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Abstract

The Finite-Difference Time-Domain (FDTD) method, the Finite-Integration
Technique (FIT) and the Transmission Line Matrix (TLM) method provide
for discrete approximations of electromagnetic boundary value problems cast in
state-space forms. The dimension of the generated state-space models is usually
very large. In general terms, Model Order Reduction (MOR) enhances compu-
tational efficiency. Application of the reduced-order modeling to the FDTD,
FIT and TLM methods yields considerable reduction in the computational ef-
fort necessary for the solution of the discrete models. Furthermore, MOR can
be used to generate compact, broadband discrete models of the original elec-
tromagnetic systems. Such compact broadband macro-modeling enables the
abstraction of the discretized electromagnetic system in terms of a frequency-
dependent transfer function matrix representation, which, in turn, provides for
efficient implementation of the model in both general-purpose network-analysis
oriented simulators, and full-wave, time- and frequency-domain electromagnetic
field solvers aimed at system-level electromagnetic modeling.

Reduced-order modeling in TLM is an approximation of the discrete model
of electromagnetic field obtained through the application of the TLM method,
in terms of a model of considerable lower dimension. The development of such
a reduced-order model (ROM) can be achieved using two classes of methods,
namely, singular value decomposition (SVD) methods and moment matching
methods. A representative member of the former class of methods is the so-
called balanced model reduction, which is aimed at removing from the original
system those eigenstates that are difficult to observe and control. SVD-based
MOR-techniques have the attractive attribute that bounds for the approxima-
tion error in the reduced model can be established. One disadvantage is that
they tend to be computationally more expensive than moment matching meth-
ods.

The main focus of this work is on moment matching methods. While tech-
niques for MOR based on moment matching have been studied extensively in
the case of FDTD and FIT methods, they have not yet been considered in de-
tail in the context of TLM approximations of electromagnetic systems. The
application of moment matching MOR-techniques to TLM is presented, with
emphasis placed on KRYLOV subspace methods that utilize the LANCZOS and
ARNOLDI processes. The attributes of such methods, both in terms of computa-
tional efficiency and solution accuracy, are examined through their application
to the analysis of several electromagnetic structures. For this purpose the im-
plicit time evolution TLM-scheme is utilized. Also, a comparison is provided
between FDTD, FIT and TLM with regards to the computational efficiency of
MOR-methods for expediting their numerical integration.
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Chapter 1

Introduction

Over the past few years Model Order Reduction (MOR) is receiving significant
attention by the computational electromagnetics community as a systematic
and effective method for the development of compact representations of passive
electromagnetic systems of high complexity. Since the modeling of an electro-
magnetic system involves the spatial discretization of MAXWELL’s equations
over the computational domain of interest, the number of state variables tends
to be very large for systems exhibiting high geometric complexity. For exam-
ple, discrete electromagnetic models of very large dimension result from the
discretization of structures that contain very fine (sub-wavelength) geometric
features, yet their spatial extent spans several wavelengths in one or more di-
mensions in space. For such systems, MOR allows for significant increase in the
efficiency of the numerical solution of the discrete model through the construc-
tion of reduced-order models (ROMs) with a number of state variables much
smaller than that of the original system. Furthermore, for those cases for which
the structure under modeling happens to be a component of a larger system,
the construction of a reduced-order macro-model of the component helps ex-
pedite the simulation of the overall system. More specifically, the generated
reduced-order macro-model facilitates the abstraction of a multi-port compo-
nent of the original system in terms of a frequency-dependent, transfer function
matrix representation. In this manner, a decomposition of the system in terms
of low-order transfer function matrices is achieved. Furthermore, the elements
of these transfer functions are cast in terms of rational functions of the an-
gular frequency, thus enabling their seamless and efficient integration in both
general-purpose, network-analysis oriented circuit simulators and full-wave elec-
tromagnetic solvers aimed at system-level modeling.

The Transmission Line Matrix (TLM) method has proven to be a power-
ful tool for solving MAXWELL’s equations and has been successfully applied to
the analysis of various complicated planar and three-dimensional electromag-
netic structures. Like related differential equation-based numerical methods,
the TLM approximation of a linear electromagnetic boundary value problem
results a system of linear equations of large dimension. For practical electro-
magnetic devices the dimension of the resulting models is in the order of millions.
Since higher spatial resolution requires a shorter time step to guarantee stability,
the solution cost may easily become overwhelming and eventually prohibitive.
Therefore, the exploitation of MOR as a means of expediting the TLM solution
process makes sense.
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1.1 State of the Art

The Transmission Line Matrix (TLM) method, developed and first published in
1971 by JoHNs and BEURLE [60] has emerged as a powerful method for com-
puter modeling of electromagnetic fields [23],[56],/99]. The TLM method ex-
hibits excellent numerical stability and is also suitable for the modeling of lossy,
dispersive, active and nonlinear media [81], [101],[110]. However, the state-space
representation of TLM is usually very large, requiring significant computational
resources and long computation times. It is the objective of the proposed TLM
Model Order Reduction (TLM-MOR) to address these computational complex-
ity difficulties of standard TLM through the reduction of the original model into
one of significantly smaller dimension. The dimension of the reduced model, also
called model order, is associated with a subset of the eigenmodes of the system
that influence its response over the desirable frequency bandwidth of interest.
Furthermore, in the pole-residue representation of the generated ROM transfer
function, the model order is equal to the number of complex natural frequencies
or poles of the transfer function.

One of the early applications of MOR in numerical electromagnetics was
its use for the expedient calculation of the broadband response of an electro-
magnetic device (see, for example, [12],[129]). However, the most attractive
attribute of model order reduction is its close relationship to the development
of compact, broadband macro-models of electromagnetic devices, described in
terms of rational function approximations of the associated multi-port transfer
functions [14],[43]. Availability of such macro-models facilitates highly accurate,
linear or non-linear simulation at the subsystem and system level by means of
general-purpose, network analysis-oriented transient simulators such as SPICE
[36],[85]. Once cast in the form of such rational function macro-model, the
matrix transfer function of the electromagnetic device being modeled can be in-
terfaced conveniently and seamlessly with other frequency- and/or time-domain
electromagnetic and electromagnetic/circuit solvers. A particularly attractive
special case of such an implementation is in conjunction with the development
of effective, broadband and computationally efficient sub-gridding strategies in
the finite difference modeling of complex electromagnetic structures [35], [69],
[68].

The development of such a reduced-order model can be achieved using two
classes of methods, namely,

e singular value decomposition (SVD) methods, and
e moment matching methods.

A representative member of the former class of methods is the so-called
balanced model reduction, aimed at removing from the original system those
eigenstates that are difficult to observe and control [82]. SVD-based model
order reduction methods have the attractive attribute that bounds for the ap-
proximation error in the reduced model can be established. One disadvantage
is that they tend to be computationally more expensive than moment matching
methods. An assessment of the state of the art in the development of SVD-
based model order reduction methods can be found in [4]. The SVD-technique
with SCHUR decomposition has been already adopted to the TLM method [80].
However, the huge size of the TLM state-space system restricts the application
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of the proposed approach to 2-D cases with a small number of discretization
cells.

The key attribute of moment matching techniques is the efficiency of their nu-
merical implementation. The Asymptotic Waveform Evaluation (AWE) method,
based on the explicit moment matching technique, has been used for analysis of
large linear networks and interconnect structures (see, for example [9], [111]).
Recently, the AWE technique has been adopted to the state-space systems re-
sulting from approximations of differential equation-based description of elec-
tromagnetic boundary value problems [11],[129]. From the available moment
matching MOR-techniques KRYLOV subspace methods appear to be the most
robust and effective. More specifically, the LANCZ0OS- and ARNOLDI-algorithm
based MOR are most commonly used to expedite the solution of large linear
circuits, and FDTD and FIT approximations of electromagnetic problems [16],
[84],[85],[96]. One of the best-known MOR techniques is PADE-VIA-LANCZOS
(PVL), which provides a PADE approximation for the TAYLOR expansion of
the transfer function around a point in the LAPLACE domain [41], [84]. The
PVL matrix approximation is becoming a common approach for the Fast Fre-
quency Sweep (FFS) in Finite-Element Method (FEM) and Method of Moments
(MoM) based commercial simulators [17], [127]. The direct application of the
LANCzOS algorithm to a MOR process yields a PADE approximation for the ex-
pansion point placed at infinity. The approximations of the transfer function by
KRYLOV subspace methods with expansion at either a finite complex-frequency
point or at infinite frequency have advantages and drawbacks, which can be
briefly summarized as follows:

e KRYLOV subspace methods with finite expansion point (classical PVL and/or
PADE-vVIA-ARNOLDI (PVA)) - low order reduced models, high computa-
tional time effort and memory requirements in order to obtain the inverse
system matrix;

o KRYLOV subspace methods with expansion at infinity (direct application
of Krylov subspace methods) - low computational effort, large dimension
of reduced-order models, rapid increase of computational costs for post-
processing due to the large dimension of the reduced system matrix.

In order to exploit their advantages these approaches can be easily integrated
into a two-step reduction process. This combination yields a low-order reduced
model with the reasonable computational effort [126].

Once a reduced-order model is available, generated by means of applying
KRYLOV subspace methods to TLM, the time-domain response of the electro-
magnetic structure under investigation can be recovered expediently. In prin-
ciple, the transient response of the electromagnetic structure may be also pre-
dicted efficiently from a limited number of time samples of the TLM-generated
time series through the application of high-resolution parametric model esti-
mation techniques, based on System Identification (SI) techniques [87]. These
methods allow the expedition of TLM simulations and the determination of the
network equivalent model directly from the simulated results [24], [25]. Although
SI techniques have been applied extensively for time extrapolation of numeri-
cally obtained electromagnetic responses, a systematic and efficient approach
for their robust implementation in conjunction with transient electromagnetic
field solvers is still missing. SI methods can be regarded as digital signal post-
processing based methods for obtaining the approximate impulse response of
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the device under modeling. On the other hand, moment matching MOR tech-
niques are aimed at providing for such impulse response extraction capability
not through post-processing of the numerical solution process but during the
solution process.

In particular, MOR-techniques are attractive for expedient analysis of elec-
trically large, highly-resonant structures, like filters and resonators. Time-
domain based simulators require long time iterations to achieve steady state,
and frequency-domain methods demand fine frequency resolutions in order to
gain sharp resonances. In both cases, the required solution time is very long. In
the RF area, for example, reduced-order models are used to capture the behav-
ior of a complex interconnect system in the form of a smaller RF macro-model,
which is then embedded into the main circuit and co-simulated with it [15],
[122]. Similar approaches are used in other application areas, such as the design
of multi-port Microwave Monolithic Integrated Circuits (MMICs), optical trans-
ceiver ICs and electromagnetic interference (EMI). Recently, MOR-techniques
have been applied successfully to distributed, passive structures such as con-
nectors, transmission lines and antennas. The ARNOLDI methods are used to
generate accurate reduced-order macro-models for coupled energy domain non-
linear Micro-Electro-Mechanical Systems (MEMS) [18], [19]. Obtained results
demonstrate that the reduced nonlinear model offers much better accuracy in
capturing the original device behavior than the simple linearization method. A
computationally inexpensive approach to nonlinear model reduction, based on
representing a nonlinear system with a piecewise-linear system and then reduc-
ing each of the pieces with a KRYLOV projection, is described in [97].

Parameter optimization based on MOR-techniques has been suggested in
[64]. This significantly reduces the number of simulation runs, because poles and
residues of a reduced model are presented as linearized function of its geometry
parameters, and actual optimization is performed on the reduced-order model;
hence, the model itself is updated after each optimization step.

In summary, an increasing level of research has been reported in the MOR
field over the past decade addressing three primary issues:

e reduced-order model accuracy,

e numerically stable and computationally efficient generation of models of
arbitrary order,

e generation of macro-models that are "well-behaved" when embedded into
a system-level simulation tool for co-simulation with other models for the
remaining part of the system under analysis.

1.2 Definition of the Problem

The moment matching MOR-techniques have been studied extensively in the
case of FDTD and FIT (e.g. see [16], [84], [96]); however they have not yet been
considered in detail in the context of TLM approximations of electromagnetic
systems.

This work focuses on the application of moment matching MOR-techniques
to TLM with emphasis placed on KRYLOV subspace methods based on the
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LANczos and ARNOLDI processes. The KRYLOV subspace methods are attrac-
tive for MOR in the TLM framework because the construction of the orthonor-
mal and/or bi-orthogonal bases used for the Krylov subspaces can be carried out
through the direct application of the implicit TLM solver, i.e. the TLM opera-
tor need not be known explicitly, as only its impact on the sequence of KRYLOV
vectors must be taken into account, whereas MOR in context of FDTD and FIT
usually deals with system matrices in an explicit form. Thus, the computation
of a reduced model can be integrated in the usual iterative TLM process in a
very efficient manner.

The TLM method differs from conventional finite difference schemes, e.g.
FDTD, in the sense that its kernel is a discrete time evolution scheme. So, reci-
procity and energy conservation of a loss-free model provide the skew-symmetry
(or/and the symmetry via some modifications [96], [125]) of FDTD system ma-
trix; however, they do not yield symmetry of the discrete time evolution TLM-
operator. Consequently, the symmetric LANCZOS algorithm cannot be applied
and the use of more expensive general ARNOLDI or LANCZOS procedures be-
comes necessary.

The main goals to be set and achieved by MOR applied to TLM are:

e acceleration of TLM simulations and enhancement of computational effi-
ciency,

e generation of a compact macro-model of the electromagnetic structure
under investigation.

A generated macro-model can by incorporated into other simulators by
means of its matrix transfer function representation in one of several possi-
ble forms (e.g., General Impedance Matrix (GIM) Z, scattering matrix S or
multi-port impulse response ’f() Thus, we seek a model of reduced order that
approximates the impulse response H or (and/or GIM Z) or, in an equivalent
sense, the initial TLM-system. This may be done in an efficient manner using
moment matching techniques based on KRYLOV subspace methods. The basic
idea is to project the initial TLM-system of large dimension N onto a space of
significantly lower dimension n, constructed in such a manner that only the first
n moments in the LAURENT series expansions of the impulse response (and/or
GIM) of the original and the reduced systems are matched [14], [100]. The
generated reduced-order model contains, predominantly, those eigenstates that
correspond to the physical eigenfrequencies of an electromagnetic system and,
in particular, those that impact the states involved in the excitation and obser-
vation of the system.

1.3 Overview

KRYLOV subspace based MOR-techniques in the context of the TLM framework
are discussed in detail and evaluated in this work. The present doctoral thesis
is organized as follows.

In Chapter 2, the principles of the TLM method with symmetrical condensed
nodes for the solution of three-dimensional electromagnetic problems are pre-
sented. The HILBERT space formulation of the TLM is given, using the DIRAC
notation; thus the TLM formulation is expressed through operator equations.
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The scattering, connection and general TLM operators in the TLM time evo-
lution scheme for both lossless and lossy structures in unbounded and bounded
domains are described. Some modifications of the TLM scattering algorithm,
introduced originally by JOHNs, and field mappings needed for MOR-techniques
are also discussed in this Chapter.

In Chapter 3, the novel and effective hybrid Transmission Line Matrix-Mode
Matching (TLM-MM) approach is proposed for full-wave analysis of passive
transmission structures in MMICs. Using the hybrid TLM-MM approach, time
and memory requirements for structure response generation can be reduced in
comparison to pure TLM simulations, while improving solution accuracy. A
comparison between both methods by means of numerical simulations is pro-
vided. In addition, this method can be easily extended to facilitate macro-
modeling of MMICs, in the sense that through its application the generation of
a reduced-order macro-model can be simplified and accelerated.

Chapter 4 provides an overview of the published theoretical work on KRYLOV
subspace methods for iterative solution of large linear eigensystems, such as the
ones arising in circuit simulation and, in general, state-space representations
of large-scale time-invariant linear systems. These iterative techniques, based
on the orthogonal and/or oblique projection onto KRYLOV subspaces, allow
to reduce an arbitrary general matrix to a condensed form. We also review
variants of the ARNOLDI and LANCZO0S algorithms for generating basis vectors
for KrYLOV subspaces. The main focus is on the robust algorithms for the
solution of general non-HERMITIAN eigenvalue problems.

In Chapter 5, specific methodologies for MOR, suitable for the discretized
electromagnetic TLM system, are discussed. The opportunities for enhancing
the computational efficiency of TLM through the application of MOR-techniques
are considered in detail. The emphasis of the reduced-order modeling is on the
nonsymmetric version of the LANCZOS algorithm and its modifications. Benefi-
cial properties of the TLM-matrix allow to qualify the nonsymmetric LANCZOS
procedure so that a novel algorithm, called scattering-symmetric LANCZOS al-
gorithm, results, in which the computational cost per iteration is cut in half.
The presentation begins with the general mathematical framework for MOR, of
discrete electromagnetic systems. This is followed by the development of TLM-
MOR techniques and their associated algorithms. The TLM reduced-order mod-
els in the z-domain and LAPLACE domain are presented here. Thereafter, we
give a comparison of the FDTD-, FIT- and TLM-based MOR-techniques. The
two-step reduction approach is described in details as well.

Chapter 6 contains numerical studies from the application of MOR to the
TLM analysis of various lossless and lossy electromagnetic structures. The com-
putational efficiency of TLM through the application of MOR-techniques based
on the ARNOLDI and LANCZOS processes is discussed there. The convergence
properties of proposed algorithms and the accuracy of generated reduced-order
models are considered in detail. Finally, results are presented from the appli-
cation of TLM-MOR for the extraction of matrix transfer function representa-
tions of the reduced-order model, such as generalized impedance or scattering-
parameter matrices.

Chapter 7 concludes this doctoral thesis by summarizing and discussing its
main results.



Chapter 2

The Transmission Line
Matrix Method

The basics of the Transmission Line Matrix (TLM) method with symmetrical
condensed node for the solution of three-dimensional electromagnetic problems
are presented in this chapter. After a brief overview of different derivations
of the TLM and its variants the original form of JOHNS [60] is described. The
HILBERT space formulation of the TLM is introduced using the DIRAC notation;
the TLM method is expressed by operator equations. The scattering, connec-
tion and general TLM operators in the TLM time evolution scheme for both
lossless and lossy structures in boundless and bounded propagation media are
described here. Some modifications of the TLM scattering algorithm and field
mappings needed for Model Order Reduction (MOR) techniques are introduced.
Influence of various boundary conditions on the convergence of MOR~algorithms
is summarized here as well.

2.1 Foundations of the TLM Method

The TLM method is a powerful time-domain method for computer modeling of
electromagnetic fields. The TLM is founded on the propagation of electromag-
netic waves according to the HUYGENS principle and, in general, based on the
analogy between the discretized electromagnetic field and a mesh of transmis-
sion lines and nodes. The space is discretized by the subdivision into rectangular
cells and the tangential components of the electromagnetic field are sampled at
the center of each boundary surface of a cell (or at the cell center according to
JOHNS), at so-called ports according to Fig. 2.1. The transmission lines connect
the center of a cell (the node) with its ports at the boundary surfaces. The con-
tinuous space is approximated by a mesh of TLM nodes interconnected by trans-
mission lines (or by a mesh of transmission lines interconnecting TLM nodes).
The time evolution of the electromagnetic field is modeled by wave pulses propa-
gating between adjacent cells and scattered within the cells, i.e. the wave pulses
are scattered at the nodes and these scattered pulses are propagated through the
transmission lines to the adjacent nodes, where these pulses are scattered again.
Thus, the TLM method is a time-space-discretizing method and closely related
to the Finite Difference Time-Domain (FDTD) method. Roughly speaking, dis-
cretized electromagnetic fields are mapped onto wave amplitudes propagating

15
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Figure 2.1: The TLM cell.
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Figure 2.2: The three-dimensional SCN.

in the TLM-mesh in accord with some rules.

In general, the TLM cell is represented by a respective abstract network
model containing a scattering center with six stubs which is connected via twelve
transmission lines with ports of adjacent cells. When all transmission lines have
the same lengths and the node is located in the cell center this model is called as
the Symmetrical Condensed Node (SCN). The lossless three-dimensional SCN
shown in Fig. 2.2 was introduced by JOHNs in 1987 [60] first.

On the basis of the JOHNS formulation of TLM some generalizations and
modifications of the SCN are proposed. So the Hybrid Symmetrical Condensed
Node (HSCN) proposed in [104] has three instead of six stubs, the other three
stubs can be modeled through the variation of transmission line parameters.
The General Symmetrical Condensed Node (GSCN) introduced in [115], [119]
does not have stubs at all and allows to save additional memory. To this class
of the symmetrical condensed nodes belong the Symmetrical Super-Condensed
Node (SSCN) and the Adaptable Symmetrical Condensed Node (ASCN) given
in [115], [116] and [117] with variable stub arrangements and transmission line
parameters. A different kind of the TLM method are the Alternating Trans-
mission Line Matriz method [6] reducing the number of cells by a factor of two
and the Alternating Rotated Transmission Line Matriz method [98] decreasing
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the numerical effort for homogenous media by a factor of two through a trans-
formation of the scattering matrix. However, these alternating methods are not
used widely due to their complicated implementation. First proposals of the
TLM with unstructured two-dimensional meshes upon triangular elements can
be found in [107]. The generalization of the TLM for a non-orthogonal mesh and
for dispersive anisotropic materials is presented in HEIN’S works [50], [51], [52].
Dispersive [81], active and nonlinear media [101] can be well modeled by the
SCN. The TLM in the frequency-domain is proposed also in [59]. Almost radi-
ating boundary conditions, e.g. reflection free walls, matched [83] and perfectly
matched layers [38], [90] are already used in the TLM, which yield approximate
solutions of a radiating problem and require some distance between the struc-
ture to be modeled and boundaries of the computational domain. A novel TLM
Multipole Expansion (TLM-ME) method for a potentially exact modeling of
the radiating boundary condition is proposed in [72], where an electromagnetic
structure is embedded in a spherical region and modeled with the TLM method.
Then outside the spherical region the field is expanded into analytically known
spherical waves. The problems of the local subgridding in the TLM scheme are
investigated in [37] and [55]. Hybridizations of the TLM method with other
numerical methods such as the TLM-Integral Equation (TLM-IE) method [92]
for the solving of radiation problems and the TLM-Mode Matching (TLM-MM)
approach [75] for a full-wave analysis of transmission structures in multilayered
MMICs occurred to be very efficient. The improved skin effect [58] and thin
wire [70] models allowed to spread the usage of the TLM additionally.

While the original derivation of the TLM with the SCN by JOHNS is mainly
based on the analogy between the electromagnetic wave propagation in free
space and the propagation of voltages and currents in the TLM mesh, several
formal derivation are suggested in the literature. So the Method of Moments
(MoM) is applied to the TLM without stubs by KRUMPHOLZ and RUSSER [67],
[65] in order to derive fundamental TLM equations. In addition, the authors
proposed the Cell Boundary Mapping between the electromagnetic field and
wave amplitudes. This bijective mapping requires four tangential field compo-
nents at a cell wall only in contrast to the non-bijective JOHNS Center Field
Mapping with six field components in the cell center. CHEN, NEY and HOE-
FER presented a new finite-difference formulation in [20], which is equivalent to
the TLM with SCNs without stubs. In order to prove the SCN-TLM without
stubs LOVETRI and SIMONS started from MAXWELL’S curl equations written
as a system of conservation laws [73]. Starting from the integral formulation
of MAXWELL’S equations AIDAM and RUSSER obtained the lossless TLM basic
equations in [1], [2], and TARDIOLI and HOEFER presented a derivation of the
scattering matrix for the SCN without stubs [112]. JIN and VAHLDIECK derived
the TLM method with stubs from MAXWELL’S equations using centered differ-
encing and averaging. HEIN’S derivation in [50] trough a discrete propagator
integral leads to a slightly different interpretation of the TLM algorithm. The
convergence of the classical TLM with SCNs is proved by REBEL, AIDAM and
RUSSER in [95], [94] for the first time. The dispersion behavior of the TLM with
various nodes is thoroughly studied in TRENKIC’S works [115] and [118].

The electromagnetic field and wave amplitude states in the TLM are repre-
sented by an enumerable set of real quantities and the field evolution is governed
by linear mapping rules. For these reasons, the HILBERT space representation
of the field state and the field evolution is possible [67], [99]. So, the field map-
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pings, propagation and the scattering of the wave amplitudes may be expressed
in the operator notation in the HILBERT space.

As a basis for the present dissertation the JOHNS original form of the TLM
method with SCNs is preferred. The MOR-techniques suggested in this doctoral
thesis can be easily expanded on the TLM with HSCNs, GSCNs, SSCNs and
ASCNs. The reduced-order modeling is applicable to the alternating TLM vari-
ants as well. Further described MOR theory can be naturally transferred to the
treatment of two-dimensional electromagnetic problems by the two-dimensional
TLM method.

2.2 The TLM Time Evolution Scheme

Now we introduce the HILBERT space H,, (see APPENDIX A) spanned by the
sequence of the grid points with normalized space coordinates [, m and n. The
indices [, m and n are linked to the space coordinates with unitary spatial steps
Alg, Aly and Al, through = = [Al;, y = mAl, and z = nAl,. The ket-vectors
|I, m,n)— given in Dirac notation — represent an orthonormal base of the space
H,,. Their HERMITIAN conjugate bra-vectors are denoted by (I, m, n|. The basis
vectors |l,m,n), assigned to the space points (I, m,n), fulfil the orthogonality
relation [65, 67]

(Liymi, g |1, m,ng) = 61,05 0mg,m; Ong iy - (2.1)

The state vectors xai ., € R'? and by, € R'?, which summarize the
incident and the scattered wave pulses at the single SCN (I, m,n) at the discrete
time k corresponding to the unit time interval At are given by

T
kal,m,n = k [a17 a27 a37 ce a107 a117 a12]l_’m7n )

T
kbimn = k[b1,b2,b3,.. . b10,b11,b12]; . 4, - (2.2)

The incident wave amplitudes a; to a2 and the scattered wave amplitudes by
to b2 in the arms (or at the ports) of the single SCN (I,m,n) (at the boundary
surfaces of the TLM cell (I,m,n)) are elements of the real vector in R12.

The instant scattering of the wave pulses at the single SCN is represented
by

k+100mn = £Stmn QL m,n (2.3)

where the operator ;S| . € R is related to the scattering rules of wave
amplitudes at the single SCN (I,m,n).

Next we construct the state-space of the wave amplitudes H.? from the
direct product of H,, and C'? as

HP?=C"®H,. (2.4)

The vectors |ya) € H}? and |.b) € H.? denoting all incident and scattered wave
amplitudes of the complete TLM mesh at the time & can thus be written in the
forms
o0
lka) = Z kL mn |l M, n)
l,m,n=—o0
+oo
kb) = > kbimm|lm,n). (2.5)

l,m,n=—o0
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Application of the projection operator |l, m,n) (I, m,n| onto the vectors |, a)
and |;b) yields the vectors incident and scattered wave amplitudes at the SCN
(I,m,n), i.e.

[L,m,n) (I, m,nlxa) = kQrmnl|l,mn), (2.6)
[l,m,n) (I, m,nlgb) = kbmanl|l,m,n) . (2.7)

Accordingly to eq. (2.3) the simultaneous scattering at all TLM mesh nodes
is described by the operator equation

lk+1b) = kS [ra) , (2.8)
where the scattering matrix ;S is an operator in H'? and given by

+oo
kS = Z |la m, 7’L> k:Sl,m,n <l, m, n| . (29)

l,mn=—o0

The operator S € H.? represents the scattering operations at the time k for
the complete TLM mesh.

The compositions of the projection operator |I,m,n) (l,m,n| and operator
&S give the scattering operator at the single node (I,m,n), e.g.

|l,m,n) (I,m,n| oS = gSol|l,mn){l,mn|= (2.10)

=|l,m,n) kSimn(l,m,n| .

Introducing the connection operator ,I' € H? to specify the interaction
between adjacent cells (or nodes) we obtain the TLM time evolution scheme for
a lossless case

|k+1a> =TS \ka) . (2.11)
Now we introduce the HILBERT space H; with an orthonormal basis |k), i.e.
(ki | kj) = Ok, k, (2.12)

in order to describe the time state in the TLM time evolution scheme.
Then the time-spatial state-space of incident and/or scattered wave ampli-
tudes can be defined by

HE=H@H =H RC*@H, . (2.13)
We can present the orthonormal basis of H; ® H,, space through
|k, l,m,n) = k) ®|l,m,n) . (2.14)

The complete time-spatial state vectors of the incident |a) € H%Q and the
scattered waves |b) € H? in the TLM system we construct by

+o00

ay= 3 [k @la) . (2.15)
k=—oc0
+oo

b) = Y k)@ |xb) . (2.16)

k=—o00
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In order to describe the time evolution of electromagnetic fields in the TLM
scheme we define an unitary time shift operator in H; ® H,, as

T|k,I,mmn)=|k+11,m,n), (2.17)

which does not describe the time evolution of the vector |1, m, n), it just shifts
the vector |, m,n) for a time step At, i.e.

T(T |k, l,m,n)) =|k+2,1,m,n). (2.18)

Its inverse shift operator

T |k, l,m,n) = |k—1,1,m,n) (2.19)
satisfies
+oo
TT =T'T= > [klmn)klmn|=1 (2.20)

k,l,m,n=—o0

Therefore, according to eq. (2.11) the TLM algorithm can be summarized in
H}2 as following
i3
by = TS |a), (2.21)
lay = TI'|b). (2.22)
The global scattering S and connection I" operators in (2.21) and (2.22) are
defined as
+oo

S = Z |kulvman> ksk,l,m,n <k7lvm7n| ) (223)
k,,m,n=—occ
and
+o00o
r=Y [l (2.24)
k=—oc0

which summarize scattering and connection operations for the complete TLM
mesh at all discrete times k.

The system of equations (2.21) and (2.22) gives the complete time-spatial
state description of the TLM scheme. The first equation (2.21) describes the
scattering of all incident wave amplitudes at all times k, the second equation
(2.22) describes the connection between all cells at all times k. Since the time
shift operator commutates with both scattering and connection operators the
complete time-spatial state of the TLM system can be written

la) = TTIS |a), (2.25)
and or as
by = TSI |b). (2.26)

From eq. (2.25) and eq. (2.26) it follows that the TLM system can be fully
charaterized by one of the state vectors of incident or scattered amplitudes only,
i.e. one of the wave vectors has to be stored to represent state vectors for the
electromagnetic field.
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2.3 The Scattering Operator

The scattering operator S; ,, » of dimension 12 x 12 for the single cubic SCN for
a lossless homogeneous medium has been determined by JOHNS [60] as follows

0 0

()
o
o
ISH
|
U
o
o

IS8

SO T T 0O @ OO0 O A,

SO 0 TTT OO o
|

Qo oo ocoQA OO0 >

Sl,m n —

)

(2.27)
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oSO o QAU OO TTTT0 & O

\
QUL AUODODOCDOLQ2 o oo O
S0 Q@ T T OO Ao

T T O O AURXRODODODODO 0 L
@‘@‘OO&AOOOOQO
QLAUUODODODO 0 @ o> O
[N eIS IS B oY« el es R an)
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The structure of the scattering matrix satisfies the next considerations:

e Each incident wave pulse is associated with one E-field and one H-field
components, and therefore linked with some other ports according to the
MAXWELL’s equations (see Fig. 2.1 and 2.2). For example, following from

dH, dH, dE, dBE, dE,  dH,

ay 2y =2 2.28
dy  dz  Cdt 0 dr  dy  Mar (2.28)

the pulse a; associated with E, and H, is reflected to the ports 7 (i.e.
self-reflected), 9 and 10 (since they are associated with E, and H,), 1
and 2 (related to E, and H.) and 8 (associated with E, and H.). Then
each row and/or column of S; ,, , only consists of six non-zero unknown
elements.

e Due to the symmetry of the node the total number of unknown parameters
in eq. (2.27) may be reduced down to four, and

Sl,m,n = Slj:m,n . (229)
e The scattering process has to preserve the charge at the node.

e While the SCN exhibits no losses, the total reflected power must be equal
to the total incident power, i.e.

SZ!TL,TLSlym77L =1. (230)

The last two considerations lead to one of four possible solutions with

1 1
a=0, b 1 c=0, d 5 ( )
The scattering operator eq. (2.27) may be written in a compact form as

1 1
0 Sy S 8 8 1 7

Sl,m,n = SOT 0 SO ) with SO = 1 1 6 % . (232)

- 1 1

So Soo 0 g g 0 0
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The scattering operator S, , is symmetric, in general — self-adjoint or
HERMITIAN, and unitary, i.e.

Simn=28 =871 " (2.33)

l,m,n l,m,n

In this case all twelve SCN transmission lines (or six SCN arms) of length
Al/2 have the same characteristic impedance of the free space

[ Ko /LO
Zo= 4] — =4/ — 2.34
0 €0 Co ’ ( 3 )

and the propagation velocity in the TLM grid (the velocity on the transmission
lines between adjacent nodes) is

1 1

- V/Ho€o - VLoCo

Hence, the propagation time on each arm is At/2, and according to eq. (2.34)
and (2.35) the characteristic impedance and the propagation velocity in each
arm can be modeled by network with one capacitance Cy and one inductance
Ly [95, 78]

Co (235)

At Al At Al
Co = Y()? = 807 and Lo = Z()? = ,uof y (236)
where h is a stability factor introduced as
2Al
h > . 2.
~ oAt ( 37)

We note that the propagation velocity of a dispersion free wave along a cubic cell
diagonal is ¢/2 (for a two-dimensional case cy/v/2), whereas the propagation
time between two scattering centers is fixed by At = Al/cy [23]. Due to the
SCN symmetry the axial wave propagation can be modeled by a network with
double capacitance Cjy and double inductance Lg, and voltages and currents can
be scanned and/or sampled with At/2. So the synchronization of wave pulses
is kept to be guaranteed.

In order to model an inhomogeneous medium with the characteristic im-

pedance
L
Zm:1/g:1/6 (2.38)

and with the propagation velocity

1 1
Cm = — = 2.39
vee  VLC ( )
and to use the non-uniform cubic cells with dimensions
(Aly, Aly, Aly) = (i Al iy Al 1, Al) (2.40)

JOHNS added six circuited stubs to the 12 x 12 node. The first three opened
stubs are related to the E,, E,, and F, field components and cause an additional
capacitance. The second three shorted stubs add an inductance to the node and
coupled to H,, H,, and H.. For more details see [23] and [60].
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Starting at the cubic SCN, the prolongation (or the reduction) of a node arm
length causes the changing of the propagation time through the node. The equal
time variation can be achieved through the corresponding scaling of capacitances
and inductances as well. According to eq. (2.38) and (2.39) the deformation
of the node and/or the scaling of the reactivities are equivalent to the local
variation of the permittivity ¢ and permeability p. The modeling of material
properties by means of heterogeneous lengths of transmission lines is presented
in TRENKIC’S works and not discussed in the present thesis deeply. We only
note that this approach yields a more complicated structure of the scattering
matrix because of additional scattering centers in the TLM cell.

