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Abstract

Numerical time–domain methods for electromagnetic field simulations typically provide
very broad band frequency–domain characterizations as well as transient response with a
single simulation and without in general requiring any pre–processing. However long sim-
ulation times and large memory requirements arise for the case of electromagnetic struc-
tures characterized by low loss (high quality factor) and high aspect ratios (complex three–
dimensional structures), since the first yields long transient responses and the second small
time discretization intervals. Passive network impulse responses can be characterized by
the singularity expansion method theory, implying that they can be efficiently described
by means of exponentially damped oscillating components corresponding to the network
natural frequencies. In principle, the entire time behavior of an electromagnetic structure
can therefore be predicted from a few time samples by applying high resolution parametric
model estimation techniques, based on system identification (SI) methods. These methods
allow the determination of the network equivalent model directly from the simulated re-
sults. The number of a model’s parameters, also called model order, and the parameters
themselves, typically represented by complex natural frequencies or poles, significantly ef-
fect this methodology since they are indicators of the complexity and the accuracy of the
model respectively. Once correctly identified these parametric analytical descriptions can
replace more cumbersome and demanding full–wave numerical models, in network level
(SPICE like) simulators, enabling a much faster analysis. Although SI techniques are a
quite well known topic in electromagnetic numerical applications, a systematic and effi-
cient approach is still missing. The aim of the present work is to develop an improved
approach first, by re-examining the theoretical background of the network oriented mod-
elling (NOM) in order to justify the use of a poles series model (Prony model) as the more
obvious choice for describing passive electromagnetic structures, and second by review-
ing some of the most common and efficient SI techniques for the model order selection
and model parameters estimation. The intention is to formulate an algorithm that allows
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for entire network modelling to be carried out in a completely autonomous and automatic
fashion. The methodology is to estimate the model’s parameters from the time–domain
responses generated by means of a full–wave analysis, be it the Transmission Line Matrix
(TLM) method or the finite difference time–domain (FDTD) method, and by adaptively
refining them, fit the model recovered responses, to the numerically simulated ones. This
algorithm runs in parallel with a full-wave analysis which is discontinued as soon as the
model accuracy becomes satisfactory. In this way a time demanding numerical simulation
may be reduced by one order of dimension. Since the model taken in consideration is
Prony’s and the parameter estimation procedures are Prony based, the algorithm is called
Prony Model based System Identification (PMSI). Once the network responses are avail-
able they may be used for identifying the network natural frequencies of the impedance
(admittance) Foster representation, enabling the direct implementation of the correspond-
ing lumped element equivalent circuit. Since the Foster representation for the impedance
(admittance) is practically a Prony model this operation may be carried out again by means
of the PMSI algorithm.
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Chapter 1

Introduction

The analysis of electromagnetic (EM) structures involves the solution of Maxwell’s equa-
tions and the identification of appropriately chosen physical parameters, in order to define
a global and efficient description. This may be established by the impedance Z, admittance
Y, scattering S matrices, or any other suitable representation, which will be eventually used
in a network level solver such as SPICE, for high level system analysis. Among the several
type of electromagnetic field solvers, time–domain numerical methods such as the Trans-
mission Line Matrix (TLM) method and the finite difference time–domain (FDTD) method
constitute powerful tools able to handle structures of arbitrary three–dimensional geome-
tries and composed of arbitrary materials, yielding with a single simulation, a broad band
characterization and the complete system time–domain behavior (i.e. network transient and
driving responses). These characteristics make time–domain techniques the proper tool for
the analysis of an entire class of novel devices, based on three–dimensional designs (as
the Micro–electro–mechanical Systems (MEMS), and Low Temperature Co–fired Ceramic
(LTCC) technologies). These devices are very promising for applications in future hand-
held communication equipment, working at very wide frequency bands (e.g. > 20% as for
the Ultra Wide Band (UWB) systems such as the wireless personal area network WPAN).
Although long computational times and large memory requirements have so far limited the
use of time–domain techniques making frequency–domain methods the preferred choice,
in the last couple of years, progress in more efficient time–domain methods seems to be re-
versing this trend. Beside improved processor speed and memory availability, much effort
is currently being devoted to improving time–domain methods, with the goal of making of
them competitive tools for analysis and optimization.
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8 CHAPTER 1. INTRODUCTION

Table 1.1: Example of model complexity in the case of high aspect ratio and low losses
devices (* Performances for a PA8000 Risk CPU 360MHz).

Structure �l [m] dt [sec] Aspect Ratio Memory [Mb] Run Time∗ [hour ]
MEMS Switch [14] 2.5 10−6 2.06 10−15 240 153 ∼ 18
LTCC antenna [42] 1.5 10−5 11.6 10−15 135 114 ∼ 12.5

1.1 Definition of the problem

The present work focuses on the TLM algorithm limits which arise in the modelling of
low loss and high aspect ratio electromagnetic structures. These characteristics are quite
common in planar microwave and millimeter wave applications, but are also becoming ex-
tremely relevant with regard to an entire class of innovative devices, as for instance those
based on MEMS and LTCC technologies. If on one hand planar structures can be easily
analyzed in the frequency–domain via two dimensional based tools (in general by Method
of Moments), for arbitrary three dimensional structures full-wave field solvers are recom-
mended. In these latter methods accurate analysis by means of discrete space and time
techniques (be it TLM or FDTD), demand space and time discretization intervals able to
resolve the dimension of the smallest feature to be taken into account. Now if high aspect
ratio objects and low losses materials (i.e. high quality factor structures) have to be mod-
elled, fine space resolution yields a large number of discretization elements and small time
discretization intervals yield a very high number of simulation time steps (overall simula-
tion duration) in order to observe the transient, which is typically very long. The immediate
consequences are large memory requirements and long simulation run times. An example
is given in the Tab. 1.1, where the TLM model complexity for a MEMS and an LTCC de-
vice are given. Three of the main strategies applied for reducing model complexity are: 1)
at the spatial discretization level (subgridding) the aim is to optimize the field resolution
to keep down the memory requirements [77] [27]; 2) at the algorithm kernel level, to re-
duce the correspondent state–space equation complexity [54] [63] [9]; and 3) at the post
processing level where by means of digital signal processing analysis tools (SI methods) to
predict and model the structure behavior [12]. This latter will be the focus of the present
work.
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1.2 State of the art

An electromagnetic structure at microwave and millimeter wave frequencies behaves as a
passive distributed circuit which may be modelled as an abstract multiport network [72].
The characterization of a passive network, excited be means of impulse driving function,
can be efficiently carried out by an exponential or poles series model using the singularity
expansion method (SEM – C.E. Baum 1991) [8]. The entire network response characteri-
zation therefore, becomes a problem of pole identification and the fitting of an exponential
series model. These properties will be exploited for two different purposes:

• prediction: modelling of the TLM responses for simulation time reduction

• equivalent circuit extraction: Z– (Y –) matrix model identification in equivalent
Foster representation (EFR).

The prediction of a system response by analytical modelling is a necessary procedure for
the drastic reduction of the observation time. By focusing on the very early results of a
time–domain analysis, which is typically very time consuming, coupled with system iden-
tification (SI) high resolution signal processing tools, a parametric description of physical
phenomena or systems can be provided. This description is adaptively refined and as soon
as becomes accurate enough it provides a synthetic analytic model of the response itself.
Once the response is available the complete high frequency network characterization is
usually given by means of scattering parameters. However, since the sought goal in most
applications is to produce an electrical equivalent lumped element representation, to be
directly applied in a network level SPICE like simulator, approaches which exploit the
scattering parameters to derive such elements have been developed. In the present work the
Z– (Y–) matrix descriptions are computed from the scattering parameters and analyzed in
the time–domain by exploiting the above mentioned SI techniques. The result of this anal-
ysis is a mathematical description of such matrices, closely related to network synthesis
representations such as the Foster or Cauer canonic representations. These latter have the
advantage of providing a very general network description in terms of passive lumped ele-
ments and ideal transformers. The entire synthesis procedure can be automatized and once
the frequency validity range has been given, from the time–domain responses, it yields the
final equivalent network.
Network–oriented modelling is revisited in the chapter 2 in order to provide a motiva-
tional background for the present work. In electromagnetic field analysis, network oriented
methods contribute significantly to the problem formulation and solution methodology [20]
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[21] [73]. In network theory, systematic approaches for circuit analysis are based on the
separation of the circuit into the circuit elements and the connection circuit [13]. The
connection circuit represents the topological structure of the circuit and contains only the
connections, including ideal transformers. In the connection circuit neither energy storage
nor energy dissipation occurs. The connection circuit, governed by the Tellegen’s theorem
[80] [81], and Kirchoff’s law [13], connects the circuit elements that may consist of be
one–port or multiports. Electromagnetic field theory and network theory are related via
method of moments [25]. In the method of moments the electromagnetic field functions
are represented by an expansion in series of basis functions. The linear system of equations
relating the expansion coefficients can be seen as a set of linear circuit equations, and if
a rational expansion of the circuit equations exists then a lumped element equivalent cir-
cuit representation can be given. In analogy with network theory individual subdomains
are characterized via subdomain relations obtained either analytically or numerically and
described in an unified format by using the generalized network formulation [73]. For each
subdomain the impedance (admittance) matrix allows for a canonical representation, for
example the Foster or Cauer [24] [6] representation. For any linear, reciprocal lossless dis-
tributed circuit equivalent Foster or Cauer descriptions exist [18] [46]. The canonic form
of each subregion is embedded into a network representation of the entire domain by a
connection circuit representing the subregion boundary surfaces. The Foster or Cauer rep-
resentations can be obtained via an analytical solution of the field problem or by applying
pole extraction procedures to the numerical results of the field problem. Among the avail-
able numerical techniques, the finite–difference time–domain (FD) method [86] [79] and
the transmission line matrix (TLM) method [10] [71] [28], are very well suited for the im-
pulse response modelling of general three dimensional structures characterized by arbitrary
geometry and materials.
Electromagnetic passive structures can be characterized by a mathematical description fun-
damentally based upon parametric expressions or models. Be it coefficients of ordinary
differential equations, as is typically done in systems theory, or the pole residues of a poles
series model, the use of parameters for describing a physical system such as a passive
network has numerous advantages. The first is that a parametric description is far more
efficient than a non parametric one. An example of this is the speech digital processing,
where only a few parameters are necessary for speech synthesis of an audio signal to be
transmitted over a communication channel (shared resource), instead of the more cumber-
some technique of a sampled and quantized description of the same signal [55]. Another
advantage in dealing with parametric descriptions of signal or systems is the possibility of
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model simplification, enabled by model order reduction techniques, which can within an
acceptable tolerance or error reduce the number of parameters [49]. A further advantage is
the possibility of establishing bijection between the original parametric model and a second
physical one, which has the characteristic of being immediately realizable and therefore of
practical interest. The model based parameter estimation approach is the subject of the
third chapter. The sought parameters are the structure natural frequencies (poles) or eigen-
frequencies. After providing a brief introductory background in SI, the focus will be on the
different model based parameter estimation techniques. Since, as shown in chapter 2, the
most natural model to be considered in writing the impedance (admittance) representation
of the Green’s function is the series poles expansion, also known as Prony model, the en-
tire chapter will be devoted to techniques for efficiently seeking the model’s, poles and the
corresponding residues. Prony model related pole extrapolation and model order selection
techniques are introduced and evaluated.
Chapter 4 is dedicated to the introduction of the Prony model base System Identification
(PMSI) algorithm and its use first for network response prediction and second for the iden-
tification of the impedance (admittance) Foster representation. Results are shown for some
planar as well as three-dimensional structures in terms of the improvements in accuracy,
due to application of the PMSI algorithm, for both the network response models and the
network impedance (admittance) models.



Chapter 2

Network-Oriented Modelling (NOM)

For analysis purposes a complex electromagnetic structure may be subdivided into spatial
subdomains. Comparing a distributed circuit, represented by a geometric structure, with a
lumped element circuit, represented by a network, the spatial subdomain may be consid-
ered as a subcircuit and the complete set of boundary surfaces separating the subcircuits
correspond to the connection circuit [73]. The generalized network formulation has been
already successfully applied to electromagnetic structures such as waveguide N–furcation
in combination with partial wave synthesis [51].
Fig.2.1 shows the segmentation of a generic electromagnetic structure into different re-
gions Rl , l = 1, 2, . . . , N , separated by boundary surface Blk from the generic neigh-
boring region Rk with l �= k. Each of the subregions may either contain an arbitrary
substructure or simply be filled with any material including perfect electric (PEC) or per-
fect magnetic (PMC) conductors. In the network analogy the set of all boundary surfaces
represent the connection circuit whereas the subdomain Rl represents the circuit elements.
On the boundary surface the tangential components are related to each other via the Green’s
function. The Green’s function can be expressed by means of an expansion upon a basis of
eigenfunctions. This representation is similar to the Foster’s representation, and allows a
full–wave characterization of the region by providing a closed form between the boundary
tangential field components. Expanding the tangential electric and magnetic fields into ba-
sis functions provides an equivalent circuit representation for the boundary surfaces. This
equivalent representation is based on the Tellegen’s theorem which describes a fundamen-
tal relationship between voltage and current in a network [80], [81], and can be generalized
to field problems [59]. The eigenfunction expansion of the dyadic Green’s function allows
one to highlight the central role of the parametric modelling in synthetically describing
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Figure 2.1: Abstract electromagnetic structure partitioned into N regions Rl (l = 1, 2, . . . , N , N = 8 for
this example) and for which connection boundary surfaces are designated Blk (dark regions may be either
PEC or PMC).

electromagnetic structures.

2.1 Characterization of the connection circuit

The connection network is established via the relation of the tangential field components
on both sides of the boundary surfaces. Since the boundary or connection region, exhibits
zero volume, no energy is stored in it and no power loss occurs therein.

2.1.1 The field theoretic formulation of Tellegen’s theorem

Let V be an arbitrarily small volume enclosing the entire boundary surface and any of the
PEC or PMC regions in the partitioned structure, i.e. V ⊃ ⋃N

l=1 ∂ Rl with N number of
subregions. Referring to Fig.2.1 the volume V is depicted in Fig.2.2. Starting directly
from Maxwell’s equations and considering the electric and magnetic field components in
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Figure 2.2: Volume V enclosing the segmentation boundaries including the PEC or/and PMC objects.

the Laplace domain E(ρ, s) and H(ρ, s), the following relationship applies [72]∫
∂V

E(ρ, s) ∧H(ρ, s) = −
∫

V
E(ρ, s) ∧ J (ρ, s) (2.1)

−
∫

V
E(ρ, s) ∧ (sD(ρ, s)−

∫
V
(sB(ρ, s)) ∧H(ρ, s)

where each term to the right of the equal sign constitutes an integral over a volume which
in the limit be reduced to zero. This allows Tellegen’s theorem for the field problem to be
written as ∫

∂V
E(ρ, s) ∧H(ρ, s) = 0. (2.2)

Consider a single portion of the entire boundary surface, Bli = Rl
⋂

Ri , the Tellegen’s
theorem for this interface becomes∫

Bli

E(ρ, s) ∧H(ρ, s)+
∫

Bil

E(ρ, s) ∧H(ρ, s) = 0 (2.3)

which implies that all power incident on the boundary Bil from one side flows entirely
to the other side. If either of the two regions l or i is PEC or PMC both integral terms
of (2.3) identically vanish. Tellegen’s theorem also holds for the case of general electric
and magnetic fields in an arbitrary material body (different source, filling material and



2.1. CHARACTERIZATION OF THE CONNECTION CIRCUIT 15

geometries but same structure partitioning) [72].

2.1.2 Discretized connection network

The electromagnetic field can be expanded in a series of basis functions. The assumption
of orthogonality may be introduced in order to simplify the computation. Consider a set of
expansion functions of dimension Nli on the boundary Bli and a set of dimension Nil on
the boundary Bil , the corresponding transverse field components can be written as follows

{
Ẽ li

t (ρ, s) =∑Nli
n=1 V li

n (s)eli
n (u, v)

H̃li
t (ρ, s) =∑Nli

m=1 I li
m (s)hli

m(u, v)

{
Ẽ il

t (ρ, s) =∑Nil
n=1 V il

n (s)eil
n (u, v)

H̃il
t (ρ, s) =∑Nil

m=1 I il
m (s)hil

m(u, v)
(2.4)

where the tilde on Ẽξ

t (ρ, s) and H̃ξ

t (ρ, s), ξ = li, il, denotes that they are a finite series
expansion approximation, and the variable s denotes the Laplace domain. The set of curvi-
linear coordinate (u, v, w) are defined so that an arbitrary point on the boundary, ρ, is
given by ρ ≡ (u, v, w = const.). The quantities V ξ

n (s) and I ξ
n (s), ξ = li, il, denote the

amplitudes of the electric and magnetic fields in the Laplace domain, respectively. The fre-
quency independent terms e

ξ
n(u, v) and h

ξ
n(u, v), ξ = il, il, are the so called basis structure

functions in their differential forms, for the electric and magnetic fields respectively [72].
Rewriting (2.3) as a finite series expansion approximation gives,∫

Bli

Ẽ li
t (ρ, s) ∧ H̃li

t (ρ, s)+
∫

Bil

Ẽ il
t (ρ, s) ∧ H̃il

t (ρ, s) = 0. (2.5)

Inserting the decomposition (2.4) into the (2.5), yields:

Nli∑
n=1

Nli∑
m=1

V li
n (s)I li

m (s)
∫

Bli

eli
n (u, v) ∧ hli

m(u, v)

(2.6)

−
Nil∑

n=1

Nil∑
m=1

V il
n (s)I il

m (s)
∫

Bli

eil
n (u, v) ∧ hil

m(u, v) = 0
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where the minus sign in the second term is due to the inversion of the boundary integral
surface. By introducing the matrix � = [

�li �il
]T

whose elements are given as

�ξ
nm =

∫
Bli

eξn(u, v) ∧ hξ
m(u, v), with ξ = li, il, (2.7)

and by defining the following vectors

Vli =
[
V li

1 , V li
2 , . . . , V li

Nli

]T
Vil = [

V il
1 , V il

2 , . . . , V il
Nil

]T
(2.8)

Ili =
[
I li
1 , I li

2 , . . . , I li
Nli

]T
Iil = [

I il
1 , I il

2 , . . . , I il
Nil

]T
the general matrix notation for Tellegen’s theorem for the boundary Bli or Bil becomes

[
Vli

Vil

]T

�

[
Ili

Iil

]
= 0 (2.9)

In case of orthonormal electric and magnetic basis structure functions the matrices �ξ ,
ξ = li, il, become the identity matrix and (2.9) reduces to

[
Vli

Vil

]T [
Ili

Iil

]
= 0 (2.10)

The relation between the field formulation of Tellegen’s theorem (2.3) and its network for-
mulation expressed by (2.10), can be established in terms of MOM solution by considering
the expansion coefficients in (2.8) as generalized voltages and currents. (2.10) implies that
the two vectors are linearly independent on a space of dimension (Nli + Nil). This means
that by arbitrarily choosing N̄ = Nli + Nil independent variables, among the voltage and
current elements of Vli ,Vil and Ili ,Iil , the rest of the N̄ elements may be considered as
the dependent variables, obtained from the first by means of a linear transformation. If the
independent variables are chosen by taking Vil and Ili , the dependent ones are given by
the elements of Vli and Iil and the relation between the two sets can be given by introduc-
ing the matrix of turns ratios Ni

l (the indexes highlight that this transformation takes place
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Figure 2.3: Canonical form of the connection network between regions Ri and Rl through Bil and Bli .

between the boundary portion Bl and Bi ) as follows

[
Vli

Iil

]
=
[

Ni
l 0

0 Ni
l
T

][
Vil

Ili

]
, (2.11)

where Ni
l is rectangular Nli × Nil given by

Ni
l =




n11 n12 · · · n1Nil

n21 n22 · · · n2Nil
...

