 st)

st 00 = map-doc
shared; bboard

s r f st 0

Proof: First we replace assumption q :a�l = q 0:a�l = 0 with proposi-
tion st 0 2 admissibleshared . This is immediate by the introduction rules for
nab-agentshared ;NAB and acl-agentshared ; bboard in the de�nition of the tran-
sition relation. Next, we expand the de�nition of P shared ; bboard

map-doc and apply

Lemma 22 (the ACL of bboards constantly equals acl-groupsbboard). As a

consequence, both occurrences of P shared ; bboard
map-doc are replaced by

if 9r 0: s 2 acl
0
r 0

then Pbboard
map-doc nab

0 acl 0 s r f st 0:bboard

else Pbboard
map-doc nab

0
acl

0[NoAccess := (acl 0NoAccess) [fsg] s r f st 0:bboard
with

acl = fgroups = acl-groups
bboard ; roles = acl-roles

bboardg
acl

0 = assignees st0:nab:data-space acl
nab 0 = members st 0:nab:data-space

Lemma 19 (see below), which expresses that local editors are dealt with
properly by the NAB agent, guarantees that there is a witness (r 0 :=
Editor local) for the existentially quanti�ed variable r 0. In order to apply
the lemma we need a trivial auxiliary lemma which shows that the ACL
agent does not a�ect the local NABs (because of its simplicity we do not
spell it out explicitely). After application of Lemma 19 (with instantiation
st := acl-agent shared ; bboard q 0 st) the following goal remains.

8st 2 admissible
shared : 8n � length st :local-nabs:

8x 2 members (nth n st :local-nabs :data-space) (Ref 3):

(read-docshared; bboard r st):author :a�l = m ^ st 0 2 admissibleshared)
m = n + 2) Pbboard

map-doc nab
0
acl

0
s r f st 0:bboard ^

m 6= n + 2 ^ st 00 6= st 0) :Pbboard
map-doc nab

0 acl 0 s r f st 0:bboard

with

s = fname = x ; a�l = n + 2g

st0 = nab-agent shared;NAB q (acl-agent shared; bboard q 0 st)

st00 = map-docshared; bboard s r f st0

acl = fgroups = acl-groups
bboard ; roles = acl-roles

bboardg
acl

0 = assignees st 0:nab :data-space acl
nab0 = members st0:nab:data-space

144

The next step is to expand the de�nition of P bboard
map-doc . Since the de�nition

is quite extensive and it occurs twice in two independent subgoals, we treat
the two subgoals separately in the following.

Case 1: \m = n + 2"

This goal again is a conjunction and hence split for the proof into two
independent subgoals. The �rst subgoal reduces by expansion of de�nition
P bboard
read-doc to

if d :readers = [] ^ d :authors = []
then s 2 acl 0Reader

else s 2 acl
0
Reader ^ (s 2 m-a nab

0
acl

0
d :readers _

s 2 m-a nab
0
acl

0
d :authors)

with

d = read-docbboard s r st 0:bboard

Regardless if the predicate for the conditional expression holds (and by the
way it does not hold), this proposition is true by Lemma 19 (s 2 acl 0Reader)
and Lemma 20 (s 2 m-a nab0 acl 0 (read-docbboard s r st 0:bboard):readers and
s 2 m-a nab0 acl 0 (read-docbboard s r st 0:bboard):authors).

The second subgoal equals (due to the de�nition of P bboard
map-doc)

s 2 acl
0
Editor _ (s 2 acl

0
Author:add;:remove ^

s 2 m-a nab
0
acl

0 (read-docbboard s r st0:bboard):authors)

The left part of the disjunction does not hold as local editors may not be
ordinary editors. But this is irrelevant since according to Lemmas 19 and
20 both subterms of the conjunction are valid.

We have succeeded Case 1: \m = n + 2" now and turn to the next
(last) case of the lemma.