The required total capacitances at a SCN of dimension (i,Al,i,Al, i,Al)
introduced by JOHNS in [60] are

Co=ea LEAL, Cy =, 22Nl C. = e, 22 AL (2.41)
Zz Y ZZ
and inductances are
Lo = 1102 2A1, Ly =y 2A1, L, = p, WAL (2.42)
T Ty 1z

For example, the modeled capacitance C, is associated with lines 7, 8, 9 and
10, and as following, is equivalent to 4Cy for a cubic TLM cell in free space. The
modeled inductance L, is linked to the lines 5, 6, 11 and 12, and is equivalent
to 4Lg. Therefore, in order to model non-uniform cells the capacitance and
inductance have to be added to the symmetric node, e.g. for the z—components
we have

ostub — ¢ W2 40y and LS =, 2 4L, (2.43)
(2 1y
From eq. (2.36), (2.41) - (2.43) and from relations normalized with respect
to Yy and/or Z,

Cstub — YOYSt’U,b7 and stub ZOZstub7 , (244)

where the admittances Y 5'"® of the stubs 13-15 are calculated by
Yo = 2erah ™2 —2) Y, = 2(e, hEE —2) Y, = 26, Y —2), (2.45)
ig Ty iy

and the impedances Z*'* of the stubs 16-18 are given by

Zo = 2prsh ™= = 2) , Zy = Aparyh™= = 2) L Zo = 2pa 2 —2), (2.46)

T Y Z

where €, and u, denote relative permittivity and permeability, respectively.

Obviously, the stability factor in eq. (2.37) is chosen to preserve the positivity
for Cstub and stb.

These additional three capacitive and three inductive stubs are connected
to the SCN and are not linked with adjacent nodes directly. The connection
process to the neighboring SCNs occurs through 12 link lines without energy
loss. If ohmic and magnetic losses have to be included, six additional stubs
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are connected to the center of the SCN, so the 18 x 18 scattering matrix gets
six additional lines. The scattering in these stubs has not to be considered
explicitly, since the energy dissipated in the center node is lost. These six lines
are necessary if the loss power has to be calculated, else 18 x 18 matrix in
eq. (2.49) is used. The normalized values of the ohmic loss stubs are presented
by

”%%m%,%z%bwm%,@:”%

T Yy 1y

G, = 0o Al Zy,  (247)

and the magnetic loss stubs are calculated as

W eAlYy , Ry =25, AlYy, R.= Yo, .AlY,, (2.48)

T 1y 1z

R, =

where 0. and o, are electric and magnetic conductivities, respectively.

Considering stubs the general scattering 18 x 18 matrix of any deformed
SCN for modeling of inhomogeneous media with losses has been introduced by
JOHNS as following

a ¢ 00 0O0d—-d O0OO0OUD b O0O0g OO0 0-d
ca 0 0 0 0-d d O0OO0UD b O0gO0OO0O0d
00acbb00d-dOoO0OO0O0goOdo
00 cabb00-ddoOoO0OO0O0gO0-doO
00 b b ac0O0O0O0d—-dOO0g—d 0O
00 b b ca 0O0O0O0-ddoOO0gdO0OO
d—-d 0 0 00a ¢c bbb 0O O0g 0O0O0O0Ud
—~d d 00 00 ca b b0 O0g 000 0-d
gstubs _ | 00 d=d 0 0 b b a c00g000-dO0
Lmn = 0 0—d d 00 b b ca 00g 0O0O0CdSO
b b 00 d-d 0 0 00 a ¢c 0 g O0OdOO
b b0 0—ddOOO0O0 c¢c aOg0-dO0OoO
000O0O0O0UDbLUDbLDbbOOAOOOOO
bb0000O0O0O0OUDbHDDb0hAhO00O0O0O0
00 b bbb O0OOO0OO0OO0O0O0O0OARASOOO
000 O0O-f f0O0O0OGOLJf—fO0O0O0T]40°0
00 f—f 000 O—f f0O00O0O0O0 j O
-f £ 0000 f=f 0000000O0O0O0 j|
(2.49)
with coefficients
_ G+Y R+Z 2
“TTAGTY ) 2R+z+4) T Gy 44
B G+Y R+7Z g2
“TTG+Y 14 2R+z+4) T ZiR+4°
(2.50)
2z 2y
f_R+Z+4’ IT Gy +a-
G-Y+14 . —-R+7Z—-4
h=———— j=

CG+Y +4° C R+Z+4
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For the general scattering matrix (2.49) with losses we have that

St 7 (STt # (STht) ™t (2.51)
The symmetry of Sftn’;bn is not preserved due to the stub parameter nor-
malization proposed by JOHNS. The unitarity of the scattering matrix is not
only lost due to the losses in an analyzed structure. Indeed, even though the
scattering matrix in eq. (2.49) comprises no losses, it is also non-unitary. In
other words, the unitarity and symmetry are lost due to the normalization in
accord with eq. (2.49). However, in this case the complete energy during the
scattering process is preserved, and Sffﬁbn has nine eigenvalues being ones and
nine eigenvalues being equal to —1 (For more details see Chapter 5).

However, the symmetry of the general scattering operator in eq. (2.49) can be
reconstructed by a new normalization without its energy conservation property
being changed by following

svstub _ N—l Sstub N, (252)

l,m,n lm,n

here the diagonal matrix IN is given as
N =diag(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, VY) "1, V2). (2.53)

Now the modified general scattering operator for the lossy SCN in eq. (2.52)
satisfies next relations

Sstub _ (Svstub )T # (Srlstub )—1. (2_54)

l,m,n l,m,n ,m,mn
The general scattering operator ;.S in
HE=C®@H,, (2.55)

describing the scattering at all nodes of the TLM mesh at the time k, has the
block-diagonal matrix structure, i.e.
1S = diag (S;140)) . (2.56)

From eq. (2.54) and (2.56) we obtain essential properties of the operator S,
and namely

$S = ST # 871, (2.57)

Further, we will deal the modified scattering operators in accord with eq. (2.52)
and eq. (2.56), which are self-adjoint (or HERMITIAN) and non-unitary. The
modification of the S;,, , in eq. (2.52) does not infringe the scattering opera-
tion proposed by JOHNS and has only impact on the field mapping between the
electromagnetic field and the wave amplitudes.

That is clear that the matrix representing the scattering at all TLM nodes
at all times k is operating in

HE=HOH =H C®P O H, . (2.58)
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2.4 The Connection Operator

Next, we describe the connection operator I' representing the interaction be-
tween all adjacent nodes in H_®. For this purpose we define the shift operators
X, Y, Z and their adjoints X', YT and Z' so that

X |l,m,n) = [l+1,m,n),
Xttmn) = |i—1m.n) . (2.59)
Y [l,m,n) = |l,m+1,n),
Yi|l,m,n) = [l,m—1,n), (2.60)
Z |lym,n) = |[imn+1),
Zl,m,n) = |[l,m,n—1). (2.61)

The spatial operators X, Y and Z shift the position of the node (I, m,n) by Al
in positive x—, y— or z— direction respectively. The operators X', Yt and ZT
make the opposite moving by one step. For example, the second incident wave
amplitudes of all nodes are linked to the first reflected wave amplitudes of the
neighboring nodes, i.e. corresponding to Fig. 2.2 we have

+oo

2.

lmn=—o0

+oo

>

l,mn=—o0

k [a2]l,m,n |la m, ’/l>

k[bl]l,m,n ‘l + 1; m7n>

The shift operators (2.61) can be

+oo

>

l,mn=—o0

k[bl}l—kl,m,n ‘17 m, Tl> =

+oo
X Y klbilumm [1,m,n) (2.62)

l,mn=—o0

written as proposed in [67] in the next

form

—+o00
l,m,n=—o0
+oo
l,mn=—o0
—+oo
l,m,n=—oc0
+oo
l,mmn=—o0
+oo
l,mn=—o0

+oo

by

l,m,n=—o0

X = |l+1am7n><l7m7n|a

Xt = [l —=1,m,n)(,m,n|,

Y = |l,m+]—vn><lvm,n|a

Y= [l,m —1,n){l,m,n|,

Z = [l,m,n+ 1) (I,m,n|,

AR [I,m,n—1)(,m,n| . (2.63)

From eq. (2.63) it follows that the shift operators are self-adjoint, unitary
and commutative with itself, i.e.

XX =XX=1, (2.64)
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YY =YY =1, (2.65)
ZZt=2'Z =1. (2.66)

Therefore, the connection between all nodes in the infinite space can be
summarized in the following matrix form

—

—+

(2.67)

—+

—

+
OSONoocoocoocooco o

cococoocoocococo™Mo
cCcoococoocococo0o o X
cocococooco™Xooo
cCoocococococo KOO
ooooo"iooooo
coocococoooooo
cocNoocococoooo
coocoMoococooo
ocNcocococoocoocoo
cCcoNocoococoocooco o
Nococoocoocoo

According to eq. (2.67) the connection operator ;I is self-adjoint and unitary
W=, =,r 7, (2.68)

and commutates with itself
W=, r=1. (2.69)

Actually, it is self-evident that the matrix I" for the infinite space is filled
with ones, since no losses come into play during the linking operations.

In practical implementations we are dealing with electromagnetic problems
with boundary conditions, i.e. with finite-dimensional vector spaces. So, in
TLM a structure under consideration is embedded in a box of finite extension,
and, therefore, the boundary condition must be included. In order to describe
the connection between SCNs in a region with certain boundary conditions we
introduce the N x N connection operator I' in HILBERT space H18 of dimension
N as

kf“:kl“—f—kfr. (270)

The matrix ;I is only responsible for the connection between nodes (without
taking into account boundary conditions), the matrix ; 1" represents boundary
conditions, e.g. if reflection free walls have to be modeled, the matrix ¥
consists of local reflection coefficients at its diagonal, i.e.

p T = diag [pl°],i = 1..N . (2.71)

The diagonal elements of ;, T do not vanish in accord with cells located on
the boundaries, therefore ; T is a diagonal matrix mostly filled with zeros.

We remark that the structure of the ,I' in eq. (2.67) for bounded media is
slightly changed, because not all nodes are connected with their adjacent, i.e.
several ones elements vanish in the matrix. Even though the unitary property
of I is lost, the matrix ,I' in eq. (2.70) yields the energy conservation for
a structure with PEC/PMC. , T is a diagonal matrix filled with ones and/or
minus ones and zeros; ;1" and ,I' are both unitary operators. In some cases
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the structure of the ,I'-matrix has to be additionally modified, e.g. in order
to model very thin layers (metal sheets) with reflection and transmission coeffi-
cients. One part of the scattered wave pulse will be reflected from a layer back
to the nodes, and the second one will be transmitted (or linked) to the adjacent
nodes on the other side of the layer. In this case the scattering matrix I" has
several elements (instead ones before) according to the transmission coefficients,
and the diagonal matrix ; ¥ gets additional diagonal elements to commensurate
with the reflection coefficients.

If we understand ,I' in eq. (2.67) as a matrix describing the connection
between nodes only (transmission coefficients), and , T is a matrix consisting of
reflection coefficients at the node boundaries, then the properties of the linking
operators on the assumption of a bounded medium with losses are given via

W = IV £, 0, (2.72)

2T =TT # . T7! = diagonal (2.73)
and from eq. (2.70) and (2.72), (2.73) follows that

WA L (2.74)

In the following chapters we are dealing with WL

2.5 Mappings

The six components of the electromagnetic field at the TLM-SCN are repre-
sented by eighteen incident and/or scattered wave amplitudes. Thus, a corre-
spondence, so called mapping, between the electromagnetic field and the wave
pulses has to be established. A mapping is understood as a projection of the
field state vector in

Hr =C°®@H, (2.75)
onto the vector of incident wave amplitudes in
H, =C®@H,, (2.76)

and an vice versa.

In the present thesis the Centered Field Mapping (CFM) and the Cell Bound-
ary Mapping (CBM) are considered.
2.5.1 Centered Field Mapping

We introduce the state vector of the electromagnetic field in Hr as

l,m,n

oo :glz,m,n

_ l,m,n
|F) _lm;_oo ZuHE 1, m,n) . (2.77)

o ZyHY

Z4Hf
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Each field component is determined from the voltages of four transmission
lines according to the field component polarization, e.g. the E, component
is dependent on the wave pulses a7, as, ag, a1 for a z-direction polarized wave.
Then introducing the part charge Q, = Q*+Q" = 2(Coar+Coag+Coag+Coarp),
which has to be conserved at the center of SCN, we have the equal homogeneous
electric field

Q.  2Co(ar + ag + ag + aio)

1
B, = C,Al 4C,Al = TAZ(W +ag+ag+ay). (2.78)

Introducing the magnetic part flux ®, = ®* + ®° = 2L (i5 — Loig — Loi11 +
Loi12), which has to be conserved, we obtain in an analogous manner

P, 2Lo(is —ig —d11 +i12) 1

I, = = — (15 — i — 111 + %12), 2.79
7 i 57 (i5 —i6 — i11 +i12) ( )

and, consequently, the H, component as
H, = ——(i5 —ig — @11 + 12) (2.80)

The disadvantage of this proposed approach is that an inverse mapping from
the eighteen wave amplitudes onto the six field components can not be clearly
defined. JOHNS proposed to distribute the wave amplitudes uniformly, e.g. if
the E, field has to be induced, one of possible mesh excitations can be

1
a7y = ag = ag = a1 = iAlEI . (281)

In order to describe the projection of the wave amplitude state vector onto
the field state vector we introdece the projection operator M : H,, — Hp as

1
[ — 2.82
)= Mla), (2:82)
where
0O 0 oo 0o 0O 1 1.1 1 00
1 1.0 0 0 0O O O O O 1 1
110 0 1 1 1 1 0 O O 0O O O
M=3510 000 1-1 000 0-1 1 (2.83)
0O 0-1 1 0 0 0O O 1-1 0 O
1-1 0 0 0O 0O-1 1 0 0 0 O
Then the inverse mapping M T . Hp — H, is given as
la) = ALMT |F) . (2.84)
From eq. (2.82) and (2.84) it follows that
|F'Y = MM7 |F) (2.85)

and
la’y = MTM |a) . (2.86)
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Since the operator M M T has ones at its diagonal, i.e.
MM?T = diag[1,1,1,1,1,1], (2.87)

the application of the operator M M7” : Hr — Hp onto the field state vector
does not change it, or |[F’) = |F).
A different situation occurs for MT M, due to the relation

M”*M = U diag[0,0,0,0,0,0,1,1,1,1,1,1]U ', (2.88)

where U is an unitary matrix.

We have that |a) € C'2 ®'H,,, whereas |a’) € C® @ H,,. The space C'>?@H,,
can be presented by two orthogonal subspaces C'?®@H,, = C®H,BC°®H,,, the
operator M T M transfers the vector |a) from the space C'2®@H,, to its subspace
Ct® H,.. In other words, the operator MTM Herzgn, — Heosgn, leads
to la') # |a).

An important property, which has to be noticed, is that the whole energy in
the wave amplitudes is conserved during a TLM simulation, whereas the energy
in the electromagnetic field obtained by mapping in eq. (2.82) is not [65].

In an analogous way we can derive a mapping including stubs. For example,
we consider the F, and H, components again. Considering the part charge,
which is given by Q. = 2(00(17 + Coag + Coag + Coaro + CStUbalg), we obtain
in accord to [60]

Q.  2Co(ar + as + ag + a1o) + 2C™ay3

E, = - _
C, Al (4Cy + Cstub) Al
2 a7 +ag + ag + aip + Yzaiz
= . 2.
Al < 4+Y, ’ (2.89)
and llSil’lg (I)m = 2(L0’L5 — Loiﬁ - LOill + L0i12 + LStUbilg), we have
2 —ag — VZ,
H, — as —ag — a1 + a2 + a6 . (2.90)
AlZ, i+ 7,

Next, taking into account

e losses in the media (eq. (2.47) and eq. (2.48)), or to be precise, e.g. for
the F,-component

a7 + as + ag + a1 + Yeayz = by + b + by + big + Yabis + Gube, , (2.91)
and for the H,-component
as —ag — a1 + a1z + ag = —(bs — bg — b1y + b12 + bis + Reobg, ), (2.92)
o deformations of the TLM mesh in eq. (2.45) and eq. (2.46), and

e normalization of the scattering matrix given by eq. (2.52)

we obtain all six components of the electromagnetic field as

2 VY,
E, ‘ a7 +ag +ag +aip + a3 , (2.93)
1, Al 44+Y,+ G,
2 a1 +as + a1 + an + 1/ Yya
E, - - 1 2 11 12 + 4/ YyQ14 7 (2.94)
2 VY,
B = - a3+ a4 +as+ag+ VY015 , (2.95)
ZZAZ 4 + Yz + GZ
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H, =

H, =

H, =

2 as — ag — a11 + @12 + V2016
N 4+ Zy + Ry ’
2 —as + a4 +ag — a0 +VZza17
iyAlZ 44+ Zy+ R, ’
2 a1 —az —ay +ag + /2 a18
i.AlZ, A+Z.+ R, '

And an excitation of the TLM mesh can be done uniformly as

1 . ) 1 . .
a; = §Al(zyEy +i,Z0H,), a7 = §AZ(Z£E$ —i,Z0H.),

1
a2:§
1
a3:§

1
Al(ZyEy — ’izZOHZ), ag = *Al(ZzEm + izZOHZ),

2

1
Al(i,E, —iy,ZoH,), a9 = =Al(i,E, +i,Z0H,),

2

1 1
as = ~Al(i.E. +i,Z0H,), aio= iAl(ixEm —iyZoH,)

2

1 1
as = —Al(i.E, +i,20H,), a1 = iAl(iyEy — 1. Z0Hy)

2

1 1
ag = *AZ(ZZEZ — iIZOHx), a0 = *Al(ZyEy + ZIZOHJC)

2

a13:§

2

1 1
’izAl\/ YmEza a1 = iimAlZO\/ Zsz,

1 1
a4 = §ZyAl\/YyEy, ayr = iiyAlZO\/ ZyHy,

1 1
a1 = iiyAlV Y;.EZ7 a1g = §izAlZ0\/ Zsz

The operator M%F

stubs

0

0

0

0

0

0

ay

ay

M;tsz = ajJ;J

f

o O O o o o o
&<

IS]
<

ooooﬂo
&<

b

b

)

31

(2.96)
(2.97)

(2.98)

(2.99)
(2.100)
(2.101)
(2.102)
(2.103)

(2.104)

(2.105)
(2.106)

(2.107)

:'H, — HF can be summarized in the form

IS
<<t

C)C)C:rOOCJCDCDQ

S
S

S)

)

0 0 0 al
0 0 0 —al
af 0 —all 0
al 0 ay 0
af all 0 0
al —all 0 0
0 0 0 —all
0 0 0 al
0 0 all 0
0 0 —all 0
0 —al 0 0
0 all 0 0
0 0 0 0
0 0 0 0
EVY, 0 0 0
0 a'VZ, 0 0
0 0 a'\/Z, 0
0 0 0 dVZ,

, (2.108)
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where
aE:—2 aE:—2 , aE:—2
A+ Y+ Gy Y A+ Y, + Gy 7 A+ Y.+ Gy
H 2 H 2 H 2
a:L’ — T . ~ . 1~ N\ az — T 7 . P z T . .
iz(44+ Zy + Ry) iy(4+Z, + Ry) i.4+Z,+R.)
(2.109)
The operator ML 2% : Hr — 'H, can be presented as
[0 ey 0 0 0 h, ]
0 ey 0 0 0  —h.
0 0 € 0 —hy 0
0 0 € 0 hy 0
0 0 € hy 0 0
0 0 € —hg 0 0
€ 0 0 0 0 —h,
s 0 0 0 0 h.
Fa €y 0 0 0 hy 0
M= 0 0 0 h, 0 . (2.110)
0 ey 0 —hy 0 0
0 ey 0 ha 0 0
exvVYe 0 0 0 0 0
0 e,/Y, 0 0 0 0
0 0 enY, O 0 0
0 0 0 hevVZ:, O 0
0 0 0 0 hyv/Zy, O
. O 0 0 0 0  h.VZ, |
with coefficients
ey = 5” ey = 5@’ e, = EZ (2.111)
hy = Z’—IZO h, = i—yZo h, = Z’—ZZO. (2.112)
* P D

2.5.2 Cell Boundary Mapping

Unlike the centered field mapping (CFM) the electric and magnetic components
for cell boundary mapping (CBM) are defined not in the center of the node, but
at the ends of the six arms (or the twelve transmission lines). We define the
wave amplitudes at the cell boundaries (I£1,m,n), (I, m+1,n) and (I, m,n+1)
as

lay =1/2(—|E)+ Z-n x |H)) , (2.113)

b) = —1/2(|E) + Z-n x |H)) , (2.114)

where n is the normal unity vector at a cell boundary, |E) and |H) are electric
and magnetic vectors sampled at a boundary.

For example, we take a look at the mapping operation for the arm (I+3,m,n)
at the time k. From eq. (2.113) and (2.114) we obtain following relations for
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n =[1,0,0]7
k [adl-&—l/zm,n = 07
Al ; Yy . z
k [ay]l-‘rl/Q,m,n —k [a2]l,m,n = 7 (Zy kEi+1/2,m,n - ZszHl+1/27mvn) ’
Al /. . . y
k [az]l+1/2,m,n —k [a’4]l m,n 7 (7’2 kEl+1/2,m,n + ZkaHlJrl/Z,m,n) ’
k [b$]l+1/2,m,n =0,
N R
k [by]l+1/2,m,n —k [bQ]l,m,n = 7 (Zy kEl+1/2,m,n + ZZZkHl+1/2,m7n) ’
Al . z . Yy
k [b2}1+1/2¢m,n —k [b4]l,m,n = 7 (ZZ kEl+1/2,m,n - ZkaHl-Q—l/Z,m;n)
(2.115)
and
Y 1
kEl—i—l/Q,m,n = i Al (k [aQ]l,m,n +k [bQ]l,m,n> ’
Yy
. 1
kEH—l/Q,m;n = i. Al (k [a4]l,m,n +k [b4]l,m,n) ’
1 (2.116)
kHly+1/2,m,n = i AlZ (k [a’4]l,m,n k [b4]l,m,n) ’
y
. 1
kHl+1/2,m,n = m (k [bQ]l,m,n —k [a’z]l,m,n) ’
z
respectively.

In order to obtain CBM in a matrix form we define the electromagnetic field
state vectors in Hj? = C'2 @ H,, as

Y
kEl—l/Q,m,n
Y
kEl+1/2,m,n
z
kElfl/Q,m,n
z
kEl+1/2,m,n
z
kEl,m71/2,n
z
kEz,m+1/2,n
x
kEl,m71/2,n
T
kEz,m+1/2,n
x
kEl,m,nfl/Q
T
kEl,m,7L+1/2
Y
kEl,m,nfl/Q
Y

kEl,m,n+1/2

(2.117)

|l7 m’ n> )
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z
kHl71/2,m,n

z
kHH—l/Q,m,n

Y
kHz—l/Q,m,n

Yy
kHl+1/2,m,n

T
kHl,m—l/Q,n
= "’lenm+1/2 n
1= Z E I'e ' |l,m,n) . (2.118)
EHm—1/2,n

z
k’Hl,erl/Z,n
Y
kHl,m,nfl/Q

Y
kHl,m,7r,+1/2

z
kHz,m,nq/z

xr
kHl,er,n+1/2

From eq. (2.113) and (2.114) we obtain the mapping operations in the next
operator expressions

eFp)y = i r (lka) +1xb)),
(2.119)
[£Fia)y = ;M () = 4b)
and
ka) = —- (ME kFp)y + My ‘kFH>%> ;
(2.120)
kb) = —- (ME lkF)y — My |kFH>%) ,
where the operators My : H};z — H, and My : H},? — 'H,, are given as
My = diag iy, iy, iz, iz, iz, iz, in, ie, s s iy, iy) (2.121)
and
My = diag iz, —iz, —iy, iy, in, —in, —iz iz, iy, —iy, —ie, is] - (2.122)

Since 24 equations are involved in order to establish the relations between
the 24 wave amplitudes and the 24 electromagnetic field components, the CBM
operation is definite and bijective in contrast to CFM.

We note, that we do not need to utilize the wave amplitudes at stubs during
the mapping. Thus, the normalizing presented in eq. (2.52) does not have any
influence on CBM.

2.6 The General TLM Operator

We denote the operator I" ;.S in the TLM time evolution scheme
|k+1a> :kaS|ka> s k:0,1,2,... y (2123)

as the general TLM operator, which, in general, is non-unitary and non-symmetric
due to the its non-commutativity, i.e.

wI' wS # 1.8, T. (2.124)
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The non-commutativity property in eq. (2.124) is valid for the composi-
tion of two arbitrary operators. In addition, the next theorem is valid for the
TLM-system, which leads to a very interesting interpretation of the TLM time
evolution scheme.

Theorem 2.6.1. Let us assume that eq. (2.123) describes the time evolution of
the discretized electromagnetic field in the infinite free space. Then the general
TLM operator I ;.S is non-symmetric.

Proof. a) In the contest of the theorem we have to show that
(oI &S)" # 1T 1S (2.125)
We start with the transpose general TLM operator,
T 18" = (:8)" (I =4S, T. (2.126)

The last equation follows from the symmetry of the scattering and connec-
tion operators. Because a matrix product is generally non-commutative and
due to the eq. (2.124) we have that the general TLM operator is generally non-
symmetric.

b) However, in special cases two matrices can be commutative. Next we con-
sider, what happens if we suppose the general TLM operator to be symmetric.
Consequently, we have

WIS =18, = (,T'pS) . (2.127)
From eq. (2.123) follows that

lk2a) = kL 1S |p1a) = IS) (WL 1S)ra) =
= IS) (T kS)_l lka) = |ra) . (2.128)
This way we have that after each two time steps the TLM system is returned

to its initial state |[pa), or in other words, the electromagnetic waves are not
propagating at all. In this case

lokr1a) = IS |oa),
2ka) = oa), (2.129)
and our supposition I" ;.S being symmetric is false. O

Table 2.1: Properties of operators in TLM.

Operator lossless structure lossy structure
S unitary, symmetric non-unitary, symmetric’
YA unitary, symmetric non-unitary, symmetric
gL kS unitary, non-symmetric | non-unitary, non-symmetric

! The modified scattering operator is considered

The important properties of the scattering, connection and TLM operators
are summarized in TABLE 2.6 The scheme (2.123) can be written in the form

lki1a) = (T 1S) oa) , k=0,1,2,.... (2.130)
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The two-level time evolution scheme (2.123) is said to be stable with respect
to the norm || - || (see [94, 95]) if

lesrall < [GT x8)* ] lloa |l (2.131)

for 0 < Al < Alp and 0 < ¢ < tp. The passivity of the TLM scheme (2.130) is
guaranteed by satisfaction of (2.131) as well.
Introducing the eigenvalue composition of the TLM operator as

LS = U LA kU_l (2.132)
we can write eq.(2.131) in the next form
lerrall < U GA U lloall. (2.133)

Eq. (2.131) is fulfilled if eigenvalues of the matrix ,I" ;.S have a magnitude
less or equal to zero, i.e. |N\;| <1,4=1..N.

Convergence and stability are connected via the LAX theorem, which states
that a consistent two-level difference scheme for a well-posed linear initial-value
problem is convergent, if and only if it is stable. For more details see [114].

Consequently we can summarize convergence, stability and passivity as fol-
lowing.

Proposition 2.6.1. The stability, passivity and convergence of the TLM time
evolution scheme given by eq. (2.123) are guaranteed if the eigenvalues of the
general TLM operator I ;S have magnitudes less or equal to one.

Proof. See Chapter 5. O

2.7 Practical Issues

2.7.1 Alternative Scattering Algorithms

In addition to the JOHNS scattering matrix there is an alternative scattering pro-
cedure trough total node values. The scattering algorithm from JOHNS requires
108 additions/ subtractions operation and 75 multiplications for one scattering
operation. HERRING proposed in [54] an alternative scattering process requiring
54 additions/subtractions and 12 multiplications that correspond to a reduction
of the values to be stored from 36 to 12. Through algebraic manipulations it
can be proofed that two scattering formulations are equivalent.

In the present doctoral work the HERRING’S scattering process is used as a
basis for TLM program implementations. It does not affect on the MOR theory
presented further, but allows to decrease computational effort per scattering
operation.

Using the charge conservation law we obtain the total voltages V., V,, and
V., at the SCN as

2(a7r + ag + ag + a10 + VYza13)

Ve = , 2.134
4+Y, +G, ( )
2(a; +as + a1 + a2 ++/Yy,a
v, = (a1 2 11 12+ /Yy 14)’ (2.135)
44+Y,+G,
2 VY,
V. — ((13 + a4 + as + ag + Z(l15) ' (2.136)

44+Y,+G,



2.7. PRACTICAL ISSUES 37

Involving the magnetic flux conservation law we have the total ring currents
I, I, and I, at the SCN in

2(as — ag — a11 + a12 + vV Zgza16)

Zol, = : 2.137
0 44+ Z, + R, (2.137)
2(—as + a4+ a9 — a9 + +/Z,a
ZoI, = (=45 + a1+ a9 — a v 17), (2.138)
1+ Z,+R,
2ay — ag — VZ
Zol, = A= @2—artastVZian) (2.139)
A+ 7, +R,

Taking eq. (2.134) and (2.137) into account we obtain from the next relations
for total voltages and currents

V=a+b and Zyl=a-b, (2.140)

and twelve scattered wave amplitudes by algebraic manipulations

by = V,—Zl. —as, (2.141)
by = Vy+ Zl. —ai, (2.142)
bs = Vi+ Zol, — aa, (2.143)
by = V.- Zol, —as, (2.144)
bs = V.- Zol, — ag, (2.145)
b = Vi+Zoly — as, (2.146)
by = Vi+Zol, — as, (2.147)
bs = Vi—Zol, —ar, (2.148)
by = Vi— Zol, — a, (2.149)
bio = Vit Zol, — ao, (2.150)
by = Vy+ Zol, — a, (2.151)
by = V,—Zol, —an, (2.152)
bis = VYiVi—ais, (2.153)
by = VYV, —au, (2.154)
bis = VY.V, —as, (2.155)
bis = —\/ZsZoly + ase, (2.156)
bir = —\/Z,Zl, +arr, (2.157)
bis = —/Z.ZoL. + ass. (2.158)

In order to save connection operations for the short stubs 16, 17 and 18
corresponding to the negative reflection at the stub ends, the last three reflected
wave amplitudes have to be taken as their opposite, or to be precise

b16 = 7(7\/ ZIZOII + CL16), (2159)
b17 = —(—\/ ZyZon + 0,17), (2160)

b18 = —(—\/ ZZZOIZ —|—a18). (2161)
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The above presented modification of the scattering algorithm is used for the
straight forward TLM scheme dealing with the (I''S) operator. If the scattering
procedure follows after the connection (the backward TLM scheme with the
operator (SI') is necessary for ROM realizations based on the non-symmetric
LANCzOS algorithm) the last three reflected stub amplitudes have to be ex-
changed for

b16 = —V Z$ZOI$ — Q16, (2162)
b17 =  —4/ ZyZ()Iy — aiv, (2163)
blg = —V ZZZOIZ — ais, (2164)

that allows to save negative reflection at the short stubs. In addition, the total
ring currents have to be calculated as

2(as — ag — a11 + a12 — vV Zgza16)

Zol, = , 2.165
0 4+ Z, + R, ( )
2(—a3 +aq + a9 — ayg — v/ Zya
ZoI, = (a3 + a4+ a9 —aro v ”), (2.166)
1+ Z,+ R,
2ay — as — —JZ
Zol, = A =2—0ar+as - yZian) (2.167)
4+ 7.+ R,

2.7.2 Boundary Conditions

In practice an electromagnetic structure is embedded in a finite computational
region with boundary conditions. While PEC/PMC do not pose a challenge, the
modeling of radiating boundary conditions remains a big issue. Improper ab-
sorbing boundary conditions result in back scattering of electromagnetic waves
from boundaries into computational region. These back scattered waves in-
terfere with propagating modes and effect the field solution if not corrupt it.
Potentially the impact of back scattering gives rise to wrong interpretations of
gained results. For these reasons a lot of different methods are proposed to
model radiating conditions of an open structure. So the discretization of the
analytical conditions [83] and TAYLOR’S expansion for the plane wave solution
[21] are described in literature. Application of GREEN’S functions to model
bounded regions with various media is proposed [66], but in general the calcu-
lation of GREEN’S functions is a complicated procedure that limits their usage.
One of the best choice for truncating media are matched layered absorbers,
where electric and magnetic losses are introduced in layers to absorb incident
electromagnetic waves. Artificial Perfectly matched layers (PML) in the TLM
(see [38], [77] and [40]) allow to achieve better absorption than matched layer ab-
sorbers, but their instabilities make the usage of unconditionally stable matched
layers (ML) more attractive. The simplest absorbing boundary conditions like
a matched load with the zero reflection coefficient (a reflection free wall) yield
very good approximations in many cases as well. However these methods only
yield approximate solutions of the problem and require some distance between
the structure to be modeled and the boundary of the computational domain.
The potentially exact TLM-Multipole Expansion (TLM-ME) approach, where
the electromagnetic field outside of the spherical boundary of the computational
domain is expanded into spherical waves originating at the center of the sphere,
is proposed and studied in [72].
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In the framework of present dissertation three kinds of boundary conditions
are presented - one- and two-side reflection walls, ML and TLM-ME. It does
not make a big difference, which kind is used for MOR-techniques, because
boundary conditions change the structure of the connection operator but not
its properties. For more details see the section about the connection operator.

One-Sided Reflection Wall

In order to model absorbing boundary conditions a matched reflection free wall
must have the surface impedance

Zload = “ ?ZO . (2168)

Incident waves falling normal to the wall with square cells and with the
impedance 7,44 are fully absorbed. In general, the local reflection coefficient
is dependent on sizes of the wall cell and can be expressed through the effective
reflection coefficient (the wanted reflection coefficient) as

Pige = LT Telt (2.169)
1+ roTeff
where _
L feeq
ro = % (2.170)
L M
VA +1
with normed cell sizes
i € {ia, iy, iz}, iy | ai, (2.171)
iy € {igyiy iz}, il La. (2.172)

The variables i and i, mean the cell sizes in directions parallel and perpendicu-
lar to the incident wave amplitude respectively. For example, if the a4 amplitude
is considered, in accordance with Fig. 2.2 we have i = i, and i, = 7,,. We note,
that even though the effective reflection coefficient is set to zero, the local re-
flection is not, that, actually, conserves the TLM nature. For PEC/PMC we
have r.y; = %1 that yields r;,. = 1.

Boundary conditions with fixed reflection coefficients r;,. do not take into
consideration the dependence on the falling wave angle and, thus, present a first
order approximation. However, they can be efficiently used for treatment of
numerous electromagnetic problems.

Two-Sided Reflection-Transmission Wall

A two-side reflection-transmission wall is used if a very thin layer with constant
surface impedance has to be modeled. Actually, a layer with thickness d can
be simulated only by one node. However, in this case the smallest space step is
often defined by the thickness of the layer, i.e. Al = d that leads to a significant
increase of computational effort. The use of a two-sided reflection wall allows
to analyze electromagnetic structures with discretization of lower order and,
therefore, to save computational time and memory. This wall is represented via
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additional boundary conditions, which model a change of the wave impedance.
One part of an incident wave is reflected back and the second one is transmitted
through the wall to the adjacent cell. In the case, a thin layer is discretized,
the wave impedance jump is taken into account through material properties in
process of the connection, and the loss in the thin layer are considered in the
scattering matrix (or operation).