...
. . .

...

nNli 1 nNli 2 · · · nNli Nil


 . (2.12)

The lumped element equivalent circuit interpretation of (2.11) can be given as a network
of ideal transformer connected as shown in Fig. 2.3, whereas the real coefficients nmk ,
m = 1, 2, . . . , Nli , k = 1, 2, . . . , Nil , denotes the turns ratio.
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2.2 The characterization of circuit and subcircuit

2.2.1 Green‘s function representation by series expansion of eigen-
functions

In an electromagnetic problem the separation of the Helmholtz equations yields ordinary
differential equation of the Sturm–Lioville form, [15] [32]. In the one dimensional case
this assumes the following expression in the given range of validity x ∈ [a, b]

d

dx

[
p(x)

dϕ(x)

dx

]
+ [q(x)+ λσ(x)] ϕ(x) = g(x). (2.13)

The functions p(x), q(x) and σ(x) are positive and real functions of x , λ is a separation
constant and g(x) is the excitation distribution function. The Green‘s function G(x, x ′) is
the solution for the Sturm–Lioville equation for the field at same arbitrary location x caused
by a point source located at x ′. So (2.13) can be written as

d

dx

[
p(x)

dG(x, x ′)
dx

]
+ [q(x)+ λσ(x)] G(x, x ′) = δ(x − x ′) (2.14)

which satisfies the boundary conditions, given as follows

G(x, x ′)+ ka
dG(x, x ′)

dx

∣∣∣∣
x=a
= G(x, x ′)+ kb

dG(x, x ′)
dx

∣∣∣∣
x=b
= 0 (2.15)

where ka , kb are real constants. Letting p(x), q(x) and σ(x) identically equal 1 for
x ∈ [a, b] (2.14) becomes the scalar Helmoltz wave equation. The Green’s function
G(x, x ′) is therefore the impulse response of the given electromagnetic structure (linear
system interpretation) described by (2.14) and (2.15). In the case of a generic excitation
g(x) the solution ϕ(x) may be obtained by the spatial convolution of the Green’s function
and the excitation function itself or

ϕ(x) =
∫ b

a
G(x, x ′)g(x ′)dx ′ (2.16)

Call ϕn(x) the eigenfunctions of the associated homogeneous equation of (2.13), with λn

the corresponding eigenvalues then, a possible representation of the Green’s function may
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be given by expanding it in terms of the eigenfunctions ϕn(x) as follows

G(x, x ′) =
∑

n

An(x
′)ϕn(x) (2.17)

with the expansion coefficients dependent upon the source location x ′. Now by substituting
the (2.17) into (2.14), this latter can be rewritten in terms of eigenfunction expansion as∑

n

An(x
′)(λ− λn)σ (x)ϕn(x) = δ(x − x ′). (2.18)

Recognizing that the eigenfunctions ϕn(x) form a complete set of orthogonal basis func-
tions, both sides of (2.18) can be multiplied by ϕ∗m(x) and integrating in [a, b] gives

∑
n

An(x
′)(λ− λn)

∫ b

a
σ(x)ϕ∗m(x)ϕn(x)dx =

∫ b

a
ϕ∗m(x)δ(x − x ′)dx . (2.19)

This by the orthogonality property

∫ b

a
σ(x)ϕ∗m(x)ϕn(x) =

{
0 for m �= n

ηn for m = n

(2.18) reduces to

An(x
′)(λ− λm)ηn = ϕ∗m(x ′) (2.20)

where ηn is a normalization constant which become unitary for the case of orthonormal
eigenfunctions. From (2.20) the coefficients An(x ′) can be derived and substituted into
(2.17) in order to obtain

G(x, x ′, λ) =
∑

n

ϕ∗n(x ′)ϕn(x)

ηn(λ− λn)
(2.21)

Recognizing that (2.18) is a form of wave equation, the eigenvalues correspond to the
propagation coefficients, and are in general complex values, i.e. λn = σn+ jωn . For (2.21)
these values represent the system poles for G(x, x ′) and the expression may be referred to
as the poles series expansion of the Green’s function.
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2.2.2 Impedance and admittance representation of the Green’s func-
tion

Let us consider a subregions Rl of the original structure (see Fig. 2.1). Assuming that
the field solution is described by ordinary differential equations of the Sturm–Lioville type
(2.13), it may be expressed by the integral relationship (2.16) which in a three-dimensional
curvilinear coordinate system and in Laplace domain, becomes

E(ρ, s) =
∫ ′

Rl

Gl
e(ρ, ρ′, s) ∧ J (ρ′, s), (2.22)

where J (ρ′, s) is the excitation electric density current distribution within the region Rl

and Gl
e(ρ, ρ′, s) is the electric double form dyadic Green’s function (defined in A.3 see

appendix A) associated with the considered region Rl , and the prime in the integral denote
that this operation is carried out with respect to the source point ρ′[72]. The current density
can be express by means of a surface density current J eA(ρ′, s) flowing on the surface
ρ′ = (u′, v′, w′ = w0) which can be related to ∂ Rl , as follows

J (ρ′, s) = δ(w′ − w0) n′ ∧ J eA(ρ′, s) ρ′ ∈ ∂ Rl . (2.23)

where the n is the unit differential form corresponding to the vertical coordinate w whose
orientation is normal outward with respect to ∂ Rl . Inserting (2.23) in (2.22) yields

E(ρ, s) =
∫ ′

∂ Rl

Gl
e(ρ, ρ′, s) ∧ J eA(ρ ′, s). (2.24)

Now by imposing the continuity condition of the tangential components, and applying the
equivalence principle the surface ∂ Rl is replaced by a perfect magnetic conductor and the
equivalent electric surface current defined as,

J eA(ρ′, s) = Hl
t(ρ
′, s). (2.25)

Also the tangential component of the electric field can be obtained by recognizing that
E l

t = n � n ∧ E . Applying this relationship together with (2.25), in (2.24) results in

E l
t(ρ, s) =

∫ ′

∂ Rl

n �
(
n ∧ Gl

e(ρ, ρ′, s)
) ∧Hl

t(ρ
′, s). (2.26)
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The superscript l in (2.26) implies that the corresponding quantity belongs to the region
Rl , so that E l

t and Hl
t , for instance, represent the electric and magnetic field components

tangential to ∂ Rl , transferred into the region Rl . The operation n �n ∧ applies only to the
observation point ρ while the integral is over ρ′. This allows to define

Z l(ρ, ρ′, s) = n �
(
n ∧ Gl

e(ρ, ρ′, s)
)

(2.27)

as the double differential form for the impedance representation of the dyadic Green’s
function. The substitution of (2.27) into (2.26) yields

E l
t(ρ, s) =

∫ ′

∂ Rl

Z l(ρ, ρ′, s) ∧Hl
t(ρ
′, s). (2.28)

which provides an integral relationship between the tangential electric and magnetic com-
ponents on the considered subdomain surface ∂ Rl .
Similarly introducing the magnetic double form dyadic Green’s function Gl

M(ρ, ρ′, s) as-
sociated with the considered region Rl , and applying duality principle the (2.24) can be
immediately rewritten as

H(ρ, s) =
∫ ′

∂ Rl

Gl
m(ρ, ρ′, s) ∧ J m A(ρ′, s). (2.29)

The continuity condition of the tangential components applied to the surface ∂ Rl replaced
by a perfect electric conductor yields an equivalent magnetic surface current defined as,

J m A(ρ′, s) = −E l
t(ρ
′, s), (2.30)

while the tangential component of the magnetic field are given by Hl
t = n � n∧H. Applying

this relationship together with (2.30), in (2.29) results in

Hl
t(ρ, s) =

∫ ′

∂ Rl

E l
t(ρ
′, s) ∧ n �

(
n ∧ Gl

m(ρ, ρ′, s)
)
. (2.31)

Hl
t and E l

t , represent the electric and magnetic field components tangential to ∂ Rl , trans-
ferred into the region Rl . Is possible now to define

Y l(ρ, ρ′, s) = n �
(
n ∧ Gl

m(ρ, ρ′, s)
)

(2.32)
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as the double differential form for the admittance representation of the dyadic Green’s
function. From substituting (2.32) into (2.31) follows

Hl
t(ρ, s) =

∫ ′

∂ Rl

E l
t(ρ
′, s) ∧ Y l(ρ, ρ′, s). (2.33)

which provides an integral relationship between the tangential magnetic and electric com-
ponents on the considered subdomain surface ∂ Rl .
Now applying an expansion similar to that applied to (2.2) which resulted in the form of
(2.21) the impedance and the admittance representation can be decomposed into a set of
orthonormal basis functions such as

Z l(ρ, ρ′, s) = 1

s
zl

0(ρ, ρ′)+
∑

p

zl
p(ρ, ρ′)
s − sl

p
(2.34)

and

Y l(ρ, ρ′, s) = 1

s
yl

0(ρ, ρ′)+
∑

q

yl
q(ρ, ρ′)
s − sl

q
, (2.35)

where zl
p and yl

q are complex double forms and sl
p and sl

q are the complex poles of the
impedance and admittance expansions for the given subregion, respectively. The total
number and the position of these poles, also called subregion natural frequencies, depends
essentially on the subregion internal physical characteristics (geometry and materials). For
the case of passive structures, the poles must satisfy the stability criterion, which implies
that 	(sl

p) ≤ 0 and 	(sl
q) ≤ 0 for any p and q .

In the case of a loss–free domain, (2.34) and (2.35) become purely imaginary, and their
poles lie on the imaginary axes, so that these equations become:

Z l(ρ, ρ′, ω) = 1

jω
zl

0(ρ, ρ′)+ jω
∑

p

zl
p(ρ, ρ′)

ω2 − (ωl
p)

2
(2.36)

and

Y l(ρ, ρ′, ω) = 1

jω
yl

0(ρ, ρ′)+ jω
∑

q

yl
q(ρ, ρ′)

ω2 − (ωl
q)2

. (2.37)
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The quantities zl
0(ρ, ρ′) and yl

0(ρ, ρ′) represent the static parts of the dyadic Green’s func-
tion, while each term zl

p(ρ, ρ′) and yl
q(ρ, ρ′) represents the residue corresponding to the

poles ωl
p and ωl

q . All these quantities are frequency (Laplace) independent, and are only a
function of the spatial coordinate ρ and the source position ρ′.
A matrix representation of (2.34) and (2.35) can be derived by applying a MOM expan-
sion to the tangential fields on the boundary surface ∂ Rl , by means of a complete set of
orthonormal basis functions. Let us consider the expansion of the tangential electric and
magnetic field components as given by

Ẽ l
t(ρ, s) =∑Nl

n=1 V l
n(s)e

l
n(u, v)

H̃l
t(ρ, s) =∑Nl

m=1 I l
m(s)hl

m(u, v)
(2.38)

where the tilde implies the approximation due to the expansion variable, s denotes the
Laplace domain, (u, v, w) are the curvilinear coordinates defined so that the generic point
on the boundary, be it ρ, is given by ρ ≡ (u, v, w = const.). The quantities V l

n(s) and
I l
m(s), denote the amplitudes of the electric and magnetic fields as function of the normal

coordinate and the complex frequency s. The frequency independent terms el
n(u, v) and

hl
m(u, v), are the basis structure functions, for the electric and magnetic fields, respectively,

and are equivalent to eli
n (u, v) and hli

n (u, v) in the expansion used in (2.4) on the portion
Bli of ∂ Rl . These structure functions depend only on the transverse coordinates (u, v) and
fulfill the following orthogonal relationship∫

∂ Rl

el
n
∗
(u, v) ∧ el

m(u, v) = δmn (2.39)∫
∂ Rl

hl
n
∗
(u, v) ∧ hl

m(u, v) = δmn (2.40)

where δmn denotes the Kronecker’s delta (function which assumes the value 1 only and
only if m = n and is zero otherwise). If now the expansions of (2.38) are inserted into
(2.28), it results in

Nl∑
n=1

V l
n(s)e

l
n(u, v) =

Nl∑
n=1

I l
n(s)

∫ ′

∂ Rl

Z l(ρ, ρ′, s) ∧ hl
n(u
′, v′). (2.41)
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Now multiplying both sides of (2.41) by el
m
∗
(u, v) and integrating over ρ and the domain

∂ Rl , and applying the orthogonality property of the basis functions yields

V l
m(s) =

Nl∑
n=1

I l
n(s)

∫
∂ Rl

∫ ′

∂ Rl

el
m
∗
(u, v) ∧ Z l(ρ, ρ′, s) ∧ hl

n(u
′, v′), (2.42)

where the rest of the right hand side of (2.42) is defined as

Zl
mn(s) =

∫
∂ Rl

∫ ′

∂ Rl

el
m
∗
(u, v) ∧ Z l(ρ, ρ′, s) ∧ hl

n(u
′, v′) (2.43)

the mn-th element of the Nl×Nl square impedance matrix for the given region Rl . Equation
(2.42) can be written in matrix notation as

Vl(s) = Zl(s)Il(s) (2.44)

with Vl(s) are the Il(s) the Nl × 1 vectors of the electric and magnetic field expansion
coefficients. By inserting (2.34) into (2.43) the pole expansion of the impedance matrix
elements become

Zl
mn(s) =

1

s
zl

0mn +
∑

p

zl
pmn

s − sl
p

(2.45)

whereas zl
0mn and zl

pmn
are complex coefficients corresponding to the residues of the poles

in zero and in sl
p, respectively, given by

zl
0mn =

∫
∂ Rl

∫ ′

∂ Rl

el
m
∗
(u, v) ∧ zl

0(ρ, ρ′) ∧ hl
n(u
′, v′) (2.46)

and

zl
pmn
=
∫

∂ Rl

∫ ′

∂ Rl

el
m
∗
(u, v) ∧ zl

p(ρ, ρ′) ∧ hl
n(u
′, v′). (2.47)

The expression in (2.45) is also known as the Foster representation of the impedance pa-
rameter. Applying duality the mn-th element of the Nl × Nl admittance matrix can be
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immediately written as:

Y l
mn(s) =

∫
∂ Rl

∫ ′

∂ Rl

hl
m
∗
(u, v) ∧ Y(ρ, ρ′, s) ∧ el

n(u
′, v′). (2.48)

This allows the magnetic field coefficient vector Il(s) to be expressed in terms of the electric
field coefficient vector Vl(s) as

Il(s) = Yl(s)Vl(s) (2.49)

where the pole expansion for the admittance matrix elements are written as

Y l
mn(s) =

1

s
yl

0mn +
∑

q

yl
qmn

s − sl
q

(2.50)

where yl
0mn and yl

qmn
are residues corresponding to the poles in zero and in sl

q , respectively,
given by

yl
0mn =

∫
∂ Rl

∫ ′

∂ Rl

hl
m
∗
(u, v) ∧ yl

0(ρ, ρ′) ∧ el
n(u
′, v′) (2.51)

and

yl
qmn
=
∫

∂ Rl

∫ ′

∂ Rl

hl
m
∗
(u, v) ∧ yl

q(ρ, ρ′) ∧ el
n(u
′, v′) (2.52)

The expression in (2.50) is also known as the Foster representation of the admittance pa-
rameter. The expressions in (2.44) and (2.49) represent the generalized voltage and current
amplitude relationship given by means of the discretized impedance and admittance matri-
ces.

2.3 Equivalent lumped element description of the impedance
and admittance representation.

In order to describe the considered subregion by means of a network of lumped elements
with the same port description as (2.45) and (2.50) a very general approach is used to
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Figure 2.4: Lossy parallel resonant circuit corresponding to the pole sl
p

exploit the Foster canonical representations [22] [73]. This method makes use of a network
of ideal transformers such as the one already shown in Fig. 2.3, in combination with passive
lumped elements connected so to build resonant groups which yield the natural frequencies
of the considered region.
Let Pl be the number of natural frequencies of the region Rl and form a lossy parallel group
of lumped elements as shown in Fig. 2.4, which can be characterized by the voltage current
relationship

V̄ l
p(s) = Z̄ l

p(s) Ī l
p(s) p = 1, 2, . . . , Pl (2.53)

where Z̄ l
p(s) is the group equivalent impedance given as

Z̄ l
p(s) =

Rl
p + sLl

p

s2L p
pC p

l + s(Gl
pLl

p + Rl
pCl

p)+ 1+ Rl
pGl

p

. (2.54)

The resonant group formed in this way represents an electrical lumped element interpreta-
tion of an electromagnetic resonance taking place within the subregion Rl and which cor-
responds to the natural frequency sl

p introduced in (2.45). In order to account for the influ-
ence of these resonances at the Nl access ports, a connection network able to transform the
Pl + 1× 1 vectors of voltages and currents V̄l = [V̄l

0, . . . , V̄l
Pl
]T and Īl = [Īl

0, . . . , Īl
Pl
]T ,

is necessary. For this purpose a network of ideal transformers such as those of Fig. 2.3 may
be considered. In this way the Pl resonate group impedances are transformed to the Nl
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ports by

Zl(s) =
Pl∑

p=0

Z̄ l
p(s)T

p (2.55)

where Tp, p = 0, 1, . . . , Pl is a rank one matrix given by:

Tp =




n1p
2 n1pn2p · · · n1pnNl p

n2pn1p n2p
2 · · · n2pnNl p

...
...

