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Abstract

This dissertation is concerned with a communications scenario in which a large number of sen-
sor nodes, deployed on a field, take local measurements of some physical process and cooperate
to send back the collected data to a far receiver. The first part considers the problem of com-
municating multiple correlated sources over independent channels and with partial cooperation
among encoders, and provides a set of coding theorems that give a complete characterization of
the conditions on the sources and the channels under which reliable communication is possible.
A key insight from these results is that for a large class of networks separate source and channel
coding provides an optimal system architecture. The second part presents new contributions for
the long-standing multiterminal source coding problem. Finally, the third part assumes that the
sensor nodes use very simple encoders and focuses on the design of practical decoding algo-
rithms under given complexity constraints.

Zusammenfassung

Diese Arbeit betrachtet einige Aspekte der Kommunikation zwischen verteilten Sensorknoten,
die gemessene Werte versenden, und einem entfernten Empféanger, der die Daten weiterverar-
beitet. Zuerst werden die theoretischen Grenzen fiir die kooperative Ubertragung von korre-
lierten Quellen Uber statistisch unabhdngige Kandle bestimmt. Dies erfolgt durch eine Reihe
von Codierungstheoremen, die hinreichende und notwendige Bedingungen fiir nahezu fehler-
freie Kommunikation angeben. Eine wichtige Erkenntnis dieser Arbeit ist, dass fir viele nicht
triviale Netzwerke getrennte Quellen- und Kanalcodierung eine optimale Systemarchitektur an-
bietet. Als zweiter Schritt wird eine Verzerrung der Daten mitberiicksichtigt, was zu einem
lange offenen Problem der Rate-Distortion Theorie fuhrt. Auch hierfiir werden neue Ergeb-
nisse prasentiert. Der letzte Teil der Arbeit beschéftigt sich mit dem Entwurf von praktischen
Decodierungsalgorithmen unter Einschréankung der algorithmischen Komplexitét.
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Introduction

First, good Peter Quince, say what the play treats on, then read the names of the
actors, and so grow to a point.

WILLIAM SHAKESPEARE, A Midsummer Night’s Dream, Act | Scene 2

Why Sensor Networks?

Whether by telephone, on television or over the internet, a substantial part of our daily exchange
of information occurs in a virtual world we call cyberspace. In the past decades, by introducing
data into these networks and acting upon the collected data, we, the human users of these
networks, have been the sole bridges between the physical world we live in and this virtual
world we use to communicate. With the advent of tiny, low-cost devices capable of sensing
the physical world and communicating over a wireless network, it becomes more and more
evident that the status quo is about to change — sensor networks will soon close the gap between
cyberspace and the real world.

There are two important reasons why this vision is gaining momentum: (1) its inherent
potential to improve our lives — with sensor networks we can expand our environmental moni-
toring, increase the safety of our buildings, improve the precision of military operations, provide
better health care, and give well-targeted rescue aid, among many other applications —(2) the
endless possibilities it offers for multi-disciplinary research combining typical areas of electrical
and computer engineering (sensor technology, integrated systems, signal processing, wireless
communications), with classical computer science subjects (routing, data processing, database
management), and all potential application fields (medicine, biology, environmental sciences,
agriculture, etc.).

In many ways, sensor networks are significantly different from classical wireless networks like
cellular communications systems and wireless LANS:



2 Introduction Chap. 1

(@) the design of a sensor network is strongly driven by its particular application,

(b) sensor nodes are highly constrained in terms of power consumption, computational com-
plexity and production cost,

(c) since the network is dense and the nodes share a common objective — to gather and
convey information — cooperation can be used to enhace the network’s efficiency.

These key features lead to very challenging research problems that are best illustrated with a
practical example.

Example 1.1 (Sensor Webs for Precision Farming) Precision agriculture is about bringing
the right amount of water, fertilizers and pesticides to the right plantation site at the right
time [42]. Breaking with traditional methods that spread excessive quantities of chemicals uni-
formly over a field, this new paradigm guarantees a more efficient use of the farm’s resources,
a strong reduction of undesirable substances on the soil and in the ground water, and ultimately
better crops at lower costs. Since fundamental parameters such as soil moisture and concen-
tration of nutrients depend on the measuring spot and can vary fast in time, precision farming
requires constant sampling of the site characteristics on a fine spatial grid and a short-time
scale — an ideal application for wireless sensor networks. With the aid of a sensor web, the
control center can obtain constant updates of the soil conditions site by site and adapt the flows
of water, fertilizer and pesticide on the go according to the actual needs of the growing plants,
as illustrated in Figure 1.1.

Figure 1.1: A sketch of a center-pivot irrigation system. In the classical application (left draw-
ing) the irrigation arm moves in circles and spreads water, fertilizer and pesticide uniformly
over the crop area. To implement precision farming and increase the agricultural efficiency of
the plantation, we can use a self-organizing sensor web that monitors the crop (right drawing)
and sends the relevant data (e.g. soil humidity and nutrient status) to a fusion center over a wire-
less network. Based on the acquired information the fusion center can determine the right flow
of water and chemicals for each sector of the crop.

While the decision-making process falls within the scope of the agricultural engineer, the
design of the supporting sensor web opens a myriad of challenging research problems for the
electrical and computer engineer.

The main interest of our present work lies in the communications aspects of wireless sensor
networks. For this purpose, we view the sensor network as a collection of transmitters that



observe multiple sources of information, encode the picked up data (possibly with an interme-
diate cooperative step) and reach back to a remote fusion center using a wireless channel to
transmit the required information — we refer to this setup as reachback communication. Based
on appropriate models for the sources and the channels, the communications problem becomes
finding a suitable system architecture and optimizing the transmission/reception scheme subject
to the technological constraints of the sensor nodes.

Prior State of the Art

Although sensor systems and technologies have been the focus of intense research efforts for
several decades already, wireless sensor networks have only recently begun to catch the atten-
tion of the communications and signal processing communities. At the starting point of the
research work that lead to this thesis, little was known about the fundamental limits of commu-
nication in wireless sensor networks, and practical implementations were still at an infant stage.
The following paragraphs give a brief overview of the knowledge base from which we set out
to investigate the sensor reachback problem.

From the theoretical point of view, sensor networks offer the essential practical motivation
for a number of challenging problems involving two fundamental ingredients: (1) correlated
sources of information — an arguably reasonable model for the physical measurements taken
by a large number of sensors in a confined area — and (2) collaborative data transmission
over noisy channels. The information-theoretic foundations for this class of basic research
problems — firmly based on Shannon’s A Mathematical Theory of Communication [82] —
were first laid by Slepian and Wolf [85] in a seminal paper on separate compression of correlated
sources, and secondly by Cover, EI Gamal and Salehi [26], who provided a partial solution to
the problem of communicating correlated sources over a multiple acccess channel. A third
important contribution stems from Berger and Tung’s work on yet another open issue, namely
the rate-distortion extension of the Slepian-Wolf data compression problem ([18], [90]). Thus
far, both the capacity region of the multiple access channel with correlated sources and the
rate-distortion region of separate encoding of correlated sources remain unknown. The relevant
aspect of collaborative transmission was addressed by Willems in a short correspondance [93],
which contains the capacity region of the multiple access channel in the case of two independent
sources and partial cooperation between encoders.

The aforementioned contributions, like many other results in Shannon theory, are not con-
structive in the sense that they do not provide a clear description of a feasible system design.
Recently, the goal of devising practical coding schemes that approach the theoretical limits of
Slepian and Wolf has been achieved by several groups (e.g. [38], [1], [69], [87] and [63]), cap-
italizing on the discovery of highly effective channel coding techniques based on concatenated
codes and iterative decoding ([21], [44]). Although said coding schemes perform very well
for two or three correlated sources, the complexity of the associated encoding and decoding
algorithms renders them unsuitable for reachback networks with hundreds of sensor nodes.
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Thesis Outline

This thesis attacks the sensor reachback communications problem in three different ways. In the
first part, we study the ultimate performance limits for this class of communications systems us-
ing the mathematical tools of network information theory. By modelling the sensor network as a
set of multiple correlated sources that are observed by partially cooperating encoders and trans-
mitted over an array of orthogonal channels, we are able to characterize the reachback capacity,
i.e., the exact conditions on the sources and the channels under which reliable communication
with the far receiver is possible.

The second part of the present work is dedicated to the rate-distortion version of the sensor
reachback problem. At this point, we present some progress made towards the solution of the
long-standing multiterminal source coding problem, and extend its formulation to the case of
partial cooperation between encoders, providing a partial characterization of the corresponding
rate-distortion region.

Finally, in the third part, we consider the more practical problem of jointly decoding the
correlated data transmitted by hundreds of sensor nodes. After showing that the optimal decoder
based on minimum mean square estimation (MMSE) is unfeasible — its complexity grows
exponentially with the number of nodes — we present a two-step “scalable” alternative: (1)
approximate the correlation structure of the data with a suitable factor-graph, and (2) perform
belief propagation decoding on this graph to produce the desired estimates. Based on this
general approach, which can be applied to sensor networks with arbitrary topologies, we provide
an exact characterization of the decoding complexity, as well as optimization algorithms for
finding optimal factor trees under the Kullback-Leibler criterion.

The rest of the thesis is organized as follows. In Chapter 2 we review the main information-
theoretic results for discrete memoryless sources and channels, and discuss several proof tech-
nigques that are required for a thorough understanding of our main contributions. Our goal is not
only to give precise mathematical statements, but also to provide the reader with useful intuition,
particularly where separate encoding of correlated sources and multiple user communications
are concerned.

Chapter 3 is devoted to the sensor reachback problem with perfect reconstruction at the
receiver. First, we give a detailed justification of the main modeling assumptions followed by a
brief overview of our main results. The latter are then presented step by step, from the simplest
instance of two non-cooperating sensor nodes to the most general case of a sensor network with
an arbitrary number of cooperating encoders. As a general rule, we include in the main body
only those parts of a proof that provide intuition and leave the more technical (and sometimes
more tedious) details for the appendix. The insights gained from the solution of the sensor
reachback problem, inspire us to conclude this chapter with some reflections on the usefulness
of the separation principle in communications networks.

In Chapter 4, we assume that perfect reconstruction at the receiver is either not possi-
ble or not necessary, and look at separate encoding of correlated sources with distortion con-
straints. After giving a precise statement of the classical multiterminal source coding problem,
we discuss several different bounds for the sought rate-distortion region — for general discrete-



memoryless sources and, specifically for the binary case with Hamming distortion. We then
extend the problem to account for partial cooperation between encoders, providing a full char-
acterization of the rate region in the lossless case and a new inner and outer bound for the
rate-distortion version of the problem.

Chapter 5 looks at the sensor reachback problem from a more practical perspective and
addresses the issue of decoding complexity. We begin by proposing a very simple system model
for the reachback network and showing that optimal decoding is unfeasible. Then, we propose
a scalable solution which tackles the complexity by approximating the correlation structure of
the sensor data with a factor tree. The key contribution here is a set of tools for constrained
factorization of Gaussian distributions, which greatly simplify the design of the decoder. The
last section of this chapter includes some numerical examples that underline the effectiveness
of the proposed approach.

Chapter 6 concludes this dissertation with a survey of possible directions for future work.
The interested reader will also find a comprehensive appendix with the detailed proofs of the
results presented in the main chapters.

Parts of this work have been presented at [11], [14], [13], [9], [12], [15], [16] and [10].






Fundamentals of | nformation
Theory

A journey of a thousand miles begins with a single step.
CHINESE PROVERB

We begin this dissertation with a brief overview of some of the fundamental concepts and
mathematical tools of information theory. This will allow us to establish some notation and set
the stage for the main results presented in Chapters 3 and 4. For a comprehensive introduction
to the fundamental concepts and methods of information theory we refer the interested reader
to the excellent treatises of Gallager [36], Cover and Thomas [28], and Yeung [97]. In [30]
Csiszar and Korner offer a panoply of very useful mathematical tools for discrete memoryless
sources and channels.

The rest of the chapter is organized as follows. Section 2.1 begins with Shannon’s com-
munications model and gives a precise formulation of the point-to-point problem. Section 2.2
then proceeds with a detailed overview of the proof techniques that are relevant for the present
work, followed by a discussion of some of Shannon’s fundamental theorems in Section 2.3.
This chapter concludes with Section 2.4, which is entirely devoted to some of the most relevant
results in network information theory, with special emphasis on separate encoding of correlated
sources and multiple access communications.

2.1 The Point-to-Point Communications Problem

2.1.1 Communications Model

The foundations of information theory were laid by Claude E. Shannon in his brilliant 1948
paper entitled “A Mathematical Theory of Communication” [82]. In his own words: the fun-
damental problem of communication is that of reproducing at one point either exactly or ap-
proximately a message selected at another point. If the message — for example a letter from
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noise
source

. received
signal signal

information transmitter channel }_ receiver H
source

Figure 2.1: Shannon’s communications model (from [82]).

the alphabet, the gray level of a pixel or some physical quantity measured by a sensor — is to
be reproduced at a remote location with a certain fidelity, some amount of information must be
transmitted over a physical channel. This observation is the crux of Shannon’s general model
for point-to-point communication reproduced in Figure 2.1. It consists of the following parts:

e The information source generates messages at a given rate according to some random
process.

e The transmitter observes this messages and forms a signal to be sent over the channel.

e The channel is governed by a noise source which corrupts the original input signal. This
models the physical constraints of a communications system, e.g. thermal noise in elec-
tronic circuits or multipath fading in a wireless medium.

e The receiver takes the received signal, forms a reconstructed version of the original mes-
sage, and delivers the result to the destination.

Given the statistical properties of the information source and the noisy channel, the goal of
the communications engineer is to design the transmitter and the receiver in a way that allows
the sent information to reach its destination in a reliable way. Information theory can help
us achieve this goal by characterizing the fundamental mechanisms behind communications
systems and providing us with precise mathematical conditions under which reliable communi-
cation is possible.

2.1.2 Problem Statement

To give a precise formulation of the point-to-point communications problem, we require rigo-
rous definitions® for each of its constituent parts. We assume that the source and the channel
are described by discrete-time random processes, and we determine that the receiver and the
transmitter agree on a common code, specified by an encoder and decoder pair. The basic
relationship between these entities is illustrated in Figure 2.2 and described rigorously in the
following lines.

1\We point out that although in this thesis we are mostly concerned with discrete memoryless sources and chan-
nels, many of the results presented here and in the following chapters can be extended to account for continuous-
valued alphabets, as well as sources and channels with memory.
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source | U | encoder | X [channel|Y | decoder |U [ destination
p(u) f p(y|z) g

Figure 2.2: Mathematical model of a communications system.

Definition 2.1 (Source) A discrete memoryless source denoted U generates a sequence of in-
dependent and identically distributed (i.i.d.) messages, also referred to as letters or symbols,
from the alphabet &/ . The messages correspond to independent drawings from the probability
distribution? py (u).

Definition 2.2 (Channel) A discrete memoryless channel (X, p(y|z),Y) is described by an
input alphabet X', an output alphabet ) and a conditional probability distribution p(y|x) , such
that X and Y denote the channel input and the channel output, respectively.

Definition 2.3 (Code) A code consists of

1. an encoding function f : &/ — X, which maps a message u to a codeword =V with N
symbols,

2. a decoding function ¢ : ¥ — ¢, which maps a block of N channel outputs y” to a
message « from the reconstruction alphabet Z/. For simplicity, we assume that &/ = U,
I.e. source and reconstruction alphabets are identical.

The rate of the code is given by R = (1/N) log, || in bits per channel use, where |1/| denotes
the size of the alphabet ¢4.

To give a precise statement of the problem, we require one more definition:

Definition 2.4 (Reliable Communication) Given the rate R, reliable communication of the
source U ~ p(u) over the channel (X, p(y|x),Y) is possible if there exists a code ¥ (u) with
rate R and with decoding function g(y”) such that, as N — oo,

Py =p{g(Y"™) # U} =0,

i.e. the source messages are reconstructed with arbitrarily small probability of error. If reliable
communication is possible at rate R then R is an achievable rate.

The main goal of the problem is to give precise conditions for reliable communication based
on single-letter information-theoretic quantities that depend only on the given probability dis-
tributions and not on the block lengths V. The mathematical tools required for this characteri-
zation are the topic of the next section.

Remark 1 Notice that the classical information-theoretic formulation of the point-to-point com-
munications problem does not put any constraints neither on the computational complexity nor

2In the sequel we follow the convention that subscripts of a probability distribution are dropped if the subscript
is the capitalized version of the argument, i.e. , we simply write p(u) for the probability distribution py (u).
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on the delay of the encoding and decoding procedures. In other words, the goal is to describe the
fundamental limits of communications systems irrespective of their technological limitations.

2.2 Mathematical Tools of Information Theory

The key to the solution of the point-to-point communications problem stated in the previous
section — and of many other problems in information theory — is to take into consideration
the statistical properties of very long sequences of symbols and divide these into useful classes.
The following paragraphs describe a powerful set of tools for this task, which will be of great
use in the proofs of Chapters 3 and 4.

2.2.1 Types and Typical Sequences

Let " be a sequence of symbols drawn i.i.d. from the alphabet X = {a1, ay, . . -, a|x| } accord-
ing to the probability distribution p(z) with z € X and |X| < oo. The sequence z™¥ can be
classified according to its type by applying the following definition.

Definition 2.5 (Type) The type P,~ of the sequence z¥ can be obtained by counting the num-
ber of occurrences N (a|z™) of each symbol a € X divided by the total sequence length NV,
i.e. P~ is the empirical probability distribution of X obtained from the observed sequence z % .

It is often useful to group those sequences x¥, whose type or empirical distribution is close to
the probability distribution p(z). We call the resulting set the strongly typical set.

Definition 2.6 (Strongly Typical Set) If the type P,~ of the sequence z¥ does not differ from
the true probabilities p(z) by more than §/|X| then z™ belongs to the strongly typical set.

Specifically,
o)
< -
| X

for every a € X. We refer to the sequences z™ in this set as strongly typical sequences.

TN (X) = {xN cxlv. %N(a\acN)—p(a)

Assume now that we have a pair of sequences zV and y" drawn i.i.d. from the alphabets
X ={ay,as,...,ax}and Y = {c1,cs, ..., ¢y} according to the joint probability distribution
p(zy). The next definition extends the concept of strong typicality to describe the relationship
between two sequences ¥ and 3.

Definition 2.7 (Strong Joint Typicality) If the jointtype P,~,~ = N(ac|zVy")/N, ac € X x
Y, of the sequence pair (zVy”) does not differ from the true probabilities p(zy) by more than
§/(|1X||Y|), then we say =¥ and y* are strongly jointly typical. In this case, the strongly typical
set is given by

TN (XY) = {:UN e xN yN e YN %N(ac\xNyN) — p(ac)

<z
IS

What makes the notion of strong typicality so useful, is the so called asymptotic equipartition
property (AEP). The latter follows naturally from the law of large numbers [97, Chapter 5] and
is described by the following theorem.
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Theorem 2.1 (Strong AEP [97, p. 74]) Letn be a small positive quantity, such thatn — 0 as
0 — 0.

1. For N sufficiently large,
XY eTN(X)}>1-0.

2. If 2V € T (X), then

9~ NUHX) 1) < p(pN) < 9= NHX)=n),

3. For N sufficiently large,

(1 — §)2NHE) =) < TN (X)| < oN(H(X)+n)

Here, H(X) denotes the Shannon entropy of the random variable X given by
H(X) ==Y p(z)logp(=),

where the logarithm is taken to base two?® and the summation is carried out over the support of
p().

Proof:  See [97, pp. 74-77]. [ |

In simple terms, this theorem states that for sufficiently large sequence length N, the proba-
bility that a sequence X drawn i.i.d. ~ p(z) belongs to the typical set is very close to one.
Moreover, for practical purposes we may assume that the probability of any strongly typical
sequence is about 2~NVH(X) and the number of strongly typical sequences is approximately
2NVH(X) The generalization of the AEP for two random variables X and Y can be obtained in a
straightforward manner using the joint entropy

H(XY)==> " p(ay)logp(zy),

where once again the summation is carried out over the support of p(zy). For large N, it
follows that there exist around 2V 7(XY) jointly typical sequences = and y”.

Clearly, the notion of entropy is far too important to be mentioned in passing. Conceptually,
H(X) can be viewed as a measure of the average amount of information contained in X or,
equivalently, the amount of uncertainty that subsists until the outcome of X is revealed. Other
useful information measures include the conditional entropy of X given Y defined as

H(X|Y)=H(XY) - H(Y),

3Unless otherwise specified, all logarithms in this thesis are taken to base two.
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describing the amount of uncertainty that remains about X when Y is revealed, and the mutual
information
I(X;Y) = H(X) — H(X|Y),

which can be interpreted as the reduction in uncertainty about X when Y is given. The relation-
ship between the aforementioned information-theoretic quantities is well explained in [97, Sec-
tion 2.2]. As a consequence of the AEP, we may assume for NV very large that (a) there are about
2NVH(XY) sequences 2™ which are jointly typical with a given sequence y, and (b) two arbi-
trarily chosen sequences = and y* are jointly typical with probability ~ 2VHXIY) /oNH(X) —
9—NI(X;Y)

By requiring that the relative frequency of each possible symbol be close to the corre-
sponding probability, strong typicality is particularly suitable for information-theoretic prob-
lems which involve minimizing a distortion measure between source sequences and reconstruc-
tion sequences, as we will see in Chapter 4. In the case of asymptotically perfect reconstruction
at the receiver (i.e. arbitrarily small probability of error) the only parameter of interest is the
coding rate and many problems can be solved using a weaker notion of typicality, which only
requires that the empirical entropy of a sequence be close to the true entropy of the correspond-
ing random variable.

Definition 2.8 (Weakly Typical Set) The weakly typical set AY(X) is the set of sequences
™ € XV such that

1
- ﬁlogp(a:N) —H(X)|<e

The weak version of the AEP then follows naturally from the weak law of large numbers
[28, Chapter 3].

Theorem 2.2 (Weak AEP [97, p. 61]) Forany ¢ > 0 we have

1. For N sufficiently large,
p{ XN e AN X))} >1—e

2. If 2V € AN(X), then

9=N(H(X)+0) < p(zN) < 9= NH)=)

3. For N sufficiently large,

(1 . 6)2N(H(X)fe) < \AéV(X)\ < 2N(H(X)+e)_

Proof:  See [97, pp. 62-63]. |

Since, for NV sufficiently large, any sequence XV drawn i.i.d. ~ p(z) is very likely to be weakly
typical, any property that we prove for weakly typical sequences is true with high probability. In
the following, we will generally refer to weakly typical sequences simply as typical sequences.
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2.2.2 Random Coding and Random Binning

Consider once again the formal statement of the point-to-point communications problem in
Section 2.1.2. In Shannon’s mathematical model a block of messages is mapped to a sequence
of channel input symbols, also called codeword. The set of codewords builds the core of the
code used by the transmitter and the receiver to communicate reliably over the channel.

Since information theory is primarily concerned with the fundamental limits of reliable
communication, it is often useful to prove the existence of codes with certain properties without
having to search for explicit code constructions. A simple way to accomplish this task is to
perform a random selection of codewords. Random selection is often used in mathematics to
prove the existence of mathematical objects without actually constructing them. For example,
if we want to prove that a real-valued function A (n) takes a value less than ¢ for some n in a
given set S, then it suffices to introduce a uniform probability distribution on S and show that
the mean value of h(n) is less than ¢. When this technique is applied to prove the existence
of codes with certain properties, we speak of random coding. Based on this simple idea, we
can construct a random code for the system model shown in Figure 2.2 by drawing codewords
X" at random according to the probability distribution Hfil p(z;). Then, if we want to prove
that there exists a code such that the error probability goes to zero for N sufficiently large,
it suffices to show that the average of the probability of error taken over all possible random
codebooks goes to zero for N sufficiently large — in that case there exists at least one code
whose probability of error is below the average.

A different coding technique, which is particularly useful in information-theoretic problems
with multiple correlated sources, consists of throwing sequences u”¥ € UV into a finite set of
bins, such that the sequences that land in the same bin share a common bin index. If each se-
quence is assigned a bin at random according to a uniform distribution, then we refer to this
procedure as random binning. By partitioning the set of sequences into equiprobable bins, we
can rest assure that, as long as the number of bins is much larger than the number of typical
sequences, the probability that there is more than one typical sequence in the same bin is very,
very small [28, pp. 410-411]. This in turn means that each typical sequence is uniquely deter-
mined by its corresponding bin index. If side information is available and we can distinguish
between different typical sequences in the same bin — e.g. when we are given a sequence w?
that is jointly typical with ' — then we can decrease the number of bins, or equivalently the
number of bin indices, and increase the efficiency of our coding scheme (see e.g. [23] and [95]).
The following examples illustrate the main idea behind the aforementioned binning mechanism.

Example 2.1 (From [101]) Assume that Alice must communicate an even number x to Bob
and that Bob receives as side information one of the neighbours of z. If Alice has access to
Bob’s side information then she only needs to send one bit, e.g. indicating whether x is above
or below the known neighbour. What if Alice does not know the side information available to
Bob? A possible solution for this problem is to place all possible even numbers into two bins:
one bin for all multiples of four and one bin for all the others. By sending the bin index (0 or 1)
to Bob, Alice is able to achieve the exact same efficiency (1 bit) even without access to the side
information.
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Example 2.2 Let U; and U, be two correlated sources, which output binary triplets differing
at most in one bit, e.g. 000 and 010 or 101 and 001. Assuming that U; must be communicated
by the transmitter and that U, is available as side information at the decoder, how should
we encode the former, such that perfect reconstruction is possible with a minimum amount of
transmitted bits? Notice that there are only two bits of uncertainty, i.e. enough to indicate in
which bit U; and U, differ, provided of course that U, is known at the encoder. Interestingly
enough, the same coding efficiency can still be achieved even if Us is not known at the encoder.
Here is the key idea: it is not necessary for the code to differentiate between U; triplets that
differ in three positions, because the decoder will count the number of bits that are different
from U, and only one of the two possible U; triplets will be one bit away. Thus, by putting
the eight possible realizations of U; in four bins and guaranteeing that the elements in one bin
differ in three bit positions, we can rest assure that U; will be perfectly reconstructed at the
decoder.

2.2.3 The Markov Lemma

Another useful tool for coding problems with side information is provided by the following
lemma, which plays a major role in the class of multiterminal source coding problems consid-
ered in Chapter 4.

Lemma 2.3 (Markov Lemma, [90, 18]) Let U, X and Y be three random variables that form
a Markov chain U — X — Y. If for a given (uV,2") € TN (UX), YV is drawn ~
1Y, p(yilz:), then p{(UN, XN, YN) € TN (UXY)} — 1as N — oo.

Proof:  See [90] and [18]. [ |

In more intuitive terms, the Markov property of U, X and Y implies that if we take two se-
quences »¥ and =¥ which are strongly jointly typical and generate a third sequence y” accord-
ing to the conditional probability p(y|z) — for example, by transmitting the sequence =¥ over
a memoryless channel— then with high probability ", ¥ and 3" are strongly jointly typical.
This, in turn, implies that with high probability " and iV are strongly jointly typical.

2.2.4 Useful Inequalities

We conclude this section on mathematical tools of information theory with three inequalities
which will also prove very useful in Chapters 3 and 4. The corresponding proofs can be found
in [28] and [97].

Lemma 2.4 (Conditioning does not increase entropy) Let X and Y be two random vari-
ables ~ p(zy). Then,
H(X|Y) < H(X).

In other words this lemma asserts that the knowledge of Y cannot increase our uncertainty*
about X. Assume now that U is a random variable of interest to us and X is an observation of
U, such that our average uncertainty about U given X is H(U|X). If we process X and obtain

“4In their celebrated textbook Cover and Thomas often refer to this statement as conditioning reduces en-
tropy [28]. The interpretation conditioning does not increase entropy seems to us somewhat more appropriate.
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the random variable Y (e.g. by transmitting X over a memoryless channel), thenU — X — Y
forms a Markov chain and the following statement holds true.

Lemma 2.5 (Data Processing Inequality) Let U, X and Y be three random variables that
form a Markov chainU — X — Y. Then,

I(U; X) < I(U;Y).

It is not difficult to see that

HU|Y) = H{U)-IU;Y)
> H(U)-I(U;X)
> H(UIX),

which means that, on average, by processing (or transmitting) X we can only increase our
uncertainty about U.

Finally, we assume that X is a random variable and X is an estimate of X taking values
in the same alphabet X'. The following lemma gives a precise description of the relationship
between the conditional entropy H (X |X) and the probability of error P, = p{X # X}.

Lemma 2.6 (Fano’s Inequality) Let X and X be two random variables with the same alpha-
bet X’. Then
H(X|X) < Hy(P.) + P.log(|X| — 1),

where H,(P,) is the binary entropy function computed according to

Hy(P,) = —P.log P, — (1 — P.)log(1 — P,).

Fano’s inequality is the key ingredient of all the converse proofs in this thesis.

2.3 Shannon’s Coding Theorems

The typical results in information theory are concerned with the existence of codes with certain
asymptotic properties. A theorem that confirms the existence of codes for a class of achievable
rates is often referred to as a direct result and the arguments that lead to this result constitute the
achievability proof. On the other hand, when a theorem asserts that codes with certain properties
do not exist, we speak of a converse result and a converse proof. A fundamental result that
includes both the achievability and the converse parts is called a coding theorem [30].

Having discussed some of the basic proof techniques in information theory, we will turn

to four of Shannon’s fundamental coding theorems. These results form the basis of classical
information theory and are of great use in several of our own proofs.
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2.3.1 The Channel Coding Theorem

The channel coding theorem gives a complete solution (achievability and converse) for the
point-to-point communications problem stated in Section 2.1.2. According to the problem state-
ment, we use a code of rate R to transmit the messages produced by source U over a discrete
memoryless channel (X, p(y|x),Y). If reliable communication is possible at rate R, i.e. the
average error probability Py goes to zero as the block length IV goes to infinity, then we say the
rate R is achievable. As it turns out, one simple condition is sufficient to fully characterize the
set of achievable rates:

Theorem 2.7 (Channel Coding Theorem [97, Section 8.2]) Arate R is achievable for a dis-
crete memoryless channel p(y|x) if and only if R < C, where C' is the channel capacity given
by

C=maxI(X;Y).

p(z)

This remarkable result guarantees the existence of a code with arbitrarily small probability of
error for all rates below the capacity of the channel. The latter equals the maximum mutual
information between channel input X and channel output Y, where the maximization is carried
out over all possible input probability distributions p(z).
There are several ways to prove the channel coding theorem and details can be found e.g. [28,
Chapter 8] and [97, Chapter 8]. In the following we will give a sketch or proof that highlights
those aspects that are relevant for the information-theoretic problems considered in this thesis.
The presented proof structure is common to most our proofs.
Sketch of Proof:
We begin with the achievability part, which can be summarized in the following steps:

1. Codebook Construction: Construct a random codebook by drawing |2/| codewords X~
~ vazl p(z;), as explained in Section 2.2.2, such that each message in ¢/ is mapped to a
codeword indexed by X~ (1), X¥(2),..., X" (JU|). The codebook is known both to the
encoder and the decoder.

2. Encoder: For message u generated by the source transmit the apropriate codeword X ¥ (u)
through the channel.

3. Decoder®: Upon observing the channel output sequence Y generated according to the
probability distribution TTY., p(yi|=:(«)), the decoder outputs & = u if (X ¥ (u),YV) €
AY(XY), i.e. X¥(u) and YV are jointly typical, and there does not exist another % #
u such that (X" (a),Y") € AN(XY). Otherwise, the decoder sets 4 equal to some
predefined constant.

4. Error Events: An error occurs if X (u) and YV are not jointly typical, or there exists an
@ # usuch that XV (@) and YV are jointly typical.

5The described decoding procedure is called typical set decoding.
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5. Analysis of the Probability of Error: We average the probability of error over all possible
random codes generated according to Hf\i . p(z;). Since the code construction is sym-
metric, the average probability of error is the same for all messages U € U and we can
assume without loss of generality that the sent message is v = 1. Based on the AEP we
can assume that the probability that X V(1) and YV are not jointly typical goes to zero
for NV sufficiently large. Moreover since the probability that any XV (u) is jointly typical
with YV is approximately 2-¥1(X3Y) if we use about 2V(X3Y) codewords the probability
that there exists an @ # 1 such that X (@) and Y are jointly typical is also negligible.

6. Capacity: Choosing the probability distribution p(z) that maximizes I(X;Y’), we prove
that the channel capacity C' can be achieved.

The converse part follows directly from Fano’s Inequality and standard information-theoretic
identities and inequalities [97, Section 8.3]. [ |

2.3.2 The Source Coding Theorem

When the channel is noiseless, i.e. Y = X, it may still be useful to encode the messages
produced by the source. In this case, the purpose of the code is not to compensate for the im-
pairments caused by the channel, but to achieve a more efficient representation of the source
information in terms of bits per message or equivalently bits per source symbol — this procce-
dure is called source coding or data compression. The main idea is to consider only a subset B
of all possible source sequences &, and assign a different index i € {1,2,...,|B|} to each of
the sequences »v in B. If the sequence produces a source sequence u”¥ € B, then the encoder
outputs the corresponding index 4, otherwise 7 is set to some predefined constant. The decoder
receives the index 7 and outputs the corresponding sequence in B. The rate of the resulting
source code can be computed according to R = (1/N) log |B|. The following result gives the
minimum rate R at which we can encode the data and still guarantee that the messages can be
perfectly reconstructed.

Theorem 2.8 (Source Coding Theorem [97, Section 4.2]) Let U be an information source
drawn i.i.d. ~ p(u). For N sufficiently large, there exists a code with arbitrarily small prob-
ability of error, whose coding rate R is arbitrarily close to the entropy H(U). Conversely, if
R < H(U) the error probability goes to one, as N goes to infinity.

Proof: See e.g. [97, Section 4.2]. [ |

The main idea behind this theorem can be stated in very simple terms: since for large N the
AEP guarantees that any sequence produced by the source U belongs with high probability to
the typical set AN (U), we only need to index the approximately 2V#(V) typical sequences to
achieve arbitrarily small probability of error. Thus, setting B = AN(U), we get R ~ H(U).
Alternatively, the theorem can be proved using a simple random binning argument: if we
randomly assign each source sequence to one of a finite number of bins, then as long as the
number of bins is larger than 2V¥(U) we know that the probability of finding more than one
typical sequence in the same bin is very small [28, pp. 410-411]. Since each typical sequence
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A

source | U | source channel channel channel source | U destination
p(u) encoder encoder p(y|x) decoder decoder

Figure 2.3: A communications system based on the separation principle.

is mapped to a different bin index, arbitrarily small probability of error can be easily achieved
by letting the decoder output the typical sequence that corresponds to the received index.

2.3.3 The Separation Theorem

Going back to the point-to-point communications problem, consider the following coding strat-
egy illustrated in Figure 2.3:

1. Source Encoder: Upon observing a block of source messages %, map u? to an index
i € {1,2,...2N8} thus compressing the source U at rate R,.

2. Channel Encoder: Map the index i to one of 2<% distinct channel codewords X ™, thus
encoding 7 at rate R, > R,.

3. Channel Decoder: Upon observing the channel output sequence Y ¢, use typical set
decoding to produce the codeword estimate X .

4. Source Decoder: Based on X ™ look up the corresponding index i and output the se-
guence estimate 4 (7).

This set of procedures describes a modular system architecture, in which source coding and
channel coding are carried out separately. The conditions for reliable communication based on
this approach, can be easily obtained from the previous coding theorems as follows. First, the
source coding theorem states that UV can be reconstructed from the index 4 with arbitrarily
small probability of error if R, > H(U), and secondly, the channel coding theorem guaran-
tees that 4 can be transmitted reliably as long as R. < C. Thus, we conclude that reliable
communication is possible if
H{U)< Rs< R.<C.

Shannon’s source-channel coding theorem, often referred to as the separation theorem, states
that the condition H(U) < C, entropy of the source less than channel capacity, is not only
sufficient, but also necessary for reliable communication to be possible.

Theorem 2.9 (Separation Theorem, [28, Section 8.13]) If U is a finite alphabet stochastic
process that satisfies the AEP, then for sufficiently large NV there exists a code with Py — 0 if
andonly if H(U) < C.

Proof:  The achievability part follows directly from our previous reasoning. The converse
proof is based on Fano’s Inequality and the Data Processing Lemma. For details see [28, Sec-
tion 8.13]. [ |

Intuitively, this theorem implies that there is nothing to lose by splitting the source coding and
channel coding tasks — first, we compress the data to its most efficient representation, and
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then add redundancy in a controlled fashion to combat the errors caused by the channel. The
obvious advantage of this modular architecture is that we can design the source code ignoring
the channel, and then design the channel code ignoring the source. If we want to transmit
different sources over the same channel we only need to substitute the source code, and similarly
to transmit the same source over different channels we just need to adapt the channel code
accordingly.

It is worth noting that although separate source and channel coding is asymptotically opti-
mal, for finite block lengths a joint source-channel code can lead to better performance [29].

2.3.4 The Rate-Distortion Theorem

Sometimes perfect reconstruction of the source information is not required and we can accept
an erroneous representation that satisfies a certain fidelity criterion. Typical scenarios include a
television broadcast or a telephone conversation, where we only need to comply with the con-
strained demands of human perception. The characterization of the trade-off between encoding
rate and allowable distortion is the goal of rate-distortion theory [17].

