
LEHRSTUHL FÜR INTEGRIERTE SCHALTUNGEN
Univ.-Prof. Dr.-Ing. I. Ruge, em.

PERFORMANCE ESTIMATION

FOR THE DESIGN SPACE EXPLORATION

OF SYSTEM-ON-CHIP SOLUTIONS

Nuria Pazos Escudero

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstech-
nik der Technischen Universität München zur Erlangung des akademischen Grades
eines

Doktor-Ingenieurs (Dr.-Ing.)
genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr.-Ing. Georg Färber

Prüfer der Dissertation:

1. Univ.-Prof. Dr.-Ing. Ingolf Ruge, em.

2. Univ.-Prof. Dr. rer. nat. Wolfgang Rosenstiel,

Eberhard-Karls-Universität Tübingen

Die Dissertation wurde am 30.04.2003 bei der Technischen Universität München einge-
reicht und durch die Fakultät für Elektrotechnik und Informationstechnik am 29.07.2003
angenommen.

Acknowledgements

First of all, I want to thank Prof. Ingolf Ruge who encouraged and enabled me to
pursue this Ph.D. thesis at his institute. Furthermore, I want to thank the members
of the dissertation committee, Prof. Wolfgang Rosenstiel and Prof. Georg Färber for
the time and effort they gave to this cause.

Specially, I thank my tutor and leader of the networking group at the institute
Thomas Wild for motivating me and for his patience. The technical discussions with
him have contributed significantly to my scientific work. It has been a pleasure and an
honour to work with him. At the same time, I greatly thank Dr. Walter Stechele his
daily trust on me.

My very special thanks are directed to Nabil Ouerhani. Without his substantial and
daily technical as well as private support and encouragement I would not have been
able to reach this goal.

To those individuals who spent their time proof-reading my papers and the manuscript
of this work, I am particularly grateful. Their suggestions and corrections were very
helpful in clarifying various points that might otherwise have been mistreated or omit-
ted. A special thank goes again to Thomas Wild and to Paul Zuber, to my colleagues
Axel Hof, Hubert Mooshofer and Jürgen Foag, to my friends Dr. Magdalena Rafe-
cas, Dr. Javier Bracamonte, Markus Kuhn, Raymond Korhon and, finally, to Ilka
Nahmmacher, who read carefully the final version.

I would also like to thank other colleagues I had the pleasure to interact with:
Stephan Herrmann, Torsten Mahnke, Raul Medina, Ulrich Niedermeier and Armin
Windschiegl. This also includes my former Master’s students Susana Martin and Jorge
Juan Ramos and the internship student Amit Chaudhari, whose contributions have
been particularly valuable.

Concerning my industrial experience, I would like to thank our project partners from
Siemens ICN, Karl Schrodi and Dr. Thomas Theimer, for showing me the huge amount
of industrial applications the world of networking comprises.

ii ACKNOWLEDGEMENTS

I owe many thanks to the system administrators at the institute Wolfgang Kothz and
Stephan Herrmann, who always provided quick help for my infinite computer problems.
I also want to express my thanks to Verena Draga, Gabi Spöhrle and Doris Zeller for
their administrative help.

A particular acknowledgement is directed to the persons who pushed the start of my
adventure in Germany, Dr. Teresa Riesgo, Dr. Yago Torroja, Dr. Eduardo de la Torre
and Prof. Javier Uceda from the Universidad Politecnica de Madrid.

Last but not least, I cannot forget to thank my dear family their unconditional
support and encouragement and my friends all over the world for being there. It is
not easy to be far away from home, but they have made it possible that I feel close to
them during the last years. I owe special thanks to my parents, Francisco and Aurora,
and my sister Montse and my brother Francisco for everything they have done for me
and for their blind support. This work is dedicated to my father, who injected me the
feeling for engineering.

Kurzfassung

Die steigende Komplexität aktueller VLSI–Systeme und die Erhöhung des Markt-
drucks für diese Produkte zwingen die Entwickler, sich zu höheren Abstraktionsebenen
zu bewegen und den Entwurfsablauf mit ausführbaren Spezifikationen zu beginnen.
Auf der System–Ebene wird sowohl der Ablauf zur Auswahl der optimalen Architektur
als auch die Partitionierung der Funktionalitäten beträchtlich beschleunigt.

Die Entwurfsraum–Untersuchung ist eine der wichtigsten Aufgaben innerhalb des
Entwurfs auf System–Ebene. Sie versucht, die beste Architektur–Partitionierungs-
alternative zu finden, d.h. die optimale Partitionierung der Systemfunktionalitäten
zwischen Hardware und Software und gleichzeitig die richtigen Architektur-Ressourcen,
welche die Anforderungen der Spezifikation erfüllen. Die Performance–Abschätzung
spielt eine wichtige Rolle innerhalb der Entwurfsraum–Untersuchung, um die Entwurfs-
alternativen einzuordnen. Performance–Abschätzung wird mit der Bestimmung der
Auslastung und des Durchsatzes der Ressourcen gekennzeichnet.

Die vorliegende Arbeit stellt eine neuartige Methode für die Performance–Abschät-
zung auf der Systemebene vor, die auf der Beschreibungssprache SystemC beruht.
Wesentlich bei diesem Ansatz ist, dass kein aufwendiger Umbau des Strukturmodells
erforderlich ist, um verschiedene Partitionierungsalternativen zwischen Hardware und
Software zu untersuchen. Folglich ist der Modellierungsaufwand bei der Verwendung
der vorgeschlagenen Methode wesentlich niedriger, als wenn ein Strukturmodell der
Zielarchitektur auf einer niedrigeren Abstraktionsebene verwendet würde. Gleichzeitig
beschleunigt diese Methode die Simulation und verbessert die Genauigkeit der Ergeb-
nisse bisheriger Ansätze. Diese Eigenschaften ermöglichen eine schnelle und einfache
Exploration von mehreren Alternativen bei einer Entwurfsraum–Untersuchung.

Die vorgeschlagene Performance–Abschätzungsmethode ist dafür gedacht, innerhalb
eines Hardware–Software Co–Design Ablaufs integriert zu werden, bei dem mehrere
Zielarchitekturen untersucht werden und eine einfache Zuordnung der Funktionen zur
Zielarchitektur möglich sein sollte.

Der Industriestandard SystemC wurde als Beschreibungssprache für die Implemen-
tierung der Methode gewählt. Es handelt sich dabei um eine neue Verwendung dieser
Sprache, wobei die Systemfunktionalitäten und die Eigenschaften der Zielarchitektur
in Form eines Graphen funktional beschrieben sind. Frühere Ansätze haben Sys-
temC angewendet, um die Systemfunktionalitäten und die Zielarchitektur strukturell
zu beschreiben.

iv KURZFASSUNG

Die Methode beruht auf drei Modellen, dem funktionalen, dem architekturalen und
dem Kommunikationsmodell, die aufeinander aufbauen. Die Spezifikationsfunktionen
sind in Form eines Prozessgraphen beschrieben, der mit den Eigenschaften der Zielar-
chitektur weiter gekennzeichnet ist. Diese Annotierungsinformation bezieht sich auf die
Abbildung und das Scheduling der Funktionen zu Prozessierungseinheiten und auf die
Betrachtung der Systemkommunikation und der Lösung von Zugriffskonflikten. Der
Implementierungsablauf für die Erzeugung der drei Modelle ist anhand entsprechender
Konfigurationsdateien automatisiert.

Für die Verifikation der vorgeschlagenen Methode wurde eine flexible Co–Simula-
tionsplattform entwickelt, die ein strukturelles Modell der Zielarchitektur darstellt.
Ein Zyklen–genaues Modell der Plattform wurde implementiert. Es dient als Referenz
für die Bewertung der Ergebnisse der vorgeschlagenen Methode. Auf Basis der Ergeb-
nisse der Plattform wurden die Simulationszeit und der Ausgangsdurchsatz der neuen
Methode verifiziert.

Die Methode wurde auf ein Hardware–Software System für die Bearbeitung von
Netzwerk–Protokollen erfolgreich angewendet. Eine System–on–Chip Architektur, die
mehrere eingebettete Prozessoren, die ihrerseits Multi-Threading unterstützen, und
dedizierte Hardware-Beschleuniger beinhaltet, wurde als Zielarchitektur für die Zuord-
nung der Funktionen ausgewählt. Es wurde gezeigt, dass die neue Methode eine um
rund 70% schnellere Simulation als eine Zyklen–genaue Simulation erreicht, während
die Genauigkeit der Ergebnisse innerhalb einer akzeptablen Toleranz bleibt (etwa 1,5%
Abweichung). Wesentlich dabei ist, dass die Untersuchung von mehreren Partitionie-
rungsalternativen beschleunigt wird. Dies ist durch die Verwendung eines funktionalen
Graphenmodells, das zusammen mit Architekturdaten das Verhalten des Systems nach-
bildet, ermöglicht. Jedes Mal, wenn eine neue Zuordnungsalternative untersucht wird,
ist es lediglich nötig, die Konfigurationsinformation für die neue Alternative zu ändern.
Auf diese Weise kann das Verfahren zur automatischen Untersuchung einer grossen An-
zahl an Architekturalternativen eingesetzt werden.

Abstract

The increasing complexity of current VLSI systems and the increase of time-to-
market pressure for these products are forcing the developers to move to higher levels
of abstraction and to design products from executable specifications. At the system
level, the process towards the selection of the optimal target architecture as well as the
partitioning of the functionalities can be considerably accelerated.

Design space exploration is one of the most important tasks of system level design. It
tries to find the best architecture–partition alternative, meaning the optimal partition
of the system functionalities between hardware and software and, at the same time, the
right architecture resources, which meet the requirements of the specification. Perfor-
mance estimation plays a decisive role inside the design space exploration for ranking
the design alternatives. Performance estimation is characterised by measuring utilisa-
tion and throughput of the resources.