...
...

nNl pn1p nNl pn2p · · · nNl p
2


 . (2.56)

The matrix of (2.55) establishes the relationship between the voltage and current coeffi-
cients of the expansion of (2.38) as

Vl(s) = Zl(s)Il(s) (2.57)

Noting that the expression of (2.57) is the same as (2.44), (2.45) can be written in terms of
the corresponding element of (2.55) yielding the following

zl
pmn
= nmp Z̄ l

p(s)nnp with p = 0, 1, . . . , Pl, (2.58)

also so the zl
p(s) can be rewritten as

zl
mn(s) =

Pl∑
p=1

[
zl

pmn

s − sl
p
+ zl

pmn

∗

s − sl
p
∗

]
=

Pl∑
p=1

[
Kl

p

s − sl
p
+ Kl

p
∗

s − sl
p
∗

]
kl

pmn
(2.59)

where:

kl
pmn
= |zl

pmn
|, and Kl

p = e j�zl
pmn ∀m, n = 1, 2, . . . , Nl (2.60)

Now (2.58) together with (2.54) and (2.60) yields the following relationships between the
lumped element values of the equivalent circuit and the parameters (poles and residues) of
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the discrete impedance representation for the dyadic Green’s function of the region Rl :

Cl
0 =

1

Kl
0

(2.61)

Rl
p =

−2	{sl
p K l

p}	{sl
p}2

�z
(2.62)

Ll
p =

2	{Kl
p}3

�z
(2.63)

Gl
p =

	{sl
p K l

p}
	{Kl

p}2
− 	{s

l
p}

	{Kl
p}2

(2.64)

Cl
p =

1

2	{Kl
p}

(2.65)

where

�z = |sl
p|2	{Kl

p}2 +	{sl
p K l

p}2 + 2	{sl
p}	{Kl

p}	{sl
p K l

p} (2.66)

and the turn ratio nl
pn is given by:

nl
pn =

√
kp

l
nn, (2.67)

with subscripts n = 1, 2, . . . , Nl and p = 0, 1, . . . , Pl . An example of this modelling
is shown in Fig. 2.5. For the dual case, the Ql + 1 × 1 current and voltage vectors
Īl = [Īl

0, . . . , Īl
Ql
]T and V̄l = [V̄l

0, . . . , V̄l
Ql
]T are related to each other as

Ī l
q(s) = Ȳ l

q(s) V̄ l
q(s), q = 0, 1, . . . , Ql (2.68)

where Ql is the number of natural frequencies for the admittance representation of the
dyadic Green’s function and Ȳ l

q(s) represents the impedance of a lossy lumped elements
series resonant circuit, as shown in Fig. 2.6, which is given by

Ȳ l
q(s) = Gl

q + sCl
q

s2Cl
q Ll

q + s(Rl
qCl

q + Gl
q Ll

q)+ 1+ Gl
q Rl

q
. (2.69)

The Ql admittances of (2.69) are transformed to the Nl ports by means of a network of
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Figure 2.5: Foster realization of the Zl -matrix by lumped elements.
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Figure 2.6: Lossy series resonant circuit corresponding to the pole sl
q

ideal transformers forming the following matrix equation

Yl(s) =
Ql∑

q=1

Ȳ l
q(s)Tq, (2.70)
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with Tq , q = 0, 1, . . . , Ql , a rank one matrix given by:

Tq =




nq1
2 nq1nq2 · · · nq1nq Nl

nq2nq1 nq2
2 · · · nq2nq Nl

...
...

...
...

nq Nl nq1 nq Nl nq2 · · · nq Nl
2


 . (2.71)

Equation (2.70) establishes the relationship between the current and voltage coefficients of
the expansion of (2.38) as

Il(s) = Yl(s)Vl(s) (2.72)

Again noting that the expression in (2.72) is equal to that of (2.49), (2.50) can be written in
terms of (2.70), yielding the following equation

yl
qmn
= nqmȲ l

q(s)nqn with q = 0, 1, . . . , Ql (2.73)

where in a similar fashion to (2.59) yl
mn can be written as

yl
mn(s) =

Ql∑
q=1

[
yl

qmn

s − sl
q
+ yl

qmn

∗

s − sl
q
∗

]
=

Ql∑
q=1

[
Kl

q

s − sl
q
+ Kl

q
∗

s − sl
q
∗

]
kl

qmn
(2.74)

where:

kl
qmn
= |yl

qmn
|, and Kl

q = e j�(yl
q mn

) ∀m, n = 1, 2, . . . , Nl, (2.75)

applying (2.73) together with (2.69) and (2.75) yields the following relationships between
the lumped element values of the equivalent circuit and the parameters (poles and residues)
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of the discrete admittance representation for the dyadic Green’s function of the region Rl :

Ll
0 =

1

Kl
0

(2.76)

Rl
q =

	{sl
q K l

q}
	{Kl

q}2
− 	{s

l
q}

	{Kl
q}2

(2.77)

Ll
q =

1

2	{Kl
q}

(2.78)

Gl
q =

−2	{sl
q K l

q}	{sl
q}2

�y
(2.79)

Cl
q =

2	{Kl
q}3

�y
(2.80)

where

�y = |sl
q |2	{Kl

q}2 +	{sl
q K l

q}2 + 2	{sl
q}	{Kl

q}	{sl
q K l

q} (2.81)

and for the turn ratio nl
qn:

nl
qn =

√
kqnn (2.82)

with n = 1, 2, . . . , Nl and q = 0, 1, . . . , Ql . The result of this modelling is shown in
Fig. 2.7. The realizability of an equivalent circuit using lumped elements as parallel reso-
nant circuits (2.54) and series resonant circuits (2.69) must be verified [24]. In order to do
so the partial fraction decompositions of (2.59) and (2.74) must be real and positive (yield-
ing positive values for the resistances (2.62) (2.77) and the conductances (2.64) (2.79))
which holds only if the following conditions are true [24]:

	{zl
pmn
}

|�{zl
pmn
}| ≥

�{sl
p}

	{sl
p}

(2.83)

and

	{yl
pmn
}

|�{yl
pmn
}| ≥

�{sl
q}

	{sl
q}

, (2.84)
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Figure 2.7: Foster realization of the Yl -matrix by lumped elements.

for any p = 0, 1, . . . , Pl , q = 0, 1, . . . , Ql , m, n = 1, . . . , Nl . The number of lumped
elements required to model the Pl + 1 (Ql + 1) natural frequencies and the connection
matrix turns ratios may be minimized by applying a linear matrix transformation to reduce
the number of elements different from zero in Tp and Tq [46].

2.4 Numerical Implementation of NOM

In order to accomplish a NOM of structures of arbitrary complexity and over a large fre-
quency range, time–domain full–wave numerical analysis tools become an obvious choice.
Two of the most commonly used methods are the Transmission Line Matrix (TLM) method
[36, 29, 10, 71] and the Finite–Difference Time–Domain (FDTD) method [86, 79, 40].
Both of them are space and time discretizing techniques for the solution of electromagnetic
field problems including lossy and non linear materials.
The TLM and FDTD methods allow to relate the wave pulses incident on the boundary of
the a given spatial domain and the wave pulses scattered from the boundary providing, a
very straight forward computation of the discrete Green’s function [39]. Each subregion Rl

of a partitioned electromagnetic structure may be characterized by the pole expansion of
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Figure 2.8: Modelling principle: from the general subregion to the M–port network by NOM, (with M =
Nl1 + Nl2 + Nl3), and from the network to the matrix representation Sl (equivalently Zl or Yl ) by the TLM
method.

the scattering matrix similarly to that for the impedance in (2.45) and admittance in (2.50).
For the mn-th element of the Nl × Nl scattering matrix, the following expression can be
written as

Sl
mn(s) =

1

s
cl

0mn +
∑

r

cl
r mn

s − sl
r

(2.85)

whereas cl
0mn and cl

r mn are the residues corresponding to the poles at zero and at sl
r , respec-

tively. Hence the given electromagnetic structure can be described by a parametric model
which in the complex frequency and in the time–domain is expressed by the following

Sl(s) = 1

s
cl

0 +
R∑

r=1

cl
r

s − sl
r

L←−→ cl
0 +

R∑
r=1

cl
r esl

r t = Sl(t) (2.86)

where the Sl(s), Sl(t) are the discrete scattering matrices of size Nl × Nl , in the Laplace
and time–domain, respectively, and cl

r and sl
r , with r = 1, 2, . . . , R are the R + 1 com-

plex residue matrices and natural frequencies respectively. Typically R depends from the
number of natural frequencies within the considered frequency band. The identification of
these parameters, starting from time–domain simulated data, by means of SI techniques,
as described in the following chapter, enables a systematic network oriented model of the
original EM structure. In Fig. 2.8 an example is shown where the considered subregion
Rl is modelled as an M–port network, with M given by the sum of the number expansion
functions Nlk used at each of the three access boundary surfaces Blk , with k = 1, 2, 3. In
general the discrete Green’s function may assume the expression of an impedance, admit-
tance or scattering representation depending an whether the boundary surfaces are replaced
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by a PEC, PMC or absorbing boundary condition (ABC), respectively. The numerical im-
plementation of magnetic and electric boundary surfaces is very simple and efficient, but
becomes of poor practical application since first, for the case of low loss structures, bound-
ing box resonances with very long transients covers up the structure’s intrinsic resonances,
and second, it is not possible to arbitrarily and selectively impose a PEC and/or a PMC at
the same boundary where more ports may be defined. Attempts to do it have been suc-
cessfully carried out only by defining a single expansion function (port) at each access
boundary surface [65] [11].
The number of ports necessary to describe a structure is strictly related to the number of
expansion functions necessary to describe the tangential components of the field upon the
boundary surfaces. For the very general case, and by using the TLM method, with de-
composition of the structure space in a rectangular grid, a possible choice of expansion
functions is represented by the TLM node field components lying on the boundary surface
for both orthogonal polarizations. In figure 2.9 the TLM model for the structure is depicted
together with the rectangular boundary surface Bl3. The expansion functions introduced in
(2.38), correspond here to the TLM node field components (electric and magnetic) which
yield in this case Nl3 = 2mn, where m and n are the number of nodes by means of which the
area Bl3 has been discretized. Similar representation can be applied for the other boundary
surfaces Bl1 and Bl2. Since as many time–domain simulations are required as the number
of ports defined, by this choice of the expansion functions, the number of modes, e.g. of
ports, can become prohibitive. The knowledge of the field distribution (carried out via
a previously conducted modal analysis), may help in reducing this number by selecting
suitable expansion functions. The typical case is represented from the structure geometry
for which the existence of a well known fundamental mode may be considered. Examples
of this are the boundary surface taken orthogonally with respect to a microstrip (MS) or a
coplanar (CPW) transmission line as depicted in figure 2.10. In this case the description
of the transverse field components for the fundamental mode, can be carried out by using
a single (Nlk = 1) expansion function e for the electric component and a single expansion
function h for the magnetic component.
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Figure 2.9: TLM modelling with an expanded view of the boundary surface Bl3 discretized into m by n
cells upon which the expansion functions are taken as the TLM fields components.
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Figure 2.10: TLM modelling and port definition for the case of a boundary surface orthog-
onal to a MS (a) and a CPW (b) transmission line.



Chapter 3

Prony Model Based System
Identification

An understanding of the physical phenomena to observe is an USEFUL insight in choosing
the analytical description by means of which they may be more efficiently modelled. In the
case of time domain responses of electromagnetic structures a very ubiquitous model, as
shown in the first chapter (see expressions (2.45), and (2.50)), is the exponential or poles se-
ries model also known as Prony model. This model becomes therefore the candidate model
upon which SI procedures will focus in the course of the present chapter. The Prony model
is an analytical representation which describes sampled data as linear combination of ex-
ponential components. Gaspard Riche, Baron de Prony (1795) was led to believe that laws
governing the expansion of various gases could be represented by a summation of damped
exponentials [61]. Prony proposed a method for interpolating experimental data by fit-
ting an exponential model to few equally spaced measured data points and then computing
the additional values by evaluating the model at intermediate points. In his original paper
Prony presents a method for exactly fitting as many purely damped exponentials as needed
to fit the N available data samples. Prony’s method is closely related to the least square
(LS) linear prediction algorithms used for autoregressive (AR) and autoregressive moving
average (ARMA) parameter estimation. However, whereas AR and ARMA methods try to
fit a “random” model to the second–order data statistic (spectrum), Prony’s method seeks
to fit a ”deterministic” exponential model to the available data. Since the data to be con-
sidered is the result of a numerical simulation, and consists of discrete time sequences, the
poles (or natural frequencies) will be treated and analyzed in the Z-domain.

36
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3.1 Prony model

Given a set of data to be modelled x[0], x[1], . . . , x[N − 1] the corresponding Prony’
model can be expressed as follows

x̂[n] =
p∑

k=1

Ake[αk+ j2π fk ]nT+ jθk 0 ≤ n ≤ N − 1 (3.1)

where T is the sample interval in seconds, Ak is the initial (at time zero) amplitude of
the exponential and has the same physical dimension as the original data x[n], αk is the
damping factor in s−1, fk is the oscillating frequency in Hz, and θk is the initial phase in
radians. For the case of real data samples, the complex exponential in (3.1) must occur in
complex conjugate pairs of equal amplitude thus reducing the exponential representation
to:

x̂[n] =
p∑

k=1

2AkeαknT cos(2π fknT + θk) 0 ≤ n ≤ N − 1. (3.2)

Equation (3.1) can also be rewritten as:

x̂[n] =
p∑

k=1

ckzn
k 0 ≤ n ≤ N − 1 (3.3)

where the complex constants ck and zk k = 1, 2, . . . , p are defined as:

ck = Akeiθk (3.4)

zk = e(αk+ j2π fk)T . (3.5)

In order to obtain a good prediction the goal is to minimize the square error:

ρ =
N2∑

n=N1

|e[n]|2 (3.6)
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where

e[n] = x[n] − x̂[n] = x[n] −
p∑

k=1

ckzn
k (3.7)

and [N1, N2] define an interval arbitrarily chosen, and upon which operate the parameter
estimation (prediction interval). Equation (3.6) should be minimized with respect to the
parameter vectors c = [c1, c2, . . . , cp] and z = [z1, z2, . . . , z p] and their number p. This
results in a difficult non linear problem with no analytic solutions [48] [19]. The original
Prony’s approach to this problem was to embed the non linearity aspects of the exponential
model into a polynomial factorization for which relatively fast algorithms are available.

3.2 The Original Prony’s Approach

When the number of data samples is equivalent to the number of exponential terms of the
Prony’s model, then an exact fitting of the data can be carried out. Consider the exponential
time series:

x[n] =
p∑

k=1

ckzn
k 0 ≤ n ≤ N − 1 (3.8)

where x[n] represents the exact value of the data points to be modelled. Equation (3.8) can
also be written in matrix notation as follows:

x = Ẑ c (3.9)

where Ẑ is a p × p matrix with a Vandermonde structure given as:

Ẑ =




1 1 · · · 1
z1 z2 · · · z p
...

...
...

zN−1
1 zN−1

2 · · · zN−1
p


 =




z0

z1

...

zN−1


 (3.10)
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with the vectors z, c and x given by:

z = [
z1, z2, . . . , z p

]T
(3.11)

c = [
c1, c2, . . . , cp

]T
(3.12)

x = [x[0], x[1], . . . , x[N − 1]]T . (3.13)

Since the unknown parameters in c and Ẑ are in total 2p in number (p in z and p in c),
the solution by means of a system of linear equations requires the knowledge of at least 2p
values, given by the original data samples x[0], . . . , x[p], x[p+ 1], . . . , x[2p− 1]. If the
parameters in z can be found a–priori, then (3.9) represents a linear system of p equations
in the p unknown elements of c, which can be solved by means of LS techniques (see
Appendix B) as follows

c =
(
ẐH Ẑ

)−1
ẐH x. (3.14)

Prony’s contribution has been to recognize that (3.8) can be seen as the solution of a homo-
geneous linear differential equation with constant coefficients. In order to find the form of
this differential equation, first the polynomial that has zk , with k = 1, 2, . . . , p, as roots is
defined as

φ(z) =
p∏

k=1

(z − zk) (3.15)

which in polynomial form is given by

φ(z) =
p∑

m=0

a[m]z p−m (3.16)

where a[m] represents a set of complex coefficients with a[0] = 1. Shifting the index of
(3.8) from n to n − m and multiplying it by the parameters a[m] yields

a[m]x[n − m] = a[m]
p∑

k=1

ckzn−m
k . (3.17)
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Now summing both side of (3.17) over k = 0, 1, . . . , p, gives

p∑
m=0

a[m]x[n − m] =
p∑

k=1

ck

p∑
m=0

a[m]zn−m
k (3.18)

which is valid for p ≤ n ≤ 2p−1. Now making the substitution zn−m
k = zn−p

k z p−m
k (3.18)

gives the following

p∑
m=0

a[m]x[n − m] =
p∑

k=1

ckzn−p
k

p∑
m=0

a[m]z p−m
k = 0 (3.19)

where the right hand side of the summation in (3.19) goes to zero as it corresponds to the
root of the polynomial (3.16) for zk with k = 1, 2, . . . , p. Equation (3.19) is the linear
differential equation of degree p whose homogeneous solution is given by (3.8) and whose
associated characteristic equation is given by the polynomial (3.16). Equation (3.19) can
be reorganized into a system of p linear equations which in matrix form is given by

Rx a = −xp (3.20)

where Rx is a p × p Toeplitz matrix

Rx =




x[p − 1] x[p − 2] · · · x[0]
x[p] x[p − 1] · · · x[1

...
...

...

x[2p − 2] x[2p − 3] · · · x[p − 1]


 (3.21)

a = [a[1], a[2], . . . , a[p]]T (3.22)

and

xp = [x[p], x[p + 1] . . . , x[2p − 1]]T . (3.23)

Solved for a the parameters z are directly obtained as the roots of the polynomial (3.16).
Expression (3.20) demonstrates that with 2p complex data samples it is possible to decou-
ple the h and z parameters search in two separate problems.
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Figure 3.1: Prony modelling principle

In practice however the number of data points N usually exceeds the minimum number
needed to fit the model of p exponential (or the model order), i.e. N > 2p. In this case
the given sequence x[n] can only be approximated by the Prony’s exponential sequence
x̂[n] and equation (3.9) becomes an overdeterminated system which deserve particular
care when it is solved (by normal equation or SVD). The basic procedure for systemati-
cally carrying out the Prony model is shown in Fig. 3.1. The given data is used for the
model order selection by means of different techniques such as those based on informa-
tion criteria (IC), or on forward backward linear prediction (FBLP) or on singular value
decomposition (SVD). The data is also used for pole z estimation, via LS linear prediction
(covariance method) or the pencil matrix based approach. Eventually the model residues
c = [c1, c2, . . . , cp] are computed by fitting, in the LS sense, the model to the original data
as in (3.14).
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3.3 Pole Estimation Methods

In order to extract the system poles from the time–domain transient response two main
approaches will be considered, the polynomial method [47] and the pencil matrix method
[30]. The first exploits the fact that (3.20) represents a typical linear prediction problem,
where the coefficient vector a can be found via the LS linear prediction approach either
solving the associated normal equation (NE) or via singular value decomposition (SVD).
For linear prediction the forward and backward approaches can be used either separately
or combined. The second technique, the pencil matrix method, is based on matrix shift
techniques and on the properties of the underlying signals.

3.3.1 Linear Prediction Least Square Method

For practical applications, when the number N of available data points x[0], x[1], . . . , x[N−
1] to fit a model of order p, exceeds the minimum number of required points i.e. N > 2p,
the system is said to be overdetermined and the data can only be interpolated by applying
an exponential sequences such as:

x̂[n] =
p∑

k=1

ckzn
k 0 ≤ n ≤ N − 1 (3.24)

where the approximation error is given by:

ẽ[n] = x̂[n] − x[n] 0 ≤ n ≤ N − 1 (3.25)

and the parameters zk and ck , k = 1, 2, . . . , p must be found to minimize the total square
error ρ given as:

ρ =
N−1∑
n=0

|ẽ[n]|2. (3.26)

In this case the linear difference equation of(3.19) must be modified to

p∑
m=0

a[m]x[n − m] =
p∑

i=1

ci z
n−p
i

p∑
m=0

a[m]z p−m
i = e[n] 0 ≤ n ≤ N − 1 (3.27)
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and since a[0] = 1 this could also be written as

x̂[n] = −
p∑

m=1

a[m]x[n − m] + e[n] 0 ≤ n ≤ N − 1. (3.28)

Forward LS Method

Equation (3.28) has a polynomial form and more exactly represents a forward linear predic-
tion equation. This consists in a linear predictor of the forward sample x̂ f

p [n] obtained as

the weighted sum of p prior samples by means of the coefficients a f
p [m], m = 1, 2, . . . , p.