For the information source U drawn i.i.d. ~ p(u) and its reconstruction U, we introduce a
single-letter distortion measure

d:UxU— R,

which maps a (U, f]) pair to a nonnegative real number corresponding to the distortion incurred
by describing the message U with the reconstruction U. In Chapters 4 and 5, we will use the
Hamming distortion for discrete alphabets according to

. 0 if u = 1,
dlu, @) = { 1 otherwise,

and also the square-error distortion for continuous-valued alphabets given by

In general, our goal is to minimize the average distortion between a source sequence »” and a
reconstruction sequence 4V defined as®

N

We say a rate-distortion pair (R, D) is achievable if there exists a code with rate R that satisfies
p{d(u",4") > D+e} < ¢, i.e. the probability that the average distortion exceeds the prescribed
distortion D is arbitrarily small. The following result gives a complete characterization of the
set of achievable (R, D) pairs, also called the rate-distortion region.

Theorem 2.10 (Rate-Distortion Theorem, [97, pp. 197-198]) Let U be an information source
drawn i.i.d. ~ p(u) and let d(u, @) be a bounded distortion measure. The rate-distortion pair

SFor convenience, we use once again the letter d, but this abuse of notation will not cause any confusion.
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(R, D) is achievable if and only if

R> min I(U;U).
p(@|u):Ed(u,a)]<D
The minimum achievable rate R for every distortion D > 0 is given by the so called rate-
distortion function, denoted R(D).

Proof:  See [97, Chapter 9]. |

In order to obtain the rate-distortion function, we must minimize the mutual information
between the source U and the reconstruction U over all possible joint probability distributions
p(u, @) = p(u)p(t|u) whose expected distortion value E [d(u, @&)] computed according to

E [d(u, @)] Zp p(t|u)d(u, &)

does not exceed the prescribed distortion D.

If U is to be transmitted over a channel of capacity C then the definition of the rate-distortion
function and the separation theorem imply that the rate-distortion pair (R, D) is achievable if
and only if R(D) < C. Once again, the coding task can be split into two parts: first we find a
rate-distortion code that satisfies the distortion constraint and then we add a channel code that
operates close to capacity.

2.4 Network Information Theory

The previous results help us characterize the fundamental limits of communication between two
users, i.e. one sender and one receiver. However, in many communications scenarios — for ex-
ample, satellite broadcasting, cellular telephony, the internet or wireless sensor networks — the
information is sent by one or more transmitting nodes to one or more receiving nodes over more
or less intricate communication networks. The interactions between the users of said networks
introduce whole new range of fundamental communications aspects that are not present in the
classical point-to-point problem, such as interference, user cooperation and feedback. The cen-
tral goal of network information theory is to provide a thorough understanding of these basic
mechanisms, by characterizing the fundamental limits of communications systems with multi-
ple users. In this section, we review some of its most relevant contributions, in particular those
which are required for a detailed understanding of our own results, discussed in Chapters 3 and
4,

2.4.1 The Slepian-Wolf Theorem

Assume that two sources U; and U, drawn i.i.d. ~ p(ujus) are to be processed by a joint
encoder and transmitted to a common destination over two noiseless channels, as shown in
Figure 2.4. In general, p(uius) # p(u1)p(uz), such that the messages produced by U; and U,
at any given point in time are statistically dependent — we refer to U; and U, as correlated
sources. Since the channels do not introduce any errors, we may ask the following question:
at what rates R; and R, can we transmit information generated by U; and U, with arbitrarily
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Figure 2.4: Joint encoding of correlated sources.
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Figure 2.5: Separate encoding of correlated sources (Slepian-Wolf problem). The noiseless
channels between the encoders and the decoder are omitted.

small probability of error? Not surprisingly, since we have a common encoder and a common
decoder, this problem reduces to the classical point-to-point problem and the solution follows
naturally from Shannon’s source coding theorem: the messages can be perfectly reconstructed
at the receiver if and only if

R, + Ry > H(U 1 Uy),

i.e. the sum rate must be greater than the joint entropy of U; and Us.

The problem becomes considerably more challenging if instead of a joint encoder we have
two separate encoders, as shown in Figure 2.5. Here, each encoder observes only the realiza-
tions of the one source it is assigned to and does not know the output symbols of the other
source. In this case, it is not immediately clear which encoding rates guarantee perfect recon-
struction at the receiver. If we encode U, at rate Ry > H(U;) and Us at rate Ry > H(U,),
then the source coding theorem guarantees once again that arbitrarily small probability of error
is possible. But, in this case, the sum rate amounts to R; + Ry > H(U;) + H(U,), which in
general is greater than the joint entropy H (U,Us).

In their landmark paper [85], Slepian and Wolf come to a surprising conclusion: the sum rate
required by two separate encoders is the same as that required by a joint encoder, i.e. R; + Ry >
H(U,Us) is sufficient for perfect reconstruction to be possible. In other words, there is no
loss in overall compression efficiency due to the fact that the encoders can only observe the
realizations of the one source they have been assigned to. However, it is important to point
out that the decoder does require a minimum amount of rate from each encoder, specifically
the average remaining uncertainty about the messages of one source given the messages of the
other source, i.e. H(U;|Us) and H (U,|U). The set of achievable compression rates is thus fully
characterized by the following theorem.
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Theorem 2.11 (Slepian-Wolf Theorem, [85]) Let (U;Us) be two correlated sources drawn
i.i.d. ~ p(ujus). The compression rates (R;, R») are achievable if and only if

R, > H(U|Uy)
Ry, > H(Us|Uy)
R+ Ry, > H(UiUy).

Sketch of Proof: The crux of the proof is joint typicality and random binning [28, Sec-
tion 14.4]. Since the source sequences u¥ and )’ are drawn i.i.d. ~ p(ujuz), we may assume
for large NV that the two sequences are jointly typical. Thus, to construct the codebooks we
randomly map each of the possible U} sequences to one of 2V hins, and each of the possible
Uy sequences to one of 2V%2 bins, such that upon observing the actual source sequences u2
and u2, encoder 1 and encoder 2 send the corresponding bin indices to the joint decoder. In
order to obtain the original source sequences, the decoder looks inside the two indicated bins
for a pair of sequences u¥ and v that are jointly typical. The decoder makes an error if

1. uy and u2 are not jointly typical,
2. there exists a %) # u!¥ inside the first bin, such that %" and « are jointly typical,
3. there exists a 4 # w2 inside the second bin, such that v} and @’ are jointly typical,

4. there exista al¥ # ul¥ and a @Y # ud inside the indicated bins, such that @) and @5’ are
jointly typical.

Clearly, the AEP guarantees that the first type of error has asymptotically small probability. For
the other three sources of error, it can be shown [28, Section 14.4] that by ensuring a sufficiently
large number of bins, specifically

2NR1 > 2NH(U1|U2) 2NR2 > 2NH(U2‘U1) and 2N(R1+R2) > 2NH(U1U2)

it is possible to drive the probability of finding other jointly typical pairs inside the bins arbi-

trarily close to zero.

The converse is based on Fano’s inequality and standard information-theoretic manipulations.

For details, see e.g. [85] or [28, Section 14.4]. [ |
The three inequalities in the statement of the theorem define the so called Slepian Wolf re-

gion, containing all the achievable rate pairs (R, Ry), as shown in Figure 2.6. The implications

of this fundamental result are best illustrated with a simple example.

Example 2.3 Assume that two sensor nodes measure the humidity at two different sites of
a plantation and then communicate their observations to a central computer. Depending on
whether the measured humidity value exceeds a certain threshold, each sensor : selects a mes-
sage U; that can be either HUMID or NOT HUMID with equal probability. Additionally, we know
from long-term observation that the joint probability distribution of the messages U; and Us is
given by
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Figure 2.6: The Slepian-Wolf region.
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p(u1u2) HUMID NOT HUMID
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NOT HUMID 0.02 0.48

Knowing that the individual entropies are given by H(U,) = H(Us) = H,(1/2) = 1 bits per
message, we conclude that if the sensors do not take into consideration the statistical depen-
dencies between their measurements, they must transmit 2000 bits to convey the information of
N = 1000 pairs of measurements. On the other hand, using Slepian-Wolf codes to exploit these
dependencies they can reduce the sum rate from H(U,) + H(Uz) = 2 to H(U Uy) =~ 1.242
bits per message, thus requiring only 1242 bits on average to convey the exact same informa-
tion. This means that, if one of the sensor nodes encodes its data close to the correspond-
ing entropy,i.e. Ry > H(U;) = 1 bit per message, the second sensor only needs to transmit
H(U;|Us) = 0.242 bits per message to guarantee perfect reconstruction at the receiver.

The Slepian-Wolf theorem can be easily generalized to more than two sources yielding the
following result.

Theorem 2.12 (Slepian-Wolf with many sources [28, p. 409]) Let U,Us . ..U, denote a set
of correlated sources drawn i.i.d. ~ p(ujus - ..ua). The set of achievable rates is given by

R(S) > H(U(S)[U(5%))

forall S C {1,2,..., M}, where R(S) = }_
U(S)={U;:je S}

ics i, S¢ denotes the complement of S, and

Proof: ~ The proof goes along the lines of the case with two sources. Details can be found
in [28, Section 14.4]. [ |
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2.4.2 The Multiple Access Channel with Independent Sources

In the previous problem, we assumed that the information generated by multiple sources is
transmitted over noiseless channels. If this data is to be communicated over a common noisy
channel to a single destination, we call this type of channel a multiple access channel. The
resulting information-theoretic problem, illustrated in Figure 2.7, takes into account not only
the noise at the receiver, but also the interference caused by different users communicating
over a common channel — the mathematical subtlety lies in allowing the channel output Y to
depend on the channel inputs X; and X5 according to the conditional probability distribution
p(y|z122). The set of achievable rates at which the different encoders can transmit their data
reliably is called the capacity region of the multiple access channel.

Assuming independent messages, i.e. p(uiu2) = p(u1)p(uz), and independent encoders,
Ahlswede [3] and Liao [64] were independently able to prove the following result which fully
characterizes the set of achievable rates.

Theorem 2.13 (Multiple Access Channel [3, 64]) The capacity region of the discrete multi-
ple access channel is given by the convex hull of the set of points (R, Ry) satisfying

R, < I(X;Y[Xy) (2.1)
R, < I(XyY[X)) (2.2)
R+ Ry, < I(X1XyY), (2.3)

for some joint distribution p(z1)p(z2).

Sketch of Proof:  The proof goes along the lines of the proof of the channel coding theorem.
Each encoder uses an independent random code, and the decoder looks for codewords =¥ and
zd that are jointly typical with the observed channel output sequence y”. It can be shown that
if the encoding rates obey the stated conditions, the average probability of error goes to zero as
N goes to infinity (cf. [28, Chapter 14.3]). [ |

The boundaries of the capacity region, shown in Figure 2.8, can be explained in a very
intuitive way. When encoder 1 views the signals sent by encoder 2 as noise, its maximum
achievable rate is given by R; ~ I(X;;Y) — a direct consequence of the channel coding
theorem. Then, the decoder can estimate the sent codeword =¥ and subtract it from the channel
output sequence y, thus allowing encoder 2 to achieve a maximum rate of R, ~ I(Xo; Y |X}).
This procedure, sometimes referred to as successive cancellation [66], leads to the upper corner

X, )
U, —| Encoder 1 > — Uy

P(y|1171372)

Decoder

Y

U,— Encoder 2 > — U,
X

Figure 2.7: The multiple access channel.
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point of the capacity region. The lower corner point corresponds to the symmetric case and a
time-sharing argument yields the remaining points in the segment between them.

It is also worth noting that conditions (2.1)-(2.3) can be easily generalized for more than
two sources. In this case, the capacity region is given by

R(S) < I(X(S); Y[X(59))

forall S C {1,2,..., M}, where R(S) = >
X(S)={X,:j € S}[28, Chapter 14.3].

;s i, S¢ denotes the complement of S, and

R, A
I(X5;Y|Xy)
I(XQ; Y) ————————————
capacity
region

L

I(X1§Y) I(X1QY|X2) Ry

Figure 2.8: The capacity region of the multiple access channel.

The capacity region of the multiple access channel with independent sources can be in-
creased by allowing the encoders to cooperate and exchange messages over communication
links of limited capacity. This problem was studied by Willems in [93], where it is shown that
the set of achievable rates is given by

R, < I(Xl,Y|X2Z) + Cia
RQ < I(X2,Y|X1Z) +021
R1 +R2 < mln{ I(XlXQ,Y|Z) +012+021, I(XlXQ,Y) },

for some auxiliary random variable Z such that | Z| < min(|X;| - |X2| + 2, |Y| + 3), and for
a joint distribution p(zz122y) = p(2)p(x1|2)p(z2|2)p(y|z122). Here, Cio and Cy; denote the
capacities of the links between encoder 1 and 2, and vice versa. As will be explained in detail
in Chapter 3, the messages exchanged over these links are described by a suitable random
variable Z. Somewhat informally, we can state that the capacity region grows by the amount of
information exchanged between the encoders.
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2.4.3 Multiple Access with Correlated Sources

When the sources are no longer independent, computing the capacity region becomes a more
complicated matter. In a first step, one could consider compressing the data using Slepian-Wolf
codes and then adding capacity-attaining channel codes. This coding strategy, which follows
naturally from the separation principle, yields the following sufficient conditions for reliable
communication

H(U:|Uz) < I(Xy;Y|X3) (2.4)
H(U:|U) < I(X3;Y|Xy) (2.5)

These conditions basically state that the Slepian-Wolf region and the capacity region of the mul-
tiple access channel have a non-empty intersection. As unintuitive as it may seem, it is possible
to show with a simple example that conditions (2.4)-(2.6) although sufficient are certainly not
necessary.

Example 2.4 (From [26]) Let U,U, be two correlated binary sources distributed according
to

U
p(urug) | 0 1
U, 0 1/3 1/3
1 1/73 0

such that the joint entropy of U, Us is given by H (U;Us) = log 3 = 1.58. Assume now that U, U,
are separately encoded and transmitted to a common receiver over a multiple access channel
for which Y = X; 4+ X, i.e. the channel output results from the addition of its channel inputs.
Given the characteristics of the channel, we can compute the maximum sum rate allowed by
the channel yielding R; + Ry = I(X;X,;Y) = 1.5 bits per channel use. Clearly, H(U,U;) >
I(X,X5;Y) and so we immediately conclude that reliable communication is not possible using
a coding strategy based on Slepian-Wolf source codes and separate channel codes. However,
inspite of the fact that the Slepian-Wolf region and the capacity region do not intersect, reliable
communication is possible using the simplest conceivable coding strategy: we send the source
symbols directly to the channel, i.e. X; = U; and X, = U, — since the symbol pair (U, Uy) =
(1,1) never occurs, we can be sure that all source symbols will be correctly recovered by the
decoder.

The reason why conditions (2.4)-(2.6) fail to give a complete characterization of the achievable
rates with correlated sources has to do with the fact that the capacity region is computed under
the assumption of independent inputs. In the same paper from which the previous example was
taken [26], Cover, EI Gamal and Salehi introduce a class of correlated joint source/channel
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codes, which enables them to increase the region of achievable rates to

H(U:[ls) < I(X1;Y[X5Us) (2.7)
H(Uo|Ur) < I(Xy;Y[XqUh) (2.8)
H(UU;) < I(X1X9;Y), (2.9)

for some p(ujusx120y) = p(usus)p(z1|ur)p(xe|us)p(y|z122). Also in [26], the authors gen-
eralize this set of sufficient conditions to sources (U,U,) with a common part W = f(U;) =
g(Us), but they were not able to prove a converse, i.e. , they were not able to show that their re-
gion is indeed the capacity region of the multiple access channel with correlated sources. Later,
it was shown with a carefully constructed example by Dueck in [34] that indeed the region
defined by (2.7)-(2.9) is not tight. To this date, the problem still remains open.

2.4.4 Related Problems

The aforementioned problems are the ones more closely related to the sensor reachback problem
and the multiterminal source coding problem discussed in Chapters 3 and 4, respectively. In this
section, we will briefly point at other topics in network information theory that are potentially
relevant for wireless sensor networks.

The Broadcast Channel

While in the multiple access scenario we have multiple sources and one destination, in the
broadcast case the information of one source is transmitted to multiple users. Thus, the classical
model for the broadcast channel (proposed by Cover in [24]), has one input X and multiple
outputs Y;, ¢ = 1,2,..., M, which are governed by the conditional probability distribution
p(y192 - - - yar|x). Applications that fall under this system model include the downlink channel
of a satellite or of a base station in a mobile communications network. In the context of wireless
sensor networks, it is conceivable that a remote control center broadcasts messages to the sensor
nodes on the field in order to coordinate their transmissions or change their configurations.

As in many other fundamental problems of network information theory, determining the
capacity of the broadcast channel turns out to be a very difficult task. Consequently, a complete
characterization of the achievable rates is only known for a few special cases, e.g. the physically
degraded broadcast channel in which p(y,y2|z) factors to p(y: |z)p(yz2|y1) [28, Section 14.6] or,
most recently, the multiple-input multiple-output Gaussian broadcast channel [92]. For a survey
on other interesting results, we refer the reader to Cover’s survey [25].

The Relay Channel

In wireless communications, fading of the signals transmitted due to multipath propagation is
one of the major impairments that a communications system has to deal with. A natural way to
deal with these impairments is by the use of diversity: redundant signals are transmitted over
essentially independent channels and can then be combined at the receiver to average out dis-
tortion/noise effects induced by the independent channels [77]. If two or more transmitters are
allowed to exchange information and coordinate their transmissions, they can exploit the result-
ing spatial diversity to improve the reliability and the efficiency of their communications. An
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information-theoretic abstraction of this user cooperation problem is the so called relay chan-
nel. Attime i a relay node observes a noisy version Yx(z) of the symbol X (z) transmitted by the
sender and forms a symbol X r(7), which depends on all previously observed channel outputs
Yr(1),...,Yg(i — 1). The receiver observes the channel output Y'(¢), whose relationship with
X (i), Xgr(2) and Y(4) is characterized by the conditional p(yyr|zz ). Once again, the capac-
ity region is only known in special cases (see e.g. [28, Section 14.7] and [57]). Recently, several
contributions appeared, which connect the insights gained from the classical relay problem with
practical wireless communications, most notably the papers of Narula et al. [71], Laneman et
al. [59], Sendonaris et al. [79, 80], and Dawy et al. [31].

The Two-Way Channel

The previous problems are instances of the general two-way channel proposed by Shannon
in [83]. In its original formulation, two users both with transmitting and receiving capability,
send information to each other over a common channel, as shown in Figure 2.9. The channel
outputs Y; and Y3, depend on the channel input symbols X; and X, according to p(y1y2|z122)
(see Figure 2.9). Since encoder 1 can decide on the next symbol X; to send based on the
received channel symbol Y3, the two-way channel introduces a new important aspect in the
study of communications networks: transmission feedback. Unfortunately, the capacity of the
two-way channel is only known in the Gaussian case, which decomposes into two independent
channels [28, p.383].

X X
U—»| Encoderl |5 <2 Encoder2 |=—7U,
A A
Y, P(Y1y2|T172) Yy
. Y, Y, .
U, «— Decoderl |(=—— = Decoder2 ——U;

Figure 2.9: The two-way channel.

The previous examples show that network information theory offers a miriad of very chal-
lenging problems, some of which have been open for more than two decades. Nevertheless, in
the past few years we have witnessed considerable progress in this field, partly motivated by the
remarkable advancements of mobile communications systems and, more recently, wireless sen-
sor networks. Although certainly not an easy task, the development of a comprehensive theory
of information networks is likely to have a very strong impact on the design of contemporary
communications systems.



The Sensor Reachback Problem

The beginning of knowledge is the discovery of something we do not understand.

FRANK HERBERT

3.1 Introduction

3.1.1 Reachback Communication in Wireless Sensor Networks

Wireless sensor networks made up of small, cheap, and mostly unreliable devices equipped with
limited sensing, processing and transmission capabilities, have recently sparked a fair amount
of interest in communications problems involving multiple correlated sources and large-scale
wireless networks. As outlined in the introduction, it is envisioned that an important class of
applications for such networks involves a dense deployment of a large number of sensors over a
fixed area, in which some kind of physical process unfolds—the task of these sensors is then to
collect measurements, encode them, and relay them over a noisy channel to some data collection
point where this data is to be analyzed, and possibly acted upon. This scenario is illustrated in
Figure 3.1.
There are several aspects that make this communications problem interesting:

1. Correlated Observations: If we have a large number of nodes sensing a physical process
within a confined area, it is reasonable to assume that their measurements are correlated.
This correlation may be exploited for efficient encoding/decoding.

2. Cooperation among Nodes: Before transmitting data to the remote receiver, the sensor
nodes may establish a conference to exchange information over the wireless medium and
increase their efficiency or flexibility through cooperation.

3. Channel Interference: If multiple sensor nodes use the wireless medium at the same time
(either for conferencing or reachback), their signals will necessarily interfere with each
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Figure 3.1: A large number of sensors is deployed over a target area. After collecting the data
of interest, the sensors must reach back and transmit this information to a single receiver (e.g. ,
an overflying plane) for further processing.

other. Consequently, reliable communication in a reachback network requires a set of
rules that control (or exploit) the interference in the wireless medium.

Based on the assumption of correlated measurements, cooperating sensor nodes and a me-
dium access scheme that eliminates the interference, we formulate the sensor reachback prob-
lem as follows. Let U U, ...U,, be a set of correlated sources drawn i.i.d. from the joint dis-
tribution p(ujus ... upr). The information generated by the M sources is separately encoded
by M encoders, and transmitted to a remote receiver over an array of M independent channels,
equivalent to a multiple access channel with p(y|zixs ... 2y) = Hf‘ilp(yi|xi). The encoders
are interconnected by an underlying communications network, such that encoder i is able to
send messages to encoder j reliably at rates R;; < Cj;, with: = 1,.... M, j =1,....M
and ¢ # 7, before transmitting to the remote receiver. The solution to the problem is a com-
plete characterization of the reachback capacity, i.e. , the exact set of conditions under which
it is possible to reconstruct the values of U U; ... U,, at the far receiver with arbitrarily small
probability of error. This problem setup is illustrated in Figure 3.2 for M = 2 sources.

YU encoder 1 ﬁ»Mml%)g d —U
e
Ciz c
p(u1u2) o
Ca d
e
Us encoder 2 &»p(yﬂxg)}é_ roo 0,

Figure 3.2: A system model for the sensor reachback problem for the case of two sources.

3.1.2 Modeling Assumptions

The previous problem setup forms what we deem to be a reasonable abstraction of the problem
of sending the information picked up by a network of cooperating sensor nodes all the way back
to a common receiver. In the spirit of George E. P. Box’s maxim that all models are wrong but
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some are useful, we provide next some motivation for the most relevant aspects of the problem
formulation and briefly discuss some of the alternatives.

Source Model

At each time instant the sources generate a random vector U,U; . . . Uy, drawn i.i.d. from dis-
crete alphabets U; x Us x - - - x Uy, according to p(ujus . .. uyps). For simplicity, we assume
memoryless sources, and thus consider only the spatial correlation of the observed samples and
not their temporal dependence (since the latter dependencies could be dealt with by simple ex-
tensions of our results to the case of ergodic sources). Furthermore, each sensor node ¢ observes
only one component U; and must transmit enough information to enable the remote user to re-
construct the whole vector U U, . .. Uy,. This assumption is the most natural one to make for
scenarios in which data is required at a remote location for fusion and further processing, but
the data capture process is distributed, with sensors able to gather local measurements only, and
deeply embedded in the environment.

A conceptually different approach would be to assume that all sensor nodes get to observe
independently corrupted noisy versions of one and the same source of information U, and it
is this source (and not the noisy measurements) that needs to be estimated at a remote loca-
tion. This approach seems better suited for applications involving non-homogeneous sensors,
where each one of the sensors gets to observe different characteristics of the same source (e.g. ,
multispectral imaging), and therefore leads to a conceptually very different type of sensing ap-
plications from those of interest in this thesis. Such an approach leads to the so called CEO
problem studied by Berger, Zhang and Viswanathan in [20].

An Array of Independent Channels

Our motivation to consider reachback communication over an array of independent channels,
instead of a general multiple access channel, is twofold.

From a pure information-theoretic perspective, an array of independent channels is interest-
ing because, as we will see later in this chapter, the assumption of independence among channels
gives rise to long Markov chains which play a central role in our ability to solve this problem: it
is based on those chains that we are able to prove the converse part of our coding theorems, thus
obtaining complete results in terms of capacity for the sensor reachback problem. Furthermore,
said coding theorems provide solutions for special cases of the multiple access channel with
correlated sources, cases for which no general converse is known.

From a more practical point of view, the assumption of independent channels is valid for
any network that controls interference by means of a reservation-based medium-access control
protocol (e.g. , TDMA or FDMA). Provided individual nodes have enough resources to reach
directly the far receiver, this option is perfectly reasonable for sensor networking scenarios in
which sensors collect data over extended periods of time, and then an agent collects data at
certain time instants (like the plane of Figure 3.1). In such a scenario, all sensor nodes must
transmit their accumulated measurements simultaneously, and therefore a key assumption in the
design of standard random access techniques for multiaccess communication breaks down—the
fact that individual nodes will transmit with low probability [22, Chapter 4]. As a result, classi-
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cal random access would result in too many collisions and hence low throughput?®. Alternatively,
instead of mitigating interference, a MAC protocol could attempt to exploit it, in the form of
using cooperation among nodes to generate waveforms that add up constructively at the receiver
(cf. [46]). Providing an information theoretic analysis of such cooperation mechanisms would
be very desirable, but since it entails dealing with correlated sources and a general multiple
access channel, dealing with correlated sources and an array of independent channels appears a
very reasonable first step working towards that goal, and also interesting in its own right, since it
provides the ultimate performance limits for an important class of sensor networking problems.

Communication among Sensors

Before transmitting their data to the remote receiver, the sensors are allowed to exchange mes-
sages over a network. Note however that the problem statement only specifies that pairs of
sensor nodes are able to communicate reliably below given rates C;;, but it does not say any-
thing about how this flow of information actually takes place. The latter would force us to
consider classical networking topics like topology formation, routing, and flow control, which
would only complicate matters for the goals of this thesis. In our context, knowing that there
is some network that would allow nodes to exchange information at certain rates is enough to
prove our main results.

Perfect Reconstruction at the Receiver

In our formulation of the sensor reachback problem, the far receiver is interested in reconstruct-
ing the entire field of sensor measurements with arbitrarily small probability of error. This
formulation leads us to a natural capacity problem, in the classical sense of Shannon. Alterna-
tively, one could relax the condition of perfect reconstruction, and tolerate some distortion in
the reconstruction of the field of measurements at the far receiver. Natural extensions in this
direction are discussed in Chapter 4.

3.1.3 Related Work

The sensor reachback problem is a close relative of (a) the multiple access channel with cor-
related sources considered by Cover et al. [26], and (b) of the multiple access channel with
partially cooperating encoders? solved by Willems [93], both of which were discussed in detail
in the previous chapter. A general problem subsuming these two problems would be a multiple
access channel with correlated sources and partially cooperating encoders, which to the best of
our knowledge has not been studied before. Our problem is also a special case of this more
general problem, since we consider correlated sources, partially cooperating encoders, and a
multiple access channel without interference.

3.1.4 Main Results

In this chapter we prove a number of coding theorems, which give a complete characterization
of capacity in all relevant instances of the sensor reachback problem defined in Section 3.1.1.

'Recent work has considered the problem of random multiaccess communication in large-scale sensor
networks—see [2]. A collection of papers on multiaccess communication was compiled by Massey —see [49].

2Recently, the concept of partially cooperating encoders appeared again in a framework for universal multiter-
minal source coding proposed by Jaggi and Effros in [51].
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First, we study the case of non-cooperating encoders (meaning, the case in which encoders
do not exchange any information at all prior to communicating with the far receiver). We show
in this case that reliable communication is possible if and only if

H(U(S)IU(S) < Y 1(X; Yy),

1€S

for all subsets S C {1,2,..., M}, where S¢ denotes the complement of S and U(S) = {U; :
j € S}. Our proof shows that, when the multiple access channel with correlated sources con-
sidered in [26] becomes an array of independent channels, distributed source coding (Slepian-
Wolf), followed by separate channel coding, is an optimal coding strategy®. And although for
the general case of [26] only a region of achievable rates is known (without a converse), for our
problem setup we are able to give a complete solution, converse included.

Based on that result, we then proceed to analyze the differences between the two problems
(ours and that in [26]), by noting that the crux of the proof in [26] is a class of correlated
joint source/channel codes that preserve statistical dependencies of the sources in the transmit-
ted channel codewords. In the context of sensor networks, this property is interesting, since
source/channel codes that do not eliminate the source correlation completely are often simpler
to implement than distributed source codes, and thus require less processing capabilities at the
sensor nodes. For this case, we are able to give a region of achievable rates that is strictly
contained in the reachback capacity region above, and we give an exact expression for the rate
loss incurred by using correlated codes. In addition, we prove that this is not a trivial region,
by showing that it is strictly larger than the one corresponding to independent encoders and
decoders. This means that the coding technique proposed for the achievability result does lead
to an improvement over the trivial solution based on M point-to-point problems, which in turn
indicates that there is something to gain from exploiting at the decoder the fact that the data
streams being uploaded are correlated.

Finally, we provide a complete characterization of reachback capacity for the general sensor
reachback problem with an arbitrary number of partially cooperating encoders. In this case,
reliable communication is possible if and only if

H(U(S)|U(S) < > T(X3;Y) + I({U(S); Z(59)|U(S)),

1€S

for all subsets S C {1,2,..., M}, where U(S) ={U; : j € S}, Z(S)={Z;j:i e Sorj e
S}, I1(Z; Ui|U;) < Gy and I(Z,5;U;|U;) < Cj;. Here, Z;; denotes auxiliary random vari-
ables that represent the information exchanged by the encoders using a network of discrete
memoryless independent channels.

For all instances of the sensor reachback problem considered in this work (with and without
cooperation, and for any number of nodes), we are able to prove that natural generalizations of
the joint source/channel coding theorem, commonly known as the separation theorem, hold [28,
Chapter 8.13]. This observation motivates us to include at the end of the chapter an extra
section, devoted to discussing the issue of optimality of separate source and channel coding in

3This in no way contradicts the results in [26], as explained in Section 3.2.5.
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communication networks, which we argue is a question of “when” and not “if” it holds.

3.1.5 Chapter Outline

The rest of the chapter is organized as follows. In Section 3.2 we formulate the problem of
transmitting two correlated sources over independent channels, without cooperation among en-
coders, and prove a coding theorem that gives an exact characterization of the conditions for
reliable communication to be possible. We also investigate the implications of using corre-
lated codes, and characterize the rate loss resulting in that case. Then, in Section 3.3, we give
another characterization of reachback capacity, this time still for two nodes, but now under the
assumption that the encoders are allowed to exchange information over network links of limited
capacity. Based on this result, we discuss the impact of cooperation on the reachback capacity
and again address the issue of encoding constraints. The results obtained for A = 2 sources are
generalized for arbitrary number of sources M in Section 3.4, where we also give a Gaussian
example and discuss the reachback capacity for a large class of sensor networks with different
topologies. In Section 3.5, we revisit the issue of source and channel separation in commu-
nication networks, under the light of the results presented in earlier sections. The chapter is
summarized in Section 3.6.

3.2 Reachback Capacity with Two Non-Cooperating Nodes

We begin our study of the sensor reachback problem by providing a solution for the case of
M = 2 non-cooperating nodes (C1o = Co; = 0), illustrated in Figure 3.3. This simple prob-
lem setup provides valuable insights into the structure of the problem, allowing us to gain a
firm understanding of the main issues involved in reachback communication over independent
channels, before discussing the more subtle aspects of cooperation between encoders.

3.2.1 Definitions and Problem Statement

Consider two information sources generated by repeated independent drawings of a pair of dis-
crete random variables U; and U, from a given joint distribution p(u;us). We start by providing
definitions of independent channels, source/channel block codes, probability of error and reli-
able communication.

Definition 3.1 A reachback channel consists of two independent discrete memoryless channels
(X1, p(y1|x1), Y1) and (Xs, p(ya|x2), Vo), with input alphabets X and X5, output alphabets ),

Y, ~
p<y1|w1>% 2

U X
L encoder 1 it

p(uruz)

U
2 encoder 2 &»

T D Qo000

p<y2|x2>@

Figure 3.3: The sensor reachback problem with two non-cooperating nodes.
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and )%, and transition probability matrices p(y1|z1) and p(ysz|x2).

Note that according to this definition, the reachback channel can be viewed as a multiple
access channel with transition probability p(y|zi122) = p(y1|z1)p(y2|ze), and Y = (Y1Y3). In
other words, without interference, the multiple access channel becomes an array of independent
channels.

Definition 3.2 A source/channel block code consists of an integer IV, two encoding functions
foUY = xN and fo UY — XY,

and a decoding function
g: YN x Yy = U xuy.

Definition 3.3 The probability of error is given by

Py = p{gM"Yy") # (U 03")}
= Yo puw) - Pla(MY,Y) # (ulu)|(U1US) = (ul'u))},

(¥ ud) U )

where, for a code assignment ¥ = fi(uY) and 2 = fo(ul), the joint probability mass
function is given by
N
p(utuy yi'yy ) = Hp(“”u%)p(yu|$1i(uiv))p(y2i\$2i(uév))-
i=1
Definition 3.4 Reliable communication of the source (U;U;) ~ p(ujug) over independent

channels (X1, p(y1|z1), Y1) and (Xs, p(y2|x2), Vo) is possible if there exists a sequence of block
codes {z (ul), 2 (ul')}, with decoding function g(y¥y2') such that, as N — oo,

Py =p{g(¥\"Yy") # (U'T3')} — 0.

In the following subsections we make use of the standard notions of jointly typical sequences
and the AEP, explained in Chapter 2.

The main goal in this section is to characterize reachback capacity, by giving single-letter
information-theoretic conditions for reliable communication.

3.2.2 Main Result

The following theorem gives necessary and sufficient conditions for reliable communication
under this scenario.

Theorem 3.1 (Barros, Servetto [14]) A source (U,Us) drawn i.i.d. ~ p(ujug) can be com-
municated reliably over two independent channels denoted (X4, p(y1|x1), V1) and (Xa, p(ya|z2), Va),
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if and only if

H(U1|U2) < I(Xy; 1)
(U1U2) < I(X3; Y1) + 1(Xa; Ya).

3.2.3 Proof of Theorem 3.1

The proof begins with the converse and shows that the conditions of the theorem are necessary
conditions for reliable communication to be possible. The forward part of the theorem then
follows easily from the region of achievable rates defined by the Slepian-Wolf theorem.

Converse Proof

Consider a given code of block length N. The joint distribution on U{¥ x Uy x X} x XN x
YN x Y is well defined as

Pz oy ) (Hp ) )l ol |U§V)<ﬂp(y1j|xlj)> (ﬁpmm))

By Fano’s inequality, we can write:
1 1
SHUNUY VYY) < Py (oglth x Ul )) +

= Pn(log|t;| + log|ts|) + (3.1)

(===~

-~

AN

where |U;| and |Us| are the alphabet sizes of U; and Us,, respectively. Notice that if Py — 0
as N — oo, Ay must also go to zero. Plus, since H({UNUN|YNY)) = HUN|YNYY) +
H(U|UNYNYF), we must also have - H (U |[YNYY) < Ay, and so we can write the fol-
lowing chain of inequalities:

NH(U)) = H(UY)
= IUN; YY)+ HUN YY)

< IUN,YNYN) + Ny
1

(

(
IUY; YNUN) + Ny
= U 05) + 10U YV |US ) + Ny
< IUN,UY) + 1( XY, YN UY) + Ny,

where (a) follows from (3.1), and (b) and (c) follow from the data processing inequality for the
long Markov chain of the form YV — X} — UN — UN — X — YN, While the first term



Sec. 3.2 Reachback Capacity with Two Non-Cooperating Nodes 37

can be written as I(UN; UN) = S2N. 1(Uy; Uy;), the second term can be upper bounded by
I(x YN0y H(Y{M|Uy') — H

HY|U;') - H

YN XNUN)
YN IXY)

—~
IS
~

(
(

N
HYMUY) = HY |y X

N
®)
= HYNUY) - ZH(YM\XM)

since () Y;¥ and UY¥ are independent given X¥, (b) the channel is memoryless, and (c) condi-
tioning reduces entropy. Thus,

N
1
H(U;) < NZZ (Ui Uzi) + ZI X1 Yai) + Ay

=1
= I(U;Uz) + I(X1; Y1) + Aw,
because the Uy;’s and the Uy;’s are i.i.d. Now, going through identical derivations, we get

H(Uy) < I(Uy; Up) + I(Xg; Y2) + Aw,

and
H(UlUQ) S I(X1; Yi) + I(XQ; }/2) -+ )\N-

Taking the limitas N — oo, Py — 0, we have that
H(Uy) I(U1; Up) + I(X1; Y1)

<
HU;) < I(Uy;Us) + 1(Xy;Ys)
H(UUy) < I(X1;Y) + 1(Xa; Ya).