Case 2: \m 6= n + 2"

Expanding the de�nition of P bboard
map-doc and using de Morgan's laws (to elimi-

nate the leading negation) the goal rewrites to

:Pbboard
read-doc nab

0
acl

0
s r st 0:bboard _

(s 62 acl
0
Editor ^ (s 62 acl

0
Author:add;:remove _

s 62 m-a nab0 acl 0 (read-docbboard s r st0:bboard):authors))

It is irrelevant (and not certain either) if the subject is permitted to read
the document because the right part of the outer disjunction holds. The
conjunction in turn is validated by Lemma 19 (s 62 acl 0Editor) and Lemma
20 (s 62 m-a nab0 acl 0 (read-docshared ; bboard s r st 0):authors). Now we are done
with the second case and hence with the proof of the whole lemma. 2

145

During the proof of the lemma we have hinted at some auxiliary lemmas
(Lemmas 18 { 22). In the following we deliver the missing lemmas.

The �rst auxiliary lemma shows how groups of the local NABs are registered
in the global NAB by the NAB agent. Each member x of some group Ref m
a�liated with team n is registered as subject fname = x ; a�l = n + 2g
in group Ref c (n + 2)m of the global NAB. Furthermore, the registered
subject is contained in the shared group Ref c 1 m (provided Ref c 1 m is a
shared group). Instantiating m := 3 adjusts the lemma for the local editors
(for this instantiation the precondition of the �rst proposition is met, as the
third group is indeed a shared group).

Please note that this lemma is some fundamental lemma about the func-
tionality of the NAB agent and does not require admissible states but only
regular states as input. The lemma does not mention, which e�ect the NAB
agent has on level zero of the global NAB.

Lemma 18 (NAB agent correct)

8n � length st:local-nabs:
8x 2 members (nth n st :local-nabs:data-space) (Ref m):
m � st 0:pro�le) s 2 nab

0 (Ref c 1 m) ^
s 2 nab0 (Ref c (n + 2)m)

with

s = fname = x ; a�l = n + 2g

st 0 = nab-agent
shared;NAB

q st

nab0 = members st 0:nab:data-space

Proof: The proof of the �rst proposition is based on the correctness of
the second proposition and additionally requires some list induction over
function shared-groups (see De�nition 71). The second proposition is proved
by list induction over function embed (see De�nition 70). 2

The second auxiliary lemma enumerates (some of the) roles that local editors
are assigned in the bboard: Editor local , Author , Author:add;:remove and
Reader . Furthermore it lists one role that local editors certainly are not
assigned to: Editor .

Lemma 19 (NAB agent correct and secure for local editors)

8st 2 admissibleshared: 8n � length st :local-nabs:
8x 2 members (nth n st :local-nabs:data-space) (Ref 3):
s 2 acl

0
Editor local ^ s 2 acl

0
Author ^

s 2 acl
0
Author:add;:remove ^ s 2 acl

0
Reader ^

s 62 acl
0
Editor

with

s = fname = x ; a�l = n + 2g

st 0 = nab-agent
shared;NAB

q st

acl = fgroups = acl-groups
bboard ; roles = acl-roles

bboardg
acl 0 = assignees st0:nab:data-space acl

146

Proof: All goals (except for s 62 acl 0Editor) are simple consequences from
the de�nition of acl-groupsbboard (see De�nition 80) together with Lemmas
18 and 22. The fact that the ACL of bboards is constant is also used
for the last subgoal (s 62 acl 0Editor). The lemma reduces the subgoal to
s 62 members st 0:nab:data-space (Ref c 0 0), which is proved by Lemma 21
falling back upon assumption s :a�l = n + 2. 2

The third auxiliary lemma describes some circumstances under which local
editors are (or are not) listed in readers or authors �elds of the bboard.
For all documents with authors of the same a�liation, the local editors are
contained both in the readers and authors �elds. Local editors are not listed
in the authors �elds of documents that are owned by authors of a di�erent
team. As far as the readers �elds of such documents are concerned, the local
editors are only mentioned if their a�liation is included in the �eld team
of the document. This case, though, is (in contrast to all other cases) not
covered by the following lemma.