The present thesis introduces a novel system level performance estimation metho-
dology based on the system level language SystemC. Especially significant is that no
costly rebuilding of the structure of the model is necessary in order to explore di-
fferent hardware–software partition alternatives. Consequently, the modelling effort
when applying the proposed method is considerably lower compared to building up
a structural model of the target architecture at a lower level of abstraction. At the
same time, this methodology speeds up the simulation and enhances the accuracy of
the results of existing approaches. All of these characteristics allow for fast and easy
exploration of several alternatives during design space exploration.

The performance estimation methodology proposed is intended to be integrated in a
hardware–software co-design procedure, where several target architectures have to be
explored and an easy re-mapping of the functions onto the target architecture should
be possible.

The industry standard language SystemC has been chosen as the description lan-
guage for the implementation of the methodology. It is noteworthy that this is a new
application of this language, where the system functionalities and the characteristics
of the target architecture are described functionally in terms of a graph. Existing ap-
proaches have applied SystemC to describe the system functionalities and the target
architecture in a structural way.

The method is based on three models, the Functional, Architectural and Commu-
nication model, each of which is built on top of the previous one. The functions of

vi ABSTRACT

the specification are described in terms of a process graph, which is further annotated
with the characteristics of the target architecture. This annotation information is re-
lated to the mapping and scheduling of the functions to the processing units and to
the consideration of the system communication and the solution of access conflicts.
The implementation procedure towards the creation of these three models has been
automated by means of corresponding configuration files.

For the verification of the proposed method, a flexible hardware–software co-simu-
lation platform is developed, which represents a structural model of the target archi-
tecture. A cycle accurate model of this platform is implemented, which serves as a
reference for the evaluation of the results of the proposed methodology. Taking the
results of the platform as a basis for the comparison, the simulation runtime and the
output throughput of the new methodology are verified.

The methodology has been successfully applied to a hardware–software system for
networking protocol processing. A System-on-Chip architecture, which comprises mul-
tiple embedded processors, each of it with multi-threading support and dedicated hard-
ware accelerators, is taken as target architecture for the mapping of the functionalities.
It is demonstrated that the new methodology achieves about 70% faster simulations
than a cycle accurate simulation, while maintaining the accuracy within an accept-
able tolerance (around 1.5%). Significantly by the proposed methodology is that it
considerably accelerates the exploration of several partition alternatives by applying a
functional graph model, which, together with architecture information, reproduces the
behaviour of the system. Each time a new partition alternative is explored, it is only
necessary to change the configuration information for the new alternative to be tested.
In this manner the procedure can be employed for an automatic exploration of a large
amount of architecture alternatives.