The required reflection 7;,. and transmission t;,. coefficients are calculated

as 1
Tloc = — T (2.173)
1+ 2Y0p|j%
Y.
trope = —P0 (2.174)
Yopo + -

where pg is the surface impedance of the thin layer to be modeled. If the skin-
effect plays a big role, then more complicated models have to be used, e.g. in
[58].

The two-sided reflection-transmission wall can be sensibly and efficiently
used for analysis of planar circuits, especially for microstrip line based types.
However, the situation is more complicated, if coplanar waveguide based circuits
have to be simulated.

Matched Layer Absorbers

In matched layers (MLs) the loss of the absorbing material raises from layer to
layer, whereas the wave impedance is kept constant, or to be precise

W + Zmi
ZmL, = \/ﬁ = ZmL, = \/7 (2.175)
€ e+ o

The eq. (2.175) holds if

= Imi (2.176)

B Omi
9 Oe¢j

The electric conductivity in the matched layers is increased according to

i p
0; = Omax 5 2.177
() (2177)

where i denotes the index of the ML, 0,4, is the maximum conductivity in the
outer layer Ny, which is calculated as

_ alp+ 1) In(Ry)

Omar = ~—re i (2.178)

Here a is a constant changing dispersion behavior in neighboring absorbing
layers with different media parameters, Ry is theoretical reflection, p denotes
the profile coefficients. Comprehensive investigations on the optimal parameter
combinations are presented in [94]. We note that from practical investigation it
is known that o = 0.1, Ry = 10~* and p = 1 give the best performance for the
matched 5-layers absorber. That is a matter of course, the thicker the absorbing
layer and the flatter the profile are the better absorption will be achieved.
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For one matched layer with j inhomogeneous materials the next expression
is valid
! ol ol
=M= Im (2.179)
€ ut e W

»—“qu
Q

Even though the matched layer absorbers can be placed relative close to a
structure to be simulated, their implementation requires 5-15 additional cells at
each wall that can cause significantly slower convergence of MOR-algorithms.
Since the scattering and connection operations have to be performed in the
absorbing layers as well, the size of the wave amplitude state vector is longer by
the total number of additional cells

2Ny (Im +mn +1In) +4N3 (1 +m +n) + 8Ny, (2.180)

plate regions edge regions

multiplied by 12 or 18 wave amplitudes, e.g. we have to treat 126 000 variables
with or 54 000 without edge regions more in case of 5 MLs for a 10 x 10 x 10
discretized structure with losses. We note that edge regions are intersections of
plate regions and require different parameters.

The TLM-ME Approach

The above-mentioned methods allow to put boundary conditions up to near field
regions, however, these methods only yield approximate solutions of the radiat-
ing boundary condition problem and always require some distance between the
structure to be modeled and the boundary of the computational domain. To
model radiating electromagnetic structures a hybridization TLM-ME is intro-
duced in [72]. A simulation region is divided into two sub-domains: inside of
a sphere and outside of it. Within a spherical region complex electromagnetic
structures are modeled with the TLM method. Outside the spherical region the
field is expanded into spherical waves. At the boundaries of the spherical re-
gion the TLM solution is matched to the multi-pole expansion (ME) of the field
in the outer region. This yields a potentially exact modeling of the radiating
boundary conditions and allow to get closer to a structure to be analyzed, and
even into the near field. To perform the TLM simulation inside the spherical
computation domain the sphere is approximated by cubic TLM cells as shown
in Fig. 2.3.

The advantage of this TLM-ME method is that it is potentially exact and
that the basis functions of this expansion are orthogonal. This yields a compact
lumped element equivalent circuit representation of the radiating modes where
every radiating mode is described by a lumped element LC ladder network
terminated with the radiation resistor. The connection of the outer boundaries
of the TLM cells with the spherical modes is established by a circuit consisting
of ideal transformers only.

The discretized TLM electromagnetic field at all nodes on the approximated
sphere (Fig. 2.3) in the cartesian coordinate system can be transformed into
transverse spherical field. We denote this transformed TLM electromagnetic
field at time k as

wFi = [k Eg, kB, yHy,  Hy)" . (2.181)
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Figure 2.3: A spherical simulation domain.
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The transverse electromagnetic field obtained by the TLM can be expressed
at the sphere boundary as a linear combinations of the basis functions of the
even (e) and odd (o) radiating modes according to

e pe o po
pFy = E kol fC+ E ke’ O,
n,m n’,m’

where
fe

fO
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The basis functions of the TM radiating modes are given as
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Here, ¢y, are normalization coefficients depending on m and n; P} (cos¥) and
P (cos¥) are Legendre polynomials and their derivations with respect to the
argument (cos¥); and ¢ is the unit radius.

Using the orthogonality of the radiating modes the coefficient matrices ;¢
and pa® at the time k can be found through the projection of the radiating
modes (actually their basis functions) onto the discretized TLM transverse elec-
tromagnetic field x F} on the sphere.

The wave impedances of the TM radiation modes on the surface of the sphere
are given by

g _ (Y (ko))

wm =1 ; (2.193)
" H (kro)
and of the TE radiation modes by
2
gTE _ ,mm (2.194)
nm °
(Hy? (kro))’

where n = /p/e is the wave impedance of the plane wave; H,(LQ)(I@TO) =
krohg)(kro) with hgf)(kro) being the spherical HANKEL functions of the sec-
ond kind; (H,(LQ)(k:ro))’ are derivations with respect to the (krg) argument.

Using the recurrence formula for the spherical HANKEL functions a continued
fraction expansion of the wave impedances has been proposed in [26] for the
outward propagating TM modes as

jk}’(‘ kr + 2](L]C:‘B+
™ .
Z2 =0 . (2.195)
1
L r—
Jjkr jllr+1
and for outward propagating TE modes as
1
n + — 1
TkT 2jk:7‘1+ In—3
Jkr + 2T_kao+
TE kT
Zyn =1 . (2.196)
1
+ﬁ

Jkr ].%JA

These continued fraction expansions represent the Cauer canonic realizations
of the outward propagating TM modes (Fig. 2.4(a)) and TE modes (Fig. 2.4(b)).
The equivalent circuit expansion of spherical waves is treated in the books of
HARRINGTON [49] and FELSEN [42].

We note that the equivalent circuit representing the TE,,,, mode is dual to
the equivalent circuit representing the TM,,,, mode. The equivalent circuits
for the radiation modes exhibit high—pass character. For very low frequencies
the wave impedance of the TM,,,, mode is represented by a capacitor Cyp,, =
er/n and the characteristic impedance of the TE,,,, mode is represented by an
inductor Lg,, = ur/n. For f — oo we obtain ZLM ZTE _, p

A complete equivalent circuit of the connection between radiation modes and
spherical TLM domain also can be synthesized. For this purpose we deal with
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(a) An equivalent circuit for TE;,, modes
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(b) An equivalent circuit for TM,, modes

Figure 2.4: CAUER canonic realizations of the radiation modes.

wave amplitudes directly without computing the electromagnetic fields on the
sphere in an explicit form. The spherical basis functions are transformed into
cartesian coordinate system. The projection coefficients matrix is computed in
time-domain directly in a cartesian coordinate system also. The back reflected to
the TLM domain wave amplitudes on the approximated sphere are computed by
a transformation network representing the projection operation and connected
to the CAUER canonic realization of the mn-radiation mode. The corresponding
global effective reflection coefficient in the outer region for the mn-mode is given

as
(P ) — Zmn -1
mn)eff 7

: 2.197
——— (2.197)

Strictly speaking, the effective reflection coefficient is depending on the fre-
quency and has to be transformed in to the time-domain, i.e.

(Pmn)eff (w) — (pmn)eff (t). (2.198)

The local reflection coefficients for the inner TLM domain can be obtained
through the scattering matrix of the transformation network. Actually, this scat-
tering matrix describes the complete connection between incident and scattered
wave amplitudes in two computational domains. As example, the transformer
network for the connection of the mn—th radiation mode to the TLM domain
for the second and forth transmission lines (for one of the six SCN arms) at
the node j is shown in Fig. 2.5. Each arm of the j-th SCN adjacent to the
sphere is represented by its two ports, which are linked with the ports of all
cells approximating the sphere. For more details the reader is referred to [72]
and [71].

The embedding of an electromagnetic structure to be simulated inside the
sphere allows to reduce the total number of cells in the computational region
and the number of boundary cells in comparison to the usage of reflection free
walls as radiating boundary conditions. If a cubic box with the side length
d — o0 is compared with the equal sphere of diameter d — oo then the number
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Figure 2.5: Transformer network for the connection of the n—th radiation mode
to the TLM domain for the second and forth transmission lines at the node j.

of total and boundary two-dimensional cells is reduced by factor of 6/7 with
Al — 0. A comparison for a geometrical approximation for the 10 x 10 x 10
box and equal sphere is given in Table 2.2.

Table 2.2: Comparison of the box and sphere domains.
Structure | Total 3-D cells | Boundary 2-D cells

Box 1 000 600
Sphere 480 456

Comparison of RBC Approximations

From the above-described techniques for modeling of the radiating boundary
conditions (RBC) we summarize their important properties here. A brief com-
parison of the approximations is presented in TABLE 2.3. The influence of RBCs
on the MOR convergence is given with reference to the one-sided reflection free
wall.

Table 2.3: Comparison of RBC approximations.

Method | Approximation quality | Influence on MOR convergence

Wall good no
ML/PML very good negative

TLM-ME very good positive
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2.7.3 Excitation

An electromagnetic structure to be simulated is excited normally by the nor-
malized GAUSS pulse

gq(t) = 2f, exp(—m(2f,t)?) (2.199)
with -
/ gn(t)dt = 1. (2.200)

The spectrum of the normalized GAUSS pulse is given by its FOURIER trans-
form

Sg(f) = exp (—Z]{;) : (2.201)

The GAUSS pulse shifted in time-domain is given as
94(t) = 2fg exp(=m(2f,(t — t0))?). (2:202)

In order to shift the spectrum of the excitation signal the Gaussian-modulated
sinusoidal can be used, i.e.

g (1) = 2y exp(~m(2f,(t — 1)) - sin(2n et) (2.203)

where f. is the center frequency, and f, is a parameter to control the bandwidth
and the amplitude of the GAUSS signal.

In order to excite all possible modes, e.g. higher, spurious and intermesh
modes, the DIRAC pulse can be applied

0, if t=tg
gg(t) = { 0, if £t (2.204)

Actually, a structure is excited by the voltage and/or by the current pulses
corresponding to the basic mode. For some structure like microstrip line and/or
coplanar waveguide structures it is very simple to define the input-output volt-
ages and currents corresponding to the fundamental and to several higher modes
as well. These voltages and currents can be transformed to the electromagnetic
fields and, consequently, to the wave amplitudes, and vice versa. For waveguide
structures operating not only with the fundamental mode, the mapping between
the input-output voltages (and currents) and the wave amplitudes is difficult to
obtain. Since no eigenvalue problems are considered in the time-domain TLM
method, the two-dimensional solvers from other frequency-domain-based nu-
merical methods, e.g. Finite-Element or Mode-Matching methods (see Chapter
3), can be utilized in order to obtain the field pattern and the S-parameters
(the voltages and currents simultaneously) for each separate mode. These two-
dimensional solutions are imposed onto the electromagnetic fields obtained by
TLM, and, therefore, the required voltages and currents for each mode can be
computed by the integration of the projected electric and/or magnetic fields.
For more details the reader is referred to the Chapter 3.

The second possibility to obtain the S-parameters is the use of a reference
structure. This approach allows to get the S-parameters either by means of the
voltages or via the currents only. The investigated and the reference structure
are excited by the voltage (or by the current), and the S-parameters are gained
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trough the output incident and scattered voltages (or the currents) in reference
planes. For more in-depth details see Chapter 6.

Of course, the network parameters can be directly obtained from TLM sim-
ulations, if the field distribution profiles for the fundamental mode or a mode
to be extracted can be clearly defined. In this case we have to be sure, that we
deal with the currents and/or voltages according to this mode, without spurious
and/or other modes have an influence.

In the present doctoral thesis the scattering parameters are extracted by
the TLM method only. If desired, external two-dimensional solvers can be eas-
ily incorporated into the TLM simulation process and further-described MOR-
techniques in order to obtain the needed network parameters for each mode.
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Chapter 3

The Hybrid TLM-MM
Method

The design of Microwave Monolithic Integrated Circuits (MMICs) requires the
exact full-wave modeling of the electromagnetic field in the semiconductor and
insulator regions as well as within the conductor layers. The transverse di-
mensions of the transmission structures in modern MMICs at frequencies above
10 GHz are comparable with the skin depth. Therefore, an accurate simulation
of the electromagnetic field inside the conductors is necessary. The usage of
conventional simulation tools is not always efficient.

In this chapter the effective hybrid TLM-MM (Transmission Line Matrix
Mode Matching) approach is proposed for the full-wave analysis of transmission
lines and discontinuities realized in damascene technology. The below described
hybrid TLM-MM method can be easily involved in the macro-modeling process
of MMICs, and the generation of a reduced-order macro-model can be simplified
and additionally accelerated.

3.1 Introduction

The use of modern damascene technology with the application of copper as con-
ductor material is a promising way for realization of highly integrated MMICs
at frequencies of operation up to several 10 GHz. Compared to aluminium, cop-
per exhibits significantly lower electro-migration, better electrical and thermal
conductivity [53, 123]. The higher current density achievable in copper trans-
mission lines and the application of dual damascene process allow a decrease in
the cross-section of the conductors down to 0.2 um width and 0.2 pm height.
The thin copper conductors offer improvements in the size of MMICs and power
consumption. The schematic view of an usual multilayered MMIC in damascene
technology is shown in Fig. 3.1.

Usual design tools for planar circuit design are not applicable, as most of
them do not consider finite thickness of the metallization and loss appropriately.
The methods working in time-domain require very small discretization and time
steps, therefore they are not efficient due to the high computational effort and
the high memory consumption. In addition, an implementation of appropriate
skin effect models is necessary [58].

49
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Ty, Si

Figure 3.1: Schematic view of a multilayered MMIC in damascene technology.

A hybrid technique, i.e. a combination of different time/frequency-domain
based numerical methods, in several cases yields an accurate and efficient so-
lution of an electromagnetic problem. For example, the proposed couplings
of Finite Element Method (FEM)-MM, FDTD-MoM, TLM-Integral Equation
(TLM-IE) are powerful and flexible hybrid approaches [5, 30, 92, 91, 113].

In this chapter a novel hybrid time/frequency-domain technique, the combi-
nation of a frequency-domain Mode-Matching (MM) method for the modeling of
homogeneous waveguide structures with the time-domain TLM method for the
simulation of discontinuities, is presented. The MM approach allows an accurate
and efficient computation of the loss and dispersion properties of the homoge-
nous (in the wave propagation direction) multilayered structures ([63, 76, 106]),
whereas the TLM method is advantageous for the modeling of discontinuities of
arbitrary shape [23, 78, 99].

A MMIC in damascene technology exhibits a multilayered Si-based struc-
ture containing various transmission line structures, i.e. coplanar waveguides
(CPWs), striplines, microstrip lines (MLs), conductor backed CPWs and diverse
discontinuities, e.g. crossings, right angle bends and T-junctions (see Fig. 3.1).
Such a damascene structure consists of many thin layers like diffusion barriers,
inversion layers, channel stoppers, trenches and etc. Their influence and the
influence of conductor losses, which are due to the skin effect, on propagation
characteristics should be taken into account carefully.

One of the most efficient methods for numerical simulation of such homo-
geneous two-dimensional (2-D) structures is the frequency-domain based mode
matching method. The MM method allows to compute a propagation constant
and the corresponding electromagnetic field distribution for each mode in an
arbitrary multilayered cross section using the matching of the tangential elec-
tromagnetic components at the layer /subdomain boundaries. The fields inside
the conductors playing an important role and inside each of the thin layers are
fully taken into consideration. However, only a few types of discontinuities can
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be analyzed using the MM [106].

The transmission line matrix method is a well-established technique for solv-
ing electromagnetic problems in the time-domain (See Chapter 2). The versa-
tility of the TLM method allows straightforward calculation of complex struc-
tures. However generally, if structures with highly nonuniform regions and/or
curvilinear structures are under consideration, variable and curved meshes are
required in order to ensure moderate computer run time and storage consump-
tion. Usually, in a simulation by means of TLM the structure is excited with
a GAuss pulse. The frequency characteristics of the structures, for example
S-parameters, can be determined by the Discrete FOURIER Transform (DFT) of
the time response or system identification methods.

The goal of the hybrid time/frequency TLM-MM approach is to use the
universality of TLM for the simulation of arbitrary shapes and the advantages
of the MM method for accurate analysis of homogenous structures and at the
same time to overcome the limitations of both methods. The hybrid TLM-
MM technique is understood as a combination of the TLM and MM methods
in the frequency-domain. The various homogenous transmission structures are
simulated by the MM, for the analysis of the complex discontinuities and/or
structures the TLM is used. It is shown, that this hybrid method allows to
reduce the computation time and the memory requirement in relation to con-
ventional 3-D methods. In addition, the TLM-MM approach takes into account
the skin effect losses in the strip lines more exactly. In addition, this method
can be easily extended to facilitate macro-modeling of MMICs, in the sense that
through its application the generation of a reduced-order macro-model can be
simplified and accelerated.

3.2 The Mode Matching Method

In this section a brief description of the Mode-Matching (MM) technique is
presented. We start with the HELMHOLTZ equations for electric and magnetic
longitudinal section waves in the z-direction (LSE, and LSH,) are

ATIE 4+ W?pell® = 0,
AT 4 W2 pell™ = 0. (3.1)

For a wave propagating in the +z-direction the z-components of the electric
and magnetic HERTZ vectors for the LSE, and LSH, waves are

15 = EM: (A7, exp (9K, @) + By, exp(—Jks,, @) -
(& eXp(szmZ) + Dy, exp(—gky,ny))] exp(y(wt — k.2)), (32)
M
I = [(Ar exp(skyh,) + By exp(—kh,x)) -
(O exp(Jk‘ZZ,:;) + Dy exp(—kyy))] exp(g(wt — k.2)) - (33)

And each field component can be given as superposition of the LSE, and
LSH, waves, or to be precise
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E, = 8;91:2; + w? pells (3.4)
E, = gi‘gi +jwﬂ<9(g[5 , (3.6)
H, = 8;1;2? + w?pell™ (3.7)
H, = %2;;;; +jw5881_§, (3.8)
H, = %1%;: fjwsaél)_:[f. (3.9)
*y
i=8
NN
i=2

Figure 3.2: Schematic view of a multilayered cross section.

A structure under investigation is embedded in a rectangular box with
ideal electric (and/or magnetic) walls and subdivided into homogenous blocs
1,2...i... as shown in Fig. 3.2. The electromagnetic fields in eq. (3.4) and
eq. (3.7) in each sub-domain ¢ are expanded in a finite sum of partial waves M
with unknown amplitudes A,,, B,,, Cin, Dy, and wave numbers k.., kym, k. to
be satisfied

k? = wPpie; = kpyy, + Kl + K2 (3.10)

For example, the Fy- component in the i-th domain may be expanded into

m partiol waves [63] as

Ey =Y [~kemkym(Aj, exp(kg,, @) — By, exp(—k5,,2)) -

m

(Cr, exp (kg y) — Dy, exp(—gky,,y)) —
—wpk, (A7, exp(gky,, ) + By exp(—gky,,)) -

(Cy exp(gkyn,y) + Dy exp(—gky,,y))] exp(wt — k. z). (3.11)
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Utilizing the boundary conditions at the rectangular box walls and applying
the Method of Moments (MoM) in order to match the tangential field compo-
nents at the sub-domain ¢ boundaries (e.g i = 3, j = 4 and p = 8) with normal
vectors 1, and n, in positive z- and y-direction respectively, i.e.

n,; X (En — Et]) = 0, N, X (th — Ht]) = 07 (312
ny X (Em — Etp) = 0, ny X (Hn — Htp) = 0, (313)

we obtain a system of homogenous equations like

G-X,, =0, (3.14)

where the vector X, contains all unknown partial wave amplitudes A,,,, B, Cr,
and D,,, the matrix G depending on the unknown wave number k., summarizes
the matching coefficients. A non-trivial solution of the homogenous system of
equations (3.14) is obtained by variation of k,. The eigenvalues of this system
of equations are the complex propagation constants k. for each mode. From
the propagation constant the phase constant 5 and the attenuation constant «
can be obtained. After the propagation constant k, is found we can compute all
partial wave amplitudes contained in X, and as following we have the complete
field distribution in a cross section. Using the post-processing the characteristic
wave impedance, S-parameters, equivalent network-oriented circuits and etc.
can be obtained.

For more details of Mode-Matching technique the reader is referred to the
doctoral theses [62, 63, 105, 106].

3.3 The TLM-MM Hybridization

In this section we consider the hybridization process of the TLM and MM meth-
ods. For this purpose we operate with electromagnetic fields in the frequency-
domain. The transverse electromagnetic fields obtained by TLM method can
be expanded into N eigenmodes of a transmission line in a specific section S as

N
BPMY = 3 B
n=1
N
HM =N "y, HYM (3.15)
n=1

During the hybridization process the connection plane S is discretized. The
transverse electromagnetic TLM fields in each cell are transformed from time-
domain into frequency-domain by the FOURIER transform either for a needed
frequency band by means of the FFT engine or for one single frequency by
the numerical computation of the FOURIER integral. The second variant is
attractive due to its low computational effort, if a few frequency points are to
be considered.

It is conveniently to write the transverse field obtained by the MM in the
form

E%M = epexp(—k.nz) ,
HMM  —  h,exp(—k.n2) , (3.16)

tn
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where e,, and h,, are transverse vector structure functions.
When there are no losses present in the transmission line these structure
functions fulfill the orthogonality relation for two eigenmodes n; and no, i.e.

/ / et x by dS =0, (3.17)
S

where h}, is the complex conjugate of h,3. For its proof see [28]. This relation
shows that the total power flowing in a lossless guide is equal to the sum of the
power carried by each mode individually. The orthogonality property (3.17) can
be written in other form

<€n1|6n2>://en1~e;2dS:O,
S

(Bn1 | B2) = //h,n1 ‘h¥,dS =0. (3.18)
S

Therefore, the coefficients ,, can be obtained by projection of the electro-
magnetic field of each n-th MM-mode onto the transverse field gained by means
of the TLM, or to be precise

%://E;‘FLM~(E%M)*dS~//HtTLM-(H%M)*dS. (3.19)
S S

If losses have to be taken into consideration the situation is more compli-
cated, because the desired orthogonality property is lost. In this case the MM-
modes do not fulfill relations (3.18) and we can not compute the coefficients
vn by eq. (3.19). If small losses preexist in a waveguide structure, so that the
arising error is accepted, then v, can be obtained by eq. (3.19) as well. On the
other hand, if we can recover in some way the orthogonality of the modes ob-
tained by the MM, then eq. (3.19) can be directly used. In order to perform this
orthogonalization we denote the discretized transverse electromagnetic fields of
MM-modes in the section S of a lossy waveguide as vectors E~% M which spann
the vector space C", or in other words, each vector E% M is in the span of a set
of vectors, corresponding to the discretized transverse electromagnetic fields of
the MM-eigenmodes.

Sequentially, we define the span of a set of the non-orthogonal linearly inde-
pendent vectors, corresponding to the computed MM-eigenmodes as

EMM — span {EMM EMM pMM .. MM} (3.20)
and the span of a set of the orthonormal vectors as
EMM = gpan {ENM EMM ENM ... EMMY. (3.21)

Using the GRAM-SCHMIDT orthogonalization process (see APPENDIX B)
we can establish the distinct relation between EMM and EMM as

EMM — MM p (3.22)
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where P is n x n upper triangular matrix and invertible. Therefore we obtain
the span of the required orthogonal (orthonormal) vectors as

EMM — pMM p-1 (3.23)

In a similar way we can affiliate the span of the orthonormal vectors HMM
from the span of the vectors HMM according with the MM-modes computed
for a lossy waveguide, i.e.

HMM — gMM p-1 (3.24)

Thus, EMM and HMM are fields in a lossless waveguide which are recovered
from the appropriate electromagnetic fields in the waveguide with losses. The
columns of the spans EMM and HMM represent the discretized transverse
electromagnetic fields of the so-called orthonormalized MM-modes, that allows
the expansion of the transverse electromagnetic TLM field into IV eigenmodes
in accordance with eq. (3.15), where the coefficients 7, can be obtained by
eq. (3.19).

3.4 The TLM-MM Approach

In the following we briefly describe the procedure of the TLM-MM hybrid ap-
proach:

1. A structure under investigation is divided into blocks; these consist of
discontinuities and transmission lines homogenous in the propagation di-
rection.

2. Multi-mode full-wave analysis of homogenous transmission lines is per-
formed in an interesting frequency band using the MM method.

3. Various discontinuities are simulated by means of TLM with a GAUSS pulse
as an excitation.

Of course, the parallel performance of sub-procedures (2) and (3) allows to
increase the computational efficiency additionally.

4. The electromagnetic field distribution obtained by TLM method are ex-
panded into N eigenmodes of the transmission line in a specific section

N
TLM _ MM
E - Z ’YnEn )
n=1
N
TLM MM
H =Y . HM.
n=1

In this section all modes propagating on the transmission line shall be
extracted. (Actually, a typical transmission line exhibits the basic propa-
gating mode only.)

5. Next, the S-parameters of the blocks for the propagating modes are ex-
tracted.
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6. The generalized S-parameter matrix is formed for the initial structure.

Obviously, the accuracy and the computational effort of hybrid method are
dependant on the number of eigenmodes taken into account and on the space
discretization step in a connection plane. If necessary, the electromagnetic fields
for each mode in a specific section can be obtained in time-domain as well.

3.5 Applications

Structures produced by means of the damascene technology with four metal
layers have been investigated (see Fig. 3.1). Such a damascene structure consists
of eleven main layers, eight thin passivation SigNy-layers and an inversion metal
sheet between the Si- and first SiO»-layers.

The simulations were performed using the following material parameters:
esi = 11.9, 0g; = 5.5 S/m, €si0, = 3.9, tan dsio, = 1074, €sigN, = 7, tan dgizn, =
1073, 0gy = 5.9-107 S/m.

Vertical dimensions (thicknesses) of the layers are (see Fig. 3.1)) : Ty =
380 pm, T, = 1.8 pm, Ty = 0.4 pum, Ty, = 0.9 pm, T3f = 0.6 um, T35, =
0.9 um, Tyf' = 0.6 pm, 75, = 0.9 um, T3y = 2.5 um, T, = 0.75 pm,
T§l,x, = 0.55 um. The thickness of the intermediate passivation layer of SigNy
is T n, = 0.05 pm.

Next, we compare the MM-simulations with the measurements for two CPWs,
which are placed in the third 0.6 pm-thick metallization layer. The first CPW
has dimensions W = 7.5 um and S = 5 um (see Fig.3.1), the second structure
has W = 5 um and S = 2.5 um. The attenuation constant and the effective
permittivity of the CPWs are presented in Fig. 3.3. The measurement data are
in a good agreement with the simulation results. The attenuation consists of
the attenuation caused by the dielectric losses in SiOs-substrate, the losses in
Si-substrate and the ohmic losses in the conductors. The substrate attenuation
is lower than 0.05 dB/mm, the attenuation in the conductors plays a dominant
role. Fig. 3.3(b) illustrate, that the electromagnetic field concentrates more in
the SiO2 substrate with increasing frequencies. We note that the Si3Ny etching
stoppers do not influence essentially the propagation characteristics.

The comparison of measurement with simulation results at frequency of
10 GHz for two microstrip lines (MLs) in the third (metallization thickness
0.6 wm, dielectric thickness 2.2 um) and fourth (metallization thickness 2.5 pm,
dielectric thickness 3.7 um) metallization layers confirms the accuracy of the
MM for different geometries. The first metallization layer with a thickness of
0.4 pm corresponds to the ground plane. We changed the width of the lines w
from 1 um to 10 um and compared the attenuation calculated by MM with the
measurement (see Fig. 3.4). The MM-simulation results are very accurate. The
wave impedance Z,, of the MLs is shown in Fig. 3.5 as a function of the line
width W at 10 GHz as well. Due to the losses in the conductors the imaginary
part of the wave impedance can not be neglected (see Fig. 3.5(b)).

In order to gain waveguide parameters by means of the MM only m = 50
partial waves (see eq. 3.11) are taken into account, and therefore small comput-
ing power is required. At the frequencies up to 10 GHz it is enough to take into
account 20 partial waves. We notice, in order to obtain accurate numerical solu-
tions at higher frequencies (above 30 GHz) the number of partial waves should
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Figure 3.3: Attenuation constant and effective permittivity of two CPWs with
W=7.5 um, S=5 pum and W=5 pum, S=2.5 um, respectively.
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Figure 3.4: Attenuation of different microstrip lines with signal layers in the
third and fourth metallization planes.
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be significantly increased to as many as 100, especially for the accuracy analysis
of the attenuation. Due to the symmetry of the waveguides (see Fig. 3.2) we
can put a magnetic wall in their center and only one half of a structure can be
analyzed, and the computational time can be saved additionally.

Now, we discuss the simulation results for a CPW test structure analyzed by
means of TLM and hybrid TLM-MM method consecutively. As a test damascene
structure a bridge CPW T-junction is chosen. The layout of the T-junction is
drawn in Fig. 3.6. Three bridges placed next to the discontinuities suppress the
unwanted odd-mode ([109]). The distance from CPW metal layer to a bridge
metal layer (the first metallization layer) is 2.2 um. Four black rectangles in
Fig. 3.6 denote vias, which have transverse (or cross) dimensions of 0.5 pm x
0.5 um. The CPWs are dimensioned by MM method so that the higher order
modes can not propagate, i.e. the CPW exhibits the quasi-TEM mode. First,
the whole structure is embedded in a box (called TLM-box) and simulated by
TLM only using a space discretization as coarse as 0.5 pm. Then we combine the
TLM and MM methods for full-wave analysis of this structure. The structure
is subdivided into one TLM-box and three lines (called MM-lines), which are
simulated separately. The MM-lines have dimensions W = 7.5 um and S =
2.5 um (see Fig. 3.1). Both methods have been combined efficiently in frequency-
domain by means of S-parameters for the fundamental CPW even-mode. Both
even and odd propagating modes are taken into account, higher modes are not
considered.

A comparison of calculated S-parameters using TLM and hybrid TLM-MM
methods is shown in Fig. 3.7. It appears, that the frequency dependant skin
effect losses are taken into consideration more accurately with the hybrid method
than with the TLM method; in the TLM the conductor is modeled with only
one cell of thickness 0.5 um in order to ensure reasonable computational time.
The results indicate very good agreement between the two methods.

Using the hybrid method we obtain accurate results with smaller numeri-
cal effort; for homogenous non-resonant structures only few frequency points
are needed, an interpolation can be applied to obtain the characteristics in the
whole frequency band; the TLM simulation of the small 110 pm x 110 um box
lasts much less than for the initial 255 pm x 185 um TLM-box. In addition, the
simulation of the TLM sub-domain and the MM calculation can be executed
independently and, hence, can be run in parallel on different workstations/PCs.
Using the hybrid method in parallel performance, the computation time is re-
duced by factor of two and memory requirements in this case are reduced by
more than a factor of three. We note, that the computational time by the MM-
method is neglected even in comparison with the TLM simulation of the small
110 pm x 110 pm TLM box.

3.6 Conclusions

Due to the small dimensions a careful investigation of various components based
on damascene technology is required. The MM technique allows the accurate
parameters computation of multilayered waveguides. For the full-wave analysis
of structures in MMICs we combine successfully and efficiently the TLM and
MM methods. Using the proposed hybrid TLM-MM approach, the time and
memory requirements can been reduced several times, while moreover improving
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Figure 3.6: Layout of the bridge CPW-junction simulated by means of TLM and the
hybrid TLM-MM approach.
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accuracy. The accuracy of TLM-MM approach and its demand on computation
resources are dependent on the number of eigenmodes taken into account and on
the space discretization step in a connection cross section. The proposed hybrid
technique can be recommended for a effective usage in CAD systems and for
predesign of MMICs. The time/frequency hybrid technique based on MM can
be applied to FDTD method in a similar manner.

In addition, the hybrid TLM-MM method can be easily extended to facil-
itate macro-modeling of MMICs, in the sense that through its application the
generation of a reduced-order macro-model can be simplified and accelerated.

3.7 Remarks

We make a couple of notices concerning the application of the TLM-MM hybrid
technique to TLM-MOR.

1. The proposed TLM-MM approach can be easily involved in the global
macro-modeling process. ROMs of complex structures and discontinu-
ities are obtained by TLM-MOR. Transmission lines homogenous in the
propagation direction are simulated by means of the MM method. On
the basis of numerical results the appropriate macro-models and/or the
equivalent circuits can be generated. For example, the simple equivalent
wide-band ladder networks for transmission lines are proposed by LUKA-
SHEVICH in [74]. These macro-models (and/or network oriented models)
can be easily incorporated in the network-oriented simulators together
with macro-models, obtained by TLM-MOR and other MOR-techniques.
Thus, the global macro-modeling process can be simplified and addition-
ally accelerated.

2. The above-described kind of the hybridization allows to implicate external
2-D frequency-domain based solvers (i.e. FEM, Method of Lines (MoL)
and etc.) for TLM-ROM since the time-domain TLM method does not
have its own 2-D eigensolver. These external solvers allow us to extract a
macro-model for an arbitrary mode by projection of the transverse elec-
tromagnetic field from an external 2-D solver onto the field distributions
at the ports computed by TLM-MOR.

For example, we consider a CPW structure with discontinuities like in
Fig. 3.6. In order to gain a reduced-order model we have to excite the
structure at the port 1 with the electromagnetic field corresponding to the
fundamental CPW-mode. For this purpose we impose the transverse field
distribution obtained by a 2-D solver (e.g. by MM or MoL) at the port 1
for the even-mode. After MOR-techniques have been applied, we project
the 2-D solution onto the electromagnetic fields (at the ports 1, 2 and
3), which are obtained by MOR, and appropriate input-output voltages
and currents for the even-mode can be computed. Thus, a reduced-order
model can be generated for the pure fundamental even-mode. Evidently,
the voltages and currents can be extracted also for all desired modes, and
a generalized multi-mode macro-model can be obtained by interfacing the
single-mode models. As a matter of course, the accuracy of this general-
ized macro-model increases by taking several tens or hundreds modes into
account.
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Actually, the 2-D distribution of the electromagnetic field can be obtained
by TLM also if we simulate an infinitely long transmission line. Then,
after some time the evanescent modes are attenuated and we have only
the fundamental waveguide mode. The transverse field distribution in the
frequency-domain can be obtained by the FOURIER transform. However,
if several modes propagate on the transmission line, their separation by
means of TLM is quite impossible. In this case the application of external
2-D frequency-domain-based solvers is strongly recommended.