Lemma 20 (ACL agent correct and secure for local editors)

8st 2 admissibleshared : 8n � length st:local-nabs:
8x 2 members (nth n st :local-nabs :data-space) (Ref 3):

(read-docshared; bboard r st):author :a�l = m)

m = n + 2) s 2 m-a nab
0
acl

0 (read-docshared; bboard s r st 0):readers ^

m = n + 2) s 2 m-a nab 0 acl 0 (read-docshared; bboard s r st 0):authors ^

m 6= n + 2) s 62 m-a nab
0
acl

0 (read-docshared; bboard s r st 0):authors
with

s = fname = x ; a�l = n + 2g

st 0 = nab-agent shared;NAB q (acl-agent shared; bboard q 0 st)

acl = fgroups = acl-groups
bboard ; roles = acl-roles

bboardg
acl

0 = assignees st0:nab :data-space acl
nab

0 = members st0:nab:data-space

Proof: The proofs for all three subgoals are quite straightforward by �rst
expanding the de�nition of acl-agent (see De�nition 82) and then applying
Lemma 18 together with Lemma 22. 2

The fourth auxiliary lemma expresses that the NAB agent respects the levels
of the NAB (except for level one): subjects may only be members of groups
with the same a�liation as their own.

Lemma 21 (NAB well-formed)

8st 2 admissibleshared :
fname = s; a�l = ng 2 members st :nab:data-space (Ref cm))
m = n _ m = 1

147

Proof: This lemma describes some property that is invariant for all ad-
missible states. The proof is performed by induction over the inductively
de�ned set admissible. Clearly, the proposition holds for the initial NAB.
Since the NAB agent is the only way to change the NAB, the proof reduces
to showing the invariance property for the NAB agent. The NAB agent,
�nally, does not update level zero, hence the induction hypothesis works for
this case. Level one is trivial since it is the only exception of the proposi-
tion. All levels from level two onward are dealt with equally based on some
auxiliary lemma for function embed : 0 � m ^ fname = s ; a�l = ng 2
members (nth m (embed xs)) r) n = m + 2 . 2

The �fth (and last) auxiliary lemma shows that the ACL of the bboard is
�xed for admissible states. In particular it is frozen at the level of the initial
ACL acl-groupsbboard .

Lemma 22 (ACL of bboards constant)

8st 2 admissible
shared: st :bboard :acl-groups = acl-groups

bboard

Proof: This lemma again describes an invariant property for all admissible
states. Earlier on we have decided to leave the ACL of the bboard unchanged
throughout the application (since we have avoided any operation that might
change the ACL) and hence we can prove that the ACL always coincides
with the initial ACL. The proof is a simple induction over the inductive set
admissible. The proposition clearly holds for the initial ACL and since no
operation changes the ACL of the bboard, the proposition is invariant in all
induction steps. 2

We are almost done with the preparations for our main theorem. All that
remains is an auxiliary lemma which shows the inversion of the induction
rule for operation map-docshared ; bboard .

Lemma 23 (Induction rule for map-docshared ; bboard { inversion)

st
s

=)shared st
0 ^ st 6= st 0 ^ st 0 = map-docshared; bboard s r f st)

P
shared; bboard

map-doc s r f st

Proof: This lemma is proved by elimination (induction on the derivation)
of the inductive relation =)shared in the assumptions.

Case 1: \st 0 = nab-agentshared ;NAB s 0 st"

From the di�erent de�nitions of st 0 (assumption and case distinction) we may
conclude thatmap-docshared ; bboard s r f st = nab-agentshared ;NAB s 0 st . Oper-
ation map-docshared ; bboard changes the bboard whereas nab-agentshared ;NAB

only a�ects the NAB. Since bboard and NAB are disjoint, the just men-
tioned equation is a contradiction { of course only provided that operations

148

map-docshared ; bboard and nab-agentshared ;NAB are not without e�ect, which
is taken care of by assumption st 0 6= st .