Contents

Acknowledgements ii

Kurzfassung iii

Abstract v

Index of Contents vii

List of Tables xiii

List of Figures xv

List of Acronyms xix

1 Introduction 1

1.1 Motivation . 2

1.2 Novelty Aspects . 3

1.3 Procedure . 4

1.4 Structure of the Work . 5

2 State of the Art 7

2.1 Chapter Introduction . 7

2.2 System Level Design. Languages and Methodologies 8

viii CONTENTS

2.2.1 Classical Hardware–Software Co-Design Procedure 8

2.2.2 System Level Design Procedure 11

2.2.3 System Level Languages . 13

2.2.3.1 C/C++-Based Languages 15

2.2.3.2 Domain-Specific System Level Languages 17

2.2.3.3 Extensions to Hardware Design Languages 17

2.2.4 Computer-Aided Co-Design Methods and Tools 18

2.2.4.1 Classification of Co-Design Approaches. 19

2.3 Performance Estimation Approaches 25

2.3.1 Block Level Performance Estimation 25

2.3.1.1 Software Performance Estimation Techniques 25

2.3.1.1.1 Cycle-Accurate Performance Model. 26

2.3.1.1.2 Timing Annotation of the Control Flow Graph
(CFG). 26

2.3.1.1.3 Original C-Code Annotation. 26

2.3.1.1.4 Software Estimation by Means of Linear Equa-
tions. 27

2.3.1.2 Hardware Performance Estimation Techniques 27

2.3.1.2.1 Local Scheduling Methods 28

2.3.1.2.2 Global Scheduling Methods 28

2.3.2 System Level Performance Estimation 29

2.3.2.1 Simulation-Based Approaches 29

2.3.2.2 Trace-Based Performance Analysis Strategies 30

2.3.2.3 Static Performance Estimation Methods 31

2.3.2.4 Analytical Performance Estimation Methods 32

2.4 VLSI Architectures for Networking Applications 34

2.4.1 Network Infrastructure . 34

CONTENTS ix

2.4.1.1 Computer Networks 34

2.4.1.1.1 Communication Layers in a TCP/IP Network. 35

2.4.1.1.2 Communication Processing Tasks. 36

2.4.1.1.3 Classification of Computer Networks. 38

2.4.1.2 Network Equipment 38

2.4.2 VLSI Networking Architectures Design 39

2.4.2.1 Evolution of VLSI Networking Architectures 39

2.4.2.2 Design Trade-Offs . 41

2.4.3 Network Processors . 41

2.4.3.1 Common Characteristics 41

2.4.3.2 Main Attributes . 42

3 Performance Estimation for Design Space Exploration 45

3.1 Chapter Introduction . 45

3.2 Design Space Exploration . 46

3.3 Performance Estimation . 49

3.3.1 Performance Estimation Requirements 50

3.3.2 Categorisation of Performance Estimation Approaches 51

3.3.2.1 Analytical Modelling and Evaluation 52

3.3.2.2 Analytical Modelling and Evaluation by Means of Sim-
ulation . 52

3.3.2.3 Instruction Level Models 53

3.3.2.4 Cycle-Accurate Models 53

3.3.2.5 RTL and Logic Level Models 53

3.4 Comparison of Performance Estimation Approaches 54

3.4.1 Advantages and Disadvantages 54

3.4.2 Support of Co-Design Procedures 55

x CONTENTS

3.4.3 Need for Improvements . 56

3.5 Integration in the Design Flow . 57

3.5.1 Inputs Required by the Performance Estimation 58

3.5.2 Boundary Conditions . 59

4 System Level Performance Estimation for Multi-Processing, Multi-
Threading SoC Architectures 63

4.1 Chapter Introduction . 63

4.2 Fundamentals of the Methodology . 63

4.3 Modelling Approach . 65

4.3.1 Functional Annotated SystemC Conditional Synchronisation Graph
(Functional ASCSG) . 66

4.3.2 Architectural Annotated SystemC Conditional Synchronisation
Graph (Architectural ASCSG) 67

4.3.3 Communication Annotated SystemC Conditional Synchronisa-
tion Graph (Communication ASCSG) 68

4.4 Evaluation Approach . 70

4.5 System Performance Estimation Scheme 71

4.5.1 Inputs for the Modelling of the ASCSG 71

4.5.1.1 Sequence of Nodes . 73

4.5.1.2 Convergence of Paths 73

4.5.1.3 Flexible Mapping . 74

4.5.1.4 Multiple Instances of Computation Nodes 74

4.5.2 Outputs of the Evaluation of the ASCSG 75

4.5.2.1 Functional Validation 75

4.5.2.2 Processing of Nodes 75

4.5.2.3 Tracking and Monitoring 76

5 Implementation 77

CONTENTS xi

5.1 Chapter Introduction . 77

5.2 Implementation of the ASCSG . 77

5.2.1 Creation of the Functional Model 78

5.2.2 Creation of the Architectural Model 79

5.2.3 Creation of the Communication Model 81

5.3 Automation Approach . 85

5.3.1 Data Structure for the Implementation 85

5.3.2 Configuration Files . 88

6 Methodology Verification 93

6.1 Chapter Introduction . 93

6.2 Hardware–Software Co-Simulation Techniques 94

6.2.1 Techniques Requiring Processor Models 95

6.2.2 Techniques not Requiring Processor Models 96

6.3 Target Platform Architecture . 97

6.4 Modelling Approach . 98

6.4.1 Skeleton of the Co-Simulation Platform 99

6.4.2 Functional Units . 101

6.4.2.1 Embedded RISC Processor 101

6.4.2.2 Hardware Blocks – Accelerators 104

6.4.2.3 Shared Memories . 104

6.4.3 Communication Structure . 105

6.4.3.1 Command Bus . 106

6.4.3.2 Data Bus . 107

7 Results and Evaluation 109

7.1 Chapter Introduction . 109

7.2 Case Study . 109

xii CONTENTS

7.2.1 Packet Processor Functionalities 110

7.2.2 TCP/IP Packet Processing Data Flow 111

7.3 Modelling of Architecture–Partition Alternatives 112

7.4 Simulation Results . 117

7.4.1 Simulation Environment . 117

7.4.2 Simulation Predefinitions . 119

7.4.3 Output Throughput . 120

7.4.4 Performance Values . 120

7.5 Simulation Speed of the ASCSG . 124

7.6 Accuracy of the ASCSG . 127

7.7 Modelling Effort of the ASCSG . 127

7.8 Comparison with Other Performance Estimation Methods 130

8 Summary and Conclusions 133

Bibliography 145

List of Tables

2.1 Comparison of Hardware–Software Co-Design Approaches 23

3.1 Stirling Numbers of the Second Kind 49

3.2 Comparison of Architecture Simulators 54

5.1 Possible Mapping Execution Times . 79

7.1 Architecture–Partition Alternatives Explored 119

7.2 Parameter Processing Units . 119

7.3 Parameter Communication Media . 120

7.4 Values Block Level Performance Estimation 120

7.5 Output Throughput (packets/s) . 121

7.6 Simulation Speed . 126

7.7 Simulation Accuracy . 128

7.8 Comparison Performance Estimation Approaches 131

xiv LIST OF TABLES

List of Figures

2.1 Classical Hardware–Software Co-Design Procedure 9

2.2 System Level Design Flow . 12

2.3 Classification of Co-Design Approaches 20

2.4 TCP/IP Conceptual Layers . 36

2.5 Communication Processing Tasks . 37

2.6 VLSI Networking Architectures . 40

3.1 Abstraction Levels for Models . 46

3.2 Design Space Exploration . 48

3.3 Performance Estimation Abstraction Levels 52

3.4 Integration Performance Estimation Process in the Design Flow 57

3.5 Target Architecture . 61

4.1 Estimation of Performance . 64

4.2 Functional ASCSG . 66

4.3 Architectural ASCSG . 67

4.4 Shared Computation Node . 68

4.5 Communication ASCSG . 69

4.6 System Performance Estimation Scheme 72

4.7 Sequence of Nodes . 73

xvi LIST OF FIGURES

4.8 Convergence of Nodes . 73

4.9 Mapping onto PE/Thread–AC . 74

4.10 Multiple Instances of Computation Nodes 75

4.11 Functional Validation . 76

5.1 ASCSG Implementation Procedure . 78

5.2 Access to a Shared Computation Node 81

5.3 Access to a Shared Communication Medium 82

5.4 Access to a Shared Communication Medium from/to a Hierarchical
Channel . 83

5.5 Context Switch and Context Event Notification in a Multi-Threading
Processor . 84

5.6 Computation Node Data Structure . 86

5.7 Access Node / Shared Element Data Structure 87

5.8 Communication Node / Arbiter Data Structure 88

5.9 Performance Estimation by Means of Configuration Information 91

6.1 Target Platform Architecture . 98

6.2 Bus-Based Co-Simulation Platform . 100

6.3 Embedded RISC Processor . 102

6.4 Multi-Threading Modelling . 103

6.5 FSM of Context Event Arbiter . 103

6.6 Internal Architecture of a Hardware Block 105

6.7 Internal Architecture of a Shared Memory 106

6.8 Command Bus . 106

6.9 Data Bus . 106

7.1 Case Study: Input Packet Processing 111

7.2 Case Study: Functional ASCSG . 113

LIST OF FIGURES xvii

7.3 First Alternative: Two PEs and One AC 114

7.4 Target Architecture First Alternative 115

7.5 Second Alternative: Two PEs and Two ACs 116

7.6 Target Architecture Second Alternative 117

7.7 Third Alternative: One Multi-Threading PE and One AC 118

7.8 Queue Command Bus . 122

7.9 Queue Data Bus . 122

7.10 Queue Classify Accelerator . 122

7.11 Queue LPM Accelerator . 122

7.12 Queue Events PE 0 . 123

7.13 Queue Events PE 1 . 123

7.14 Delay Write Request Command Bus; PEs 123

7.15 Delay Write Request Command Bus; Threads 123

7.16 Delay Write Request Data Bus; PEs 124

7.17 Delay Write Request Data Bus; Threads 124

7.18 Delay Write Request Classify; PEs . 124

7.19 Delay Write Request Classify; Threads 124

7.20 Delay Write Request LPM; PEs . 125

7.21 Delay Write Request LPM; Threads . 125

7.22 Delay Wait Event PE 0 . 125

7.23 Delay Wait Event PE 1 . 125

7.24 Modelling Effort . 129

xviii LIST OF FIGURES

List of Acronyms

• AC: Accelerator

• ALU: Arithmetic Logic Unit

• ANSI: American National Standards Institute

• ARPANET: Advanced Research Project Agency NETwork

• AS: Autonomous System

• ASAP: As Soon As Possible scheduling algorithm

• ASCSG: Annotated SystemC Control-Synchronisation Graph

• ASIC: Application Specific Integrated Circuit

• ASSP: Application Specific Standard Products

• BFM: Bus Functional Model

• CAD: Computer-Aided Design

• CAG: Communication Analysis Graph

• CBA: Command Bus Arbiter

• CDFG: Control Data Flow Graph

• CEA: Context Event Arbiter

• CFG: Control Flow Graph

• CFSM: Co-design Finite State Machine

• Cme: external Communication node

• Cmi: internal Communication node

xx LIST OF ACRONYMS

• COSYMA: COSYnthesis of eMbedded microArchitectures

• CPG: Conditional Process Graph

• CPI: Communications Programming Interfaces

• CP: ComPutation node

• CPU: Central Processing Unit

• CSR: Control and Status Registers

• DiffServ: Differentiated Services

• DSP: Digital Signal Processor

• EDA: Electronic Design Automation

• ESC: Extended SystemC library

• FDDI: Fiber Distributed Data Interface

• FPGA: Field Programmable Gate Array

• FSM: Finite State Machine

• FTP: File Transport Protocol

• GNU: GNU’s Not Unix

• GPR: General Purpose Register

• HDL: Hardware Description Language

• HDLC: High level Data Link Protocol

• HTTP: Hyper Text Transfer Protocol

• IP: Intellectual Property

• IP v.6: Internet Protocol version 6

• ISO: International Organisation for Standardisation

• ISP: Internet Service Provider

• ISS: Instruction Set Simulator

• ITRS: International Technology Roadmap for Semiconductors

LIST OF ACRONYMS xxi

• LAN: Local Area Network

• MAC: Medium Access Control

• MAN: Metropolitan Area Network

• MIPS: Million Instructions Per Second

• M: Memory unit

• OC: Optical Carrier

• ODETTE: Object-oriented co-DEsign and functional Test TEchniques

• OSI: Open Systems Interconnection

• PE: Processing Element

• POOSL: Parallel Object-Oriented Specification Language

• PNI: Programmable microprocessors on Network Interfaces

• PU: Processing Unit

• QoS: Quality of Service

• RFIFO: Receive First In First Out

• RISC: Reduced Instruction Set Computer

• RTL: Register Transfer Level

• RTOS: Real Time Operative System

• SDL: Specification and Description Language

• SDRAM: Synchronous Dynamic Random Access Memory

• SIA: Semiconductor Industry Association

• SIR: System Intermediate Representation

• SLA: Service Level Agreement

• SLDL: System Level Design Language

• SoC: System-on-Chip

• SONET: Synchronous Optical Network

xxii LIST OF ACRONYMS

• SPADE: System level Performance Analysis and Design Space Exploration

• SPI: System Property Intervals

• SRAM: Static Random Access Memory

• TCP: Transport Control Protocol

• UML: Unified Modelling Language

• VC: Virtual Component

• VHDL: VHSIC Hardware Description Language

• VHSIC: Very High Speed Integrated Circuits

• VLSI: Very Large System Integration

• WAN: Wide Area Network

Chapter 1

Introduction

At present, the complexity of VLSI integrated systems is growing exponentially. This
is partially supported by the advances in silicon processing technology, which enable in-
tegration of ever more complex functions on a single chip. These so-called Systems-on-
Chip (SoC) contain dedicated hardware components, programmable processors, mem-
ories, etc., requiring not only the design of digital and analogue hardware but also
the design of embedded software. Nevertheless, the well known chart published by
the Semiconductor Industry Association (SIA) [1] predicts an increase in design com-
plexity of about 58% per year while designer productivity increase stays at 21% per
year. These predictions demand new methodologies and tools that will allow significant
productivity improvements beyond the present trend.

Moreover, increasingly more complex circuits have to be designed in less time and
with greater guarantees of success in order to compete in a market that is becom-
ing more and more aggressive. This demanding environment is forcing fundamental
changes in the way VLSI systems are designed. The use of predefined Intellectual
Property (IP) blocks for System-on-Chip (SoC) design has become essential in order
to build the required complexity in a short time-to-market. The designers see current
design tools and methodologies as inadequate for developing million gate ASICs from
scratch. Tools are not providing the productivity gains required to keep pace with the
increasing gate counts available from deep submicron technology. Design reuse, i.e. the
use of pre-designed and pre-verified cores, is the most promising opportunity to bridge
the gap between available gate count and designer productivity.

A further interesting consequence of this increase of design complexity and increase of
time-to-market pressure is that they are forcing companies to move to higher and higher
levels of abstractions and to design products from executable system specifications. In
the International Technology Roadmap for Semiconductors (ITRS) [2] 2001 is written

2 1.1 Motivation

that “the cost of design is the greatest threat to the continuation of the semiconductor
roadmap”. Although design reuse and implementation tools contribute to decrease the
design cost, in the future the ITRS claims for “intelligent test-benches” and “embedded
system level methodologies”.

The design of network equipment constitutes a good example of complex systems
with an enormous growing perspective. Nowadays, the network equipment vendors are
racing to provide the new converged voice–video–data communication infrastructure.
Furthermore, conservative estimates for aggregate bandwidth on the Internet backbone
indicate a doubling each year for the past ten years. One consequence of this growth
is the demand for greater performance, flexibility, reliability and cost effectiveness in
the routers and switches which control the flow of data through the network.

1.1 Motivation

The new challenges concerning speed and flexibility pursued by emerging networking
architectures introduce in their design a scenario of multiple alternatives. The selection
of the optimal target architecture as well as the partitioning of the functionalities that
fulfills the constraints should start at a high-level of abstraction, i.e. at system level,
where different trade-offs can be fixed. Moreover, from the user’s point of view of a
certain architecture, the best mapping of the functionalities onto the fixed architecture
can be facilitated if a model of the system at a high level of abstraction is provided.

In a traditional design methodology, hardware and software design takes place in
isolation with the hardware being integrated with the software after the hardware is
fabricated. At system level, engineers are reconsidering how designs are specified,
partitioned and verified. In the actual complex systems, the software is programmed
in C/C++ and the corresponding hardware is developed in description languages such
as VHDL and Verilog. Thus, it is becoming common that problems arise from the
use of different design languages and incompatible tools. Errors that cannot be fixed
in software lead to costly re-fabrication and adversely affect time-to-market. To avoid
costly silicon re-spins and improve time-to-market, the design methodology has to
change, so that the hardware and the software are integrated earlier in the design cycle
that leads to the so-called system level design.