The forward linear prediction error ep
p[n] given from:

e f
p [n] = x[n] − x̂ f

p [n] = x[n] +
p∑

m=1

a f
p [m]x[n − m] 0 ≤ n ≤ N − 1 (3.29)

and in matrix notation

e f
p = x f

p + X f
pa f

p . (3.30)

Now since in general the available data can be the entire transient signal or simply a part of
it, no a-priori knowledge can be assumed before the beginning of the data set at n = 0 and
after n = N − 1, and an (N − p)× (p + 1) data matrix Tp can be introduced as follows

Tp =




x[p] · · · x[0]
...

. . .
...

x[N − p − 1] · · · x[p]
...

. . .
...

x[N − 1] · · · x[N − p − 1]




, (3.31)

Tp =
[
x f

p X f
p

]
. (3.32)
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Equation (3.30) can therefore be rewritten for forward linear prediction as

e f
p =

[
x f

p X f
p

] [
1

a f
p

]
(3.33)

where

a f
p =

[
a f

p [1], . . . , a f
p [p]

]T
,

and

e f
p =

[
e f

p [p], . . . , e f
p [N − 1]

]T
.

Minimizing the square error in the LS sense means to minimize:

ρ f
p =

N∑
n=p+1

|e f
p [n]|2 = (e f

p)H e f
p (3.34)

and the normal equation approach can be adopted (see Appendix B.1) thus obtaining:

[
x f

p
H

x f
p x f

p
H

X f
p

X f
p

H
x f

p X f
p

H
X f

p

] [
1

a f
p

]
=
[

ρ
f
p

0p

]
(3.35)

where 0p is a p×1 all–zero vector. The matrix at first member of (3.35) is a (p+1)×(p+1)

Hermitian matrix where: x f
p

H
x f

p is a scalar; X f
p

H
x f

p is a p × 1 vector; and X f
p

H
X f

p is a
p × p matrix. This matrix corresponds to the correlation matrix for the given sequence.
The coefficients a f

p are directly derived from (3.35) and are given by:

a f
p =

(
−X f

p
H

X f
p

)−1
X f

p
H

x f
p . (3.36)

The LS problem of (3.33) can be alternatively solved by a SVD approach which however
yields the same results when the matrix Tp has full rank (see Appendix B.1). The desired
poles are eventually obtained as the roots zk of the associated polynomial (3.16) as:

z f
LS =

{
zk s.t. 1+

p∑
m=1

a f
p [m]z(p−m)=0

k , k = 1, 2, . . . , p

}
. (3.37)
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Once the coefficients a f
p are determined from (3.36), the associated LS error can be found

from (3.35):

ρ f
p = x f

p
H

x f
p + x f

p
H

X f
pa f

p . (3.38)

Backward LS Method

The same approach in (3.16) and (3.33) can also be applied for the backward linear predic-
tion method. In this case the current data sample is given from a weighted sum of p future
samples as follows:

x̂b
p[n] = −

p∑
m=1

ab
p[m]z[n + m] (3.39)

where the linear prediction error is:

eb
p[n] = x[n − p] +

p∑
m=1

ab
p[m]x[n − p + m] p ≤ n ≤ N − 1 (3.40)

which can be rewritten in vector notation as:

eb
p =

[
Xb

p xb
p

] [
ab

p

1

]
, (3.41)

and

Tp =
[
Xb

p xb
p

]
, (3.42)

with the backward linear prediction coefficients, and error vector determined from:

ab
p =

[
ab

p[p], . . . , ab
p[1]

]T
(3.43)

eb
p =

[
eb

p[0], . . . , eb
p[N − p − 1]

]T
(3.44)

where the (N − p) × 1 data vector xb
p and the (N − p) × p data matrix Xb

p determine

such that Tp =
[
Xb

p xb
p

]
. Applying the same considerations used for the forward linear
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prediction method, the coefficient vector ab
p can be found from the normal equation

[
Xb

p
H Xb

p Xb
p

H xb
p

xb
p

H X f
p x f

p
H

x f
p

] [
ab

p

1

]
=
[

0p

ρb
p

]
(3.45)

where 0p is a p×1 all–zero vector. The matrix at first member of (3.45) is exactly the same

as in (3.35) but differently decomposed. In particular: xb
p

H xb
p defines a scalar; X f

p
H

x f
p is a

p × 1 vector; and X f
p

H
X f

p is a p × p matrix. From (3.45),

ab
p = −

(
Xb

p
H

Xb
p

)−1
Xb

p
H

xb
p. (3.46)

In the backward prediction scheme the desired poles are obtained as the inverse roots zk of
the associated polynomial (3.16):

zb
LS =

{
z̃−1

k s.t. 1+
p∑

m=1

ab
p[m]z̃m

k = 0, k = 1, 2, . . . , p

}
(3.47)

and the associated LS error can be determined from (3.45) as:

ρb
p = Xb

p
H

xb
pab

p + xb
p

H
xb

p. (3.48)

A necessary but not sufficient condition for the non singularity of the data matrix in (3.35)
and (3.45) is that p ≤ N

2 This represents an upper limit for the model order selection.
The solution of the normal equation in both cases (forward) (3.35) and (backward) (3.45)
requires general matrix solutions with a computational complexity proportional to p3 and
memory requirements proportional to p2. In the literature, (3.33) is also called the LS
linear prediction method, from its historical use in speech processing [45].

Combined Forward and Backward LS Method

For linear prediction methods, be it the forward or the backward method, the statistical
information contained in the observed data is the same in both directions. It is therefore
reasonable to combine the two techniques in order to generate more errors points, and as a
consequence a better estimate. The N − p forward and N − p backward linear prediction
errors given from (3.33) and (3.41) may be concisely written by using the matrix vector
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Table 3.1: LS linear prediction pole estimation algorithm forward (f) and backward (b)

Given a response x[n] with n = 0, 1, . . . , N − 1 and a model order p:

1. The data matrix Tp is formed as in (3.31) and decomposed as in (3.32) (f) or as in (3.42) (b)

2. The polynomial coefficients are computed as in (3.36) (f) or as (3.46) (b)

3. The poles are obtained as the roots of the polynomial (3.37) (f), or (3.47) (b)

product: [
Tp

T∗pJ

][
1

a f b
p

]
=
[

e f
p

eb
p
∗

]
= ep. (3.49)

The error ep is a 2(N − p)× 1 vector made of the following forward and backward linear
prediction errors

e f
p =

[
e f

p [p], . . . , e f
p [N − 1]

]T

eb
p =

[
eb

p[p], . . . , eb
p[N − 1]

]T

and the linear prediction coefficient vector a f b
p is given by

a f b
p =

[
ap[1], . . . , ap[p]

]T
.

Tp is the (N− p)×(p+1) matrix already introduced in (3.31) and J is the (p+1)×(p+1)

reflection matrix with 1s only on the cross diagonal, so that:

Tp
∗J =




x∗[0] · · · x∗[p]
...

. . .
...

x∗[p] · · · x∗[N − p − 1]
...

. . .
...

x∗[N − p − 1] · · · x∗[N − 1]

.




(3.50)

This latter is an (N − p) × (p + 1) Hankel matrix (elements on the cross diagonals all
identical). Minimizing the average of the forward and backward square error over the
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available data yields:

ρ f b
p =

1

2

[
N−1∑
n=p

|e f
p [n]|2 +

N−1∑
n=p

|eb
p[n]|2

]
= 1

2

[
e f

p
H

e f
p + eb

p
H

eb
p

]
= 1

2
ep

heP , (3.51)

which leads to the following normal equation

Rp

[
1

a f b
p

]
=
[

2ρ
f b
p

0p

]
, (3.52)

where 0p is a p × 1 all–zeros vector and

Rp =
[

r rH

r R

]
=
[

Tp

Tp
∗J

]H [
Tp

Tp
∗J

]
= Tp

∗Tp + JTp
T Tp

∗J, (3.53)

where r is a scalar, r is a p × 1 data vector and R is a p × p data matrix. This method
is known in the literature as the modified covariance method [7] [83] [53]. From (3.52)
and (3.53), the combined forward and backward linear prediction coefficient vector a f b

p is
given from:

a f b
p = −R−1r (3.54)

and the corresponding minimum square error

ρ f b
p = r + rH a f b

p . (3.55)

Finally the poles are obtained in a similar fashion to the forward case as:

z f b
LS =

{
zk s.t. 1+

p∑
m=1

a f b
p [m]z p−m

k = 0, k = 1, 2, . . . , p

}
. (3.56)

A necessary but not sufficient condition for Rp to be non singular is that p ≤ 2
3 N . This

provides an upper limit for the combined forward and backward linear prediction technique.
The LS method in all cases so far observed (forward backward and the combination of the
two) does not guarantees stability, i.e. the poles z f

LS , zb
LS and z f b

LS could lie also outside
the unitary circle, giving rise to an unstable Prony model. The LS linear prediction pole
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extrapolation algorithm is oulined in Tab. 3.1.

3.3.2 Pencil Matrix Method

An alternative approach to the described polynomial or LS linear prediction method is
the pencil matrix (PM) method [30] [56]. The PM method is representative of a technique
which exploits the structure of a matrix of pencil of the (noiseless) underlying sought signal
instead of solving a prediction equation as in the LS linear prediction approach (3.3.1). The
method presented here was originally introduced in the late 80s [31] and is based on the
Pencil of Function (PoF) approach [34] [35] [84], and previous work on estimation of signal
parameters via a rotational invariant technique (ESPRIT) [68] [64] and the SVD Prony’s
method [82] [41]. In contrast with these the PM exploits in greater extend the free–moving
window length, referred to the pencil parameter.
Given a sequence of time discrete signal samples x[n] corrupted by additive noise e[n] and
expressed as:

x̂[n] = x[n] + e[n] 0 ≤ n ≤ N − 1 (3.57)

the resulting approximated signal can be modelled by the exponential sequence of (3.24).
In order to find the damping coefficients and the frequency of the exponential components
which characterize it (Prony’model poles) the following properties of the exponential signal
are recalled.
Define an (N − L)× 1 data vector:

xt = [x[t], x[t + 1], . . . , x[N − L + t − 1]]T 1 ≤ t ≤ L (3.58)

and two (N − L)× L data matrices

X0 =
[
xL−1, xL−2, . . . , x0

]
, (3.59)

X1 =
[
xL , xL−1, . . . , x1

]
, (3.60)

where L ∈ IN is the pencil parameter. The quantities belonging to the set zP M = [z1, z2, . . . , z p]
are the sought poles and are found as the rank reducing values of the so called pencil matrix
defined as

X1 − z X0 with z ∈ C (3.61)
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where p ≤ L ≤ N − p. None of the values of zP M are rank reducing number of (3.61)
if L ≤ p or L ≥ N − p. The very interesting physical meaning of this is the following.
If the rank of matrix (3.61) reduces this means that at least one of its columns (portion of
the signal) can be expressed by means of another column (another different portion of the
signal) within a difference of magnitude and phase given by the rank reducing complex
value. The proof of this is given by using the following decompositions for X0 and X1

X0 = ZL H ZR (3.62)

X1 = ZL H Z ZR (3.63)

where

ZL =




1 · · · 1
z1 · · · z p
...

...

zN−L−1
1 · · · zN−L−1

p


 and ZR =




zL−1
1 zL−2

1 · · · 1
...

...

zL−1
p zL−2

p · · · 1


 , (3.64)

are two (N − L)× p and p × L Vandermonde matrices and where

H = diag
{
h1, h2, . . . , h p

}
(3.65)

and

Z = diag
{
z1, z2, . . . , z p

}
(3.66)

are p × p full–rank parameter matrices. Inserting (3.62) and (3.63) into (3.61) yields

X1 − z X0 = ZL H
(
Z− z Ip

)
ZR with z ∈ C (3.67)

where Ip is the p × p identity matrix. Since for p ≤ L ≤ N − p the matrices ZL and ZR

have rank p, it follows that:

rank (X1 − zX0) =
{

p for z ∈/ zP M

p − 1 for z ∈ zP M
(3.68)
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For the case of L < p then rank (ZR) = L and from this it follows that

rank
[(

Z− zIp
)

ZR
] = L ∀ z ∈ C (3.69)

and therefore z ∈ zP M . Similarly for L > N − p, the rank (ZL) = N − L and hence

rank
[
ZLH

(
Z− zIp

)] = N − L ∀ z ∈ C . (3.70)

This means that the value zk with k = 1, 2, . . . , p can be found as the rank reducing
quantities of the pencil matrix (3.61) if and only if p ≤ L ≤ N − p.
If for such values of L the rank of (3.61) decreases by one unit, for zk ∈ zP M , then the
solution of the associated eigenvalues problem is given by:

(X1 − z X0) q = 0
pH (X1 − z X0) = 0

(3.71)

which unique together with the corresponding eigenvectors q and pH (which belong to the
column space of XH

0 and to the row space of X0 respectively), within a scalar constant.
These solutions are given as:

qk s.t kthcolumn of ZR
# = ZH

R

(
ZRZH

R

)−1
(3.72)

pH
k s.t kthrow of ZL

# = (
ZH

L ZL
)−1

ZH
L (3.73)

for k = 1, 2, . . . , p and where ZR
#, ZL

# and ZH
R , ZH

L are the corresponding pseudoinverse
and Hermitian matrices of ZR and ZL respectively. It is of note that the equations (3.71) are
the generalized singular eigenvalue problems, since for p ≤ L ≤ N − p the matrices X0

and X1 are not full–rank. This can be easily shown by considering the decomposition (3.62)
and (3.63) and by noticing that matrices ZR and ZL are of rank p. Therefore rank (X0) =
rank (X1) = p while its dimension is N − L × L .
Once it is shown that the poles of zP M are unique, they are calculated from the data matrices
X0 and X1. Multiplying the first of (3.71) by X0

# gives:

X0
# (X1 − zk X0) qk = 0

X0
#X1qk = zkX0

#X0 qk = zk qk
with zk ∈ zP M (3.74)
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which implies that the elements of zP M are p non zero eigenvalues of the L × L matrix
X#

0X1. Moreover since rank
(
X#

0X1
) = p ≤ L , (3.74) also has L − p zero eigenvalues.

If now a noisy data sample series x̂[n] is considered, in place of the noiseless sequence
x[n], the same procedure in building the data matrices x̂t , X̂0 and X̂1 applies as in (3.58)
(3.59) and (3.60), the only difference being that in place of the exact pseudoinverse X0

#

and X1
#, the rank p truncated pseudoinverse matrices X̂#

0 and X̂#
1, of size N − L × L must

be used. For X̂#
0 this yields:

X̂#
0 =

p∑
n=1

σ0
−1
n v0nu0n

H = V0 A−1U0, (3.75)

where A is a diagonal matrix formed from the p largest singular values σ0n , n = 1, 2, . . . , p
of X̂0 and V0 and U0 are N − L × p and N × p unitary matrices of eigenvectors of X̂H

0 X̂0

and X̂0X̂H
0 respectively (see Appendix B). An equation similar to (3.75) is derived for X̂#

1.
The matrix X̂#

0 represents the p rank truncated noiseless pseudoinverse of the noisy data
matrix X̂0 in the sense that it is equal to X0

# only for the case of zero noise i.e. e[n] = 0,
for n = 1, 2, . . . , N − 1. Now since the L× L matrix X̂#

0X̂1 has L− p null eigenvalues its
size can be reduced before the p non-zero eigenvalues are extracted. By using (3.74) and
inserting X̂#

0 in place of X#
0 in (3.75), the latter becomes:

V0A−1UH
0 X̂1qk = zkqk k = 1, 2, . . . , p (3.76)

and given that VH
0 V0 = Ip and qk = VH

0 V0qk , and left multiplying (3.76) by VH
0 yields:

A−1UH
0 X̂1V0VH

0 qk = zkVH
0 qk k = 1, 2, . . . , p (3.77)

and from this the poles zk can be computed as the eigenvalues of the square p × p matrix

ZE = A−1UH
0 X̂1V0 (3.78)

obtaining:

zP M =
{
zk s.t. det

(
ZE − zkIp

) = 0, k = 1, 2, . . . , p
}
. (3.79)

In the literature a perturbation analysis is used to study the noise sensitivity of the pencil
matrix method. Investigation results have shown that in a first approximation a value for
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Table 3.2: PM pole estimation algorithm.

Given a response x[n] with n = 0, 1, . . . , N − 1 and a model order p:

1. The pencil length is defined as L = � N
2 �

2. The data matrices X̂0 and X̂1 are built as in (3.62) and (3.63)

3. The p –rank truncated pseudoinverse of X̂0 is computed as in (3.75)

4. The p × p matrix ZE is computed as in (3.78)

5. The p poles are found as eigenvalues of ZE

the pencil parameter between N
3 ≤ L ≤ 2

3 N gives the best results [30].
Compared with the linear prediction LS method of section (3.3.1), where a 2(N − p)× p
data matrix was decomposed via SVD, and the p roots of a p degree polynomial were
found, the PM method requires the SVD of a (N − L)× L matrix and moreover to solve a
p × p eigenvalue problem (3.79). For L ≤ p ≤ N − L the linear prediction LS method,
always has a complexity always higher than the PM method. The PM pole extrapolation
algorithm is described in Tab. 3.2.