Cases 2 { 5: \Operations of the local NABs"

An analogous argument holds for the operations of the local NABs
(add-docshared ;NAB local , map-docshared ;NAB local , remove-docshared ;NAB local and
map-acl shared ;NAB local) since the operations of the local NABs only change
the local NABs and the local NABs are disjoint from the bboard.

Cases 6 { 9: \Operations of the bboard"

Operations add-docshared ; bboard and remove-docshared ; bboard add or remove
some document which operation map-docshared ;NAB local does not. As in the
previous cases, this di�erent behaviour leads to a contradiction. The ACL
agent acl-agentshared ; bboard operates (among others) on the same document
as map-docshared ;NAB local but the �elds that are a�ected by these two oper-
ations are disjoint. The ACL agent only modi�es the readers and authors
�elds which are left untouched by map-docshared ;NAB local . Again, a contra-
diction is the consequence. The last operation map-docshared ;NAB local , �nally,
is trivial by induction hypothesis. 2

The desired theorem, which characterises access control for the local editors,
is a simple consequence of the previous lemmas.

Theorem 3 (Access control for local editors correct and secure)

8st 2 admissibleshared: 8n � length st:local-nabs:
8x 2 members (nth n st:local-nabs:data-space) (Ref 3):

(read-docshared; bboard r st):author :a�l = m ^ q :a�l = q 0:a�l = 0)

m = n + 2) st 0
s

=)shared st
00 ^

m 6= n + 2 ^ st00 6= st 0) :(st 0
s

=)shared st
00)

with

s = fname = x ; a�l = n + 2g

st 0 = nab-agent shared;NAB q (acl-agentshared; bboard q 0 st)

st 00 = map-doc
shared; bboard

s r f st 0

Proof: The �rst subgoal is immediate from Lemma 17 by the introduction
rule for map-docshared ; bboard in the de�nition of �!shared . The second sub-
goal also follows from Lemma 17 but with application of Lemma 23 rather
than the introduction rule. Q.E.D.

5.5.3 Extensions

To ease presentation, we have omitted some of the operations. Now that we
have �nished the proof for the simpli�ed case study, it is time to lean back
and reconsider how an extension of the case study can be achieved without

149

compromising the theorem (at least substantially).

We have eliminated most of the operations for the global NAB. We would
at least expect some operations to add new groups and some operations to
remove or edit existing groups. There is one lemma, though, that limits
the behaviour of these operations. Lemma 21 requires that all operations
have to respect the levels of the NAB (except for level one) i.e. subjects may
only be members of groups with the same a�liation as their own. As long
as this property is satis�ed, such operations may be added (of course such
operations only make sense for level 0 , since all other levels are overridden
by the NAB agent). Furthermore we have left out some operation to deal
with the ACL of the global NAB. We recognise now, that such an operation
would have no impact on the theorem and hence could be added without
danger.

The local NABs are complete with respect to basic functionality. Hence
there is no urgent need to introduce further operations. In the bboard we
have incorporated all necessary operations for the documents, but we have
left out some operation to change the ACL. Such an operation is problematic
since we require in Lemma 22 that the ACL of the bboard remains unchanged
during execution. For our simpli�ed case study, this lemma was satisfactory
{ for an extended case study, though, it has to be re�ned. The proof of the
theorem depends upon the following two properties of the ACL.

� The second subgoal of the theorem states that local editors may not
edit any document with author of a di�erent a�liation. Clearly, this
proposition is only true as long as the local editors are not editors
or managers of the database. For the simpli�ed case study we have
achieved this by entering group Ref c 0 0 as initial managers and ed-
itors by and requiring that the ACL remains unchanged. For an ex-
tended case study you could either require that the editor and man-
agers must have a�liation zero (in that case the theorem is not af-
fected) or you could modify the second subgoal of the theorem: if a lo-
cal editor may edit some document whose author is a�liated with a dif-
ferent team, then the local editor also must be editor of the database.