Chapter 4

Krylov Subspace Methods

As it has been mentioned above, in recent years there has been a lot of interest in
generating suitable reduced-order models by means of KRYLOV-subspace meth-
ods, such as the LANCZOS algorithm and the ARNOLDI process. In this chapter
we briefly describe the use of KRYLOV subspace methods for the iterative solu-
tion of large linear eigensystems, such as the ones arising in circuit simulation
and /or during the numerical simulations of discretized time-invariant linear sys-
tems. These iterative techniques, based on the orthogonal and/or oblique pro-
jection onto KRYLOV subspaces, allow to reduce a general matrix to be reduced
to a condensed form. We also review variants of the ARNOLDI and LANCZOS
algorithms for generating basis vectors for KRYLOV subspaces.
Generally, in this chapter we will answer two questions:

e How can a general operator be reduced to a condensed form using KRYLOV
subspace methods?

e What must be done so that eigenvalues of a reduced matrix approximate
the eigenvalue spectrum of a general operator?

4.1 Krylov Subspaces

Now, let the KRYLOV subspaces be induced by a N x N dimensional linear
operator A € HN*N and a starting vector |p) € HY. The n-th KryrLov
subspace is defined as

K(A, |p),n) =span { |p), Alp), A’|p) A®|p), ..., A" 'p)}.  (41)

Let be introduced ng < n as the largest possible integer n such that the vectors
A’|p), 1 < j < n—1, are the linearly independent. In this case we have that

rank {IC(A, |p),n)} = max; rank {K(A,|p),j)} =no =
= rank {K(A, |p),no)} = rank {K(A, |p),0)}. (4.2)

Therefore, the KRYLOV sequence |p), A|p), A?|p) ..., A" !|p) in (4.1) has
the dimension of n if 1 < n < ng, and the dimension of ng, if n > ny, i.e.

n, 1<n<ng,

ng, M >MnNg.

dim { K(A,|p),n) } = { ’ (4.3)

63
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So, the largest possible KRYLOV subspace, induced by A and |p) is clearly defined
by K(A,|p),no). The subspace K(A,|p),n) is termed exhausted (see [43]), if
n > ng.

In general case, a block KRYLOV sequence is generated by a N x N dimen-

sional operator A € HN¥*N and a N x m-matrix of m right starting vectors
P =[|p1), |p2); |ps), -+ |pm) ] € HVX™ (4.4)
as following
P, AP, A’P, AP, ..., A’7lp, ... (4.5)

We note that the operator P in (4.4) can be written in the DIRAC notation
as following

N,m m
P = 1wl =3 Ipi) il (4.6)

i,j=1

however, the form (4.4) is preferred in the present doctoral thesis.
In the sequence (4.5) the j-th block, A’~!P, contains the columns, which
can be linearly dependent on columns to its left, i.e on columns of

P, AP, A’P, ..., AP, (4.7)

Thus, the linear independence of the columns in (4.5) is generally lost . However,
the existence of linear dependent columns in (4.5) does not indicate that the
block sequence (4.5) is exhausted, and the vectors A7~ P need to be generated
further. This problem of linear dependance can be easily solved, if we scan the
columns in (4.5) from left to right and delete each column, which is linearly
dependent on its left ones. Then, we obtain the deflated block KRYLOV sequence
as

P, APy, A’P;, APy, ..., A7'P;, ..., A"'P,. (4.8)

After the deflation, all columns in (4.8) are linearly independent, and we define
the n-th block KRYLOV subspace, which is induced by the operator A and start-
ing matrix P and spanned by the first n columns of the deflated block sequence,
i.e.

K(A,P,n) = span{P,, AP;, A’P;, APy, ..., A" 'P;}. (4.9)

The number of the linear independent vectors in (4.9) is determined as n =
m1 + mao + - - - + m;, where m; is the number of the columns in the j-th block
AJ~1P; after the deflation.

For MOR-techniques, based on LANCZ0OS methods, we introduce the block
KRYLOV supspace, generated by the transpose operator AT € HN*N and a
matrix of ! starting vectors

Q=I[la) la2), las), -, la)] € KV, (4.10)

and spanned by the first n columns of the deflated block KRYLOV subspace

Q1. ATQs, (AT)?Qs, (AT)*Qy, ..., (AT)"'Q; (4.11)
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as following

K(AT,Q,n) = span{Q:, (AT)Q2, (AT)?Qs, ..., (AT)"1Qs}. (4.12)

Here, n =l +lo + --- +[;, and [; is the number of the columns in the j-th
block (AT)I=1Q; after the deleting of linear dependence columns. In the case
of I = 1 we have the usual n-th KRyLOV subspace induced by A and a single
starting vector |q)

K(A" |q),n) = span{lq), A"lq), (A")%q), ..., (AT)"g)}. (413)

As we can see, each application of the general TLM operator , I" ;.S as matrix
A for the construction of KRYLOV subspaces in (4.1) and (4.9) is equivalent to
one time step in TLM time evolution scheme (2.123). This property makes the
use of the TLM time evolution scheme (the TLM kernel) for MOR-techniques
based on KRYLOV subspace methods attractive (see Chapter 5).

4.2 Basis Vectors

The columns of block KRYLOV sequences (4.9) and (4.12) and columns of KRYLOV
sequences (4.1) and (4.13) induced by the single starting vectors |p) in (4.1) and

|g) in (4.13) are linear-independent, and therefore, theoretically can be used in

numerical computations as a basis. However, these columns tend to be almost

linearly dependent even for moderate values of n. Therefore, their use is not

recommended for numerical computational. Instead of that, we generate other

basis vectors.

The following,

v1), [v2), [vs), -, [vn) € HY (4.14)
denotes a set of basis vectors for (A, P, n), i.e.
span{ |v1), |va), [vs), -, |vn) } = K(A, P,n). (4.15)
The N x n matrix
Vo= [[o1), va), [s), -+ Jvg) | € HYX® (4.16)

is called a basis matriz for (A, P,n).
Similarly,
w1), [wa), [ws), -, [w,) € HY (4.17)

denotes a set of basis vectors for (AT, |q),n), i.e.
span{|w), |wa), [ws), -, [w,)} = K(AT,|q),n). (4.18)
And the N x n matrix
W, = [fwr), [wa), [ws), -+, Jw,) ] € K" (4.19)

is called a basis matriz for (AT, |q),n).
The matrices V,, and W,, can be also written in the DIRAC notation as
following

V= li)v (jl = Z lv;) Gl (4.20)
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m

N,m
Wo= > liyw (Gl = lw) (il (4.21)

i,7=1 j=1

with (i, |jk,) = Oks &, and (iy, i1,) = 81, 1, The definitions of the vectors |v;)
and |w;) follow from (4.20) and (4.21). Further we use the notation given
through eq. (4.16) and (4.19).

4.3 Arnoldi Basis

The classical ARNOLDI process generates orthonormal basis vectors for the se-
quence of KRYLOV subspaces K(A, |p),n) induced by A and a single starting
vector |p) as in eq. (4.1), and belongs to generalized HESSENBERG methods
(GHM), which reduce a general matrix to HESSENBERG form. The basis of all
such methods is following.

We denote a set of n independent vectors |x;) as

X :=span{|x1), @), -, &), -, @)} € HVXT. (4.22)
Starting on the arbitrary vector |v;) = |p) we form a set of modified KrRyLOV
vectors |va), |vs), -+ ,|v;), -, |vnt1) Obtained by the next sequence
J
Bisilvjrr) = Alv) =Y hajlvi) | (4.23)
i=1

where (311 are suitable normalizing coefficients, and h;; are determined so that
|vjt+1) is orthogonal to |x1),|®2), -+, |z;).
The sequence (4.23) may be assembled into a single operator equation as

AN><N VN><n = VNXn ann + 5n+1‘vn+l><en| =
= VN><(7L+1) H(7L+1)><n ) (424)

where the matrix H is of the upper HESSENBERG form, i.e.

hii hi2 hiz -+ hin
B2 haa hos -+ ho,
H=| 0 B hg - han | . (4.25)

The matrix H represents a orthogonal projection of the original matrix A
onto the KRYLOV subspace K(A,|p),n). The matrix H,x, represents a so-
called reduced form of the original matrix Ay« y, because n << N.

The dyadic product |v,+1){e,| presents a rank-one matrix, where |e,) =
0,0,...,1]7.

A sketch of the matrix transformation (4.24) by GHM is presented in Fig. 4.1.

The orthogonality condition can be written in the form

Xz:xN VN><n = Ln><n7 (426)

where L is a lower triangular matrix.
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Figure 4.1: Matrix transformation by GHM.

If V is a basis matrix and, eq. (4.23) may be written in the form
VIAV = H, (4.27)

which represents a conformal mapping called similarity transformation, and
matrices A and H are called similar [48]. The determinant of the similarity
transformation of the matrix V' A V is equal to the determinant of the original
matrix A. It is evident that the calculation of eigenvalues of H is significantly
simpler than of A if n << N.

The GHM may break down for two different reasons [124]:

e A vector |vj4+1), (j < n) may be null (i.e. a vector with N components,
each of them is 0). In this case we can replace the null |v;4q) by any
vector |0;41) which is orthogonal to vectors |x1), [2), - ,|z;).

e The elements of the matrix H are obtained by

(i Alv;)

hoi —
v (milvs)

(4.28)
Therefore, if (x;|v;) = 0 then h;; cannot be determined. It is evident
that the vanishing of (x;|v;) is more serious (and occurs more often) than
the vanishing of |v;) If the vector |x;) are not given in advance, we may
be able to choose the |x;) that (x;|v;) # 0. When the |z;) are given in
advance we have to restart the generation of modified KRYLOV vectors by
(4.24) with a different start vector |v;) = |p). If no (x;|v;) is zero, then
L and V are non-singular.

The choice for X gives reasons for various modifications of GHM. So, one
choice for X is the identity matrix. When X = I the result is the method of
HESSENBERG. Thus, the orthogonality property can be written in the form

Ln><n - XZ:XN VN><n - anna (429)

where V,,«,, is a lower triangular matrix as well.

Another natural choice for the set of vectors |x;) in GHM is the set of the
KRYLOV vectors |v;) themselves, that leads to the method of ARNOLDI. The
basis generated by (4.23) satisfies

vV =D, (4.30)

where D,, ., has diagonal form. We may choose the normalizing factors 3; so
that

viv =1, (4.31)
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and the GHM yields an orthonormal basis V. The advantage of orthonormal-
ization is that the maximum of each ||v;|2 = 1.

However, it is essential that the vectors |v;) remain strictly orthogonal with
respect to the to working accuracy. We consider the vectors

Bi+1|vjt1) = Alvj) — hjjlv;) — ... — hajlva) — hyjlvr), (4.32)

where the h;; are chosen so that 8;41|v;41) is orthogonal to |v;). It may be that
the components of ||3j41v;j41]|2 are very small compared with ||A|v;)||2, and so
extensive cancellation occurs. In this case 3;41|v;41) will not even be approxi-
mately orthogonal to |v;), or in other words, the orthogonality is lost. In order
to obtain the vector §;11|vj4+1) which is truly orthogonal to the |v;) we have to
perform re-orthogonalization for 3;41|v;+1). This re-orthogonalization may be
based on the GRAM-SCHMIDT orthogonalization process (see APPENDIX B).

The ARNOLDI method can be essentially viewed as a modified GRAM-SCHMIDT
process for building an orthogonal basis for the KRYLOV subspace K(A, |p),n).
Other orthogonalization algorithms can be used in addition to the ones already
mentioned. One of the most reliable orthogonalization techniques is the HOUSE-
HOLDER algorithm [48, 124], which has been implemented for the ARNOLDI pro-
cedure by WALKER in [121]. Even though the HOUSEHOLDER algorithm is as-
sumed to be numerically more reliable than GRAM-SCHMIDT process, it is more
expensive, having the some storage requirements as modified GRAM-SCHMIDT
but about twice as many operations.

Now, let us consider the pseudocode of the basic ARNOLDI procedure.

Algorithm 4.3.1. The ARNOLDI algorithm.

(1) choose |v1) = |||§>|2
(2) for j=1,2,...,ndo
(3) 0) = Alv;)
4) for:=1,2,...,5 do
(5) hij = (0]vi)
(6) 0) = |9) — hijlvi)
(7 end for
(8) Bi+1 = ||ol2
9) if 5,41 =0 then stop
1) o=

j+1
(11)  end for

As it noted earlier, the algorithm breaks down when the norm of ||9]|2 on
line (8) vanishes at the step j. It happens if, and only if, the starting vector |p)
is a linear combination of j basis vectors |v;).

The eigenvalue spectrum of the matrix A is approximated by eigenvalues of
the HESSENBERG matrix H, which are known as RI1TZ values. The eigenvector

associated with a RITZ value ™ is called the RITZ vector and defined by

Juf™) = A" ful) (4.33)
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where |'ujl(»")> is an eigenvector associated with the i-th R1TZ value )\Z(."), obtained
at the n-th step. The quality of the approximation will usually improve as n
increases.

We have the residual vector as

Pres) = (A = AV (™) = Bt (enlul™) [v,11) (4.34)
and, therefore,

I reslls = (A = X7 D™l = Bas [(enluf™)] (4.35)

Thus, the norm of the residual vector is equal to the absolute value of the
last component of the eigenvector |u§n)> multiplied by the coefficient §3,,11. We
note that the residual norms do not always indicate the actual errors, but can be
used as stopping criteria if the convergence for needed eigenvalues is achieved.

One improvement would be to perform re-orthogonalization if necessary.
Whenever the final vector |0) obtained at the end of the second loop is computed,
its norm is compared with the norm of initial A|v;). If the vector reduction is
below a certain threshold, the second orthogonalization is made. This change
of the vector norm indicates that cancellation has occurred.

In order to reliably determine multiple and/or clustered eigenvalues, the
block methods are used. In many cases the cost of computing few matrix-vector
products is commensurate with that of one matrix-vector product; therefore,
the computational overhead is neglectful. Although unblocked methods coupled
with deflation strategy [7] may be used to compute multiple and/or clustered
eigenvalues, they may prove inefficient for some eigenvalue problems because of
computational costs. In this case (without deflation) the block ARNOLDI process
forms the orthogonal basis Viy xnm for KRYLOV subspace K(A, P,n), where

VNXﬁm,:[‘/ia‘/éa‘/év"';W,]- (436)

For simplification we suppose all columns of Viy x4, to be linearly independent.
In this case the similarity transformation is given by the next relation

AN<N Vsam = Vsam Hamxam + Famxam Eamxam (4.37)

where m is the number of the vectors in the block V}; 71 denotes the total number
of blocks; n = fum is the order of KRYLOV subspace (i.e. total number of basis
vectors); Hpmxam 1S a band upper HESSENBERG matrix of order m# (an upper
tridiagonal matrix with m subdiagonals).

The block ARNOLDI algorithm with the deflation can be found in [43]. For
more details of ARNOLDI block algorithms the reader is referred to [103].

4.4 Lanczos Basis

The basic idea of the LANCZOS procedure is to replace the eigenvalue problem
for a given general operator A by eigenvalue computations on one or more of the
simpler tridiagonal LANCZOS matrices, which are assumed to be computation-
ally optimal matrices. The classical LANCZ0OS method generates two sequences
of vectors, which form a biorthogonal basis. The approximating tridiagonal
LANCZOS matrix is the matrix representation of the biorthogonal projection of
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the original matrix A onto KRYLOV subspaces induced by A and AT and start
vectors |p) and |q) respectively, i.e. onto the K(A,|p),n) and K(AT,|q),n)
subspaces respectively.

Let us point out that there are two equivalent formulations of the LANCZOS
process for complex matrices - using either A7 or A. In this doctoral thesis
the formulation with AT is chosen for two reasons. First, it allows to avoid
complex conjugated scalars in some of the recurrence relations; and second, the
general TLM operator is presented by a real nonsymmetric matrix.

In order to derive the LANCZOS recurrences we return to GHM. There is one
other possibility to choose the |x;) in GHM. We can derive the basis W using
the transpose AT in the same way as |v;) are obtained by A. The relevant
sequences are

J
pi+1lvj+1) = Alvy) — Z hijlvi) (4.38)
i=1
j ~
nilwi) = ATw;) — Z hijlwi) (4.39)
i=1

where h;; and h;; are chosen so that |vj 1) is orthogonal to |w;) and |wj ;) is
orthogonal to |v;) respectively.

We may write these generation sequences in corresponding matrix forms as
following

AV = VH, (4.40)
ATW = WH, (4.41)

where H and H are of upper HESSENBERG form.
The sets V and W are connected with each other through

wlv = L, (4.42)

viw = L, (4.43)

where L and L are lower triangular.
Following eq. (4.42) and eq. (4.43) is

L=1L", (4.44)

and hence both have to be diagonal. We denote them as a diagonal matrix D.
From eq. (4.41) we have

A=W HTHEWT, (4.45)
and from eq. (4.40) and eq. (4.45) we obtain
H=V'AV=D'H"D. (4.46)

The matrix H is upper HESSENBERG and the matrix D! H” D is upper
HESSENBERG matrix. Therefore, both are tridiagonal, and in eq. (4.25) and
eq. (4.38) we have

hij=hi;j=0, fori=1,2,....n—2,j=i+2,...,n. (4.47)
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As, as follows, equations in (4.38) are reduced to three-term sequences:
pi+1lvjr1) = Alvj) — ojlv;) — Blvj-1), (4.48)
nirilwi) = AT w;) — ajlws) —vjlw; 1), (4.49)
where the coeflicients «;, §; and ~; are given by

 (wylAlyy) (v AT |wy)
T ) T (wglwy) (4.50)

B = (w;_1|Alvy) _ (v;| AT |w; 1) _
T (wialvi)  (wiava)
_ (vj] (njlw;) + oj_1|wj—1) + vj—1]w;—2)) B

(wj—1|vj-1)

 (v]wy)
J7<’wj—1|’vj—1> . (4.51)

Similarly we obtain

(w;[vy)

j7<vj71|wj71> . (4.52)

V=P
Thus, if A|v;) is orthogonalized with respect to |w;) and |w;_1) it is au-
tomatically orthogonal with respect to all earlier |w;), and similarly, if Ajw;)
is orthogonalized with respect to |v;) and |v;_) it is automatically orthogonal
with respect to all earlier |v;).
The LANCZOS algorithm may break down for two different reasons [124]:

e One or both of the vectors |v;;1) and |wj;1) may be null. In this
case we take new vectors |0;41) and |w;41) so that |9;41) is orthogo-
nal to all |wi),|ws),...,|w;) and |w;41) is orthogonal to all previous
|v1),|v2),. .., |v;), after that we can proceed the algorithm.

e On the other hand, if (v;|w;) = 0 at one step the process breaks down
completely, and we have to start the algorithm again with a new start
vector (eventually with new both vectors), i.e. |v1) = |p) and/or |w;) =
q)-

Algorithm 4.4.1. The nonsymmetric LANCZOS algorithm.

|p) )

1 choose |vy) = and |w) =
() o0 = Jp [ 24 = oy
(2) set |vg) =0, |wg) =0and py =y = =1
(3) for j =1,2,...,ndo
(4) 6; = (w;|v;)
(5) if §; = 0 then stop
() o = (w;|Alvj)

d;
(7) Bj =mn;d;/dj-1
(8) v = Pidi/0i-1
(9) [0j41) = Alvj) — ajlv;) — Bjlvj-1)
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(10) [w;11) ZNAT lwj) — ajlw;) — vjlw;—1)
(11) Pi+1 = (041l
(12) Nj+1 = W11l
(13) if pj41 =0 or n;41 = 0 then stop
(14) [vj1) = Pi1)

Pj+1
15) ) = 120

Mj+1

(16)  end for

The matrix A is represented by a n X n non-HERMITIAN tridiagonal matrix

T
WTAV =DT, (4.53)
where
ay B
p2 s [3
T= pP3 Q3 . s (454)
Bn
Pn Qp
and the matrix
D:diag(él,ég,...,5]-,...6,1) (455)

is determined by biorthogonality property
wWiv =D. (4.56)

In other words, the constructed LANCZOS vectors are biorthogonal. That is

wio ={ 3 157 (457

Strictly speaking, the governing relations of the LANCZOS factorization are
given in a matrix form by

AN><N VNXn = VN><n Tnxn + ﬁn+1|vn+l><en| ) (458)
A%xN Wrsxn = Whixn TYTX?L + V1| Wni)(en]. (4.59)

Using eq. (4.46) we can write eq. (4.58), (4.59) in a slightly different form

ANxN VNxn = Vuxm+1) Tint1)xn s (4.60)
AJI\}XJV Winxn = WN><(n+1) D(;Ll_,_l)x(n+1) T(n+1)><n Dy (4-61)

A sketch of the similarity transformation by the LANCZOS algorithm is pre-
sented in Fig. 4.2. The action of A on V gives VT plus a rank-one matrix
Bni1|Vni1){en|, and the action of AT on W gives WT7 plus a rank-one ma-
trix Yoq1|wnr1)(€nl-

We note, that the strict bi-orthogonality of the two sequences |v;) and |w;)
is usually soon lost. In order to avoid this effect the rebiorthogonalization can
be performed at each stage. However, it cannot be too strongly emphasized
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T
A 14 v | [(TT) H
(A7) (W)| = |(W) *

Figure 4.2: Similarity transformation by the LANCZOS algorithm.

that rebiorthogonalization does not produce the vectors which would have been
obtained by more accurate computation and that this is no deleterious effect
[124]. For this purpose the two-sided modified GRAM-SCHMIDT process may be
utilized (see APPENDIX B).

The eigenvalues of A are approximated by the RITZ values )\En), which are
eigensolutions of T' at the step n, i.e.
Tlu™) = A" "), (4.62)
(M = (™A (4.63)
The right and left RITZ vectors, corresponding to the RITZ values )\E") are
given by
™) =V [u{), (4.64)
™y = W sy (4.65)
The convergence of the RITz values and RITZ vectors to eigenvalues and
eigenvectors of A can be evaluated by comparing the norms of the residuals
Pres) = (A= A" ™y = poii{(en | ul™)} [vns),  (4.66)
(Presl = (W[ (A=N"D) = nopr(won] (s [en)},  (467)

and, therefore,

[7resllz = Pt [(€n |wi™)], (4.68)
[Presllz = M1 1(s4™) [ en)] - (4.69)

In order to determine multiple and/or clustered eigenvalues the LANCZOS
block and band methods can be introduced as well. The use of blocks of starting
vectors is also beneficial whenever computing matrix-matrix products AV and
ATW and is cheaper than sequentially computing matrix-vector products A|v)
and A7 |w) for all the columns of V and W. In the band variant in contrast to
the block methods, the sizes of the left and the right blocks of LANCZOS vectors
need not necessarily be the same. In particular, these band methods can be
applied to MOR of linear dynamical systems, where the right and left starting
blocks have different sizes.

With respect to TLM the utilization of block and/or band methods is very
expensive in comparison to the use of single starting vectors (see Chapter 5).
Therefore, the block and band algorithms are not described in detail here. The
reader is referred to the works of FREUND [43]-[46].
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Investigations and suggestions for efficient implementations of the nonsym-
metric LANCZOS algorithm are presented in [33]. It has been shown that it is not
necessary to rebiorthogonalize the LANCZOS vectors at each step to approximate
the behavior of the algorithm in exact arithmetic.

4.4.1 The Hermitian (Symmetric) Lanczos Process

If A is HERMITIAN, or in the real symmetric case , and we take |v1) = |wy),
then the two sequences of vectors in eq. (4.48) and eq. (4.49) are identical.
Because the second sequence in eq. (4.49) has not be generated, the HERMITIAN
LANCZOS version is twice as cheap than its nonsymmetric variant. Finally, the
symmetric algorithm is very attractive for dealing with implicit matrices, when
the transpose matrix is not known and/or difficult to obtain.

Using the orthogonal basis V' the operator A is presented by a real tridiag-
onal matrix

ay o
B az B3
T = ﬂg a3 . . (470)
oo B
Bn o

The pseudocode of the symmetric version is presented below. The algorithm
carries out the orthogonal projection of the vector A|v;) onto the two most
recently generated LANCZOS vectors |v;) and |vj_q).

Algorithm 4.4.2. The symmetric LANCZOS algorithm.

(1) choose |v1) = ”|pp>|
2
2 set [vg) =0and B, =1
(2) |vo)
(3) for j=1,2,...,ndo
(4) a;j = (vj|Alv))
E5g g’j+1>:”A"U|j|> — a;lv;) = Bjlvj-1)
6 i1 = [|vj41ll2
(7 if 3,41 = 0 then stop
D
®  lo) = 2
J
9) end for

For each j the next LANCZOS vector |v;41) is determined by orthogonalizing
the vector A |v;) with respect to |v;) and |v;_1). The scalar coefficients «; and
Bj+1 obtained in these orthogonalizations define the corresponding LANCZOS
matrix T

Writing the similarity transformation in matrix form we obtain

AN><N VN><n = VNXnTan +ﬂn+l|vn+1><en| . (471)

The symmetric LANCZOS procedure transforms a general real HERMITIAN
(and/or symmetric) matrix eigenvalues problem into a simple tridiagonal real
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HERMITIAN (and/or symmetric) problem. Real symmetric tridiagonal matrices
can be viewed as computationally optimal matrices. They have minimal storage
requirements, as do the associated algorithms for eigenvalue computations and
for solving trigiagonal systems of equations.

The use of the symmetric single-vector LANCZOS procedure for large matrix
eigenvalue computations is thoroughly discussed in the book of CULLUM [32].

4.4.2 The Two-Term Lanczos Process

The above described LANCZOS algorithms utilize so-called three-term LANCZOS
recursions. In this subsection we consider an alternative approach for construct-
ing LANCZOS vectors. The basic idea is to exchange these three-term recurrences
for coupled two-term recurrences by means of an additional suitable set of basis
vectors for the underlying KRYLOV subspaces. In some cases the two-term pro-
cedure has better numerical properties than the original implementation based
on three-term recurrences, e.g. for the quasi-minimal residual (QMR) algo-
rithm. In addition, the two-term LANCZOS recurrences are effectively used with
the classical biconjugate gradient (BCG) for solving systems of linear equations
[46].

In order to obtain the coupled two-term version, we define a second set of
basis vectors by P-Q sequence

pP,: = [ ‘p1>7|p2>7|p3>7"' 7|pn> } 6HNX”> (4-72)

Qn : = [|q1>a|q2>7|q3>7"' 7|q”>] EHana (473)

and we refer to the LANCZOS vectors |v;) and |w;) as the V-W sequence.
We compute the second basis vectors by following recurrences

j—1

lpj) = |vj)— Zuij |pi) , (4.74)
i=1
j—1 Xi

lg;) = |w;)— Z%g;”%) ) (4.75)
i=1 ¢

with suitable coefficients u;; € C. Similarly we can write that

J
pi+1|vit1) = A|pj>_zlij"vi>a (4.76)
i=1
J X
Nj+tlwjr) = AT|Qj>—le‘jXJ_|wi>7 (4.77)
i=1 v

with suitable coefficients /;; € C. Thus, the recurrences (4.74)—(4.77) are coupled
for generating the P-Q and V-W sequences.

The recurrences (4.74)-(4.75) and (4.76)-(4.77) can be written compactly in
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matrix form

VN xn = PnxnUnxn , (4.78)
AN NPNxn = Vs n+1) Lnt1)xn » (4.79)
Wisn = QNxnXoxnUnxnXnxn » (4.80)
AL NQNxn = WNX(n-i—l)X(_n1+1)X(n+1)L(n+1)><an><na (4.81)
where x = diag (x1,X2,--+,Xj»-- -, Xn) is a scaling diagonal matrix.

Here U, is an upper triangular matrix and L, is an upper HESSENBERG
matrix, which are given by

1wz wg - Uin
0 1 uog Uon

U= 0 0 1 - um |, (4.82)
Un—1m
0 0 0 1

and

lin liz hig -
p2 loo oz oo oy

e I (4.8
0 o .- 0 pnt1

Further we denote the matrices by their smaller size, e.g V,, := Vyx, and
L, := L(,11)xy,- (For convenience the large index N is skipped.)
From eq. (4.78)-(4.79) we obtain following relation by eliminating P,

AV, =V, 1L, U, (4.84)
and by comparison of eq. (4.40) and eq. (4.84) it follows that
H, =L,U,, (485)

where H,, is a matrix having the upper HESSENBERG form.
The coeflicients u;; and l;; are determined using the biorthogonality property
in eq. (4.56). Then, in view of eq. (4.57) we have that

W |vni1) =0, (4.86)
that is equivalent to
Wl Alp,) = W, |v,) =0. (4.87)
i=1

Now, we require that the vectors in the P-Q sequence be A-biorthogonal, or
more precisely
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QTAP=D, (4.88)
where R o R R
D:diag (61,(52,...,6j,...7(5n). (489)
The A-biorthogonality for two P-Q vectors can be expressed through
(ai|Alp;) = 4. =1, (4.90)
‘ J 0, i#j.

Using the biorthogonality of the P-Q vectors (4.90) and taking the eq. (4.79),
(4.83), (4.57) and finally the eq. (4.87) into account we obtain

l;=0,i=12..n-1 j=i+1,....n, (4.91)
lii = B; = 6, /. (4.92)

Furthermore, by multiplying the eq. (4.74) by (g;|A and using the eq. (4.90)
and (4.77) we obtain

(@il Alp;) = (@il Alv;) — diuij =
= (A" |@)" |v;) — dsuiy = (4.93)
= Nip1{w;|vj) — 5iuij =0.
With the eq. (4.57), (4.82) and (4.93) it follows that
u; =0,1=1,2,....,n-2, j=¢+1,...,n, (4.94)
Uim1,i = 1i0i/0i—1. (4.95)

In view of (4.91) and (4.94) the last terms in eq. (4.74)-(4.77) vanish and
hence the eq. (4.74)-(4.77) reduces to a coupled two-term procedure generating
the P-Q and V-W sequences.

Then, the LANCZOS triagonal matrix is given by

Tn><n - LanUnX'ru (496)
with
1 B2
0 1 B3
Unsn = 0o 1 - : (4.97)
0 1
and
a1 0
p2 az 0
Lnxn = pP3 Q3 ; (498)
0
Pn  Qn
where

aj =1;0;/8j-1. (4.99)
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The pseudocode of the coupled two-term LANCZOS process is presented be-
low. The two-term algorithm requires one additional pair of vectors to be stored
in comparison to the three-term nonsymmetric version.

Algorithm 4.4.3. The coupled two-term LANCZOS algorithm

p) l7)
(1) choose |v1) = TR and |w) = 2l
(2)  set [po) =0 and |go) =0
(3) set p1 =m =dp =1
(4) for j=1,2,...,ndo
(5) 8 = (w|v))
(6) if §; = 0 then stop
(7) pj) = [v5) = (1;0;/9;-1)Pj—1)
(8) 19;) = w;) — (p;8;/9-1)1g5-1)
9) i = (g1 Alp;)
(10) if §; = 0 then stop
(11) B =0;/0;
(12) 0j+1) = A|pj) — Bjlvy)
(13) [wj1) = AT |q;) — Bj|w;)
(14) Pi+1 = [|Dj41|2
(15) Nj+1 = [l Wit
(16) if pj41 =0 or 41 =0 then stop
a7 oy = 20

Pi+1
(18) ) = 2

Mj+1

(19)  end for

The coupled two-term version exhibits breakdowns like ones in the three-
term recurrences. We note, if J; or §;_; are nonzero, but small in some sense,
the near-breakdowns provoking numerical instabilities may appear.

4.4.3 The Look-Ahead Lanczos Algorithm

Unfortunately in the classical LANCZOS algorithm, breakdowns cannot be com-
pletely excluded. Indeed, during the construction of the next vectors |v;41) and
|lw;y1) an exact breakdown (if (w;|lv;) = 0) or a near-breakdown (if (w;|v;)
is nonzero, but small) can occur. In order to avoid these breakdowns the first
practical modification of the LANCZzOS algorithm using look-ahead technique
has been proposed in [89]. A different implementation of the look-ahead LANC-
z0s method is given in [44]. In this section a brief description of the look-ahead
LANCZOSs procedure is given.

As in the classical LANCZOS algorithm two sequences of LANCZOS vectors
|vj) and |w;) are generated and collected in matrices V and W. The matrix
(4.56) can be presented as a block diagonal with [ square blocks on the diagonal,
or to be precise

D = diag (D1, D,,...,D;,..., D)), (4.100)
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where

D; =wW]'v;. (4.101)
The matrices W; and V; are defined by their partitioning into [ blocks according
to the look-ahead steps

V=WV, V... V], (4.102)

and
W =W, W,,..., W,,... W]. (4.103)
The matrices W) and V are of size NV x b;. Their columns are the LANCZOS
vectors constructed in the j-th look-ahead step. The integer b; is the length of
the j-th look-ahead step and [ is the number of look-ahead steps that have been
performed during the first n steps of the LANCZOS process. For j = 1,2,...,1
we denote by n; the index of the first vectors of the blocks W; and Vj, and as

following we have

Vi =1[lvn;), [0n;41), - [Vns40,)] (4.104)

and
Wj = [|w7lj>’ |wnj+1>’ T |wnj+bj>} . (4105)

The indices n; satisfy the following relations
ng<ng < - <my<n<ngq- (4.106)

The vectors |v,,;) and |w,,,) are called regular and the vectors in the blocks W
and Vj are called inner. In view of (4.56) and (4.100) the regular vectors are
biorthogonal to all previous LANCZOS vectors. That is

(wi|vn,) = (Vn,|w;) =0, fori=1,2,...,n; — 1, (4.107)

while the inner vectors in the j-th blocks W) and V; are biorthogonal to all
vectors from the previous blocks, but necessarily to the LANCZOS vectors in the
j-th blocks.

In the look-ahead algorithm the LANCZOS vectors are again generated using
only short vector recurrences, which involve vectors from the last two blocks
V;, V,_1 and W,, W;_; instead of just |v;), |v;_1) and |w;), |w;_1) as in the
classical version, e.g. the next vector |v;41) is computed by the next relation

pit1lvir1) = Alvy) — Vilg;) — Vio1|;), (4.108)
where |¢;) € C% and |1p;) € C%-! are suitable coefficient vectors. The second
LANCZO0S vector is obtained in an analogous manner. As before, the look-ahead
recurrences for the LANCZOS vectors can be summarized in a matrix form. Thus,
the LANCZOS matrix T has a block diagonal form with [ square blocks on the
diagonal, where j-th block has dimension b; x b;, : =1,2,...,L.

We note that if look-ahead steps have a length of 1, i.e. b; = 1, then blocks
V; and W; consists of only single LANCZOS vectors (the look-ahead process is
reduced to the classical algorithm); and true look-ahead steps, i.e. steps of size
b; > 1, are only used to avoid exact and near-breakdowns. Typically only a few
true look-ahead steps are needed, and their size is mostly b; = 2.

Although the look-ahead technique enhances the stability of LANCZOS meth-
ods, the computational costs increases, especially for cases with imlicit matri-
ces. This doctoral thesis does not consider implementations with the look-ahead
feature. For further details, properties and implementations of the look-ahead
LANCZOs algorithm the reader is referred to [44].
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4.5 Spectral Transformations

It is well known that the KRYLOV subspace methods provide approximations to
well-separated extremal eigenvalues. The RITZ values tend to converge first to
eigenvalues at the boundary of the convex hull of the eigenvalue spectrum. We
note that if an original matrix A is HERMITIAN, the largest eigenvalues will be
extracted first. If A has complex eigenvalues, the largest ones in magnitude ones
will be computed at the beginning. However, in many cases the wanted eigen-
values cannot be well separated or located in the interior of the convex hull of
eigenvalues. In these situations KRYLOV subspace methods require many steps
to generate acceptable approximations if they converge at all. An alternative
approach to expedite the convergence is to employ a spectral transformation
of A so that needed (and eventually poorly separated) eigenvalues are trans-
formed to extremal (and well-separated) eigenvalues. As a matter of course, the
eigenvalues of the initial matrix can be easily recovered from the transformed
eigenvalue spectrum.