By subtracting I(U;; U,) on both sides of the first two inequalities, we arrive at the conditions
in the theorem, given by

H(U1|U;) < I(Xy; Y1)
H(Uy|Uy) < I(X9;Y3)
H({U\Uy) < I(X;Y7) 4+ 1(Xy;Y),
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thus concluding the proof of the converse. [ |
Achievability Proof

We deal next with the achievability part of Theorem 3.1. Consider the following coding strategy.
First, encoders 1 and 2 compress the input source blocks UN and U}¥ separately using Slepian-
Wolf codes. Then, the encoders add classical channel coding to transmit the compressed ver-
sions over the two independent channels. Since the Slepian-Wolf theorem guarantees that the
rates

Ry > H(Ui|Uy)
Ry, > H(U,|Uy)
R+ Ry, > H(UU,)

are achievable, and the channel coding theorem guarantees that the probability of error goes to
zero for all rates Ry < I(X;;Y1) and Ry < I(Xy; Ys), reliable communication is possible using
this coding strategy if the conditions of the theorem are fulfilled.

3.2.4 A Simple Visualization of the Problem

To illustrate the issues involved in this problem consider the rate regions shown in Figure 3.4.

Ry | Ry A
. N Slepian-Wolf
H(UhUz) K~ H(UU) |\ P region
S Slepian-Wolf HU,) F-- L
N N - | N
U region HO0)| L N
HUy) F------ I RN
C. : A CZ I 1 N
2 N 2 I I N
: \ \\\ : : . \\\
HUz|Uy) -~ == it B s L AN
capacity NN ?:pﬁ)cr:t}{ RN
wgion || gon D
: : N \\\C'1+Cz | ! NG+ Oy

HU|U,) € HU) HUWU,) R H(U: |Us) H(UY) Cy HUU,) R

Figure 3.4: Relationship between the Slepian-Wolf region and the capacity region for two
independent channels. In the left figure, as H(U; |Us) < C; and H (Us|U;) < C, the two regions
intersect and therefore reliable communication is possible. The figure on the right shows the
case in which H(U,|U;) > C5 and there is no intersection between the two regions.

When the multiple access channel is reduced to two independent channels with capacities Cy
and O, its capacity region becomes a rectangle with side lengths C'; and C,, [28, Chapter 14.3].
Also shown is the Slepian-Wolf region of achievable rates for separate encoding of correlated
sources, whose limits are defined by H(U;), H(Us,) and H(U,U,). Clearly, H(U,Us) < C1+Cy
is a necessary condition for reliable communication as a consequence of Shannon’s joint source
and channel coding theorem for point-to-point communication. Assuming that this is the case,
consider now the following possibilities:
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e H(U;) < Cy and H(U,) < Cy. The Slepian-Wolf region and the capacity region inter-
sect, so any point (Ry, Ry) in this intersection makes reliable communication possible.
Alternatively, we can argue that reliable transmission of U; and Us is possible even with
independent decoders, therefore a joint decoder will also achieve an error-free reconstruc-
tion of the source.

e H(Uy) > Cy and H(Us) > Cs. Since H(U Uy) < C; + Cs there is always at least one
point of intersection between the Slepian-Wolf region and the capacity region, so reliable
communication is possible.

e H(U;) < Cy and H(Uy) > Cy (or vice versa). If H(U,|Uy) < Cy (or if H(U,|Us) <
C1) then the two regions will intersect. On the other hand, if H(Uy|U;) > C, (or if
H(U1|Uy) > C1), then there are no intersection points, but it is not immediately clear
whether reliable communication is possible or not (see Figure 3.4), since examples are
known in which the intersection between the capacity region of the multiple access chan-
nel and the Slepian-Wolf region of the correlated sources is empty and still reliable com-
munication is possible [26].

Theorem 3.1 gives a definite answer to this last question: in the special case of correlated
sources and independent channels an intersection between the capacity region and the Slepian-
Wolf rate regions is not only sufficient, but also a necessary condition for reliable commu-
nication to be possible. From this observation we conclude that, in the case of independent
channels, a two-stage encoder that uses Slepian-Wolf codes to compress the sources to their
most efficient representation and then separately adds capacity attaining channel codes, indeed
forms an optimal coding strategy—that is, for this reachback network, separation holds.

3.2.5 Rate Loss with Correlated Codes

The key ingredient of the achievability proof presented by Cover, EI Gamal and Salehi for the
multiple access channel with correlated sources is the generation of random codes, whose code-
words XV are statistically dependent on the source sequences U} [26]. This property, which is
achieved by drawing the codewords according to Hj.vz 1 p(z45]ui;) with u;; and z;; denoting the
j-th element of u and z, respectively, implies that U}¥ and X}V are jointly typical with high
probability. Since the source sequences U and UJ' are correlated, the codewords X (U})
and X2 (UXN) are also correlated, and so we speak of correlated codes. This class of random
codes, which is treated in more general terms in [4], can be viewed as joint source and channel
codes that preserve the given correlation structure of the source sequences, which can then be
exploited in the decoder to lower the probability of error.

Since correlated codes yield the best known characterization of achievable rates for the
problem of transmitting correlated sources over the multiple access channel, it is only natural
that we ask how this class of codes performs in the sensor reachback problem, for which we
know that separate source and channel coding is optimal. This issue is also interesting from a
practical point of view, since sensor nodes with limited processing capabilities may be forced
to use very simple codes that do not eliminate correlations between measurements prior to
transmission [16]. In this case, we are interested in knowing how far the remaining correlation
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in the codewords can still be used by the receiver to improve the decoding result. The following
result gives a characterization of the reachback capacity under this scenario.

Theorem 3.2 (Barros, Servetto [14]) A source (UNULN) ~ TTY, p(uisus;) can be sent with
arbitrarily small probability of error over two independent channels {Xi, p(y:|z1), )1} and
{X,, p(y2|z2), Yo}, with correlated codes { XN (UY), XN (UN)} if

HUL|Uz) < I(Xy;Y1[Us) (3.2)
H(U:|U1) < I(X3;Ya|Uh) (3.3)
H(U1Us) < I(X1Xo;11Y5), (3.4)

for some p(uiug)p(z1|u1)p(za|ug)p(y1|21)p(ye|z2).

The proof is based on the joint source-channel codes of [26]. We repeat the description of that
code construction here to highlight the property that is most relevant to us: the codewords are
generated in statistical dependence to the source sequences, and are therefore correlated. Proof:
Fix p(x1|uy) and p(za|ug). For each u) € U}, independently generate one z’ sequence
according to T[]V, p(z1:|ui;). Index the = sequences by ¥ (u), ul¥ € UY. Similarly, for
each u)’ € U, independently generate one =} sequence according to [, p(wa|us;). Index
the =)’ sequences by =3 (u)), uY € U}¥. Notice that each random code is generated according
to a conditional probability on the source observed by the corresponding encoder.

Encoding

To send sequence u, transmitter 1 sends the codeword = (u¥). Similarly, to send sequence
ud’, transmitter 2 sends codeword =2’ (u5').

Decoding

Upon observing the received sequences v and v, the decoder declares (4 4l) to be the
transmitted source sequence pair if (442’ is the unique pair (u) ") such that

(ur' ug's 2y (ur), 25 (u3), 91> 95') € AL

where AY is the appropriate set of jointly typical sequences according to the definition in [28].
In [26], the code construction described above is used to characterize the conditions for reliable
communication of two correlated sources drawn i.i.d. ~ p(ujuz) over a multiple access channel
p(y|z122). The conditions obtained in that more general setup are given by (2.7)-(2.9). Thus,
it suffices to specialize this result to the case of independent channels. Let y = (y1y2) and let
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p(ylz1z2) = p(y1y2|2122) = p(y1|z1)p(y2|22). Based on (2.7) we can write

H(U|Uy) < I(X1;Y|UsX5)
= 1(X1;Y1Y2‘U2X2)
H(Y1Y3|Uy X5) — H(Y1Y2|Us X2 X1)
= HY1|UyXy) + H(Ys|Us XoY1) — H(Y1|Us X0 X1) — H(Y3|Us X0 X1Y))
H(Y1|Uz) + H(Y2|X3) — H(Y1|U2X1) — H(Y2| X2)
H(Y1|Uz) — HYA|Us X))
= I(X1;;11|0y),

where (a) follows from the long Markov chain condition Y; — X; — U; —» Uy, — X, — Y5,
which implies that Y; is independent of X, given Us, Y5 is independent of U,, X; and Y7 given
X5, and Y7 is independent of X, given X;. Similarly, for conditions (2.8) and (2.9) we get
H(Us|Uy) < I(Xo; Y3 |Uy) and H(U Us) < I(X;X5;Y1Y5) thus concluding the proof. [

It is interesting to observe that in this instance of the problem, we not only have a long
Markov chain YV — XV — UN — UY — X2 — YV at the block level (due to the functional
dependencies introduced by the encoders and the channels), but we also have a single-letter
Markov chain Y; — X; — U; — Uy — X, — Y, that comes from using correlated codes and
fixing the conditional probability distributions p(z; |u1) and p(xe|us).

More importantly, the proof shows that the result of Cover, EI Gamal and Salehi for the mul-
tiple access channel with correlated sources in [26] does not immediately specialize to Theo-
rem 3.1, when we assume a multiple access channel with conditional probability distribution
p(y|T122) = p(y1ye|T122) = p(y1|71)P(Y2|22). Taking a closer look at the first condition in the
theorem, we observe that

I(X;;Y1|Uy) = HM|Uz) — H(Y1|X1Us)
Hi[U,) - H(V[X))
H(Y1) — H(Y1|X1)
I(X1;Y1),

IN

with equality for p(uiuszi122) = p(usug)p(xy)p(z2). This means that we must choose inde-
pendent codewords to obtain the achievable region of Theorem 3.1, and so we conclude that
when transmitting correlated sources over independent channels correlated codes are in general
suboptimal. At first glance, this observation is somewhat surprising, since the sensor reachback
problem with non-cooperating nodes is a special case of the multiple access channel with cor-
related sources considered in [26], where it is shown that in the general case correlated codes
outperform Slepian-Wolf codes (independent codewords). The crucial difference between the
two problems is the presence (or absence) of interference in the channel. Albeit somewhat infor-
mally, we can state that correlated codes are advantageous when the transmitted codewords are
combined in the channel through interference, which is clearly not the case in our formulation
of the sensor reachback problem.
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We now give a characterization of the rate loss incurred into by using correlated codes in
our problem setup. Comparing the conditions of Theorems 3.1 and 3.2, we can describe the gap
between the two regions of achievables rates. Focusing on the first of the three conditions, the
extent A, of this gap can be written as:

Ay = —I(Xl;Yl) ](Xl;Yl‘UQ)
I(X;; Y1) — (H(Y1|Uz) — HYA| X0 Uy))
I(X1; Y1) = (H(V1|Uz) — H(Y1]X1))
I(X;Y1) = (H(Y1) — H(Y1) + H(Y1|Us) — H(Y1|X1))
I(X1; Y1) — I(X1; Y1) + 1(Y1;0s)
= I(Y1;Ua). (3.5)

Similarly, for the second of the three conditions, we get a gap A, = I(Y5; Uy) and for the sum
rate condition

Ay = I(X1;;V1) + I(Xo;Ya) — (X1 Xo; Y1Y2)
I(X1; Y1) + (X Ya) — (L( X35 1Y) + 1(Xa; Y1Y2[X1))
I(X1; Y1) + 1(Xy; Ya) — (I(X1; Y1) + I(X1; Y V1) + I(Xy; Yol Xu) + 1(Xo; V1| X1Y3))
I(X2;Ys) — (I(X1; Yo Y1) + I(Xy; Y| X7))
I(X5;Ys) — (H(Y2|Y1) — H(Ya|Y1 Xy) + H(Y2| X1) — H(Y>| X1 X3))
I(XQ;YQ) (H(Y ‘YI) (Yz‘X1X2))
= I(Xy;V2) — (H(Y2) — H(Yz) + H(Y2|Y1) — H(Y2|X3))

= I(Xy;Ys) — (I(Xe; Ya) — I(Y1; V)
= I(Yy;Y5)

Since A; > 0,4 € {0,1,2} (mutual information is always nonnegative), we conclude that the
region of achievable rates given by Theorem 3.2 is contained in the region defined by Theo-
rem 3.1. Furthermore, we find that the rate loss terms have a simple, intuitive interpretation: A,
is the loss in sum rate due to the dependencies between the outputs of different channels, and
A; (or Ay) represent the rate loss due to the dependencies between the outputs of channel 1 (or
2) and the source transmitted over channel 2 (or 1). All these terms become zero if, instead of
using correlated codes, we fix p(x1)p(z2) and remove the correlation between the source blocks
before transmission over the channels.

Note also that the region defined by Theorem 3.2 is not trivial, in that it contains more points
than those that can be achieved by two pairs of independent encoders/decoders. From (3.2)
and (3.5) it follows that

HU,) < I(Uy;Up) + 1(Xy; Y1 |Us)
= I(Uy;Up) + I(X1; Y1) — 1(Y1;Us),
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and similarly, using (3.3) we get

H(Ug) < I(Ul,U2)+I(XQ,}6|U1)
= I(Uy;Us) + 1(Xg;Ys) — I(Ya; Un).

Applying the data processing inequality based on the long Markov chain Y; — X; — U; —
Uy — X, — Y, we observe that I(Uy;Uy) — I(Y1;Us) > 0, and similarly, I(Uy; Us) —
I(Y3; Uy) > 0, and thus conclude that the region of Theorem 3.2 is in general larger than the
region obtained by solving two independent point-to-point problems. The difference between
these two regions is what we can expect to gain from exploiting the correlation between code-
words in the decoding step.

3.3 Reachback Capacity with M = 2 Partially Cooperating
Nodes

We now extend the results in Section 3.2 to allow for partial cooperation between the encoders.
Once again, we start with some definitions and a formal statement of the problem. The latter
differs from the previous problem statement in the definition of the encoders, and in their ability
to establish a conference prior to transmission over the reachback channel.

We start with some discussion about the conferencing mechanism, inspired by [93]. Assume
that encoder 1 can send messages to encoder 2 over a channel with capacity C15, and vice versa
(encoder 2 to encoder 1 over a channel with capacity C'5;). These messages could represent, for
example, synchronization information: “In transmission 12 1 will send X; = 37, “I will transmit
zeros in transmissions 22, 24 and 267, etc. They could also represent quantized versions of the
observed source values: “My sample is positive”, “I will send an index between 128 and 1327,
etc. The simplest form of conference can be characterized as two simultaneous monologues:
encoder 1 sends a block of messages to encoder 2, and encoder 2 sends a block of messages
to encoder 1. In [93], Willems presents a more general definition of a conference, which is
closer to a dialogue. Let V;; be the message sent by encoder : at the £-th transmission; encoder
1 sends the first message Vi1, then encoder 2 sends its first message V5, after which encoder
1 sends another message V1o, then encoder 2 sends V5., and so on. This type of conference
is more general not only because it admits multiple messages to be exchanged between the
encoders, but, more interestingly, because it allows the next message Vi, (or V) to be sent
by encoder 1 (or encoder 2) to depend on all previously received messages V,*~* (or V[F1).
It turns out that both in the capacity problem considered by Willems in [93] and in the sensor
reachback problem, two simultaneous monologues are sufficient to achieve all points in the
capacity region.

3.3.1 Definitions and Problem Statement

A reachback network consists of two sender nodes and one receiver node. Sender 1 is con-
nected to the receiver via a discrete memoryless channel (X, p(yi|z1), Y1) and sender 2 via
(Xs, p(y2|T2), Vo). Senders 1 and 2 are joined by network links of capacity C, and Cy; with
information being exchanged in opposite directions. This setup was illustrated in Figure 3.2.
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A conference among encoders is specified by a set of 2K functions

h1k IUIN X Vo1 X ... X Vg(kfl) — V1k
h2k UQN X Vll X ... X Vl(k—l) — ng,

such that the conference message Vi, € Vi, (or Vo € Var) Of encoder 1 (or encoder 2) at time
k depends on the previously received messages V=" (or V}*~') and the corresponding source
message. The conference rates* are given by

K K
Ry = (1/K)) logy [Vik| and Ry = (1/K) log, |V

A conference is said to be (C12, Cy;)-admissible if and only if
KR < N012 and KRy < NCQl.
The encoders are two functions:

fi iU X Voy X oo X Vo — AN
foirUY x Vi x..xVig — &Y

These functions map a block of N source symbols observed by each encoder, and a block of
K messages received from the other encoder, to a block of NV channel inputs. The decoder is a
function

g: YN x YN sud <ul.

g maps two blocks of channel outputs (one from each channel) into two blocks of reconstructed
source sequences.
An (Ry, Ry, Ry9, Ry1, N, K, Py) code for this problem is defined by:

Two encoders f1, fo, With | f1| = 2VEL | fo| = 2N B2

A decoder ¢ for the two encoders f; and fs,

A (Ci2, Cy)-admissible conference of length K and rates R, and Ry,
o p(UNUY #UNUY) < Py.

Finally, we say that reliable communication is possible, meaning that the sources (U;Us)
can be sent over this network with arbitrarily small probability of error, if, for sufficiently large
blocklength IV, there exists a (C12, Co1)-admissible conference of length K and a (R, Rs, R1o,
Ry, N, K, €) code, for all ¢ > 0.

4At first glance, it might seem puzzling that the conference rates are defined in terms of the size of the alphabets
as in [93], because in our problem the conference messages sent by one encoder and the source values observed by
the other encoder are dependent. Note, however, that the definition of the 2K encoding functions that characterize
the conference is general enough to admit a random binning mechanism that eliminates said statistical dependence.
The present definition of the conference rates is therefore perfectly reasonable.
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Uy | Slepian-Wolf Channel | X1 Yy Ui

Encoder 1 Encoder 1 p(ya|z1)

Cis Channel Slepian-Wolf
p(uiuy) Decoder Decoder
Cxn

Uz | Slepian-Wolf Channel | X» Y, Us

Encoder 2 Encoder 2 P(Y2|T2)

Source encoders Channel encoders Channel Channel decoder Source decoder

Figure 3.5: Coding strategy for the achievability proof of Theorem 3.3: cooperative Slepian-
Wolf source codes followed by classical channel codes.

The goal of the problem is to characterize the reachback capacity of the network by giving
single-letter information-theoretic conditions for reliable communication.

3.3.2 Statement of Main Result

Theorem 3.3 (Barros, Servetto [9]) Reliable communication is possible if and only if

HU[Up) < I(Xy;Y1) + I(Us; Z|Us) (3.6)
H(Us|Uy) < 1(Xo;Ya) + I(Us; Z|Un) (3.7)
H(U1U2) < I(Xl;Yl) +I(X2;Y2), (3-8)

for some auxiliary variable Z such that I(Uy; Z|Usy) < Cio, I(Us; Z|Uy) < Cor, | 2] < |Us||Us|.

3.3.3 Achievability Proof based on Cooperative Source Coding

The achievability part of the proof is based on separate source and channel coding. First, we
describe the conferencing mechanism, then we give the rate region for distributed source coding
with partial cooperation between encoders. The conditions in the theorem then follow from the
intersection of this rate region with the capacity region of the channels. The resulting system
architecture is illustrated in Figure 3.5.

Proof:  Partition the set4; in M, cells, indexed by v; € {1,2,..., M}, such thatv, (u1) = ¢;
if uq is inside cell ¢;. Similarly, partition the set i, in M cells, indexed by v, € {1,2,..., My},
such that vy (usz) = ¢s if uy is inside cell c,.

Upon observing a block u¥ of source outputs, encoder 1 determines v; for each observed
value u;. Similarly, encoder 2 determines v, for each observed value u, of the source output
block u2'. Using the conference mechanism encoder 1 can send a block v{¥ to encoder 2 at
rate Ry, < Co, and encoder 2 can send a block v to encoder 1 at rate Ry; < Cy;. We will
now show that the rates R, = H(V1|Us,) and Ry, = H (V,|Uy) are sufficient for V¥ and V¥
to be exchanged between the encoders with arbitrarily small probability of error. Since (U;Us)
are random and (V;V5) are functions of (U Us), (V1 V3) are random as well. The encoders are
assumed to have knowledge of the joint distribution p(u;usvivs), from which they can obtain
the marginals p(u;v2) and p(usvq). Notice that these two distributions can be viewed as two
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pairs of correlated sources (U;Vz) and (U, V4). Since U2 is known at encoder 2, it follows from
the Slepian-Wolf theorem for (U,V;) that V¥ can be compressed at rates Ry, > H(V1|Us)
and still be reconstructed perfectly at encoder 2. Similarly, V¥ can be compressed at rates
Ry > H(V,|Uy) and still be reconstructed perfectly at encoder 1. Thus, using separate source
and channel coding, V¥ and VN can be transmitted over the conference links at rates

Ry = H(W1|Uy) < Cho (3.9)
Roy = H(V,|Uy) < Cy, (3.10)

with arbitrarily small probability of error.

Let Z = (V41V3). Since (V1V%) are functions of the source random variables (U10s), Z
is also a random variable and a function of (U,U;), which in turn means that p(ujusz) =
p(uiuz)p(z|uius) is a well-defined probability distribution. Instead of (3.9), we can now write

Ciz > H(V1|Uy)
= H(WV;,|Uy)
H(V1V3|Uz) — H(ViVa|UiUs)
I(Uy; ViV, |Us)
= I(Uy; Z|U3).

Similarly, (3.10) yields Cy; > I(Us; Z|Uy).

After conferencing, the encoders compress their data using distributed source codes. Let
Ul = (U1 Z) and U = (UsZ). Since U; and U, are i.i.d. sources, Z = f(U,U,) is also i.i.d.
U; and U} can be viewed as two i.i.d. sources ~ p(uuy) = p(ujuqz). Then, according to the
Slepian-Wolf theorem, the following compression rates are achievable:

Ry > H(U”Ué)
Ry > H(U,|Uy)
Ry + Ry, > H(UUy).

Substituting U = (U1 Z) and U}, = (UsZ), we get

R > H(U12|U2Z) = H(U1|U2Z)
RQ > H(UQZ|U1Z) - H(U2|U1Z)
Ri+ Ry, > H(UlUQZ) :H(UlUQ)

Adding channel codes separately, we conclude that reliable communication is possible if this
rate region intersects the capacity region of the channels. We can write this as

H(Ui|U,Z) < I(X;17)
H(Us|U1Z) < 1(X2;Y3)
H(U:1Uz) < I(X1;Y1) + 1(Xo;Ya),
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which is equivalent to

H(Ui|Uy) < I(Xi;Y1) + 1(Z; U |Us)
H(Us|Uy) < 1(Xo;Ya) + 1(Z; Up|Un)
HUU;) < I(Xy;Y7) + 1(Xp;Y2),
thus concluding the proof of achievability. [ |

Notice that the conference mechanism described in the proof relies on two deterministic
partitions, which can be chosen arbitrarily. These two partitions determine p(v;v2), which can
easily be obtained from p(ujus) by summing over all (u;u5) in each pair of partition cells in-
dexed by (vyv3). Since p(vv2) = p(2), the choice of partition determines the auxiliary random
variable Z, which together with the source and channel encoders define the operation point in
the reachback capacity region. In other words, for an arbitrary choice of Z (or equivalently of
partitions) for which there exists an admissible conference such that I(U;; Z|U;) < Ci9 and
I(Uy; Z|Uy) < C91, Theorem 3.3 gives the conditions for reliable communication, i.e. , the
exact reachback capacity with partially cooperating encoders. The latter includes all achievable
points for an arbitrary choice of Z, and so it is not necessary to specify the partitions any further.

Instead of exchanging conference messages first and then performing separate source and
channel coding, one could start by compressing the sources using Slepian-Wolf codes, and
then allowing the channel encoders to exchange messages as proposed by Willems in [93]. We
address this issue in Appendix A.1, by giving an alternative achievability proof based on the
coding strategy shown in Figure 3.6. It turns out that there is nothing to lose from moving the
conference mechanism to the channel encoders.

Ui |slepian-wolf| W1i|  willems | X1 Yy U

Encoder 1 Encoder 1 p(y|1)

Ch Willems Slepian-Wolf
p(urus) Decoder Decoder
Cxn

Uz |slepian-wolf W2 |  Willems | X2 Y5 Us

Encoder 2 Encoder 2 p(y2|22)

Source encoders Channel encoders Channel Channel decoder Source decoder

Figure 3.6: Coding strategy for the alternative achievability proof of Theorem 3.3: classical
Slepian-Wolf source codes followed by Willems’ cooperative channel codes.

3.3.4 Converse of Theorem 3.3

The converse part of Theorem 3.3 can be proved, similarly to Theorem 3.1, using Fano’s in-
equality and standard techniques. By exploiting two long Markov chains, in this case Y,V —
XN — (ZNUN) - XN s YV and YN — XY — (UNZY) — XN — YV, we can show that
the conditions obtained in the previous subsection are not only sufficient but also necessary for
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reliable communication to be possible. Since the complete proof is rather technical and lengthy
(but conceptually straightforward), details are only provided in Appendix A.2.

3.3.5 Cooperative versus Non-Cooperative Reachback

We now take a closer look at the implications of Theorem 3.3. The first thing to note is that Z is a
variable that can be interpreted as the information exchanged by the two encoders. Therefore, by
explicitly solving the channel capacity problems for communication between the two encoders
and with the far receiver, a simpler (and more intuitive) version of the theorem is obtained:

H(U]_‘UQ) < 01 +012
H(UQ‘UI) < 02+021
H(UlUQ) < O +C27

where C1, Cs, C19, Co; are the capacities of the corresponding channels. Now, from this sim-
pler version, we can see clearly that there is indeed a strict improvement over the conditions
given in Theorem 3.1 for the case of no cooperation. For example, it is easy to see that if
Cia > H(U1|Us), and Cy; > H(U,|Uy), then these conditions reduce to the one for the clas-
sical point-to-point problem: H (U,U;) < Cy + C,. Any point on the surface of the sum-rate
face of the region can be achieved by having encoders send their realization to each other using
Slepian-Wolf codes—in this way, both can reconstruct both sources, generate a joint encod-
ing, and then split this encoding in whatever way they choose to. Some of these points are
clearly not achievable without cooperation among encoders: e.g. , (R1, Re) = (0, H(U1Uy))
and H(U1|Uy) > 0, even if H(U,U,) < I(X»;Y>). This is illustrated in Figure 3.7.

Itis also interesting to observe in Figure 3.7 that, contrary to what happens with general mul-
tiple access channels, in the case of independent channels considered in this work cooperation
does not lead to an increase in the achievable sum-rate. This suggests a routing interpretation for
Theorem 3.3. If, say, encoder 1 has too much data to send and a channel not good enough (that
is, H(U|Uy) > C1), and encoder 2 has enough idle capacity (that is, H(Uz|U;) < Cy), then
encoder 1 can use Z to route some of its data to the far receiver via encoder 2. The total number
of bits that can be sent over the reachback network is still bounded by 7(X;Y7) + 1(Xs;Y3).
But, provided this constraint is not violated, each encoder can also act as a relay for the other
encoder, in this way relaxing the conditions on the minimum amount of data required from each
encoder. And the total amount of information that can be exchanged among nodes is given by
the capacity of the interconnection network between encoders.

Incidentally, note also that the widely accepted view that “according to the Slepian-Wolf
theorem separate encoders can achieve the same compression performance of a joint encoder”
is only partially accurate. Indeed, the total number of bits required with separate and with
joint encoders remains the same. However, for the informal statement above to be an accurate
description of things, the joint decoder needs to receive a minimum amount of information from
each encoder, so not any point in the sum-rate region R; + R > H(U;Us,) is achievable without
cooperation. The net effect of cooperation is to relax this requirement, to the extent supported
by the interconnection network between encoders.
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Figure 3.7: An example to illustrate the effect of cooperation among encoders on the feasibil-
ity of reliable communication between the reachback network and the far receiver. Since the
capacity region of the pair of independent channels and the Slepian-Wolf region do not inter-
sect, it follows from Theorem 3.1 that reliable communication is not possible. However, with
cooperation we can enlarge side faces of the capacity region by the capacity of the conference
channels until there are points of intersection with the Slepian-Wolf region (the shaded portion
of the picture). To achieve such points, it is necessary for the encoder with a bad channel to
route some of its data to the joint decoder via the good channel available to the other encoder.

3.3.6 Partially Cooperating Nodes with Constrained Encoders

In Section 3.2.5 we discussed a reachback scenario in which the sensor nodes send correlated
codewords instead of using Slepian-Wolf source coding. As argued there, this constraint is
interesting in part because it models the case in which the sensor nodes have limited complexity
and are not capable of encoding their data optimally to remove correlations. In this subsection,
we address the same issue, now in the presence of partial cooperation among encoders.

Going back to the achievability proof of Theorem 3.3, we observe that Slepian-Wolf codes
are used for two different tasks: (1) to compress the source messages prior to transmission over
the reachback channels, and (2) to compress the conference messages prior to transmission over
the conference links:

e The first task is identical to the case with non-cooperative encoders, and so it is reasonable
to assume that the use of correlated codes will lead to a rate loss relative to the region
given by Theorem 3.3 similar to that shown in Theorem 3.2.

e The second task imposes one additional requirement on the encoders — to be able to
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reconstruct the Slepian-Wolf encoded conference messages the encoders must have full
knowledge of the joint probability distribution p(u;us).

From a practical point of view, this requirement could pose some difficulties, since it may be
hard for the sensor nodes to obtain or estimate the dependencies among all observed variables.
Part of the reason that makes Slepian-Wolf codes attractive for practical sensor networking ap-
plications is the fact that, by not requiring knowledge of typical sets at the encoders, complexity
is moved to the decoder. Yet in this conferencing mechanism, we do require knowledge of
those typical sets at the encoders, to decode conference messages. We are therefore interested
in obtaining a set of conditions for reliable communication in which the encoders do not exploit
the joint distribution for conferencing.

The following theorem gives sufficient conditions for reliable communication under these
two encoding constraints.

Theorem 3.4 (Barros, Servetto [10]) Let (U;U,) be two correlated sources drawn i.i.d. ~
p(uquz), which are to be transmitted over two independent channels { X1, p(y1|z1), )1} and
{ Xy, p(y2|z2), Vo }. Assuming that the encoders are connected by communication links of ca-
pacities C15 and Csy;, do not have knowledge of p(ujus), and use correlated codes denoted
{z% (u?), 2% (ul)} then reliable communication is possible if

H(Ul‘UQ) < I(Xl,}/l‘UQZ)"‘I(Ul,Z‘UQ)
H(U2|U1) < I(XQ,}/Q|U1Z)+I(U2,Z|U1)
H({U\Uy) < I(X1Xy; Y1Y5),

for some p(uyu2)p(v1|u1)p(ve|ug)p(z1 |ur)p(z2|ue)p(y1|21)p(y2|22) and Z = (V1 V4), such that
H(ZH/Q) < Cho, H(Z‘Vl) < Coy, and ‘Z‘ < ‘Z/{1HZ/{2|

Proof: We start with the conferencing mechanism and then obtain the conditions for re-
liable communication by generalizing Theorem 3.2. The conference messages are generated
using the same partitions as in the proof of Theorem 3.3. The pair of conference channels is
then equivalent to a two-way channel without interference [86, pp. 351-352], yet with corre-
lated inputs. Since the encoders cannot exploit the joint probability distribution, we assume
they compress the conference messages to their marginal entropies and then add channel cod-
ing to transmit them reliably over the conference channels.® It follows then from the source
coding theorem and from the channel coding theorem that a sufficient condition for reliable
communication of the conference messages to be possible is H(V,) = H(Z|V,) < C}, and
H(Va) = H(Z|V1) < Cop, with Z = (V1 V3).

Now, let U] = (U,Z) and U;, = (UyZ). Since U; and U, are i.i.d. sources, Z = f(U,Us)
is also i.i.d., and U7 and U} can be viewed as two i.i.d. sources ~ p(ujuy) = p(uiusz). Then,

SNote that we do not claim separate source and channel coding to be an optimal coding strategy for sending
correlated sources over a two-way channel without interference and without knowledge of the joint probability
distribution at the encoders. This is because, without proof, we cannot rule out the existence of a universal coding
strategy (meaning, without a priori knowledge of source statistics), leading to less restrictive conditions for reliable
communication over the conference channels than those stated above.
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according to Theorem 3.2, reliable communication is possible if

HU|Up) < I(Xy;Y1|Up)
HU|U7) < 1(X2;Y2|UY)

Substituting U; = (U1Z) and U}, = (UsZ), we get

HUUZ) < (X5 Ya|U' Z)
HUW,Z) < 1(X:X5; ViYa).

The conditions in the theorem then follow from standard identities. [ |

Comparing the expressions in Theorems 3.2, 3.3, and 3.4, we conclude that the rate loss
under the given encoding constraints is twofold. First, the use of correlated codes leads to
similar rate loss terms as in Section 3.2.5. Secondly, the restriction on the choice of codes for
conferencing implies a restriction on the choice of auxiliary variable Z, possibly leading to
smaller values of I(U,; Z|U,) and I(U,; Z|U;) and thus to a potential reduction in reachback
capacity.

3.4 Reachback Capacity with an Arbitrary Number of Nodes
34.1 M > 2 Non-Cooperating Nodes

Having established the reachback capacity region for the case of two non-cooperating nodes,
we now generalize this result to the transmission of M correlated sources over M indepen-
dent channels, for arbitrary M > 2. The following theorem gives the conditions for reliable
communication for this case, illustrated in Figure 3.8.

Theorem 3.5 (Barros, Servetto [14]) A set of correlated sources UM = {Uy,Us, ..., Un}
can be communicated reliably over multiple independent channels denoted (X4, p(y1|z1), V1) - . .

(Xar, p(yar|zar), Yar) if and only if

HUS)U(S) < D 1(XsY), (3.11)

1€S
for all subsets S C {1,2,...,M}and U(S) ={U, : j € S}.
Proof:  The converse can be proved exactly as in Theorem 3.1, this time dealing with 2 — 1

inequalities. To prove the forward part of the theorem consider the Slepian-Wolf region of
achievable rates for multiple sources, given by

R(S) > H(U(S)|U(S9)), (3.12)
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Capaci

Figure 3.8: A sketch of the regions involved in Theorem 3.5 for M = 3 sources. Once again,
when the capacity region of the independent reachback channels does not intersect the Slepian-
Wolf rate region (left plot) reliable communication is not possible. If the two regions do intersect
(right plot) than all points in the intersection are achievable.

forall S C {1,2,..., M} where R(S) = > _,.s Riand U(S) = {U; : j € S}. If the conditions
in the theorem are fulfilled for all subsets S C {1,2,..., M}, then the Slepian-Wolf region
defined by (3.12) intersects the capacity region given by R; < I(X;;Y;), ¢ = 1... M, which
means that the compressed source blocks can be transmitted over the array of M independent
channels with arbitrarily small probability of error by adding separate channel codes. [ |

Generalizing Theorem 3.2 in a similar way, we obtain the following result for correlated
codes.

Theorem 3.6 (Barros, Servetto [11]) A set of correlated sources {Uy, U, ...,Uy} can be
communicated reliably over independent channels (X1, p(y1|z1), 1) - - - (X, P(Ynrlzar) Vr)
with correlated codes if

HU(S)|U(S%) < > I(XsYi|U(SY)),
1€S
for all subsets S C {1,2,...,M}.

Proof: ~ The proof is similar to the proof of Theorem 3.2, using the more general version of
the theorem by Cover, EI Gamal and Salehi for M > 2 sources [26]. [ |

3.4.2 M > 2 Cooperating Nodes

The sensor reachback problem with M > 2 cooperating nodes is a network problem in which
M encoders observe M correlated sources, then exchange messages over an interconnection
network of limited capacity, and finally send the information to a far receiver over an array of
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M independent channels, as illustrated in Figure 3.9.

We define a general network conference as follows. At each time k&, encoder 7 chooses
a message V;; for each of the other M — 1 encoders in the network. The M — 1 messages
generated by encoder 5 at time k£ may depend on the observed source sequence U;¥ and all
previously received messages from all other nodes. Hence, the network conference is specified
by K(M — 1) functions

hz](k) :uiN X ® ®sz(l) — sz(k),

meM\{i} =1

where K is the number of conferencing steps, M = {1,..., M} and ) denotes the cartesian
product operator. The set of conference rates that must be supported by the network for each
pair of nodes is thus given by

Rij = (1/K) ) log, [Vy(k)|,
k=1

with¢,5 = 1,..., M. As in the two source case, a conference is said to be admissible if and
only if
KR;; < NCj; for all (g, j) pairs.

Notice that this definition does not imply that there is a direct connection between every node i
and every node j in the network. The correct interpretation of the previous conditions is that the
network is capable of supporting a communication rate between nodes i and j up to the given
capacity C;; — how this communication actually takes place (topology control, routing, etc.) is
of no concern for the problem at hand.

Reachback
Channels

p(y1|x1)

p(yio|*10)

Figure 3.9: Reachback communication with M > 2 partially cooperating nodes.
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The reachback encoders are functions

K
i x Q) RVmill) — AN,

meM\{i} 1=1

that map the observed source vector U and the K (M — 1) messages received by encoder ;
over the network to a single codeword XV that is sent to the central receiver. These functions
map a block of NV source symbols observed by each encoder, and a set of blocks of K messages
received from the other encoders, to a block of NV channel inputs. Finally, the decoder is a
function

G VN XYV 5 x YN S UN xUN x - x UN

that maps M blocks of channel outputs (one from each channel) into M blocks of reconstructed
source sequences.

Based on the previous definitions we can generalize Theorem 3.3 and get the following
necessary and sufficient conditions for reliable communication.

Theorem 3.7 (Barros, Servetto [10]) A set of correlated sources UM = {U U, ... Uy} can
be communicated reliably with partially cooperating encoders over multiple independent chan-
nels (X1, p(y1|z1), V1) - - (Xar, p(yar|zar), Yar), if and only if there exist random variables
Ziywith 4,5 = 1,..., M and ¢ # 7, such that (a) Z;; depend arbitrarily on U, ... Uy, (b) the
maximum rates provided by the network are not exceeded, i.e.