3.3.3 Pole Estimation Method Comparison

In physical applications the performances of pole extrapolation algorithms are significantly
effected by strongly attenuated and/or closely spaced poles in noisy environments, (for ex-
ample the case of selective filters built on lossy materials and operating in an environment
of high thermic noise). A parametric analysis of the effects produced from signal damping,
frequency separation (resolution) and noise power will be presented here in order to evalu-
ate and compare the performances of the previously introduced pole estimation algorithms.
In order to carry out the analysis a single pole signal, synthesized as in (3.1), with p = 1,
and corrupted by additive white noise with a given SNR, will be evaluated. The signal is
described by

s0[n] = x[n] + e[n] =
p∑

k=1

Ake[−αk+ j (2π fk+θk)]nT + e[n]. (3.80)
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Figure 3.2: Effect of an additive white noise on a single poles signal: a) for SN R = 0 d B, and b) for
SN R = 15 d B

The first sequence taken in consideration is a a single pole signal s0[n] with p = 1 and an
initial amplitude of A1 = 1 is considered. The initial phase is θ1 = 0, and the discretization
interval is assumed to be unitary (T = 1). The pole parameters α1, f1 will be varied
together with the SN R. In order to quantify the accuracy of the estimated pole a variance
parameter called mean error distance (MED) is introduced as

M E Dp = 1

R

R∑
k=1

[
|z p − ẑ(k)

p |
|z p|

]2

(3.81)

where z p is the exact pth pole and ẑ(k)
p the corresponding estimate at the kth estimation

trial from an overall number of trial R. The first comparison is given in Fig.(3.2). It shows
the effects on the position of the estimated poles, for R = 50 of the sequence in (3.80),
for two SN R levels of 0 and 15d B, respectively. Since the signals are discrete in time, the
representation of the poles is given on the z–plane. For a SN R of 0d B all considered
methods produce similarly inaccurate results. For a SN R of 15d B however all methods
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Table 3.3: Comparison of methods in terms of MED and pole position. True pole: z1 =
0.9395+ j 0.1488i

Method M E D @ 0 d B Poles @ 0 d B M E D @ 15 d B Poles @ 15 d B

LS forw 0.1312 0.8417 + j 0.0717 0.0112 0.9319 + j 0.1421

LS back 0.1807 0.8995 - j 0.0767i 0.0093 1.0321 - j 0.1574

Pencil Matrix 0.1679 0.9968 - j 0.0003 0.0018 0.9379 + j 0.1485

except the LS backward yield good results. The numerical results are listed in Tab.(3.3),
where the extracted pole accuracy is estimated by computing the M E D. The noise level
effects the performance of the pole identification especially in case of strong damping. An
example of this is given in Fig.3.3, where two values of α, equal to 0.05 s−1 and 0.5 s−1

are taken in consideration. The estimation improves with the SN R as expected, and for the
lower value of damping the PM method gives very good results with a M E D < 10−4 for a
SN R of 14d B, while the LS forward and backward methods obtain the same accuracy only
when the SN R is increased by 10 and 15d B respectively. For the higher damping value,
the three methods give similar accuracy, within few dBs, and get below a M E D of 10−4

only for a SN R > 38d B. Fig.3.4 shows the behavior of the MED as a function of the
damping factor α. Depending on the noise level the PM becomes worse than the LS based
method, after α has reached a certain value (see Fig.3.4). This is due to the fact that the
algorithm is not able to correctly recover the pole, and yields in this case a constant value
of z = 1 (see Table 3.3). Another important characteristic to be considered is the ability
to resolve poles which are close to each other. In order to show this a two pole signal will
be considered as given in (3.80) with p = 2. In the first test the two poles are kept at a
constant frequency spacing of 1% (i.e. f1 = 0.125Hz and f2 = 1.01 f1), and the damping
α is swept in the range α1 = α2 ∈ [0 1]. The results are depicted in Fig.3.5, where the PM
method shows an improved ability to accurately resolve both poles over the LS forward
and LS backward methods, for values of α < 0.35 s−1. A further test can be carried out
by keeping constant the damping factor α1 = α2 = 0.25 s−1, and introducing a frequency
deviation � f . The results with f1 = 0.125Hz, and f2 = f1(1 +� f ) where � f is swept
from 0 to 6%, are given in Fig.3.6 for an SN R = 100d B. Comparing the methods the PM
shows a strong improvement over the other two methods above a frequency deviation of
0.5% and through the rest of the test range.
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Figure 3.3: M E D for the three pole estimation method (LS forward LS backward and PM) as a function
of the SN R for the case of two damping constants: α = 0.05s−1 and α = 0.5s−1

Fig.3.7 shows a set of two dimensional plots of the M E D, for all three methods, as
function of both α and the percent frequency deviation.

3.4 Model Order Selection

The model order p is in general not known a–priori. In practice several model orders are
defined and by means of some error criterion the optimum (minimum model error) is cho-
sen. A low model order yields a simple system description, but also a smoothed spectral
estimate and lack of accuracy. Too high an order increases the resolution, but may introduce
spurious components (likely to be unstable) into the spectrum. Thus model order selection
represents a trade off between minimum complexity and maximum accuracy. An intuitive
approach would be to increase the model order progressively until a minimum threshold
value for the error variance is reached. However, since most of the estimation procedures
yield a prediction error variance which decreases monotonically with the order p, such an
approach becomes inefficient unless a sudden reduction of in the error occurs. Normally
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Figure 3.4: M E D as a function of the damping factor α, for three different noise levels: SN R = 5d B,
SN R = 15d B and SN R = 25d B

the model order selection is based on the preliminary data analysis and falls into the follow-
ing categories. The first approach is carried out by examining the spectral analysis estimate
of the signal or transfer function and observing the resonance peaks, the high frequency
roll–off, and the phase shift. A second class of techniques for model order estimation use
an information criterion based on autoregressive linear prediction. Techniques based on
the linear prediction of polynomial zeros are also possible. Last, a techniques based on
the separation of the signal space from the noise space and the analysis of the covariance
matrix rank can also be applied. Since the first mentioned technique is based on visual in-
spection of the spectrum it is very imprecise, especially in the presence of strongly damped
resonances. Techniques based on information criterion are traditionally very common in SI
but have very limited practical applications and are only briefly mentioned. Only the last
two methods are of practical use and are hereby extensively discussed and applied here.
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3.4.1 Method based on AR information criteria

The LS Prony’s method (see Section 3.2) requires the solution of a LS linear prediction
normal equation which incidentally corresponds with the same equation to be solved by
autoregressive (AR) modelling ([47], Chap.8). This commonality suggests that an entire
set of order selection criteria, originally developed for AR models, can also be applied to
the Prony’s covariance method. Akaike ([2]) has provided two criteria. The first, called the
final prediction error (FPE), selects the order so that the average error variance for a one
step prediction (prediction on the next single sample) is minimized. The FPE is defined as:

F P E(p) = ρp

(
N + p + 1

N − p + 1

)
(3.82)

where N is the number of data samples, p is the model order, and ρp is the linear prediction
noise variance already encountered in (3.38), (3.48) and (3.55) for the forward, backward
and the combination of the forward and backward, respectively. Equation (3.82) assumes
that the sample mean has been subtracted from the data. The selected order p is the value
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Figure 3.6: M E D as function of the frequency deviation (SN R = 100d B)

that minimizes the F P E(p). Akaike ([3]) also suggested another selection criterion known
as the Akaike information criterion (AIC), based on a maximum likelihood approach. The
AIC determines the model order p by minimizing an information theoretic function, which
for the case of additive gaussian white noise is given as follows:

AIC(p) = N ln
(
ρp
)+ 2p. (3.83)

The term 2p represents the penalty for the use of extra parameters that do not contribute
to the reduction of the prediction error variance. The selected order p is again given by
the value which minimizes the AIC(p). As N → ∞ AIC and FPE are asymptotically
equivalent. The AIC criterion however, has been proven to be statistically inconsistent
since the error statistic does not go zero as N goes to infinity, yielding an overestimated
order for data record increasing length [37]. In order to correct this estimate a variant of the
AIC was introduced as minimum description length (MDL) [66] and expressed as follow:

M DL(p) = N ln
(
ρp
)+ p ln (N ) . (3.84)
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Figure 3.7: MED as function of the frequency deviation and damping for two poles signal in white noise
(SN R = 100d B), for the LS Backward LS Forward, and Pencil Matrix method.

The model order selection criterion presented so far may be used as guidelines for initial
order selection, but in general do not produces satisfactory results for experimental data
that in general cannot be modelled as an AR process. One more disadvantage of these
criteria is the limited application range to low noise data.

3.4.2 Forward and backward polynomial LP based method

The methods for the identification of an exponential signals from a noisy transient signal,
as seen in sections (3.3.1) exploits the following principle. For a deterministic process
represented as an exponentially damped signal, and mixed with stationary additive white
noise, its statistical properties do not change for the case of time inversion. This principle
can therefore be exploited for linear prediction once the forward and the backward LS linear
prediction algorithms are applied. Recalling the LS linear prediction method, the forward
and backward solutions (3.37) and (3.47) for the case of model order r can be rewritten
respectively as:

z f =
{

zk s.t. 1+
r∑

m=1

a f
r [m]z(r−m)

k = 0, k = 1, 2, . . . , r

}
(3.85)

and

zb =
{

z̃−1
k s.t. 1+

r∑
m=1

ab
r [m]z̃m

k = 0, k = 1, 2, . . . , r

}
. (3.86)
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Figure 3.8: Order selection by the forward and backward polynomial LP based method for a two–tone
signal (4 complex conjugated poles) corrupted by additive white noise (SN R = 150d B).

Therefore the true signal order p with p ≤ r can be found as the number of poles in z f and
zb such as satisfy the following relation:{
|z j | < 1 and |z̃ j | > 1 s.t. |z j − z̃−1

j | ≤ ez with j = 1, 2, . . . , p
}

. (3.87)

An example of this is shown in Fig. 3.8 where a signal composed of two sinusoids (of
normalized frequency f1 = 0.1 and f2 = 0.2, and damping factor α1 = α2 = 0.85 s−1)
is summed with white noise for a SN R 150d B. The total number of extrapolated poles
is r = 100 and the true order p = 4 is detected by selecting the pair of poles satisfying
(3.87), where ez = 10−4. These poles are depicted as square marks in Fig. 3.8. The rest of
the poles correspond to noise poles and lies mainly on the unit circle. Low values for the
damping factor would bring the true poles close to the noise ones, and too high a number for
r of extrapolated poles may introduce interference between the two sets, with wrong order
selected. In real applications, where this scenarios may occur quite often, this technique is
not very reliable as is shown in Fig. 3.9, where systems poles and noise poles may lay also
very close to each other. The forward and backward LS based order estimation algorithm
is summarized in Tab. 3.4
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Table 3.4: FB LS based model order selection algorithm

Given a time discrete signal x[n] with n = 0, 1, . . . , N − 1:

1. A starting value for r is selected (r ≤ � N
2 �)

2. A value for the threshold ez is defined (10−4 is a reasonable value)

3. The number of poles r poles is estimated via LS forward (z f ) and backward (zb)

4. The model order is selected as that value p satisfying (3.87)

3.4.3 SVD based Method

The SVD technique is a powerful tool in digital signal processing and SI because it allows
to extract the main information about a system or a signal, from a corresponding system
or signal data matrix (typically corrupted by noise) [52]. It enables the estimation of the
associated model complexity, i.e. model order, by selecting the data matrix rank which
specifies the dimension of the underling signal space. In this way the SVD method allows
the separation of the signal from the coexisting noise. In many applications a data matrices
X̂ of measured or simulated data samples is defined by N × p real quantities where N � p
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(see (3.8)) and can be decomposed in an exact data matrix X and an additive perturbation
noise matrix E so that:

X̂ = X + E. (3.88)

Typically the rank(E) = r and therefore the rank(X̂) = r . For applications that are based
upon linearity the exact data matrix is rank deficient, i.e.

rank(X) = p < r. (3.89)

Let us suppose that the SVD of X is known a–priori and is given by:

X = [Ux1Ux2]

[
Sx1 0
0 0

] [
VT

x1
VT

x2

]
(3.90)

where Ux1 and Ux2 are matrices of N × p and N × (q − p) dimension and Vx1 and Vx2

are matrices of dimension r × p and r × (r − p), composed from the unitary eigenvectors
of the matrices XXT and XT X, respectively. The matrix Sx1 is an p × p diagonal matrix
of singular values for X (see Appendix B). From this it is evident that the row space of X
coincides with the column space of Vx1 while the columns of Vx2 generate an orthogonal
basis for the null space of X. Using Vx1 and Vx2 the matrix X̂ can be rewritten as

X̂ = X+ E = X+ EVx1Vx1
T + EVx2Vx2

T =
= (XVx1 + EVx1) Vx1

T + (EVx2) Vx2
T . (3.91)

Applying the following decompositions

XVx1 + EVx1 = P1S1Q1
T (3.92)

EVx2 = P2S2Q2
T (3.93)

(3.91) may be rewritten as

X̂ = P1S1Q1
T Vx1

T + P2S2Q2
T Vx2

T =
= [P1P2]

[
S1 0
0 S2

] [
Q1

T Vx1
T

Q2
T Vx2

T

]
, (3.94)
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which is an SVD of X̂ if and only if P1
T P2 = 0 or equivalently if and only if

Vx1
T (XT + ET )EVx2 = 0. (3.95)

This expression can be split into the following two:

XT E = 0 (3.96)

Vx1
T ET EVx2 = 0. (3.97)

The physical meaning of (3.96) is that the signal space and the noise space are orthogo-
nal while for (3.97) the noise is white gaussian (i.e. ET E = σ 2Ip where σ is the noise
variance). This follows by recalling that Vx1 and Vx2, as mentioned in (3.90), are orthog-
onal, which is found to be consistent with most engineering applications. Applying these
assumptions, (3.91) and the SVD of the matrix X̂ can be rewritten as follows:

X̂ = X+ E = [Ux̂1Ux̂2]

[
Sx̂1 0
0 Sx̂2

] [
Vx̂1

T

Vx̂2
T

]
(3.98)

where

Ux̂1 = (Ux1Sx1 + EVx1)

√(
S2

x1 + σ 2Ir
)
, (3.99)

Ux̂1 = EVx2σ
−1 (3.100)

and (3.99) and (3.100) are of dimension N×p and N×(r−p), respectively and Vx̂1 = Vx1,
Vx̂2 = Vx2. The square matrices Sx̂1 and Sx̂2, of size p × p and (r − p) × (r − p),
respectively are defined as

Sx̂1 =
√(

S2
x1 + σ 2Ir

)
(3.101)

Sx̂1 = σ Ir−p. (3.102)

The same decomposition between signal and noise subspaces can be observed by SVD of
the correlation matrix R related to the data matrix defined as

R = X̂ X̂T (3.103)
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where by substituting (3.94) and using the unitary properties of the matrices Vx̂1 and Vx̂2 it
is possible to decompose R as:

R = [Ux̂1Ux̂2]

[
S2

x̂1 0
0 S2

x̂2

] [
Ux̂1

T

Ux̂2
T

]
. (3.104)

Now concerning a noise corrupted signal, the assumption of the existence of a gap in the

singular spectrum applies. This means that the smallest singular value in
√(

S2
x1 + σ 2Ir

)
,

be it σ x
p , is bigger than the largest singular value of σ Ir−p. In reality this gap is very small

and in general the signal singular values are almost contiguous to the noise ones. The
separation in such cases can be carried out only by setting a threshold value defined as
follows

DT = 20 log10

σ x
p

σ
. (3.105)

For many practical cases where the matrix Sx̂2 has singular values which are not constant
(valid only for white noise), but decreasing as σ e

1 ≥ σ e
2 ≥ . . . ≥ σ e

r−p ≥ 0, and a more
reasonable value for the threshold (3.105) may be chosen as follows:

DT = 10 log10

∑p
1=1 σ x

i
2∑r−p

j=1 σ e
j

2
. (3.106)

DT can be interpreted as a SNR of the signal values space. Worth of note is that taking
the square of the singular values in (3.106) is equivalent to using the singular values for
the correlation matrix in the same formula. This reasoning yields a model order selection
criterion which can be formulated as follows. The model order of the system or signal of
associated data matrix is X̂ is given from the dimension of the underling signal space, or
equivalently from the approximated rank of X̂. This order is determined from the value p
such that:

SN R(p) = 10 log10

∑p
i=1 σ x̂

i
2

∑r
i=p+1 σ x̂

i
2
≥ DT (3.107)

where σ x̂
i are the singular values of the data matrix X̂. Since DT in (3.107) is given in terms

of the unknown singular values of the exact data matrix X and the error matrix E, it is in
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Figure 3.10: Order selection by SVD as function of the threshold level DT and the SNR.

general unknown and starting value must be chosen. In Fig 3.10 the estimated order for a
two–pole signal corrupted by additive white noise (as in (3.80)) is taken into consideration
by showing the dependency from the DT and the noise level (SN R). The higher the SNR
is the wider can be the threshold level range assumed by DT in order to get the exact order
(p = 2). For this case of high values for the threshold DT and low SN R the criteria does
not converge and the estimated order goes to the upper limit of order of N/2, where N is
the length of the available signal (here N = 50). In Fig 3.11 three different slices at three
correspondent different SN R values are given. For the case of real system transients, as in
Fig.3.12, the order is proportional to DT and varies linearly for high SNR (SN R > 50d B
– dashed line line) until it saturates for DT > 100bB settling down to an asymptotic value
(likely candidate for the model order here p = 32). At the other extreme for a very noisy
signal (SN R < 10d B) the order diverges (continuous line) since the algorithm cannot
distinguish the signal from the added noise. For this example a value of DT = 110bB
seems to be the best compromise in defining the correct model order. If on one hand the
implementation of this algorithm is very time consuming, since it is based on SVD (its
complexity is proportional to p3), on the other hand it provides a very stable technique to
separate the signal from the noise space. The SVD based model order estimation algorithm
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Figure 3.11: Order selection by SVD as function of the threshold level DT for three level of SN R.

is summarized in Tab. 3.5.

3.4.4 Model order selection methods comparison

The estimation of the model order by means of the forward and backward linear prediction
(FBLP) polynomial technique (3.87) and the SVD based technique (3.107) is tested in the
following on a signal known a–priori. The four conjugated pairs of poles forming the
signal, as in (3.80), are characterized by the following parameters: damping factor α1 =
α2 = 0.015 s−1, α3 = α4 = 0.051 s−1, and normalized frequency f1 = ±0.2, f2 = ±0.1,
f3 = ±0.5, f4 = ±0.25.The complex pole amplitudes are assumed to be Ai = 1 for
i = 1, 2, . . . , 4. As shown in Fig. 3.13, the two techniques calculate the same correct
result p = 8, but while the SVD based technique is already converged for SN R = 50 d B,
the forward backward LP based methods need a minimum SN R of 70d B. The better
performance of the SVD based technique however requires more in terms of computational
effort since its complexity is (N − p)3 compared to (N × p) of the forward/backward LP
technique.
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Figure 3.12: Effect of the noise level on the model order selection using the SVD algorithm for the transient
response of a typical electromagnetic structure (patch antenna) corrupted with additive white noise.

Table 3.5: SVD based model order selection algorithm

Given a time discrete signal x[n] with n = 0, 1, . . . , N − 1:

1. A starting value for r is initialized (r ≤ � N
2 �)

2. The (N − r)× (r + 1) data matrix Tr is built as in (3.31)

2. The threshold value for the selection DT is initialized (100 default value )

3. The singular values for the data matrix Tr are computed

4. The model order is selected as that value p satisfying the (3.107)
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Chapter 4

Modelling of Passive Electromagnetic
Networks

Typically, experimental analysis of physical phenomena is based upon time domain update
of observable data. The ability to predict the behavior of an observed quantity from an al-
ready available ensemble of data samples can play a key role in shortening down the overall
analysis. If such an operation is accurately and successfully carried out the advantages can
be significant: First the period of observation for the data, normally time and resource ex-
pensive (be it a measurement or a simulation), can be terminated as soon as the predicted
data set differs from the experimental one by a selected error criteria, and second, since
the prediction is normally based upon an adaptive parametric modelling, the observed data
becomes immediately available in analytic form by means of few (compared with the data
length) parameters and the corresponding model structure. Therefore, in general, signal
prediction yields shorter experimental observations as well as compact representations of
the observed data. There are several techniques applied to the modelling of data.
In the present chapter, the techniques of SI introduced in the previous chapter, will be
applied for the prediction of the impulse responses obtained by means of a full–wave nu-
merical analysis of passive electromagnetic network. A fully automated algorithm, able
to adaptively select the model order and carry out the parameter identification will be pre-
sented and tested on some practical examples. Since the basic model structure is the Prony
method, the algorithm is hereby referred at as Prony model based System Identification
(PMSI). This algorithm will be used to recover the impulse response (prediction problem)
and the impedance and admittance Foster representations (identification) of some electro-
magnetic structures.