For this purpose the shift-inverse spectral transformation (SI) is typically
used. The basic idea is to replace an eigenvalue problem

Alu) = \;|u) (4.109)
with a shift-inverse eigenvalue problem
(A —ol) Hu) = y|u), (4.110)

where

(4.111)

and o is called a shift.

This SI-approach is very effective for finding of eigenvalues closed to o, be-
cause the closest eigenvalue \; to o corresponds to the eigenvalue, that is largest
in magnitude for the (A — oI)~! matrix. Or in other words, |\; — 0| ! is the
largest eigenvalue of (A — oI)~! in magnitude, and, therefore, the located \; is
closest to the o value. These transformed eigenvalues v; of the largest magnitude
are precisely the eigenvalues that can be easily computed. If they are found,
we can transform them back to eigenvalues of the initial eigenvalue problem by
relation 1

Ni=o0+—. (4.112)
Z
The eigenvector |u) associated with v; in the transformed problem is the eigen-
vector corresponding to \; in the initial eigenvalue problem, i.e. no transforma-
tions of eigenvectors are needed.

The SI-approach is extremely effective in terms of iteration step if a few
eigenvalues closest to ¢ have to be extracted. This is the case when interior
eigenvalues are in demand, or when desired eigenvalues are significantly smaller
in magnitude that the eigenvalues largest in magnitude, or when they are clus-
tered. By choosing o very close to a desired eigenvalue the inverse iteration can
converge very quickly.

The drawback of the SI-transformation is that linear systems involving the
inverse of (A — oI) must be solved. This can be carried out via a matrix
factorization (e.g. via LU-factorization) or by an iterative method, making



4.6. NUMERICAL EXAMPLES 81

the SI-technique less attractive. Evidently, if we deal with implicit matrices
(or implicit eigenvalue problems), only one second possibility may be taken
into consideration. In this case the accuracy of the iterative solutions must be
commensurate to the convergence tolerance used in the eigenvalue solver.

The next problem is specified for non-symmetric LANCZOS algorithms. We
have to operate with ((A — oI)~")7 in order to generate the second LANCZOS
sequence in eq. (4.49), and linear systems involving the inverse of (A — oI)T
must be solved as well. Thus, computational costs are radically increased by
using implicit matrices.

The eigenvalue convergence of the SI-approach can be controlled by obser-
vation of the right and left residual vectors, e.g. for the right residual we have

rea) = (A— o)™ ™) = AT ™) =
= pnsr{(en |V} Jvng) . (4.113)

The norms of the residual vectors are given by eq. (4.68)-(4.69). If ||7||2 and ||p||2

are less than a user-specified tolerance, then l/i(n) and |u£")> is an approximating

eigenpair, corresponding to AZ(.") near o.

When a spectral transformation is used, additional considerations can be
made with respect to stopping criteria to take special advantage of the special
nature of the transformed operator (A — oI)~!. Moreover, the quality of the
approximating eigenvectors can be improved with an additional post-processing.

For more details see [39].

4.6 Numerical Examples

Let us consider an example. Eigenvalues of a randomly generated matrix
A/||Al|2 are extracted using an implementation of the non-symmetric LANC-
z0s algorithm in MATLAB (The original code of the Algorithm 4.4.1 has been
realized). The size of A is 50 x 50. The right and left vectors are generated
randomly as well. In order to extract desired complex eigenvalues, 20 LANCZOS
algorithm steps are performed for three cases:

e the operating matrix A s equal to the original matrix A;
e the operating matrix is inverse of the original matrix, i.e. A = (A)~L;

e the operating matrix is shift-inverse of the original matrix with ¢ =
—0.385, i.e.
A=(A+0381)"".

The original and approximated eigenvalue spectra in the complex z-plane
are shown in Fig. 4.6. The original eigenvalues are obtained by the eigenvalue
decomposition (EVD). As we can see in Fig. 4.6(a), the complex eigenvalues
with the largest magnitude are extracted first, if we operate with the original
matrix. Involving the inverse matrix we obtain the eigenvalues with the smallest
magnitudes at the beginning as shown in Fig. 4.6(b). Introducing a shift ¢ =
—0.385 we get the shifted spectrum with eigenvalues closed to o at first (see
Fig. 4.6(c)).
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We note, that the choice of right and left start vectors has a slight influence
on the convergence of eigenvalues.

In conclusion, we note that needed eigenvalues may be extracted using
KRYLOV subspace methods by spectral transformation with a small number
of iterations.

4.7 Remarks

The application of the LANCZOS algorithm to practical electromagnetic prob-
lems appears to be computationally more efficient in contrast to the ARNOLDI
procedure, because at each step in nonsymmetric LANCZOS recursions only few
of the most recently-generated LANCZOS vectors must be kept in storage. In
addition, when A is real and symmetric, then both the ARNOLDI and the non-
symmetric recursions reduce to the spare real symmetric recursion. However,
there are many open questions regarding the behavior of KRYLOV subspace
methods, e.g. what spectral properties of A control the convergence of these
methods, or which of both procedures - LANCZOS or ARNOLDI - exhibits bet-
ter convergence, or does the re(bi)orthogonalization improve the approximation
accuracy. These questions should be answered for one particular problem. A
comparison and a relationship between the ARNOLDI and the nonsymmetric
LaANczos algorithms as well as studies of their behaviors for several cases are
given in [31].

The present doctoral work is focused, first of all, on the classical LANCZOS
algorithms and their modifications due to their relatively small computational
effort. Despite the economy in memory and small computational overhead,
the Lanczos algorithms take a risk of (near)breakdowns and instability. We
note, that, typically, the LANCZOS vectors do not remain biorthogonal, and
any spurious eigenvalues appearing in the spectrum of any LANCZOS matrix
T, are caused by losses in the biorthogonality of the LANCZOS vectors and
represent duplicates of converged eigenvalue approximations [31]. Despite these
drawbacks, the Lanczos methods have received much attention and have been
proven to be sufficient and useful for relevant problems.

LANCZOS phenomena states that for large enough n all of the desired eigen-
values will appear in the eigenvalue spectrum T, [31]. Using a spectral trans-
formation we can expedite the convergence of desired eigenvalues, or in other
words, we can first extract the desired eigenvalues at a small number of algo-
rithm steps.
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Chapter 5

Model Order Reduction in
TLM

The discrete electromagnetic model resulting from the application of the TLM
method is cast in a state-space matrix form involving wave amplitudes as state
variables. For structures of practical interest the dimension of this matrix can be
very large. Therefore, the use of MOR-techniques in the context of TLM-based
electromagnetic modeling makes sense.

Specific methodologies for MOR suitable for the discretized electromagnetic
TLM system are discussed in this chapter. The implicit TLM time evolution
scheme is utilized in MOR process. The emphasis of the reduced-order modeling
is on the nonsymmetric version of the LANCZOS algorithm and its modifications.
Beneficial properties of the TLM matrix allow to modify the nonsymmetric
LANCzOSs procedure so that in each step the modified algorithm requires one
TLM time evolution update and one additional application of the scattering
matrix, whereas one LANCZOS step is equivalent to two time updates in the
standard TLM scheme due to the imperative to deal with both the TLM oper-
ator and its transpose for the construction of a biorthogonal basis for KRYLOV
subspaces.

Due to the implicit form of TLM operator an application of block and band
KRyYLOV algorithms is disadvantageous, because no matrix-vector multiplica-
tions are available at all and an impact of the TLM operator on the each vector
in a starting block (or/and band) must be performed.

We begin with the general mathematical framework for MOR of discrete elec-
tromagnetic systems. This is followed by the development of TLM-MOR tech-
niques and their associated algorithms. The reduced-order models in LAPLACE
and z-domains are determined and their efficiency is considered. The opportuni-
ties for enhancing the computational efficiency of TLM through the application
of MOR-techniques and possibilities for the generation of a macro-model with
an optimal order are considered in detail. Thereafter, we give a comparison of
the FDTD-, FIT- and TLM-based MOR-techniques.

85
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5.1 State-Space Representation of Discrete EM-
Systems

Let’s assume that the media to be considered are linear, isotropic, passive and
time-independent. We start with MAXWELL’s curl equations

VxE=—ywuH —J,, (5.1)
VxH=jweE+dcE+J,.. (5.2)

Introducing the LAPLACE variable s = jw, we write MAXWELL’s curl equa-
tions in the LAPLACE domain

VXxE=-suH—-J,, (5.3)
Vx H=seE+0cE+J:. (5.4)

The dependance of the electric and magnetic vectors E and H as well as current
densities of imposed magnetic and electric sources J,;, and J on the LAPLACE
variable is suppressed for simplicity.

MAXWELL’s curl equations (5.3)-(5.4) are usually approximated by a finite-
difference scheme or by a finite-volume scheme. A discrete form of the system
(5.3)-(5.4) can be obtained through the discretization of the curl operators using
one of various finite methods as following;:

(2 %)% ) a]=-1%] o

where the sparse matrices D, and D, denote the discrete forms of the curl
operators; the matrices S., P. and P,,, having diagonal form, represent the
discrete form of the electric conductivity, electric permittivity and magnetic
permeability respectively.

The discretization of the curl operators in MAXWELL’s curl equations using
the FDTD HILBERT space representation is presented in [100].

Now we write the system (5.5) in operator form using DIRAC notation. For
this purpose we define the vector of state variables | F'), containing the discrete
unknown electric and magnetic-field components, as

l,m,n
Yy
Too Elz,m,n
Fy= Y | g | ). (56)
lm,n=—o0 Lm,n
l,m,n
z
l,m,n

Next, we introduce the vector |J), which represents the LAPLACE transforms
of the spatial distribution of the electric- and magnetic-current sources

xr
Je l,m,n
Y
Je l,m,n

00 2

|Js> — Z Je l,m,n |l, m’n> . (57)

T
m l,m,n
Y

Jm lm,n

J?

m l,m,mn

l,mn=—o0
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Now, we assume bounded media, and the dimension of |F) is denoted as
N =6 x1xm xn. Thus, |F) € HY, and |J*) € H", and the discrete curl
operators D,, D;, and operators S,, P. and P, are in H/2xN/2,

Since our goal is to develop reduced-order models for multi-port electromag-
netic systems, the grid source distributions must be presented through sources
at ports. The excitation of the discrete system at the p; ports can be presented
as

7% = By [i), (5.8)

where the N x p; selector operator B; translates the port currents |¢) € HP*
into grid current sources, or in other words, the operator B; € H™*P1 imposes
a current pattern on a port plane.

With all these definitions the resulting compact operator form of (5.5) is
given as

(G +5C) |F) = By |i) (5.9)
where
| S Dy NxN
G = { D o } e HY*N and (5.10)
_ Pe 0 NxN
C_[ A Pm} e HNXN (5.11)

We denote that due to the passivity of the media, the matrices P., P,
are positive definite (permittivity and permeability matrices are symmetric and
positive definite) and S, is nonnegative definite. Additionally, each of them is
symmetric. Hence, C is symmetric and positively defined. The spatial differ-
ential operator matrices D, and D,, are symmetric, but G does not preserve
the symmetry property. Moreover, the operator G is skew-symmetric if S, = 0.
That is g

T e _De NXN
G=-G |:De 0 ]GH , (5.12)
due to the property D), = —D, followed from the system (5.3)-(5.4) and defin-
ition (5.5).
Introducing a desired output vector as an output voltage

) = By|F) € HP2 (5.13)

we obtain the linear state-space representation of the discretized electromagnetic
system (5.5) as

(G+sC)|F) = Buli),
lu) = Bs|F), (5.14)

where By € HV*P2 is a selector, extracting the the generalized voltage |u) from
the grid fields at the p; ports. We note that using the orthogonality of waveguide
modes and proper normalizing, we can achieve the symmetry B; = BI. As it
has been mentioned above (see Chapter 2 and 3), the matrices By and By can
be obtained by a 2-D eigenvalue solution at the ports.

From (5.14) we obtain the output voltage vector |u) as

|u) = By (G +sC) "' By |i). (5.15)
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Introducing a system matriz

~1
_ _ -1 _ Pe 0 Se _De
necre [T 2[5 D]
and modifying (or renaming) B; as follows
B, =C'B, e HV*V | (5.17)

we obtain from (5.15) the output voltage vector as
lu) = By (sT — A1)~ By |i), (5.18)
and, hence, the multi-port Generalized Impedance Matriz (GIM) is given by
Z1(s) = By (sI — Ay) "' By € HPv*P2 (5.19)

We emphasize, that the size of Z(s) is p; X pa, while the size of the system
operator Ay is N x N.

If the system (5.5) consists of no losses, and as following the system (5.14)
is loss free as well, the curl-curl formulation allows us to obtain a second degree
system [125] from (5.5) and (5.14), having only half of state variables, as only
the electric field currents and voltages are relevant. In this case the GIM results
in

Zy(s) = sBh (T — Ay) "' B € HPv*P2 (5.20)

The system matrix Ay € HN/2%N/2 is real, semi-definite and symmetric and
can be proven to be stable and passive [3].

It is obvious that the eigenvalues of loss-free skew-symmetric matrix A;
and, as following, the eigenvalues of A5 are imaginary and correspond to the
operating frequencies by

)\i = JW; . (5.21)

5.1.1 Reduced-Order Models of Discrete Electromagnetic
Systems
Now, we introduce the change of variables as
|F) = V|F), (5.22)

where |F') is the reduced state vector of the length n, whereas n << N. The
matrix V of dimension N x n satisfies the relation

(WT)HXNVNXn = Inxn - (523)

In other words, W € HJ' " and V' € HLY *™ present a biorthonormal basis.
Then by substitution of (5.22) into the system (5.14) and by multiplication
on the left by W7 we have

WT(G+sC)VIF) = WTB,|i),
lu) = ByV|F). (5.24)

By matrix manipulations we obtain the GIM from (5.19) and (5.24) as
Zy (s) =BV (sI —WTA V) 'WTB, € HP*P2 (5.25)
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where (WT)A,V is of dimension n x n and called the reduced system matriz
whose eigenvalues approximate the eigenvalue spectrum of N x N-large system
operator Aj.

Inducing an orthonormal basis

(VT)anVan = Inxn, (5.26)

we similarly obtain from (5.20)
Zp,(s) = sByV(s’T — VT A, V)L VT B € 1Py <Pz (5.27)

where (VT)A,V of dimension n x n is much smaller than the initial matrix
A; of dimension N/2 x N/2 and contains eigenfrequencies w; (5.21) of loss-free
system (5.5) and, consequently, (5.14).

The GIMs Z,,, (5.25) and Z,,, (5.27) represent reduced-order models of the
initial system (5.5) and, consequently, (5.14) in that sense they approximate the
original GIMs given by (5.19) and (5.20) respectively.

A multi-port impulse response H(s) of the systems (5.5) and (5.14) can be
defined in a similar way and its reduced-order approximants H.,,, (s) (in general
case) and H.,,(s) (in lossless case) can be derived.

5.2 The TLM State-Space System

In order to obtain a state-space representation of the TLM in the frequency-
domain we start with the TLM time evolution scheme

|k+1a> = kF kS|ka> . (528)

We recall that in the general case of TLM we have that N = 18 x [ x m X n.
We skip the left subscript k for the operators I' and S because of linearity.

We consider the time evolution of the field in an interval from k; to ko. We
introduce the z-transform |a) € H” as

ko 1

@) = > ha). (5.29)
k=k1
Thus, one time-step in the time evolution scheme (5.28) accords to the mul-
tiplication with z-variable in the z-domain.
From (5.28) and (5.29) we obtain

zlay=TIS |a), (5.30)
and, as following, we obtain the state equation of the TLM-system in z-domain
(z—T'S)|a)y=0. (5.31)

Substituting
z=e% (5.32)

into (5.29) we obtain the state vector of wave amplitudes in the frequency-
domain

k2
@ = Y e 7" |pa) e HY (5.33)
k=k1
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with the normalized frequency
Q = wAt =21ALf, (5.34)

where f is an operating frequency.
From (5.31), (5.32) and (5.33) we derive the state equation of the TLM-
system in the frequency-domain

(& —TS)|a)g=0. (5.35)
The eigenvalues \; of I' S extracted by solving
det (e’ —T'S)=0 (5.36)
are related to operating eigenfrequencies via
N = el (5.37)

So, from Ay = —1 follows that ; = =, i.e. to the eigenvalue \; = —1
corresponds an evanescent nonphysical TLM-eigensolution with the frequency
= %At. For Ay = 1 we have a static eigensolution, because of 2 = 0 and,
as following, f» = 0. In [65] it has been shown that the frequency band during
TLM simulation is bound by the lowest cutoff frequency f. = % Therefore,

At:
the frequency band of a TLM-system is given by
(5.38)

Assuming the eqn. (5.5) and (5.35) to be used for modeling a same electro-
magnetic structure we may state, that the operator I' S in the scheme (5.35) is
equivalent to the operator eA14 from the system (5.14), or to be more precisely,
the system (5.35) may be written as

N @) = AL N &) (5.39)
where the operator
M- HI8xIxmxn 4 6xixmxn (5.40)

maps the vector of wave amplitudes |a)q onto the vector of electromagnetic
fields |F') defined by (5.6), i.e.

|F) = Mla)q . (5.41)

5.2.1 Impulse Response of the TLM System

Introducing an excitation vector |a),, € HY} and a vector of port responses

|C~“>out € H%, we obtain the TLM-state-space-system form in the z-domain
from (5.28) and (5.31)

r'Sla)+Rla),,
a),.. = Qla), (5.42)

z|a)
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where R € HY>P1 and Q € HP2*Y are selector operators, associated with the
non-zero wave amplitudes in the state-space vector |a) corresponding to the p;
and p, ports through which the structure is excited and observed.
From (5.42) we formally solve for the output vector as
@) s Q (z2I — I'S) Rla),, - (5.43)
From this result, the p; X po-port matrix impulse response is identified as the
matrix rational function

H(z)=Q(I-TS)'R=)"Q(IS)" ' Ren. (5.44)

n=1

The coefficients (Q (I'S)* ' R) in (5.44) are termed the moments of H [43].

5.2.2 Generalized Impedance Matrix of the TLM System

Now, we write the system (5.42) in another form. That is

zla) = r5|f1>+Rl|i>,
lu) = Qila), (5.45)

where the vector |i) € HP! contains the expansion coefficients for the tangential
magnetic field on a port; the vector |u) € HP? contains the relevant expansion
coefficients, corresponding to the tangential electric fields at ports.

The operators Ry and @ contain the field patterns Hop and Esp of the
port planes and can be obtained by a computationally cheap 2-D external solver.
The matrix R, imposes a current pattern on the port plane which corresponds
to n x Hyp, and @ extracts the generalized voltage |u) from the fields at
the ports, based on the Eop x Hyp orthogonality of waveguide modes. Using
proper normalizing we can achieve the symmetry relation R; = (Q1)?. Or in
other words, the operators R; and Q) translate the port currents |¢) and port
voltages |u) into grid incident and output wave amplitudes.

Therefore, we obtain the GIM for the multi-port TLM system as

Z(2)=Qi(zI -TS) 'Ry =Y 27%Q, (I'S)* ' Ry e H*> P2 | (5.46)
k=1

and the vector of output voltages as

lu) = Z[i) . (5.47)

5.3 Reduced-Order Modeling in TLM

The basic idea of reduced-order modeling is to replace the original systems (5.42)
and (5.45) by a system of the same type but of a much smaller dimension.
Although the order NV of the original system is very high, a large number of
its eigenstates are the result of the spatial oversampling of the fields in space,
resulting from both the desire for accurate modeling of fine geometric features
and the need for containing numerical dispersion, thus ensuring the accuracy of
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the numerical modeling of the waves. Therefore, it is meaningful to generate
a reduced-order model containing predominantly those eigenstates that corre-
spond to the physical eigenfrequencies of the system and, in particular, those
that impact the states involved in the excitation and observation of the system.

Thus, we seek a model of reduced order that approximates the impulse re-
sponse (5.44) and GIM (5.46), in an equivalent sense, the discrete TLM-models
of (5.42) and (5.45). This may be done using moment matching techniques
based on KRYLOV subspace methods. The basic idea is to project the systems
of (5.42) and (5.45) of dimension N onto a space of significantly lower dimen-
sion n such that only the first n moments in the LAURENT series expansions of
the impulse response (5.44) and the GIM (5.46) of the original system, and the
reduced system are matched. Some of the most commonly used approaches for
this purpose are discussed next.

5.3.1 Orthogonal Projection

In order to derive a reduced-order model of the TLM-system (5.42) we induce
an orthonormal basis

(V)FunVasn =1. (5.48)
Using a projection operator
V:H" - HY (5.49)
and its transpose
vl HN — H (5.50)
we obtain the reduced state vector of length n << NN as
lan) =VTa). (5.51)
Consequently we have
la) =V |a,) . (5.52)

Then the system (5.42) can be written with the reduced state vector (5.51)
as following

zVla, = ISVl]a,)+R|a),,
@) = QVlan) . (5.53)

out

By multiplication of the first row in (5.53) by V7 we obtain

zla,) = VvVI'rsvia, +V"'R]la),, ,
|a) = QVla,) , (5.54)

out

and by using matrix manipulations we have

(zI-v'rsvyla, = V'R]a),, ,
la)y,, = QVlan) . (5.55)

From (5.55 ) we obtain the output vector

) QViI-VIrsv)y'vTR |a) (5.56)

out in
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and multi-port impulse response
Hp, (2) = QV (2D — (I'S),) 'V R € HP*P2 (5.57)
where
(rs),=v>rrsv (5.58)

is the reduced TLM-operator of dimension n X n.

In order to obtain the orthogonal basis V' the ARNOLDI algorithm can be uti-
lized, wich projects the general TLM operator onto the KRYLOV subspace,which
is induced by I'S and a start vector being the excitation vector. Thus the re-
duced TLM operator (5.58) is presented by an upper HESSENBERG matrix H.

Using the eigenvalue decomposition of H, i.e.

H=UAU", (5.59)
we can write the multi-port impulse response in the next form
H,, (2) = QVU(zI — A)'U'V'R. (5.60)

Let |r;),j = 1,2,...,p1 be the j-th column of the selector matrix R and
(qi,i=1,2,.. ., p2 be the i-th row of the selector mafrix Q. Now we define the
row vector (a|®) and the column vector |3)V) as following

(@@ = (@lVU, (5.61)
B)Y) = UVT|ry). (5.62)

Then pole/residue distribution of the (i, j)-th element of the transfer func-
tion H,,, (from port j to port ¢) becomes

n_ gl n ()

7 (i,5) oy By Ch

H _Ziz_% _ZZ_M . (5.63)
n=1 =1

In a similar way the reduced GIM may be obtained from (5.46) as
Z,,(2) =Q1VU (I — AU VTR, . (5.64)

The sketch of TLM-MOR based on the ARNOLDI procedure generating (5.60)
(and/or (5.63)) is given below.

Algorithm 5.3.1. The TLM-ROM based on the ARNOLDI process.

choose [v) = R |a);,

reorthogonalize if necessary
) Bi+1 = |02
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(11) if 511 = 0 then stop
(12) H,=UAU!
(13) test for convergence
(18 o) = 1
5j+1
(15) end for
(16) H,=UAU!
(17) compute impulse response H,,, (5.60) and/or GIM Z,,, (5.64)
(18) compute |a),,,

The algorithm (5.3.1) yields the orthogonal basis V' and the n x n reduced
TLM operator (5.58) as an upper HESSENBERG matrix. The N x n matrix V/
form an orthonormal basis for the KRYLOV subspace (see Chapter 4) with a
start vector as an excitation vector.

5.3.2 Oblique Projection

Next, we introduce a biorthogonal basis

Using the projection operator
V:H" = HY (5.66)

and its transpose
W HN —H (5.67)

we obtain the reduced state vector as
la,) = W7 a), (5.68)
and the initial state vector as
la) =V |a,) . (5.69)
Then the system (5.42) can be written with the reduced state vector as

zVla,) = TSVla,)+Rla), ,
@)y = QVlan) . (5.70)

out

By multiplication of the first row in (5.70) by W7 and by using eq. (5.65)
we obtain the next system
zDla,) = W'rsvia, +W7"R|a),, ,
@y = QVlan) . (5.71)

out

Applying the similarity transformation to the general TLM operator I''S by
means of the LANCZOs algorithm we obtain the reduced TLM operator (I'S),

WTrsv=DbDT=(IS),. (5.72)
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From (5.71) and (5.72) it follows that

zDla,) = DTla,)+W"R]la),
|a’>out = Q V|(~I,n> 9 (573)
D(zI -T)|a,) = W"R]a),
la),,, = QVlan), (5.74)

From (5.74) we express the output state vector

|a’>out = Q V(ZI - T)_lD_leR |&>'Ln ) (575)
and multi-port impulse response
Hn, (2) =QV (21 —T) 'D'WTR € HP1*P2 | (5.76)

where DT of dimension n x n is the biorthogonal (or oblique) projection of the
general TLM operator I'S onto KRYLOV subspaces.
Utilizing the eigendecomposition of T'

T=UAU"', (5.77)
we can write the multi-port impulse response in the next form
Ho,(2) =QVU(zI — A)'U'D'WTR. (5.78)
Introducing the row vector (a(?)| and the column vector |3)) as follows
@V = (q|VU, (5.79)
B9y = U'D'WT|r)), (5.80)

we obtain the pole/residue distribution of the (4, j)-th element of the the transfer
function H,,, (from port j to port ¢) as it has been given in the form of (5.63).
In a similar way the reduced GIM may be obtained from (5.46) as

Z,,(2) =@QVU(I - A)'U'D'WTR, . (5.81)

A pseudo-code of the TLM-ROM based on the nonsymmetric LANCZOS al-
gorithm is presented below.

Algorithm 5.3.2. The TLM-ROM based on the nonsymmetric LANCZOS al-
gorithm.

(1) choose |9) = R |a),, and |w) = random
) |w)

2 v1) = —— and |wy) = —

@) o) = g and o) =g

(3) set |vg) =0, lwp) =0and py =m =6 =1

(4) for j=1,2,...,ndo

(5) §; = (w;|v;)

(6) if §; = 0 then stop

(7) _ <wj|FS|Uj>

J = 5]'
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(8) Bj =n;d;/8j—1

9) Vi = p;0j/0j-1

(10) [0j+1) = 'S |vj) — ajv;) — Bjlvj-1)
(11) [Wji1) = ST |w;) — aj|lw;) — vjlw;—1)
(12) reorthogonalize if necessary

(13) pi+1 = [|j11]l2

(14) Ni+1 = [|Wj11]l2

(15) if pj+1 =0or 141 =0 then stop
(16) TIJ = U'AjU_1

(17) test for convergence

(18) o) = 2

P1'+1
-
) = 1221

Nj+1

(19)

(20) end for

(21) T,=UA,U"! _

(22) compute impulse response Hy and/or GIM Z,,,
(23)

compute |a),,,

The algorithm 5.3.2 yields the biorthogonal V' — W basis for KRYLOV sub-
spaces (see Chapter 4) with start vectors |vi) € HY and |w;) € HY and the
reduced TLM operator as a triangular matrix T,,.

5.3.3 The Scattering-Symmetric Lanczos Process

It has been observed that the nonsymmetric LANCZOS algorithm also simpli-
fies for matrices that are J-HERMITIAN or J-symmetric with respect to inner
products induced by general nonsingular, but not necessarily positive definite
matrix J. There are some special cases that allow use of this J-symmetry, e.g.
HAMILTONIAN and TOEPLITZ matrices. However, the determination of a matrix
J is in general very complicated and impractical, and the really useful cases of
J-matrices are those for which J is known explicitly.
FREUND and ZHA showed in [45], [47] that for J-symmetric matrix A,

AT =JA, (5.82)

the LANCZOS process can be simplified by choosing the second LANCZOS start
vector properly. We recall that the second start vector in the nonsymmetric
version is generated randomly.

For most real cases it is very difficult to find any sparse matrix J in any
form in order to take advantage of the symmetry like in (5.82).

In this subsection we describe a practical simplified LANCZOS algorithm for
TLM, which is derived using the J-symmetry. For this purpose we find a matrix
J satisfying eq. (5.82) at first.

Theorem 5.3.1. The TLM-matrix (I'S) has a unique property; it is symmetric
with respect to the scattering matrix S. That is

(rs)'s =s(rs). (5.83)
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Proof. The right in eq. (5.83) is

S(rs)=Srs, (5.84)

and the left in eq. (5.83) is
(rs)’'s =(Srys=srs. (5.85)
O

Let us consider the actual operations involved in the LANCZOS process in
some more detail. In order to generate the bi-orthogonal basis vectors, |v,,)
and |w,), for the two KRYLOV subspaces (4.1) and (4.13) the non-symmetric
LANCzOS utilizes the sequences (10) and (11) in Algorithm 5.3.2.

[0j41) = (I'S)|vj) — anlvy) — Bilvj-1), (5.86)
[wjt1) = (ST)|wj) — ajlw;) —vjlwj—1). (5.87)

We say that the TLM-operator is scattering-symmetric, and refer to it briefly
as S-symmetric. On the basis of this property the second sequence (5.87) in the
non-symmetric Lanczos algorithm can be replaced by the following one

|1I)j+1> = S‘ﬁj-i-l >7 ] = 1a2a"'an7 (588)
if we take the second start vector as
[wy) = S|o1). (5.89)

In view of (5.88) a simplified version of the Lanczos process results, where
only the right basis vectors |v1), |va), ..., |v,) need be generated, while the left
vectors |wi), |ws), ..., |w,) are obtained via (5.88). The bi-orthogonal basis is
generated to satisfy

VISV, =D,. (5.90)

Clearly, the resulting modified Lanczos process requires only one TLM time
evolution step and one additional application of the scattering matrix. Hence,
the process is faster and consumes less memory in comparison to the conven-
tional non-symmetric Lanczos one.

An important attribute of the proposed modified process is that neither
the operator I'S nor its transpose need not be known explicitly, as only its
impact on the sequence of Krylov vectors must be taken into account. Thus,
the computation of the reduced model can be integrated in the usual iterative
TLM process in a very efficient manner.

Below we give a pseudo-code of the TLM-MOR based on the S-symmetric
version.

Algorithm 5.3.3. The TLM-MOR based on the S-symmetric LANCZOS algo-
rithm.

(1) choose [v) = R |a),, and |vi) =
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set "Uo> = 0, |’IUO> =0 and P1 ="M = 50 =1
for j=1,2,...,ndo
5 = (wjlv;)
if 6; = 0 then stop
_ {(w;|T'Sv;)
J 6]'
Bj = n;05/0j—1
| ‘\"ij+1>>: F?'J”ﬁ; ajlvj) = Bjlvj-1)
Wit1) = S Vjt+1
) reorthogonalize if necessary
) pi+1 = [|F541]l2
) Nj+1 = [lwj41]2
) if pj+1 =0 or 141 = 0 then stop
) T-UAU
) test for convergence
) > _ ‘vj+1>
)
W41
‘w; 1> = J
i+ itl

[vj+1

)

) end for

) T,=UA,U"! i
; compute impulse response Hy and/or GIM Z,,,

compute |a),,,

5.3.4 Matrix-Padé-Approximations

The concept of transfer function allows the definition of the reduced-order mod-
els by means of PADE or PADE-type approximation in the case of TLM.

_ Let zp € C be any point such that z is not a pole of the transfer function
‘H. In practice, the point z; is chosen such that it is in some sense close to the
frequency band of interest, e.g. in the middle of a frequency range. Then the
transfer function H admits the TAYLOR expansion about zj as

H(Z):M0+M1(Z—ZQ)+M2(Z—20)2+... +Mj(z—20)j—|—... =

— ZMj(z’)j , (5.91)

where M are, in general, p; x pp matrices, which are called the moments of H
about 29, and 2’ = 2z — 2q is called a shift.

A reduced model (5.53) and (5.70) of the state-space dimension n is called
the n-th Padé model at the expansion point zo of the original system (5.42),
if the TEYLOR expansions about zy of the transfer function H in (5.42) of the
original system and the transfer functions H,, in (5.57) and H,, in (5.76) of
the reduced-order models agree in as many leading terms as possible

H=H,+0 ((2 - zo)¢<">) , (5.92)

where ¢(n) is as large as possible. For introduction to PADE approximation we
refer the reader to [61].
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In order to obtain a matrix PADE approximant about a point zy we perform
the following matrix manipulations
H(EZ)=Q(:I-TS) 'R=Q (2l + (2 —2)I-T'S)'R=
=—Q(I'S —2I —(z—2)I) 'R=
=Q(I—(z—2z)A)'R=

o0

=QUI-7A) "R=) (/YQA 'R, (593)
j=1

where A
A=(I'S—zI)™", (5.94)
and .
R=—(I'S—%I)'R. (5.95)

Unless we have p; = po = 1, the transfer functions H and, consequently, H,,
are matrix valued, then the PADE and PADE-type models are so-called matriz-
PADE and matriz-PADE-type approximants in general.

By comparison of (5.91) and (5.93) we obtain the PADE-moments

M; =QA’R. (5.96)

For simplification we restrict to the single-input single-output case (a SISO
system) , i.e p; = po = 1. Thus, from (5.93) we have a scalar-valued rational
transfer function

H(z) = (q| (T — 2 A)" 7). (5.97)

5.3.5 Explicit Moment Matching

Instead of eq. (5.57) and eq. (5.76) we present the scalar-valued rational function
‘H,, of a reduced SISO-system in terms of these polynomials, or more precisely

7:[ (Z) o (pnfl(zl) . bn1 (Z/)nl + -+ blz’ + bg
" Un(2') Uny (Z)2 4 a1z’ +1°
Typically no = n and n; = ny — 1 =n — 1. There are ny +ny + 1 = 2n free

coefficients of the polynomials ¢, 1 and 1, in (5.98). These free parameters
can be chosen such that in (5.92 ) the first 2n moments will be matched

(5.98)

2n—1
H="H,+0((z—2)™") = Z M;j(z —20)’ + O ((z — 20)*") ,  (5.99)
j=0
where M are moments, which can be expressed according to (5.96) and (5.97)

as following: -
M; ={(q|(A)Y|#), 7=0,1,2,...,(2n—1). (5.100)

We refer to H, at the n-th PADE approximant to the impulse response H in
(5.97) . By means of partial fraction expansion we can write H,, in the form

Fo=coot Y 0. (5.101)
=% TP

The standard approach to computing H,, is based on the representation
(5.98) and on explicit moment generation by (5.100).



100 CHAPTER 5. MODEL ORDER REDUCTION IN TLM

e First, the leading 2n moments My, My, Mo, ..., My, of H are computed
by (5.100);

e then, the coefficients of the polynomials ¢, —1(2") and v, (2’) are generated
by the solving of linear equations with a n x n HANKEL matrix (a square
matrix with constant skew diagonals), whose entries are the moments
(5.100);

e the poles p; in (5.101) are then obtained as the roots of the equation

an(Z)"+ ap_1(Z)"+ a2 +1=0; (5.102)

e the constant c., and the residues ¢; in (5.101) are computed by solving
another linear system of the order n;

For more details see [22], [93].