� The proof of the theorem crucially depends upon the fact that group
Ref c 1 3 is assigned both role Author and role Editor local . Please note
that the concrete number 3 is irrelevant for the proof. Any natural
number k would do as long as the level of the local group was replaced
consistently both in the theorem and the ACL (and of course preserved
during execution).

Further operations could be added at least in principle. It has to be inves-
tigated for each operation individually, though, if the operation a�ects the
proof of the theorem.

150

151

Chapter 6

Conclusions

We have presented a logical framework (Logos) which can be used to express
authorisation issues in groupware applications. Since our focus is on appli-
cations and not on the meta-theory of the systems themselves, we have used
a shallow encoding in a standard higher-order logic called HOL. There are
a number of theorem provers supporting HOL (e.g. Isabelle/HOL) { hence
the development can also be used for a fully machine-checked veri�cation of
authorisation issues in security critical groupware applications.

To be honest, though, all de�nitions have been written in HOL, but they
have not been implemented in a theorem prover yet. Experience has shown
(e.g. see [25]) that this step requires additional, extensive e�ort { even if
from a theoretical point of view no new hurdles have to been taken. In this
thesis we have set out for the �rst challenge: a comprehensive de�nition of
authorisation issues in HOL. The second challenge { a complete formulation
in a theorem prover (in particular Isabelle/HOL) { remains as further work.
We would like to stress that we believe that the work would be worth the
e�ort { providing a solid and reusable basis for machine checked veri�cation
of authorisation issues in groupware applications.

The application of theorem provers for access control of groupware
systems is new frontier. However, there is a long tradition of access control
models in the context of databases (cf. [19, 8, 39, 37]) and also CSCW
i.e. computer-supported concurrent work (cf. [40, 7, 43, 42]). In contrast
with our approach, these models do not aim at veri�cation of real-life
applications in the �rst place.

Although we do have concrete applications in mind, we do not establish any
formal relationship between our model Logos and the real-life applications.
Establishing such a formal relationship is hopeless from the beginning. Real
groupware systems as Lotus Notes have gained a complexity which eludes
the systems from any (complete) formal investigation. Please note that
such an approach is standard in engineering. Engineers build small models

152

of the world { often without understanding the whole picture. Nevertheless,
these models are extremely useful in practice. Sometimes, the models have
mirrored aspects of reality improperly or incompletely. In these cases the
model is improved to account for the new requirements. We do the same
for Logos. Experience (see Chapters 4 and 5) shows that Logos is suitable
for a relevant part of the (groupware) world. Nevertheless, improvements or
extensions are not excluded. Please note that our decision to use a shallow
encoding rather than a deep one pays o� exactly at this point. Since we
use the well-established meta-theory of the underlying logic, we are free to
perform any change without compromising the meta-theory. In deep em-
beddings, where we have a meta-theory tailored to the speci�c model, any
change entails painful consequences for the meta-theory and hence the for-
mal basis. In this sense we believe, that our light-weight shallow approach is
a �rst step towards a proof-engineering of authorisation issues in groupware
applications.

153

Bibliography

[1] M. Abadi, M. Burrows, B. Lampson, and G. Plotkin. A calculus for
access control in distributed systems. ACM Transactions on Program-
ming Languages and Systems, 15(4):706 { 734, 1993.

[2] M. Abadi, M. Burrows, and R. Needham. A logic of authentication.
Proceedings of the Royal Society, 1871(426):233 { 271, 1989.

[3] G. Bella and L. C. Paulson. Mechanising ban kerberos by the inductive
method. In A. J. Hu and M. Y. Vardi, editors, Computer-Aided Veri-
�cation: CAV '98, volume 1427 of Lecture Notes in Computer Science,
pages 416 { 427. Springer-Verlag, 1998.

[4] A. Church. A formulation of the simple theory of types. Journal of
Symbolic Logic, pages 56{68, 1940.