](Ul ... Uj—lUj—I—l R UM; ZZ]|U]) < Ci]',
and (c) the conditions

HU(S)|U(S) < Y _I(XiY;) + I(U(S); Z(S9)|U(S9)),

1€S

hold true for all subsets S C {1,2,..., M}, where U(S) = {U; : j € S} and Z(S) = {Z;; :
ieSorjeS}.

Proof: ~ The proof is very similar to Theorem 3.3. We start with the achievability part. First,
the encoders establish a conference over the network. We define M2 auxiliary random variables
Vij» 1,7 = 1,..., M, which correspond to the messages sent by encoder 7 to encoder j at the
rate Cj; supported by the network. Since no node sends a message to itself we set V;; = 1 for
alli =1,..., M.

Upon observing a block «.¥ of source outputs, encoder 7 determines a set of message val-
ues v;;, 7 = 1,..., M for each observed value u,;. Said messages are coarse versions of the
observed sample, as explained in the proof of Theorem 3.3. Using the conference mechanism
encoder 4 can send a block v;; to encoder j at rate R;; < C;;. We will now show that the rates
Ry; = H(V;|U;) are sufficient for a block of messages VY to be transmitted reliably. Since
(U;U;) are random and V;; is a function of U;, V;; is random as well. Nodes ¢ and j know
the joint distribution p(wu;u;v;;), from which they can obtain the marginal p(u;v;;). Since this
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distribution can be viewed as a pair of correlated sources (U;V;;) and U;" is known at encoder
4, it follows from the Slepian-Wolf theorem for (U;V;;) that V;Y¥ can be compressed at rates
R;; > H(V;;|U;) and still be reconstructed perfectly at encoder 2. Thus, using separate source
and channel coding, V' can be transmitted over the network at rates

Ry = H(Vy|Uj) < Gy (3.13)
with arbitrarily small probability of error. Since V;; is a function of U;, we can write (3.13) as

Cij > H(Vy|Uj) — H(Vy|Ur ... Un)
> I(Ul...Uj_lUj+1...UM;‘/;'j|Uj)
> I(Ul---Uj—lUj—l—l---UM;Zij|Uj);

where we set Z;; = V;;, thus defining the auxiliary random variables declared in the statement
of the theorem®.

After conferencing the encoders compress the source blocks and the received/sent message
blocks using Slepian-Wolf codes. Let

Zim = {Zklik:iandZEM}
be the messages sent by node ¢ and let
Iy = {ZklikEMandZIi}

be the messages received by node i. Moreover, we define U] = (U;ZimZpmi) With @ =
1,..., M, such that p(u ...u%;) = p(u1...upmz11...2mm). The M-source version of the
Slepian-Wolf theorem [28, Theorem 14.4.2] guarantees that the rates

R(S) > HU'(S)|U'(S9)) (3.14)
= H(U(5)Z(S)|U(59)2(5°))
H(U(S)|U(5)%(59))
= H(U(S)|U(S5%) - I(U(5); Z(5)|U(5%)) (3.15)

for all subsets S C {1,2,..., M} with R(S) = > ,.s Ri, U'(S) = {Uy : k € S}, U(S) =
{U;:j €S} and Z(S) ={Z;; : i € Sorj e S}, are achievable. If conditions

H(U(S)|U(S9) < Y 1(X3; Y5) + I({U(S); Z(59)|U(S°)),
i€S
are fulfilled for all subsets S C {1,2,..., M}, then the Slepian-Wolf region defined by (3.15)
intersects the capacity region givenby R; < I(X;;Y;), i =1,2,..., M, which is true whenever
the conditions in the theorem are fulfilled, then the compressed source blocks can be transmitted

SAlthough we could continue the proof using V;; as auxiliary random variables, this would lead to some con-
fusion with respect to the converse part of the proof.
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over the array of M independent channels with arbitrarily small probability of error by adding
separate channel codes.

The converse part is similar to the converse proof of Theorem 3.3 with 2™ — 1 inequalities.
Details are provided in Appendix A.3. |

3.4.3 Examples
With a few concrete examples, we illustrate the usefulness of Theorems 3.5 and 3.7.
A) Reachback Communication over Gaussian Channels with Orthogonal Multiple Access

The capacity of the Gaussian multiple access channel with A independent sources is given by

ZRi < —log (1—#—21;21),
— 2 o

for all m € {1,2,..., M}, where o2 and P; are the noise power and the power of the i-th
user respectively [28, pp. 378-379]. If we use orthogonal accessing (e.g. TDMA), and assign
different time slots to each of the transmitters, then the Gaussian multiple access channel is
reduced to an array of M independent single-user Gaussian channels with capacity

1 P .
CizTi-ilog<1+N;_i>, 1<i< M,
where 7; is the time fraction allocated to source user 3.

Applying Theorem 3.5, we obtain the reachback capacity of the Gaussian channel with
orthogonal accessing’. Reliable communication is possible if and only if

HUE)U() < repog (144,

Nt
i€S ¢

for all subsets S C {1,2,...,M}.
B) Reachback Networks with Different Topologies

Theorem 3.7 can be applied to a great variety of network topologies, depending on the capacities
of the links between nodes. Three such examples are shown in Figure 3.10.
Three interesting cases are illustrated in Figure 3.10:

e In (a) the sensor nodes build a linear array and conference communication occurs along
the vertical axis. To obtain the reachback capacity we must set all capacities to zero,
except those corresponding to the reachback channels C; . .. C, and those corresponding
to the active conference links C5, Cy1, Cas, C3, C34 ,Cy3. The auxiliary random variables
become Z1,, Z53 and Z3, and the application of Theorem 3.7 follows easily.

e In (b) not all sensor nodes are connected to the remote location, and hence the information
needs to be relayed to those nodes which do have a reachback channel available. Here,

"The generalization of Theorem 3.5 for channels with real-valued output alphabets can be easily obtained using
the techniques in [28, Section 9.2 and Chapter 10].
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Figure 3.10: Three sensor network topologies for which Theorem 3.7 gives the reachback ca-
pacity. Dark circles denote the sensor nodes and a light circle represents the remote receiver.
Conference channels and reachback channels are depicted as dashed and solid arrows, respec-
tively, with the arrow head indicating the direction of the flow of information. Conferencing is
done before transmission over the reachback channels.

we must consider the capacities Cs . . . C; for reachback, and C15, Cas, Cag, C36, Cs7, Caz
for conferencing, such that the auxiliary random variables become Z5, Zo5, Zog, Z3s,
Zs7, Zaz.

e Finally, (c) shows a tree topology, in which each parent node has a reachback channel
available (Cs . .. Cs), and the children can relay their information over conference chan-
nels with capacities Cys, Cs2, Cs3, Cr3. To compute the reachback capacity we must
define the auxiliary random variables Zs4, Zo5, Z34, Z37. Once again, the application of
Theorem 3.7 is straightforward.

In all cases, it is interesting to see how reliable communication is possible if and only if the
network of interconnections among encoders has enough capacity to redistribute sensed data,
so as to match the amount of data to upload to the capacity of the channels from each node to
the far receiver, and further expanding on the routing interpretation developed in Section 3.3.5.

3.5 On the Separation of Source and Channel Coding
in Communication Networks

3.5.1 Separation is Optimal for the Sensor Reachback Problem

In the context of point to point communication, given a source U (from a finite alphabet and
satisfying the AEP) and a channel of capacity C, it is well known that the condition H(U) < C
is both necessary and sufficient for sending the source over the channel with arbitrarily small
probability of error [28, Chapter 8.13]. From this result, commonly known as the separa-
tion principle, it follows that there is nothing to lose in using a two-stage encoder, which first
compresses the source to its most efficient representation (at a rate close to H(U)), and then
separately adds channel codes which can deal with the errors caused by the channel.

In the context of the sensor reachback problem with non-cooperating nodes, the proof of
Theorem 3.5 gives necessary and sufficient conditions for reliable communication that, after
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solving the capacity problems, can be written as:

H(US)|U(S9) <) Ci,

1€S

for all subsets S C {1,2,..., M}. These conditions show that a generalization of the previous
statement also holds for the transmission of multiple correlated sources (U1, Us, ..., Uys) Over
independent channels of capacities (C1, Cs, ..., Cys) — there is nothing to lose by compressing
the sources to their most efficient representation (Slepian-Wolf coding) and separately adding
channel codes. Furthermore, for the sensor reachback problem with partially cooperating en-
coders, Theorem 3.3 also shows that an optimal coding strategy for this problem consists once
again of a cascade of a cooperative version of Slepian-Wolf source codes, followed by classical
channel codes.

Therefore, these results identify an important class of non-trivial communication networks
and information theory problems, in which the classical notion of separation between sources
and channels holds.

3.5.2 Is Separation Relevant for Networks?

Based on the observations above it is only natural that we revisit the issue of optimality of
separate source and channel coding in communication networks. This question is certainly not
trivial, and we are not yet in a position to provide a definite answer. However, we feel it is only
appropriate to discuss some of the intuition we derive about this most relevant issue from the
results presented in this chapter.

We observe first that both in the converse proof of the separation theorem, as well as in the
converse proofs for the different instances of the sensor reachback problem addressed in this
chapter, the key ingredient that renders separation optimal is the data processing inequality [28,
Section 2.8]. Application of this inequality requires Markov dependencies among random vari-
ables used to model sources and channel inputs/outputs. And as shown in this work, this prop-
erty arises not only in point-to-point problems, but also in various non-trivial networks. Now,
it is well known that this Markov property does not hold for a general multiple access channel
with correlated sources, as established by the simple example of a binary adder channel and two
binary sources with joint probability (1/3,1/3,0,1/3) in [26], and this has been the basis so far
for arguing that separation does not hold in networks. However, after looking at all the evidence
available, concluding from that simple example that the separation principle is not useful in the
context of communication networks does appear to us to be too hasty a step:

e Separation holds in other networks. The team of Effros, Médard, Koetter, et al., showed
that separation is optimal for a large class of networks [35], the crux being that all op-
erations are carried out over a common finite field. A most remarkable aspect of their
result is that, with this simple and natural restriction, it is shown in [35] that separation
is optimal even for the example of the binary adder channel used in [26] to motivate the
need for joint source/channel codes in networks. Also, in [67], Merhav and Shamai give
an example of a point-to-point problem with side information for which separation holds.
Also, in an unpublished manuscript that we recently became aware of, Yeung had also
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established some initial separation results in some simple networks [98]. So, for one net-
work example where separation fails, there are multiple other network examples where
separation holds, and one could easily argue more relevant, too.

e The performance gap between a separation based approach and an unconstrained ap-
proach is not known in general. In those cases for which separate source and channel
coding has been found to be a suboptimal strategy, it seems pertinent to establish the ex-
tent to which separation leads to a loss of performance. To the best of our knowledge, no
conclusive piece of evidence has been provided establish beyond a reasonable doubt the
need for joint source/channel codes in a network setup.®

e Reservation-based accessing schemes are common practice, and practical distributed
source codes exist. Because of their simplicity and low complexity, multiple access
schemes that deal with the interference issue by dividing the medium into independent
channels are widely used in many communication networks, and are of particular appeal
for highly resource constrained nodes in sensor networks [6]. One important advantage
is the reduction of the very challenging multi-user channel coding problem (e.g. , [7]
and [66]), to multiple instances of the point-to-point problem, which is well understood
both in theory and in practice. Similarly, wireless sensor networks have led a considerable
amount of research in the area of distributed source coding, yielding practical schemes
that come close to the theoretical limits obtained by Slepian and Wolf [85], and Wyner
and Ziv [95] (e.g. [1], [38], [69], [75], [81]). It is therefore interesting to know the ulti-
mate performance limits of communications systems with distributed source coding and
separate channel coding even in networks where the separation principle does not hold.

The separation of source and channel coding is one of the cornerstones of digital commu-
nications. By representing information in terms of bits, Shannon provided an architecture for
point-to-point communication systems in which the task of data compression and the task of
channel noise mitigation are carried out by separate modules of the system, without any per-
formance degradation due to this split of tasks. In the context of communication networks,
we argue that joint source/channel codes are not always the only viable approach and that,
whenever possible we should take advantage of over 50 years of experience in the design of
communication systems based on separate source and channel coding.

Even in networks for which the separation principle does not hold, separate design still gives
us the practical advantages of a system with multiple reusable components. In a real applica-
tion, performance is a most important factor, but is not the only one: for example, the ability to
quickly assemble working systems out of off-the-shelf components might justify some perfor-
mance loss in highly dynamic environments such as a battlefield, or a marketplace. Therefore,

8Gastpar and Vetterli have presented some preliminary work along these lines [39], related to a sensor net-
working application derived from Berger’s CEO problem [20], and built on top of Berger’s results on uncoded
transmission [17, pg. 162]. Now, while that preliminary result does hint at a potentially large gap in the extreme
case of no cooperation at all, in another extreme case of the same setup (full cooperation), the gap vanishes. Hence,
it does seem to us that the work of [39] needs to be further developed (e.g. , to address partial cooperation), before
valid inferences can be made about the utility of separation in that setup.



60 The Sensor Reachback Problem Chap. 3

even for networks in which separation turns out to be suboptimal, it is still of great interest to
know what are the performance limits when enforcing separation constraints.

We end this section quoting Ahlswede and Han on the issue of separation in networks, from
an early paper on multiterminal source coding [4]:

Another way of coming closer to a real communication situation with our models
consists of enforcing the separation principle (in spite of its suboptimality in an
ideal situation) and investigating what can be done (also optimally) if source and
channel coding are carried out separately.

3.6 Summary and Conclusions

In this chapter we have considered the sensor reachback problem. We formulated this problem
as one of communication of multiple correlated sources over an array of independent channels,
with partial cooperation among encoders. We defined the notion of reachback capacity, and
gave exact characterizations for this capacity in a number of scenarios (nodes cooperating or
not, constraints on the encoders, and numbers of nodes in the network). Having found in all
cases that a natural network generalization of the classical joint source/channel coding theorem
holds, we revisited the issue of source/channel separation in networks, where we argued that it
may be too soon to dismiss separation as irrelevant in networks.



The Multiterminal Source
Coding Problem

It takes two to know one.

GREGORY BATESON

4.1 Introduction

In the previous chapter, we gave a complete solution for the sensor reachback problem with
perfect reconstruction at the receiver, in other words we assumed that the sent messages were
to be recovered with arbitrarily small probability of error. Having determined the set of neces-
sary and sufficient conditions for reliable communication under this scenario, there is another
fundamental question that naturally comes to mind: what if, in a given scenario, it turns out to
be impossible to match the rates of the Slepian-Wolf encoders to the capacities of the channels,
as required for arbitrarily small probability of error? In that case, the best we can hope for is to
reconstruct an approximation to the original source message. Recall that in the point-to-point
problem, this is equivalent to having a source U with entropy H(U) > C, where C' is the
capacity of the channel. As mentioned in Chapter 2, the answer to this question is provided
by classical rate-distortion theory. Consequently, it is only natural for us to consider a rate-
distortion version of the sensor reachback problem — in the case of non-cooperating encoders
we encounter the well-known multiterminal source coding problem [18].

4.1.1 Problem Statement

Before establishing a precise connection between the sensor reachback problem and the multi-
terminal source coding problem, we start with a rigorous statement of the latter.

Assume two sources U; and Us, which are drawn i.i.d. ~ p(uqu9) from two finite alphabets,
denoted U and U,. The two sources are processed by two separate encoders and decoded
jointly, as shown in Figure 4.1. We require the following definitions:
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U;—{ Encoder 1 - — U

p(uius) Decoder

U,—{ Encoder 2

Y
=

Figure 4.1: System setup for the multiterminal source coding problem.

1. Let the distortion measures be d; : U; x Uy — R and ds : Uy x Us — R, where U; and
UQ are the reconstruction values with alphabets Zfll and Zflz, respectively.

2. An (N,2NE 9NE: ‘D)) 'D,) code is defined by two encoding functions,
fooulN —{1,2,... 2N~y

fo: U —{1,2,...,2N%)

a decoding function,
g:{1,2,... 2N} x {1,2, ... 2NRy N s gV

and an average distortion pair

N

Dy =E|= Y di(Uy;, Un)|,
i=1

_ 1 &

D, = E_N;da(UQZ,UQZ) :

where (UN,UY) = g(f(UF), fo(UM)).

3. The rate-distortion tuple (R:, Ry, D1, D5) is achievable if for any ¢ > 0, for sufficiently
large NV an (N, 2V 2NR2 D, 'D,) code exists such that D; < Dy +eand Dy < Dy +e.

4. The rate-distortion region R (D1, D) of the two sources is the closure of the set of achiev-
able rate and distortion tuples (R1, Ry, D1, D).

The goal of the problem is to give a complete characterization of the rate-distortion region
R (D1, Ds) in terms of single letter information-theoretic quantities.

4.1.2 A Converse for the Sensor Reachback Problem with Distortions

Having made a precise statement of the multiterminal source coding problem, we will now show
how this formulation is a natural generalization of the sensor reachback problem, when the con-
ditions for perfect reconstruction of the source messages at the receiver are not fulfilled. We
recall once again that in the point-to-point case, discussed in detail in Section 2.1, if the entropy
of the source U exceeds the capacity C of the channel, i.e. H(U) > C, the best we can hope for
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IS to reconstruct an approximation of the source messages in the spirit of the rate-distortion theo-
rem. Consider now the rate-distortion formulation of the sensor reachback problem with M = 2
sources illustrated in Figure 4.2. Let U, and U, be two correlated sources drawn i.i.d. ~ p(ujus)

Ry G D,
U X1 |channel | Y1 2
source »| encoder ——» Pl — U
p(U1U2) U X hannel | Y- decoder R
2 »| encoder 2> chann 2> - U2
p(y2|z2)
R2 02 D2

Figure 4.2: A rate-distortion version of the sensor reachback problem.

that are to be encoded separately at rates R; and Ry, and transmitted over two orthogonal chan-
nels (X1, p(y1|z1), Y1) and (Xs, p(ys|z2), V2) of capacities C; and Cy, respectively. The re-
ceiver is expected to reproduce U; with average distortion E [% ZiNzl dy(Uy;, Uu)] < D; and

E [% Zfil da(Uai, Uzi)] < D,. The following result, whose proof is given in the appendix,
relates the rate-distortion region of the sources with the capacities of the channels.

Theorem 4.1 (Barros) The sources U; and U, can be reconstructed at the receiver with dis-
tortions E [% SN di (U, Uli)} < D;and E [% SN do(Uy, fJQi)} < D, if and only if the
intersection between the capacity region {R; < Ci, Ry < Cs} and the rate-distortion region
R(Dy, Dy) is non-empty.

Proof:  See the appendix, Section A.4. [ |

Given that the capacity region for two independent channels is trivial to obtain, we conclude
from the previous theorem that solving the sensor reachback problem with distortions is equiv-
alent to finding the rate-distortion region for the multiterminal source coding problem. From
a coding point of view, Theorem 4.1 establishes the optimality of separate source and channel
coding for this problem — all achievable rate-distortion pairs can be obtained by cascading
multiterminal source codes with capacity attaining channel codes. Consequently, we can ignore
the channels and focus on the underlying source coding problem.

4.1.3 Previous Work

Separate encoding of correlated sources was first studied by Slepian and Wolf [85], who as-
sumed no cooperation between encoders and solved the case of perfect reconstruction at the
receiver, i.e. D; = Dy = 0, as explained in Chapter 3. Shortly thereafter, Wyner and Ziv gave a
solution for the case in which the receiver is provided with a perfect copy of U, i.e. Ry > H(Us)
and D, = 0 [95]. This result was further generalized by Berger and Yeung, to include all rates
R, < H(Uy) and D, = 0 [19].

To this date, the most significant contribution on the non-cooperative case with D; > 0 and
D, > 0 stems from Berger and Tung’s work ([18], [90]), who derived an inner and an outer
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bound for the rate-distortion region of generic (R;, Ry, D1, D5) tuples. Both bounds are given
in terms of identical mutual information expressions, involving two auxiliary random variables
denoted as W7 and W,. The only difference between these two bounds is due to the fact that,
while the outer bound assumes two Markov chain conditions W, — U; — Us and Uy — Uy —
Wy on Wy and Ws, the inner bound requires them to obey an additional long chain condition
of the form W, — U; — U, — W, This latter condition poses a non-trivial restriction on the
set of auxiliary random variables over which we can perform the minimization of the mutual
information terms giving the boundaries of the rate-distortion region. Consequently, the inner
bound thus obtained contains only a subset of the rate-distortion tuples suggested by the outer
bound.

Due to the difficulty in solving the multiterminal source coding problem, subsequent con-
tributions have focused on a few special cases that have practical relevance: Gaussian sources
with squared distortions were considered by Oohama in [73], and a high-resolution version of
the problem was studied by Zamir and Berger in [100]. Recent interest on the duality of source
and channel coding in the context of multi-user communications has led several authors to in-
vestigate the relationship between the Berger-Tung inner rate-distortion region and the Marton
capacity region for the broadcast channel (e.g. [91, 99, 76]).

With respect to user cooperation, in [53] Berger and Kaspi proposed a multiterminal source
coding problem with partially cooperating encoders and gave a full characterization of the rate-
distortion region for the case in which one of the two encoders can observe not only its source,
but also the codeword generated by the other encoder. A similar setup, but with both encoders
observing the codewords sent to the decoder, was used by Oohama to study the Slepian-Wolf
problem [72] from a universal source coding perspective. Here, the encoders cooperate by
processing each pair of input source blocks in multiple stages. In each stage, the codeword
generated by each encoder is sent both to the decoder and the other encoder, such that the
codewords at stage k£ depend not only on the source blocks but also on the £ — 1 previous
pairs of codewords. For this setup, Oohama showed that the Slepian-Wolf rate region does not
increase through cooperation.

Somewhat informally, we can state that in the previous form of cooperation, the encoders
process the data and exchange information at the same time. A different kind of cooperation be-
tween encoders was proposed by Willems in [93], in which the encoders exchange information
before they encode the data. The procedure is simple and conceptually pleasing: first the en-
coders establish a conference to exchange K messages and then they encode the data based on
the messages exchanged and on the observed source blocks. This assumption is perfectly rea-
sonable for sensor networks where a fusion center collects data at certain times, and the sensors
can share information between transmissions [9]. It was this observation that led us to opt for
this type of cooperation in the statement of the sensor reachback problem in Section 3.3, and the
latter inspired us to formulate a cooperative source coding problem [15]. Recently, this form of
cooperation was also used by Jaggi and Effros [50], to re-formulate the universal source coding
problem proposed by Oohama [72], and show that a conference with asymptotically negligible
rate is sufficient to guarantee the existence of universal Slepian-Wolf source codes.
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4.1.4 Main Contributions

We offer several original contributions in this chapter. First, we give a simple proof of the
Berger and Tung achievable rate-distortion region for multiterminal source coding. Based on a
generalization of this proof we are able to obtain another inner bound, whose characterization
does not require the long chain condition W, — U; — Us — W, thus extending the family
of random variables which can be considered as candidates for the minimization of the mutual
informations defining the boundaries of the rate-distortion region. For this purpose we break the
encoding process into two separate stages: a rate-distortion encoder (lossy compression), which
guarantees the prescribed distortion, and random binning (lossless distributed compression),
which removes the remaining correlation thus delivering the required rates for the prescribed
distortions. This combined encoder can be viewed as the cascade of a vector quantizer and a
Slepian-Wolf encoder, a coding strategy which makes perfect sense from a practical point of
view and is therefore intuitively pleasing.

Then, we present a second inner bound for the sought rate-distortion region, whose charac-
terization does not require the auxiliary random variables W, and W5, which help describe the
achievable rate-distortion tuples to obey the aforementioned long chain condition Wy — U; —
U, — W,. The coding strategy we use to prove this result is based on time-sharing of two
complementary classes of rate-distortion codes, which can reach all points of the Berger-Yeung
region, i.e. all rate-distortion tuples of the form (R, Ry, D;,0) and, similarly, (R, Ry, 0, D3).
Although this coding strategy does not achieve all the rate-distortion tuples (R1, Ry, D1, D5)
promised by the outer bound of Berger and Tung, the rate-distortion region we obtain does
give the fundamental performance limits of a family of rate-distortion codes, which is likely to
be simpler to implement than multiterminal rate-distortion codes and therefore relevant from a
practical point of view!. A third bound is also obtained based on a specific collection of auxil-
iary random variables. In addition, we discuss the limitations of typical sequence decoding and
the Markov lemma when seeking a solution for the multiterminal source coding problem, and
give an achievable rate-distortion region for a special case of practical importance — correlated
binary sources with Hamming distortions.

In the second part of this chapter, we formulate a general cooperative source coding problem
with two distortion criteria, including a thorough definition of the conferencing mechanism. We
first focus on the lossless case (D; = D, = 0), for which we give an exact characterization of
the corresponding rate region. Our approach differs from the work of Jaggi and Effros [50,
Thm. 4] in three important aspects: (1) in our case the encoders can exploit the joint statistics
of the sources (we do not address universality issues), (2) we give a very simple proof based on
a combination of deterministic binning and Slepian-Wolf random binning, and (3) our theorem
delivers the classical Slepian-Wolf theorem for R, = Rs; = 0, whereas [50] does not: as the
authors themselves explain, the universal encoders they use are not capable of learning the joint
statistics of the sources unless they are allowed a minimal amount of cooperation.

Finally, we apply the same ideas to the multiterminal rate-distortion problem, where we
obtain an inner and an outer bound for the cooperative rate-distortion tuples (Ri, Rz, Rio,
Ri12, Dy, Dy) based on Berger and Tung’s results for the classical multiterminal source coding

1Successful design of practical codes along these lines was recently presented in [96].
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problem. In this case, we find that the rate expressions defining the regions for the two problems
are identical, the only difference being given by the class of auxiliary random variables used to
describe the encodings. But still we are able to prove that partial cooperation between encoders
does in general lead to an increase of the achievable rate-distortion region.

4.1.5 Chapter Outline

The rest of this chapter is divided in three different parts. Section 4.2 discusses the classical ver-
sion of the multiterminal source coding problem, providing a simple proof for the Berger-Tung
rate-distortion region and two new inner bounds for this problem. The ideas developed in Sec-
tion 4.2 are then applied to the binary case with Hamming distortion, addressed in Section 4.3.
The third part, contained in Section 4.4, is dedicated entirely to a cooperative version of the
multiterminal source coding problem, with and without perfect reconstruction at the receiver.
The main results in this chapter are summarized in Section 4.5.

4.2 The Classical Multiterminal Source Coding Problem

A formal problem statement for the classical multiterminal source coding problem was given
in the previous section. Based on this formulation, we will now discuss the best known rate-
distortion bounds for this problem and prove some additional results.

4.2.1 A Simple Proof for the Berger-Tung Inner Bound

In [18] and [90], Berger and Tung include two theorems defining an inner and an outer bound
for the rate-distortion region of the multiterminal source coding problem. The characterization
of these bounds requires the use of two auxiliary random variables W, and W5, which have
special properties. In our own notation their inner bound can be written as follows..

Theorem 4.2 (Berger-Tung Inner Bound [18, 90]) Let (U, Us,) be drawn i.i.d. ~ p(ujus).
For a given distortion pair (D;, D) an achievable rate region is given by

Ry > I(U Uy Wi |Wy), (4.1)
Ry > I(UUy; Wa|Wh), (4.2)
R+ Ry > I(UUy; W1iW3), (4.3)

if W, — U, — U, — W, form a Markov chain and there exist U, (Wy, W) and Uy (W1, Wa),
such that D> E [dl(Ul, Ul)] and Dy > E [dg(Uz, Ug)i|

In the next section we will see that the mutual information expressions describing the
Berger-Tung inner and outer bounds are identical. However, the long Markov chain W; —
U, — Uy — Ws, which is only present in the description of the inner bound, allows for a few
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minor simplifications. Specifically, we can write
I(UlUQ; W]_‘WQ) = I(Ul, Wl‘Wg) + I(UQ, W1|W2U1) = I(Ul, Wl‘WQ),

and, similarly, I(U,Uy; Wo|W1) = I(Uy; Wo|W1). A somewhat more intuitive form is given by
the following identities:

I(Ul; WI‘WQ) = I(Ul; Wl) — I(Wl; WQ),

I(UQ; WQ‘Wl) = I(UQ; WQ) — I(Wl; WQ),
I(U Ugs WiWso) = I(Uv; Wh) + 1(Ua; W) — I(Wy; W),

where it becomes obvious that the minimum rates required for multiterminal source coding are
lower than the rates for separate rate-distortion by the amount of mutual information between
the auxiliary random variables 1, and W5, which are generally correlated.

The original proof of Berger and Tung [90] is based on strongly typical sequences and
somewhat complicated combinatorial arguments. We will now give a simpler proof based on
a two-stage encoder, which combines rate-distortion encoding with Slepian-Wolf style random
binning, as shown in Figure 4.3.

Slepian-Wolf
Encoder

U, —=| Quantizer = U

Dequantizer

Slepian-Wolf
Decoder

Slepian-Wolf
Encoder

U, —=| Quantizer Dequantizer —= U,

Figure 4.3: Coding strategy used in the proof of Theorem 4.2.

In a first step, each rate-distortion encoder (quantizer) takes blocks of source symbols and
uses its codebook to generate quantization indices guaranteeing that the reconstructed sequences
obey the prescribed average distortions. Subsequently the Slepian-Wolf encoders take blocks
of quantization indices and perform lossless compression down to the achievable rates. On the
decoding side, a perfect reconstruction of the quantization indices is given by the Slepian-Wolf
decoder and the rate-distortion decoders (dequantizers) look up the codebook to produce the
final output sequences. A similar coding strategy based on separate quantization and distributed
compression was used by Wyner and Ziv to prove their result for the rate-distortion problem
with side information [95]. More recently, Zamir and Berger [100] showed that for Gaussian
sources and in the high resolution regime (i.e. very low distortions) said two step encoding
strategy is optimal, i.e. separate quantizers and Slepian Wolf compression of the quantization
indices yields an encoder which can operate at all achievables points of the rate-distortion re-
gion for this special case. Whether this is true for other sources and distortions remains to be
shown. We proceed with our proof of the Berger and Tung inner bound.

Proof:  First, we define the generation of the codebooks and the encoding and decoding pro-
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cedures. Then, by analyzing the resulting distortion, we will show that, for an adequate choice
of auxiliary random variables, there exists at least one (N, 2NVf1 2NE: ‘D, 'D,) rate-distortion
code forany (R;, Ry, D1, Do) which lies in the rate-distortion region given by Theorem 4.2. For
this purpose, we will use the concepts and properties of strongly typical sequences as defined
in Chapter 2.

We start this proof by fixing p(wiws|uius), such that

1. p(uyuswy) = p(urug)p(ws |uy) and p(uy, ug, we) = p(uiusg)p(we|us).

2. I(U;; Wh) > Ri(Dy) and 1(Uy; Wo) > Ro(D2), Where Ry (-) and Ry(-) denote the rate-
distortion functions of U; and Us, respectively.

Calculate p(w1) = Y, uyw, P(Urtz)p(wiws|uiug) and p(we) = >, . p(urug)p(wiws|uius).
We will prove the existence of a rate-distortion code with rates R; and R, and distortions less
than or equal to D; + 6; and D, + &, with arbitrary §; > 0 and §, > 0.

Random code generation

Randomly generate a rate-distortion codebook C; consisting of 2V/(V1i%1) sequences WY drawn
i.id. ~ [IY, p(wy). Index these codewords by i € {1,2,..., 2N @W)}, Generate a second
rate-distortion codebook C, consisting of 2N7(U2W2) sequences W3 drawn i.i.d. ~ [, p(wa).
Index the codewords of the second codebook by j € {1,2,..., 2N (U2W2)1,

Encoding rule

Encoder 1 determines if there exists a ¢ such that (UY, W} (:)) € T} (U, W), the strongly
typical set. If there is more than one such 4, encoder 1 chooses the least. If there is no
such 7, encoder 1 sets 7 = 1. Similarly, encoder 2 determines if there exists a j such that
(U, WN(4)) € T (U,Wy). If there is more than one such j, encoder 1 chooses the least.
If there is no such 7, encoder 1 sets 7 = 1. Let g; and g, denote the assignment of blocks of
samples UY to index letters I and the assignment of blocks of samples U.¥ to index letters .J,
respectively.

Calculation of the probability distribution of the indices 7 and J

It follows from the encoding rule that each possible (UY, UY) € UYN xUY is assigned a unique
pair of letters (i, 7). Therefore, we can compute the probability distribution p(ij) according to

plig) = > p(UNUY),

(U U )i=g1(U)A j=g2(U3Y)
where p(UNUY) = [Tr_, p(UnxUsz). The decoder is informed about p(ij).
Random binning of blocks of indices 7% and J¥
Independently assign every i¥ € ZX to one of 25X~ %: bins according to a uniform distribution
on {1,2,...,2KNR11 Index the bins by b; € {1,2,...,2KNE1} Similarly, randomly assign
every j5 € J¥ to one of 2KV%2 bins indexed by b, € {1,2,...,2KNR2} KNR, bits are

sufficient to encode the bin index b, and, similarly, K N R, bits are sufficient to encode the bin
index b,. The bin assignments f; and f are revealed to the decoder.
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Encoding procedure

In a first step, encoder 1 takes K blocks U}¥ (denoted {U{¥}¥) and applies the encoding rule
to each of the blocks, thus obtaining a block of index letters ¥ = i1, ..., ix. Subsequently,
encoder 1 outputs the index b; of the bin which contains :%. Similarly, encoder 2 takes K blocks
UY (denoted {U' }X) and applies the encoding rule to each of the blocks, thus obtaining a block
of index letters ;% = j;,. .., jx. Finally, encoder 2 sends the index b, of the bin which contains

j*.

Decoding

Assume that the decoder receives the index pair (51,?)2). If there is one and only one pair
of jointly typical sequences (i, j%), such that f(i¥) = by, fo(j%) = by, and (i, j¥) €
TX(IJ), the K reproduced sequences are {wi' }* = {wi' (i1),...,wd (ig)} and {wd }* =
{wd (j1),...,wd (jx)}. Otherwise choose (i¥,j%) = (i¥,;X) randomly and generate the
reproduced sequences accordingly. Notice that in order to determine the typical set 7% (1J),
the decoder must know p(ij), which must be shared a priori.

Calculation of distortion

We set UN = WN, i = 1,2, and calculate the expected distortions over the random choice of
codebooks C; and C; as given by Dy = Ey ¢ {d(U}, UN)} and D, = Eyy ¢, {d(U3, UM},
For a fixed codebook C; and ¢; > 0 we divide the sequences u € U} into two groups:

e Sequences u!¥ such that a4 is strongly typical with u?', i.e. d; (u?', 4Y) < D; +¢;. Since
the total probability of these sequences is at most 1, these sequences contribute at most
D1 + € to the expected distortion.

e Sequences u! such that 4 is not strongly typical with u{. Let Pf¢ be the total probability
of these sequences. Since the distortion for any individual sequence is bounded by d! ..,
these sequences contribute at most Pyd. . to the expected distortion.

Similarly, for a fixed codebook C, and ¢, > 0 we divide the sequences uY € UL into two
groups:

e Sequences u) such that @2 is strongly typical with v, i.e. d(ul’, 4)) < Dy + €5. These
sequences contribute at most D, + ¢, to the expected distortion.

e Sequences )’ such that 42’ is not strongly typical with u2’. Let P be the total probability
of these sequences. As the distortion for any individual sequence is bounded by d% .,
these sequences contribute at most Pyd.. ... to the expected distortion.

Hence, the expected distortions are bounded by

E [d(U{V , IA]{V)} < Dy + e + Pid

max

and

max’

E [d(UQN, fJQN)] < Dy + e + PEd"
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which can be made less than D, + 6, and Dy + 69, respectively, for appropriately chosen ¢; and
€2, and small enough Py and Py. It is thus sufficient to show that Py and Py are small, in order
to prove that the expected distortions are close to D, and D,.

Calculation of Pf and Py

The probability P¢ that the decoder produces a sequence %} which is not strongly typical with
ul results from the union of the following events:

Ey, = {(u17 1)¢7:5( )}
By = {(",°) ¢ TN},
B, = {3 #": (@) = (") and (', K)ETK( J)}
By = {3 #7%: (") = (%) and (¥, 5%) € TE(I)},
Ey = {ﬂ(i'K,j'K)#(iK,jK)ifl(i'K)=f1(i) f(5"%) = fo(5%) and (", 5%) € T (17)}.

Similarly, Pg results from the union of events E,, F,, E3, E; and event E5 = {(u},4)) ¢
TN (U Us)}. Notice that (U, U}) are random and so are (¥, 7). By the union of events
bound, we can write:

P! = P(EyU E1U EyU EsU Ey) < P(Ey)+P(E1U ExU E3U Ey), (44)

PQe = P(E5U E1U EQU E3U E4)SP(E5)+P(E1U EQU E3U E4) (45)

Now, since by definition I(Uy; Ul) > Ri(D,) the rate-distortion theorem applies, and we can
safely assume that when averaged over all randomly chosen codebooks P(Ej) goes to zero for
N sufficiently large (see [28, Section 13.5]) and thus there exists at least one codebook C; for
which P(E,) goes to zero for N sufficiently large. Using a similar argument, I(U,; U;) >
Ry (D5) implies that there exists at least one codebook C, for which P(Es) also goes to zero for
N sufficiently large.