70
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Figure 4.1: Passive structure modelling: a)Definition of the access ports (modes) on the access (boundary)
surfaces; b) interpretation of the original structure as distribute M-port network; c) interpretation as an LTI
system with M inputs and M outputs

4.1 Passive Network characterization

A passive distributed microwave and millimeter wave circuit may be considered as a linear
time invariant (LTI) system, whose global description may be given either in time, with the
impulse response, or in frequency, with the transfer function.
The case of a structure modelled as an M ports network is shown schematically in Fig. 4.1
(a) and (b). Let the M × 1 vectors w(t) and x(t) be the input and output vectors of the
corresponding LTI system given in Fig. 4.1 (c). The complete characterization of the
network at system level is given by the well know convolution relationship:

x(t) =
∫ +∞
−∞

h(t − τ)w(τ ) dτ (4.1)

where
x(t) = [x1(t) x2(t) ... xM(t)]T ,

w(t) = [w1(t)w2(t) ... wM(t)]T ,
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and

h(t) =




h11(t) h12(t) · · · h1M(t)
h21(t) h22(t) · · · h2M(t)

...
...

...

hM1(t) hM2(t) · · · hM M(t)




is the M×M impulse response matrix of the system. By transforming (4.1) into the Laplace
domain the matrix convolution simplifies into a simple matrix product, given as:

X(s) = H(s)W(s), (4.2)

where: W(s) = L {w(t)} , X(s) = L {x(t)} and H(s) = L {h(t)} with:

X(s) = [X1(s) X2(s), . . . , X M(s)]T ,

W(s) = [W1(s) W1(s), . . . , WM(s)]T ,

and where

H(s) =




H11(s) H12(s) · · · H1M(s)
H21(s) H22(s) · · · H2M(s)

...
...

...

HM1(s) HM2(s) · · · HM M(s)


 .

H(s) is the M × M network transfer function matrix which relates input W(s) and output
X(s). Depending on the choice of these latter the transfer function can assume the physical
meaning of the impedance (admittance) matrix Z(s) (Y(s)) for the case of the input W(s)
corresponding to the open circuit port current I(s) (short circuit port voltage V(s)) and the
output X(s) the corresponding port voltages V(s) (port current I(s)). H(s) become also
the scattering matrix S(s) when the input and output are chosen as the incident and the
reflected wave amplitude vectors A(s) and B(s) [72].
In order to completely identify the M ×M matrix S(s) the network must be analyzed in M
separated simulations each exploring the M port responses once the excitation separately
applied to one of them. Recalling what has been mentioned in section 2.4, this operation
may be carried out with TD simulation (TLM or FDTD). The scattering matrix, is found
by observing the M responses once each of the M ports are separately excited. If the
excitation is a Dirac Delta impulse function (flat constant spectrum of amplitude 1), applied
at the m-th port, the m-th row of the matrix results is directly given from the M responses in
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Figure 4.2: Scattering parameters analysis for a M port network by means of impulse excitation.

the vector x(t) (see Fig. 4.2). Hence, recalling the model for the scattering matrix element
Smn(s) given in equation (2.86), this means that each response xn(t) may be decomposed
exactly in the same manner, by means of a poles series (Prony‘s) model as:

xn(t) = Smn(t) =
R∑

r=1

cr mne−sr t L−−→
R∑

r=1

cr mn

s − sr
= Smn(s) = Xn(s). (4.3)

For a passive network, the natural frequencies must be real or complex conjugate pairs,
allowing (4.3) to be rewritten as

xn(t) =
R∑

r=1

cr mne−αr t cos (ωr t + φr ) (4.4)

Xn(s) = 1

2

R∑
r=1

[
cr mn

s − sr
+ cr mn

∗

s − s∗r

]
(4.5)

where R is the number of structure’s natural frequencies; sr = αr + ωr , and φr are
the r -th structure’s natural frequency and initial phase respectively; and cr mn is the corre-
sponding residue. For a passive network in order to ensure the stability αr ≤ 0, for any
r = 1, 2, . . . , M . In order to accomplish the entire network characterization M impulse
response analysis are needed, unless some of them can be omitted because of symmetry
properties. In radar theory, expression (4.3) plays a very relevant role with regard to target
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identification, a topic which is directly related to the present work, and is also extensively
treated by the singularity expansion method theory.

4.2 Singularity Expansion Method

The theory of the so called singularity expansion method (SEM) is based on the analytical
properties of the electromagnetic system response as a function of the Laplace transform
variable or complex frequency s. Development of the SEM was stimulated by the observa-
tion of the generic characteristics of typical transient responses in experiments on various
complex scatterers (e.g. aircraft) [5]. The transient response waveforms of objects are dom-
inated by few damped sinusoids. These are not the only type of functions appearing in such
transient data, but they are quite prevalent, especially for long observation times (steady
state systems). Since the Laplace transform of a damped sinusoid corresponds to one pole
or a pair of conjugate poles in the complex frequencies plane, the scattering object can be
expected to have a long time response at frequencies in the vicinity of such poles. A broad-
band pulse excites such poles or natural frequencies. These natural frequencies correspond
to natural system modes which are a field, charge or current solution of the free oscillation
problem. The modal distributions are not a functions of the incident field, but rather depend
on the object structure itself (geometry and materials). The complex amplitude coefficients
of the natural modes are dependent on the source function. They correspond to the strength
of the resonances and are also called coupling coefficients. Natural frequencies have been
discussed and investigated in electromagnetic theory since 1897, with Pocklington, who
gave an analytical expression for the natural frequencies of linear and circular scatterers
[60]. Page and Adams investigated the case of a prolate spheroid and thin wires [57] [58],
and Stratton treated a spherical scatterer [78]. The theory of natural frequencies applies
also to cavities or more in general to network scattering problems, where the natural modes
form a complete set and have convenient orthogonality properties [76]. In the present work,
the SEM theory will be applied to the impulse response of passive networks obtained from
the full–wave simulation of electromagnetic structures. When SEM is applied to scatter-
ing from objects, the response can be decomposed into two separate responses, which are
typically distributed over contiguous, (when not overlapping) time regions. The first one,
which is directly related to the input excitation function, is called the driven response; the
second has the characteristics of a transient response, and immediately follows the input.
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An expression for describing a such behavior is given by:

x(t) = xD(t)+ xT (t) (4.6)

where xD(t), is the the driven response, and xT (t) is the transient response. This latter may
be written in the form of (4.3) as,

xT (t) =
P∑

p=1

cpe−αpt cos
(
ωpt + φp

)
. (4.7)

P is in general the number of all possible resonances taking place in the structure (scat-
tering object modes), and the quantities ωp and αp are parameters denoting the angular
frequency and the damping of the oscillations both of which are directly related to the
physical properties (dimensions and material) of the scattering object they refer to. The
quantity cp and φp depend on the spatial relationship between scattering objects and ob-
servation points (ports), and represent a sort of weighting coefficient for the amplitude of a
resonance at a specific output.
The driven response may be considered as the input excitation itself after propagating
through the structure from the excitation port to the considered output port (see Fig. 4.3(a)),
and is typically located in the very first portion (early time) of the impulse response. In the
first approximation it may be describe as an attenuated and delayed function (considering
multipath reflection and dispersion) of the original excitation. The transient response on the
other hand is given as the superposition (see 4.3) of damped oscillations, whose delay de-
pends on the distance between the input and output ports. Typically the transient response
is located at the end (late time ) of the impulse response. This principle is qualitatively
depicted in Fig. 4.3(b). In general when dispersion and multipath are taken into account
the identification of the driven response becomes a quite complicated task, as the two re-
sponses may overlap and cover-up each other. Each object, or part of the entire structure
(including the enclosure) can give rise to a discrete, infinite number of modes each charac-
terized by a natural frequency, whose value may be however, out of the range of interest.
These modes represent field, charge or current solutions of the electromagnetic problem.
The structure natural frequencies are evidently the most representative parameters for an
analytical description (Prony’s or poles series model type) of the network responses be-
ing closely related to the physical characteristics of the given structure. These complex
frequencies or poles can only be extracted from the transient part xT (t) and become the
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Figure 4.3: Description of the SEM applied to internal scattering: a) a closed electromagnetic structure with
three access ports and two scattering objects (A and B); b)impulse response at the three ports as decomposed
into driven (black) and transient responses (blue for A and light gray for B) for a Dirac impulse excitation at
port P1 (delay τ1i = d1i/c, with i = 1, 2, 3, A, B and c the phase velocity of the media).

structure identification parameters. The same principle is exploited in radar applications
where the aim is to recover the target signature by identifying the object’s unique set of
poles [1].
The analysis of electromagnetic structures is often carried out by means of a band limited
impulse excitation to avoid the generation of spurious modes in numerical computation. In
Fig. (4.4) the impulse (gaussian pulse) response of an electromagnetic structure (microstrip
stop band filter [16]) is depicted. The two regions corresponding to the driven and transient
part are highlighted. Although as mentioned above, the separation of the two can be theo-
retically carried out by estimating propagation delay times, a more reliable method consists
of the identification of the natural frequencies. Indeed, while the transient response may be
characterized with a few frequency components, once a frequency limit has been imposed,
the driven part, typically as broad band as the excitation, would need many of them. This is
evident in Fig. (4.5), where the poles are extracted, from the impulse response starting from
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Figure 4.4: Impulse excitation (above) and impulse response of a passive microwave network (below). The
qualitative separation between driven and transient components is shown.

the end of the 2.5 ns impulse response of Fig. (4.4), and by taking an increasing portion of
it. When up to 30% of the late response is used to extract the system poles, the number of
natural frequencies is stable at 4, i.e. it can be decomposed in as few as only 2 oscillating
components. By taking more time samples in the earlier region of the time response (above
30% of the response queue) the pole content increases until it reaches the region in the time
response where the driving response is likely to be. This is observed in Fig. (4.4) as the
number of poles (needed to rebuild the signal) quickly increases to 29.

4.3 Systematic Network Response Modelling and Predic-
tion

The problem of response prediction is essentially a problem of system identification (SI)
[43] [26] and more properly speaking it consists of data modelling. The data to be modelled
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Figure 4.6: Block diagram for the SI modelling approach of Electromagnetic structures.

in the present work are ensembles (x) of time discrete signals generated from full-wave
simulations. Since these latter may be even computationally very demanding, it makes
sense to process them while they are running, for extracting a model (analytical description)
able to recover such responses (x̂). This operation allows the system response prediction,
based on the recovered system response model. The principle is shown in the block diagram
of Fig. 4.6 where the model, is build and adaptively refined by exploiting the new response
updates provided from the TD simulation of the structure under test, running in parallel. As
soon as the comparison between SI model reaches a satisfactory accuracy (error e below
a given threshold) the full–wave simulation may be disrupted. At this point the model
represents a synthetic accurate analytical description of the original network.
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Figure 4.7: Block diagram for the prediction of TLM simulated impulse responses, by means of the Prony
model based SI (PMSI) algorithm.

4.3.1 Prony model based System Identification

Based on the result of the investigation on SI techniques, carried out in the previous chapter,
an algorithm called Prony model based system identification (PMSI), has been developed.
The PMSI algorithm will be presented here by applying it directly to the problem of mod-
elling and prediction of TLM simulated responses, as shown in Fig. 4.7. The algorithm,
is conceived as a completely autonomous module which requires as input only the impulse
responses provided by a TD full–wave solver. A detailed explanation of the method is
described in the following.
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Model parameters estimation

Let x(m) be an N × M data matrix, corresponding to the m-th simulation (carried out by
exciting the m-th port) and consisting of the first N samples of the M responses. As later
on, in order to check the model accuracy independently from the sample used to build it,
the so called model validation should be carried on a different set of samples, the matrix
x(m) is split in two parts. The first x(m)

p , of dimensions N0 × M , is used for the prediction
and contains the early N0 samples, and the second x(m)

v , of dimensions N − N0 × M , is
used later on for validation. x(m) is given by

x(m) =
[

x(m)
p

x(m)
v

]
, (4.8)

wheras

x(m)
p =




x (m)
1 [0] . . . x (m)

M [0]
... . . .

...

x (m)
1 [N0 − 1] . . . x (m)

M [N0 − 1]


 , x(m)

v =



x (m)
1 [N0] . . . x (m)

M [N0]
... . . .

...

x (m)
1 [N ] . . . x (m)

M [N ]


 .

(4.9)

The quantity N0 is normally chosen as a fixed percentage of the ensemble length N . Typi-
cally in SI theory values above 66% are considered appropriate. As mentioned the portion
x(m)

p is devoted to the prediction, and more specifically is exploited for three different pur-
poses, the selection of the model order P , the estimation of the poles, and eventually the
computation of the residues for the data fitting.

Model Order Selection

The model order selection is carried out by applying the SVD based method (see section

3.4.3) to each column of x(m)
p , yielding a vector P(m) =

[
P(m)

1 , P(m)
2 , . . . , P(m)

M

]
. The

model order is a single integer quantity which denotes the total number of the structure’s
natural frequencies. An approximated criteria to select it can be to choose the maximum
between all the model orders estimated during the current simulation and all the previously
determined ones as:

P = P(m) = max
i=1,... ,M

(
P(m)

i , P(m−1)
)

(4.10)
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whereas P(m−1) denotes the maximum of the previously performed m − 1 analysis (P(0)

must be initialized to 1, since it corresponds to the first simulation in the row to take place).
An overestimated model order does not represent a problem since, while it may yield higher
complexity, it also ensures that the most significant natural frequencies have been taken into
account. Poles which do not significantly affect the system response (very low value) may
be easily modelled by setting to a zero value the corresponding residues in (3.8).

Model pole estimation

Once the order P is available the pole estimation may be carried out. Here the the linear
prediction LS method (see section 3.3.1) or PM method (see section 3.3.2) may be applied.
P poles are estimated for each of the M columns in x(m)

p and stored in a P × M matrix
z(m), given as,

z(m) =




z(m1)
1 z(m2)

1 . . . z(mM)
1

z(m1)
2 z(m2)

2 . . . z(mM)
2

...
... . . .

...

z(m1)
P z(m2)

P . . . z(mM)
P


 , (4.11)

where z(mn)
i denotes the i-th pole of the mn-th response, with i = 1, 2, . . . , P and m, n =

1, 2, . . . , M . The final set of poles must be unique for all of the M2 responses (M responses
for each of the M simulations). In order to find this unique set, a technique called pole
clustering is applied [44]. This operation consists of averaging poles which numerically
differ from a given tolerance and that in theory should refer to the same natural frequency
value. Since some of the responses may not contain one or more of the network P poles,
which can happen that during the pole estimation, in their place, completely wrong values
are computed. These values should therefore be disregarded by selecting only those Mi

poles stored in each i-th row of z(m), which lie within a given tolerance range (see Fig. 4.8).
The poles obtained from the average between the selected quantities

z(m)
i = 1

Mi

Mi∑
n=1

z(mn)
i i = 1, 2, . . . , P (4.12)
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Figure 4.8: Example of pole clustering. Of the overall P = 10 poles two z(mk)
i and z(mj)

i are excluded
(Mi = 8) since they like outside the defined tolerance range.

must be further averaged (see Fig. 4.8) with the previous z(m−1)
i (for m = 1, no further

averaging is required) in order to find the updated value of the m-th simulation as

zi = z(m)
i + z(m−1)

i

2
. (4.13)

The z(m)
i should be finally updated with the value z(m)

i = zi for use in the next pole clus-
tering operation. The final result, at the end of the M simulations, is a P × 1 vector of
clustered poles z = [z1, z2, . . . , zM ]T . The pole clustering allows one to adaptively mod-
ify the network natural frequencies by seeking the most likely values among those found in
the entire set of simulated responses. Pole clustering however, is a very critical operation
which strongly effects the model accuracy.

Model Fitting Parameters (Residues) Computation

The next and final step in building the model is the fitting of the Prony model to the simu-
lated data response x(m)

p as given in (3.8). The more direct and efficient way is to use a least
square (LS) approach (see Appendix B) and compute the residues from (3.14) obtaining:

C(m) =
(
ẐH Ẑ

)−1
ẐH x(m)

p . (4.14)
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Figure 4.9: Residue matrix C for an M-port network.

with Ẑ the Vandermonde matrix made by the clustered poles, and C(m) the P×M residues
matrix, each given respectively by

Ẑ =




1 1 · · · 1
z1 z2 · · · zP
...

...
...

zN0−1
1 zN0−1

2 · · · zN0−1
P


 , C(m) =




c1m1 c1m2 · · · c1mM

c2m1 c2m2 · · · c2mM
...

...
...

cPm1 cPm2 · · · cPmM


 .

(4.15)

where ci mn denote the residue corresponding to the i-th pole for the mn-th response. The
recovered response denoted with x̂(m) can be eventually written as

x̂(m) = Ẑ C(m). (4.16)

At the end of the entire analysis, i.e. when m = M , the residues may be organized in a
three dimensional data matrix C obtained by packing together P matrices, of size M × M ,
as shown in Fig. 4.9.

Model Validation

In order to decide whether the available model is accurate enough to stop the current m-th
simulation and start the next one the recovered responses x̂ must be compared with the
simulated ones. This operation is called validation and is carried out by estimating the
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mean square error (MSE). MSEs are computed for each response and ordered in a vector
MSE (m)

t , and computed as follows:

MSE (m)
t = 1

(N − N0 − 1)

N−1∑
k=0

∣∣∣x(m)[k] − x̂(m)[k]
∣∣∣2 , (4.17)

where the t denotes time domain. Indeed, in most practical applications the final aim is
to test the accuracy within a finite frequency band. It therefore makes sense to provide a
further accuracy check in the frequency domain by introducing a second mean square error
MSE (m)

f . This is found by using the simulated X(m) and modelled X̂(m) spectrums obtained

from the discrete Fourier transform time domain data matrices x(m) and x̂(m) as:

X (m)[k] = 1

T

N−1∑
n=0

x (m)[n]e j2π k
N n, X̂ (m)[k] = 1

T

N−1∑
n=0

x̂ (m)[n]e j2π k
N n (4.18)

with k = 0, 1, . . . , N − 1 denoting the discrete frequency index. For this case this fre-
quency range is bounded by the two values fmin and fmax , and the MSE computed on the
corresponding discrete spectrum range is

MSE (m)
f =

1

(kmax − kmin)

kmax∑
k=kmin

∣∣∣X (m)[k] − X̂ (m)[k]
∣∣∣2 , (4.19)

where [kmin, kmax ] = [ fmin N T, fmax N T, ] is the frequency range, with T denoting the
sampling interval.
The two vectors MSE (m)

t and MSE (m)
f are compared with the arbitrarily fixed values of

accuracy, Et and E f . These quantities can vary separately and typically values below 10−4

are satisfactory for both cases. If at this point all responses satisfy the accuracy requirement
in terms of MSE , in time and/or in frequency domain, then

max
(

MSE (m)
t

)
≤ Et , and/or max

(
MSE (m)

f

)
≤ E f . (4.20)

When these requirements are met then the model is accurate enough and the current m-
th simulation can be disrupted (stop command) and the next one started until m = M .
If however (4.20) is not satisfied then a refining of the present model parameters (which
means the order, the poles and the residues complex values) is necessary. In order to do so
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dl = 0.2647 mm
dt = 2.18 10−13 sec

Figure 4.10: MS Patch antenna and relative TLM model parameters

more information about the network response must be collected, extending the originally
considered data matrix x(m) (enabling command) and adding further NB samples, and then
the entire procedure must be repeated. NB is normally a fixed integer quantity arbitrarily
chosen and dependent on the speed of the TD solver in providing simulated data. The PMSI
algorithm applied for modelling and prediction is summarized in Tab. 4.1.