[5] C. Cornes, J. Courant, J.-C. Filliâtre, G. Huet, P. Manoury, and
C. Mu~noz. The Coq Proof Assistant User's Guide, version 6.1. INRIA-
Rocquencourt et CNRS-ENS Lyon, 1996.

[6] L. D. Corporation. Domino Designer: The Power to Build Secure
Web Applications that Extend the Enterprise { Application Develop-
ment with Domino Designer. Lotus Development Corporation, 1999.

[7] P. Dewan and H. Shen. Flexible meta access-control for collaborative
applications. In Proceedings of the ACM 1998 Conference on Computer
Supported Cooperative Work, pages 247 { 256, 1998.

[8] R. S. Gail-Joon Ahn. Role-based authorization constraints speci�ca-
tion. ACM Transactions on Information and Systems Security, 3(4),
2000.

[9] M. J. C. Gordon and T. F. Melham (editors). Introduction to HOL:
A theorem proving environment for higher order logic. Cambridge Uni-
versity Press, 1993.

[10] R. Harper and B. C. Pierce. A record calculus based on symmetric
concatenation. In POPL 1991, pages 131{142, 1991.

154

[11] J. Harrison. HOL done right. Unpublished draft, 1996.

[12] M. Hofmann, W. Naraschewski, M. Ste�en, and T. Stroup. Inheritance
of proofs. Theory and Practice of Object Systems, Special Issue on
Third Workshop on Foundations of Object-Oriented Languages (FOOL
3), 4(1):51{69, 1998.

[13] P. Hudak, S. P. Jones, and P. Wadler. Report on the programming
language Haskell: A non-strict, purely functional language. SIGPLAN,
27(5), May 1992. Version 1.2.

[14] M. P. Jones. Quali�ed Types: Theory and Practice. PhD thesis, Uni-
versity of Oxford, 1992.

[15] M. P. Jones. A system of constructor classes: overloading and implicit
higher-order polymorphism. Journal of Functional Programming, 5(1):1
{35, 1995.

[16] L. Lamport and L. C. Paulson. Should your speci�cation language
be typed? Technical Report 425, University of Cambridge Computer
Laboratory, 1997.

[17] K. L�aufer and M. Odersky. An extension of ML with �rst-class abstract
types. In ACM SIGPLAN Workshop on ML and its Applications, San
Francisco, California, pages 78{91, June 1992.

[18] K. L�aufer and M. Odersky. Polymorphic type inference and abstract
data types. ACM Transactions on Programming Languages and Sys-
tems, 16(5):1411{1430, Sept. 1994.

[19] T. F. Lunt and E. B. Fern�andez. Database security. Data Engineering
Bulletin 13(4), 13(4):43{50, 1990.

[20] Z. Luo. Ecc: an extended calculus of constructions. In Proc. of IEEE
4th Ann. Symp. on Logic in Computer Science (LICS'89), 1989.

[21] R. Milner. Communication and Concurrency. Prentice-Hall, 1983.

[22] W. Naraschewski. Object-Oriented Proof Principles using the Proof-
Assistant Lego. Diplomarbeit, Universit�at Erlangen, 1996.

[23] W. Naraschewski. Towards an object-oriented progi�cation language.
In E. L. Gunter and A. Felty, editors, Theorem Proving in Higher Order
Logics: 10th International Conference, TPHOLs'97, volume 1275 of
Lecture Notes in Computer Science, pages 215{230. Springer-Verlag,
1997.

155

[24] W. Naraschewski and T. Nipkow. Type inference veri�ed: Algorithm W
in Isabelle/HOL. In E. Gim�enez and C. Paulin-Mohring, editors, Types
for Proofs and Programs: Intl. Workshop TYPES '96, volume 1512 of
Lecture Notes in Computer Science, pages 317{332. Springer-Verlag,
1998.