Independently of the choice of codebooks, the probability of the remaining error events goes
to zero if the conditions of the Slepian-Wolf theorem (see [28, Section 14.4]) are fulfilled, i.e. if

NR, > H(I|J), (4.6)
NR, > H(JD), 4.7
N(Ri+Ry) > H(IJ). (4.8)

Notice that R; and R, are given in bits per symbol and H(I.J) is the joint entropy of I and J
which correspond to blocks of N symbols. We also recall that by our own choice of decoding
functions we have Uy, = U, (Wy, Ws) = Wy and Uy = Us(W:, Wa) = W,. To show that the
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rate-distortion region given by the theorem is achievable it suffices to prove that

NRy > NI(Uy;Wi|Ws) > H(I|J), (4.9)
NRy > NI(UyWo|Wi) > H(J|I), (4.10)

We start with the last inequation. since the rate-distortion encodings are deterministic one-to-
one mappings, we have

—~
S
=

H(IJ) < HIJWNW]N)
= HWMWY)
L HWNWY) - HWY W UNUY)
< NHW\W,) — (HWN|UYU,) + H(Wy [UY Uy WY))
S NHWWy) — (HWNUN) + HWFUY))
9 NHW.W,) — NH(W,|UL) — NH(Wa|Us)

N(H(WiWy) — H(W1|UUs) — H(Wa|UUy W)

NI(U Uy W1iW5),

where use the following arguments:

(a) follows from the fact that W} and W3" are functions of U}¥ and UY",

(b) follows from the long Markov chain on blocks W¥ — UN — UYN — W,

(c) follows from the fact that /¥ and W' are drawn i.i.d. from the conditional probability
distributions p(w|u1) and p(we|us),

(b) follows from the long Markov chain on single letters W, — Uy — Uy — W,

Taking (4.9) we use similar arguments to obtain

H(I|J)

I | R VAN

=

H(IJ)— H(J)
NI(UUy; WiW3) —
NI(U Uy WyWs) —
I(UUy; W Wa) —
( ) —
( ) =

=

1 U UQ;W1W2
I(U Ug; WiWs

=

NI(Ul;W1|W2),

(HWy') — HW,'|Uy))
1(U;s W)
NI(Uy; Wo)

and, similarly, H(J|I) < NI(Uy; Wy|W7), thus concluding the proof. [
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Remark 2 It is worth noting that the conditions I(Uy;W1) >  Ry(D1) and I(Uy; Wa) >
Ry (D), where R;(D;) and Ry( D) denote the rate-distortion functions given by

Rl(Dl) = min I(Ul;Wl),

Pwilu1):3 2y wy) P(u1)p(wilun)d(u,wi) <Dy

Ry(Ds) = min 1(Uy; W),
P(w2lu2):37 4 wy) P(u2)P(w2|u2)d(uz,w2)<D2

are not in contradiction with the conditions in the theorem, i.e. we do not have an additional
restriction on the choice of p(w;ws|uius). Remember that to compute the rate-distortion func-
tions R;(D;), i = 1,2, we must minimize the corresponding mutual information expression
over the set Py, y, of all possible p(w;|u;) that fulfill the corresponding condition on the aver-
age distortion. On the other hand, to obtain the boundaries of the multiterminal rate-distortion
region, we must minimize the expressions on the right side of the three inequalities in Theo-
rem 4.2 by choosing the appropriate distribution p(w,ws,|u,u2) among all distributions that sat-
isfy Wy — U; — Uy — Wa. Since the set of distributions p(w |u1) and p(ws|us) that obey the
conditions of Theorem 4.2 cannot be larger than Py, |17, U Pws,|r,, We conclude that any choice
of p(wiws|uiuy) that maximizes the rate-distortion region defined by Theorem 4.2 guarantees
the conditions I(Uy; W1) > Ri(D;) and I(Uy; Wo) > Rs(D5), as required in the proof.

Beyond its conceptual simplicity, the previous proof is interesting, because it clearly shows that
all rate-distortion pairs in the Berger-Tung inner bound can be achieved by cascading classical
vector quantizers with Slepian-Wolf entropy codes. This suggests an informal notion of du-
ality between this problem and the sensor reachback problem, for which we have shown that
cascading Slepian-Wolf codes and capacity attaining point-to-point channel codes is an optimal
coding strategy.

4.2.2 The Berger-Tung Outer Bound

The outer bound of Berger and Tung is given by the following theorem.

Theorem 4.3 (Berger-Tung Outer Bound [18, 90]) Let (Uy, Us) be drawn i.i.d. ~ p(ujus).
For a given distortion pair (Dy, D,) all achievable rates (R;, R,) must satisfy the following
conditions:

Ry > I(UUs; W1 |Wa), (4.12)
Ry > I(UyUy; Wa|Wh), (4.13)
Ry + Ry > I(UUy; WiWy), (4.14)

where W, and W, are two auxiliary random variables, such that W, — U; — U, and U; —
U, — W, form two Markov chains, and there exist Ul(Wl, W,) and ﬁQ(Wl, W), such that

D\ >E [dl(Ul, (71)} and D, > E [dZ(UQ, Uz)].
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Proof:  The proof uses Fano’s inequality and standard information-theoretic arguments. For
details, see [18]. [ |

Notice that the expressions in the Berger-Tung inner bound and the outer bound are in fact
identical, except for a minor simplification made possible by the long Markov chain condition
in Theorem 4.2. Specifically, if W, — U; — Uy, — W, form a Markov chain we can write

I(U1U2; W1|W2) = I(Ul, W1|W2) + I(UQ, W1|W2U1) = I(U1, W1|W2),

and, similarly, I(U,Uy; Wa|W1) = I(Uy; Wo|W1). Since the auxiliary random variables that
characterize the outer bound obey the short chain conditions W, — U; — U, and U; —
Us — W, but not necessarily the long chain condition, it is not possible to carry out the same
manipulation on the rate expressions of Theorem 4.3. The only difference between the two
bounds lies thus in the class of probability distributions over which the optimization of the
mutual information terms is carried out. The implications of this discord are discussed in the
next section.

4.2.3 The Limitations of the Markov Lemma

The original proof of Berger and Tung for Theorem 4.2 (see [90, 18]) is based on the Markov
Lemma, which, as explained in Section 2.2.3, is valid for strongly typical sequences. For conve-
nience, we restate this important result in the notation we adopted for the multiterminal source
coding problem.

Lemma 4.4 (Markov Lemma) Let (U;U,W;) form a Markov chain W; — U; — Us. If for
a given (u¥,ud) € TN(UUy), WY is drawn ~ [, p(wyi|uy;), then P{(UN, UN, W}) €
7:5N(U1U2W1)} — lasn — oo.

In more intuitive terms, the Markov property of (U, U,W5) implies that if we take two sequences
u¥ and u} which are jointly typical and generate a third sequence w¥ according to the condi-
tional probability p(w: |u,), then with high probability %', v and w are jointly typical. This
in turn implies that with high probability ' and w’ are jointly typical, a property which leads
to elegant solutions for source coding problems with side information (e.g. [95] and [19]).

Unfortunately, in the case of multiterminal source coding the Markov lemma falls short of
yielding a complete characterization of the rate-distortion region. By randomly generating the
rate-distortion codewords W,V and W according to ~ [T, p(wyi|ui;) and ~ [TX, p(wailuss),
respectively, and applying the Markov lemma to guarantee successful typical sequence decod-
ing, Berger and Tung’s coding strategy only works if the auxiliary random variables W; and
Wy obey the long Markov chain condition W, — U; — U, — W, whereas the converse
based on Fano’s inequality admits all random variables W, and W, that obey the short chains
Wy - Uy —» Uy and Uy — Uy — W,

As Berger points out in [18], the former condition, which implies

p(w1w2|u1u2) = p(wl‘ul)p(w2|u2)
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is much weaker than the latter, because it does not admit joint conditional probability distribu-
tions in the form of a mixture of product conditionals, i.e.

K K
p(wiwz|uiug) = Z)\kpk(wl‘ul)pk(w2‘u2)v with Z)\k =1
k=1 k=1

Thus, by forcing the auxiliary random variables (17, W5) to form a long Markov chain with U,
and Us, the inner bound poses an additional restriction on the set of auxiliary random variables
over which we can perform the search for the minimal values of the mutual information, which
in turn yield the exact boundaries of the sought rate-distortion region.

4.2.4 An Inner Bound based on Time-sharing of Berger-Yeung Codes

It follows from the previous discussion that to solve the multiterminal source coding problem,
one has either to (a) tighten the converse, (b) to prove the existence of codes which guarantee
the achievability of the rate-distortion region defined by Theorem 4.3 for an arbitrary choice of
(W, W,) among all random variables which obey the short chain conditions, but not necessarily
the long chain condition, or (c) prove that the two classes of probability distributions yield the
same rate-distortion region. In the following, we will pursue strategy (b) and derive a new inner
bound for the multiterminal source coding problem.

We recall that in [19] Berger and Yeung give a complete characterization for the rate-
distortion region of one important particular case of our problem, namely D, = 0. Their main
result can be formulated as follows.

Theorem 4.5 (Berger-Yeung [19]) Let (U1Us) be drawn i.i.d. ~ p(ujus). For a given distor-
tion pair (Dy, 0) the rate pair (Ry, Ry) is achievable if and only if

Ry > I(Uy;Wh|Us)
Ry, > H(Uy|WH)
Ri+ Ry > H(Us)+ I(U; Wh[Us) (4.15)

where W is an auxiliary random variable, which obeys the following conditions:
1. W, — U; — U, forms a Markov chain,
2. UI(UQ, W71) exists such that E [dl(Ul, Ul)] < D, and

3. Wy < U] +2,

Naturally, their result is also valid for the symmetric case, i.e. D; = 0, leading to a second
version of theorem.

Theorem 4.6 (Berger-Yeung, second version) Let (U;U;) be drawn i.i.d. ~ p(uqus). For a
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given distortion pair (0, D) the rate pair (R;, Ry) is achievable if and only if

R, > H(U;|W,)
Ry > I(Uy; Ws|Uy)
Ri+ Ry > H(Uy)+ I(Uy; We|Uh) (4.16)

where W5 is an auxiliary random variable, which obeys the following conditions:
1. U; — U, — W, forms a Markov chain,
2. Uy(Uy, W) exists such that E [dz(UQ, Uz)] < Dy, and

3. Wa| < |Us| + 2.

Notice that the proof of achievability of Theorem 4.5 guarantees the existence of (IV, 2VF1 2N Rz
D1, D,) codes, such that D; < D; + e and D, < ¢ [19]. Similarly, Theorem 4.6 implies the
existence of (N, 2VNR1 2NE: "D, 'D,) codes, such that D; < e and Dy < D, + .

A fact that is not mentioned in the original contribution of [19], is that the achievability part
of the Berger-Yeung rate-distortion regions can be easily proved using the Berger-Tung inner
bound in Theorem 4.2. For the first version, we can set W, = U, and Uy (W3, Wa) = W, = U,

thus guaranteeing E [dQ(Uz, UQ)] < e. For the rate expressions we get

Ry > I(U Uy W1 |Wo) = I(Uy; Wi | W) = I(Uy; W1 |Us)
Ry > I(UyUg; Wo|W1) = (Ug; Wa|W1h) = I(Uy; Ug|W1) = H(Us|Wr)
Ri+Ry, > I

|

I U2;W1W2) +I(U1;W1W2|U2)
I UQ; W1U2) + I(Ul; W1U2|U2)
H(Ug) +I(U1;W1‘U2).

(
(
(U1U2; W1W2)
(
(

The achievability proof for the second version follows analogously by setting W, = U; and
U, (Wh, Ws) = Wy =U».

The most salient aspect of Berger-Yeung codes is that they require only one short Markov
chain to work. Based on this property, we will now show how a time-sharing combination of the
family of Berger-Yeung codes that give all points of the form (R;, Ry, D1, 0) with the second
family of Berger-Yeung codes that achieve all points of the form (R, R, 0, D;), enables us
to construct a family of codes for the multiterminal rate-distortion problem, whose region of
achievable rates for arbitrary (D1, D) depends on two auxiliary random variables which obey
the two short chain conditions, but not necessarily the long chain condition.

Theorem 4.7 (Barros, Servetto [13]) Let (U1Us) be drawn i.i.d. ~ p(ujus). For a given dis-
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tortion pair (D1, D) the rate pair (R1, Ry) is achievable if

Ry > I(Uy; UyW, |[Wy) (4.17)
Ry > I(Uy; UiWo|Wh) (4.18)
Ri+ Ry > H(U\Uy) — H(U|UW:) — H(Us|UyWY) (4.19)

where W and W, are two auxiliary random variables, which obey the following conditions:
1. W, - U; — Uyand U; — Uy — W, form two Markov chains,

2. [Wy| < |th] + 2 and [Wh| < |Us] + 2, and there exist Uy (Us, W1) and Us(Uy, W), such
that

3. D, >E [dl(Ul, f]l)] and D, > E [dQ(U2, 02)}.

Proof:  Let C, and C, be two Berger-Yeung codes at different rates, such that R’ = (R}, R))
yields D' = (0,D,) and R" = (RY, Rj) yields D" = (Dy,0). If we use the first pair of
codebooks for the first A N symbols and the second codebook for the last (1 — A)N symbols,
with 0 < A < 1, we can construct a new pair of codes, whose number of codewords is
oNOE+(=NEY) for source Uy and 2V E2+(1-ME3) for source Us,. Consequently, this new pair of
codes will have rates AR+ (1—\)R” and induce the distortions A\D’+(1—\)D",i.e. (1—\)D;
for source U and A\ D, for source Us.

Thus, we can state that the rate-distortion tuple (R1, Ry, D1, Do) = (AR + (1-A)R!, AR, +
(1=X)Rj, (1=X)D1, A D,) is achievable if (R, Ry) obey the time-sharing combination of the
two versions of the Berger-Yeung conditions, i.e.

Ry > MH(ULW) + (1= NI(Uy; WY|Uy) (4.20)
Ry > /\I(UQ;WQ'\Ul)+(1—/\)H(U2|W1") (4.21)
Ri+Ry > AH(UL)+IUsWiTL) + (L= N(H(Uy) + IU5 W), (422)

where W3 and W/’ are two auxiliary random variables, obeying the short chain conditions
Wl — U, — Uy and U; — U, — W3, which correspond to the two families of Berger-Yeung
codes. Furthermore we introduce a time-sharing random variable @2, which is independent of
all other random variables.

Define W, = (Q, Wig), such that W, = W{ = U; with probability A and W; = W/’ with
probability 1 — A. Similarly, define Wy = (Q, Wag), such that W, = W; with probability A
and W, = W' = U, with probability 1 — \. Notice that 1, and W, also obey the short chain
conditions Wy — U; — Uy and Uy — Uy — Wh.
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For the sum rate condition (4.22), we can write

Ri+ Ry > MNH(U)+ I(Uy; Wy|Uy)) + (1 = N (H(Uz) + I(Uy; WY'|Us))
= H(U\Us) — (AH(Us|UiWy) + (1 = X\ H (UL |UWY))
= H(UUsz) — (AH(U2|UW3) + (1 — A\ H (U |UL\ WY )
+AH (U | U W) + (1 = N H (U, |UsW3)) (4.23)
= H(UiUs) — (H(U|U1W2q, Q) + H(U1|U2W10Q))
= H(U,Uy) — H(Us|UyWy) — H(Up |U W),

where (4.23) stems from the fact that H (U, |U,W/) = H(U,|UU;) = 0 and H(U,|U, W) =
H (U, |UUs) = 0. Applying similar steps to the condition in (4.20) we get

Ry /\H(Ul‘Wzl)+(1_/\)I(U1;W1”‘U2)

= MH(U|W3) + (1 — N H(U|WY) — (1 — N H (U |Wy) + M (Uy; W{|Us)
=M (Ur; W{|Us) + (1 = N)I(Ur; WY'|Us)

= H(U1[WaqQ) + 1(Us; W1gQIU2) — (1 = N H(UL|Wy) + M (Ur; Wi|U3))
H(U|W3) + I(Uy; Wh|Us) — (1 — N)H (U1 |Us) + AL(Uy; Uy |Us))
H(U|W3) + I(Uy; Wh|Us) — H(U,|Us)
H(U1|W3) + H(U1|Uy) — H(Uy|UsWh) — H(Uy|Us)
H(U1|Wy) — H(U | U W, Wa)

= I(Ul; U2W1|W2),

and, similarly, for the remaining inequation we get Ry > I(Us; Uy W, | W), thus completing the
proof. [ |

It is easy to prove that the first version of the Berger-Yeung result (D, = 0) can be obtained
from Theorem 4.7 by setting W, = U, and that, similarly, our result specializes to the second
version (D; = 0) of the Berger-Yeung theorem W; = U;. This is not surprising, as the code
construction which achieves all the rate-distortion tuples in our inner bound, is in fact based on
the families of codes which achieve all points in the two versions of the rate-distortion region
of Berger and Yeung.

More interesting is a comparison between our result and the Berger-Tung outer bound. For
this purpose, we must compare the inequalities (4.17)-(4.19) to the inequalities (4.12)-(4.14).
Starting once again with the sum rate condition, we get

H(UUy) — H(Us|Us W) — H(ULUW,) = H(UUs) — H(Us|UW1W2)
—H (U1 |U, W1 Ws) (4.24)
H(UUy) — H(ULU, W, Wy)

I(U Uy Wi W),

v v

where (4.24) follows from the two short chain conditions Wy — U; — Uy and Uy — Uy — Wo.
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Figure 4.4: Our rate-distortion inner bound in comparison to the Berger-Tung outer bound for
a fixed value of (Dy, D).

For the other two conditions, we get

[ Uy Wi |Wo) = H(UUs|Wa) — H(UUs|[ W, Wo)

H(UL W) + H(Us|[U\Wa) — H(Us|WiWs) — H (U, [Us W, W)
H(U,|Wa) — (H(Uy [UsWiWa) + H(Us| U Wa) — H (Us|[WiW2))
H(U:1|Wa) — H(Ui|Us W1 W) (4.25)
I(U; Uy W3 W),

VARVAN

and, similarly, I(U Us; Wo|W1) < I(Uy; UyW,|W1). Notice that (4.25) stems from the fact
that W, — U; — U, forms a Markov chain and therefore H (U |UyWs) — H (Uy|[W1 W) > 0.
Clearly, our region of achievable rates is strictly contained in the Berger-Tung outer bound, as
illustrated in Figure 4.4. As the two bounds are not tight, the problem still requires a different
solution. Nevertheless, our rate-distortion inner bound does allow a direct comparison with the
outer bound and a quantification of the distance between the two bounds, which the Berger-Tung
inner bound clearly does not.

Finally, we point out that since both Berger-Yeung rate-distortion regions are contained in
the Berger-Tung inner region and the latter is convex (see proof in the appendix, Section A.7),
the new time-sharing inner bound is strictly contained in the Berger-Tung inner bound. Thus, we
conclude that the gap between the Berger-Tung outer bound and our time-sharing inner bound,
which we can quantify exactly, is an upper bound to the gap between the two Berger-Tung
bounds, a gap which is difficult to compute due to the difference in the classes of probability
distributions that define them.
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4.2.5 An Alternative Inner Bound

Consider once again the proof of the Berger-Tung inner bound given by Theorem 4.2. The
coding strategy based on separate quantization and distributed source coding is guaranteed to
work if the Slepian-Wolf conditions (4.6)-(4.8) are fulfilled with respect to the guantization
indices 7 and J. To prove that the conditions in Theorem 4.2 are sufficient for (4.6)-(4.8) to be
valid, we used the Markov lemma and showed that these conditions are indeed valid for all W,
and W, that obey the long Markov chain condition W; — U; — U, — W,. Next, we will show
that this coding strategy also works for a collection of auxiliary random variables that obey the
two short chain conditions W; — U; — Uy and U; — U, — W5 but not necessarily the long
one. The result is given by the following theorem, which is proved in the appendix.

Theorem 4.8 (Barros, Servetto [12]) Let (U;, Us) be drawn i.i.d. ~ p(ujuz) and let (W5, Ws)
be a pair of random variables for which there exist functions U, (W1, W) and UQ(Wl, W3) such

that D, > E [dl(Ul, 01)} and Dy > E [dQ(UQ, 02)]. Then, the pair of rates (Ry, R,) is achiev-
able with distortions (D, Ds) if

R1 Z I(UlUQ;W1|W2), (426)
Ry > I(U1U2;W2|W1)a (4-27)
R1 +R2 Z I(UlUQ;W1W2), (428)

for all the pairs (W7, W5) in a collection S having the property that W, — U; — U, and
U, — Uy — W, form two Markov chains.

Notice that not only are expressions (4.26)-(4.28), which define the rate-distortion region,
the same as in Theorem 4.3, but in contrast to Theorem 4.2 (where the auxiliary random variables
W, and W; are required to obey the long chain condition W, — U; — U, — W, our auxiliary
variables are only required to satisfy the two short chain conditions W; — U; — U, and
Uy — U, — W,. This theorem does not yet guarantee that all the (Rq, Ry, D1, Ds) points
promised by the converse Theorem 4.3 and the outer bound are achievable: Theorem 4.8 does
not state that S contains all pairs satisfying a short chain condition, it only says that the pairs
contained in there do satisfy that condition—whether all such pairs are in there or not remains to
be seen. However, this result does suggest that the long chain condition Wy — U; — Uy — W,
is not a necessary condition: we prove that there exist some random variables (W7, W5) which,
obeying only the short chain conditions W; — U; — U, and U; — U, — W, still yield
achievable rate-distortion points.

4.3 The Binary Case with Hamming Distortion

In this section, we want to illustrate the applicability of the previous ideas by considering a
specific case of practical importance: separate encoding of correlated binary sources subject to
the Hamming distortion criterion. Wyner and Ziv considered a similar problem setup in [95]
and derived the rate-distortion function of a binary source with binary side information [95].
Interestingly enough, although Berger and Yeung suceeded at characterizing the rate-distortion
region for the generic case in which one of two memoryless sources must be reconstructed



80 The Multiterminal Source Coding Problem Chap. 4

almost perfectly [19], they were not able to specialize their result to the (apparently simpler)
binary case with Hamming distortion. To the best of our knowledge, the binary case with
two distortion criteria discussed in this section, was not addressed in previous publications on
multiterminal source coding, inspite of its undeniable relevance.

4.3.1 Problem Statement

Let U; and U, be two correlated binary symmetric sources, such that p(U; = 0) = p(U, = 0) =
1/2 and p(Us # Uy) = po With 0 < py < 1/2. U; and U, (or vice versa) can be viewed as the
input and the output, respectively, of a binary symmetric channel with crossover probability p,.
Let the distortion measure be

R 0 ifu =1,
dlu, @) = { 1 otherwise.

For prescribed distortions E [Zszl d(Uyy, Ulk)] < D;+eand E [Z,L d(Usy, ng)] < Dy+e,
our goal is to characterize the achievable rates R; and R, for source U; and Us, respectively.

4.3.2 Achievable Rates

We begin by applying Theorem 4.2, the Berger-Tung inner bound, to the specific case of binary
sources and Hamming distortions. For simplicity, we introduce the following definitions:

ri = (U Wi[Wa) = I(Uy; Wi) = I(Wr; Wa), (4.29)
7"; = I(U2;W2\W1) :I(UQ;W2) _I(WI;WQ)a (4.30)
ry = (U Uy; WiWso) = I(Uy; Wh) + I(Ug; Wa) — I(W1e; Wa). (4.31)

These definitions allow us to rewrite the conditions in Theorem 4.2 as Ry > rf, Ry > 13
and R, + Ry, > rj. Moreover, we will make use of the binary entropy function H,(a) =
—aloga — (1 — a)log(1l — a), and the notation « * b to denote the operation

axb=(1—-a)b+ (1—ba,

as proposed by Wyner and Ziv in [94]. This notation is convenient for cascaded binary sym-
metric channels: if the first channel has crossover probability a and the second channel has
crossover probability b, then the crossover probability from the input of the first channel to the
output of the second channel is a * b.

Next, we define a pair of test channels, as illustrated in Figure 4.5. Let W; be the output
of binary symmetric channel with input U; and crossover probability 0 < ¢; < 1/2. Simi-
larly, let W/, be the output of binary symmetric channel with input U, and crossover probability
0 < d5 < 1/2. Clearly, we have a long Markov chain of the form W, — U; — Uy — Ws.

Consider the following instances of this setup:
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I/Vl 1— 5] U1 1— Po U2 1— 52 I’VQ

W Do 02
01 Do 02

1—(5] 1—p0 1—(52

Figure 4.5: Binary symmetric test channels. We can view the correlated binary sources U; and
U, as the input and the output of a binary symmetric channel with crossover probability py. The
auxiliary random variables W; and W, can be obtained likewise using two test channels with
crossover probabilities d; and d-, respectively.

A. Non-Degenerate W, and W:

Setting Uy, = Uy (Wy, Wy) = Wy and U, = Uy, (W3, Wa) = W, we have the average distortions
E [Zzzl d(Usg, Ulk)] =6, and E [2221 d(Usg, ﬁQk)] = . For the minimum coding rates
we get

7“>1k = I(Ul;Wl)—I(Wl;Wg)
(1 — Hyp(01)) = (1 — Hp(61 % 09 x pp)),
= Hb(51 % 52 *po) — Hb(51)7

and, similarly,

’f'; = ](UQ;WQ)—I(Wl;WQ)
= Hb(61 k 52 *pO) — Hb(ég)

Finally, the required sum rate becomes

7’3 = I(Ul;Wl) +I(U2;W2) — I(Wl;Wg)
= 1- Hb(51) — Hb(ég) + Hb(51 * 52 *po).

We note that for all possible values of §;, 9, and pgy, we have 01 * do * pg > 1 * pg > 01, and
Similarly 51 * (52 * Py > (52 * Py > (52.

B. Degenerate Wy (W; = 0)

Setting Uy, = Uy (W4, Wa) = Wa and Uy = Uy (W3, Ws) = W, we have the average distortions
E [Zzzl d(Uyy, ﬁlk)] = 0y xpo and E | D"}, d(Us, ng) = 9. For the minimum coding
rates we get

ry = ry=1— Hy(ds).
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C. Degenerate Wy(W5 = 0)

Settlng Ul = Ul(Wl, WQ) = W1 and UQ = UQ(Wl, WQ) = Wl, we have E 22:1 d(Ulk, Ulk) =
6 and E |27, d(Usk, Uai) | = 61 % po, and similarly,

ri = ry=1— Hy(ds)

o —
ry = 0.

Now, by taking the lower convex hull over the rate-distortion regions defined by R, > rf,
Ry > 13 and Ry + Ry > 1 for each of the three cases? presented above, we obtain the inner
bound that we seek. For prescribed distortion values 0 < D; < 1/2and 0 < D, < 1/2 for
sources U; and Uy, respectively, we must consider all 0 < 61,5, < 1/2and 0 < A, Ay <1
such that

Dl = )\161 + )\2(52 *po) + (1 — /\1 — )\2)51 = )\2((52 *po) + (1 — /\2)51
D2 = )\1(51 *po) + /\252 -+ (1 — )\1 — )\2)(52 = )\1(51 *po) + (1 — /\1)(52.

Since the functions r}, 2 = 0, 1, 2 are convex (see the appendix, Section A.7), we can obtain the
corresponding minimum rates R; according to

R = A -(1—=Hp(61))+A2- 04+ (1= A1 — Ag) - (Hp(61 % 92 % po) — Hp(61))

RS = A0+ A (1= Hy(02) + (1= At — Ao) - (Hy(6 # 6 # po) — Hi(02))

R = M- (L= Hy(6) + Ao+ (1= Hy(61) 4 (1= A — Ao) - (Hy(1 % 62 % po))
—Hy(d1) — Hy(02))-

4.4 Cooperative Multiterminal Source Coding

Having studied the classical multiterminal source coding problem in detail, we will now take
into consideration the effects of partial cooperation between encoders. For this purpose, we
re-formulate the problem using the conference mechanism explained in Chapter 3.

4.4.1 Problem Statement

Assume two sources U; and Uy, which are drawn i.i.d. ~ p(uu5) from two finite alphabets, de-
noted U/, and U,. The two sources are processed by two separate encoders, which can exchange
messages over two independent links at rates R, and R, prior to encoding, with information
flowing in opposite directions, as illustrated in Figure 4.6.

A conference among encoders is specified by a set of 2K functions

hlk :LllN X V21 X ... X Vg(kfl) — Vlk:
h2k Z/{QN X Vi1 X ... X Vl(lc—l) — VQk,

2The case when both W, and W, are degenerate is not relevant, because it corresponds to the maximum
distortions Dy = Dy = 1/2and Ry = Ry = 0.
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We say that the rate-distortion tuple (R1, Ry, Ri2, Ro1, D1, D5) is achievable if for any € > 0
and sufficiently large N and K a (R, Ry, Ria, Ro1, N, K, D1, D5) code exists such that D; <
D; + eand Dy, < D, + e. Finally, the rate-distortion region R(D) of the two sources is the
closure of the set of achievable rate distortion tuples (R1, Rs, R12, Ra1, D1, Ds). The goal of
the problem is to give a complete characterization of the rate-distortion region in terms of single
letter information theoretic quantities.

4.4.2 Lossless Cooperative Source Coding (CSC)

A. The CSC Rate Region with Two Sources

We start by solving the cooperative source coding problem formulated in the previous section,
for the case of perfect reconstruction at the receiver (lossless compression), i.e. D; = Dy = 0.
The corresponding rate region, which generalizes the result of Slepian and Wolf, is given by the
following coding theorem.

Theorem 4.9 (Barros, Servetto [15]) The sources (U Us,) ~ p(ujuz) can be encoded at rates
(R1, Ry), respectively, and perfectly reconstructed at the decoder if and only if

R > H(UL|U»Z)
Ry, > H(Us|U,2Z)
Ri+ Ry, > H(UU,)
Ry, > I(Uy; Z|Us)
Ry > I(Uy; Z|Uh)

where Z is an auxiliary random variable, such that p(u u2z) = p(uius)p(z|uius).

Proof: We now prove the existence of codes that satisfy the conditions of the theorem.
Partition the set ¢, in M, cells, indexed by v; € {1,..., My}, such that v;(uy) = ¢ if uq is
inside cell ¢;. Similarly, partition the set 4, in M, cells, indexed by v, € {1,..., My}, such
that ve(ug) = co if uy is inside cell c,.

Prior to transmission encoder 1 sends v, for each observed value u; to encoder 2, and the
latter sends to the former the index v, for each observed value u,. Let Z = (V;1V5). Since
(V1V4) are functions of the source random variables (U;U,), Z is also a random variable and a
function of (U,Us), which in turn means that p(uiu2z) = p(uius)p(z|uiusg) is a well-defined
probability distribution.

We will now show that the rates R, > H(V1|U,) and Ry; > H(V5|Uy) are sufficient for
VN and V¥ to be exchanged between the encoders with arbitrarily small probability of error.
The encoders are informed about the joint probability distribution p(uquov;v;), from which
they can obtain the marginals p(u;v2) and p(usv;). Notice that these two distributions can be
viewed as two pairs of correlated sources (U;Vz) and (U,V}). Since Us" is perfectly known at
encoder 2, it follows from the Slepian-Wolf theorem for (U, V1) that V;V can be compressed at
rates R, > H(V1|U,) and still be reconstructed perfectly at encoder 2. Similarly, V2" can be
compressed at rates Ry; > H(V,|U;) and still be reconstructed perfectly at encoder 1. Thus,
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we can write

Ry, > H(W|Us)
H(ViVa|Uy)
H(Z|Us) — H(Z|UUs)
= I(Uy; Z|Uy)

and similarly Ry > I(Us; Z|Up).

Let U] = (U1 Z) and Uj = (U, Z). Since U, and U, are i.i.d. sources, then Z = f(U,Us)
is also i.i.d. and U and U}, can be viewed as two i.i.d. sources ~ p(ufu)) = p(uiuqez). Then
according to the Slepian-Wolf theorem the following rates are achievable:

Ry > H(U\|Uy),
Ry, > H(U|Uy),
Ri+ R, > H(UUY.

Substituting U; = (U1Z) and U}, = (UsZ), we get

R1 > H(U1Z\U2Z) :H(Ul‘UQZ),
R2 > H(U2Z|U1Z) :H(UQ‘U1Z),
R+ Ry > H(U1U2Z) = H(UlUg)

The converse part of the proof is based on Fano’s inequality and standard techniques. Details
can be found in Appendix A.6. [ |

B. Lossless CSC with an Arbitrary Number of Sources M > 2

The arguments used to prove Theorem 4.9 can be easily extended to the case of M > 2 sources,
yielding the following result.

Theorem 4.10 (Barros, Servetto [15]) A set of correlated sources UM = {U,U, ... Uy} can
be encoded with partially cooperating encoders if and only if there exist random variables Z;;,
1 <i<j < M,such that

R(S) > H(U(S)|U(S9)Z(S°)), (4.32)

for all subsets S C {1,2,..., M}, where S¢ denotes the complement of S, U(S) = {U; : j €
S}, Z(S) = {Z” 1€ 8 orje S} and I(ZZJ, Uz‘UJ) < RZ]

Proof: ~ The achievability proof is based on the M-source version of the Slepian-Wolf theo-
rem [28, Theorem 14.4.2], whereas the converse proof uses the same arguments as the converse
proof of Theorem 4.9 but with 2™ — 1 inequalities. Since the proof contains no new ideas we
omit the details. [ |
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R .
U,— Encoder 1 Lo — U
A
Rys Ry Decoder
Y
Ry -
U,— Encoder 2 > Uy

Figure 4.6: A cooperative version of the multiterminal source coding problem.

such that the conference message Vi, € Vi, (or Vo, € Vsy) of encoder 1 (or encoder 2) at time
k depends on the previously received messages V.~ (or V*~') and the corresponding source
message. A conference is said to be (R12, Ry )-admissible if and only if

K
> log, [Vik| < NRys,
k=1

and

K
ZlOgQ ‘V2k| S NRQl.

k=1
The encoders are two functions:

iU x Vo x oo x Vo — {1,2,...,2NF1}
fo:UN x Vi x . xVig — {1,2,...,2VF),

These encoding functions map a block of N source symbols U}, i € {1,2}, observed by each
encoder, and a block of K" messages received from the other encoder, to a discrete index f; (U}).
The decoder is a function

g:{1,2,... 2Ny 1,2, 2Ny N

which maps a pair of indices into two blocks of reconstructed source sequences.
Let the distortion measures be

dy: Uy x Uy — RY and dy: Uy x Uy — RT.
An (Ry, Ry, Ri3, Ry1, N, K, Dy, D5) code is defined by
e two encoding functions f; and f,
e a decoding function g,
e a (Ry2, Ry )-admissible conference of length K,

e a distortion pair D; = E %Zf\; dl(Uu,Uu) ,and Dy = E %Zf\; dQ(UQi’UQi) ’
where (UNUY) = g(f1(UY), f(UN)).
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C. A Network Flow Interpretation of the Rate Region

The net effect of cooperation on the classical Slepian-Wolf rate region is to relax the condi-
tions on the minimum amount of data required from each encoder, to the extent allowed by the
conference network. This is illustrated in Figure 4.7.

S
: Slepian Wolf
= Region

H(ULU,) |

H(Uy)

H(U.|U>)1

1(Uy; Z|U.
H(U,|UZ [0 210%)

H(Uz) et s Rl
H(U,Uy)

SHEe)
S
= T

Figure 4.7: An example to illustrate the effect of cooperation among encoders. With cooper-
ation we can enlarge the Slepian-Wolf rate region by the exact amount information exchanged
by the encoders over the conference links (the dark shaded portion of the picture).

For M = 2 sources, we can offer an intuitive interpretation in terms of flow networks [88]:
the two sources of correlated information (U;U) can be viewed as two distinct commaodities
that must be transported to the sink. The first commodity U; can either flow directly from
encoder 1 to the decoder, or indirectly via encoder 2, and similarly for the second commodity
U,. What the converse part of our cooperative source coding theorem shows is that, analogously
to the classical multi-commodity flow problem, rates (R, R») (i.e. the amounts of flow for each
commodity) are feasible if and only if there exists a way to split H(U,Us) information bits
among the two sources, and a way to route all the information for each source partly over the
direct path to the decoder and partly through the conference links—this interpretation is further

developed in [8].
4.4.3 Rate-Distortion Bounds for Cooperative Source Coding

In this section, we apply the conferencing techniques explained in the previous section, to obtain
inner and outer bounds for the rate-distortion version of the problem. Our proofs are based on
the work of Berger and Tung for the classical multiterminal source coding problem, explained
in detail in Section 4.2.
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A. Inner Bound for Cooperative Source Coding

Based on the conference mechanism presented in Section 4.4, and the forward part of Berger and
Tung’s theorem, we are able to obtain sufficient conditions for the existence of rate-distortion
codes for cooperative source coding.

Theorem 4.11 (Barros, Servetto [15]) Let (U;U;) be drawn i.i.d. ~ p(ujus). For a given
distortion pair (D1, Ds), there exist codes with rates (R, Rs), where

Ry > I(UyUy; Wi |Wo)
Ry > I(UyUy; Wo|Wr)
Ri+Ry > I(U\Uy: Wi Ws)
Ry > I(Uy; Z|Uy)
Ryy > I(Uy; Z|Uy),

if there exist auxiliary random variables Wy, Wy, Z, such that the joint distribution of all vari-
ables is of the form p(ujus)p(z|uius)p(w:|ui2)p(ws|usgz), and for which there exist recon-
struction functions U, (Wy, Ws) and Us(Wy, Ws) such that D; > E [dl(Ul,Ul)} and Dy >

E [dQ(UQ, UQ)} .