4.3.2 Application of the method: Examples of prediction by PMSI Al-
gorithm

The PMSI algorithm will now be applied and tested on some practical applications such
as planar (miscrostrip) and three-dimensional structures using the same workstation (a
PA8000 Risk based CPU 360MHz). The following values are used for the algorithm’s
parameters: the length of the data sample block is NB = 1024, the SVD based model order
selection a threshold is DT = 100d B (see section 3.4.3), for the N0 a value of 85%, of the
current simulated response length, is chosen, and the accuracy thresholds Et and E f have
been definet at 10−4. These values along with their description are listed in Tab. 4.2.

Rectangular microstrip patch antenna

The first structure is a rectangular microstrip patch antenna fabricated on alumina substrate
and fed by 50 � microstrip transmission line [16]. In Fig. 4.10 the antenna design and spec-
ification are given. The structure has been modelled as a one port network (M = 1), and
the frequency range of interest is from zero, ( fmin) to 30 G Hz ( fmax ). The metallization
thickness has been neglected and the the structure has been enclosed in a box of perfect
matched layers [62], except at the bottom where the structure is bounded by a PEC, to
realize the microstrip ground plane. The memory occupation needed for the chosen TLM
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Figure 4.11: Performance of the PMSI algorithm as function of the TLM iteration for the patch antenna.
The spectrum of the PM model response reaches acceptable accuracy when the model order converges to
P = 30. The LS linear prediction models seems not to improve at all for the same amount of data samples
(10 iterations).

mesh is approximately 63 Mb. The overall length of the time window originally analyzed
is Ntot = 30000 timesteps, for an overall elapsed simulation time of about 4 h 56′ 14′′. This
duration has been estimated so that the amplitude of the response was required to fall be-
low the 0.001% of the maximum value at the last timestep. Applying the PMSI algorithm,
the model order converges to P = 30 after only 9 simulation iterations of 1024 samples
each. As shown in Fig. 4.11, the model obtained by LS linear prediction techniques, both
back and forward, seems to improve very slowly with the progression of the simulation,
while on the other hand, the model based on the PM method improves very quickly, and
as soon as the model order is found, it reaches here the spectrum accuracy requirements
(convergence). A smaller improvement of the same model is observed in the time domain
since it is more likely to be effected by high frequency poles which are neglected in the SI
analysis range. In order to quantify the efficiency of the algorithm the amount of samples
from which the final model has been obtained is given by Npre = Niter ∗ NB and must be
compared with the length of the response when simulated without any parallel modelling
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Figure 4.12: Comparison of the models with the original simulated response in the time domain for the the
patch antenna

given by Ntot . This quantity may be expressed by the following relationship

η = 1− Niter NB

Ntot
(4.21)

which estimates the percentage of saved time, while maintaining the same accuracy as
achieved by the longer simulation. In the present example η = 53.3% has been calculated.
This indicates that the simulation time has been reduced by more than half using the PMSI
algorithm. The result of the modelling can be seen in the time domain in Fig. 4.12. The
prediction and, the validation ranges are both highlighted. Although the PM based model
has an MSEt of around 10−3 ( -3 in the log scale of Fig. 4.11), it agrees very well with
the simulated response. Another important observation is that the LS linear prediction
models, as clearly shown from the LS backward model results, may become unstable for
an increasing number of poles, which explain the lack of improvement in the figure. The
comparison of the spectrum for the different models and the original simulated ones are
depicted in Fig. 4.13, confirms the very good performance of the PM model, which is
almost indistinguishable from the simulated spectrum, in the entire analyzed frequency
range from zero up to 20GHz. If the poles estimated with the different methods, are
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Figure 4.13: Comparison of the model with the spectrum of the original simulated data, for the patch
antenna

depicted in the complex plane as shown in Fig. 4.14 the instability of the LS backward
algorithm becomes clear, as six of the 30 poles lie outside the unit circle. Useful results of
the modelling by means of PMSI are given in terms of scattering parameters in Fig. 4.15,
where a comparison with reference measured data is depicted.
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Figure 4.14: Pole positions in the Z–plane for the three models, for the patch antenna.
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Table 4.1: PMSI Algorithm applied to modelling and prediction of TLM simulated re-
sponses. The final model parameters are the order P , the P residues matrices of dimension
(M × M) in C and the P × 1 poles (natural frequencies) vector z.

Given the TLM model of the M-port network under test (m = 1, P(0) = 1)

1. The m-th simulation (excitation at the m-th port) is started

2. The first N samples for the M network responses are generated and stored in x(m) (N × M)
2.1 x(m) is separated into two matrices : x(m)

p (N0 × M) and x(m)
v (N − N0 × M)

3. The initial network model order is computed:
3.1 The order for each response in x(m) is computed (SVD) and stored in a vector P(m) (1× M);
3.2 The model order P = P(m) is computed by (4.10)

4. The P poles are estimated and clustered:
4.1 For each column (response) of x(m)

p the P poles are estimated (PM or LS Covariance);
4.2 The poles are ordered and stored in z(m) (P × M);
4.3 The Mi poles, on the i-th row of z(m), closed to each other and within a given

tolerance are selected;
4.4 The Mi poles are averaged (clustered) by (4.12), obtaining z(m)

i ;
4.5 The pole z(m)

i and z(m−1)
i are averaged by (4.13) obtaining zi ;

4.6 The value z(m)
i is updated to zi ;

5. The model is fit to the data via the LS methodand the residue matrix C(m) is computed by (4.14);

6. The M recovered responses x̂(m) (N × M) are given by (4.16);

7. The model is validated based on the MSE between simulated and recovered data:
7.1 The MSE (m)

t and MSE (m)
f both (1× M), are computed from (4.17) and (4.19);

7.2 If (4.20) is satisfied convergence is achieved and then the current (m-th)
simulation may be stopped ;

7.3 If not, NB samples are added to the M responses in x(m) and the algorithm
is repeated from 2.;

8. Check on whether all the network responses have been analyzed:
8.1 If m < M the next simulation m + 1 is prepared and the algorithm repeated from 1. ;
8.2 If m = M the analysis is completed.
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Table 4.2: PMSI parameters (N is the number of samples currently being simulated).

Name Typical Value Description

NB 1024 Number of samples (length) of each TLM iteration block
N0 0.85 N Number of simulated samples used for building the model
Et 10−4 Accuracy threshold for impulse response accuracy
E f 10−4 Accuracy threshold for spectrum accuracy
DT 100 d B Threshold for (SVD) model order selection (see section 3.4.3).
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Figure 4.15: Comparison between scattering parameters obtained from the TLM simulation results without
any modelling (—) and by applying the PMSI (- -), for the patch antenna. Measured results are depicted in
the top diagram, for the magnitude of S11 by (· · · ) [16].
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Substrate Cavity SOI Resonator

The resonator considered hereby is obtained by forming a parallelepiped volume by means
of deep–silicon etching of the 400 µm bulk side of a 400/0.3/47 µm Si/Si02/Si wafer,
followed by a metal deposition. On the other side of the wafer a microstrip transmission
line of characteristic impedance 50 � is connected to a shielding metal patch (resonator lid)
which is manufactured with by photolithography process. The result of this process is the
device shown in Fig. 4.16 along with the TLM model specifications. Since the top metal
patch is separated from the bottom cavity by just 47 µm, the structure behaves as a quasi–
rectangular resonator filled with a silicon dielectric. By choosing the two cavity planar
dimensions appropriately, the fundamental resonance mode can be arbitrarily established.
For this case the T E011 mode is selected, and the corresponding resonance frequency may
be determined by applying the semi–empirical formula

fres = c0

2
√

εr Sil

√
1

d2
y
+ 1

dz
2
e f f

(4.22)

where εr Sil is the silicon dielectric constant whose value for this case is 11.9, dy is one of
the planar dimension for the cavity, and dze f f = 550 µm represents the effective vertical
length obtained by a 20% extension (obtained empirically) of the physical substrate whose
thickness is 450 µm. For the T E011 mode to be excited, the third dimension of the cavity
must be smaller than the other two, i.e. dx < dy and dx < dze f f , where dx = 300 µm, for
this structure. The magnetic coupling mechanism may be adjusted by varying the position
of the connection between microstrip line with the metal patch. for this design, a choice

dx
dy

dz

TLM Parameters Values

Nx × Ny × Nz = 32× 66× 37
dl = 10 µm
dt = 8.14 10−15 sec

Figure 4.16: SOI cavity resonator and TLM model specifications.
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Figure 4.17: Poles distribution for the TLM impulse response of the SOI resonator. The pole corresponding
to the fundamental mode z(T E011) = 0.9438+ j 0.3093 is highlighted ( frequency 126.5 G Hz and damping
factor −0.31 10−11)

of dy = 450 µm, yields a resonator with fundamental resonance frequency of 124 G Hz.
The full–wave modelling of the fabricated one–port (M = 1) resonator has been done
by using a TLM model whose parameters given in details in the table of Fig. 4.16. The
simulation has been extended over a maximum number of 78934 time steps for an overall
elapsed simulation time of 1h 0′ 54′′ and a memory requirement of 5.62 Mb. The analyzed
frequency range extends from zero up to 250 G Hz ( fmax ). The TLM signal has been down
sampled by a factor of 122 and processed by the PMSI algorithm, saving approximately
62% ( by using (4.21)) of the overall simulation run time. The estimated pole distribution
is shown in Fig. 4.17 where the pole corresponding to the fundamental resonant mode is
highlighted. As shown in Fig. 4.18, the model order converges to a final value of P = 58,
as the error MSEF for the spectrum goes below the threshold value E f = 10−4. The
top graph in Fig. 4.18 shows that MSET (error in the time domain) does not improve
and remain above 10−3. The results of the analysis are shown in Fig. 4.19 where the
resonator input reflection S11 is given up to 400 G Hz. The extracted model copies very
well the full–wave simulation result in the entire frequency band of analysis. The measured
results available in the neighborhood of the fundamental resonance mode between 117 and
130 G Hz shows less than a 3 G Hz off–set with respect to the designed central frequency,
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Figure 4.18: Results of the PMSI algorithm applied to the SOI resonator impulse response. From the top to
the bottom graph the behavior of the MSE in time and frequency respectively and the estimated model order
P , are depicted as a function of the number of iterations (number of simulated impulse response samples
from the TLM simulation)

corresponding to an error of about 2.5% of shift. The other two resonances around 44 G Hz
and 90 G Hz account for the metal patch resonant modes. A first guess of the quality factor,
may be given by the theoretical formula which when applied to a metal parallelepiped
cavity resonators, with metal losses only [72], yields a value of around 400. A more realistic
value of 120 however has been obtained from the simulated results.
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Figure 4.19: Input reflection coefficient S11 for the modelling of the SOI resonator.

Low Temperature Co–fired Ceramic (LTCC) coupled stacked patch antenna

The next structure to be analyzed is a broad band coupled patch antenna fabricated by
means of LTCC process. Application of this antenna can include local multipoint distribu-
tion service (LMDS) systems. The antenna is realized by means of a four layered GL550
dielectric material with εr = 5.6 and a thickness of h = 97 µm and the square patches are
placed on top of the last layer and between the second and third. This latter is connected
by means of a via through a metal ground plane to the input microstrip line fabricated on

�
5

�

= TLM Parameters Values

Nx × Ny × Nz = 219× 125× 58
dl = 15 µm
dt = 1.16−14 sec

Figure 4.20: LTCC antenna cross section view and relevant TLM model parameters. Parameters are for a
half structure (due to the symmetry)
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Figure 4.21: Performance of the PMSI algorithm as function of the TLM iteration for the LTCC antenna.
The model need almost 85 % of the run time of the TLM simulated response and converges at P = 58 (the
iterations here are chosen to be 2048 samples instead of 1024).

the other side of the multilayered structure. The metal patches are square with the length
of each side l = 1032 µm and together with the rest of the metal connecting vias they
are made of copper (σ = 5.8 107 S/m). The antenna is depicted in Fig. 4.20 with the
corresponding TLM model parameters. The structure has been modelled as one port net-
work (M = 1), and the upper limit for the frequency range of interest is from zero up to
fmax = 50 G Hz. Although only half of the structure has been modelled (since it is possible
to define a symmetry PMC plane), the high aspect ratios of the structure (ratio between the
largest planar dimension and the smallest layer thickness is around 135 for this structure)
requires a TLM model with more than one million cells (see table in Fig. 4.20) with an
overall memory requirement of around 115 Mb. The time window, originally analyzed us-
ing only the TLM method, without any SI prediction, spans over Ntot = 50000 timesteps,
for an overall simulation run time of about 12 h 26′ 2′′. The PMSI algorithm for this case
yields a model order of P = 58 with a run time reduced to 9 h 26′ 59′. For this case the
corresponding efficiency is of 24 %. This low value of reduction efficiency for the model
prediction highlights that this structure has a very rich spectral contents. The spectrum for
the port responses in terms of electric and magnetic fields are given in Fig. 4.22, where the
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Figure 4.22: Comparison of the simulated and modelled spectrum for the E–field and H–field of the LTCC
antenna

peaks of several resonances are observed over the 250 G Hz of bandwidth taken in consid-
eration. The results of the modelling can be furthermore observed in a comparison of the
input reflection coefficient for the simulation and the model as shown in Fig. 4.23. As can
be seen the results agree very well.
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Figure 4.23: Comparison of the result for the input reflection of the LTCC antenna. TLM model with (- -
-) and without PMSI (—) and available reference results from an FDTD simulation (· · · ) [67].

4.3.3 Comments on the PMSI algorithm applied to response predic-
tion

The use of SI for estimation of model parameters has been shown to increase the per-
formance of TD simulation tools by reducing the elapsed run time. This can be seen in
Tab. 4.3, where elapsed run time and improvement efficiency for the application examples
analyzed here are listed. The PMSI algorithm has also been shown to have a stable be-
havior and robustness. The model order is selected automatically and adaptively and it has
been observed that it converges regularly once the accuracy in terms of the MSE in time
and/or in frequency falls below the 10−4 threshold limit. Since, as commented in section
4.2, the driven response is located in the early part of the simulated data, the overall number
of poles of the final model may be affected by the poles related to the input and this may
result in an over dimensioned model.
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Table 4.3: Summary of the PMSI Algorithm performance for the presented test structures.

Structure TLM elapsed time TLM and PMSI elapsed time η

MS Antenna 4 h 56’ 14” 2 h 37′ 53′′ 53.3%
SOI Resonator 1h 0′ 54′′ 0 h 23′ 8′′ 62%
LTCC antenna 12 h 26′ 2′′ 9 h 26′ 59′ 24 %

4.4 Systematic Z− (Y−) matrix Foster Representation Mod-
elling

The importance of deriving a synthetic description of a large and complex electromagnetic
structure, for optimization and synthesis problems, is testified by the enormous amount of
literature on this regard. Starting with the look–up table techniques, there are more so-
phisticated descriptions, by means of abstract parametric models as those based on space
mapping (SM) [4] or the multidimensional adaptive parameter sampling (MAPS) method
[33], and the artificial neural network (ANN) technique. All of these approaches are very
abstract and lack of physical meaning in terms of electrical parameters (SPICE like model).
The synthesis of equivalent circuits of passive networks from full-wave simulations how-
ever, has been widely investigated and provides SPICE compatible models. The most direct
equivalent circuit synthesis, adopted in several CAD tools, exploits the interpolation of the
experimental scattering parameters by means of transmission line and RLC lumped element
networks of a given topology, typically of π or τ configuration. Although this technique
yields very compact circuits, it is accurate within a limited frequency range, which may be
extended at the cost of further lumped elements. Moreover it has the drawback of not being
automatic as it does not guarantee the convergence for an arbitrary number of ports. A
more general and well known technique is the partial elements equivalent circuit (PEEC),
where an integral equation is used to establishe the electrical description of the physical
geometry [69] [70] [23] [38] [75]. In the PEEC, the number of circuit nodes is related to
geometrical complexity and, therefore, typically very large. This same problem is faced in
another approach called the compact equivalent circuit (CEC) method, also based on the
quasi–static mixed potential integral equation, but with the number of nodes depending on
the electrical size rather than on the geometrical complexity [50]. The CEC however, lacks
accuracy for electrically large problems and it is therefore restricted in frequency. A further
class of techniques for the automatic synthesis of equivalent circuits are those based on the
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Foster equivalent representation (EFR), using multipole expansion of the Z or Y–matrices
[22]. These techniques are based on the estimation of the network Z or Y–matrix poles or
network natural frequencies either directly in the frequency domain, or from the time do-
main simulated responses, as in [74] [46]. The method has drawbacks such as cumbersome
representation, realizability conditions that are difficult to enforce, it relies on accurate pole
estimation techniques, and lacks a direct correspondence between the extracted lumped ele-
ments and the physical structure. However, it has the enormous advantages of being a fully
automatic procedure, which systematically applies to any arbitrary lossy multiport. Indeed
if combined with a three dimensional TD solver such as TLM or FDTD, it may be extended
to structures of arbitrary geometries over very broad frequency ranges. In the following the
SI techniques introduced previously, will be applied to build the Foster representation for
the impedance and admittance matrices, Z and Y, as given in (2.45) and (2.50).