At system level, a huger scenario of possible alternatives have to be explored and,
therefore, the new embedded system level methodologies have to improve the support of
fast and flexible design space exploration procedures. This can be achieved by applying
fast and flexible performance estimation methods together with exploration strategies,
in order to rank the design alternatives. Performance estimation is characterised by

1.2 Novelty Aspects 3

measuring utilisation and throughput of the resources.

In traditional system design methodologies the target architecture is predefined. The
designer holds the design choices in terms of hardware–software partitioning, which
opens a huge space for exploration. During the partitioning phase, the functionality
captured by the specification is distributed among the allocated system components.
If the designer additionally wants to explore various architecture choices, the design
space becomes more dense. This creates the need for a fast exploration process, where
the performance evaluation of a potential solution plays a decisive role for reducing
the design alternatives. If the exploration is performed at a higher level of abstraction,
a huger scenario of low level alternatives is covered. Afterwards, at lower levels of
abstraction, only the best alternatives will be further evaluated.

It can be summarised that the acceleration of the exploration process requires a fast
performance estimation of the functionalities without losing accuracy. A compromise
between accuracy and computation time determines the feasibility of the estimation
techniques. Moreover, the time consumption of the whole design process could be
drastically reduced if high level estimation methodologies would be performed before
taking major design decisions.

A further related issue to be supported by the new system level methodologies is
the description language. If a design consists of hardware and software, the modelling
language should be C/C++ since standard processors come only with C/C++ com-
pilers. Unfortunately, the C/C++ language was developed for describing software and
not hardware. It is missing basic constructs for expressing hardware concurrency and
communication among components. Therefore, a language is needed that can be com-
piled with standard compilers and that is capable of modelling hardware and software
on different levels of abstraction.

1.2 Novelty Aspects

The present work introduces a novel system level performance estimation methodology
based on the system level language SystemC. The rebuilding effort is considerably
lower when applying the proposed methodology compared to building up a structural
model of the target architecture at a lower level of abstraction. It accelerates the
exploration of several partitioning alternatives of a system specification onto a target
architecture. This is achieved by applying a graph, whose structure does not have to be
re-constructed each time a new alternative is explored. Only the information concerning
the new architecture–partition configuration to be tested has to be provided.

The performance estimation methodology proposed is intended to be integrated in a

4 1.3 Procedure

hardware–software co-design procedure, where several target architectures have to be
explored and an easy re-mapping of the functions onto the target architecture should be
possible. The current methodology achieves a fast simulation runtime while maintain-
ing the accuracy within an acceptable tolerance. The latter is achieved by taking into
account the communication loads among components when the partitioning decision is
taken.

The goals pursued by the new methodology are achieved by means of a two-step
procedure. First, the system is modelled in terms of a graph, where the relevant
information concerning the target architecture is annotated and a mechanism to solve
resource contentions is added. This functional modelling accelerates the exploration
of further alternatives without requiring a re-building of the structure of the graph if
the hardware structure is changed. Second, the evaluation is performed by means of
simulation at system level. It allows a more detailed analysis than analytical evaluation.
And, at the same time, the simulation runs faster than a simulation at a lower level of
abstraction.

For the modelling of the graph, the industry standard system level language Sys-
temC has been chosen. It is noteworthy that this is a new application of this language,
which supports the implementation of the whole methodology. SystemC characteris-
tics such as the modelling of time, reactivity and concurrency, and the assistance it
provides in evaluating resource contentions, make this language especially suitable for
the implementation of the methodology. Existing approaches have applied SystemC to
describe the system functionalities and the target architecture in a structural way.

The proposed method is oriented to support the design of multi-processing and
multi-threading architectures for networking applications. These architectures contain,
mainly, multiple RISC embedded processors, powerful co-processors to accelerate some
costly functions and memory and interface blocks. Different communication resources
connect all building blocks with each other. Very often a bus-based communication is
found. An important characteristic of RISC embedded processors is its multi-threading
hardware support to avoid idle times when waiting on results from other resources. The
modelling and evaluation support of this characteristic also constitutes a novelty aspect
of the proposed method, which has not been previously covered by other performance
estimation approaches.

1.3 Procedure

An introduction to the problems behind design space exploration of the most recent
systems is needed for understanding the requirements imposed on the performance

1.4 Structure of the Work 5

estimation methods. This theoretic study, together with an exploration of the existing
techniques, will show the shortcomings and need for improvement in this area. In
particular, the current work concentrates on the reduction of the re-building effort,
which is quite high in previous approaches based on a structural model of the system
target architecture.

As input for the work, a graph representation for modelling the system functiona-
lities is selected. This graph is further annotated with information concerning the
target architecture and the selected partitioning of the functionalities onto the available
resources. Furthermore, the required mechanisms to solve resource contentions are
added to the graph. Then, the evaluation of the graph by means of simulation delivers
the performance estimation values. In order to verify the new approach in terms of
simulation time and accuracy, a comparison of the simulation results with a cycle-
accurate model is made for a specific example from the networking world. Finally, the
results achieved by the proposed system level performance estimation methodology are
compared with the results of other approaches. Especially attention is paid to the
abstraction level, modelling effort, simulation time and accuracy.

1.4 Structure of the Work

The remainder of this work is organised as follows: Chapter 2 presents the state of
the art in the related areas of system level design, performance estimation techniques
as well as in the main application scenario, VLSI networking architectures. In Chap-
ter 3 the role of performance estimation within design space exploration is presented
and the problems are explained. Furthermore, the disadvantages and shortcomings
of the previous approaches are shown, which constitute the main motivations for the
development of the proposed method. Then, the integration of the proposed perfor-
mance estimation method into the hardware–software design flow is depicted and the
boundary conditions and assumptions taken are explained. Chapter 4 describes the
modelling approach. This encompasses the Functional, Architectural and Communi-
cation models. Moreover, the system performance estimation scheme is illustrated by
means of selective examples from the networking world. The steps towards the im-
plementation of the methodology are explained in Chapter 5. Chapter 6 depicts the
configurable cycle-accurate hardware–software co-simulation platform built for verifi-
cation purposes. Chapter 7 compares the performance results achieved by the proposed
methodology to the outcomes of the cycle-accurate platform. The results are evaluated
and, further on, the procedure of the new method is compared with other performance
estimation techniques. The work ends with a summary and the conclusions.

6 1.4 Structure of the Work

Chapter 2

State of the Art

2.1 Chapter Introduction

In order to position the topic of this thesis, system performance estimation, as part
of the system level design, a comparison between the classical hardware–software co-
design procedure and the system level design is performed first. Later on, the most
recent and relevant system level languages are classified and briefly explained. Subse-
quently, some well known computer aided co-design methods and tools developed at
different universities and companies are introduced.

The estimation of the performance achieved by the architecture–partition alternative
under study plays an important role in this system level design paradigm. Several
approaches dealing with this issue at different abstraction levels are then shown and
their advantages and disadvantages discussed.

An introduction to the application scenario, VLSI networking architectures, is finally
carried out. An overview of the evolution of such architectures will show the require-
ments when pursuing the design of such complex systems. It demands the exploration
of different trade-offs at system level, where the designer has more freedom to achieve
a reasonable compromise.

8 2.2 System Level Design. Languages and Methodologies

2.2 System Level Design. Languages and Method-

ologies

Nowadays, the increase in complexity of the current VLSI designs has forced an evolu-
tion in the nature of the systems under design. The definition of a system has moved
from the system-on-board to the System-on-Chip (SoC). In the past, the systems were
composed of discrete parts such as microprocessors, memory chips, analogue devices
and application-specific integrated circuits (ASICs). In contrast, the modern System-
on-Chip may well contain one or more processors including both microcontrollers and
digital signal processors (DSPs) or specialised processors. Moreover, it includes on-chip
memory and peripheral control devices, linked together by an on-chip communication
network.

System design of embedded systems is often perceived as a process going from a
functional specification of a system, through a number of refinement or transformation
steps to an architecture, and from there, to a final implementation ([3]).

The increase in complexity and reduction of time-to-market requirements for current
embedded systems has resulted in the fact that the first phases in the design process,
i.e. design specification, allocation of the architecture and mapping of the functions
onto the target architecture, are no longer carried out from scratch, but rather with the
help of abstract models. This Section firstly depicts the classical hardware–software
co-design procedure and, later on, demonstrates why this does not meet the design
requirements introduced by today’s complex systems. The whole procedure has thus
to start at a higher level of abstraction, i.e. at system level, where the designer has
more freedom to explore the trade-offs and detect the bottlenecks. System level design
is mainly characterised by both, high-level of abstraction and exploration, where the
latter attribute is a consequence of the former one.

2.2.1 Classical Hardware–Software Co-Design Procedure

Hardware–software co-design can be defined as the cooperative design of hardware and
software. The flexibility offered by software allows late design changes and simplifies
debugging. Furthermore, the reuse of software by porting it to other processors reduces
the time-to-market and the design effort. Finally, in most cases, the use of processors is
very cheap compared to the development costs of ASICs. However, hardware is always
used by the designer when the processors are not able to meet the required performance.
This trade-off between hardware and software illustrates the optimisation aspect of the
co-design problem.

2.2 System Level Design. Languages and Methodologies 9

A typical electronic system development project is divided into four basic phases ([4]):
Product concept; design planning; hardware–software design phase; and integration
and test phase (co-simulation/emulation), as can be seen in Figure 2.1.

Product Concept
System Specification

Design Planning
SW/HW Partitioning

Architecture Selection

HW_Specification
HW_Architecture

RTL/Logic Synthesis
Physical Design

Simulation

HLL SW_Specification
SW_Architecture/RTOS

HLL Compiler
Assembler

Co−Simulation / Emulation

manually

manually

manually

commercial
Tools

commercial
Tools

Figure 2.1: Classical Hardware–Software Co-Design Procedure

1. Product Concept. During this phase, the entity being designed is viewed as
an overall system rather than as distinct hardware and software components.
This phase delivers the specifications for the system behaviour. Additionally,
functional requirements and budgets for both hardware and software components
of the system are created. These include constraining costs, size, performance,
and physical attributes. The system engineer writes a C or C++ model of the
system to verify the concepts and algorithms at system level.