Proof: ~ We start with the conferencing mechanism and then obtain achievability conditions
by applying Theorem 4.2. The conference messages (V;V5) are generated using the partitions
explained in the proof of Theorem 4.9, such that by defining the auxiliary random variable Z =
(V1V,) we obtain a well-defined probability distribution p(uiusz) = p(uiug)p(z|uiusg). It fol-
lows from the proof of Theorem 4.9 that conditions Ry, > I(Us; Z|Usy) and Ry > 1(Us; Z|Uh)
are sufficient to guarantee perfect recontruction of V5 at encoder 1 and V; at encoder 2.

Let U] = (U1 Z) and U} = (UsZ). Since U; and U, are i.i.d. sources, then Z = f(U,Us)
is also i.i.d. and U7 and U} can be viewed as two i.i.d. sources ~ p(ufub) = p(ujuqz). Then,
according to Theorem 4.2, there exist codes at rates

Ry > I(UUy Wh|Wa) = I(U\UyZ; W1 [Wy) (4.33)
RQ Z I(UéUé,WQ‘Wl) = I(UlUQZ; W1|W2) (434)
Ri+ Ry > I(UUyWiWa) = I(U U Z; WiWa), (4.35)

where Wy, W, are random variables such that p(u{ubwiws) = p(ujub)p(w:|u}) p(wslub),
or similarly p(ujuszwiwy) = p(uiug)p(z|uius)p(wi|uiz)p(wse|usz). Since Z = (V1Vs) and
(V1V3) are functions of (U;U,) we can omit Z in (4.33)-(4.35), thus obtaining the same condi-
tions as in Theorem 4.2. [ |

B. Outer Bound for Cooperative Source Coding

We are also able to obtain necessary conditions for the existence of rate-distortion codes for the
cooperative source coding problem:
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Theorem 4.12 (Barros, Servetto [15]) For a given distortion pair (D, D) all achievable
rates (R, Ry) must satisfy the following conditions:

Ry, > I(UyUy; W1 |Ws)

Ry > I(UyU; Wo|Wy)
R+ Ry > I(UyUy; WiW5)

Ry > I(Uy; Z|Uy)

Ry > I(Uy; Z|U),

where (i) the joint probability distribution p(u;us)p(z|uius)p(wiws|uiusz) is such that Wy —
U7 — Uy and U, — Uy Z — W, form two Markov chains, and (i) there exist Ul(Wl,WQ)
and Uy(Wy, Ws), such that D, > E [dl(Ul, Ul)} and D, > E [dz(UQ, (72)].

Proof: The proof uses the same arguments as the proof of the Berger-Tung outer bound
(cf. [90]), and the proof of Theorem 4.9, therefore we omit it here. [ |

C. Two Important Remarks
1) The inner and outer bounds for cooperative source coding may or may not be tight.

As in the non-cooperative case, the descriptions of the inner and outer bounds are based on
different sets of auxiliary random variables. The former imposes a long chain Markov condition
Wy — U, Z — Uy Z — W5, whereas the latter only requires two short chains Wy — U1 Z — U,
and U; — UyZ — W,. This situation is entirely analogous to that of the classical problem
without cooperation (same rate expressions, description differs only in that the inner bound
requires W, — U; — U, — W, whereas the outer bound requires W, — U; — U, and
U, — Uy — W, and therefore, cooperation does not lead to any new insights: solving our
problem with cooperation is unfortunately exactly as hard as solving the classical problem.

2) Cooperation does generate new achievable rate pairs.

Although all four rate expressions (inner and outer bounds, with and without cooperation) are
identical, this does not imply that the rate-distortion region with and without cooperation are
identical. The subtle difference lies again in the set of auxiliary random variables 1W; and W5,
which do not have the same constraints in both cases. In the non-cooperative inner bound, they
must form a long Markov chain of the form W, — U; — Uy — W5, whereas in the cooperative
inner bound, they depend on the two sources and the conference messages Z leading to the long
chain W, — U, Z — Uy Z — Ws,. As argued in the paragraph above, like in the case without
cooperation, we do not know whether or not there are rate pairs generated by distributions of
the form W, — U, Z — U, and U; — UsZ — W, that are not already contained among those
rate pairs generated by distributions of the form W, — U,Z — UsZ — W,. However, we do
know that there are rate pairs generated by distributions of the form W, — U, Z — Uy, Z — W,
(for the inner bound with cooperation) which cannot be generated by distributions of the form
Wy — U; — Uy and Uy — Uy — Wy (for the outer bound without cooperation): consider the
case in which Z = Uy, such that by communicating at rates Ry, > I(Uy; Z|Us) = H(U|Us)
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encoder 2 is able to reconstruct the source block U perfectly prior to encoding. Then, the
encoders can operate for example at rates (R, Ry) = (0, I(U,Uy; W1 W3)), corresponding to
a rate-distortion tuple which in the general case is clearly outside of the region defined by the
non-cooperative outer bound.

4.5 Summary and Conclusions

In this chapter, we showed that a natural extension of the sensor reachback problem from a rate-
distortion perspective leads directly to the long-standing multiterminal source coding problem.
After showing through a new proof that separate quantization followed by Slepian-Wolf com-
pression achieves all the rate-distortion tuples given by the classical inner bound of Berger and
Tung, we presented two new rate-distortion regions which overcome one of the major obstacles
towards a complete solution for the problem: the long Markov chain W, — U; — Uy — W
An important feature of the new inner bound based on time-sharing of Berger-Yeung codes is
that it allows us to determine the gap between known achievable rates and the outer bound of
Berger and Tung. Turning our attention to a practical example — binary sources with Hamming
distortions — we showed how to apply the presented techniques in order to obtain a partial car-
acterization of the rate-distortion region.

Another key contribution in this chapter was the extension of the multiterminal source cod-
ing problem to the case of partial cooperation between encoders. Although we encountered the
same technical difficulties as in the non-cooperative case, it is worth pointing out that once the
classical multiterminal source coding problem without cooperation is solved, our results in the
previous section automatically allow us to obtain a solution for the problem with cooperation.
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In the previous two chapters, we studied the fundamental limits of reachback communica-
tion in sensor networks using some of the mathematical tools provided by network information
theory. Said information-theoretic approach allows us to make very general and durable state-
ments about communications systems, albeit at the cost of a somewhat idealistic assumption —
the encoding and decoding algorithms have unbounded complexity. Our goal in this chapter, is
to re-investigate the sensor reachback problem from a more practical point of view, using a ba-
sic system setup that allows us to identify a practical complexity bottleneck and find realizable
solutions based on contemporary estimation techniques.

5.1 Introduction

5.1.1 Problem Background

Consider once again a large-scale sensor network, in which hundreds of sensor nodes pick up
samples from a physical process in a field, encode their observations and transmit the data back
to a remote location over an array of reachback channels. The task of the decoder at the remote
location is then to produce the best possible estimates of the data sent by all the nodes.

In Chapter 3 we showed that the correlation between the measurements of different sensors
— a condition that must be necessarily true whenever we have a large number of nodes sensing
a physical process within a confined area — can in general be exploited to improve the decoding
result and thus increase the reachback capacity of the network. This principle holds, even when
the sensor nodes themselves are not capable of eliminating the redundancy in the data prior

1All roads lead to Rome.



92 Scalable Decoding for Sensor Reachback Chap. 5

to transmission, as explained in Section 3.2.5. To fulfil this data compression task each node
would have to use complex Slepian-Wolf source codes, a requirement that may well turn out to
be impractical for large-scale sensor networks. In that case, the decoder can still take advantage
of the remaining correlation to produce a more accurate estimate of the sent information.

The previous observation motivates us to consider now a reachback communications model,
in which the system complexity is shifted from the sensor nodes to the receiver, in other words
a reachback network with very simple encoders (e.g. a scalar quantizer, a bit mapping and a
modulator) and a decoder of increased yet manageable complexity. Our goal is then to devise a
practical decoding algorithm for this instance of the sensor reachback problem.

5.1.2 Main Contributions

Assuming a large-scale sensor network with hundreds of nodes, we argue that the optimal de-
coder based on minimum mean square error (MMSE) estimation is unfeasible, because its com-
plexity grows exponentially with the number of sensors in the network. To guarantee the scala-
bility of the decoding algorithm, we propose the following approach. First, we construct a factor
graph [58] that models the correlation between the sensor signals in a flexible way depending
on the targeted decoding complexity and the desired reconstruction fidelity. Then, based on
this factor graph, we use the belief propagation algorithm (often called the sum-product algo-
rithm [58]) to estimate the transmitted data. We are able to show that by choosing the factor
graph in an appropriate way we can make the overall decoding complexity grow linearly with
the number of nodes.

Naturally, the performance of the decoding algorithm depends heavily on the accuracy of
the chosen factor graph as a model for the correlation in the sensor data. For large-scale sensor
networks with arbitrary topology, we show that factor trees are particularly well suited for this
application, because (a) they can be easily optimized, (b) they have no cycles thus allowing
the belief propagation algorithm to yield an accurate solution, and (c) they provide a simple
way to compute an exact complexity count for the associated decoder. Using the Kullback-
Leibler distance as a measure of the fidelity of the approximated correlation model, we give a
detailed mathematical treatment of factorization of multivariate Gaussian sources and a set of
optimization algorithms for different classes of graphs. Moreover, we investigate the impact of
degree constraints on the function nodes of the tree and find optimal trees for several instances
of the problem.

Finally, we add a number of examples and numerical results that underline the performance
and scalability of the proposed approach. It turns out that under reasonable assumptions on
the spatial correlation of the sensor data, the performance of our decoder is very close to the
optimal MMSE solution.

5.1.3 Related Work

The idea of exploiting the remaining correlation in the encoded data to enhance the decoding
result was already present in Shannon’s landmark paper [82]. This principle was put effectively
into practice by Hagenauer in [43], triggering many contributions that exploit the redundancy
left by suboptimal quantizers in combination with convolutional codes or turbo codes [21] and
powerful iterative decoding schemes [44]. More recently, this approach has also been success-
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fully implemented using low-density parity-check codes (see [56] and the references therein).

5.1.4 Chapter Outline

The rest of the chapter is organized as follows. Section 5.2 sets the stage for the main decoding
problem by describing the system setup and elaborating on the drawbacks of the optimal de-
coder. Then, Section 5.3 describes our approach based on factor graphs and iterative decoding,
and presents a few examples. The crux of this chapter is the set of optimization tools presented
in Section 5.4. This chapter concludes with some numerical results in Section 5.5 and some
comments in Section 5.6.

SensorNodel T
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Figure 5.1: System model. M correlated samples are separately encoded by A sensor nodes,
consisting of a scalar quantizer, a bit mapper and a modulator. The data is then transmitted over
an array of independent AWGN channels and decoded jointly at the receiver.

5.2 Problem Setup
5.2.1 System Model

The basic system model that accompanies us throughout this chapter is illustrated in Figure 5.1.
We begin with a brief explanation of useful notation and a precise description of the source
model, the encoding procedure and the reachback channel.

Notation

In the following, we consider all vectors to be column vectors and denote them with small
bold letters. On the other hand, matrices are denoted with capital bold letters, unless otherwise
stated. The expression 0, corresponds to the length- N all-zero column vector, Iy isthe N x N
identity matrix, and |A| denotes the determinant of A. We will often refer to the covariance
defined as

Covix,y} £ E [xy"]-E[x|E[y]",

where E [-] denotes again the expected value. An N-dimensional random variable with realiza-
tions u = (u; ug ... un)T, u; €R, is Gaussian distributed with mean g = E [u] and covariance
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matrix R = Cov{u, u}, when its probability density function (PDF) p(u) is given by

p(u) = exp(—(u— )R (u— )/ (2n[R])"* 51)

Such a PDF is simply denoted as M (i, R).
Source Model

Each sensor & observes at time ¢ continuous real-valued data samples u(t) withk=1,2,..., M.
For simplicity, we assume that the M sensor nodes are placed randomly on the unit square and
focus on the spatial correlation of measurements and not their temporal dependence. Thus,
we drop the time variable ¢ and consider only one time step. Nevertheless, we do point out
that the discussed techniques can be easily extended to account for sources with memory. The
sample vector u = (uy us ... upr)” at any given time ¢ is assumed to be the realization of an
N-dimensional Gaussian random variable, whose PDF p(u) is given by A/ (0,,, R) with

1 P12 - PiL,Mm
1 ...
R — P2.,1 | | ,02.,M
PmMa1 Pmz2 - 1

It follows that the samples u; have zero mean E [u]| and unit variance Cov{uy, ux}. Gaussian
models for capturing the spatial correlation between sensors at different locations are discussed
in [78], whereas examples of reasonable models for the correlation coefficients py, x = E [ujuy]
of physical processes unfolding in a field can be found in [32]. In the following, we make two
simplifying assumptions:

1. the sensors are randomly placed in a unit square according to a uniform distribution

2. the correlation between the measurements of any two sensors decays exponentially with
the Euclidean distance between them.

Denoting the position of sensor m as z,, = [z (1), 2m(2)]F, we can write the distance between
two sensors ¢ and j as l; ; = ||z; — z,||, such that the correlation between their measurements is
given by p; ; = exp(—f - l; ;), where (3 is a positive constant.

Encoding

We assume that the sensors are “cheap” devices consisting of a scalar quantizer, a bit mapper
and a modulator?. Sensor k quantizes the sample u;, to output the index i, € £={1,2,...,2%},
such that 7, is represented by @ bits. There are 2¢ reconstruction values (i) € R also indexed
by i, € £. The modulator maps i, to a tuple x, of channel symbols, which are transmitted to
the remote receiver. In our examples we use binary phase shift keying (BPSK), such that in
a discrete-time baseband description of our transmission scheme 7, is mapped first to a binary
codeword wy, and then to @ channel symbols x, = (2.1 ... Tk,g), Tk, € {+1, —1}.

2The chosen models for the encoder and the channel may seem too simple, yet they allows us to focus on the
essential aspects of the problem and highlight the key features of our decoding algorithm. The latter can be easily
extended to include, for example, more sophisticated channel coding.
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Reachback Channel

As we argued in Chapter 3, since all sensors must transmit some data to the central receiver
all the time, reservation based medium access protocols (e.g. TDMA or FDMA) are a very
reasonable choice for this type of reachback networks. Thus, we assume that the reachback
channel is virtually interference-free, i.e., the joint PDF p(y;...yum|x1...xys) factors into
[1:2, p(yklxk). In addition, we model the reachback channel as an array of additive white
Gaussian noise (AWGN) channels with noise variance 2. Assuming coherent demodulation,
we write the channel outputsas y, = x,+nx, k£ = 1,2, ..., M, where ny, is distributed according
to N(OQ, 0'2IQ).

Having defined the main building blocks on the transmitting side of our reachback network, we
now turn our attention to the decoding algorithm at the receiving end.

5.2.2 Optimal MMSE Decoding

After obtaining y; from each sensor, the decoder uses y = (y1 ys,---,¥ar)” and the available a
priori knowledge® of the source correlation R to produce the estimates i, of the measurements
ug. Since we are interested in obtaining reconstructed samples 4, with high fidelity, the chosen
figure of merit to be minimized by the decoder is the mean square error (MSE) E [(4iy, — (i) )?],
which in this case is achieved by the conditional mean estimator (CME, [74]):

i = Efa(i)|y] = > a(i) - plix = ily). (5.2)

viel

Notice that for PDF optimized quantizers this estimator also minimizes the MSE E [(a; —uy,)?|
between 4, and uy [52]. Clearly, in order to perform optimal decoding, we require the posterior
probabilities p(ix|y), which in this case are given by

plic=1dly)=~v- Y. pylpd), (5.3)

ViELM i =i

where i = (iydy...0p7)" and v = 1/p(y) is a constant normalizing the sum over the prod-
uct of probabilities to one. Since the AWGN channels are independent, p(y|i) factors into
T1iZ, p(ylix), with p(ye|ix) given by N (x4 (ix), 0%Ig). In addition, we require the proba-
bility mass function (PMF) p(i) of the index vector i, which can be obtained by numerically
integrating the source PDF p(u) characterized by R over the quantization region indexed by i.
Alternatively, one can resort to Monte Carlo simulations in order to estimate p(i), a task which
needs to be carried out only once and can therefore be performed offline.

To measure the computational complexity of the decoding process, we count the number
of additions and multiplications required to compute the estimates , for all k. The decoding
operation can be split into 3 steps:

1. Calculate p(yy|ix) for all k.

31t is reasonable to assume that for a large class of sensor applications, such as environmental monitoring or
precision farming, the correlation matrix R can be obtained from past observations of the targeted physical process.



96 Scalable Decoding for Sensor Reachback Chap. 5

2. Marginalize i in p(i) - [[oz, p(yxlix) for all k:

m@iy) = > p)- [[p(yslir)- (5.4)
ViELM sy =i k=1

3. Calculate 4y, for all k using p(ix|y) = v - m(ix).

Steps 1 and 3 require a number of additions and multiplications which is linear in the number
M of sensors. In contrast, step 2 requires M (29(™1)_1) additions and A/229™ multiplications
to compute the marginals m(i) for all k£, which becomes unfeasible for sensor networks with a
large number M of nodes. For example, for a reachback network with 100 sensors and @ =1,
i.e. one-bit quantization, we would have to perform 1032 multiplications and 103° additions!

5.2.3 Problem Statement

From the previous observation we conclude that the MMSE-optimal decoder is unfeasible with
step 2 as the major bottleneck — its computational complexity grows exponentially with the
number of nodes in the network. Our goal is thus to find a scalable decoding algorithm yielding
the best possible trade-off between complexity and estimation error.

5.3 Scalable Decoding using Factor Graphs

In this section, we present a scalable decoding solution based on factor graphs and the belief
propagation (BP) algorithm [58]. These tools enable us to control the computational complexity
of the decoding algorithm using the following two-step approach. First, we define a simplified
approximate model of the dependencies between the samples u,, by constructing a suitable
factor graph. Then, we perform belief propagation decoding on the factor graph defined in the
first step, in order to produce the desired data estimates with complexity growing linearly with
the size M of the reachback network.

5.3.1 Factor Graphs and the Belief Propagation Algorithm

A factor graph depicts a function of typically many variables, which factors with respect to
a suitable operation such as multiplication. There are two types of nodes in a factor graph:
variable nodes representing the variables and function nodes representing the factors. The de-
pendencies between variables and factors are indicated by edges connecting some of the nodes.
We use the term degree of a node to refer to the number of edges connected to a certain node.

Going back to our problem, the function that needs to be factorized is p(i)- [ [r—, p(y«|ix), as
stated in step 2 of the decoding operation explained in the previous section. The corresponding
factor graph, illustrated in Figure 5.2 for M =9 sensors, consists of M variable nodes (one for
each index i in the index vector i) and M +1 function nodes (one degree-1 node for each of the
M PDFs p(yy|ix) and one degree-M node for p(i)).

Although factor graphs are certainly not the only way to design a decoder for the reachback
network, there are several properties that make this tool particularly appealing for the problem
at hand:
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Figure 5.2: The factor graph of the function p(i)- [T,_, p(yx|ix) for the sensor network depicted
in (a), consists of 9 variable nodes for each index 7, (circles), 9 function nodes for each factor
p(yxlix) (empty boxes), and a function node for the factor p(i) (filled box), as shown in (b).
Notice that the positions of the variable nodes conveniently correspond to the actual sensor
positions.

A) The factor graph reflects the network topology.

Assuming the positions of the sensor on the unit square are known, their dependencies can be
easily depicted by connecting the corresponding variable nodes, as illustrated in Figure 5.2.

B) In combination with the belief propagation decoding algorithm the factor graph yields the
desired estimates directly.

Based on the factor graph we can compute the marginals m(i;) very efficiently using the well-
known belief propagation (BP) algorithm (for a detailed description, see [58]). The main idea
is to let the nodes pass “messages” to their neighbours along the edges of the graph. As long
as the factor graph is cycle-free, the BP algorithm yields the correct marginals m(iy) in the M
variable nodes. Otherwise, the BP algorithm becomes iterative (the messages circulate forever)
and the desired marginals m (i) cannot be computed exactly*.

C) The resulting algorithmic complexity can be easily computed directly from the factor graph.

Cycle-free factor graphs have another very useful property: the number of additions and mul-
tiplications required during message passing can be derived directly from the degrees of the
variable nodes and the function nodes [5]. For our factor graph, in which the variables are
drawn from the alphabet £ of size 2%, these numbers are as follows:

1. A variable node of degree d, requires d,(d, —2)29 multiplications (a message consists
of 2% values, d, messages must be computed, d, —2 multiplications per message) for
the messages sent to other function nodes and (d, —1)2%9 multiplications to compute the
marginal m(-).

4Surprisingly, in many applications, the loopy version of the belief propagation does yield sufficiently accurate
results [58].
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2. A function node of degree d; requires d(d;—1)29% multiplications and d ;(29(%1 —1)
additions [5].

These complexity counts hold for graphs with cycles as well, but the number of operations
scales with the number of iterations performed during message passing. From these formulas
we can obtain the complexity count for message passing on the factor graph that represents the
function p(i) - Hklep(yk\z’k), corresponding to the MMSE-optimal decoder outlined in Sec-
tion 5.2.2, as shown in Table 5.1.

Table 5.1: Complexity count for the optimal MMSE decoder.

| additions | multiplications
M variable nodes 0 M2€9
M func. nodes for p(y|ix) 0 0
function node for p(i) MM _1) | M(M—1)29M

5.3.2 Scalable Decoding on Factor Trees

The large number of operations required to compute m(i,) for all £ can decrease tremendously
if p(i) factors into functions with small numbers of arguments (indices i) yielding function
nodes with small degree. There are general ways to factorize a joint PMF such as the chain
rule, e.g.

p(i) =p(i1)p(iz|ir)...p(ine|i1 - - - inr-1),

where each factor is again a PMF. However, some factors in this factorization still evidence a
large degree (up to degree M) and the factor graph contains cycles, so that the BP algorithm
cannot be exact. To overcome this drawback, we propose factorizations which yield a factor
tree. As explained above, for this class of factor graphs the message passing algorithm is exact
(i.e., it computes m(ix) correctly). Moreover, we can restrict the connectivity of the factor
tree by limiting the function nodes to have a prescribed degree. For example, if we factorize
according to p(i) = g1(41) g2 (42, 91)-..gar (iar, iar1) fOr some functions g (-), we get a chain-like
factor tree, whose function nodes have degree at most two.

In most cases the PMF p(i) derived from p(u) will not have a structure leading to such a
factorization, and we must seek an approximate source distribution p(u) that does lead to a PMF
p(i) with the desired properties. It is important to note that since a particular index i, depends
only on the source symbol wu; (scalar quantization), any factorization of 5(i) implies the same
factorization of p(u) and vice-versa. Consider the following factorizations of p(u) and (i),
which will be addressed in more detail in Section 5.4:

Scalar decoding: Suppose that p(u) and p(i) factor into M functions with a single argument:
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Figure 5.3: Factor trees similar to that in Figure 5.2 for the functions () [Tre, P(v«|ix) gk (ix)
(degree 1 function nodes), (b) H,ﬁilp(yk\ik)gk(ipk, iq,) (degree 1 and 2 function nodes), and
(©) H,ﬁilp(yk\ik)gk(z‘pk,iqk, ir,) (degree 1,2, and 3 function nodes).

The corresponding approximate marginals /(i) are given by H,ivilp(yk\ik)gk(ik), which
yields the factor tree in Figure 5.3(a) for our example sensor network with M = 9 sensors.
Obviously, no information about the correlations between sensors is considered. The complex-
ity count is shown in Table 5.2.

Table 5.2: Complexity count for the scalar decoder.

| additions | multiplications

M variable nodes 0 M29
M function nodes for p(yg|ix) 0 0
M function nodes for gy (ix) 0 0

Decoding with degree-2 factor tree: Suppose that p(u) and p(i) factor into M —1 functions
with 2 arguments:

M-1 M-1

ﬁ(u):ka(upk’u%) and ﬁ(i):Hgk(im’i%)a

k=1 k=1

where p,, indicates the index of the main variable and ¢, specifies the index of the conditioning
variable, e.g. with (pg, ¢x) = (3,1) we get fi(up,, uq,) = p(us|uy). Exactly M —1 such factors
are required to connect all M sensors in a tree. The corresponding approximate marginals 77 (i)
are given by TTo," p(yxlir) gk (ip,, g, )- A possible factor tree for this factorization as shown
in Figure 5.3(b) for the index pairs (1,2), (1,6), (4,6), (3,9), (5,9), (4,5), (7,8), and (4,7).
Table 5.3 shows the corresponding complexity count.

There are numerous other factorizations yielding different complexity counts. One possibility
is to increase the admissible degree of the function nodes. As an example, consider the factor
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Table 5.3: Complexity count for the degree-2 factor graph decoder.

\ additions | multiplications
M variable nodes 0 M2°
M function nodes for p(y|ix) 0 0

M —1 function nodes for g (i, ,iq, ) | 2(M—1)(22 1) | 2(M—1)229

tree shown in Figure 5.3(c), where p(i) factors into

91(%1,%2)g2(73, 19) g3 (%1, 14, i6) g4 (14, U5, 19) g5 (i4, 7, 13),

i.e. the largest admissible degree is 3. If we do allow graphs with cycles or clusters of vari-
able nodes, we end up with a very large class of factors graphs, which admit an iterative BP
algorithm [16, 60].

5.4 Model Optimization

The performance of the scalable decoder proposed in the previous section naturally depends on
how well the factor graph model is able to approximate the given source distribution. In this
section, we will provide a set of optimization tools that allow us to find adequate factorizations
of the joint probability distribution p(u). We begin with a brief justification for the chosen
optimization criterion.

5.4.1 Optimization Criterion

According to the problem statement in Section 5.2, the ultimate goal of our decoder is to mini-
mize the mean square error between the transmitted samples and the reconstructed values. For
this purpose, we require the approximated distribution used by the decoder to be as close as
possible to the original distribution, while observing the imposed complexity constraint. As we
have seen in Section 5.3.2, the number of operations required to produce the desired estimates
can be computed directly from the chosen factor graph — thus, we can meet the target complex-
ity by selecting an adequate factor graph or, equivalently, an adequate constrained factorization.

Thus, to solve the problem we must determine the functions f(-) of said factorization that
yield the best possible approximation p(u) of the source distribution p(u). A useful measure
for this task is the Kullback-Leibler distance (KLD) between p(u) and p(u) given by

, p(u)
D(p(u)|[p(u :/puloA du, 55
(p(u)[p(u)) ()gp(u) (5.5)
measured in bits [28, Section 9.5].

Our motivation for using the KLD as the optimization criterion for this instance of the
problem comes from previous work by Li, Chaddha, and Gray on fixed-rate® vector quantization
with mismatched codebooks [62, Section 6]. Their main result can be summarized as follows:

SThis result was later partially extended to entropy-constrained vector quantization by Gray and Linder [41].



Sec. 5.4 Model Optimization 101

if the quantizer is optimized for a model probability distribution p(u) instead of the true source
distribution p(u), the resulting excess quadratic distortion in decibels is proportional to the KLD
between p(u) and p(u) given by (5.5). As a rule of thumb, the authors indicate that every one
bit difference in the KLD leads asymptotically to a 6 dB loss in performance. Evidently, this
result does not apply directly to our reachback system, since in our case the source coding is
done by an array of scalar quantizers that process each sample u, individually and not by a
vector quantizer operating on the whole block of samples u. However, it is worth pointing out
that the vector quantizer approach does correspond to the case of full cooperation between the
sensors — i.e. every node knows all the source realizations observed by all the nodes. Therefore,
it is perfectly reasonable to view the performance of a vector quantizer processing u as an
upper bound to the fidelity achieved by our coding scheme, and for this upper bound we know
from [62] that the loss in mean square error is proportional to the KLD between p(u) and p(u).

Indeed, our numerical results (discussed in detail in Section 5.5) sustain a similar useful
connection between the KLD for p(u) and p(u) and the mean square error of our decoder.
Naturally, we would like to have a mathematical proof that quantifies this relationship, but
unfortunately this has proved to be a difficult task due to the non-linearity of the array of scalar
quantizers. Therefore, we must leave it as a challenging problem for future work.

5.4.2 Constrained Chain Rule Expansions

Before proceeding with a detailed description of our optimization algorithms, we must introduce
a few mathematical tools that prove very useful for the problem at hand. Recall that our goal
is to find a set of factors fi(-) for p(u) that obeys certain constraints and ultimately yields the
approximated distribution p(u) = [], f«(-) used by the decoder. The next example introduces
a very useful concept for this task.

Example 5.1 Let p(u) = p(ujus . .. us) admitting the chain rule expansion given by

p(us ... us) = p(uy)p(us|ur ) p(usug|uiug) p(us|uiususy).

We can obtain an approximate PDF p(u) = p(u; ... us) of p(u) by taking the factors of the
chain rule expansion and removing some of the conditioning variables. For instance, the ex-
pansion

P(uq - .. us) = p(ur)p(uslur ) p(usus|ug)p(us|us) (5.6)

is a constrained chain rule expansion with at most one conditioning variable.

The next definition makes this concept more precise.

Definition 5.1 Consider a PDF p(u), which factors into N; PDFs p(a,|by) according to

Ny

p(u) = [ [ p(ax/br), (5.7)

k=1

where a; and by, are subsets of the elements in u. This PDF is a constrained chain rule expansion
(CCRE) of the source distribution p(u), if the following constraints are met:



102 Scalable Decoding for Sensor Reachback Chap. 5

1. Two vectors a;, and a;, k # [, are disjoint: ay Na; = (.
2. The elements in b, are connected: by, C Uf;ll a,.
3. All elements uy, of u are connected: |,_, a = u.

Thus, the set by is always empty. A special case is the usual chain rule expansion, where
k—1
b, = Ul:l q holds.

In the previous example, the CCRE p(u1)p(usa|uy)p(us, ws|us)p(us|us) Of the PDF p(uy, ..., us)
is SpeCiﬁEd by a;=uq, by :Q), as =1Us, bo =1y, az = (’U,3, ’LL4), b3 =1U92, A4 =Us, and bis=1u4. The
next definition introduces another useful property, which we also illustrate with an example.

Definition 5.2 The CCRE p(u) = H,ivilp(ak\bk) is said to be symmetric, if any by, £ =
2,3, ..., N, is asubset of (a;, b;) for some [ < k.

Example 5.2 The CCRE given by

p(u1)p(uz|u1)p(us, usluz)p(us|ua)

of the PDF p(uy, ..., us) is symmetric because b, C a;, by C ay, and by C a3 holds. The
CCRE corresponding to

p(u1, u2)p(us, ualug)p(us|ua, ur)
of p(uy, ..., us) is not symmetric, because bz = (u1, u4) is not contained in (a;, by) = (uy, us) or
(az, ba) = (ua, us, us).

It turns out that symmetric CCREs of the source distribution p(u) yield the type of factor trees
that we are interested in:

Lemma 5.1 Ifa CCRE p(u)= ]_[,]jzf1 p(ax|by) for the source distribution p(u) has at most one
conditioning variable in every factor, i.e., all b, are either empty or contain a single element,
then (1) the CCRE is symmetric, and (2) the factor graph corresponding to p(u) is a tree.

Proof:  See the appendix, Section A.8.

From this lemma follows, for example, that a CCRE p(u) = HkN:flp(ak|bk) in which both
the a, and the by consist of single elements yield a factor tree where all function nodes have
degree 2. The next example illustrates the relationship between the different classes of chain
rule expansions and their corresponding factor graphs.

Example 5.3 Consider the probability distribution p(u) = p(ujususus) admitting the stan-
dard chain rule expansion

p(u) = p(uiugusuy) = p(uiug)p(ug|uiug)p(us|uiugus) (5.8)

The corresponding factor graph, depicted in Figure 5.4, is inconvenient for decoding — it con-
tains many cycles, for instance (u1, p(us|uius), us, p(uiusz), uq). A better alternative would be
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p(y1|w) p(urus) p(y2|us)

p(u4|u1u2u3)

p(yslus) P(yalus)

Figure 5.4: Corresponding factor graph for p(u) in (5.8).

the factor graph consisting of one function node p(u,ususu4), Which is equivalent yet has less
function nodes and no cycles at all.

Next, consider the symmetric CCRE of p(u) given by

p(u) = p(urug)p(uslui)p(uslus) (5.9)

Figure 5.5 shows the corresponding factor graph, which is now symmetric. Notice that it is
possible to find equivalent CCRE containing p(u,us) or p(usuy).

p(yq|u1) ~ p(u1uz) p(y2|us)

plus|m)

p(yalus)

Figure 5.5: Corresponding factor graph for ps(u) in (5.9).

Finally, if we have a non-symmetric CCRE of p(u), such as

~

p(u) = p(urug)p(usz|ui)p(us|usus), (5.10)

we get a non-symmetric factor graph, as shown in Figure 5.6. Clearly, it is not possible to find
an equivalent CCRE containing p(uousu.s).

p(y1lu) p(uruz) p(y2|uz)
p(us|u)
P(U4|U2U3)
p(yslus) P(yalua)

Figure 5.6: Corresponding factor graph for pns(u) in (5.10).
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5.4.3 Constrained Factorization of Gaussian Distributions

The definitions and properties discussed in the previous section are very general and can in fact
be applied to any given PDF. Given the nature of our source model, we are of course particularly
interested in CCREs of multivariate Gaussian distributions given by A/(0,;, R). Ultimately, we
would like to compute the approximate covariance matrix R induced by a given CCRE. The
next lemma presents a few very useful properties for this purpose.

Lemma 5.2 Let p(u) = H,]:le(ak\bk) be a CCRE of a Gaussian PDF p(u) that is given by
N(0y,R). Let P be an M x M indicator matrix, whose entry in the /-th row and /’-th column
is 1 if both w; and u; are contained in one of the N, factors p(a,|by) and 0 otherwise. For
example, for the CCRE p(u1)p(uz|u1)p(us, us|us)p(us|us) of p(us, ..., us) we find

11000
11110
P=[01110
01111
0001 1)

The following holds:

1. The PDF p(u) is a zero-mean Gaussian PDF with covariance matrix R, i.e., itis given by

~

N0y, R).
2. The entries of R~ are zero for all zero-positions in P.
3. The trace of RR~! equals M, i.e., trf(RR™1) =M.

4. If the CCRE is symmetric, then the entries of R are equal those in R for all one-positions
inP.

Proof:  See the appendix, Section A.9.

In the appendix, Section A.10, we present a numerical example to illustrate how R can be
computed for a given CCRE.

Based on Lemma 5.2, we can prove the following connection between symmetric CCRES
and the KLD-optimal functions f.(-) of the factorization p(u) = H,ivil fx(+) that minimize the
KLD D(p(u)||p(u)):

Theorem 5.3 Consider the Gaussian source distribution p(u) given by A (0,7, R) and the
PDF p(u) = Hszfl fx(ug), which factors into N, functions fi(u,) with subsets u, of u as
argument. If the latter factorization admits a symmetric CCRE, i.e., all u;, can be split into pairs
(ax, by) satisfying the constraints in Definitions 5.1 and 5.2, then the KLD-optimal functions
fr(ug) minimizing the D(p(u)||p(u)) are equal to the Gaussian PDFs

p(ax|by) =p(ar, by)/p(bs),
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and the corresponding minimal KLD is given by

|Rak7bk|
2 ‘R‘bk‘ ,

f
D(p(w)]|p(w)) = — log, [R| + 5 3 log 5.11)
k=1

where R,, 1, and Ry, are the covariance matrices of the zero-mean Gaussian PDFs p(ay, by,)
and p(by), respectively.

Proof:  See the appendix, Section A.11.

This theorem considerably simplifies our search for KLD-optimal approximate source dis-
tributions p(u) = HkNil fr(ug) that yield factor trees with function nodes of degree at most
1, 2, or 3, by allowing us to restrict our attention to the set of symmetric CCREs and deter-
mine step by step the factor arguments a, and by that minimize the KLD. Moreover, it fol-
lows from (5.11) that each factor p(ax|by) of p(u) reduces the KLD D(p(u)||p(u)) by the
amount log, |Ra, b, |/|Rb,|, Which is strictly negative, because in general |[R,, b,| < |Re,]
holds. Moreover, this amount depends only on the determinants of the matrices R, and Ry,
and is thus independent of all other factors. This important property is used extensively by
the optimization algorithms presented in the next section. We conclude this part with a simple
numerical example.

Example 5.4 Suppose we are given a Gaussian source distribution p(u) = p(uququsu,) With
zero mean and the covariance matrix

1 0.7 0.5 0.2

07 1 0.6 0.6
R = 05 06 1 03| (5.12)

02 06 0.3 1
For the standard chain rule expansion
p(u) = p(urugusug) = p(urus)p(us|uiug)p(us|uiugus),

we can compute the KLD according to

D) p(w) = — - tog R + 13 1og R
2 2 2<% Ry,
=1.26—-0.49—-0.33 —0.44

= 0 bits.

As expected, every factor decreases the KLD by a certain amount, and the overall KLD turns
out to be zero, because the standard chain rule expansion is equivalent to the given distribution

p(u).
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Assume now that we have instead the symmetric CCRE

N

p(u) = p(urug)p(us|ur)p(uslus).

If we carry out the previous KLD computation, we now get

D(p(u) [5(u)) = ~ 5 log R + § Zl }
=1.26 —0.49 — 0.20 —0.07
= 0.50 bits.

As expected, every factor decreases the KLD by a certain amount, however since p(u) is an
approximation of p(u), the KLD is greater than zero, giving us a measure for the accuracy of
the approximation.