This standard approach to computing H,, is employed in the Asymptotic
Waveform Evaluation (AWE) method [22], [93].

However, computing PADE approximants using explicit moment computa-
tions is numerically unstable, and indeed, this approach can be employed in
practice for very moderate values of n, such as n < 10 (see [41]). The prob-
lem is that the vectors A7 |7#) quickly converge to an eigenvector corresponding
to a dominant eigenvalue of A, and, therefore, the moments A; computed by
(5.100), even for moderate values of j, contain only information about this dom-
inant eigenvalue. Thus, the PADE approximant H,, generated from the moments
only contains information about a part of the spectrum of A, and the computed
‘H,, does not converge to the transfer function H. To obtain the broadband
frequency response, more expansion points are required. The multi-point ex-
pansion is used for the fast frequency sweep (FFS). The moment matching
technique is not considered in this work.

5.3.6 The Padé-via-Lanczos Algorithm

Together with employing explicit moment matching techniques, the use of the
KRyYLOV subspace techniques to compute the PADE model is possible.

In this subsection we describe the Padé-via-Lanczos (PVL) algorithm which
exploits the connection between PADE approximation and the LANCZOS process
to obtain the direct computation of the moments. The connection of the LANC-
z0S process to the PADE approximation is described in detail in [41]. The
derivation of PVL showed that the pole/residue representation (5.101) of the
PADE approximant H,, can be obtained by running the LANCZOS algorithm and
by computing an eigendecomposition of the LANCZ0S matrix T;,. The resulting
computational procedure is the PVL algorithm, the sketch of which is presented
below.

Algorithm 5.3.4. The sketch of the TLM-MOR based on the PVL algorithm.
(1) Run n steps of the LANCZzOS algorithm (see Algorithm 4.4.1) with

the matrix A (5.94) to obtain the tridiagonal matrix T},.
(2) Compute an eigenvalue decomposition

T,=UAU"'. (5.103)
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(3) Compute the vectors
(fl=U"(e;| and |g)=U"'le)). (5.104)
(4) Compute the poles and residues of H,, (5.101) by setting

p;i = 1/X;, (5.105)
¢ = <q|f)f§\gj j=1,2,...,n with X\; #0, (5.106)
J
Coo = ijgj<q\f> with \; =0. (5.107)
§=0

We note that the moments (5.100) in the PVL method are computed using
the biorthogonal basis V' — W for right and left n-th KrRYLOV subspaces

K(|#), A,n) = span {|F), A|), A%|#), ..., A" 7))} (5.108)
and
K(lq), A" n) = span {|q), A"|q), (A")’q), ...,(A")" '|q)}  (5.109)

respectively. Using the basis vectors |v;) and |w;), the explicit moment compu-
tations are avoided, and instead of moments (5.100) we now calculate modified
moments

(wjlv;) and (w;|Alv;), j=1,2,...,n. (5.110)

The modified moments (5.110) contain the same information as the moments
(5.100), and for each j =0,1,2,...,(2n—1), the j-th moment can be expressed
as a suitable combination of the numbers (5.110).

While PADE models often provide very good approximations, in general they
do not preserve the stability and passivity of the original system. However, a
reduced-order model can be generated to be stable and passive. In [41] it has
been shown, that the PADE approximation via a LLANCZOS process produces
more accurate and higher order approximants and has significantly superior
numerical stability than explicit moment matching, i.e. AWE.

In a similar way the Padé-via-Arnoldi (PVA) algorithm can be derived.

5.3.7 The Shift-Inverse Approach

In order to extract eigenvalues of the general TLM operator, which are closed
to a point zg in the complex plain (Fig. 5.1), at first we involve the sift-inverse
approach. (see Chapter 4).

For this purpose we generate the KRYLOV subspaces by means of a matrix
A, which has been defined by (5.94), or in other words, a shift-inverse general
TLM-operator is utilized to generate a biorthogonal (and/or an orthogonal)
basis for KRYLOV subspaces. Moreover, we prove the possibility to use the S-
symmetric version of the LANCZ0S methods. We would like to point out, that
the shift-inverse method via Arnoldi process can be derived in a similar way.

Theorem 5.3.2. The shift-inverse matrix (I'S — zoI) ~! has a unique property;
it is symmetric with respect to the scattering matrix S. That is

(PS—2I)™)"'§=8 ('S —zI))~". (5.111)
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Figure 5.1: Expansion point zy in the complex Z-plane.

Proof. The right in eq. (5.111) is

S (I'S—zI) ' = ((FS - ZOI)Sfl)_l =
1

=((L-28") ", (5.112)
and the left in eq. (5.111) is

(TS —2I) )" §=(S(T'S—=zD)")" . (5.113)

Using the relation (5.112) we derive that
(rS— D))" s = (((r - zos—l)‘l)T -
- (((1LZOS*1)T)_1 = ((rfzos*))‘l. (5.114)

We note that the last equation in (5.114) is obtained using the symmetry of S
and I' operators. O

The theorem 5.3.2 allows the S-symmetric LANCZ0S algorithm (Algorithm 5.3.3)
to be involved in the sift-inverse approach that can save half of work. The
pseudo-code of the sift-inverse based MOR technique is given below.

Algorithm 5.3.5. The TLM-MOR based on the shift-inverse approach using
the S-symmetric LANCZOS algorithm.

(1) choose |v) = R |a);, and |vy) = |f)>
) [0 ]2

(2) |w) = S|v) and |w) = |1207>

l[w |2
(3) set "Uo> = 0, |'1U0> =0 and P1L ="M = 60 =1
(4) for j =1,2,...,ndo
(5) 6; = (w;lv;)
(6) if 6; = 0 then stop
(7) solve (I'S — zoI)|0j41) = |v;) for [0;11)
(8) _ (wj[vj41)

o =
J
0;
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Bj = nj0;/0j-1
) 19j+1) = [9j41) — a;lvs) = Bjlvj-1)
) [Wj41) = S |9;11)
) rebiorthogonalize if necessary
) pi+1 = |04l
) Ni+1 = w412
) if pj41 =0 or nj41 = 0 then stop
) T, =UA;U!
) test for convergence

/ﬁA
) )=

Pj+1
(19) ) = 2

Mj+1

(20) end for
(21) T,=UA,U""
(22) An =20+ (An)il B
(23) compute impulse response Hs and/or GIM Z,,,
(24)

compute |a),,,

As we can see, the main problem in the Algorithm 5.3.5 is to solve the
equation

(T'S — 2D)[6;41) = |vj) (5.115)

for |0;41) at each step j. We recall that the shift of the general TLM-operator
(I'S — zpI) is not given in an explicit form. There are two general numerical
solutions: conventional iterative (we rename them to iterative methods) and
projection iterative (we rename them to projection methods).

We note, if we know how to operate efficiently with the shift-inverse operator
A (defined by (5.94)) without it forming we will be able to proceed the direct
application of LANCZOS and ARNOLDI algorithms, and we can exchange the
sequence (7) in the Algorithm 5.3.5 for

[B541) = Alvy). (5.116)

However, first, the inversion of the explicit operator (I'S — 2¢I) (if we had
known I'S in explicit form) requires a high computational effort due to its large
dimension. Second, it seems to be nearly impossible to gain A in an implicit
form trough any considerations.

The same problem (how to obtain A and how to operate with it) we have
by the use of the PVL and PVA algorithms, because PADE approximations
and shift-inverse approaches are equivalent, that follows by direct comparing
the Algorithms 5.3.4 and 5.3.5. Both of them approximate an original system
about the point zy and both of them deal with the shift inverse TLM matrix.
In order to obtain the next T.ANCZOS vector &, 1) an impact of shift-inverse A
onto the vector |v;) in (5.116) can be replaced by solution of (5.115) for [¥;41).

5.3.8 Iterative Solvers for the Shift-Inverse Approach

In this subsection we describe one of the simplest stationary iterative solvers for
linear equation systems in the SI-approach.
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For convenience we write the system (5.115) to be solved as follows
(I'S = 201)|vj41) = |vj) (5.117)

where |v;) is known state vector, and |v;41) is a state vector to be computed
by an iterative way.
For this purpose we express the equation (5.117) in a special form

) =azxV 3 k=1,2,.... (5.118)

Through straightforward manipulations in (5.117) we have

1 - 1
(I— = IS)|oj41) = —— |v;) (5.119)
20 Z0

and, therefore, we obtain the stationary iterative scheme

1 1
[9j41) ) = — I'S[8;41) 5D — —|v;). (5.120)
20 20
We note, the scheme (5.120) is called stationary, because neither the TLM

operator I'S nor |v;) depend upon the iteration count k (i.e. the iterative
scheme is kept at each iteration k).

Proposition 5.3.1. The iterative scheme (5.120) is a convergent scheme if,
only if, an expansion point zj is located outside the complex unit circle.

Proof. Tt was shown in [34], that the iterative scheme given in (5.118) is a
convergent scheme only if a norm of the matrix « is less than one, or more
precisely,

leef < 1. (5.121)

By comparing (5.118) and (5.120), we see that

1 1
a=—TIS and B=-——|v)), (5.122)
Z0 20

and from (5.121) we draw a conclusion that the iterative scheme (5.120) is a
convergent scheme only if

1
~TIs H <1. (5.123)
20

Since || I'S||, < 1, we require that

1
—|<1, (5.124)
20
and, as follows,
|Zo‘ >1. (5125)
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According to (5.120) we start to generate approximations with |9;4)(®) =
|v;)

- 1 - 1

9541)" = = IS19;41) 0 = —|v)
20 20

- 1 - 1

9;41)® = —IS[9;41)M = —|vj)
20 20
1 1

940" = —TS[o,0) ) — —uy), (5.126)
20 20

until
[18540)® = [8;00) ¢ > e. (5.127)

We note that one of the more complicated and, eventually, better converged
stationary iterative methods, e.g. the JACOBI method, the GAUSS-SEIDEL
method, the Successive Overrelaxation method and the Symmetric Successive
Overrelaxation method, can be involved to solve (5.117). For their detailed
descriptions and implementations the reader is referred to [8], [34]. One other
possibility is the use of iterative projection methods.

5.3.9 Projection Solvers for the Shift-Inverse Approach

Most of the existing practical iterative techniques for solving large linear systems
of equations utilize a projection process, which represent a canonical way for
extracting an approximation of the solution of a linear system from a subspace.

Now, we need to solve the linear system (5.120) as well . If all of the
right hand sides in (5.120) were available simultaneously, the block LANCZzOS
methods could be used. However, in the case of TLM the right hand sides are
not available at the same time, since a right-side vector |v;) depends on the
solutions of |v;), i =1,...,5 — 1, of the previous linear systems. PARLETT [88]
proposed to use the LANCZOS algorithms for solving the first system and to
save the LANCZOS basis in order to provide good approximate solutions for the
subsequent systems. An approximate solution for the second system (and for
subsequent systems also) can be obtained by using projection techniques onto
KRYLOV subspaces generated during the solving of the first linear system. We
note that an orthogonal and oblique projections are possible.

Let |9j41)0 be an initial guess for the solution of the initial system

(I'S = zoI)|vj11) = |vj) , (5.128)
and |r)¢ is the initial residual vector
o = [o;) = I'S [8;11)0 - (5.129)

Let K1 and K5 be two n-dimensional subspaces in HY . A goal of a projection
technique onto the subspace K; and orthogonal to ICs is to find a approximate
solution |©;41) by imposing the conditions that |9;41) belongs to X1 and that
the new residual vector be orthogonal to 5. That is

[0j41) € [0j41)0 + Ky, (5.130)
lvj) = I'S|0j41) L K> . (5.131)
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Orthogonal projection methods correspond to the case when the two sub-
spaces K1 and Ko are identical, otherwise the projection is called oblique.

Let V be an N x n matrix whose column vectors form a basis for K and,
similarly, W be an N x n matrix whose column vectors form a basis for /Cs, so
that

wWiv =D. (5.132)

Then, according to (5.130) the approximate solution can be written as
[0j41) = [Uj41)0 + V[0), [0) € Ky (5.133)
For the variable |0) the condition (5.131) translates into the next condition
WT(|r)y—TSV|[o)) =0, (5.134)
from (5.134) we obtain
|9y = (WIrsSv)"'wT|r),. (5.135)

From (5.133) and (5.135) the following expression for the approximate solu-
tion |©;41) results in

|Bj41) = |Bj41)0 + VIWTTSV)'WT|r),. (5.136)

Using the similarity transformation given by the LANCZOs algorithm (5.72)
we obtain
|Bj41) = |9j41)0 + VT 'D'WT|r),. (5.137)

An iterative projection scheme for solving (5.128) belongs to KRYLOV sub-
space methods if, for any choice of |0,11), it produce approximate solutions of
the form

‘I~)j+1> S |’l~Jj+1>() + ’C("I">Q7I‘S,’I’L)7 7=12,...,n. (5.138)

Thus, the design of a KRYLOV subspace algorithm consists of two main parts:
the construction of suitable vectors for the KRYLOV subspaces K(|r)o, I'S,n)
and choice of the actual iterates |0;;1). The Quasi-Minimal Residual (QMR)
method is an example of a KRYLOV subspace iteration where the basis vectors
are generated by means of the nonsymmetric LANCZ0OS method, and the iterates
are characterized by a quasi minimal residual properties.

The QMR method

When the three-term LANCZOS method is used, the n-th QMR iterate |v,,) is
defined as follows

|On) = [On)o + V]0n), (5.139)
where |0,,) is the unique solution of the least-square problem
H |f"+1> - X”+1Tn|ﬁn>”2 = min ” |.fn+1> - Xn+1Tn|'lAJn>H2- (5140)
Here
Xn+1 = diag(||o1 |2, [|D2]|2, - - -, [|Ont1]l2) (5.141)
and

| Fs1) = [17)0,0,...,0]T € ™+, (5.142)
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The residual vector |r),, satisfies the relation

|7'>n = (Vn+1X;Jlr1) (‘fn+1> - Xn+1Tn"[’n>) . (5-143)

Thus the choice of |©,) means a quasi-minimization of the residual norm,
i.e. the second factor in (5.143) is minimal.

QMR-from-BCG

The QMR-from-BCG algorithm was first proposed by FREUND and SZETO [46],
and is the simplest possible implementation of the QMR method. The algorithm
uses two-term recurrences (see Chapter 4) of the classical biconjugate gradient
(BCG) algorithm to generate the vectors |v;) and |p;). By adding updates for
the QMR iterates and the QMR search directions and some minor scalar oper-
ation to these BCG recursions, we obtain an algorithm that is only marginally
more expensive than BCG [8],[103]. In the case of TLM the proposed in [46]
QMR-from-BCG algorithm may be simplified due to the S-symmetry of the
general TLM operator. In case the system

(FS — Z()I)l’l)2> = |’U1> (5144)

to be solved for |vy) using the Algorithm 5.3.5, the simplified QMR-from-BCG
algorithm takes on the following form:

Algorithm 5.3.6. The S-symmetric QMR-from-BCG algorithm.

Dj+1 = Vjq1 + LiP;
qj+1 = Wj+1 + 459,
end for

(1) choose |va)o = |v1)
(2 |v1) =v1) = (I'S = 201) [va)o
(3)  [p1) =lv1) and |q1) = S[p1)
(4) 7 = (01]91) and py = (q1]v1)
(5) set |do) =0 and ¥9 =0
(6) for j =1,2,...,ndo
(7) ) = (I'S - D))
(8) oj =(g;lt;)
(9) if o; = 0 then stop
1) =
(11) |7~7n+1><~: ‘|1:)n§ - Cn|tj>
O |On,
(12) Un = . s Y = 1+ 9, and Tn+1 = TnUntn
(13) |dj> = ¢n19n71|dj*1> + ¢nan‘ﬁj>
(14) |v2); = |v2)j-1 + |d;)
(15) if |v2); has converged then stop
(16) if ¢, = 0 then stop
(17) [Wji1) = S |w;)
(18) G = (i) and oy =
J
(19)
(20)
(21)
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The algorithm yields the solution of the first linear system (5.144) and the
biorthogonal basis V' and W, and the tridiagonal matrix T

T =LU, (5.145)
where
Gt
_Cfl C;l 0
Lyxn = -Gt G ; (5.146)
0
- 7;11 ¢t
and
1 —L9
O 1 —Ll3
Unn = 0o 1 - . (5.147)
.
0 1

Now, we can use the information gathered during the solution of the first
system in order to provide an approximation of the second system (the second
iteration in the Algorithm 5.3.5)

(I'S — zoI)|v3) = |v2) . (5.148)

For this purpose, the basis V and W and the tridiagonal matrix T must be
saved. Supposing the initial guess for |vs) to be |v3)g = |v2) we can write the
corresponding residual vector as

[ro)o = |v2) — (I'S — 201 ) |v3)0 - (5.149)

A natural way of improving the |v3)( is the use of a projection onto KRYLOV
subspace K (|71)o, (I'S — 20I) , n) generated for the solution of the first system.
According to eq. (5.137) we obtain the solution of the second system as

lvz) = |v3)o + VI LD W |ry),, (5.150)

where . ) o
Wi(rs — »I)V = DT. (5.151)

And the solution of the third system (the third iteration in the Algorithm
5.3.5)
(I'S — zoI)|vs) = |vs) (5.152)

is approximated by the next expression
[va) = |va)o + VT "D "W |rs)o, (5.153)
where |vy)o = |vs) and the |r3)( is the third residual vector given by

|r3)o = |v3) — (I'S — 201 ) |va)o - (5.154)
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The goal of this projection procedure is that only the first system (5.144)
must be solved iteratively by some iterative method (e.g. QMR, QMR-from-
BCG), and the second, third, and following linear systems are solved by the
projection onto KRYLOV subspace generated during the solution of the first sys-
tem. As we can see, the operator I'S — 2z I is involved only when computing the
residuals |r2)0,|73)0, - - -, |Tn)o. Thus, the use of iterative projection techniques
is expected to be less time consuming than the utilization of conventional it-
erative algorithms; however, it consumes much more memory, because the full
biorthogonal basis V and W as well as the reduced matrix T must be stored.
An important question regarding the approximation accuracy of the projection
process is examined in [102].

The sketch of TLM-MOR based on the shift-inverse approach and iterative
projection techniques is given below.

Algorithm 5.3.7. TLM-ROM based on the sift-inverse approach using the
S-symmetric LANCZOS algorithm and iterative projection techniques.

v)

9 ]2

(1) choose [v) = R |a),, and |vi) =
- " |w)
) |w) = S|v) and |wy) = ——=
)= o
) set |vg) =0, lwy) =0and p; =m =6 =1
) for j=1,2,...,ndo
) 0; = (w;lvy)
) if ; = 0 then stop
) if j = 1 then do
) solve eq. (5.144) by QMR-from-BCG Algorithm 5.3.6
) store V, W and T
0 else
1 rj)o = |vj) = (I'S = 201) |v;)
2 9j11) = |vj) + VI'D™'WT|r;)o
3 end if
(w;]5)
Qj = (;j
Bj = n;j0;/0j-1
0j41) = |9j41) — aj]v;) — Bjlvj-1)

)
)
)
)
)
)
)
) [wj11) = S |0j41)
)
)
)
)
)
)
)

reorthogonalize if necessary
pi+1 = |04l
Ni+1 = llwjt2
if pj41 =0 or 1j41 = 0 then stop
T, =UA,U*
test for convergence
|0+1)

v ) = L

i+ P
(25) [wj1) = [0y1)
Mj+1
(26) end for
(27) T,=UA4,U""
(28) A, =20+ (A4,)71
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(29) compute impulse response H
(30) compute |a)

out

In a similar way a projection solver via ARNOLDI process can be derived,
which, evidently, is more expensive than Algorithm 5.3.7.

5.4 Passivity and Stability of the TLM system

In this subsection, we discuss the concepts of stability and passivity of a dis-
cretized TLM system.

An important property of linear dynamical systems is stability. A physical
system needs to be stable in order to function properly. If the TLM systems
(5.42) and (5.45) are used as a description of such a physical system, then
they should be stable. Moreover, if (5.42) and (5.45) are replaced by reduced-
order models (5.53) and (5.70), which are used in time-domain analysis, the
reduced-order model also needs to be stable. A stable system is one for which
every bounded input produces a bounded output (BIBO system). Next to being
stable, a TLM system should also be passive. Roughly speaking, a system is
passive if it does not generate energy. We note that passivity is stronger than
stability, and that the stability of the overall simulation can be only guaranteed
if the reduced-order models preserve the passivity of the original TLM-system.
Therefore, it is important to have techniques to check the passivity of a extracted
reduced-order model. If we can show that the reduced systems (5.53) and (5.70)
are passive, they are proven to be stable as well.

From eq. (2.130) we recall that

ra) = (I'S)*1|pa) , k=1,2,...,00, (5.155)

and

(ral = (rS)")" ™ (val, (5.156)

due to reality of I'S operator.
Using the z-transform (5.29) we obtain that

|d>0ut = i Zik(l—'s)kil ‘d>7,n, (5157)
=1
and
(@low = > (") ((0S)T) " (alin- (5.158)
k=1

In order to ensure the passivity we require
AP = Py, — Poyt = {(@la)in, — (@l@)out > 0, (5.159)
which is equivalent to the relation

(ala)our < (@l@)in . (5.160)
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By taking eq. (5.157) and eq. (5.158) into account it follows that from (5.160)
comes that -
N (o) F((rs)"rs) T <1 (5.161)
k=1
Since eq. (5.161) is identical to the condition

S (rs)'rs) T <1 (5.162)
k=1

for |z| = 1, the condition for passivity is equivalent to
TS| <1, (5.163)
and to the following relation
Amaz(TS) <1, (5.164)

where \,,q. the eigenvalue of the I' S-operator with maximum module. In this
case we are dealing with a marginally stable system, i.e. there are no eigenvalues
outside the unit circle, and there are no repeated roots on the unit circle. Or
in other words, eq. (5.157) describes a system, which in the absence of input
produces a steady non-zero output or a bounded oscillatory output over time
in response to non-zero input conditions. We note that the system (5.157) with
the condition (5.163) is not a BIBO system with a definition of stability, which
says that a system is stable if a bounded input produces a bounded output,
whereas a marginally stable system remains bounded if and only if the input
response is zero. The BIBO-system demands, that all |\;| < 1. Further we refer
to a system with eigenvalues satisfying eq. (5.164) as being stable.

Proposition 5.4.1. The system (5.42) having the impulse response (5.44) is
passive and stable.

Proof. By appropriate normalizing of R and @ so that |R|| =1 and ||Q]| =1,
and by taking (5.160) and (5.163) into consideration, we see that the system
(5.42) is passive and stable. (We remember, that R and Q are real diagonal
matrices). O

The poles of the transfer function (5.44) are located inside the unit circle
(including the unit circle itself), i.e. the Region of Convergence (ROC) includes
the unit circle (Fig. 5.2).

That is essential that the generated reduced-order model preserve the pas-
sivity and stability of the initial system (5.42). For example, we consider the
reduced-order model (5.53) with the impulse response given by (5.57). Now we
show the reduced-order model (5.53) to be passive and stable.

Proposition 5.4.2. The reduced-order model (5.53) with the impulse response
given by (5.57) is passive and stable.

Proof. The reduced TLM-operator (I'S),, in (5.57) is obtained by applying the
similarity transformation (5.58). It is well-known that the similarity transfor-
mation does not change the eigenvalues of an initial matrix (e.g. see [128]).
That is

det (I'S) = det ((I'S),) (5.165)
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Figure 5.2: ROC for the TLM-system in the complex Z-plane.

and, as follows, the eigenvalues of the reduced TLM-operator (I'S),, satisfy the
condition
Amaz (I'S)n) < 1. (5.166)

In the context of Proposition 5.4.1 we conclude that the system (5.53) pre-
serves the passivity and stability of the initial system (5.42). O

Next, we consider the reduced system (5.70) with the impulse response
(5.76).

Proposition 5.4.3. The reduced system (5.70) with the impulse response given
by (5.76) is passive and stable.

Proof. The proof follows in context of Proposition 5.4.1 and Proposition 5.4.2
using the similarity transformation (5.72) performed via the LANCZOS algo-
rithm. O

Corollary 5.4.1. The reduced-order models (5.53) and (5.70) with impulse
transfer functions (5.57) and (5.76), respectively preserve the passivity and sta-
bility of the initial TLM-system (5.42), if only if the extracted approximating
eigenvalues of reduced TLM-operators (5.58) and (5.72) are placed inside the
unit circle, including the unit circle itself in the complex z-plain (Fig. 5.2).

Corollary 5.4.2. Under the assumption of passivity of the original discrete
TLM-system, the passivity of the appropriate reduced-order systems is guaran-
teed using congruence transformations.

5.5 Comparison of FDTD-, FIT-, and TLM-based
MOR

In this section a brief comparison is provided of the FDTD-, FIT- and TLM-
based MOR-techniques. For the case of lossless media use is made of the curl-
curl formulation of FDTD and FIT [125] to halve the number of state vari-
ables and to utilize the symmetric LANCZOS procedure for the generation of
the reduced-order model. This reduction in the number of unknowns translates
to increased efficiency in the generation of the reduced-order model (TABLE
5.1). However, the presence of loss destroys the symmetry of the FDTD and
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the FIT state-space system. Thus, despite the fact that the length of the state
vector of the FDTD/FIT model is smaller than that of the TLM, the use of a
non-symmetric LANCZOS process results in increased computational complexity
of the model order reduction process. Nevertheless, despite the computational
advantage of the S-symmetric TLM-MOR process, the larger dimension of the
TLM state vector (three times that of the FDTD /FIT model for the case of lossy
media) is an issue, since in some cases, excessively large dimensions of TLM-
based state-space systems are responsible for slow convergence of the model
order reduction process.

Equivalence of a finite-difference scheme and the TLM time evolution scheme
is given by eq. (5.39).

Table 5.1: Comparison of FDTD, FIT and TLM-MOR.

Method ‘ lossless case with losses
FDTD, FIT 3 X Neeyst 6 X Neells
TLM 12 X Neeus 18 X Neeus
FDTD, FIT symmetric LANCZOS non-symmetric LANCZOS
TLM S-symmetric LANCZOS S-symmetric LANCZOS

L N,.us is the total number of discretization cells.

5.5.1 The TLM Reduced-Order Model in the Laplace Do-

main

To obtain the s-domain statement of the TLM discretized system we need to
utilize the bilinear transformation that maps the unit circle on the z-plane to
the left half plane of the s-plane [86]. This transformation is

1+s
z = .
1—s

(5.167)

Utilizing the state-space representation of the TLM system (5.30), from
(5.167) we obtain

s(I+TS)|a),+ (I—TIS)a),=0, (5.168)

which is state equation of the TLM-system in Laplace domain.
Taking eq. (5.168) into account, we present eq. (5.45) in the form of (5.14).
That is

(G + sC)|a)s = Rili),
lu) = Qila)s, (5.169)
where
C=I+TS and G=1-TS. (5.170)

The GIM of the TLM-system results in the s-domain as

Z(s)=Q(G+sC) 'R, (5.171)
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and the impulse response of the TLM-system (5.42) in the s-domain

(G+sC)la), = Rla)p,
|a'>out = Q |d>5 ) (5.172)
is given by
H(s) = Q(G +sC)'R. (5.173)
Introducing
A =-C'G=-(I+TS)'(I-T89) (5.174)

we can write (5.171) and (5.173) in the forms

Z(s) =Qq(sI — A))"*(I+TS) 'Ry, (5.175)
and

H(s) = Q(sI — A))"'(I+TS)'R. (5.176)

From (5.175) and (5.176) we can see that that the generation of reduced-
order models in the LAPLACE domain by the KRYLOV subspace methods already
requires the inverse of the implicit general TLM-operator.

Next, we examine the possibility to apply the PLV or/and SI approaches
for generating TLM-reduced-order models in the s-domain. For this purpose
we consider the system (5.172) with the impulse response (5.173), which can be
modified in the following way:

H(s') = Q(G+5C) 'R =Q(G + 5C + (s — 50)C) 'R =
—Q(I+(s—50)(G+sC)"'C) " (G+sC) 'R=
=Q(I-sA)'R,  (5.177)

where s’ = s — s ,
Ay =—(G+sC)'C, (5.178)

and
R=(G+sC)"'R. (5.179)

Now, we more precisely consider the term

(G+sC) ' =(I—-TS+ sl +s,I'S)"' =

(oo t2e)

1 1— so -t
= I- rs) . 5.180
14 50 < 1459 > ( )

From (5.180) we see that the utilization of the Ay-matrix in the s-domain as
well as the utilization of A (5.94) in the z-domain for the PVL/PVA and SI ap-
proaches require the inversion of the I''S operator. This inversion is prohibitive
(in possible at all) by dealing with implicit matrices, because the elements of
the matrix are not accessible for the inversion operation.
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5.5.2 S-domain versus Z-domain in TLM-MOR

In this subsection we give a brief comparison between the TLM reduced-order
models in the z-domain and the s-domain. In general, the transformation of
the TLM-MOR from the z-domain into the s-domain yields disadvantages as a
result. Some important properties or TLM-MOR are provided below by their
comparison in the z- and s-domains.

e The generation of reduced-order models in the LAPLACE domain by direct
application of KRYLOV subspace methods already requires the inverse of
the implicit general TLM-matrix, that does not occur in the z-domain.
This follows by a comparison of the impulse transfer functions (5.44) and
(5.176) with operating matrices I'S and (5.174) respectively. If we can
figure out how to operate with the inverse of the general TLM operator
without forming itself explicitly, then we should be able to proceed with
the application of the LANCZ0OS and ARNOLDI processes for effecting MOR
in the s-domain in context of TLM. Thus, from this point od view, the
z-domainbased on the TLM-MOR is still favorable.

e It is well-known that the LANCZOS and ARNOLDI algorithms tend to first
extract the approximating eigenvalues at the boundary of the convex hull
of the eigenvalue spectrum. That means that the spurious intermesh and
higher-order modes will be extracted first, if we deal with TLM-MOR in
the s-domain (at s — o0), whereas the utilization of the LANCZOS and
ARNOLDI processes for TLM-ROM in the z-domain yields the permanent
distribution of extracted eigenfrequencies on the unit circle. That is, we
have faster convergence in the z-domain than in the LAPLACE domain
due to the specific convergence properties of KRYLOV subspace methods
by solving eigenvalue problems.

e The PVL and Sl-approaches require the inversion of the I'S -operator in
both domains. Operations with A (5.94) in the z-domain and with A,
(5.180) in the s-domain exhibit similar convergence properties and have

similar computational efforts.
e The length of the state-space vector |a) in (5.42) and (5.172) in both
domains is kept the same.
5.6 Post-Processing
In this section we discuss following issues:
e how to accelerate the generation of a reduced-order model,
e how to select the optimal order of a reduced model,

e how to recover the signal in the time-domain by an extracted reduced-
order model.
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5.6.1 Two-Step Reduction Approach

The two step reduction approach combines a LANCZOS based projection in the
first step to pre-reduce the system (5.42) having the transfer function (5.44)
with a PADE or SI-methods in the second step to get an optimal approxima-
tion. When there is a large number of n, the computation of the eigenvalues by
Eigenvalue Decomposition (EVD) is very expensive. Instead of that, the second
reduction of a system can be applied so as to extract only eigenvalues corre-
sponding to a needed frequency band. The two step reduction algorithm allows
us to decrease the computational effort in TLM-MOR and save computational
time. In addition, the second step yields an optimal order (or rather a minimal
order) of a reduced model.

Let (I''S),, € H™*™ be a reduced TLM-operator, which is obtained via sim-
ilarity transformation by the LANCZOs algorithm (5.72). Inducing the second
biorthogonal basis 5 y 5

(W)L Vikm = D (5.181)

mXxn

with m <« n < N we can present the the reduced TLM-operator (I'S),, as

follows: y y o
(W)I(rs),vV = DT. (5.182)

Using the eigenvalue decomposition of T
T =UAU", (5.183)

and substituting (5.182) and (5.183) into (5.78) we obtain oblique-oblique pro-
jection

H, =QVVU@GI-A'U'D"'W'D'WTR. (5.184)

n2i1

Using the orthonormal basis

9

(V)ﬁxyz‘v/’nXm = ij’rn (5185)
we can write eq. (5.184) as oblique-orthogonal projection
H,,, =QVVUQI-A)'U'V'D'W'R. (5.186)

The sketch of TLM-MOR based on the two step reduction approach is given
below.

Algorithm 5.6.1. The TLM-ROM based on the two step reduction approach

Step 1. The S-symmetric version of the LANCZOs algorithm (Algorithm 5.3.3,
steps 1-19) is applied directly to the general TLM-operator I'S in order to gain
the reduced TLM-operator (I'S),. The number n is determined during the
computation by eigenvalue convergence criteria, which are based on the obser-
vation of eigenvalues, corresponding to a needed frequency range. In order to
avoid the large computational overheads required by eigenvalue computation
at the first step, we can check the eigenvalues in predefined iteration intervals,
or we can use some empirical formulas, e.g. the number of iterations required
in the first step is of the order O(N3). The pre-reduced system is obtained
via oblique projection in (5.72). We have to store the tridiagonal matrix T,
diagonal matrix D and the biorthogonal V' — W basis.
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Step 2. After the first step the model order of I'S is reduced (from N to n),
and the second step is applied in order to gain an optimal model size m < n. For
this purpose the PVL-, PVA-, SI-via-LANCZz0S-, SI-via-ARNOLDI-approaches
can be utilized, depending on the basis to be generated. The oblique-obligue or
oblique-orthogonal projections can be performed by (5.184) and (5.186) respec-
tively. For example, we form the shift-inverse pre-reduced trigiagonal matrix

T = (T — 2I)™" (5.187)

and carry out the Algorithm 5.3.5, yielding eigenvalues of m x m-matrix (T),
which also approximate the eigenvalue spectrum of the pre-reduced matrix T,,.
Thus, the impulse transfer function of the system (5.70) is obtained by (5.186)
instead of (5.76). The typical iteration number for the second step is less than
50. The stop criteria are defined very similarly to the ones in the first step.

As we can see, the main disadvantage of the two step reduction approach
is to gain the inverse of (’_f’ — zoI)~!. From this point of view, the use of the
SI-via-ARNOLDI-approach is preferential. Even though SI-via-LLANCZOS-process
also requires

9

(- ZOI)T)f1 = (@ - ZOI)—l)T ,

i.e. one additional computational "chip" transposition operation, the utiliza-
tion of the ARNODI process for the shift-inverse and/or PADE-based approaches
seems to be more stable and more accurate .

5.6.2 Model Order Selection

The model order selection represents a trade-off between minimum complexity
and maximum accuracy of a reduced-order model, and, thus, allows its optimal
order to be gained.

Im[z]

<NQ

> » Re[z]
»

-

Figure 5.3: Sector of the ROC.