4.4.1 The ZY–SI Algorithm

From knowledge of the impulse response, the structure under test may be entirely char-
acterized by means of the scattering parameters (see section 4.1). These parameters are
known in both the time and the frequency domain, over a typically very large frequency
range. Moreover, the numerical model provides the access port characteristic impedances
also. Hence the impedance and admittance parameters are easily computed by using the
known transformations [72]. Once the impedance (admittance) parameters are known in
the frequency domain, the identification of the Foster representation is equivalent to the
identification of the corresponding impedance (admittance) Prony‘s model. This operation
may be carried out directly on the spectrum by means of frequency domain SI methods
[44], or by exploiting the PMSI algorithm (see section 4.3.1) as will be done here. In
the latter case, since the PMSI works on time–domain signals, the impedance (admittance)
matrix parameters must be obtained by inverse Fourier transform (here the Inverse Fast
Fourier Transformation - IFFT is used). At this point, the PMSI algorithm may be applied
by carrying out the identification of the impedance (admittance) natural frequencies and
residues of (2.45) and (2.50). The knowledge of these parameters, i.e. the knowledge of
the Prony model or equivalently, of the Foster representation in the complex Laplace do-
main, enables, as was shown in chapter 2, one to derive the lumped element equivalent
circuit in the Foster canonical form. A flowchart diagram for this algorithm is shown in
Fig. 4.24, and a detailed desciption is given in Tab. 4.4. The advantages of this approach
are the systematic and completely automatic nature of the procedure, and the generation of
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Figure 4.24: Flow chart for the modelling of the admittance impedance as EFR.

the Foster representations of the network impedance (admittance) matrix, directly from the
TLM (or FDTD) simulated network responses. The windowing between fmin and fmax

is necessary in order to filter out undesired portions of the spectrum where numerical noise
and other unwanted spurious components may appear. The procedure described above is
now applied to the rectangular microstrip patch antenna of Fig. 4.10. The results in terms
of an equivalent Foster Representation of the admittance parameters are given in Fig. 4.25.
The discrete frequency domain behavior for the admittance is directly obtained as the cross
section at |z| = 1 of the most general expression Y11(z) depicted over the complex frequen-
cies plane in Fig. 4.26. This latter consists exactly in the EFR for the input impedance. The
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Table 4.4: Modelling procedure for the automatic extraction of the equivalent Foster repre-
sentation (EFR) form full–wave numerical results. (∗ the poles are here considered in P/2
conjugate pairs).

Given the complete set of M TLM impulse responses of the M-port network under test

1. S M × M complex matrix and the M real port–impedances Z0 are computed;

2. Y (Z) M × M complex matrix is computed in the frequency–domain from S and Z0;

3. The Y (Z) matrix is windowed (filtered) between [ fmin, fmax ] obtaining
the M × M complex matrix Yw;

4. Yw is inverse fourier transformed (IFFT), obtaining the time–domain M × M real matrix yw;

5. The PMSI algorithm (see section 4.3.1) is applied to yw;

6. The P × 1 complex poles∗ P and the P × (M × M) complex residues C for
the EFR of Y (Z) are now available;

model parameters obtained from the PMSI algorithm could be theoretically directly used
for extracting the lumped elements of the corresponding Foster canonical equivalent circuit
as shown in Fig. 4.27. The SPICE like model as given in Fig. 2.7 for the admittance and in
Fig. 2.5 for the impedance can be generated by computing the 4 vectors R, L, G and C of
P/2×1 real lumped element values, directly from the complex poles P via (2.76) to (2.80)
and (2.61) to (2.65) respectively. The matrix n of the P (M × M) matrices of real turns
ratios are computed from C via the (2.82) and (2.66).
The use of the Foster lumped element equivalent circuit deserves at this point a comment.
Indeed the corresponding representation is based on the realizability condition expressed
in 2.83 and 2.84. The realizability condition state essentially that each partial fraction ex-
pansion component of the Foster representation must be real positive (i.e. positive with real
part for an argument which has positive real part). This ensure that the lossy components
(resistance and conductance) are positive too. Although for the entire impedance or admit-
tance representation of passive structures this condition is normally satisfied, in general it
is not satisfied for each partial fraction expansion component. Therefore may be concluded
that the stability of the poles it is not a sufficient condition to enforce the realizability as
Foster equivalent lumped element circuit [24]. Nevertheless other representation as the
Cauer, may exist and be realizable (see Fig. 4.27) [24].
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directly from the TLM simulation and from the PMSI model with 30 poles. The input port admittance is
moreover depicted (- - ).
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Figure 4.26: Behavior of then EFR for the admittance |Y11| in the z-domain. The cross section with the
unit circle z = eω corresponding to the spectrum is shown in black.
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Figure 4.27: Flow chart for the modelling of the admittance impedance as EFR.



Chapter 5

Conclusions

Network oriented modelling (NOM) allows the analysis of complex electromagnetic struc-
tures by partitioning them into subregions, which can be described by parametric models.
These parameters are strictly related to the structure‘s physical geometries and material
properties. A parametric description of an electromagnetic structure has many advantages
over more cumbersome models such as full-wave models. Although the latter are some-
times necessary for very accurate analysis of three-dimensional structures, the availability
of parametric models enable compact descriptions, which can be further simplified by ap-
plying model reduction techniques. The model chosen in the present work is a pole and
residue series or Prony model. In this work the Prony’s model has been preferred among
others (i.e. AR or ARMA models) as it is perfectly equivalent to the eigenvalue expan-
sion of the dyadic Green‘s function, derived by applying the Method of Moments (MoM).
The key parameters of this model are complex quantities called the structure natural fre-
quencies. Their time–domain behavior can be observed in the impulse response of a given
passive electromagnetic structure as exponentially damped oscillating components. The
number of these natural frequencies, defines model order, and this number may be system-
atically found together with the complex frequencies values by means of SI techniques.
The combination of time-domain full-wave analysis with SI techniques has allowed the
construction of an algorithm, here referred to as Prony‘s model based SI or PMSI. This
is a signal processing module, able to perform on–the–fly analysis of TLM (or FDTD)
simulated impulse responses. The algorithm runs in parallel with the time-domain simu-
lation and autonomously refines the model, by adaptively improving the accuracy of the
parameters and model order of the parameters. Numerical responses obtained from TLM

105
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simulations are typically characterized by high SNR levels (above 100 d B), and their de-
scription represents a typical problem known in SI as output error (OE) modelling. In spite
of this, even a very low level of noise (in these cases mainly due to finite numerical preci-
sion), may affect the reliability of the present methodology by strongly interfering with the
parameter estimation methods. Pole estimation represents the most critical operation and
is carried out by the pencil matrix (PM) method. This methos is preferred over other meth-
ods such as the least square (LS) linear prediction (LS-LP) technique, due to its efficiency
and robustness with respect to the noise level. The model order, which determines the
model complexity, is selected by exploiting the singular value decomposition (SVD) tech-
nique. SVD combined with a threshold decision criteria, allows one separation of the signal
space from the underlying noise space. The dimension of the signal space corresponds to
the sought model order. This approach has demonstrated good convergence characteristics
within a given frequency bandwidth. Once the number and the value of the poles are known
the response is recovered by applying the Prony‘s model, and computing the residues, by
least square fitting of the simulated response. The accuracy of the resulting model is val-
idated by calculating the mean square error (MSE) in both, time and frequency-domain.
The first is computed over a validation time window (typically taken as the last 15% of
the available response), and the second computed over the spectrum of interest. Although
the modelling is performed in the time-domain, the desired accuracy may be more quickly
reached in the spectral domain, especially in case of narrowband modelling (narrow band
analysis). As soon as the model recovered response reaches the accuracy requirements, the
algorithm may be stopped and the full-wave analysis disrupted.
When applied to the TLM simulated impulse responses of different electromagnetic struc-
tures such as antennas and resonators, the algorithm has allowed a significant reduction
of the simulation run time. In particular, a 24% and a 53% simulation time saving have
been observed for an LTCC and a microstrip antenna, respectively. Structures with higher
quality factors, such as the SOI cavity resonator presented here, have shown a further time
savings, achieving a reduction of 62% in simulation time.
Beside the network response prediction, the PMSI algorithm has been successfully applied
to modelling of the network itself. By means of it, the corresponding equivalent Foster
representation (EFR) can be generated from the time-domain network impedance and ad-
mittance parameters. Indeed since the EFR of a passive network is equivalent to a Prony‘s
model description, the PMSI algorithm becomes a very straight forward tool for deriving
it. An example of this is the modelling of the input admittance for the above mentioned
microstrip antenna. The resulting model has been applied out up to a frequency of 30 G Hz,
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and the spectrum, when compared with the simulated results, shows very good agreement.
The presented approach enables a very compact and general parametric description of ar-
bitrary electromagnetic structures in the complex frequency plain. Once the range of ac-
curacy and frequency bandwidth have been specified, it yields the model in a completely
automatic and independent fashion.
Possible limits are represented by very lossy structures whose impulse responses are strongly
attenuated and masked by noise. The identification of the corresponding natural frequen-
cies may become in this case a very difficult task. This problem is more evident for mul-
tiport networks where a pole corresponding to a specific natural frequency can be erro-
neously estimated, at different ports, through different numerical values, yielding an in-
correct final model order and thereby compromising the entire model. In order to avoid
this possible identification flaw, more advanced pole clustering tools should be investi-
gated. Another limit to the method presented may be in the lumped element equivalent
circuit based on the Foster representation of the impedance (admittance) parameters. The
procedure yields a relationship between the simulated data responses and the final lumped
element values, but does not relate these latter to the properties (geometry and material)
of the original electromagnetic structure. While this procedure works in a systematic fash-
ion in one direction (from physical structure to model parameters and equivalent circuit
elements), it does not allow reverse synthesis (from the set of parameters to the physical
structure). This means that it is not helpful, where this reverse synthesis is required, as for
instance for optimization purposes. For further development of this work, the relationship
between the estimated model parameters and the originating electromagnetic phenomena
(as resonating fields or currents), can be investigated. Time-domain methods, such as the
TLM and FDTD, do indeed provide, local field solutions all over the modelled spatial do-
main, and in a given time window. This information, normally lost after performing the
sampling of the responses at the access ports, may be exploited for determining a closed
form relationship between the complex pole values and the physical characteristics of the
structure component responsible for it. Something similar is already been done in target
identification problems, where the natural frequency values are strictly related to the di-
mensions and the material properties of the scatterer, while the amplitude of the response
depends on the observer position and the intermediate media.



Appendix A

Exterior Differential forms

Scalar and vector fields may be represented by exterior differential forms, which are es-
sentially the expression under an integration symbol. In order to describe this differential
notation, it is shown in Table A.1 along with the corresponding vector notation for some of
the most relevant electromagnetic laws and relations.
A complete and detailed treatment of the differential forms can be found in [72].

In a three dimensional curvilinear coordinate system with coordinates ρ=(u, v, w), there
are four differential forms given by

zero-form (scalar) : ϕ(ρ) ,

one-form (vector) : E(ρ) = Eu s1 + Ev s2 + Ew s3 ,

two-form (pseudovector) : D(ρ) = Du s2 ∧ s3 + Dv s3 ∧ s1 + Dw s1 ∧ s2 ,

three-form (pseudoscalar) : Q(ρ) = Q s1 ∧ s2 ∧ s3 . (A.1)

whereas s1, s2 and s3 are referred to as the unit forms. The double one form used for the
dyadic Green‘s function is defined as follows:

G(ρ, ρ′) = Guu s1 s1 + Gvu s2 s1 + Gwu s3 s1 +
+ Guv s1 s2 + Gvv s2 s2 + Gwu s3 s2 + (A.2)

+ Guw s1 s3 + Gvw s2 s3 + Gww s3 s3,

(A.3)
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Table A.1: Correspondences between the main electromagnetic equations in conventional
vector notation and exterior differential form notation in the Laplace domain

Equation Vector Notation Differential Form Notation

Ampère’s law curl H = s D + J dH = sD + J
Faraday’s law curl E = −s B dE = −s B
Gauss’s law div D = ρ dD = Q
Magnetic flux continuity div B = 0 dB = 0
Electric constitutive equation D = ε E D = � ε E
Magnetic constitutive equation B = µ H B = �µH
Electric boundary condition n× (E2 − E1) = −Jm A n � n ∧ (E2 − E1) = −J m A
Magnetic boundary condition n× (H2 − H1) = JeA n � n ∧ (H2 −H1) = J eA
Electric flux boundary condition n · (D2 − D1) = ρs n � n ∧ (D2 −D1) = QA
Magnetic flux boundary condition n · (B2 − B1) = 0 n � n ∧ (B2 − B1) = 0
Source power density d Ps = − 1

2 (E · J∗eA + E · J∗eA) Ps = − 1
2 (E ∧ J ∗eA +H ∧ J ∗m A)

Power loss density d P L = ωε′′
2 E · E∗ + ωµ′′

2 H · H∗ PL = ωε′′
2 E ∧ �E∗ + ωµ′′

2 H ∧H∗
Electric energy density dW e = ε

4 E · E∗ We = ε

4E ∧ E∗
Magnetic energy density dW m = µ

4 H · H∗ Wm = µ

4 H ∧H∗
Complex Poynting’s vector T = 1

2 E × H∗ T = 1
2E ∧H∗

Complex Poynting’s theorem
T · ndS = −2s(dW m − dW e)−d P L + d P0

dT = −2s(Wm −We)

−PL + P0

where Gi j with i, j = u, v, w, is the component relating the i th component of the field
vector to the j th component of the source vector [17].



Appendix B

Least Square Problem

Consider the approximation ŷ[n] of the complex discrete sequence, y[n] by a linear combi-
nation of p complex sequences X1[n], X2[n], . . . , X p[n] (in general non linear functions
of n), such that

ŷ[n] =
p∑

m=1

am X p[n] 0 ≤ n ≤ N − 1. (B.1)

One method to uniquely assign value to the unknown complex parameters a = [a1,a1,. . . , ap],
is to minimize the real sum of square error:

ρ =
N∑

n=0

|y[n] − ŷ[n]|2 =
N∑

n=0

|e[n]|2 (B.2)

This problem is known as the least square (LS) approach and in matrix notation can be
expressed as follows,

{
â ∈ C

p s.t. |y− Xâ| ≤ |y− Xa| ∀a ∈ C
p} (B.3)
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where X is an N × p data matrix, a is an p × 1 coefficients vector, and y and e are N × 1
data vectors given respectively by:

X =



X1[1] · · · X p[1]
... · · · ...

X1[1] · · · X p[N ]


 , a =




a1
...

ap


 ,

(B.4)

y =



y1
...

yp


 , e =




e1
...

ep


 .

Equation (B.2) can also be rewritten as:

[y X]

[
1
−a

]
= e (B.5)

This equation represents a system of N linear equations, for p unknown coefficients of a,
whose solution may be carried out in the LS sense by means of two well known approaches,
the normal equation based technique, or the SVD based technique.

B.1 LS solution by Normal Equation

The square error ρ in (B.2) may be expressed as,

ρ = eH e = yH y− yH Xa− aH XH y+ aH XH Xa (B.6)

in which the vector inner product yH y forms a scalar, the matrix vector product XH y form
a p × 1 column vector and the matrix product XH X forms a p × p squar matrix. The
minimization of ρ may be obtained by isolating in (B.6) a matrix squared form as follows:

ρ = yH y− yH X(XH X)−1XH y+
(B.7)

+ (
XH y− XH Xa

)H (
XH X

)−1 (
XH y− XH Xa

)
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where the last term is a positive quadratic form and it is the only part of (B.7) to be depen-
dent on a. To minimize ρ means to chose an a = â such that:

XH y− XH Xâ = 0p (B.8)

with 0p the p × 1 all–zero vector. Solving (B.8) for â gives:

â = (
XH X

)−1
XH y. (B.9)

The same solution can be obtained by solving a problem of minimum, i.e. by equating to
zero the derivative of ρ with respect to a

∂ρ

∂a
= −2yH X+ 2XH Xa |a=â= 0 (B.10)

from which follows (B.9). after Substituting (B.8) and (B.9) into(B.7) gives the minimum
value for the square error:

ρmin = yH y− yH Xâ. (B.11)

Equations (B.9) and (B.11) can be rewritten into a single matrix expression

[
yH y yH X
XH y XH X

] [
1
−â

]
=
[

ρmin

0m

]
(B.12)

called the normal equation associated to the LS problem (B.3).

B.2 LS solution by SVD

The solution of (B.5) can also be found by using the singular value decomposition approach
based upon the following theorem.
Given an m × n complex value matrix A of rank k, then, there exists positive real numbers
σ1 ≥ σ2 . . . ≥ σk > 0, called singular values of A. This matrix can be decomposed into an
m×m unitary matrix U = [u1, u2 . . . um], an n× n unitary matrix V = [v1, v2 . . . vn], and
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an m × n matrix �, such as:

A = U�VH =
k∑

i=1

σiuivH
i (B.13)

where the m × n matrix � has the structure:

� =
[

D 0
0 0

]
(B.14)

and D = diag(σ1, σ2, . . . , σk) is a k × k diagonal matrix. Noting that AH = VH�U,
UUH = Im and VH V = In , then,

AH A = V(�H�)VH , AAH = U(��H )UH (B.15)

and

AH Avi = σ 2
i vi , AAH ui = σ 2

i ui with 1 ≤ i ≤ k. (B.16)

The matrices �H� and ��H are diagonal matrices of size n × n and m ×m respectively,
whose diagonal elements are σ 2

i for 1 ≤ i ≤ k. The matrices AH A and AAH are Hermitian
matrices of size n×n and m×m respectively. From (B.16) is evident that the columns of V
are the n unitary eigenvectors of AH A and the columns of U are the m unitary eigenvectors
of AAH . Both share the same eigenvalues σ 2

i for 1 ≤ i ≤ k, which can be obtained from
the positive square roots of the non zero eigenvalues of AH A or AAH . Using the unitary
properties of U, V and (B.13), it can also be shown that:

AV = U�VH V = U�

(B.17)

and UH A = UH U�VH = �VH

or

Avi = σiui , AH ui = σivi with 1 ≤ i ≤ k (B.18)

which gives a relationship between the column components of ui and vi by the common
singular values σi .
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The SVD of (B.13) can be used for calculating the Moore–Penrose pseudoinverse of a
matrix A given as:

A# = V�#UH =
k∑

i=1

σ−1
i viuH

i (B.19)

where �# is an n × m matrix given by

� =
[

D−1 0
0 0

]
(B.20)

A# has dimensions n×m and provides the minimum norm LS solution for the minimization
of the square error equation. This can be constructed from (B.5), obtaining:

|y− Xa|2 = |e|2 (B.21)

and solved in order to minimize e by means of the pseudoinverse of X as follows:

ā = X# y (B.22)

where X# is the p × N pseudoinverse of X. The vector ā is a p × 1 column vector which
minimizes the square error (B.21) and at the same time the solution vector length |a|. Min-
imum length means that ā is the shortest norm vector in C

p among the other possible
solutions for minimizing (B.21).
If p = N and rank(X) = p (i.e. X is not singular) then its pseudoinverse reduces to the
usual inverse matrix

X# = X−1 for p = N (B.23)

If N > p and rank(X) = p then (B.21) is an overdetermined system of equations and the
pseudoinverse reduces to

X# = (XH X)−1XH for N > p, (B.24)
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and (B.22) becomes (B.9), i.e. ˆ̂a = â.
If N < p and rank(X) = N then

X# = XH (XXH )−1 for N < p (B.25)

and ã = X# y is a p × 1 column vector often called the minimum norm solution for a set
of underdetermined equations.
Computing the pseudoinverse directly from the SVD (B.19) has two advantages over direct
computation by means of either (B.24) for N > p or (B.25) for N < p. First the SVD
assists in determining the rank of X by examining the number of non negligible singular
values (giving value zero to those below a fixed threshold). Second the accuracy in calcu-
lating X# by SVD is approximately twice as much as the accuracy obtained by calculating
it from (XH X)−1 and (XXH )−1 [85].
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