5.4.4 Optimization Algorithms

In the previous section, we proved for Gaussian sources that symmetric CCREs of the source
distribution p(u) yield the KLD-optimal functions f(-) of the factorization p(u) :HkNil fr(ug)
provided that the arguments u, admit a symmetric CCRE. We also showed that factorizations
yielding a factor tree with function nodes of degree 1, 2, or 3 always admit symmetric CCREs.
Nevertheless, there exist many factor trees that connect the M variable nodes for each sensor
in the network and so the problem becomes finding the factor tree for which the underlying
symmetric CCRE p(u) = H,ivil p(ax|by) yields the smallest KLD D(p(u)||p(u)).

Let [/, and [, denote the allowed maximal number of elements in the sets a, and by, of the
CCRE p(u)= H,ivil p(ak|byg), respectively. Recall that the algorithmic complexity for scalable
decoding based on sum-product decoding on a factor tree grows exponentially with the degree
ds = l, + I, of the function nodes, which is why we consider factor trees with d; < 3 only, as
specified in Section 5.3.2.

Besides the trivial scalar decoder corresponding to the symmetric CCRE p(u) = ]_[,cN:f1 p(ug),
i.e., (o, ly) = (1,0), we consider decoders based on the choice (l,,1,) = (1,1) or (lg, 1) =
(2,1), which are based on factor trees with function node degrees of at most 2 or 3. From
Lemma 5.1 follows that symmetric CCREs generate such factor trees when [, = 1, i.e. when
the factors p(ax|by) of the CCRE contain only a single conditioning variable.

Next, we provide optimization algorithms for these two classes of scalable decoders.

1) Factor Tree with Degree-2 Function Nodes

A symmetric CCRE p(u) = H,]C\le(ak\bk) yields a degree-2 factor tree if (I,, ;) = (1,1) with
N = M — 1. Starting with the trivial factorization p(u) = []r"5" p(u, ), where {ro, ..., 7ar_1}
is a permutation of the index set {1, ..., M }, admissible CCREs are constructed by adding con-
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ditioning variables to M —1 of these factors, i.e.,

M-1

p(a) = p(ur,) H p(ur, |us,),

k=1

where the index s; is necessarily equal to ro and all other indices s, are chosen from the set
{1, ..., M }. Combining the PDFs p(u,,) =p(us, ) and p(u,, |us, ) yields the CCRE

M-1

;5(11) = p(uh:uh) H p(urk|u8k):

k=2
consisting of N = M —1 factors with two arguments. The corresponding index factorization
~fs N . .
p(i)=TII;’; gx(-) is given by

M-1

D) = plirsis,) [ pCin,lis).

k=2
The calculation of the KLD D(p(u)||p(u)) via (5.11) requires the local covariance matrices
]' pT‘k Sk
Ry, v, = ’ and R,, =1, (5.13)
k278K prk,sk ]_ k

which follow from the entries p; 4 of the covariance matrix R of the source distribution p(u),
such that

M-1

D 1 1 1 |Ru7' ;us |
D(p(u)[[p(w) = —5logy [R|+ 3 logs [Ru,, [+ 3 3 log, ﬁ
k=2 Usy,
1 1 M-—1
= —5log [R[+5 > logs(1 =47, )
k=1

Notice that a function node connecting the variable nodes ¢,, and i,, decreases the KLD by
1 2
ADy = 5 logy(1 = pj, ), (5.14)

corresponding to the factor p(u,, |us, ). We denote the first decrease due to the factor p(u,, , us,)
as ADy = S log,(1 — PFs))-

The function nodes corresponding to p(u,, , us, ) Or p(u,, |us, ) can be regarded as vertices in
a classical graph connecting the (variable) nodes ,, and 7, , which have the undirected weight
1log,(1 — p7. 5.)- Our optimization task — finding the factor tree arguments a, and by, for
the factors p(ay|by) yielding a minimal KLD — can thus be formulated as a minimum weight
spanning tree problem where the undirected weight of an edge between two nodes 7,, and i, is
given by % log, (1 —pfk,Sk). To find this tree, we applied Algorithm 1 (see Table 5.4), which isan
adaptation of Prim’s minimum weight spanning tree algorithm taken from [40]. The algorithm
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finds the optimal tree in the M ~2 possible trees [89] with a very low complexity. Figure 5.7
shows the outcomes of the proposed algorithm for sensor networks with A = 9 and M = 100
nodes using the source model outlined in Section 5.2.1.

Table 5.4: Algorithm 1: Find the optimal degree-2 factor tree

Initialization
Function node counter: k < 1
Find the two variable nodes [i,, 1is,]
o which yield the smallest ADy = 3 log,(1 — pZ2, ,,)
Connect 4,,, and 5, by a new function node with function g; = p(i,,, s, )
Set of connected variable nodes: S < {i,,,%s, }
Main L oop
repeat
k+—k+1
Find the two variable nodes [i,, is,]
e Wherei;, €S
e where i, ¢S
o which yield the smallest AD;j; = §logy(1— 02, ,)
Connect 4,, and i,, by a new function node with function g, = p(iy, |is,)
S+ S+ {in}
until all variable nodes are connected

0.8
0.6

0.4r

0.2

. . . . . . . . . )
0 01 02 03 04 05 06 07 08 09 1

(a) M = 9 sensors (b) M = 100 sensors

Figure 5.7: Degree-2 factor trees for M sensors placed randomly on the unit square, according
to the source model described in Section 5.2.1.
2) Degree-3 Factor Trees

The optimization procedure for the previous case turned out to be relatively simple, because
degree-2 factor trees can be interpreted as classical graphs and we could exploit well-established
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graph-theoretic techniques. Unfortunately, this is not true for degree-3 factor trees, forcing us
to seek an alternative solution.

In analogy with the previous case, we begin by rewriting (5.7) specifically for degree-3
factor trees according to

(M—-1)/2

ﬁ(u):p(uro) H p(u"'k7u’5k‘u’tk)7

k=2

where a; = U, ax = [Ur,_, Us,_,] (for & > 1)and by = u,,_,. In practice, it is not always
possible or useful to construct a degree-3 factor tree that consists solely of degree-3 function
nodes, however to simplify the explanation we will neglect the additional degree-2 function
nodes and assume that (M — 1)/2 is a natural number.

Once again, we require the local covariance matrices

1 Pric,si Prigty,
= RTk7sk7tk' = p'/'k,Sk 1 psk,tk (5-15)
Pricti Psp,ty, 1

R

Ug41

and Ry, ., = R,, = 1, where p,,_,, = R(ry, s;) denotes the covariance between u,, and u,,.
Now, we can calculate the KLD using (5.11), which results in

(M-1)/2
D(p(u)|p(u)) = —5 log2 R| + Z log, "'k:sk;tk
Sk
<M 1)/2
k=1

Since the degree-3 factor tree cannot be described as a classical graph, we cannot apply a min-
imum weight spanning tree algorithm. Moreover, the search space is not a matroid, so that we
cannot rely on a greedy algorithm [89] to deliver an optimal solution. Instead, we propose a
suboptimal algorithm that constructs a degree-3 factor tree based on the optimal degree-2 factor
tree:  First, we try to replace a pair of degree-2 function nodes with one degree-3 function
node that reduces the KLD without changing the original structure of the tree (as illustrated in
Figure 5.8); then, we repeat this procedure over and over again until it is no longer possible to

replace any function nodes.
p('

i gy s )
= .

o) w)

Figure 5.8: The basic procedure in Algorithm 5.5 consists of replacing two degree-2 function nodes by
one degree-3 function node. The replacements are chosen according to the associated reduction of the
KLD.
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Table 5.5: Algorithm 2: Find the optimized degree-3 factor tree

Initialization
Construct the optimal degree-2 factor tree 75 with Algorithm 1
Make a list of all combinations of three variable nodes which are neighbours in 75

Calculate ADoj; — ADgyq 1 = 1 log, (M> for every list entry
o ] ] |Rsk""kHR’"k’tk|
sort the list in order of increasing ADgj; — ADqgy

Function node counter: k£ < 0
Main L oop
repeat
read next row [ir, s, iy,  ADg; — ADgy 1] of list
if connection of 4, , 75, and i;, does not form a cycle then
k< k+1
remove the two function nodes connecting i, , 45, and i;,
connect i,,, i5, and i;, by a new function node with function g5 = p(ir,, s, iz, ), Where iz,
represents the only conditioning argument in the previous functions
end if
until end of list

1r

09r

0.8

Plig i)

0.7

0.6
o5l P(iy.ilig)
0.4
0.3r

02

0.1

0 1 1 1 1 1 1 1 1 1 )
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(@) M = 9 sensors (b) M = 100 sensors

Figure 5.9: Degree-3 factor trees for M sensors placed randomly on the unit square, according
to the source model described in Section 5.2.1.

In terms of the underlying CCRE, this step is equivalent to replacing the factors p(u, [u,,)
and p(ur, |ug, ) with the factor p(us, , u,, |uy, ). Denoting the correlations between the sensors as
Prisir Prit, and pg, o, we can write the KLD decrement AD,; associated with the degree-3
function node representing the factor p(us, , u,, , s, ) OF p(us, , Ur, |uy, ) @S

1 1
AD2|1 = 5 10g2 |R8k,1“k,tk| = 5 ]OgZ(]- +2- Prigse = Prigty ~ Psgity — pfk,sk - Pfk,tk - pgk,tk)
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On the other hand, the KLD decrement A D,, |, associated with the pair of degree-2 function
nodes representing the factors p(us, |u,, ) and p(u,, |uy, ) IS

1 1 1
Al)2><1|1 = 2 log, ‘Rskﬂ"k‘ + 9 log, |Rrkvtk‘ = 9 log, (1 + p72"k,8k ) p?kvtk o p72"k78k - pikvtk)

Consequently, the overall reduction in KLD that results from the substitution is given by

1 1+2 . - D _ 2 2 _ 2
ADyy — ADoyq1 = §log2< Privssi " Prists * Pswste — Pry,se — Pry psk,tk)

2 . N2 _ 2 A2
]‘ + prk,sk p'f‘k,tk ka;;Sk p’l”k,tk

This quantity, which is used by the algorithm to choose the appropriate substitutions, has the
property that

ADyy — ADyyqy <0 if Lot Prese 5 (5.16)
Psptr

with equality when p,, 1. - pr..s. = Ps..t.- |t follows that a degree-3 function node always
leads to a smaller KLD, except when the variables i,,, 7,, and i, form a Markov chain and
Pt Priose = Pti,si- 1N this case, the two degree-2 factors translate the connection between the
variables in an optimal way [45].

The resulting degree-3 factor trees for the previous sensor networks with A = 9and M =
100 are shown in Figure 5.9, where again we used the source model outlined in Section 5.2.1.
Other special cases, including unsymmetric constrained chain rule expansions and factor graphs
with cycles, are discussed in detailed in the diploma thesis of Hausl [45].

5.5 Numerical Examples

In this section, we present some numerical results that underline the effectiveness and the scal-
ability of the proposed decoding approach. In order to evaluate the performance of our scalable
decoders, we measure the output signal-to-noise ratio (SNR) in decibel (dB) given by

Output SNR = 10 - log, <7||u|lf ) in dB (5.17)
Ju—a]?

versus the channel SNR Es/N, averaged over a sufficient amount of sample transmissions.

We consider two cases: M = 9 sensors and M = 100 sensors. The first case is interesting,

because for nine sensors we can still simulate the optimal MMSE decoder and compare it with

our proposed scalable decoders. The second case illustrates well the scalability of our approach,

whose complexity grows linearly in the number of sensors.

Naturally, the results are highly dependent on the chosen source model. For example, if the
source samples are independent there is nothing to gain from trying to exploit the correlations in
order to improve the decoding result. On the other hand, if the sensor measurements are highly
correlated, we can expect high gains in terms of output SNR. Therefore, we make the following
reasonable assumptions, which were justified already in Section 5.2.1: (1) the sensors are placed
randomly on the unit square, and (2) the correlation between sensor ¢ and j decays exponentially
with the distance between them. Specifically, given the position z,, = [2,,(1), z:(2)]T of each
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Table 5.6: KLD in bits per sensor for different approximations and sensor scenarios. The degree-2
factor tree, the degree-3 factor tree and, for reference, the degree-3 factor graph (with cycles) correspond
to a first order, a mixed first and second order and a second order Markov approximation, respectively.
The scalar decoder uses a zero order Markov approximation.
M=9 | M=100
scalar decoder, KLD 6.81-1071 | 7.48-107!
degree-2 factor tree, KLD | 5.25-1072 | 7.24-1072
degree-3 factor tree, KLD | 3.93-1072 | 5.78 - 102
degree-3 factor graph, KLD | 9.20-1072 | 1.66 - 102
optimal decoder, KLD 0.00 0.00

sensor m we can compute the distance between two sensors ¢ and j from [; ; = ||z; —z,||. Based
on this distance, we calculate the correlation between their measurements according to

pij = exp(=0 -1 ;).

The key parameter in this formula is 3, a positive constant that determines the speed of the
exponential decay.

Notice that if we keep increasing the number of sensors in the unit square without altering
the value of 3, the sensor measurements would become increasingly correlated. Therefore, to
obtain a fair result, we set 3 = 1.05 and 8 = 4.2 for the simulations with M = 9 sensors
and M = 100 sensors, respectively. Finally, each sensor node uses a Lloyd-Max quantizer
to map uy to ix, which is then transmitted in accordance with the system setup described in
Section 5.2.1.

For each sensor scenario and each class of factor graph models, we carried out the optimiza-
tion algorithms described in the previous section. The resulting KLD values are summarized
in Table 5.6, where for reference we also include the outcomes for a scalar decoder, a degree-3
factor graph with cycles and the optimal decoder. As expected, the higher the complexity of the
model and the associated decoding algorithm, the better the approximation of the correlation
structure of the sensor data and consequently the lower the resulting KLD.

The overall system performance is illustrated in Figure 5.10, which depicts the simulation
results for the network with M = 9 sensors depicted in Figure 5.2 and Figure 5.3. We used
@ = 1-bit quantization and the correlation parameter was set to § = 1.05, as explained above.
Clearly, the factor-tree-based decoders (degree-2 and degree-3 tree) are nearly as good as the
CME, since the KLD is small. Also, the improvement of the degree-3 tree over the degree-2
tree is barely noticeable. The scalar decoder loses a lot of performance, since it does not exploit
any information about the source correlations.

Figure 5.11 depicts the performance results for a network with M =100 sensors with mul-
tiple quantizers. The correlation parameter is 5 = 4.2 (the sensors are closer and, thus, more
correlated). The KLD-optimal degree-2 factor tree is depicted in Figure 5.9(b). Again, the KLD
of the degree-2 tree is nearly as good that of the degree-3 tree, which also applied to their SNR
performance. The gains in output SNR provided by the proposed class of scalable decoders are
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highest (up to 2 dB) for low channel SNR values (0 dB) and = 3-bit quantization. Recall
that, in this case (M =100), the optimal decoder is unfeasible.

5.6 Summary and Conclusions

We studied the problem of jointly decoding the correlated measurements picked up by a sen-
sor reachback network. First, we showed that the complexity of the optimal MMSE decoder
grows exponentially with the number of nodes in the network, thus motivating the search for
scalable solutions offering a trade-off between complexity and end-to-end distortion. Then, we
presented a scalable decoding scheme for the sensor reachback problem, which uses a simpli-
fied factor graph model of the dependencies between the sensor measurements such that a belief
propagation decoder can produce the required estimates efficiently.

Focusing on factor trees — for which we know that the BP algorithm delivers optimal es-
timates — we introduced the concept of constrained chain rule expansions and provided two
optimization algorithms for the Gaussian case. The analysis tools we presented can be equally
applied to many other factorization models yielding decoders with various complexities.

Quant.: Q = 1 bit/sample
| Sensors: M:=9

4.5 Samples: 30000 x 9 "B .

T

MMSE-optimal decoder
—O- degree-3 factor tree
—+— degree-2 factor tree
—— scalar decoder

Output SNR in dB

3.5

0 2 4 6 8 10
Channel SNR in dB

Figure 5.10: Performance of the MMSE-optimal CME and three decoders applying the BP
algorithm on the factor graphs in Figure 5.3 for a network with A/ = 9 sensors and @ = 1-
bit quantization. The correlation factor between any two sensor measurements varies be-
tween p = 0.217 and p = 0.930. We consider the following cases: (1) scalar decoder
(cf. Figure 5.3(a), D(p(u)||p(u)) = 3.92 bits), (2) optimal degree-2 factor tree (cf. Fig-
ure 5.3(b), D(p(u)||p(u)) = 0.43 bits), (3) optimized degree-3 factor tree (cf. Figure 5.3(c),
D(p(u)||p(u)) = 0.40 bits), (4) optimal MMSE Decoder. The bottom curve includes the stan-
dard deviation for 200 experiments thus supporting the reliability of our simulation results.
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Sensors: M = 100
Samples=10000 x 9

14t

12

_o- factor tree d=2 Q=1

o f

-g — factor tree df—Z Q=2

@ —&— factor tree df=2 Q=3

& -O- factor tree d=3 Q=1 v
5 —v- factor tree df:S Q=2

o

g —O— factor tree d=3 Q=3

O scalar dec. Q=1
V- scalar dec. Q=2
¢- scalar dec. Q=3

—O © o ©

2 1 1 1
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Channel SNR in dB

Figure 5.11: Performance of 3 decoders based on optimized factor graphs for a network with
M =100 sensors using various quantizers (1, 2, or 3-bit quantization). The correlation factor
between any two sensor measurements varies between p = 0 and p = 0.945. We consider
the following cases: (1) scalar decoder (trivial factor graph, D(p(u)||p(u)) = 45.37 bits), (2)
KLD-optimal degree-2 factor tree (D(p(u)||p(u)) = 6.13 bits), (3) optimized degree-3 factor
tree ( D(p(u)||p(u)) = 5.40 bits).

Our analyses and simulation results indicate that the proposed approach is well suited for
large-scale sensor networks. Natural extensions could include (a) extending the factor graph
to account for sensor nodes that have more complex features, such as entropy coding, channel
coding or higher modulations, and (b) reducing the complexity further by running linear mes-
sage updates in the nodes of the factor graph based on a Gaussian approximation of the message
distributions [65].
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It is better to know some of the questions than all of the answers.
JAMES THURBER

Main Contributions

This dissertation presented a number of original contributions towards a fundamental under-
standing of reachback communication in wireless sensor networks — both in theory and in
practice. The first part dealt with the problem of reliable communication in sensor networks
from the point of view of network information theory, whereas the second part looked at the un-
derlying distributed data compression problem in terms of rate-distortion trade-offs. The third
and more practical part was devoted to the development of decoding algorithms that meet the
complexity and scalability requirements of large-scale sensor networks. The next paragraphs
give an overview of our main contributions in each of these parts.

1. Fundamental Limits of Reachback Communication

We proposed an information-theoretic treatment of the communications scenario in which a
large number of sensors deployed on a field measure the state of some physical process, and
cooperate to send this information to a remote receiver. Formulating the problem as one of com-
municating multiple correlated sources over an array of independent channels, and with partial
cooperation among encoders, we proved a set of coding theorems that give a complete charac-
terization of the reachback capacity, i.e., of the exact conditions on the sources and the channels
under which reliable communication with perfect reconstruction of the source messages at the
far receiver is possible. Although in the general problem of sending correlated sources over
multiple access channels considered by Cover et al. [26] only a region of achievable rates is
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known (without a converse), for our model we were able to give a complete characterization,
converse included.

Moreover, for all instances of the sensor reachback problem considered in this thesis (with
and without cooperation, and for any number of nodes), we were able to prove that natural
generalizations of the joint source/channel coding theorem, commonly known as the separation
theorem, hold [28, Ch. 8.13]. To the best of our knowledge, these are the first non-trivial
examples involving multiple sources and multiple channels for which the separation principle
does provide an optimal system architecture. This observation motivated us to revisit the issue
of optimality of separate source and channel coding in communication networks, which we
argued is a question of “when” and not “if” it holds.

2. Rate-Distortion Bounds for Multiterminal Source Coding

If the conditions for perfect reconstruction at the far receiver cannot be met, the best we can
hope for is to reconstruct an approximation of the original source message — in this case,
the fundamental communication limits are provided by rate-distortion theory [17]. The rate-
distortion generalization of the sensor reachback problem lead to the well-known multiterminal
source coding problem [18], in which correlated sources are compressed separately with respect
to a fidelity criterion and we ask for a complete characterization of the achievable compression
rates and distortion levels (the so called rate-distortion region).

Our contributions here were as follows. First, we gave a simple proof for the best known
achievable rate-distortion region for general discrete sources and distortion measures (the Berger-
Tung inner bound [90]). The proof shows for the first time that all points of this rate-distortion
region can be achieved through a combination of independent quantizers followed by distributed
compression (i.e. Slepian-Wolf coding) of the quantization indices. Secondly, we derived a new
inner bound based on time-sharing of two complementary families of codes, which were ini-
tially used by Berger and Yeung [19] to solve the special case where one of the distortions
goes to zero. A key feature of our codes is that they work for a large family of auxiliary ran-
dom variables (W;, W5), whose dependence on the random variables (U;, U,) describing the
correlated sources satisfies only two short Markov chain conditions, W; — U; — U, and
U, — Uy — W, but not the more restrictive long chain condition W, — U; — U, — W,
typical of all previously known codes. For the more practical case of two binary sources with
Hamming distortion, we were able to give a new partial characterization of the corresponding
rate-distortion region.

In addition, we re-formulated the multiterminal source coding problem to account for par-
tial cooperation between encoders. In the lossless case, we gave a simple proof for a coding
theorem that extends the result of Slepian and Wolf [84] for non-cooperating encoders, result-
ing in a complete characterization of the rate region under this scenario. Then we extended this
setup to consider an arbitrary pair of distortions (D;, D), where we extended the results of
Berger and Tung [90] to obtain an inner and an outer bound for the region of achievable rates
(R1, Ry). Interestingly enough, we found that the rate expressions for the Berger-Tung inner
and outer bounds, and for our inner and outer bounds with cooperation, are all identical—the
only differences among all four regions lie in the class of probability distributions over which
each of these bounds is defined. A close inspection of these classes of distributions reveals
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two important facts: (a) the uncertainty on whether the Berger-Tung inner and outer bounds are
tight or not carries over to our inner and outer bounds with cooperation; (b) cooperation does
produce a strict enlargement of the rate-distortion region.

3. Scalable Decoding Algorithms for Large-Scale Sensor Networks

Taking yet a different, more practical approach to reachback communication in wireless sensor
networks, we assumed that each sensor node uses a very simple encoder (a scalar quantizer
and a modulator) and focused on decoding algorithms that exploit the correlation structure of
the sensor data to produce the best possible estimates under the minimum mean square error
(MMSE) criterion. Our analysis showed that the optimal MMSE decoder is unfeasible for large
scale sensor networks, because its complexity grows exponentially with the number of nodes in
the network. Seeking a scalable alternative, we used factor graphs to obtain a simplified model
for the correlation structure of the sensor data. This model allowed us to use a practical de-
coding algorithm (the so called belief propagation algorithm) whose complexity can be made
to grow linearly with the size of the network. Considering large sensor networks with arbi-
trary topologies, we focused on factor trees and gave an exact characterization of the decoding
complexity, as well as mathematical tools for factorizing Gaussian sources and optimization
algorithms for finding optimal factor trees under the Kullback-Leibler criterion.

In short, our main contributions are as follows:

e \We gave an information-theoretic characterization of the fundamental performance limits
of a general class of sensor networks, consisting of an arbitrary number of partially co-
operating nodes that use orthogonal accessing to transmit the picked up data back to a
remote receiver. For this class of communication networks, our results establish the opti-
mality of separate source and channel coding.

e Seeking a solution for the multiterminal source coding problem, we contributed with two
inner bounds for the corresponding rate-distortion region and showed that a two-stage
coding strategy (independent quantization followed by Slepian Wolf compression) yields
all points of the Berger-Tung inner rate-distortion region.

e We formulated a cooperative source coding problem, in which encoders are allowed to
establish a conference to exchange information before compressing the data. In the loss-
less version of the problem, we obtained the exact rate region, and for the lossy case, we
proved that partial cooperation increases the achievable rate-distortion region.

e Addressing the issues of scalability and complexity in large-scale reachback networks, we
introduced a class of scalable decoders and showed how to optimize factor trees for effi-
cient decoding of correlated sensor data. The analysis tools we presented can be equally
applied to other factorization models yielding decoders with various trade-offs in terms
of complexity and end-to-end distortion.
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Some of these results have recently been cited by different authors, e.g. in the context of coding
strategies for sensor networks [102, 33], cooperation between sensor nodes [70], and funda-
mental limits of wireless sensor networks [37, 48, 47].

Future Work

In this final section, we would like to share some of the intuition gained from our work on reach-
back communication in wireless sensor networks and present four classes of research problems
that we find particularly interesting and promising for future research activities: (a) stochastic
models for sensor data, (b) fundamental limits with constrained resources, (c) source/channel
coding for sensor networks and (d) joint estimation and data fusion of encoded sensor data.

A) Stochastic Models for Sensor Data

The design of contemporary communications systems relies strongly on finding mathematical
models for the sources of information. There are many successful examples: in text compres-
sion we use the probabilities of the letters, in speech coding we use a linear model for the vocal
tract, in audio processing we exploit the imperfections of the human ear, and for images we use
transforms that yield simple Gaussian parameters. In the context of sensor networks, source
modelling is still at a very infant stage. Most of the envisioned applications, are character-
ized by parameters (e.g. temperature, humidity and wind speed) that are dynamic by nature
— the sensors measure realizations of physical processes that unfold continuously in time and
space. Exploiting the available information from real measurements taken over long periods of
time(e.g. seismic data or farming charts), we can hope to capture the random properties of the
target parameters, which include the noisy deviations introduced by the measuring sensors and
the statistical dependencies between measurements taken at different times, as well as those
between neighboring sensor nodes. These correlations are interesting to the communications
engineer because, as we showed in Chapter 5, they can be used to leverage the overall system
efficiency. Therefore, general models that capture the random properties of large classes of
sensor data are likely to have a strong impact on the design of practical sensor networks.

B) Communication Limits with Practical Constraints

This dissertation offered several contributions towards a characterization of the fundamental
limits of sensor networks. Based on classical tools of network information theory, we were able
to characterize the reachback capacity of a large class of sensor networks and identify network
architectures that yield optimal performance. Said information-theoretic results are valid for
discrete memoryless sources and channels. The next step towards a thorough understanding of
the underlying principles of sensor networks, would be a mathematical characterization of their
performance limits taking into consideration two fundamental types of constraints: transmit
power and computational complexity.

It is common practice to constraint the average transmit power when computing the capacity
of point-to-point wireless channels [28]. Similarly, we can adapt some of the classical multi-
user capacity problems, most notably the multiple access channel, the broadcast channel and
the relay channel, to sensor network scenario for example by introducing the source models de-
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scribed in the previous section, fading channels with Gaussian noise, some form of cooperation
between users and, most importantly, average power constraints. Computing the capacity of
sensor networks based on this model requires us to come up with coding strategies and power
allocation schemes that sustain the achievability of said capacity region, leading to theoretical
constructions that often give important hints on which designs make most sense in practical
applications.

Computational complexity, on the other hand, is a system aspect that is more difficult to
model, since it is highly dependent on the actual implementation (semiconductor technology,
processor architecture, memory access, parallel algorithms). One way to capture at least part
of the sensor nodes’ processing constraints is to restrict their communications in terms of cod-
ing rates and codeword size ([68], [55]). Introducing this type of practical constraints we can
evaluate their impact on the information-theoretic capacity of the classical multi-user channels
mentioned above and characterize the trade-offs between decoding complexity and error prob-
ability (e.g. in terms of error exponents [36]).

In this context, some attention should be directed to the effects of feedback between the
sensor nodes and the fusion center. Although feedback does not affect the capacity of a point-
to-point discrete memoryless channel [28], it does increase the capacity of a generic multiple
access channel [27]. Going back to our example, between the sensor nodes on the field and
the fusion center controlling the irrigation arm we have a noisy multiple access channel on the
uplink and a noisy broadcast channel on the downlink. The latter can be used by the fusion cen-
ter to coordinate the transmissions of the sensor nodes, yielding a multiple access channel with
noisy broadcast feedback. Since feedback is known to increase the capacity of multiple access
channels, we believe this to be a communications aspect that deserves some more investigation
in the context of system architectures for sensor networks.

C) Source/Channel Coding for Sensor Data

Based on accurate models for the sensor data and the wireless channel, we can find practical
codes that come close to the communications limits described in the previous section. There
are several possibilities for the data observed by the sensors and the desired reconstruction at
the decoder, for example:

1. the sensors observe different sets of realizations of a multi-dimensional random process,
the decoder reconstructs each of the realizations (multiterminal or distributed source cod-
ing, [85, 18]),

2. the sensors observe different sets of realizations of a multi-dimensional random process,
the decoder estimates a function of the random variables describing the process,

3. the sensors observe multiple noisy versions of the same realization, the decoder estimates
said realization (the so called CEO problem [20]).

Practical code constructions for the first scenario have recently appeared in several publications
(e.g. [1, 38, 75]), most of which rely on dual versions of capacity attaining channel codes (e.g.
turbo codes and low-density parity-check codes). Allthough equally important, the other two
scenarios are less well understood and require further investigation. The same observation
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applies to the development of distributed joint source/channel codes that are robust to channel
errors, as well as cooperative source/channel codes for sensor networks.

D) Joint Decoding, Estimation and Data Fusion

The receiver of the information sent by a sensor network has three different tasks: (1) to decode
the received signals, (2) to perform some form of data fusion, (3) to make a decision based
on the estimated data. These data processing steps are usually done separately, which means
that the data fusion procedure only takes into consideration the statistics of the source and
neglects the characteristics of the channel. In Chapter 5, we proposed to change this paradigm
and perform joint decoding and data fusion, exploiting both the correlation in the data and the
available channel state information to aid the decision making process.

The basic decoding and estimation operations in the receiver require in general the factor-
ization of a multi-dimensional probability distribution that reflects the a priori source statistics
and the likelihood values of the channel outputs. Assuming that the nodes use very simple
encoders, for example a scalar quantizer and a modulator, it is straightforward to derive the
optimal decoder based on minimum mean square estimation (MMSE). However, the simplicity
of said derivation is in fact misleading — the complexity of the optimal MMSE decoder grows
exponentially with the number of nodes in the network. The basic intuition to be gained from
our work on scalable solutions for this decoding problem is that for practical purposes the two-
dimensional statistics of the data collected by a sensor network can be well approximated by
embedding a factor tree, thus reducing the complexity of the decoding, estimation or data fusion
algorithms that process this data. Future directions include (a) extending this method to sen-
sor networks with cooperation, M-ary modulations and channel interference, and (b) obtaining
performance bounds based on random networks and random graphs.

From the conceptual point of view, this approach is also interesting in applications where the
topology of the network can be defined by the system designer. The underlying research prob-
lem could then be formulated as follows: Given the probability density function of the sources
observed by the sensors, a model for the communications channel and the target complexity of
the joint decoding/data fusion algorithm what is the optimal placement for the sensor nodes?

In conclusion, when we take into consideration the large breadth of sensor applications and
the many research challenges they entail, it becomes quite clear that wireless sensor networks
will remain a very exciting topic in the years to come. If the theoretical and practical insights
gained from our thesis contribute to a fundamental understanding of said networks, thus nur-
turing their technological development, then the ultimate goals we set for our personal research
path will no doubt have been accomplished.



Proofs

Mathematik ist die perfekte Methode, sich selbst an der Nase herumzufiihren.
ALBERT EINSTEIN

A.1 An Alternative Achievability Proof for Theorem 3.3 based
on Cooperative Channel Coding

In [93], Willems obtained the capacity region of the multiple access channel with partially co-
operating encoders. He did this by introducing a class of channel codes with cooperation, that
build on a construction due to Slepian and Wolf for a multiple access channel with two en-
coders, two independent sources and a third common source observed by both encoders [84].
We now show that in the sensor reachback problem there is no performance loss associated with
an alternative architecture to the one presented in the main text (illustrated in Figure 3.5). In
this new architecture, we use classical Slepian-Wolf codes to remove the correlation between
the sources, and then apply Willems’ cooperative channel coding approach (as illustrated in
Figure 3.6). Besides the historical interest (we developed this proof first), this alternative proof
also serves the purpose of showing that there is nothing to lose in terms of performance by
moving cooperation from the source coders to the channel coders.

Proof: Each source encoder takes an input block U, i € {1,2} and outputs a bin in-
dex W; from the alphabet W; = {1,2,...,2V%}. Prior to transmission the channel encoders
exchange messages over the conference channels. The conference messages are obtained as
follows. First, we partition the set of messages W, = {1, 2, ..., 2V%1} in 2¥F12 cells, indexed
by i1 € {1,2,...,2N%12} such that i;(w,) = ¢ if wy is inside cell ¢;. Similarly, we parti-
tion the set of messages W, = {1, 2, ..., 2V} in 2VE2 cells, indexed by i, € {1,2, ..., 2V}
such that i (ws) = ¢y if wy is inside cell co. All messages inside each cell ¢; are indexed by j; €
{1,2,...,2N(Eai=Fu2)1 ‘and all messages inside each cell ¢, are indexed by j, € {1,2,...,2N(Fe—Fa1)},
During the conference, encoder 1 sends index 7; to encoder 2, and encoder 2 sends index i, to
encoder 1. Since U and UL are random variables, W;, W, I; and I, are also random.
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The conditions for reliable communication under this conference scenario are given in [93]
and can be written as

R, — R, < I(Xy;Y7Y5|X02)

Ry — Ry < I(Xp; V1Yo X 2)
Ri+ Ry — Ris — Ry < I(X1Xo;1Y5|2)

Ri+ Ry < I(X1X5;Y1Y3),

where Z isan auxiliary random variable such that 7 = (11 I5), p(wiws2) = p(w1)p(ws)p(z|wiw,).
Since Ry = ~H(W:), and Ry — Riy = ~H(W:|Z), we have that Ry, = +(H(W:) —
H(W1|Z)) = %1(Ws; Z). Similarly, Ry, = +1(Ws; Z). Using these identities and the fact
that the channels are independent, we get

Ry < I(Xy;Y4Z)+ L1(Wi; 2) (A1)
B, < I(XyY3lZ)+ H1(Wy; 2) (A2)
Ri+ Ry < I(Xi;V1|Z) + 1(Xo; Y5/ Z) + g I(WiWs; Z) (A3)
R+ Ry < I(Xy;Y7)+ I(Xo;Ys), (A.4)

where we used the fact that W; and W, are independent and therefore I(Wy; Z) + I(Ws; Z) =

As in the other proof, we know that reliable communication is possible if the capacity region
given by (A.1)-(A.4) intersects the Slepian-Wolf rate region for (U;U,). This is the case if and
only if

H(U|Uy) < I(X;;1|Z2)+ I(Wl;Z) (A.5)
H(Uo|U)) < I(Xo;Y2|Z) + 5I(Wa; Z) (A.6)
H(UiUz) < I(XuY|Z) + 1(X2;Yo|Z) + 5 I(WiWs; Z) (A7)
H(UiUz) < I(X;;3 Y1) + 1(Xo; Y2). (A.8)

We now develop the sum rate condition (A.7). First, we note that, since W1/, are a function
of UNUY (encoding property), and UNUY are a function of W, W, (decoding property), both
Markov chains W\W, — UYN — U — Z and UNUYN — W1 W, — Z hold, and so it
follows from the data processing inequality that 7(W,Ws; Z) = I(UNUY;Z). Noting that
~I(UNUY; Z) = I(U1Uy; Z) (the sources are i.i.d.), we can rewrite (A.7) as

H(UUz) < I(X1;Y1|Z) + 1(Xa; Y2 |Z) + I(UiUs; Z). (A.9)

To develop the side conditions (A.5) and (A.6) accordingly, we use a simple time-sharing
argument. Assume the two Slepian-Wolf source encoders operate at rates Ry = H(U) and
Ry = H(Uy|Uy), such that H(W,) = H(UY), H(UYN|W;) = 0 and, consequently,

IWy 2)=1UNW; Z) = 1(UY; Z) + I(Wy; Z|UN) = I(UY; Z).
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Substituting I(W1; Z) = I(UN; Z) and R, = H(U) in condition (A.1), we get
H(U) + e = [(Xy; 1| 2) + I(Us; 2), (A.10)

for some € > 0 arbitrarily small. Since (A.10) follows from (A.1), and (A.7) follows from (A.3),
the source/channel coding theorem by Slepian and Wolf [84] guarantees that there exists a code
satisfying both (A.7) and (A.10). We can now combine these two conditions by subtracting
H(U,) from both sides of the modified condition (A.9), so that

< I(Xo;Ya|Z) + I(Uy; Z|UY) + (X3 V4| Z) + I(Uy; Z) — H(U)
<

(X, Y5|Z) + I(Uy; Z|Uy) + ¢, (A.11)

where € can be made arbitrarily small to yield the second condition in the theorem. The first
condition can be obtained by a symmetric argument, with Slepian-Wolf encoders operating at
rates Ry = H(U,) and Ry, = H(U;|Us), so that

H(Us) + € = I(X3; Y| Z) + I(Uy; Z),

and

By time-sharing between the code construction for (R, Ry) = (H (Uy), H(U2|U1)) and (Ry, Ry) =
(H(U,|Us), H(Uy)), we conclude that conditions (A.12), (A.11), (A.9) and (A.8) are sufficient
for reliable communication. Looking at the first two terms of the right-hand side of (A.9), we
can write

I(X1;Y1|Z) + 1(X2; Y2|Z) H(Y1|Z) — HY\|X1Z) + H(Y2|Z) — H(Y3|X2Z)
(Y11Z) = HY1|X1) + H(Y2|Z) — H(Y2|X>)
(Y1) = H(Y1|X,) + H(Y;) — H(Y5|X5)

= I(Xy Y1) +1(Xy; Y2),

H
H

IN

with equality for p(z1z92) = p(z1)p(z2)p(z). Since this choice of Z maximizes the right-
handside of (A.9), we can modify this condition to

H(UlUQ) S I(Xl,Yi) + I(XQ; }/2) + I(UlUQ; Z)

We conclude that (A.9) is always satisfied when (A.8) is satisfied, and so we omit the former.
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A.2 Proof of Converse for Theorem 3.3

A.2.1 Preliminaries

To develop the converse we start with Fano’s inequality. Assuming there exists a suitable code
with parameters (R, Rs, Ri2, R21, N, K, P.), then we must have

HUNU[UNTSY) < Pelog (Ul x Uy']) + Hy(F), (A.13)

where H,(P,) is the binary entropy function. For convenience, define also
5(P.) = (Plog (U x UY[) + Hy(P.)) /N,
It follows from (A.13) that
HUTU YY) = HUYU Y, g(V'Y,Y))
H (U U Y, 07 0

H(UY U |07 05))
N§(P,),

ININA

and therefore,

H(UP'Uy Y'Y VIV < HUT U [Y]'YyY) < NO(Pe),

and also
HUNYMYNVEVSE) < Né(R,)
HUY YNV VEVE) < Né(R,)
HUY Y VEVEUY) < Né(P.)
HUy YN VEVEUY) < N6(P.).