If the KrYLOV subspace methods are applied directly, from the previous
sections we have seen, that the order of the reduced model is primarily given
by the size of the reduced TLM-operator (I'S),,, having the order of n. Such a
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reduced-model consists of a complete frequency spectrum of the TLM-system,
including the spurious components as well. First of all, we select the eigenvalues
lying in a sector of the unit circle, which corresponds to the demanded frequency
range [f1, f2], and we also discard all spurious eigenvalues as eigenfrequencies
outside the needed frequency range. For this purpose we find a relation between
an angle ¢ in the complex plane and a corresponding operating frequency f
(Fig. 5.3).
Generally, we can write

|A[e? = e -2, (5.188)

From (5.188) we have the attenuation

a=In(|A]), (5.189)
and the operation frequency
14 L4
= = —Jmazx 1
/ 2w At 7rf (5.190)

of a mode. That is the magnitude of an extracted complex eigenvalue \; yields
the attenuation of the mode, and the angle of \; corresponds to the operating
frequency f;. The relevant angles 1 and 9 for the limit frequencies f; and fs
can be determined by (5.190). Then, we keep the eigenvalues of (I'S),, (and/or
poles of the transfer function), which are placed in a sector bounded by angles
1 and oo (Fig. 5.4), and in this sector we discard the eigenvalues for which
|A| > 1 in order to preserve the passivity and stability. The ROC corresponding
to the frequency band [f1, f2] is shown in Fig. 5.4.

Im[z]

needed [0
frequency band — 2

/ e P
> Re/z]

Figure 5.4: Sector of the ROC corresponding to a needed frequency band.

We note due to the symmetry of the poles for the linear case, the order of
the model has to be doubled, or in other words, the sector [¢1, 2] must be
mirrored into the lower semicircle with regard to the real z-axis.

An intuitive approach for decreasing the model order would be to observe
the resonance peaks (the zeros of the transfer function) and select those which
exert dominant influence on the transfer function. This selection can be carried
out by the Signal-to-Noise Ratio (SNR) technique, which is a powerful tool in
digital signal processing that allows the extraction of the important information
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about a system from a corresponding reduced system matrix. The reduced
matrix consists not only of the signal, but also of noise. The SNR method
allows the separation of the desired signal from the coexisting noise. This can
be achieved by a selection of important eigenvalues corresponding to a signal
in a needed frequency band and, hence, the order of an model extracted by
KRYLOV subspace methods can also be reduced.

For example, let we consider the transfer function given by (5.63). We denote
the residues of the transfer function from p; to port ps via c. In order to separate
the signal from noise, we sort n extracted eigenvalues so that the consequent
resonance peaks are in increasing order. That is

ler] > Jea| > ez > ... > eg] > ... > en]. (5.191)

And we introduce a SNR given by

12
SNR(q) = 10logy, M : (5.192)
j=q+1 1%

The model order of the system or signal associated with data matrix T;, is
given from the dimension of the underlying signal space, or equivalently from
the approximated rank of T},. The order of the model is selected as ¢ if

SNR(q) > Dr, (5.193)

where Dr is a threshold, the reasonable value of which can be determined by
satisfying the following: N N
H —H? | < e. (5.194)

In the case of multi-port systems the situation is more complicated. For
example, we consider a MIMO-system with p; input and p, output ports. The
thresholds D7’ for each transfer function from port i to port j are determined
by satisfying (5.194). The value Dy is selected as the least value from the set
of D77, i.e.

Dr = min {D¥}, i=1,2,...,p1,5=1,2,...,p2. (5.195)

Some of the responses Hfl’j may contain one or more poles, which already
exist in other responses. The final set of poles must be unique for all of the
p1 X pg responses. These multi-poles should therefore be disregarded, e.g. by
a simple sorting. Moreover, some poles can be clustered, and techniques called
pole clustering should be applied [120]. This technique consists of averaging
poles which numerically differ from a given tolerance and that in theory refer
to the same natural frequency. The pole clustering allows to adaptively modify
the network’s natural frequencies by seeking the most likely values among those
found in the entire set of simulated responses. Pole clustering, however, is a
very critical operation which strongly effects the model accuracy, and is not
considered in the present doctoral work. It could be more propitious to save the
complete set of poles for each single input-output transfer function in a MIMO-
system, than to perform the pole clustering for the multi-port transfer function
of this MIMO system.

In conclusion, let us summarize the procedure of model order selection

(MOS).
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Algorithm 5.6.2. The Model Order Selection procedure.

(1) Select the poles lying in a sector in the complex z-plane in accord with a
frequency range in which the impulse transfer function must be approximated.

(2) Selection of true poles, which have converged and should not change
significantly between MOR-algorithm iterations.

(3) Select the stable poles, which are placed inside and on the unit circle.

(4) Select the order of the model using the SNR technique. The most sig-
nificant natural frequencies have been taken into account. Poles which do not
significantly affect the system response (very low value) may be discarded.

(5) Validation of the model, for example by means of the Mean Square Error
(MSE) procedure.

5.6.3 Time Response of the TLM Reduced-Order Model

Using the inverse z-transform of (5.63)

R 22 pld) ) (5.196)
we obtain the impulse response of the TLM-system from the port ¢ to the port
4 in time-domain as follows:

RO =3 e () (5.197)
h=1
Using eq. (5.188) we obtain from (5.197) the expression

hOD ] =37 e g [Fh 70D (5.198)
n=1

Because of the linearity and passivity of the TLM-system the poles of the
transfer function (5.63) with p; = py are complex conjugated (for more details
see [3]). Taking this property into account from (5.198) we derive that

n/2
RODE) =37 2687 a7 cosQ(k — 1) . (5.199)
A=1
Eq. (5.199) allows us to recover the time-domain response of the TLM-system
from the residue/pole distribution of the transfer function in the z-domain.



Chapter 6

Numerical Applications

This chapter contains numerical studies from the application of MOR to the
TLM analysis of various lossless and lossy electromagnetic structures. The com-
putational efficiency of MOR-techniques based on the ARNOLDI and LANCZOS
processes is discussed here. The convergence properties of certain proposed al-
gorithms and the accuracy of generated reduced-order models are considered
in detail. The results are presented from the application of TLM-MOR for the
extraction of the matrix transfer function representations of the ROM, such as
generalized impedance or scattering-parameter matrices. In all cases, MAT-
LAB 6.5 realizations of the MOR-algorithms are used for computations. The
reference computational station is a PENTIUM IV 3 GHz machine with 1 GB
RAM.

6.1 Cubic cavity

In order to test the convergence of the ARNOLDI and LANCZOS algorithms we
consider a rectangular air-filled cubic 1 cm-resonator with ideally conducting
walls. The excitation node and the observation point are placed at the opposite
edges of the resonator according to Fig. 6.1.

Output node
™
1cm i —A_
1 1
' /.
1
1
1
1
1
i
lcm ," """"""""
,r—-'(,
s 1
»’t-;'
" ’
Excitation node

Figure 6.1: Simulated cubic cavity.
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Figure 6.2: Spectral power of the cubic cavity (Fig. 6.1) computed by the ATLM
and LTLM algorithms.

The structure is investigated for the 5-cell discretization in each direction.
The corresponding state vector of wave amplitudes has a dimension of 12 x 5 x
5 x 5 = 1500; thus, the dimension of the original discretized lossless model is
1500.

The resonances of the original discretized system are determined by the
FOURIER transformation of the TLM time-domain response. The cavity is ex-
cited by the DIRAC pulse, and the TLM time evolution scheme is performed for
500 steps.

Then, we applied MOR-algorithms in order to extract the eigenfrequencies
of the cavity and to generate a reduced-order model, which approximates the
transfer function from the excitation to the observation point.

We considered all possible modes of the cavity, including nonphysical spuri-
ous modes as well. For the 5-cell discretization all eigenvalues corresponding to
the resonances are converged at 68 ARNOLDI and/or LANCZOS algorithm steps,
and they are placed on the unit circle in the complex z-plane due to no losses
in the cavity (see Fig. 6.2(f)). Thus, the order of the generated reduced-order
model is 68, which corresponds to the reduction of the TLM operator by a factor
of 1500/68 ~ 22.

The spectral power of the cavity obtained by the TLM time evolution scheme,
the ARNOLDI (ATLM) and non-symmetric LANCZzOS algorithm (LTLM) is shown
in Fig. 6.2. This figure shows the better convergence of the ARNOLDI algorithm
in comparison to the LANCSzOS procedure at 40 steps. This phenomena is
also demonstrated in Fig. 6.6, where the convergence of eigenvalues computed
by MOR-algorithms is presented. Converged eigenvalues can almost certainly
be recognized by their position close to the unit circle in the complex plane
(see Fig. 6.6(f)). The S-symmetric LANCZOS (S-LTLM) algorithm has a similar
convergence behavior as its general nonsymmetric variant.

In general, the ARNOLDI process exhibited better convergence than LANC-
70S based types for this simple cavity. This well-known phenomenon can be
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explained through the fast loss of the bi-orthogonality in the non-symmetric
and S-symmetric procedures, whereas the ARNOLDI process generates the or-
thonormal basis nearly without losses of orthogonality. In order to study losses
of orthogonality (and/or biorthogonality) we computed scalar values d;;, given
by

amezes = 20logyg [(wivj)] (6.1)
ittt = 20logyg |(vilvy)|, 1,5 =1,2,...100,

and depicted them in Fig. 6.3 and Fig. 6.4. These figures show how the LANC-
70S algorithms lose the biorthogonality property; already after 15 steps the
biorthogonality of both the non-symmetric and the S-symmetric versions is de-
teriorated, that is clearly to see in Fig. 6.4(b)-(c). By comparing Fig. 6.3(a) and
Fig. 6.3(b) we can conclude that the ARNODI procedure generates an "ideal"
orthonormal basis.

In order to improve the deteriorated basis biorthogonality in the LANCZOS
algorithms the two-sided modified GRAM-SCHMIDT (TSMGS) process process
has been proposed in the recommended literature (see APPENDIX B). How-
ever, investigations showed that the rebiorthogonalization by TSMGS not only
not recovered the biorthogonal property, but also additionally deteriorated it.
A comparison between the results with and without the rebiorthogonalization
at the various step numbers is presented in Fig. 6.4(b) and Fig. 6.5. For ex-
ample, the performance of rebiorthogonalization by TSMGS at each 3rd step
destroys the biorthogonal basis completely, and the TSMGS process at each 7th
step significantly corrupts the biorthogonality, that can be seen by comparing
Fig. 6.4(b) and Fig. 6.5(c).

TABLE 6.1 and TABLE 6.2 contain the norms of residual vectors. The small
norms of the ARNOLDI residuals (see TABLE 6.1) and left and right LANCZOS
residuals (see TABLE 6.2) at 68 steps indicate the convergence of the extracted
eigenvalues. We note that the residual norms in the ARNOLDI process are less
than left and right residual norms in the non-symmetric LANCZOS algorithms
by a factor of O(10%), whenever the convergence is achieved.

A vector of the condition numbers for the eigenvalues of the reduced upper
HESSENBERG H,, and tridiagonal T;, matrices is observed as well. These con-
dition numbers s; are the reciprocals of the cosines of the angles between the
left and right eigenvectors, and they are unique only if the extracted eigenval-
ues are simple. Roughly speaking, if perturbations of the order e are caused
in the matrix (I''S), reduced by KRYLOV subspace methods, then an eigen-
value \; can be perturbed by an amount ¢-s;. Thus, if s; is big, then small
changes in (I'S),, can induce large changes in the eigenvalue A;. In this case \;
is regarded as ill-conditioned. Comparing TABLE 6.1 and TABLE 6.3, we con-
clude that eigenvalues of the LANCZOS trigiagonal matrix T, are more sensitive
to its changes than eigenvalues of the ARNOLDI matrix are to the changes in
H,,. (The eigenvalues of the reduced matrices are obtained by means of the
eigenvalue decomposition with balancing).

Large condition numbers imply that (I'S),, is near a matrix with multiple
eigenvalues. The proof and more details are given in [48].

Indeed, at 68 steps the unique eigenvalues 0.9045 + 70.4265 are presented
in the eigenvalue spectrum extracted by both the LANCZOS and the ARNOLDI
algorithms. Performing the algorithms for 75 steps, we obtain multiples of
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Table 6.1: Convergence and condition numbers of the ARNOLDI eigenvalues.

[|7res] |2 condition number
steps min ‘ mean ‘ max min ‘ mean ‘ max
10 0.059 0.337 0.411 1.00 | 1.14 1.19
20 0.008 0.246 0.359 1.00 | 1.12 1.19
30 0.001 0.231 0.420 1.00 | 1.35 2.48
40 3.4-107° 0.131 0.249 1.00 | 1.07 1.20
50 3.6-1077 0.095 0.311 1.00 | 1.13 2.00
60 | 8.2-1071° 0.031 0.088 1.00 | 1.00 1.01
68 | 14-107'7 | 86-107% | 58-10°7 | 1.00 | 1.00 1.00
70 | 83-10718 | 46-107% | 2.9-107% | 1.00 | 11.86 | 316.44
75 | 2.2-10718 0.001 0.023 1.00 | 152.98 | 5.2-103

these eigenvalues: in the LANCZOS eigenvalue spectrum we observe 0.9042 +
70.4266, and the ARNOLDI eigenvalue spectrum additionally contains the values
0.9024+70.4276. In addition, doubles for 1 and —1 are presented in the extracted
spectra. This phenomenon is very well indicated by a large condition number
of the order O(10?), which is computed after 75 ARNOLDI steps are performed
(see TABLE 6.1).

The non-symmetric LANCZOs algorithm exhibits relatively large condition
numbers already after 15-20 steps, which indicates the loss of the basis biorthog-
onality, and the algorithm tends to yield spurious multiples of the real existing
eigenvalues. The S-symmetric LANCZOS method generates a tridiagonal matrix
similar to one formed by the nonsymmetric version, i.e. computed eigenvalues
have the same sensitivity.

Table 6.2: Convergence of the LANCZOS eigenvalues.

[[rres|l2 [[res| |2

steps min mean max min mean max
10 0.047 0.420 0.818 0.011 0.202 0.900
20 0.003 0.010 0.019 1.7-1074 0.004 0.015
30 1.7-107% 0.095 0.832 6.8-107"7 0.123 1.133
40 1.1-107° 0.025 0.230 0.001 0.045 0.112
50 3.2-1077 0.030 0.460 3.6-107° 0.028 0.535
60 2.1-1071° 0.001 0.007 0.002 0.011 0.038
68 1.3-107*®* | 1.2-107¢ | 1.1-107° | 1.1-10°¢ | 1.2-107° | 4.4-107°
70 3.3-10716 0.006 0.370 46-1072 0.006 0.356
75 4.6-1071° 0.009 0.654 4.7-10720 0.010 0.657
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Table 6.3: Condition numbers of the LANCZOS eigenvalues.

condition number

steps | min ‘ mean ‘ max

10 3.14 5.89 9.33

20 11.92 | 59.18 | 107.81
30 2.40 56.78 | 114.47
40 2.52 55.17 | 151.86
50 2.52 67.86 | 152.79
60 10.05 | 65.26 | 142.20
68 10.05 | 63.33 | 117.09
70 1.00 | 61.55 | 117.09
75 1.00 57.56 | 117.09

From thorough investigations we can conclude:

the LANCZOS methods exhibit slower convergence than the ARNOLDI al-
gorithm due to their losses of basis biorthogonality;

the utilization of the very expensive rebiorthogonalization does not im-
prove the biorthogonality property, and the biorthogonality is even de-
stroyed in some cases;

the ARNOLDI algorithm generates an orthonormal basis nearly without
the loss of orthogonality;

eigenvalues of the reduced LANCZOS trigiagonal matrix are more sensitive
to its changes than eigenvalues of the reduced ARNOLDI to its respective
changes;

an approximation error of the LANCZOS algorithms is larger than that
of the ARNOLDI process due to the fast losses of biorthogonality and the
high sensitivity of computed eigenvalues to small changes in the reduced
tridiagonal matrix. The biorthogonality loss contributes errors to elements
of the reduced matrix, and these errors can additionally make a significant
impact on the accuracy of the eigenvalue computation.
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Figure 6.3: Orthogonality and biorthogonality of bases generated by the
ARNOLDI and LANCZOS algorithms, respectively, for the cubic cavity, 3-D view.
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Figure 6.4: Orthogonality and biorthogonality of bases generated by the
ARNOLDI and LANCZOS algorithms, respectively, for the cubic cavity, 2-D view.
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Figure 6.5: Influence of rebiothogonalization on the biorthogonal basis generated
by the LANCZOS algorithm.
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Figure 6.6: Convergence of eigenvalues extracted via the ARNOLDI (crosses),
nonsymmetric (circles) and S-symmetric (triangles) LANCZOS algorithms.
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6.2 Ideal Waveguide Resonator

In order to test the accuracy and convergence of the proposed MOR and evaluate
its computational efficiency we applied it to the eigenmode analysis of an ideal
resonator based on the WR-1800 waveguide. More specifically, taking advantage
of the symmetry of the structure, only one eighth of the resonator was analyzed,
as depicted in (Fig. 6.7). The front and left walls of the eighth are ideal magnetic,
other walls are ideal electric, when the Hy,-mode is to be considered. The
modeled domain has been discretized using a 20 x 10 x 20 TLM grid of sizes
along the z—, y— and z— directions of Az = Ay = 11.43 mm, Az = 9.94 mm.

Y

\ iz a2

x
s output plane

AR

input plane

Figure 6.7: Simulated eighth of the ideal resonator.

The Arnoldi, nonsymmetric and S-symmetric Lanczos algorithms

This structure is simulated by the ARNOLDI, non-symmetric and S-symmetric
LANCzOs algorithms, and results are compared with the resonator spectrum
obtained by the FOURIER transform of the TLM time response. The E,-field
component is observed.

In order to test the accuracy of the implemented MOR-techniques, the res-
onance behavior of the resonator is computed as follows:

o a reduced-order model approximating the transfer function for the E,-
component from the input plane to the output plane with an optimal
order of 14 is generated;

e time response of the resonator is recovered in the output plane ;

e the resonator spectrum is obtained by the FOURIER transform of the time
response in the output plane.

Fig. 6.8 shows the comparison between TLM and the S-symmetric LANCZOS
process. The spectrum of the resonator obtained by the ARNOLDI procedure
is presented in Fig. 6.8. We remark that with the small number of KRYLOV
subspace method steps it is impossible to look ahead, which resonances will be
obtained first. Fig. 6.8(a) and Fig. 6.8(b) depicted after 150 S-symmetric LANC-
70S and ARNOLDI steps have been performed, are good examples of this point.
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The calculated spectra are in excellent agreement with resonance frequencies
calculated in an analytical way.

As the second start vector for the non-symmetric LANCZOS algorithm the
vector |w;) = S|v1) has been chosen, which is similar to the S-symmetric ver-
sion. We only note that if the second start vector is randomly generated, more
algorithm steps have to be performed in order to achieve the convergence.

From the whole eigenlaue spectrum (Fig. 6.9) only 14 eigenvalues in the com-
plex plane are necessary in order to reconstruct the spectrum of the resonator
in the frequency band 0 — 5.5 GHz.

The check of norms of residual vectors is used as a stopping criterion. The
process is stopped when the norms of residual vectors for approximating eigen-
values have achieved 104

The BiConjugate Gradient Based S-symmetric Lanczos Algorithm

In order to solve the equation
V) = (A = 201)|0p41) (6.3)

with respect to |0,41) for |v,) = |v1)start Dy an iterative projection, BCG-
LTLM-S requires 489 steps at the error ¢ = 10~%. However, the convergence
for eigenvalues approximating the resonator in the frequency band 0 — 5.5 GHz
is already achieved at 420 steps with the norms of residual vectors about 10~4.
Thus, we do not need to solve eq. (6.3) by further projections, and we can
extract the eigenvalue spectrum from the first iterative solution. That allows us
to save computational time and memory consumption essentially, because the
biorthogonal basis generated during the solution of (6.3) for |92) must not be
stored for further oblique projection (to obtain solutions for |v3), |04), ..., |O)
), which is actually omitted. In this case the BCG-LTLM-S variant is similar to
LTLM-S (with another start vector), and can be used for an alternative and/or
additional check of the convergence of LTLM-S by checking the convergence of
|D2) at each iterative step. On the other hand, BCG-LTLM-S requires more
computations and memory for one algorithm step than LTLM-S. Additionally,
in this case the convergence of BCG-LTLM-S is not dependent on the location
of the expansion point z5. A comparison of resonator spectra obtained by the
TLM time evolution scheme and BCG-LTLM-S is shown in Fig. 6.10.

The Shift-Inverse Approach Using the S-symmetric Lanczos Algo-
rithm

In order to obtain seven approximating eigenvalues the Shift-Inverse approach
based on the S-symmetric LANCZOS process (SI-LTLM-S) is applied. The algo-
rithm extracts eigenvalues closed to an expansion point zg first. For this purpose
we have to solve the equation eq. (6.3) with |z9| > 1 for each algorithm step n
by a simple iterative way.

The spectrum of the resonator and approximating poles obtained via 44 SI-
LTLMS-S steps for |z9| = 1.1 and 166 steps for |z9| = 2.0 are shown in Fig. 6.13
and Fig. 6.12 respectively. To solve eq. (6.3) when ¢ = 1076 and |z| = 1.1 ,
155 iterations are needed; and when |z9| = 2.0 only 23 iterations are necessary.
If the expansion point is chosen nearby the unit circle, SI-LTLM-S becomes
very expensive. And on the other hand, the expansions around a remote point
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exhibit the higher approximation error (see TABLE 6.4). The norms of the left
and right residual vectors are large, in some cases up to 10~!. On the other
hand, if we change the stopping criteria to the smallest residuals, in which the
order of norms is 10~ or less, then additional SI-LTLM-S steps can lead to its
crash due to the fast biorthogonality loss. Numerous simulations have shown
that SI-LTLM-S is very critical to the number of algorithm steps and suffers
from instability.

The S-symmetric Lanczos and the Padé-via-Lanczos Algorithms

The S-symmetric LANCZOS process generates a reduced matrix having the tridig-
onal form. In order to get the eigenvalues of this matrix, the EigenValue
Decomposition (EVD) can be utilized, but that can be very computationally
expensive if the pre-reduced tridiagonal matrix has a large order. Admit-
tedly, we often need a few poles approximating our electromagnetic system
in a specific frequency band. For this reason we can only extract eigenvalues
which are in a sector of the unit circle corresponding to the frequency band
0 —5.5 GHz. The PaDE-via-LANCzOS (PVL) approximation and the Shift-
Inverse-via-S-symmetric-LANCZOS (SI-LTLM-S) approach are very suitable for
this task. Fig. 6.14 shows the eigenvalue spectrum gained via 30 PVL steps, and
compared with the eigenvalues obtained by EVD. Even though the expansion
point can be located inside or on the unit circle in comparison to the SI-LTLM-S,
the best results are achieved if |1 — 2| = 0.1.

Table 6.4: Comparison of simulation approaches for the ideal waveguide res-
onator (Fig. 6.7).

Method? Steps, N | CPU time, % | Memory?, % | error, %
TLM 2 500 100 100 -
ATLM 360 22x 100 Nx 100 1
LTLM 417 65 600 3.5

LTLM-S 410 50 400 3.5

BCG-LTLM-S 420 140 11 x 100 3.5
SELTLM-S ., _s | 116 (x 23) 340 600 12.5
SI—LTLM—S|ZO‘:1_1 44 (x 155) 910 600 4.5
LTLM-S + PVL | 410 (+ 30) 50 400 35

LATLM - ArnoLpI-based TLM-MOR, LTLM - non-symmetric LANCzos-based
TLM-MOR, LTLM-S - S-symmetric LANCzoOs-based TLM-MOR, BCG-LTLM-S -
BiConjugate Gradient TLM-MOR based on the S-symmetric LANCZOs algorithm,
SI-LTLM-S - Shift-Inverse-based TLM-MOR using the S-symmetric LANCZOS
algorithm, LTLM-S + PVL - the first - S-symmetric LANCz0Os-based TLM-MOR and
the second - Pade-via-LANczos-based TLM-MOR

2Memory needed for one algorithm step
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Concluding Remarks

In conclusion we give the comparative studies for the proposed MOR-techniques.
A short summarization is presented in TABLE 6.4.

From all proposed MOR-techniques the ARNOLDI algorithm exhibits the
smallest error. However, huge computation time and memory requirements have
to be taken into account. The LANCZOS procedures converge slower and allocate
bigger errors in comparison to ARNOLDI due to a growing loss of biorthogonality
with the increasing number of steps. The S-symmetric version of the LANCZOS
algorithm is assumed to spare computational resources, but results in a slightly
bigger error, also due to the loss of biorthogonality. For this simple structure, the
S-symmetric LANCZOS algorithm is 15 % faster than the classical non-symmetric
LANCzOS and 44 times faster than the ARNOLDI algorithm. In addition, the
S-symmetry requires less memory versus the general non-symmetric approach,
because we do not need to store two previous left vectors. The utilization of very
expensive rebiorthogonalization in the LANCZ0OS methods does not significantly
improve the approximation quality. The usage of PVL and SI-LTLM-S for
post-processing allows the extraction of a few eigenvalues approximating the
resonator in a needed frequency band and presents an alternative to the use of
standard EVD. The biconjugate-based LTLM-S algorithm provides alternative
and/or additional stopping criteria; however, its resource requirements make
it less attractive. The absolute outsider is the sift-inverse approach with a
simple iterative scheme due to its approximation error, instability and high
computational time.
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Figure 6.8: Spectrum of the resonator (Fig. 6.7). The analytically calculated
resonance frequencies (in parentheses) for Hgm-modes are compared with sim-
ulation results obtained by the time-domain TLM, ATLM and LTLM-S.
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Figure 6.9: Eigenvalue spectrum of the resonator (Fig. 6.7) in 3-D-view ex-
tracted via 410 S-symetric LANCZOS algorithm steps.
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Figure 6.10: Spectrum of the resonator (Fig. 6.7) obtained by time-domain TLM
and BCG-LTLM-S.
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Figure 6.11: Eigenvalue spectrum of the resonator (Fig. 6.7) in 2-D-view ex-
tracted via 410 S-symetric LANCZOS algorithm steps with and without refining.
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Figure 6.12: Eigenvalue spectrum of the resonator (Fig. 6.7) in 2-D-view ex-
tracted via SI-LTLM-S algorithm steps without refining. Crosses denote poles,
whereas the rhombus denotes the expansion point zg.
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Figure 6.13: Spectrum of the resonator (Fig. 6.7) obtained by the time-domain
TLM and SI-LTLM-S for |zp| = 1.1 and for |zo| = 2.0.
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Figure 6.14: Pole distribution of the resonator (Fig. 6.7) in the complex z-plane
obtained via EVD (crosses) and PVL (circles) from 410 x 410 reduced matrix
generated by LTLM-S.
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6.3 Microstrip line Z-bend

A two-port sharp microstrip line Z-bend is investigated. The dimensions of the
Z-bend are shown in Fig. 6.15. The Z-bend is simulated by means of the Method
of Moments (MoM), the TLM time evolution scheme, the ARNOLDI, and the
nonsymmetric and S-symmetric LANCz0S MOR-algorithms.

4.10 mm

[ z « >
X
/ 9.02 mm
9.02 mm

‘//5'.74 mm
A

| / 0.794 mm

—» 2.46 mm

Figure 6.15: Dimensions of the Z-bend.

The used space steps are Az = 0.82 mm, Ay = 0.397 mm, Az = 0.82 mm,
and the number of cells along x, y and z are 14, 5, and 18, respectively. The
microstrip line is of the width 3Ax. The substrate with the thickness h = 0.794
having the relative permittivity e, = 2.2 and tand = 0.001 is 2Ay. The copper
sheet in the TLM is modeled as a very thin layer with the surface impedance
Ry = 0.025 Q. In the MoM simulations the metal layer with the conductivity
Oew = 5.8-107 S/m is 35 um thick.

First of all, the structure is simulated by means of the time-domain TLM
scheme. The Z-bend is excited by a GAUSS pulse voltage in the plane z = 1Az
(see Fig. 6.15). The S-parameters are calculated using a microstrip "through
line" of a length of 14.76 mm (see Fig. 6.16(a)). Reference planes for reflected
and for transmitted waves are placed at z = 2Az and z = 17Az, respectively.
The Z-bend is embedded in a box with ABC as reflection-free walls.

U

U line U line exe bend
11 21 Uy,
bend

(a) Reference microstrip line layer (b) Z-bend layer

Figure 6.16: Signal layers of the reference line and the Z-bend (Fig. 6.15).

Next, the MOR-techniques are applied to extract the S-parameters of the
Z-bend. The S-parameters obtained from simulations are presented in Fig. 6.17.
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Figure 6.17: S-parameters for a Z-bend (Fig. 6.15) obtained by the MoM, the
TLM and MOR-techniques.

The MOR-techniques give very good results compared with the TLM time evo-
lution scheme. For this example the goal of MOR is to approximate the voltage
transfer functions 7Y, and HY, of the Z-bend from port 2 to port 1 (transmis-
sion) and from port 1 to port 1 back (reflection), respectively and to generate a
reduced-order model with an optimal order.

According to Fig. 6.16, the S-parameters of the Z-bend can be obtained as
following

SELM(f) _ ffnd(f) — ﬁne(f) S%OR(f) _ ﬂlUl(f)Uemc(f) _ izlne(f)

SEM() = o sion(s) = eupledl)
11 11

(6.4)

A brief comparison between simulation approaches with respect to computa-

tional efforts are coalesced in TABLE 6.5. Since the investigated structure does

not indicate high resonance behavior, all MOR-techniques do not expedite the

simulation processes in comparison to the time-domain TLM. The number of
algorithm steps is chosen to minimize the approximation error.

Table 6.5: Comparison of simulation approaches for the microstripline Z-bend
(Fig. 6.15).

Method TLM | ATLM | LTLM | LTLM-S

Steps for HY}, N | 1000 240 290 270

Steps for HY,, N | 1000 230 250 250
CPU time', % 100 |26 x 100 | 135 105

I The elapsed time is referred to the largest number of algorithm steps.

Though LTLM-S has the computational time effort similar to TLM, this
algorithm gives a bigger error for S-parameters in comparison to the ARNOLDI
and to the nonsymmetric LANCZO0S procedures. This behavior can be explained
that the S-symmetric algorithm loses biorthogonality faster than the nonsym-
metric LANCZOS algorithm, because the left vectors in LTLM-S are constructed
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without accounting their previous ones. The left start vectors in the LANC-
70s algorithms are chosen as one time scattered excitation vectors. The loss of
biorthogonality in LTLM-S causes an error accumulation and, as following, an
instability in the results. After 300 steps the algorithm crashes, which does not
occur in ATLM and LTLM. The ATLM algorithm is proven to be very stable.

Fig. 6.18 indicates deviations of the S-parameters obtained by the MOR-
techniques from S-parameters gained via the FOURIER transforms of the TLM
time responses. The ATLM algorithm features a slightly lesser error than LTLM.
However, ATLM is an "absolute outsider" if we compare the computational time.
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@ - ' 8 25
° I \ &
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? AN I 15¢
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] 1
;
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(a) Deviations of S1i-magnitudes (b) Deviations of S21-magnitudes

Figure 6.18: Deviation of S-parameters obtained by MOR-techniques for a Z-
bend (Fig. 6.15) obtained by MOR-techniques.

Table 6.6: Dependance of the Z-bend (Fig. 6.15) model' ™2 order and So;-
deviation on SNR.

SNR,dB | Model order | Deviation, dB
0 64 0.44
100 62 0.44
90 62 0.44
80 60 0.44
70 56 0.44
60 50 0.46
50 46 0.47

48 (SNR,p¢) 44 0.40
40 40 0.89
30 24 2.40

In order to approximate HY, (f)- and HY, (f)-transfer functions, 64 and 70
poles/residues are required, respectively. The poles are obtained by means of the
eigenvalue decomposition, followed by poles selection in a sector of the unit circle
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Table 6.7: Dependance of the Z-bend (Fig. 6.15) model' ! order and Si;-
deviation on SNR.

SNR,dB | Model order | Deviation, dB
% 70 1.25
100 68 1.25
90 64 1.25
80 60 1.22
70 56 1.29
60 46 1.24

58 (SNR,¢) 44 1.15
55 40 1.27
50 36 1.42
40 28 3.5

corresponding to the frequency band 0 — 20 GHz. Fig. 6.19 exhibits the pole-
residue distribution of the voltage transfer function 1Y, in the complex z-plane
(The solid line corresponds to the unit circle). The eigenvalues approximating
the transfer functions HY, and HY, are concentrated in a sector of the circle
between —42° and 42° with 0.9 < |z| < 1.0. We note that two generated
reduced-oder models are characterized by their relatively high order.

The model’s order can be additionally reduced by introducing a so-called
threshold. We can calculate the SNR for the residues and compare it with
the threshold. The residues, passing over the threshold, form the order of
the reduced model, and no trespassed residues/poles are discarded. The non-
symmetric version of the LANCZOS algorithm is selected for Model Order Se-
lection (MOS) investigations. Strictly speaking, this is an optimal order of the
macro-model obtained by the nonsymmetric LANCZOS process, selected using
SNR. The dependance of the model orders and S-parameter deviations on the
SNR is presented in TABLES 6.6 and 6.7. The orders of the optimal reduced
models are chosen at SNR = SNR,,; if the deviations of the S-parameters are
minimal. In this case the orders of the one-port models are reduced down to
44 and the order of the two-port microstrip line Z-bend is arranged to be 88
at the initial state vector dimension of N = 22680. Thus, the corresponding
reduction factor for the two-port model is 257, and for the one-port model is
515, respectively. Fig. 6.20 shows the influence of SNR values on the accuracy
of computed S-parameters, and depicts the So;-parameters and their deviations
from the original TLM simulation.

Poles positions in the complex z-plane for the microstrip line Z-bend for
SNR = oo and SNR = SNR,,: cases are shown in Fig. 6.21. Comparing these
figures we see that several computed eigenvalues overlap; however, most of them
are distant from each other with some tolerance and gathered in a cluster or in
a pair. Furthermore, some of these poles are very difficult to distinguish when
they are in a pair or in a cluster.

The pole clustering allows the reduction of a multi-port macro-model order
by searching the most likely values among those found in the port transfer
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responses. Pole clustering, however, is a very critical operation which strongly
effects the model accuracy. The store of all poles/residues for each port is
recommended, even though in this case the order of the generated multi-port
macro-model will be larger. Excluding the overlapped poles (see Fig. 6.21(b)),
the two-port ROM has an order of 77.

20 log, ( [H|)
40 :

20

Re{Z} 0

Im {7}

Figure 6.19: Pole-residue distribution of voltage transfer function from port 1
to port 2 in the complex z-plane with SNR = oo for the microstrip line Z-bend
(Fig. 6.15).

From our investigations we can conclude that the nonsymmetric LANCZOS
algorithm is optimal for the generation of the two-port macro-model of the Z-
bend in view of errors and elapsed time. The order of the extracted reduced
macro-models can be additionally decreased by introducing a SNR threshold. In
this particular case the order of the two-port model is secondary reduced from
134 down to 88, where the approximation errors are minimized. Even though
the pole overlapping and clustering allow us to additionally decrease the order
of the model, they are very critical operations and can affect the model accuracy
and stability (for more detail see [120]).
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Figure 6.20: Dependance of So1-parameters and their deviations on SNR thresh-
olds for the microstrip line Z-bend (Fig. 6.15).
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Figure 6.21: Poles position in the complex z-plane for a microstrip line Z-
bend (Fig. 6.15); circles denote poles responding for HY, approximation; crosses
denote poles responding for HY, approximation; solid line corresponds to the

unit circle.
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6.4 Coplanar Waveguide Impedance Transition

In this section a coplanar waveguide impedance transition is analyzed. Step
changes in the width of the center strip conductor of a Coplanar Waveguide
(CPW) give changes of the wave impedance. For the structure depicted in
Fig. 6.22, the middle CPW-section of a length of 4 mm has a lower wave im-
pedance than the first and the third CPW-sections of a length of 2 mm.