2. Design Planning, Hardware–Software Partitioning. Starting from the specifica-
tion, the design is partitioned into hardware and software parts. This step has to
done in a manner by which the system function is preserved. This phase also takes
into account the underlying architecture and the resources on which the system
is being implemented. Partitioning involves the following major subtasks:

• Target Architecture Constraints Description: It includes the available re-
sources and their interconnections;

• Allocation and Binding: The designer schedules certain operations in hard-
ware and others in software and then estimates whether the constraints are
satisfied;

• Cost/Performance Estimation: In order to estimate the overall performance
of the system, accurate estimates of the performance of the functions on
various resources are required.

10 2.2 System Level Design. Languages and Methodologies

3. Hardware–Software Design Phase. During this phase, different teams for the
hardware and software part solve their respective problems. The hardware and
software design and implementation efforts typically start at the same time and
ideally end at the same time. But in practice, the beginning of the software devel-
opment has to wait until the hardware is finished. The software part is developed
using compilers and debugger tools, while for the hardware part, the function-
ality is described using a hardware design language (HDL). For the parts of the
original model to be implemented in software, the model has to be re-written
with calls to an RTOS. The conversion of the C/C++ model to be implemented
in hardware into the HDL occurs manually. This process is very tedious and
error prone. After the conversion took place, the HDL model becomes the focus
of development. The C model quickly goes out-of-date as changes are made.
Changes are typically made only to the HDL model and will not implemented in
the C model.

4. Integration and Test Phase. In theory, integration and test are the final steps
where the correctness of the system is checked. In practice, it is the first time that
the completed hardware and independently developed software come together
as a system. At this time numerous errors appear, as for example, the effects
of misinterpretations of interface definitions, out-of-date specifications, poorly
communicated changes of the specification between the teams, and ineffective
performance modelling. Consequently, one third or more of the total development
time is spent in this phase ([5]). As the tools progress and become more friendly
to both the hardware and software developers, the overlap between the test phase
and the design and implementation phases will increase. Tests that are created to
validate the C model functionality cannot be run against the HDL model without
conversion. The test suite has to be converted to the HDL environment.

Developers are often forced to redesign and/or reduce product objectives when
integration problems are found. Given the long fabrication cycles and costs as-
sociated with re-designing and re-spinning ASICs, the adaptation of the work is
frequently performed in software. This is not always the best solution for the end
product. But integration and test leads back to the design and implementation
phase, and can take about the same amount of time to complete as the original
design and implementation. Also in some cases, the first product release will not
contain all of the intended software functionality because it has not been possible
to start the integration effort earlier in the design.

Furthermore, two things are necessary before virtual integration and test can be
accomplished. The first is the ability to simulate the hardware at speeds sufficient
to make software execution a reality. In most cases, this means that the overall
simulation performance must be increased by a factor of at least 1000 over the

2.2 System Level Design. Languages and Methodologies 11

current execution speeds for hardware-oriented simulation products. The model
is simulated and verified with an RTOS emulator. Some parts of the original
code can be reused, but the change in abstraction from the original model to
an RTOS-based model requires significant manual re-coding and verification of
changes becomes a problem. The second is the need to bring the debug and devel-
opment environments for the hardware and software closer together. Simulation
waveforms do not provide a natural way for a software engineer to debug high-
level languages. The original source form for both the software and hardware
must be maintained within a single unified debugging environment.

As depicted in Figure 2.1, in a classical hardware–software co-design procedure the
first two phases are performed manually, while the last two are partially supported by
commercial tools. Moreover, the decision concerning the partition of the functionalities
in hardware and software is reached empirically and no exploration takes place. Firstly
at the end of the co-design procedure, i.e. in the integration and test phase, come the
hardware and software together and, in case the predefined constraints are not met,
a new partitioning alternative is tried. This procedure becomes then very tedious in
case the test of several alternatives is required.

It can be concluded that the classical co-design approach is no longer feasible for
the design of large heterogeneous Systems-on-Chip because quantitative architectural
considerations are not taken into account prior to the implementation phase. A move
to a level of abstraction beyond the RT level is therefore required — a move to what
has been termed system level design.

2.2.2 System Level Design Procedure

One of the most challenging tasks in System-on-Chip design is to map a complex
application onto a heterogeneous architecture, assuring that the specified performance
and cost requirements are preserved. The required flexibility and performance is best
delivered by a heterogeneous system architecture. As a result, the designer faces a huge
design space and has to compose a system architecture from various kinds of building
blocks in order to meet the constraints of the specific application.

A solution for dealing with this complexity is to exploit hierarchy and to move to
higher levels of abstraction ([7]). The level of abstraction is a trade-off with the level of
accuracy. A high abstraction level implies low accuracy and vice versa. Nevertheless,
a complex embedded system is easier to deal with at the abstract system level than at
the detailed gate or transistor level.

The term System Level Design refers to the abstraction level increase in the design

12 2.2 System Level Design. Languages and Methodologies

of embedded systems, i.e., from the architecture level to the system level. This is an
earlier stage in the design process which was previously carried out manually. Thus,
the design process of a new system starts from a highly abstract specification model
and ends with a highly accurate implementation model. The advantage of such a top-
down approach is that all necessary design decisions can be made at an abstraction
level where the irrelevant details are left out of the model. At system level, the designer
has more freedom.

Figure 2.2 illustrates the system level design flow. Further on, the different phases
are explained in detail.

Product Planning

Executable Functional
Specification

Executable Architectural
Specification

Implementation

Prototype

P
er

fo
rm

an
ce

E
st

im
at

io
n

F
u

n
ct

io
n

al
V

er
if

ic
at

io
n

E
st

ab
li

sh
ed

D
es

ig
n

−F
lo

w

Figure 2.2: System Level Design Flow

The system level design process begins with the product planning, where there is
still a close interaction between the customer and the designer. They both reach an
agreement concerning the system functionalities, which is written in terms of a specifi-
cation model that can be simulated (executable functional specification). It forms the
input to architecture exploration and therefore defines the basis for all exploration and
synthesis. The specification model is purely functional, that is, it is free of any imple-
mentation details and of any notion of time. The model executes in zero simulation
time.

The specification model describes the required behaviour. There are different flavours
of models, characterised by the abstraction level and the semantics. Some systems are
described using finite state machines, either graphically (e.g., Statecharts) or by means
of textual languages (e.g., SDL or Esterel), whereas hardware components are often
specified using a hardware description language (e.g., VHDL or Verilog). Developing a
single language (textual or graphical) that can express all desired features is a difficult
task because of the heterogeneity of the system components. Specification and design

2.2 System Level Design. Languages and Methodologies 13

frameworks that support multiple and extensible design front-ends is the foreseeable
solution. Such frameworks should then support a variety of tools for validation and
synthesis of the hardware and software component. The SPI (System Property Inter-
vals) model ([8]) represents a good example of such frameworks. SPI is an internal
high-level representation that facilitates global, system level analysis, optimisation and
synthesis of heterogeneously specified embedded systems.

Once the functional description has been verified and there are no changes in the
description and in the product specification needed, the process enters into the architec-
ture exploration phase. The purpose of this phase is to map the system functionalities
represented by the specification model onto the components of the target architecture,
which has been previously defined. The steps involved in this phase are as follows:
First of all, a target architecture (composed of processing elements and memory units)
for the implementation is allocated. Secondly, the partitioning of the functionalities
onto the processing elements takes place. This step comprises the mapping of the
functionalities onto the processing elements and the scheduling of such functionalities.

This partitioning of the functionalities onto the target architecture opens a large sce-
nario of alternatives, the scope of which grows with the complexity of the system. This
architecture exploration phase is supported by an executable architectural specification,
which delivers an estimation of the performance achieved by the partition alternative
under study. This architecture exploration phase is today partially supported by some
tools and methodologies.

The search of the optimal solution that meets the predefined cost constraints is
a NP-complete problem ([9]). If a problem is known to be NP-complete, then it is
unlikely that a polynomial time algorithm exists for that problem. However, in the
design automation field there is an urgent need to solve the problem even if it cannot be
solved optimally. As soon as the specified cost constraints are met, the implementation
phase starts. From this point on, an established standard design flow follows.

2.2.3 System Level Languages

Fundamentally, a system design language is a notation that embodies semantics for
describing a system prior to mapping it onto an architecture. Components must be able
to be described without making assumptions about the implementation. The system
level design language must have a way to describe the behaviour of the components
in the system irrespective of whether they will be mapped to software running on a
microprocessor or to application-specific hardware.

It should be possible to use the language to construct a performance model. Such a

14 2.2 System Level Design. Languages and Methodologies

model allows exploration of the architecture of the system without exactly specifying
what microprocessor or bus specification will be used in the implementation. The
decisions can be made later, after the entire system is described and simulated at a
very high-level.

The language must also include the ability to incorporate the description of con-
straints, such as event ordering, timing, dependencies and concurrency, with granular-
ity and scheduling mechanisms.

Understanding what system level design means is crucial for defining the require-
ments of a system level language. System level languages might provide support for
integrating domain-specific descriptions, for more abstract modelling and for verifi-
cation. There are four major reasons why a system level design language becomes
necessary ([3]):

• SoC designs combine hardware and software, not only hardware as in traditional
ASIC design. Therefore, there is a need for a language that describes the func-
tionality of both the software and hardware. It is essential that the system is
defined first, and the exact implementation (hardware or software) is established
later on in the design process;

• SoC designs are increasingly incorporating hardware and software intellectual
property (IP) from various sources. All of these sources need to use a common
system level design language so that the entire system can be modelled;

• Even hardware-only designs are becoming too complex to simulate in RTL. Sim-
ulating the entire design at a higher level provides much faster simulation times
and lets the designer test the behaviour of the entire chip before it is produced;

• System level design is also required to develop a virtual prototype of the hardware
that the software designers can use to begin software development. The old model
of waiting until the hardware is finished to begin software development is not
applicable any more.