According to the problem statement, we have two long Markov chains in place: Y,V —
XN — (VEVEUN) - XY - YV and Y)Y — XV — (UNVEVE) - XN — V]V, These
chains (informally referred to as the long chains in this section) will prove quite useful in our
derivations.

A.2.2 The Side Faces: Necessity of Equations (3.6) and (3.7)
We start by bounding H(U}Y):

HUY) = I(U Y VRV ) + HUT Y Y, VIV 0y
< IO Y VEVEDY) + No(P)

= 10" 0) + 10 YV Y VRV |UY) + NO(P)
= 10 0;) + I VIV 0RY) + 10 YV Y U VS V5©) + NO(P)
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Now, I(U};UY) and N§(P,) stay the same, and we start with I (UN; VEVE|UN):

N
IUN; VRV = 10U VEVE oY op )

n=1

N
= Y HU|UUM ") — HUVFVEUYUr )
n=1

N
= Y H(Uin|Uzn) = H(Usn| VIV Usn)

n=1

N
= Z I(U; VI V5 [Usn)
n=1

N
= Z I(Uln; Zn|U2n)a

n=1
where we set Z,, = VEVE. Now, we simplify I(UY; YNV N UNVEVE):
LU Y YS Uy ViR V)

N
= > I(U; Yo Yo U VIV YY)

n=1

N
ST U X Vi Yoo UF VEVEY Y1 X,)

n=1

N
= Y HVinYau| U3 VFVEYVP Y Xy,
n=1
— H(Y1,You | UY VEVE YV X0, U X1y)
N
> HY1Yon|Uy VEVS X

n=1

IN

— H (Y1 You| U VIV YY) X0, UL Xi)

N
b
DS H(VinYonl UY VIV Xan) — H(YinYau|UY VISV XU X 1)

n=1

N
= Y I(U Xin; YinYou| Up ViV Xo0)

n=1

N
= > T(U X10; Yi| U VIV X)) + T(UY X103 You [US VE VS X Vi)

. v
n=1 =0

N
= TN X Yin| U VIV X )

n=1
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N
= D HO|U VIV Xon) — H(YVin|U3 ViV X U Xi)

N
= Y H i UNVEVE Xon) — H(Yin[VEVE X1)

n=1

IN

N
Z H(Yln) - H(Yln‘leV;(Xln)

—
ISy
=

Z H(Yln) - H(Ylanln)

N
D I(Xin; Yin) (A.14)
n=1
where: (a) follows from the fact that (UN, V,K) ~» XN ~ X1, and (UL, V) ~ XN~ Xop;
(b) follows from from the fact that the channels are discrete and memoryless, so given X, Xo,,
Y1, Yo, are independent of anything else, so we can drop conditioning terms without changing
the entropy; (c) follows from the long chains; and (d) follows from the fact that (V;*, V;X) are
independent of Y3, given X1,,.

Combining all of the above, we get that

N

N
HUY) < IO UF) + Y 1(Xin; Yin) + Y (U Zo|Uza) + N6(P),
n=1

n=1

or equivalently,

N N
1 1
H(U"|Uy) NZ (X1n; Yin) + NZ (Utn; Zn|Uzn) + 6(P.).

Symmetric arguments yield

N
1 1
—HUY|UNM) < ¥ > I(Xon; You) + N > " I(Usn; Zn|Utn) + 6(P.).

n=1 n=1
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A.2.3 The Sum-Rate Face — Necessity of Equation (3.8)
Again, we start by bounding H(UNUJ):

HU'Uy) = 100 YY) + HUY Uy [V
< IUY0 VYY) + No(P).

Now we need to simplify I(UNUXN; YNY,Y). Here we make use of the fact that, from the long
chains, it follows that UNUY — XN XY — X1, X,, — Y1,Ya, also forms a Markov chain.
So,

IUN U YY)

N
= ) IUNUY; YVinYau|YP 1Y)

n=1
N
< Y IUNUY YinYou V7Y o T(XnXon; YinYan Y7 Y3 UM UY)
n=1
N
= > HUNUY X1nXon; YinYan Y7 7Y3 )
n=1
N
= ) I(XinXon; YinVau| YY) + I(UY U Yin Yoo | V77 Y3 X1 Xo)
n=1 :‘r()
N
N (X i X Vi Yo | Y71V
n=1
N
= Y HY1nYau [V 'Y3 ) = H(Vin Yo |V Y3 X1 Xn)
n=1
5 N
DS H(YinYau V7 Y3) = H (Vi Yan| X 10 Xon)
n=1
N
< Y H(YinYan) — H(YinYan | X1 Xon)
n=1
N
n=1

n=1
N N
= > (X1 Yin) + 3 T(Xan; Yan)- (A.15)
n=1 n=1

where: (a) follows from the chain above, and (b) follows from the DMC property. Therefore,
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we get that
1 1 N 1 N
NyrN . .
—NH(U1 UMy < ~ nE_I:I(XM, Yin) + N nE_l I(Xon; Yon) + 6(Pe).

A.2.4 Conditions on the Conference Rates

We now obtain necessary conditions for an admissable conference in terms of the auxiliary
random variable Z:

K
Z log | V1|

NCy, >
k=1
> H(VF)
> H(V|Uy)
= H(WVVUY)

|
=

VIV |UgY) — H(VE VS0 05)
ViV oY oY)

|
~
—

I(VEVS U U7 0Y)

WE

1

= i

= Y HUu|UP'UY) — HU |V VEUrUy)

n=1

N
= > H(Uin|Us) — H(Ups| V¥V Usy)

n=1

N
= ZI(Ulnﬂ/iKVzKWZn)

n=1

N
= Z I(Uln; Zn|U2n)a

n=1

where the first inequality is due to the admissibility condition for conferences, and the rest are
standard information theoretic manipulations. Taking the second inequality, a similar argument
yields

N
NCoy > Y I(Usn; Zo|Utn).

n=1
Thus, the conditions on the conference rates become

N N
1 1
5 2 [ (Un; Zu|Uz) < C1p and ;I(UQH; Zn|Utn) < Cay

n=1
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A.2.5 Final Remarks

So far, we have established that

N N
1 1 1
SHONUY) < 2 T(Xuni Vin) + 5 > 1 (Uin; ZalUzn) +(P)

n=1 n=1

1o vy 1 & 1 &
NH(U2 Uy) < N ;I(X%z; Yon) + N ;I(U%; Zn|Un) + (P)

GHONY) < & ivjl(Xm; Yin) + XNII(XQH; Yon) +6(Fe),
N N n=1 N n=1
and also that

1 N 1 N

N ;I(Um; Zn|Usp) < Chg and N ;HUM; Zp|Uip) < Cay.

Now, from here to the exact form of the conditions in the theorem there is a very short way.
First, note that using the standard technique of introducing time-sharing variables (see, e.g. , [28,
pg. 435]), we can replace the averages above by variables with the exact same distribution as
prescribed by Theorem 3.3. Note also that by its own definition, §(P,) — 0 as P, — 0. Finally,
note from the achievability proof that | Z| < |U,| - |Us| < oo (since Z is made up of partitions
of U, and U,). This concludes the proof of Theorem 3.3. [ |
A.3 Converse Proof for Theorem 3.7

The proof uses the same arguments as the converse proof of Theorem 3.3, therefore we include
here only the main steps.

A.3.1 Preliminaries

Assume that there exist codes with parameters (R, ..., Rur, Rio, ..., Ry—1., N, K, P.). Let

Zi; = V;f where Vif denotes the block of messages sent by encoder : to encoder 5. Based on
Fano’s inequality, we can write:

HUN ...UN|ON ... UY) < P.log (UN x --- x U|) + Hy(P.), (A.16)
where Hy(P,) is the binary entropy function. Define
§(P.) = (P.log (| x --- x Uyy|) + Hy(P.)) /N.
It follows from eqn. (A.16) that

HUYN .. .UNYN...YY) < N&(P),
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and consequently,
HUNS)|YN ... YUY (89 Z(S)) < N&(P.) (A.17)

for all subsets S C {1,2,..., M} with UY(S) = {UY : j € S}, and Z(S) = {Z;; : i €
SorjeS}.

A.3.2 Main Arguments

In order to obtain necessary conditions for an admissable conference, we write

K
k=1

H(VE)
(
(

NCij

v

v v

H(ViF|UY)
Vi lUY) = H(ViF (U ... Uyy)
U UL UN - U ViU
N
= Z[ Utn - -Uj10Ujs1n - - - Ung; Vil |[UP L UP U U MUY

N
= ZH Un - Ui nUjpin - -

HUn . Uj10Ujs1m - -

UpRURS . URtu)

LU LU UMV

= ZH Ut - -Ui—10Uj10 - - - UntnlUsn) — H(Utn - .. Ujm1,0Ujs1n - - - Unin U ViF)
= ZI Uln-- j— anj—f—l,n---UM,n;‘/if‘U',n)

= ZI Uln ] 1 nt+1,n e UM,TU le(n)|U]an)’

where (a) the first inequality is due to the admissibility condition for conferences, (b) we set
Zij(n) = Vi and (c) the rest follows from standard information theoretic manipulations.

Necessary conditions for reliable communication can be obtained from the following in-
equality:

HUY(S)) = IOY(S): Y ... Yu Z(S)UN(S)) + HUN(S)|Y]" ... Y Z(S)UY(S°)))
< I({UY(S); UN(SC))+I(UN(S);Z(S)IUN(SC))
+I(UN(S); YV ... Y| Z(S)UN(S9)) + N&. (A.18)

We can now develop each of the mutual information terms on the right-hand side of this in-
equality to obtain single-letter expressions. The first term can be subtracted on both sides,
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yielding H(UY(S)|UN(S¢)) on the left-hand side of (A.18), which can be shown to be equal
to NH(U(S)|U(S°)) by arguing that the sources are memoryless and using a standard time-
sharing argument. Similarly, using standard information-theoretic identities and inequalities to
develop the second term we get

LH(UM(S); Z(S)[U™(89)) < NI(U(S); Z(S)|U(S°)).
Finally, for the third term we obtain

LUNS); Y. Y| Z(S)UN(S9)) < N Y 1(Xi3Yi)

1€ES
repeating the steps of (A.14) and (A.15), and using the aforementioned time-sharing argument.

A.4 Proof of Theorem 4.1

Assume that the rate-distortion region R (D1, D5) is known. It follows from the definition of
R(D1, D,) that

Ry > ri(Dy,Dy)
Ry > ro(Dy, Dy)
Ri+ Ry > r1o(D1,Dy),

where 7;(-), i = 0, 1,2, indicate real numbers that depend on the prescribed distortions D,
and D,. From the joint source/channel coding theorem, commonly known as the separation
theorem [28, Ch. 8.13], and the definition of channel capacity, we must have

I(Xy; V) < Ch, (A.19)
I(X1; Y1) < Cs. (A.20)

Since according to the definition of the rate-distortion region for the multiterminal source coding
problem 7o(Dy, D,) is the minimum sum rate at which the reconstruction blocks (7N, UN)
approximate the source blocks (U, UY) within distortion levels (D, D,), any admissable
code for this problem must fulfil I(UNUY; UNUY) > ro(Dy, D,). We obtain the following
chain of inequalities:

(a)
<

(U0 YY5Y)
= U0y YY) + 10T U5 Yy YY)
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INE

I(UINUQ aYN) +[(UINU2 aYN)

I( 1 7YN) +I(U2N7YN‘UN) +I(U2NaYN) +I(U1NaYN‘UN)
(
I(

—
Q
~

U5 +1(U;'3YyY)
XYY + I(X55Y3Y)
9 ¢, +C (A21)

—
IS
=

—~
@
~

where we use the following the arguments:
(@) follows from the data processing inequality,

(b) follows from

U0 Y, YY) = HYS YY) — HY, [0 U YY)
H(Y;' YY) = HYS' U0y
H(Y;") - H(Y, U0y

I{U U35 Y5Y)

IA I

(c) follows from the Markov chain of the form YV — XV — UN — U} — XY — Y,

(d) follows from the data processing inequality,

(e) follows from the definition of channel capacity.

Since (A.19)-(A.21) were obtained from necessary conditions for any code that guarantees
the prescribed distortion levels, we conclude that a non-empty intersection between the rate-
distortion region and the capacity region is a necessary condition for any code that solves this
problem. [ |

A.5 Proof of Theorem 4.8

The proof is identical to the proof of the Berger-Tung inner bound up to the inequalities (4.6)-
(4.8), which we rewrite here for clarity.

N(Ri+ Ry) > H(1J)
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Standard information theoretical identities and inequalities yield the following chain of long
expressions:

NKR, > H(I¥|J¥)
= H{U{ Y AU Y IR)T5) — HQUT P AU YA IR, T5)
= H{UY AU YIE) = HUUYYS AU YR, J5) (A.22)
= > H{UM b AU 1l T AU Y AU Y
—H{UL b, AU 3l T%, TEAUT P AU M)

K N
- Z Z H(Ulklﬂ U2kl|JKa {UlN}k_la {U2N}k_1’ {U{_l}ka {Ué_l}k)

k=1 I=1

—H Uy, Uiy [T, T UMY UYL (U, {US ), (A23)

Here (A.22) stems from the fact that for a fixed code C; the codeword 7'¥ is a function of the
block {UN } X. Defining

Wik = (IKa {UlN}k_la {UQN}k_la {Uf_l}lﬁ {Ué_l}k)

and
War = (JE{UN Y1 AU Y1 U 3, {US  3e)

, We get

K n
NKRy > Y H(Uip, Ust|Wart) — H(Ust, Uzt Wakt, Wika)
k=1

K N
= Z Z I(Usgt, Uai; Wik |[Wag).

k I=1

Using symmetric arguments, we get

K N
NKRy; > ZZI(UW’ Usiet; Wit |Wor).

k=1 =1
Finally, for the sum rate condition we can write:
NK(Ri + Ry) > H(I¥,J¥)
H(I®, JEHUT Y AU ) + THUY Y AT Y 15, T5)
= I{U Y AT Y TR, T5)
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= Y H{UN AU HUN Y AT
—H({UfV Yoo {US bl T5, JE {UN 1 {UN Y

= ZZH Uik, Uakt) — H (Ui, Uaie|[Wiki, Wor)
%
K

N
= ZZI Ulkl7U2klaW1klaW2kl)
ko1

where once again we have used that fact that for fixed codes C; and C,, the codewords % and
J¥ are functions of {UN}X and {UN X, respectively. Because {U}N K — {UN}X — T% form
a Markov chain and U, U, are i.i.d random variables, so does Usy; — Uy — IX and therefore
Uk — Uy — Wi forms a Markov chain. Similarly, it follows from {UN }¢ — {UN}¥¢ —
JY and the fact that U, U, are drawn i.i.d that U;;, — Uy, — JX which in turn implies that
Uit — Usp — Woy, forms a Markov chain as well. Notice that Ug,; — Uy — Wik and
Uit — Uspy — Wag do not imply Wiy, — Uiy — Uspy — Wogy as Wiy and Wy, are not
necessarily independent given Uy, and Uy, Rewriting the previous inequalities as

Ry > —= 3 I(Uim, Usmi Wim|[Wom),

R,

v

R1+R2 Z n—NmZII(UlvaZm;Wlmal/VQm)a

and introducing a time-sharing random variable @, we get

| KN
Rl Z AT I(UlmaU2m;W1m|W2m’Q:m)
niN —
= I(Uig, Usg; Wig|Waq, Q)
| N
Ry, > — I(U1m,U2m;W2m|W1maQ:m)
niN —

= I(Uig, Usg; Wag|Wig, Q)

1 K-N

Ri+ Ry, > n—N;I(Ulm,Um;Wm,WmQ:m)

= [(Uig, Usg; Wig, Wag|Q).
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Since @ is independent of U, and Usq, we have

I(Uiq, Usq; Wig[Waq, Q) = I(Uig, Uzg; Wiq, Q|Waq, @)
(U1, Uag; Woq[Wiq, Q) = 1(Uiq,Usq; Waq, QWiq, Q);
I(Uiq, Uag; Wi, Waq|Q) = I(Uiq,Usq; Wiq, Waq, Q)
—1(U1Q,U2Q;Q)
= I(Uiq, Usq; Wiq, W2q, Q)
(A.24)

Since Uy and Uy have the joint distribution p(uus,) in the theorem and the time-sharing
variable does not alter the Markov structure of the random variables, defining W; = (Wiq, Q)
and W, = (Waq, @), we have shown the existence of two random variables such that

R1 2 I(UlUQ;W1|W2), (A25)
Ry > I(UUy; Wh|Wh), (A.26)
R1 +R2 Z I(UlUQ;W1W2), (A27)

thus concluding the proof. [ |
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A.6 Proof of Converse for Theorem 4.9

Fix the encoders and the decoder. Let Iy = f1 (U, Vy¥) and Jy = fo(UL, Vi¥). It follows from

Fano’s inequality that

1 1
NH(UlNUZNUOJO) < PNN(IOg”Z/ﬁN x Uy ||) +

= Py(log|lth|| + log|[ts]]) +

-

1

N

1
N

vl

-~

AN

(A.28)

where || || and || ]| are the alphabet sizes of U; and Us, respectively. Notice that if Py — 0,

Ay must also converge to zero. Furthermore, we have

1
NH(UIN\IOJO) < Aw,
1
NH(UQN\IOJO) < A,
1
NH(UfVUoJoUéVViK%K) < Aw,
1
NH(UQJVNOJOU{V‘GKVQK) < An,

and so we can write the following chain of inequalities:

NRy > H(I)
> H(I|UYViEVE Jo)
> H(L|Uy VEVEUY Jo) + 1(1o; U (U VEVSE Jo)
Y (I UM UM VEVE Jo)
= HUMUNVEVE T) — HUN | LUNVEVE T)
> HUNUNVEVET) = An

—~
o>
=~

NH(U1|UZ) — An,

(A.29)
(A.30)
(A.31)

(A.32)

where (a) follows from the fact that I, is a function of U¥ and V,X, and (b) results from setting
Z = (VEVE) and using the i.i.d. property of the sources and the Markov chain UYN —

UNVEVE — Jy. Similar arguments yield
NR, > NH(Uy|U1Z) — Aw.
For the sum rate condition, we write

N(R,+Ry) > H(Io, Jo)

H(IoJo|UNUY) + I(IoJo; UNUY)
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I(IoJo; U UY)

HUNUY) = HUNUS [Io.Jo)
H(UNUR') = Ay

NH(U,Us) — M.

v

Finally, for the conference rates we have

WE

NR12 log |V1k|

1

(Vi)
(V[05")
(VS |0y)

H(VV0R) — HVEVE 0 0Y)
IV, U |0yY)

v v
TR RT

N
= ) IV U UMY

n=1

N
= Y HUUN'U)) - HULV VU 0Y)

n=1

N
= Y H(Ui|Usp) = H(Usn| VIV Usp)

n=1

N
= Z I(Us; VIV |Usy)

n=1

N
= ZI(Uln; Zn‘UQn)a

n=1

where the first inequality is due to the admissibility condition for conferences, and the rest are
standard information theoretic manipulations. Symmetric arguments yield

N
NRy > Y I(Us; Zn|Usn).
n=1

Using a standard time-sharing argument (see, e.g. , [28, pg. 435]) we obtain the necessary
conditions for distributed source coding with partial cooperation between the encoders. [ |

A.7 Convexity of the Berger-Tung Inner Region

Let (R, D) = (R}, R}, D, D)) and (R",D") = (RY, R}, D], D}). We want to show that the
rate-distortion region defined by (4.1)-(4.3)— the Berger-Tung inner bound, denoted R 57 (D)
is convex in the sense that if (R',D’) € Rpr(D) and (R”,D") € Rpr (D) then (AR’ + (1 —
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AMR" AD'+ (1 — A\)D") € Rpr(D).

Assume that (D}, D}) is the distortion pair achieved by the rate pair (R, R}) with the aux-
iliary random variable W7, W3 and the decoding function ¢’. Similarly, assume that (D!, D%)
is the distortion pair achieved by (RY, Ry) with W', W and ¢”. Let @ be a random variable
independent of Uy, Uy, Wi, W3, W/, and W, which takes on the value 1 with probability A and
2 with probability 1 — \. Furthermore let S; = f;(U;) and S, = f»(Us) denote the encoded
versions of U, and Us,, respectively.

Define W1 = (WlQ, Q) and W2 = (WQQ, Q), such thatg(Sl, SQ, Wl, WQ) = g'(Sl, SQ, Wll, WQI)
with probability A and g(S1, Se, Wi, Wa) = ¢"(S1, Sz, W', WJ') with probability 1 — A. This
results in the following distortions:

D, = EdU,0h)
= )‘Ed(Ula gi(Sla 825 Wll: WQI)) + (1 - /\)Ed(UIa gil(sla S?a Wlll’ WZH)
= AD, + (1—\)Dl,

where g, denotes the first component of g. Similarly,

Dy = Ed(Us,Us)
= )\Ed(UQ, gé(Sl, SQ, Wll, WQI)) + (1 — )\)Ed(UQ, gg(Sl, SQ, Wlll, WQH)
= AD| + (1-\)DY,

where g, denotes the second component of g. On the other hand, the expression in (4.1) becomes

(WU Wi |Ws) =  H(ULU| W) — H(UUs Wi TWs)
= H(UU[WqQ) — H(U1Us|W1qWaq@Q)
= NHULUWY) + (1 — A) UL T| W)
—AH (UiUs[W{W3) — (1 = N H (U U |[W{'W5)
— N I(UnUns W WE) + (1 = N I(U Uy WY W2,

and, similarly,
I(U1Uy; Wo[Wh) = A I(U1Ug; Wy |[WY) + (1 = N I(U1Uz; Wy [WY).
For the sum rate condition in (4.3) we get

(U Uy WiW,) = H(UUs) — H(UUy | Wy Wa)
H(U\Us) — H(U\Us|[WioWaqQ)
= H(U\Uy) = AH (D10 WiW5) — (1 = N H (U0 W'W5)
= M (UiUs; WiW3) + (1 = NI (U Us; WiWY),

thus proving the convexity of Rz (D). [ |
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A.8 Proof of Lemmabs.1

The proof of part 1) is straightforward: if by, consists of at most a single element, this element
must be contained in a; for some | < k according to definition 1.

To prove part 2), we start with the CCRE p/(u) = HkNi1 p(ag), which is derived from p(u) by
removing all conditions by. The factor graph of this CCRE is a tree (more precisely, a forest),
since the subsets a,, are pairwise disjoint again according to definition 1. The N subtrees
corresponding to the factors p(ay) are connected to a complete tree by adding exactly N —1
extra edges to the graph, such that each edge starts in the function node of a p(ay). This results
from adding by conditions to the p(ay) factors forall £ = 1, ..., N, such that b, is empty and all
other by, consist of exactly one element, as stated in the lemma. This construction also serves
to prove part 2) of Theorem 5.1.

A.9 Proof of Lemmab.2

Let [R,, |« denote the expansion of R,, to a K x K matrix, where the non-zero entries corre-
spond to the positions of the a, elements in u, e.g.,

a 0 b 00

0 b 00 0O0GO
Rm,ugz[c d}—>[Rm,u3]5= c0doo
00 0O0GO

00 0O0GO

Using this notation, the inverse covariance matrix R~! of the PDF j(u) = H,]:ilp(ak\bk) can
be written as

Z[Ruk Ry, (A.33)

where u;, = (a, bi) and Ry, and Ry, are the covariance matrices of the zero-mean Gaussian
PDFs p(ux) =p(ay, by) and p(by), respectively. This follows from the equivalence p(ax|by) =
(uk)/p(bk) and the definition of a Gaussian PDF in (5.1). Itis easy to see that p(u) given

by A(0,, R) is a zero-mean Gaussian PDF and that the elements of R~ are zero at the zero-
positionsof P, which proves parts 1) and 2) of the lemma.

The proof of part 3) follows trivially from [54, Corollary 1.2]. For details see [60].

To prove part 4), assume that the factor p(a,|bg) in p(u) can be replaced by p(uy)/p(bx)
while 1/p(by) cancels with the argument u; of another factor p(a,|b;), [ # k, of p(u). This is
possible for symmetric CCREs, since by, is contained in (a;, b;) for some [ < k, which yields

p(ay[b;)/p(br) = p(w)/p(bk)/p(by) = p(u;|by)/p(by),

where u; contains the remaining elements of u, after taking out all those in by. This replacement
can be repeated recursively to cancel p(b;) with p(a,,|b,,) for some m < [ and so forth until
the empty set by is reached. Thus, with a symmetric CCRE it is possible to factor p(u) into
p(ug) times a product of PDFs where all elements in u,, appear in the conditioning part, only.
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The true source distribution p(u) can always be factored into p(uy) times a PDF where uy is in
the conditioning part using a suitable chain rule expansion. It follows that the variables in uy
are Gaussian distributed with zero mean and covariance matrix R, according to either p(u) or
p(u), i.e. R and R must have identical entries for all variable pairs (u;, uy) in uy.

A.10 Example for the Construction of R for a given CCRE

Example A.1 Suppose we are given a Gaussian source distribution p(u) = p(u1ugusus) With
zero mean and the covariance matrix

1 07 05 0.2

0.7 1 06 0.6
= A.34
R 05 06 1 03|’ (A-34)

02 06 03 1

and our task is to compute the inverse covariance matrix of the symmetric CCRE p(u) =
p(uquz)p(us|u)p(uqslus) from Example 5.3. For each factor, we can write the inverse covari-
ance matrix in a straightforward manner. For instance, taking the factor p(as|bs) = p(us|u1)
we can compute the latter according to

* 0 x 0 * 0 * 0 * 0 0 O
0000 _ [0O0O0O0OO _ 0 0 0O
x 00« 0| | % 0 % 0 0 00O
0 0 0O 0 00O 0 00O
[Ray ][Ry, [Ra, ] [R:,]

Here, * represents an element that is non-zero in general. Notice that all matrix entries cor-
responding to arguments u; that are not present in the factor are set to zero. Now, from the
properties of the Gaussian distribution it follows that R~ is equal to the sum of the individual
inverse covariance matrices obtained for each factor. Thus, we can write

* x x 0 * * 0 0 *+ 0 % 0 0 0 0O
x x 00| [* %00 0 00O 0 00O
*0**_0000+*0*0+00**
0 0 * = 0 0 0O 0 00O 0 0  x

. J/ N J/ . J/ N J/

R [Ra!]-[R5) [Ra;]-[Rs, [Ra; ][R,
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In numerical terms, this expression translates to

229 —-1.37 —-0.67 0 196 —-1.37 0 O 033 0 —-0.67 O
—-1.37 1.96 0 0 . —-1.37 196 0 O 00 00
—0.67 0 1.43 —-0.33 o 0 0 0O + —0.67 O 133 0
0 0 —-0.33 0.10 0 0 0O 00 00
R~ [Ra]-[Ry)] [Ra;]-[Ry,]

0 0 0 0

0 0 0 0

+ 0 0 0.10 —0.33

0 0 -0.33 0.10

- v

[Rug ][Ry,

Thus, for the approximate covariance matrix and its difference to the given covariance matrix
R in (A.34) we get

1 07 05 0.15 0 0 0 0.05

A 0.7 1 035 0.11 A 0 0 0.25 0.49
R = 0.5 0.35 1 0.3 R-R= 0 0.25 0 0
0.15 0.11 0.3 1 0.05 0.49 0 0

Now, the covariance matrix R of the approximation (u) is different from the real covariance
matrix R.

Next, we verify the validity of Lemma 5.2. The entries of R~* are zero for all index pairs
(1,1") notin Z as stated in part (2) of Lemma 5.2. The entries of R are equal to those in R for all
index pairs (, ") in Z because the expansion is symmetric(cf. part (3) of Lemma 5.2). Note also
that the index set Z belonging to the extension consists of all pairs (Z,") which can be selected
from the sets {1, 2}, {1, 3}, or {3, 4} corresponding to the different factors. The validation of
part (4) is obvious.

A.11 Proof of Theorem 5.3

The first step of the proof is to show that the KLD-optimal functions f;(uy) and, thus, the PDF
p(u) must be Gaussian given that p(u) is zero-mean Gaussian. This is shown in [60]. The
second step is to show that the factors fi(u,) = p(ax|b) are the KLD-optimal functions: Let
S be the set of all positive definite M x M matrices, whose entries are equal to those in R for
all one-positions in P whereas the other entries are arbitrary. Let S’ be the set of all positive
definite M x M matrices, whose inverse has zero entries for all zero-positions in P whereas the
other entries are arbitrary. From Theorem 2 in [61] follows that forany A € Sandany B € S’
the following inequality holds

DN (0pr, A)||[N(0a, B)) < DN (0ns, A)||IN (04, B)),
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where B is that unique matrix from S’, whose entries are equal to those in R for all one-
positions in P, i.e, B € S. A covariance matrix R of the PDF f(u) constructed from a
symmetric CCRE is an element of both S (part 2 of Lemma 5.2) and &’ (part 4 of Lemma 5.2),
i.e., R is equal to B. Since the true source distribution R is an element from &, it follows that
D(p(u)||p(u)) given by D(N (04, R)||N (04, R)) is the smallest KLD among all Gaussian
PDFs, whose covariance matrix is an element from S’. Finally, the elements in S’ represent the
admissible factorizations H,]j:fl fr(ug) of p(u), i.e., a Gaussian PDF p(u) constructed from a
symmetric CCRE yields the KLD-optimal factors fi(uy) given by p(ax|by).
Since p(u) and p(u) are Gaussian, computing the KLD D(p(u)||p(u)) simplifies to

D(p(u) [5(1)) = 5(~ logy([R| IR~} +tx(RR™)~ M) = — ~ log,(|R| R,

as shown in [54, 60], where the last line follows from part 3) of Lemma 5.2. Applying (A.33)
to R ! yields the formula (5.11) in the theorem.
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A vector of quantization indices,

A covariance matrix with zero entries except for the variables in uy,
Discrete alphabet for the source U,

Channel input alphabet,

Channel output alphabet,

The Berger-Tung inner region,

The difference between two values,

A small positive number,

A positive value that goes to zero as P, goes to zero,

A small positive number indexed by i,

A small positive number,

A small positive number,

The exponential operator,

The expected value,

A normalizing constant,

An estimate of X,

An approximation of the covariance matrix R,

An approximation of the PMF p(i),

An approximation of the PDF p(u),

An estimate of the sample u,, observed by sensor £,

Infinity,

The integral operator,

The i-th coefficient of a convex combination,

A sequence of numbers that goes to zero as Py goes to zero.,
The set of quantization indices,

The logarithm to base two,

Reconstruction alphabet,

The set of codewords zV with N symbols,

The set of channel output sequences ¥ with N symbols,
The position vector of sensor m,

The expected value of the distortion for source U;,

A multivariate Gaussian distribution with mean g and covariance R,
The correlation between the measurements of sensors 7 and j,
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o? Noise power in an AWGN channel, 56
o? The noise variance, 95
Ti The time fraction allocated to the i-th user, 56
Cov{x,y} The covariance between x and y, 93
(i) The reconstruction value indexed by iy, 94
{UN}E A random block of K blocks of NV source symbols U;, 68
a A symbol in the alphabet X, 10
axb Shorthand notation for the operation (1 — a)b + (1 — b)a, 80
a; The i-th letter of alphabet X', 10
b; The bin index produced by encoder 7, 68
C The channel capacity, 16
Ci The i-th letter of the alphabet ), 10
Cij The capacity of the conference link between encoders ¢ and 7, 25
D A prescribed distortion value, 19
d A distortion measure, 19
dy The degree of a factor node in a factor graph, 98
d; The distortion measure for source U;, 62
d, The degree of a variable node in a factor graph, 97
f Encoding function, 9
fi Encoding function 7, 35
fr () The k-th factor of a chain rule expansion for the PDF p(u), 99
g Decoding function, 9
gk() The k-th factor of a chain rule expansion for the PMF p(i), 98
H(X) The entropy of X, 11
H(XY) The joint entropy of X and Y, 11
Hy(+) The binary entropy function, 15
hik Conference function used by encoder 7 at time £, 44
I(X;Y) The mutual information between X and Y/, 12
i The quantization index produced by sensor &, 94
K A generic block length, 44
li; The distance between sensors 7 and 7, 94
M Number of information sources, number of sensor nodes in a network, 23
m (i) The marginal probability of iy, 96
M; Number of partition cells for alphabet 4;, 45
N Number of symbols in a sequence, also called block length, 9
N, Number of channel symbols, 18
p(u) Probability distribution of the random variable U, 9
p(uus ... upr)  Joint probability distribution of M sources U, 23
p(zy) Joint probability distribution of X and Y, 10
Do The crossover probability of a binary symmetric channel, 80
P, The single-letter error probability, 15
P, The power allocated to the i-th user, 56
Dk The index of the main variable in a factor, 99
Py Block Error Probability for N symbols, 9
Pyvyw Joint type of 2V and %, 10
Py~ The type or the empirical distribution of a sequence v of V symbols, 10
Q The number of quantization bits per source sample, 94
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Gk The index of the conditioning variable in a factor, 99
R The rate of a code, 9
R(D) The rate-distortion function, 20
R(S) The sum of rates R; such thati € S, 23
ri() Real numbers that depend on the distortion values, 131
T} Rate values for the boundaries of the Berger-Tung region, 80
R, The channel coding rate, 18
R, The source coding rate, 18
R;; The conferencing rate at which encoder - communicates with encoder 5, 30
S A set of indices, 23
S¢ The complement of S, 23
U Random variable describing a source of information, 9
U(s) The set of information sources U; such that: € S, 23
U] Auxiliary random variable for the source Uj, 46
Ug, The source sample observed by sensor &, 94
V4 The cell index for a partition of the alphabet ¢4, 45
VN A block of N conference messages sent by encoder 7, 46
Vik The message sent by encoder i at the k-th transmission., 43
X Random variable describing the channel input, 9
XN A random codeword, 13
N A codeword with V symbols, 9
Y Random variable describing the channel output, 9
yN A block of channel outputs, 9
7z Auxiliary random variable, 25
Z(S) A set of auxiliary random variables Z;; such thati € Sorj € S, 33
Zij Auxiliary random variable for the conference between encoders ¢ and j, 33
On The length-V all-zero column vector, 93
R(D) The multiterminal rate-distortion region, 84
R(D1, D») The multiterminal rate-distortion region for distortions D, and Dy, 62
A A generic matrix, 93
Iy The N x N identity matrix, 93
R The covariance of a multivariate Gaussian distribution, 94
X, The binary codeword corresponding to the quantization index i, 94
AN(X) The weakly typical set of X subjectto e and NV, 12
B A generic set, 17
C; The codebook used by encoder 4, 68
S A generic set, 13
TN (X) The strongly typical set of X subjectto d and N, 10

S(XY) The strongly jointly typical set of X and Y subject to § and NV, 10
Dns A non-symmetric constrained chain rule expansion, 103
Ds A symmetric constrained chain rule expansion, 103
R The set of real numbers, 93
R* The set of positive real numbers, 19
I The mean value of a multivariate Gaussian distribution, 93
T j The j-th element of the binary codeword x, 94
AWGN Additive White Gaussian Noise, 95

BP Belief Propagation, 97
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BPSK Binary Phase Shift Kkeying, 94
CEO Chief Executive Officer, 31
cf Compare, 141
CME Conditional Mean Estimator, 95
dB Decibel, 111
e.g. For example, 30
FDMA Frequency Division Multiple Access, 31
i.e. That is, 4
KLD Kullback-Leibler Distance, 100
MAC Medium Access Control, 32
MMSE Minimum Mean Square Error, 117
MSE Mean Square Error, 95
PDF Probability Density Function, 94
PMF Probability Mass Function, 95
SNR Signal-to-Noise Ratio, 111
TDMA Time Division Multiple Access, 31
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