0.2mm

2mm

4 mm

/;mm

0.106 mm

0.635 mm

0.5mm 0.2mm

Figure 6.22: Dimensions of the CPW impedance transition.

Due to the symmetry of the structure in respect to the yz-plane only half of
the impedance transition is simulated. Since the even mode has to be considered
we can put an ideal magnetic wall in the middle of the strip line. Further, we will
consider the right half of the CPW wave impedance transition with dimensions
shown in Fig. 6.22. The half of the structure is embedded in a box with ABC
(reflection-free walls), except for the left wall, which is perfectly magnetic.

The transition is simulated with the space steps Az = 0.1 mm, Ay =
0.106 mm, Az = 0.4 mm; the number of cells along x, y and z are 8, 15 and 22,
respectively. The substrate with the thickness h = 0.635, having the relative
permittivity £, = 12.9 and tand = 10~* is modeled with 6Ay. The copper
conductors are 1Ay, i.e. one node thick. The external and middle signal strips
have widths of 1Az and 2Az, respectively. The ground plane is 5Ax in width.

First, the impedance transition is simulated by the time-domain TLM method
with an excitation as the GAUSS pulse voltage in the plane z = 1Az (see
Fig. 6.22). The S-parameters are calculated using a "through" CPW of a length
of 8.8 mm. Reference planes for reflected waves are placed at z = 3Az.

Then, in order to obtain the S-parameters using MOR-techniques we ap-
proximated the transfer function HY| for the reflected wave (from port 1 to port
1 back), i.e.

trans line U line
STLM _ 11 (f) _ U11 (f) SMOR — Hll(f)Uezc'(f) — Y1 (f) )
11 (f) Uﬁne (f) ’ 11 (f) U{zlne(f)

(6.5)
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Altogether, the impedance transition is simulated by the time-domain TLM
scheme, ARNOLDI, non-symmetric LANCZOS, and S-symmetric LANCZOS algo-
rithms. Fig. 6.23 shows the S-parameters obtained from simulations compared
with results provided by the ADVANCED DESIGN SYSTEM (ADS)-model. All
simulations are in a very good agreement.
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Figure 6.23: S-parameters for a CPW impedance transition (Fig. 6.22) obtained
by the ADS-model, TLM and MOR-techniques.

The ArRNOLDI algorithm yields a very good approximation of the initial sys-
tem discretized by TLM. The non-symmetric LANCZOS algorithm features some
error, especially for higher frequencies. The obtained results are in agreement
with the modeling by means of ADS. The second start vector w; in LTLM is
taken to be filled with ones. A choice of the left start vector as the scattered
right start vector, i.e. w; = Sv; gives rise to an unacceptable error. The right
start vectors v, are taken as the excitation vector.

Convergence cannot be achieved using the S-symmetric LANCZOS proce-
dure, because the algorithm is obviously destroyed due to the radical loss of the

biorthogonality.
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The whole discrete system is observable as a bad-convergent system, which
can be explained by the excitation operation. Only two nodes in the CPW gap
are excited with F, field components corresponding to the excitation voltage
Uezc-

A comparison between the time-domain TLM, ARNOLDI and LANCZOS al-
gorithms is outlined in TABLE 6.8. The implemented MOR-techniques do not
expedite TLM simulations; moreover, they are slower in comparison to them.

Table 6.8: Comparison of simulation approaches for the impedance transition
(Fig. 6.22).

Method Steps', N CPU time, % Order of the model
TLM 2 500 100 47 520
ATLM 1 000 very large 140

LTLM 1120 370 156

! The time needed for the generation of a completed reduced model including the
post-processing.

Limiting the number of approximating residues/poles by means of SNR, we
may secondary reduce the model orders down to 112 at SNR,,; = 55 dB for
both cases in TABLE 6.8.

From the above described results and investigations, we can firstly conclude
that the nonsymmetric LANCZOS algorithm gives an acceptable error at an
acceptable elapsed time. Secondly, the ARNOLDI approach approximates the
CPW impedance transition discrete system very precisely; however, its com-
putation time is a big drawback and makes the algorithm unattractive. The
generated macro-model is characterized by its large order, even after the op-
timal residues/poles selection is made. The achieved reduction factor for the
TLM-operator is only 424.
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6.5 Rectangular Microstrip Patch Antenna

Next, a rectangular microstrip patch antenna has been investigated. The an-
tenna design and the measurement are borrowed from [108]. The actual dimen-
sions of the microstrip patch antenna are shown in Fig. 6.24.
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z & >
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X
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/ 0.794 mm
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»> 2.46 mm

Figure 6.24: Schematic view of the rectangular microstrip patch antenna.

The space steps used are Az = 0.389 mm, Ay = 0.400 mm, Az = 0.265 mm,
and the number of cells along x, y and z are, respectively, 60, 16 and 100. The
rectangular path is 32Ax x 40Az. The feed microstrip line of the width 6Ax
is 50Az long. The substrate thickness is modeled with 3Ay, the additional 13
nodes in y-direction are chosen to model the free space. The copper layer is
modeled as a very thin sheet with the surface impedance Ry = 0.025 ().

The patch antenna is excited by a GAUSS pulse voltage in the plane z = 2
(Fig. 6.24). Using the time-domain TLM scheme the simulation is performed
for 6000 time steps due to a resonant behavior of the antenna; after that, 1380
S-symmetric Lanczos steps are done. The reference plane for reflected waves is
defined by 10Az from the antenna path. The S-parameters of the antenna are
computed through obtained impedances as

Zi - Zref

Sll - Zin + Zref ’ (66)
where the input impedance is calculated as
UE(f) Y (f)
ZEEM(F) = o 2O = = (6.7)
)= T HIY(f)

here U{{*'(f) and I{"'(f) are the reflected voltage and current obtained by
the FOURIER transform of the TLM time-domain responses; HYU and HIV
are transfer functions of U.,.(f) to the voltage and to the current in the ref-
erence plane, respectively, which are approximated by LTLM-S. The reference
impedance Z,. is taken 50 (.

The comparison between measurement and numerical solutions is presented
in Fig. 6.25. The S-symmetric LANCZOS algorithm yields a good approximation,
especially for the operating resonance at 7.5 GHz. In this case the LTLM-S
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Figure 6.25: Return loss of the rectangular microstrip patch antenna (Fig. 6.24).

algorithm is about 50 % faster (inclusive post-processing routines) than using
the FOURIER transform of the TLM time responses.

From the extracted 1380 eigenvalues, only 314 are needed for an approxima-
tion of the patch antenna in the frequency band 0 — 20 GHz. The approximating
eigenvalues are located in a sector of circle in the complex plain between —46°
and 46° with 0.85 < |z| < 1.0 (see Fig. 6.26). Thus, the order of the generated
macro-model is 314 for an initial state vector dimension of N = 1728 000, which
corresponds to the reduction factor of more than 5 000.

Using a SNR threshold of 40 dB, we can additionally reduce the model or-
der down to 248; in this case the reduction factor is about 7 000. The positions
of the eigenvalues passed over the threshold are shown in Fig. 6.27. Compar-
ing Fig. 6.26 and Fig. 6.27 we can see that the passed eigenvalues are slightly
rarefied, that we can especially observe at sector boundaries.

Next, we compare models extracted by MOR-techniques and System Iden-
tification (SI) approaches. Simulations of the patch antenna (Fig. 6.24) by
PRrONY Model based Signal Identification (PMSI) is given in [27]. In order to
extract the system poles (and to approximate the antenna impedance) from the
time-domain transient responses obtained by the time-domain TLM scheme,
two main approaches have been considered: the polynomial Last Square (LS)
approximations [79] and the pencil matrix (PM) method [57]. The order of the
model obtained by PMSI is significantly lower than the order of the reduced-
order model generated by S-LTLM. Pole positions of the models obtained by SI
are shown in Fig. 6.28. In [27] it has been shown that the PM model of order
30 yields a very good approximation of the S-parameters in the frequency band
0 — 20 GHz.
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extracted |
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Figure 6.26: Extracted eigenvalues approximating the rectangular microstrip
patch antenna (Fig. 6.24) in the frequency band 0 — 20 GHz.

A short comparison between LTLM-S and PMSI for the analysis of the patch
antenna (Fig. 6.24) is provided in TABLE 6.9.

Table 6.9: Comparison of simulation approaches for the microstrip patch an-
tenna (Fig. 6.24).

Method Model order n | CPU time reduction, %
LTLM-S 248 50
PMSI 30 53

The system identification techniques as well as the model order reduction
algorithms expedite the time-domain based TLM analysis by a factor of about
two and allow to generate a compact equivalent model of the TLM-system. The
order of the model obtained by PMSI is significantly lower than the order of the
reduced-order model generated by S-LTLM.
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Figure 6.27: Extracted eigenvalues approximating the rectangular microstrip
patch antenna (Fig. 6.24) in the frequency band 0 — 20 GHz with SNR = 40 dB.
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Figure 6.28: Pole positions in the z-plane for the three models obtained by PMSI
for the input impedance of the patch antenna (Fig. 6.24) in the frequency band
0 — 20 GHz. LS forw. means forward Least Square algorithm; LS back. denotes
backward Least Square algorithm; Pencil Matrix is Pencil Matrix Method.
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6.6 Dielectric Resonator Waveguide Filter

Fig. 6.29 shows a cutoff-coupled rectangular dielectric resonator waveguide band-
pass filter. The filter presents a rectangular metal walled waveguide filled with
a dielectric material with e, = 10 at its ports and in its center. Between three
dielectric blocs are two air-filled sections. The lengths of the propagating dielec-
tric blocks [4=26.1 mm appoint the resonance frequency at about 3.102 GHz for
the TE;p mode and the lengths of the evanescent air sections /,=26.1 mm affect
on the coupling between the propagating dielectric sections, and consequently,
the loaded quality factor of the filter.

ar

dielectric
=10 —,

a_

Figure 6.29: Schematic view of a cutoff-coupled rectangular dielectric resonator
waveguide filter.

The length of the dielectric blocs can be obtained from the theoretical equa-
tion given in [13] as

203

7 —arctan | ———=
(a2 — 32

B

where « is the attenuation constant in the evanescent air sections

a=— \/m =105.248 m™ !, (6.9)

and [ is the propagation constant in the propagating dielectric sections

B=1/e- 3 — 3 =164.045m " . (6.10)

27Tf0
Co

d= > = 26.105 mm, (6.8)

Here 3, = — = 123.685 m ! and 3, = = 64.968 m~! at the resonance

frequency fy = 3.102 GHz.

™
a
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Figure 6.30: Magnitudes of the Ss;-parameters for the cutoff-coupled rectan-
gular dielectric resonator waveguide filter (Fig. 6.29) with [;=26.4 mm and
l,=26.1 mm. Curves are computed by the finite-element direct and modal meth-
ods, while the crosses are measured data [13].

Simulations by means of finite-element based methods and their comparison
with measurements are presented in Fig. 6.30. Here, the model includes the
dielectric loss with tané = 7-107%.

The filter is analyzed by the time-domain TLM, and the ARNOLDI, nonsym-
metric and S-symmetric LANCz0S MOR-algorithms.

Due to the symmetry of the 25.4 x 12.7 mm waveguide only the right half
of the dielectric resonator waveguide filter (12.7 x 12.7 mm) is analyzed. While
the Hyy wave has to be considered, we can put in the filter middle the PMC
along the propagation axes; the right, top and bottom walls are PEC; the front
and back walls are terminated by ABC. Each half of the section is discretized
by 5 x 5 x 6 nodes in z, y and z directions, respectively, with the space steps
Ax = 2.54 mm, Ay = 2.54 mm, Az = 4.35 mm. The waveguide filter is excited
by the E,-field profile corresponding to the Higp mode. The waveguide wall loss
and dielectric loss are not included for consideration.

Fig. 6.31 shows the reflection and transmission coefficients |S11| and |Saq|
near to the resonant frequency fy = 3.102 GHz. The computed curves indicate
the resonance at the frequency of about 3.105 GHz, which corresponds to the
frequency error of 0.1 % from the theoretical resonance. The agreement between
the time-domain TLM and MOR-algorithms is excellent, in addition TLM-based
simulations coincide with the measurement and FEM results in Fig. 6.30.

The filter exhibits a high resonant behavior; therefore a large number of
time steps is required. Even after 100 000 TLM time evolution scheme steps
the S-parameter curves show small ripples (see Fig. 6.31). Application of the
windowing to the time response eliminates the ripples but yields some error. For
example, the |Sy;|-magnitude in Fig. 6.31(b); after the HANNING windowing of
the 50 000 time steps has been done, the TLM response is about 5 dB lower and
slightly wider than the |S2; |-magnitude obtained via the FOURIER transform of
the 100 000 time steps response.

The S-parameters are calculated using a reference 135 mm long waveguide
filled with dielectric. The reference planes for the reflected and transmitted
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Figure 6.31: S-parameters for the cutoff-coupled rectangular dielectric resonator
waveguide filter (Fig. 6.29) calculated by the time-domain TLM and MOR-
techniques.

waves are placed at z = 2 and z = 29. The transfer functions for the trans-
mission (from port 1 to port 2) and reflection (from port 1 back to port 1) of
E,-field components are approximated by MOR-algorithms. The S-parameters
can be obtained from simulations as

sy = U U W) - gyon gy Hh(DUeaelf) = Ui (f)

i () U |
pfister H Uemc
Sg“lLM(f) — 21ref (f)’ S%OR(f) _ 21(.]2f (f) ,
Un” (f) U” (f)
| 4 (6.11)
where U/[""(f) and UJ"“"(f) are the FOURIER transforms of the TLM time-

domain voltage responses at z = 2 and z = 29; Ulrlef(f) is the FOURIER trans-

form of the TLM time-domain voltage response for the reference waveguide at
z = 2; HY, (f) and HY, (f) are reflection and transmission voltage functions ap-
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proximated by MOR-algorithms; Ue,.(f) is the excitation GAUSS pulse signal.

In order to gain the S-parameters 600 ARNOLDI and LLANCZOS steps are
performed. All MOR-algorithms demonstrate similar convergence. The norms
of the right and left residual vectors after 600 MOR-algorithm steps have an
order of 107%. The comparison of the elapsed time is presented in Table 6.10,
where the computational time for the S-symmetric LANCZOS algorithm is taken
for 100 %.

Table 6.10: Comparison of simulation approaches for the cutoff-coupled dielec-
tric filter (Fig. 6.29).

Method TLM ATLM LTLM LTLM-S
Time, % 85 x 100 43 x 100 137 100

200

20 loglo(\HZI\)

Im [z]

Figure 6.32: Pole-residue distribution of the voltage transfer function from
port 1 to port 2 for the cutoff-coupled rectangular dielectric resonator waveguide
filter (Fig. 6.29) in the complex z-plane, 3D view.

Fig. 6.32 and Fig. 6.33(a) show the pole-residue distribution of the voltage
transfer function 7:[5]1 in the complex z-plane after 600 ARNOLDI steps have
been performed. After refining only 6 eigenvalues in Fig. 6.33(b) are kept so
as to approximate the whole system in the frequency band 3 —4 GHz. The
approximating eigenvalues are placed on the complex unit circle in the sector
according to the frequency band 0 — 5 GHz. Therefore, the order of the two-port
macro-model is 6, which comes up to a reduction factor of 2 250.

Hence, we can conclude that both LANCZOS-based methods are very good
and suitable for the generation of the macro-model of this cutoff-coupled rectan-
gular dielectric resonator waveguide bandpass filter, whereas LTLM-S is about
37 % faster than the general LANCzOS procedure. The extracted two-port
macro-model is characterized by its low order, which corresponds to a significant
reduction of the TLM-operator.
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Figure 6.33: Pole-residue distribution of the voltage transfer function from port

1 to port 2 for the cutoff-coupled rectangular dielectric resonator waveguide
filter (Fig. 6.29) in the complex z-plane, 2D view.
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6.7 H-plane Waveguide Filter

The next example is a direct-coupled cavity waveguide filter shown in Fig. 6.34.
Inductive irises in the H-plane spaced along the waveguide form four resonators,
which are approximately A\g/2 in length. The resonators represent a 4th order
CHEBYSHEYV filter with a 0.5 dB ripple in the passband with a center frequency
at about 11 GHz. Design equations and other details for direct-coupled cavity
waveguide filters can be found in literature [29)].

Figure 6.34: Schematic view of a direct-coupled four-resonator H-plane
waveguide filter.

All irises are 1 mm thick. The main rectangular waveguide is the WR75 guide
(¢ = 19.050 mm, b = 9.525 mm). The resonator lengths are ; =15.712 mm
and /3 =17.671 mm and the gaps are w; =10.372 mm, wy =6.878 mm, w3 =
6.19 mm.

The filter is discretized by 53 x 10 x 110 nodes in z, y and z directions,
respectively, with the space steps Az = 0.359 mm, Ay = 0.9525 mm, Az =
1.043 mm. The waveguide filter is excited on its one side by the £,-field profile
corresponding to the TE;y mode with the amplitude £, or to be precise,

E, = Ey0|sin< Gk ) . (6.12)
xmaa:

The waveguide walls and irises are modeled by PECs. In order to study MOR-
techniques the whole structure is simulated, even though due to the symmetry
of the filter it is enough to consider only one half.

The S-parameters are calculated using a reference 11.47 cm long WR-75
waveguide. We have been interested in the transfer function of the filter. The
reference planes for the reflected and transmitted waves are placed at z = 5 and
z = 105. The transfer function for the F,-field component (and corresponding
voltage) is approximated by MOR-algorithms. The S-parameters of the direct-
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coupled cavity waveguide filter can be obtained from simulations as

Uﬁlter(f) ﬂU (f)erc(f)
STIM(fy = 221\ gMOR(fy = 210 Jmevel] ) 6.13
= gy S ) (6:49)
filter

where U, (f) is the FOURIER transform of the TLM time-domain voltage
response at z = 105; UL/ (f) is the FOURIER transform of the TLM time-domain
voltage response for the reference waveguide at z = 5; HY, (f) is the voltage
transfer function approximated by MOR-algorithms; U.,.(f) is the excitation
GAuUSS pulse voltage.

In order to obtain the S-parameters of the filter, 50 000 TLM time steps are
performed due to a high resonance behavior in the filter. For the S-parameters
approximation in the frequency band 10 — 12 GHz the scattering symmetric
LANczos algorithm is carried out for 2 080 steps until the convergence for the
right and left residual vectors is achieved. The norms of the residual vectors
for 10 approximating eigenvalues have an order of 1075. The extracted So;-
parameters presented in Fig. 6.37 are in excellent agreement. The obtained
passband ripples are about 0.5 dB.

Figure 6.35: Electric field distribution of the direct-coupled four-resonator H-
plane waveguide filter (Fig. 6.34) at 11 GHz.

After 2 080 LTLM-S steps have been performed, we have the 2080 x 2080
reduced tridiagonal matrix containing a couple of eigenvalues approximating
the filter transfer function in the frequency band 10 — 12 GHz. Since EVD is
time expensive and has an order of O(n?), it makes sense to extract only a
few approximating eigenvalues from the pre-reduced tridiaginal matrix, instead
to perform pole estimation and selection operations for 2 080 eigenvalues after
EVD has been done. For this reason the SIST-via-Lanczos approach has been
utilized for the second projection. Because the elapsed time of SIST is similar
to O(n), since only the tridiagonal matrix must be inverted, it allows us to
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Figure 6.36: Extracted eigenvalues approximating the direct-coupled four-
resonator H-plane waveguide filter (Fig. 6.34) in the frequency band
10 — 12 GHz. Circles denote eigenvalues, whereas the rhombus denotes the ex-
pansion point zsp;f¢.

conserve computational time additionally. A comparison of simulation methods
with reference to the computational time is given in Table 6.11.

Table 6.11: Comparison of simulation approaches for the direct-coupled H-plane
filter (Fig. 6.34).

Method TLM LTLM-S LTLM-S + PVL
Time', % | 6.7 x 100 100 83
Time!, % 8 x 100 120 100

! The time needed for the generation of a complete reduced-order model including the
post-processing.

In this case the treatment of the eigenvalue problem by means of the SIST-
approach was approximately 13 times faster than the usage of the standard
MATLAB EVD routine, that allows to save about 20% of total computational
time. Only 9 LANCZOS steps in the SIST-approach were necessary to extract
5 eigenvalues (in the upper half of the unit circle), which were closed to an
expansion point. The extracted 5 approximating eigenvalues closed to the ex-
pansion point are shown in Fig. 6.36. The expansion point zsp; ¢+ is chosen on the
unit circle in the complex plane in accord with the center resonance frequency
fo =11 GHz

Zshift = exp()2m foAt) = 0.9993 + 70.0378 .

The three eigenvalues (1, 2 and 3) closest to zgp; ¢ determine the ripple of the
filter (see Fig. 6.37 (b)), whereas the other two (4 and 5) have influence on the
approximation accuracy.

Thus, the order of the generated ROM is 10 and the corresponding reduction
factor of the TLM-system is 104 940.
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In order to validate our results we re-simulate the filter by means of ANSOFT
HFSS using the Fast Frequency Sweep (FFS) based on the LANCZOS process
applied to the Finite Element Method [10]. The central frequency for FFS has
been chosen as well as 11 GHz. The total mesh contains 13 012 tetrahedra
versus 58 300 18"-port cells in TLM. The obtained S-parameters are presented
in Fig. 6.38. Even though the filter has four resonators the zoomed regions of
computed S-parameters (see Fig. 6.37(b) and Fig. 6.38(b)) exhibit three ripples
instead expected four ones [29]. Fig. 6.35 shows the distribution of the electric
field in all four resonators of the filter. Obviously, two central poles describing
the second and the third resonator are merged in the pole 2 in Fig. 6.36 or
two right poles are merged in the pole 3 in Fig. 6.36. This is also possible
that the lost pole will appear with increasing number of time steps or algorithm
iterations.

In conclusion, we can notice that the scattering symmetric LANCZOS algo-
rithm is assumed to be robust and very suitable for the high order discretized
high-Q resonance structures. The results obtained through the implemented
MOR-techniques are in very good agreement with simulations performed by the
time-domain TLM scheme and frequency-domain FEM, which also utilizes the
LANczos algorithm for FFS. As an alternative to the conventional eigenvalue
decomposition procedure for the treatment of pre-reduced tridiagonal matri-
ces, generated by MOR-techniques, the Padé approximations and /or shift-invert
spectral transformations can be involved to extract a few poles, which allows us
to save a significant amount of post-processing computational time, especially
for loss-free structures with high-order discretizations.
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Figure 6.37: S-parameters for the direct-coupled four-resonator H-plane
waveguide filter (Fig. 6.34) computed by the time-domain TLM and MOR-
techniques.
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Figure 6.38: S-parameters for the direct-coupled four-resonator H-plane
waveguide filter (Fig. 6.34) computed by means of HFSS Fast Frequency Sweep.



Chapter 7

Conclusions

The discrete electromagnetic model resulting from the application of the Trans-
mission Line Matrix (TLM) method is cast in a state-space matrix form in-
volving wave amplitudes as state variables. For structures of practical interest
the dimension of this matrix can be very large, up to several millions. The
use of Model Order Reduction (MOR) techniques in the context of TLM-based
electromagnetic modeling yields considerable reduction in the computational
effort necessary for the solution of the discrete models. Furthermore, they facil-
itate the direct construction of compact discrete models of the electromagnetic
structure under investigation. More specifically,

e MOR yields an acceleration factor of 10-30 in the computation of the re-
sponse of loss-free, high-Q filters and resonators, while 30-50 % reduction
in simulation time have been observed in obtaining the electroamgnetic re-
sponse of microstrip-line and coplanar waveguiding structures and a patch
antenna;

e in terms of model order reduction, for loss-free structures the order reduc-
tion by a factor of several thousands is possible, compared to the order of
the original TLM model; for structures exhibiting loss the order reduction
by a factor of several hundreds can be achieved.

The emphasis of our application of MOR-techniques to TLM has been on
the use of KRYLOV subspace methods based on the LANCZOS and ARNOLDI
processes. The properties of these methods, both in terms of computational
efficiency, convergence and solution accuracy, have been examined through their
application to the analysis of several electromagnetic structures containing up
to 1 728 000 unknown space-state variables. One-port and two-port structures
have been investigated and their appropriate macro-models have been generated.
The generated reduced-order models exhibit very good accuracy, as validated
through comparisons with results obtained by other means. Optimal model
order selection procedures have also been proposed. More specifically, the order
of the extracted reduced macro-models can be decreased further by introducing
a Signal-to-Noise-Ratio (SNR) threshold.

The implicit time evolution TLM-scheme has been utilized for the purposes
of MOR. For this purpose, some modifications of the TLM scattering algorithm
introduced originally by JOHNS and field mappings needed for MOR imple-
mentations have been performed. The influence of various types of boundary

163



164 CHAPTER 7. CONCLUSIONS

conditions encountered in practice on the MOR convergence has been discussed.
Also, a brief comparison has been provided between FDTD, FIT and TLM with
regards to the computational efficiency of MOR-methods for expediting their
numerical integration.

Reduced-order models of the TLM system in both the z-domain and the
LAPLACE domain have been derived. An important attribute of the model order
reduction processes described in this thesis is the use of the congruence trans-
formations for the construction of the state-space matrices of the reduced-order
system. Under the assumption of stability and passivity of the original discrete
system, the use of such congruence transformations guarantees the stability and
passivity of the reduced-order system. Conservation of stability and passivity
is an essential requirement for the reduced-order system, since the stability and
passivity of the generated macro-model alone is not sufficient to guarantee the
stability and stability of the overall system that results from the integration of
the macro-model with other multi-port circuits. It has been shown that the
obtained TLM approximations and associated reduced-order macro-models are
always stable and passive.

It has been shown that the non-symmetric properties of the TLM-operator
require the use of the general ARNOLDI and LANCZOS algorithms. Even though
the implementation of the LANCZOS algorithm is more efficient and algorithmi-
cally simpler than ARNOLDI, one LANCZOS step is equivalent to two time up-
dates in the standard TLM scheme, due to the imperative to deal with both the
TLM matrix and its transpose for the construction of two biorthogonal KrRyLov
subspaces. One of our contributions has been a method that takes advantage of
specific symmetric properties of the TLM-operator to develop a modified LANC-
70S algorithm that does not require use of the transpose of the TLM matrix.
This new algorithm is called the scattering-symmetric or S-symmetric LANC-
z0s process, and it is shown to be up to 35 % faster than the conventional
non-symmetric LANCZOS algorithm. Furthermore, the use of the S-symmetry
results in reduction in computer memory resources compared to the general
non-symmetric approach.

As already mentioned above, the LANCZ0OS and ARNOLDI procedures provide
numerically stable and computationally efficient approaches to the construction
of the TLM projection matrices. From comparative studies of KRYLOV based
processes the following conclusions are reached:

e the nonsymmetric, and the S-symmetric LANCZOS algorithms are assumed
to be sparing concerning the computational resources; huge computation
time and memory requirement of ARNOLDI-based algorithms is a big draw-
back and makes them unattractive if not prohibitive;

e the LLANCZOS methods exhibit slower convergence than ARNOLDI algo-
rithm due to loss of the biorthogonality property in the numerical con-
struction of the bases of the KRYLOV subspaces;

e the utilization of very expensive re-biorthogonalization in the LANCZOS
processes does not necessarily improve biorthogonality, and, in some cases
it may even destroy the biorthogonality of the generated basis vectors;

e the ARNOLDI algorithm generates an orthonormal basis nearly without
loss of orthogonality;
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e cigenvalues of the reduced LANCZOS trigiagonal matrix are more sensitive
to its changes than eigenvalues of the reduced ARNOLDI upper HESSEN-
BERG matrix to appropriate changes, that can additionally make a signif-
icant impact on the accuracy of eigenvalues computation by Eigenvalue
Decomposition (EVD);

e the S-symmetric version of the LANCZO0S algorithm is assumed to be spare
concerning the computational resources, but gives slightly bigger error due
to the biorthogonality loss;

e the biconjugate based S-symmetric LANCZOS method provides alterna-
tive and/or additional stopping criteria, however its resource requirements
make it less attractive;

e the iterative Shift-Invert Spectral Transformation (SIST) approach (ap-
plied for order reduction of the original implicit state-space system in the
first step) exhibits large approximation error, instability and high compu-
tational time.

As an alternative to the conventional EVD procedures for treatment of re-
duced tridiagonal and upper HESSENBERG matrices generated by MOR-techniques
the PADE-via-LANCZOS, PADE-via-ARNOLDI approximation or SIST technique
can be involved to extract a few poles approximating the original state-space
system. This two-step reduction allows to reduce post-processing computational
time significantly, especially, if pre-reduced matrices has a large order.

In addition, the novel and effective hybrid Transmission Line Matrix-Mode
Matching (TLM-MM) approach is proposed for a full-wave analysis of pas-
sive transmission structures in MMICs. This method is a combination of the
frequency-domain Mode-Matching (MM) method for the modeling of homoge-
neous waveguide structures with the time-domain TLM method for simulation
of discontinuities with arbitrary shapes. It has been shown that using the hybrid
TLM-MM approach the time and memory requirements can been reduced sev-
eral times in comparison to pure TLM simulations, while moreover improving
accuracy. A comparison between both methods on the basis of numerical simu-
lations is provided. The proposed approach can be easily involved in the macro-
modeling process of MMICs, and the generation of a reduced-order macro-model
can be simplified and additionally accelerated. The described time/frequency
hybrid technique based on MM method can be also applied to FDTD and FIT
methods in a straightforward fashion.

With regards to future research, the present work can be extended to address
the following issues:

e implementation of the developed MOR-techniques for sub-gridding in TLM,
with specific emphasis placed on the extraction of macro-cells and nested
macro-cells for expedient and computationally efficient representation of
very fine features in an otherwise large-feature-size structure;

e construction of network oriented models via FOSTER canonical forms;

e application to domain-decomposition analysis of large-scale structures,
through a) the partitioning of the computational domain into sub-domains,
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for each of which a reduced-order model is first generated; b) the subse-
quent generation of a reduced-order model for the entire structure, through
the interconnection of the generated sub-domain macro-models.



Appendix A

Vector Spaces

A.1 Basic Definitions

Definition A.1.1. A set T a with a mapping d : T x T' — R and properties
Vs, t,ueT)

c) d(s,u) <d(s,t)+d(t,u) (triangle inequality),
d) d(s,t)=0 & s=t,

is called the metric space with the metric d.
A sequence (t,,) C T converges to ¢t € T if

Ve>03INeNVn>Nddt,,t)<e

A sequence (t,,) C T is called Cauchy sequence if
Ve>03INeNVnm>Ndt,, tn) <e

Definition A.1.2. A metric space T is said to be the complete if each Cauchy
sequence t, C T is convergent.

Definition A.1.3. Let be X a vector space of K, K=R or K = C. A map
p: X — Ris called the norm if

(a) p(Ax)=[Apz)VIeK ze X,
(b) plx+y) <p@)+ply)VeyecX,
(c) p(z)=0= p(x)=0.

The normed space is defined by a pair (X, p). On a normed space (X,] . ||) a
metric (A.1.1) d(x,y) =| © — y || is defined, then V ¢, y,z € X

(a) d(z,y) >0,
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(b) d(x,y) =d(y, =) ,
(€) d(z,z) <d(z,y) +d(y,2) ,
(d) dz,y)=0 cx==z.
The sequence of vectors (x,,) is the Cauchy sequence in a normed space (X, || . ||)
if
Ve>0aNeNVnm>N ||z, —xn ||[<e
Definition A.1.4. A complete normed space is called the Banach space.

Definition A.1.5. A Banach space X with a Hermitian inner product (.,.) :
X x X — K that satisfies the following properties

a) (xz,x) >0, and (x,z) =0 if only if |x) = 0,

b) (e, y) = a(z,y),

c) (z,y) = (y.2)",

d) (®+y,2) = (x,2) + (y, 2),

Y |x),|y),|z) € X and V a € K is called the Hilbert space H.

(
(
(
(

The vectors (x|, (y| and (z| are vectors of a dual to X space to be the set of
all linear functionals X = {f : X — K}. From the definition A.1.5 follows,
that (z|? = |z) or (x| = |z)" .

The norm in HILBERT space is defined by ||  ||2= /(x, ).



Appendix B

The Gram-Schmidt algorithm

B.1 Basic Gram-Schmidt Process

Let
Z = {|z1),|22), |23), -, |z)} (B.1)

be a set of linearly independent vectors in C'V. The GRAM-SCHMIDT orthogo-
nalization procedure generates a corresponding orthogonal set of vectors

Q:{|QI>7‘Q2>7|Q3>u"'7|qn>} ECN (B-2)
such that
span {Q} = span {Z}, (B.3)
and
Z=QR, (B.4)

where R = r(;;) is a unit upper triangular matrix. The vectors |gx) and the
matrix R are defined recursively by the following equations. Define |g1) = |z1).
Then for each k = 2,...,n define

k—1
lqx) = |zk) = D rrilas) (B.5)
=1
where
rhi = (zklqi)/di, di = (qilqi) - (B.6)
Observe that
QTQ = D = diag {d1,ds,...,d,}. (B.7)

The error propagation which occurs when eq. (B.10) are implemented on a
computer is such that they are seldom used in practice. Typically the modified
form of the GRAM-SCHMIDT orthogonalization is used.

B.2 Modified Gram-Schmidt
Orthogonalization
The following modification of the basic GRAM-SCHMIDT procedure yields an

orthogonalization procedure with better numerical stability than the GRAM-
SCHMIDT procedure as defined in (B.10). The modified process utilizes following
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recursions. The vectors |gx) and the matrix R are defined recursively by the
following equations.
for each k define |qx) = |zx)®) where
|2) Y = |2)®) —rijlan), for j > k
rig = (arlz) " /dp and i = (gelax) - (B.8)
Column interchanges (pivoting) can be used in the orthogonalization process.

In particular at any stage in the process the vector in the remaining subset of
vectors which has maximal norm can be normalized. That is at stage k, choose

vector |z§k)> such that

k
120912 = max [12"]2. (B.9)

B.3 Two-Sided Modified Gram-Schmidt

Biorthogonalization

The two-sided modified GRAM-SCHMIDT may be used in order to rebiorthogo-
nalize a deteriorated biorhogonal basis

PTQ = D = diag {dy,da, ...,d,} (B.10)

by following recursions

foreach i =1,2,...,j compute

lgj+1) = |gj+1) — (Pilgj+1)lai)

|Pj+1) = [Pj+1) — (@ilpj+1)|Pi) - (B.11)
Here

P ={|p1),|p2).|p3), ..., |pn)} € HY (B.12)

is a corresponding biorthogonal set of vectors. Eq. (B.11) rebiorthogonalizes
two vectors |gj4+1) and |p;j41) at each step j.
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