Currently, many different languages in the area of system design are available. They
can be broadly classified with regard to the design phase they support and the ap-
plication scenario they are focused on. Under the first criterion, the existing design
languages can be divided into three classes. The first group contains the system spec-
ification and modelling languages for the description of functionality, properties and
constraints. Secondly, there are architecture languages for the modelling of an ar-
chitecture and system IP (Intellectual Property) and VC reuse (Virtual Component).
And finally, the last group comprises design command languages for estimation and

2.2 System Level Design. Languages and Methodologies 15

validation purposes. A language covering more than one such task is also possible. An
important boundary condition when developing a system level language is the fact that
there are many different kinds of systems (i.e., different domains with different models
of computation). Moreover, within a system, the heterogeneity also has to be taken
into account.

In the past, there have been a few attempts at the standardisation in the area
of system level languages, but they were not very successful. ACCELLERA ([10])
constitutes a new attempt at standardisation. It was formed in 2000 through the uni-
fication of Open Verilog International and VHDL International to focus on identifying
new standards, development of standards and formats, and to foster the adoption of
new methodologies. ACCELLERA has promoted the development of Rosetta ([11]).
Rosetta is a System Level Design Language (SLDL) developed to address requirement
specifications for SoC designs. The mission of the SLDL is to bring together hetero-
geneous information in a language environment. Specifically, Rosetta allows designers
to develop and integrate specifications written in multiple semantic models to provide
language and semantic support for concurrent engineering of electronic systems. Some
current activities around Rosetta are standardisation, its integration in the design flow
and the definition of Rosetta subsets for SystemVerilog, SystemC and other Hardware
Design Languages (HDL). The standardisation process is scheduled to be concluded in
December 2004.

A first rough classification of the system level design languages can be carried out by
differentiating between C/C++ approaches, domain-specific languages and extensions
of hardware design languages. Moreover, most of them support the system specifica-
tion and modelling of functionalities, while only few provide a means of architecture
modelling and a support for estimation and validation. A further distinctive criterion
is the necessity of no language translation in the further refinement of the specification.

2.2.3.1 C/C++-Based Languages

The C based system level languages offer two main advantages. First of all, they
are known worldwide and, secondly, there is no translation necessary for the software
part. For the hardware part, methods and automated tools have been appearing in the
meantime that will support the translation. The current two big players in the area of
C/C++ based approaches are SystemC and SpecC:

• SystemC is a new modelling language based on C++ that is intended to enable
system level design and IP exchange at multiple abstraction levels for systems
containing both hardware and software components ([12]). The SystemC stan-
dard is controlled by a steering group composed of a broad range of companies

16 2.2 System Level Design. Languages and Methodologies

from the Electronic Design Automation (EDA, [13]) and electronics industries.
SystemC consists of a set of C++ class libraries plus a simulation kernel that sup-
ports hardware modelling concepts at system level, behavioural level and register
transfer level. It provides a robust software environment for hardware–software
co-design. Nowadays, very few tools exist that act as a bridge between the system
architect modelling and verifying SoC designs in C/C++ and hardware designers
implementing those designs in silicon. Moreover, until now they support only a
small subset of SystemC constructs and they do not provide an optimised code
yet. Two examples would be the CoCentric SystemC Compiler ([14]), which syn-
thesises hardware from SystemC source code, and the Forter Design System’s
Cynthesizer ([15]), which can transform the SystemC design (using the Extended
SystemC Library (ESC)) into Verilog or VHDL suitable for input into a wide
variety of ASIC and FPGA logic synthesis tools;

Further work in this direction is being done within the framework of the ODETTE
project ([16]). The prime deliverable of the Object-oriented co-DEsign and func-
tional Test TEchniques project is a system for object-oriented hardware–software
co-design, which provides a migration path from object-oriented system specifi-
cations to efficient hardware and software implementations. The design flow that
will be supported within ODETTE is based on SystemC-plus. SystemC-plus
([17]) describes a synthesisable SystemC/C++ subset, adds object-oriented con-
structs to this subset, adds another class library on top of SystemC and brings
post-synthesis and pre-synthesis behaviour together;

• SpecC is an example of a system level design language based on C. It is de-
fined as an extension of the ANSI-C programming language. The first version of
the SpecC language ([18]) was developed in 1997 at the University of California
Irvine under the supervision of Prof. Gajski. The SpecC language is a formal
notation intended for the specification and design of digital embedded systems
including hardware and software. Built on top of the ANSI-C programming lan-
guage, the SpecC language supports concepts essential for embedded systems
design. It includes behavioural and structural hierarchy, concurrency, communi-
cation, synchronisation, state transitions, exception handling and timing ([19]).
A methodology for the refinement process within the system level design flow as
well as the required tools have also been developed in the meantime. Recently, a
new version of the language, SpecC 2.0, has been announced which enables the
migration from system level to RTL level and further implementation;

• Cx is a minimum extension of the C programming language by a process state-
ment allowing parallel processes. This language is used for the input description
of the system functions in the co-design workbench COSYMA ([28]).

2.2 System Level Design. Languages and Methodologies 17

2.2.3.2 Domain-Specific System Level Languages

Several system level languages have been developed in the meantime with an applica-
tion domain in mind. While they are broadly used, they nevertheless comprise different
restrictions depending on the domain.

• SDL: The Specification and Description Language (SDL) is an object-oriented,
formal language used for the specification of complex, event driven and real time
applications ([20]). The language is able to describe the structure, behaviour, and
data of real time and distributed communicating systems. The great strength of
SDL lies in describing large real time systems. SDL is a design and implemen-
tation language dedicated to advanced technical systems (i.e., real time systems,
distributed systems, and generic event driven systems where parallel activities
and communication are involved). Typical application areas are high and low-
level telecom systems, aerospace systems, and distributed or highly complex mis-
sion critical systems;

• Esterel: This is both a programming language, dedicated to programming reac-
tive systems, and a compiler which translates Esterel programs into finite state
machines. It is a member of a family of synchronous languages, which is partic-
ularly well suited to programming reactive systems, including real time systems
and control automata ([21]). It can generate C code to be embedded as a reactive
kernel in a larger program that handles the interface and data manipulations. It
can also generate hardware in the form of netlists of gates, which can then be
embedded into a larger system. Esterel has been chosen by the Polis group as
one of their input languages for their hardware–software co-design system;

• UML: The Unified Modelling Language ([22]) helps to specify, visualise and doc-
ument models of software systems, including their structure and design. There
are many UML tools available on the market for analysing the application’s re-
quirements and designing a solution that meets them. Any type of application
running on any type and combination of hardware, operating system, program-
ming language and network can be modelled in UML.

2.2.3.3 Extensions to Hardware Design Languages

Hardware description languages, for instance VHDL and Verilog, are known and used
worldwide but are restricted to describing hardware. Besides design, today’s language
requirements comprise verification, system and software interfaces. Therefore, the
classical hardware design languages might evolve to cover these other facets. One

18 2.2 System Level Design. Languages and Methodologies

attempt in this direction is SystemVerilog ([23]). SystemVerilog 3.0 evolves Verilog
rather than substituting it. These additions extend Verilog into the system space
and the verification space. It was built on top of the work of the IEEE Verilog 2001
committee. SystemVerilog improves the productivity, readability and reusability of
Verilog-based code.

2.2.4 Computer-Aided Co-Design Methods and Tools

When a design team conceives a digital system, it has to perform an implementation
that satisfies the system level specification within a short period of time. Furthermore,
it has to maximise the system value while reducing the cost. The value of an imple-
mentation depends, for instance, on the performance and the power consumption. The
cost is a function of the following parameters: number of hardware parts; size of the
silicon dies (packaging costs); and software development. The value and cost are also
related to the ease of debugging, testing and extending the system, as well as to the
reliability and maintenance ([24]).

Computer-aided co-design tools require as input a formal system level specification
in the form of system level languages or charts. It will lead to a structured design
methodology, will facilitate hardware and software reuse and will permit the support
of analysis and validation tools. All of these factors contribute to decreasing the design
time. Furthermore, a CAD tool should be able to support the exploration of differ-
ent design alternatives rapidly and should automatically generate a detailed low-level
description of the implementation.

The overall objective in co-design tool research and development is providing in-
tegrated environments for concurrent specification, validation and synthesis of both
hardware and software. A description of these three phases is provided below.

• Modelling. Nowadays different modelling styles are applied, each trying to fit
best a specific application. In the area of modelling styles, it is necessary to
distinguish between models of computation, which have an underlying mathe-
matical structure, and hardware–software languages, which are either a means of
expressing mathematical models or which describe systems and/or computation
using formal semantics.

The functional modelling of digital systems is often done using programming
languages (e.g. C/C++). Its purpose is to check generic properties of the system
and to derive some measures of its performance and cost.

• Validation. This phase ensures that the design is free from errors and there-
fore ready for implementation. As long as the system complexity increases, the

2.2 System Level Design. Languages and Methodologies 19

validation becomes more important and, at the same time, more difficult.

There are three main different ways of carrying out this stage: formal verification;
simulation; and emulation. The simulation (or co-simulation) is the traditional
way of validating hardware correctness. A simulator should provide adequate
timing accuracy, fast execution and visibility of the internal registers. The exist-
ing strategies trade-off among these factors.

• Synthesis. This stage derives a detailed representation of the system implemen-
tation, starting from the system level specification. It is also called co-synthesis
because it comprises both hardware and software synthesis.

First of all, the overall system is modelled consistently and, later on, the original
specification is partitioned, either manually or automatically, into a hardware and
a software component. The hardware component can be implemented in terms of
application-specific circuits using existing hardware synthesis tools. The software
component can be generated automatically in order to implement the function
to which the processor is dedicated. Synthesis must also provide a means for
interfacing and synchronising the functions implemented in the hardware and
software components.