[25] W. Naraschewski and T. Nipkow. Type inference veri�ed: Algorithm W
in Isabelle/HOL. Journal of Automated Reasoning, 23:299{318, 1999.

[26] W. Naraschewski and M. Wenzel. Object-oriented veri�cation based on
record subtyping in higher-order logic. In J. Grundy and M. Newey, ed-
itors, Theorem Proving in Higher Order Logics, volume 1479 of LNCS,
pages 349{366. Springer, 1998.

[27] T. Nipkow. Isabelle/HOL. The Tutorial, 1999. Unpublished. Available
at http://isabelle.in.tum.de/doc/tutorial.pdf.

[28] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle's Logics: HOL,
2000. http://isabelle.in.tum.de/doc/logics-HOL.pdf.

[29] T. Nipkow and C. Prehofer. Type reconstruction for type classes. Jour-
nal of Functional Programming, 5(2):201{224, 1995.

[30] S. Owre, S. Rajan, J. M. Rushby, N. Shankar, and M. Srivas. PVS:
combining speci�cation, proof checking, and model checking. In R. Alur
and T. A. Henzinger, editors, Computer Aided Veri�cation, volume
1102 of LNCS, 1996.

[31] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of
Lecture Notes in Computer Science. Springer-Verlag, 1994.

[32] L. C. Paulson. ML for the Working Programmer. Cambridge University
Press, 2nd edition, 1996.

[33] L. C. Paulson. The inductive approach to verifying cryptographic pro-
tocols. Journal of Computer Security, 1(6):85 { 128, 1998.

[34] B. C. Pierce and D. N. Turner. Simple type-theoretic foundations
for object-oriented programming. Journal of Functional Programming,
4(2):207{247, 1994.

[35] A. Pitts. The HOL logic. In Gordon and Melham [9], pages 191{232.

[36] R. Pollack. The Theory of LEGO: A Proof Checker for the Extended
Calculus of Constructions. PhD thesis, University of Edinburgh, 1994.

[37] P. S. Ravi Sandhu. Access control: Principles and practice. IEEE
Communications, 32(9), 1994.

156

[38] R. Sandhu. Lattice-based access control models. IEEE Computer,
26(11), 1993.

[39] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman. Role-based access
control models. IEEE Computer, 29(2), 1996.

[40] H. Shen and P. Dewan. Access control for collaborative environments.
In Proceedings of the ACM Conference on Computer{Supported Coop-
erative Work, pages 51 { 58, 1992.

[41] K. Sikkel. A group-based authorization model for cooperative sys-
tems. In Proc. European Conference on Computer-Supported Coop-
erative Work (ECSCW'97), pages 345 { 360. Kluwer, 1997.

[42] K. Sikkel and O. Stiemerling. User-oriented authorization in collabora-
tive environments. In Proc. 3rd International Conference on the Design
of Cooperative Systems (COOP'98), volume 1, pages 175 { 183, 1998.

[43] H. ter Hofte. Working Apart Together: Foundations for Component
Groupware. Telematica Instituut, 1998.

[44] P. Wadler. Comprehending monads. In Mathematical Structures in
Computer Science, pages 461 { 493, 1992.

[45] P. Wadler. Monads for functional programming. InMarktoberdorf Sum-
mer School on Program Design Calculi, volume 118. Springer-Verlag,
1992.

[46] M. Wenzel. Type classes and overloading in higher-order logic. In E. L.
Gunter and A. Felty, editors, Theorem Proving in Higher Order Logics:
10th International Conference, TPHOLs'97, volume 1275 of Lecture
Notes in Computer Science, pages 307{322. Springer-Verlag, 1997.

[47] M. Wenzel. The Isabelle/Isar Reference Manual, 2000.
http://isabelle.in.tum.de/doc/isar-ref.pdf.

[48] J. M. Wing. A symbiotic relationship between formal methods and
security. In Proceedings from Workshops on Computer Security, Fault
Tolerance, and Software Assurance: From Needs to Solution. CMU-CS-
98-188, 1998.

157