The overall system cost and performance are affected by the system level partition
of the functionalities into hardware–software components. A cost function for
the partitioning phase is defined, which comprises different parameters (as, for
example, performance, power consumption and size). The goal is to find the
most cost effective implementation by splitting its functions between hardware
and software. The quality of a partition depends on performance/cost estimations
based on an abstract system representation. Developing precise fast estimators
from abstract models is a difficult problem.

2.2.4.1 Classification of Co-Design Approaches.

Figure 2.3 shows some of the main co-design approaches, based on their key research
issue. The problem of system specification and modelling is rarely considered. Most of
the work goes towards the implementation of heterogeneous systems which comprise
hardware–software partitioning and co-synthesis. The complexity of the supported
target architecture is one main criterion to distinguish the existing approaches.

All described approaches can be compared by their specification and implementation
power ([25]). Concerning the specification, the different co-design tools are classified
under their modelling style (homogeneous/heterogeneous), their features for validation
(simulation or verification) and their application domain (control flow, data flow or

20 2.2 System Level Design. Languages and Methodologies

Co−Design Approaches

System Modelling Heterogeneous Implementation

Processor synthesis Single−Processor Architecture Multi−Processor Architecture

Single ASIC Multiple ASIC

Ptolemy Castle Cosyma Lycos Mickey Tosca Volcan Chinook Cool Cosmos CoWare Polis SpecSyn

Figure 2.3: Classification of Co-Design Approaches

both). Most of the approaches offer a simulation possibility, but only POLIS sup-
ports co-verification. Furthermore, most of the approaches use homogeneous system
specification and only three of them support a heterogeneous one.

In the following, a brief summary of several tools, classified according to the structure
depicted in Figure 2.3, is presented.

Taking into account the implementation power, the approaches are classified by
the complexity of the supported target architecture, the degree of automating the
hardware–software partitioning and the support of implementing interfaces between
processors and ASICs. The target architectures are further classified into the following
classes: single–processor–single–ASIC architectures with exclusive or concurrent execu-
tion; single–processor–multiple–ASIC architectures; and multiple–processor–multiple–
ASIC architectures. The support of implementing interfaces is divided into three
classes, low, medium and high, corresponding to the degree of integrated techniques
for interface and/or communication synthesis.

In the following, a brief summary of several tools studied is presented, classified
according to the structure depicted in Figure 2.3:

1. Co-design for system specification and modelling;

• PTOLEMY ([26]) is an environment for simulating and prototyping of het-
erogeneous systems. It allows interaction and experimentation with various
models of computation, heterogeneous designs, domain-specific tools, co-

2.2 System Level Design. Languages and Methodologies 21

simulation and co-synthesis. The emphasis is on simulation and interaction
of user-defined systems. To manage complexity, a hierarchical description
is supported.

2. Co-design for heterogeneous implementation;

• Processor synthesis;

– CASTLE ([27]): A co-design workbench for assisting the designer to find
a cost effective implementation of a system. The goal of CASTLE is to
synthesise a processor and a program for this processor implementing
the system behaviour. The input specification is written in a common
specification language, e.g. C++, VHDL or Verilog, which is later com-

piled into the SIR2 format based on control data flow graphs. Analysis
tools supply the design with static or dynamic profiling information of
the specified algorithm. Based on this information, the designer speci-
fies the main structure of the processor using the schematic entry facility
of CASTLE.

• Single–processor architectures with one ASIC;

– COSYMA ([28]): The COSYnthesis of eMbedded microArchitectures
workbench was developed at IDA (Institute of Computer and Commu-
nication Network Engineering; Technical University of Braunschweig),
Germany, as a platform for hardware–software co-synthesis. The result-
ing target architecture is limited to a processor–co-processor configura-
tion. It covers the entire design flow including specification, partitioning
and the final hardware (netlist) and software (object code) synthesis.
However, there is no support for formal verification. The system is spec-
ified in Cx which is an extension of C supporting parallel processes and
timing constraints. If the Cx description contains parallel processes,
then they are to be scheduled and considered as a single thread of ex-
ecution. The partitioning is done on basic blocks which are a sequence
of statements in Cx. The partitioning process starts from a software
solution and moves basic blocks from software to hardware until the
timing constraints are met. The hardware synthesis is done using BSS
(Braunschweig Synthesis System) which is a high-level synthesis system
developed specifically for fast co-processor designs.

• Single–processor architectures with many ASICs;

– VULCAN ([29]): A hardware–software co-design tool similar to COSYMA,
also focused on co-synthesis. The target architecture is made up of one
processor and one or more ASICs, communicating through the same

22 2.2 System Level Design. Languages and Methodologies

communication channel and memory. The input consists of a system
description in the HardwareC language and design constraints including
timing and resource constraints. Then, an internal flow graph represen-
tation is performed, which is used later for performance estimation of
hardware and software solutions. The automatic partitioning approach
works iteratively, starting with a complete hardware solution. In con-
trast to COSYMA, VULCAN is able to handle multiple processes as
hardware and software running in parallel.

• Multi-processor architectures.

– POLIS ([30]): Developed at UC Berkeley, it is a framework for hardware–
software co-design of reactive embedded systems. It is centred around
a single finite state machine-like representation called Co-design Finite
State Machine (CFSM). The system is specified using a high-level lan-
guage (e.g. Esterel, graphical FSMs, subsets of Verilog of VHDL) and
later this specification is translated into a network of CFSMs. The
framework relies on PTOLEMY ([68]) for co-simulation and it is also
easy to link it to formal verification tools. The partitioning takes place
manually and requires some a-priori design experience. The paths to
formal verification and simulation also provide the designer with a lot
of feedback to refine the partitioning. Each hardware partition is im-
plemented as a fully synchronous circuit where each software partition
is implemented as a stand-alone C program. POLIS generates an op-
erating system which provides communication between SW–HW and
SW–SW modules, schedules the SW–CFSMs, generates device drivers
for HW–SW communication and generates an event driven layer which
implements the CFSM event emission/detection primitives;

– CHINOOK ([31]): Developed at the University of Washington, this is
a tool for development of reactive embedded systems. It is targeted
towards interface synthesis and the co-simulation of the design before,
during and after synthesis, at different levels of detail. The system spec-
ification is written in Verilog which contains both the reactive behaviour
of the system as well as of the resources that will be used. The parti-
tioning is done manually. Furthermore, it uses a static, non-preemptive
scheduling algorithm. Depending on the resources and communication
requirements, CHINOOK synthesises both, I/O port-based and shared
memory-based interfaces. The libraries supplied to CHINOOK capture
the information about the interfaces of the processors and the devices.
It also provides the support for inter processor communication by syn-
thesising the hardware and software needed to transfer data between
processors.

2.2 System Level Design. Languages and Methodologies 23

Three of the most complete co-design approaches developed at different universities
(POLIS, COSYMA and CHINOOK) have been selected and a comparison concerning
their main characteristics has been performed. The results are contained in Tables 2.1.

Table 2.1: Comparison of Hardware–Software Co-Design Approaches

Feature POLIS COSYMA CHINOOK
System spec. Esterel, graphical FSM, Cx Verilog

Language subset VHDL/Verilog
Constraint not supported supported supported

specification
Model of CFSMs RAM model -

computation
Concurrency concurrent modules single thread concurrent modules

of execution
Partitioning manual automated manual

Granularity level user-defined user-defined model and
modules modules task level

Formal supported not supported not supported
verification

Co-simulation Ptolemy CoSim Pia
Process part of static static

scheduling OS synthesis
Software perf. S-Graphs and Sparc simulator -

estimation empirical results
Hardware single cycle List Scheduling -
estimation execution
HW/SW I/O ports shared memory I/O ports

communication
Target processor, CFSMs processor, coproc. multi proc., ASIC

architecture & shared mem
Multiprocessor - - supported

support

Besides these academic approaches, Cadence Design Systems ([32]) announced the
formation of a technology initiative, named Felix, on December 1, 1997, to deliver
new methodologies and tools for virtual component-based system design. The Felix
initiative pushed the work started by the Alta Business Unit of Cadence to create the
industry’s first development environment for rapid evaluation of architectural alterna-

24 2.2 System Level Design. Languages and Methodologies

tives enabled by the reuse and co-design of software and hardware intellectual property
blocks at system level. The initiative sought to define a complete design methodology
from the system level of abstraction to implementation. It also aimed to develop an
environment consisting of design entry mechanisms, design languages, synthesis and
analysis tools including simulation, various forms of formal verification, and hardware
and software synthesis. Further, it sought to create a set of modelling principles to
guide the development of models at the appropriate levels of abstraction, with precise
accuracy and execution speed trade-offs. Many concepts in the Felix initiative were
pioneered by the POLIS research project. The outcome of this initiative is the indus-
try’s first system level development environment for platform-based hardware–software
co-design for IP reuse, the Cadence Virtual Component Co-design (VCC) ([33]). The
Cadence VCC environment clearly differentiates between a behaviour model, which
identifies what the system does, and an architecture model, which identifies how the
system is implemented. This differentiation allows system designers to simulate the
performance effects of a behaviour running on a number of different architectures early
in the design cycle.

Smaller approaches, such as Visual Elite from Summit ([34]), offers a single environ-
ment for system level designing, down to the RTL and gate level. The architectural
and performance analysis is performed by the System Architect tool, the co-verification
of hardware and software blocks utilising Virtual–CPU and the hardware–software in-
terface design with Regent.

Both development environments, i.e. VCC and Visual Elite, are prepared for test-
ing different hardware–software architecture–partition alternatives. Nevertheless, it
becomes a time consuming task due to the extensive customisation required and the
necessary rebuilding of the structure in case new building blocks have to be added. The
high modelling effort and the tool-specific description language are two additional as-
pects that should be improved by the existing system level development environments.

2.3 Performance Estimation Approaches 25

2.3 Performance Estimation Approaches

The increase in the integration and complexity of the systems has promoted the devel-
opment of fast and accurate analysis techniques for various metrics such as performance,
power, system cost, etc., for guiding the partitioning–mapping step. These techniques
differ, first of all, in the target metric and, secondly, in the level of abstraction and
method applied. The present work deals with the metric performance and therefore an
exploration of the existing techniques in this area is presented further on.

When estimating of the performance reached by the system under study, two steps
have to be carried out. The first one, the so-called block level performance estimation,
considers the performance of each individual functional block within the system target
architecture. In the second one, the system level performance estimation, carries out
an estimation of the whole system, including the communication structure. In the first
case, a further distinction is made between the techniques dealing with the estimation
of hardware and software implementations, respectively.

Performance analysis and estimation methods can broadly be divided into static
and dynamic techniques ([35]). Static techniques are concerned with the analysis of a
specification without simulating it. In most cases, it is used for worst case analysis and
is suitable for finding cases that are hard to cover with simulation. On the other hand,
dynamic techniques are concerned with the analysis of runtime behaviour, and rely on
test vectors and input scenarios. They are preferred when the system performance is
heavily dependent on the input data, and in cases where the average performance is
more relevant than the worst case behaviour.

2.3.1 Block Level Performance Estimation

The analysis techniques with regard to each building block can be divided in those
dealing with the runtime inside a processor (the so-called software performance esti-
mation techniques), and those dealing with the hardware units (the so-called hardware
performance estimation techniques).

2.3.1.1 Software Performance Estimation Techniques

The choice of the algorithm to be implemented has a large impact on the performance of
embedded real time systems. Therefore, performance estimation of embedded software
is vital in an early design phase. The performance of software in embedded hardware–
software systems depends on the structure of the software program as well as on the

26 2.3 Performance Estimation Approaches

components of the target system. An effective estimation procedure has to model both
the target system and the software program at an abstraction level that makes the
estimation time reasonable without losing too much accuracy ([36]).

The level of abstraction characterises different software performance estimation tech-
niques. They are classified into four groups by [37]:

2.3.1.1.1 Cycle-Accurate Performance Model. Definition and implementation
of a cycle-accurate Instruction Set Simulator (ISS) which is used to run the code. This
model can consider and analyse the software behaviour. The approach is precise but
slow and requires a detailed model of the hardware and software. The performance
analysis takes place after completing the design, when architectural choices are difficult
to change. Besides, an ISS can seldom be reused due to the fact that it has been built
for a special situation.

An approach to integrate a clock cycle-accurate ISS with a fast event-based system
simulator is proposed in [38], which claims that other approaches are not accurate
enough for hard real time systems and complicated designs. The proposed scheme is
especially effective for applications where the delay of basic blocks is approximately
data independent.

2.3.1.1.2 Timing Annotation of the Control Flow Graph (CFG). A Control
Flow Graph is built on the basis of the compiled software description. It is further
annotated with the required information to derive a cycle-accurate performance model
(e.g., with regard to pipelining and cache). The graph is made up of edges and basic
blocks. Each basic block corresponds to a function block of a basic function in the
assembly program. The compiled code for each basic block is analysed and by means
of the received information, each basic block is annotated with its weight. The nodes in
the graph are allocated depending on their weight. The optimisations of the compiler
and the current selection of commands are included during the analysis.

In [39], a compilation-based software performance analysis method is presented. It
combines a state-of-the-art optimising compiler with a high-level co-simulation and co-
design methodology. The key idea is to use the GNU-C compiler to generate assembler
level C code. This code is annotated with timing information and used as a very precise
and fast software simulation model.

2.3.1.1.3 Original C-Code Annotation. Annotation of the original C-code with
timing estimates trying to guess compiler optimisations. It has the advantage of not
requiring a complete design environment for the chosen processor, since an estimation

2.3 Performance Estimation Approaches 27

of the execution time for each high-level language statement on the chosen processor is
predefined. However, it cannot consider compiler and complex architectural features.

In [36], two estimation methods at different levels of abstraction (s-graph (software
graph) level and CFSM (Codesign Finite State Machine) level) for use in the POLIS
hardware–software co-design system ([67]) are presented. The s-graph level method,
which concerns the software branch, reaches an accuracy of 20% when compared to an
assembly level analysis. The work introduced in [35] proposes a high-level estimation
technique that both estimates the performance and computes the expected accuracy.
The accuracy is then used to provide a confidence interval to the estimated perfor-
mance.

2.3.1.1.4 Software Estimation by Means of Linear Equations. Use of linear
equations to implicitly describe the feasible program paths. It has the advantage of
not requiring a simulation of the program, hence it can provide conservative worst
case execution time information. Static estimation is insensitive to input data. It just
computes the average number of clock cycles needed to execute the program. Static
estimation can yield good results if the number of loop iterations is known and the
conditional branching probability can be predicted correctly.

The method presented in [40] claims that static estimation has a number of advan-
tages since it takes much less time and space than dynamic simulation and it does
not need input data. The proposed method uses a probability-based flow analysis
technique and applies it to the performance estimation for system level specifications.
Three software metrics are then provided: execution time; program memory size; and
data memory size for a specification executing on a given processor. A study of the
different performance metrics that need to be considered in this context is shown in
[41]. Furthermore, it examines a range of techniques that have been proposed for static
timing analysis, which can broadly be classified into path analysis and system utili-
sation analysis techniques. They are interdependent, and thus need to be considered
together in any analysis framework.

2.3.1.2 Hardware Performance Estimation Techniques

The estimation of the hardware runtime cannot be considered separately but has to be
done in connection with a hardware effort estimation.

Concerning the hardware effort, the estimation technique introduced in [42] adds
together the hardware effort for modules, registers, multiplexers and the control unit.
However, the last unit, the controller of a hardware design, is very specific to the applied
synthesis tool. In [44], a method to rapidly estimate hardware size during the functional

28 2.3 Performance Estimation Approaches

partitioning is introduced. The method includes a data structure which represents a
design model, and an algorithm that incrementally updates the data structure during
functional partitioning.

Once the hardware resources are fixed, the hardware runtime can be estimated.
The requirements for developing an adequate algorithm that estimates the hardware
runtime are: high precision; low computational effort; independency of further design
steps; and easy adaptation to the following synthesis tools. The first requirement
excludes all estimation approaches that are limited to the scope of basic blocks because
they are not able to identify the global optimisation potential in hardware synthesis.

The hardware runtime estimation within the scope of hardware–software partitioning
should be able to achieve the scheduling’s results of the following design steps with a
high degree of accuracy. There are some fast but not sufficiently accurate approaches
based on lower bound methods which do not assume that a scheduling has already
been performed, e.g. [43]. On the other hand, the technique presented in [45] performs
a path-based scheduling before the estimation is started. The estimation takes place at
a Control and Data Flow Graph (CDFG) representation that is directly derived from
a C system level description. The scheduling methods that can be applied are mainly
divided into two groups, as cited in [46]:

2.3.1.2.1 Local Scheduling Methods A separate scheduling for each data block
is performed, and therefore it is restricted to the borders of the respective block.
Thereby, these methods can neither go into the parallelism of the system nor reduce the
complexity of the complete application. Through this, the results delivered by these
methods are not very reliable and precise.

2.3.1.2.2 Global Scheduling Methods An optimisation over the border of basic
blocks takes place. It achieves a good precision by scheduling of parallel processes. It is
adequate for control-dominated systems, where there are more control than arithmetic
operations. There are three well-known global scheduling methods, which are still
in a research phase. They are: Percolation Scheduling; Speculative Execution; and
Path-Based Scheduling.

• Percolation Scheduling: In this method there exist four main base transforma-
tions: move-up; move-cj; delete; and unify. With the help of such transforma-
tions, the program is reorganised in order to achieve a higher parallelism;

• Speculative Execution: In contrast to the accepted methods, the Speculative
Execution utilises the control dependencies of the application to obtain an en-
hancement of the speed. Concretely, the control dependencies are ignored, i.e.,

2.3 Performance Estimation Approaches 29

assignments are executed at a point in time, when it is not already fixed whether
the program execution will achieve the program branch with such assignment.
Speculative Execution is then reasonable when a further parallelism of the appli-
cation is limited by the program structure;

• Path-Based Scheduling: This scheduling method takes each possible program
flow path and performs an ASAP (As Soon As Possible) scheduling on it. After-
wards, all of the paths are superposed to achieve an entire scheduling. From each
conditional jump instruction at least, two paths arise. Here, the problem of path
explosion will be noticeably fast. In the worst case, the paths increase exponen-
tially with the number of conditional jump instructions. To avoid this problem,
different possibilities can be accessed, as the one presented in [46], where intersec-
tions in the graph are inserted additionally. This technique allows a substantial
reduction of the possible paths, nevertheless a list of criteria when choosing the
intersections has to be kept in order not to degrade the results.

2.3.2 System Level Performance Estimation

The system level performance estimation techniques perform an estimation of the whole
system, including the communication structure. The existing methods for automatic
partitioning either ignore inter-component communication entirely or use simple mod-
els of communication to guide the partitioning–mapping step. Refining the abstract
communication of the system into a specific communication architecture (with associ-
ated communication protocols) is performed as a subsequent step in the system design
flow. In practice, while these two steps of system design are sometimes treated as
separate problems for reasons of tractability, the importance of integrating communi-
cation protocol selection with hardware–software partitioning is clearly demonstrated
in [47]. Furthermore, [55] shows that the synchronisation overhead associated with
inter-process communication can contribute significantly to the overall system perfor-
mance.

The work dealing with the system performance analysis to help in the design of high
performance communication architectures is very small in comparison with the work
focusing on the partitioning–mapping step. The techniques that do consider the effects
of the communication architecture can broadly be divided into the following categories:

2.3.2.1 Simulation-Based Approaches

These techniques are based on an evaluation of the system model by means of simu-
lation. For this purpose, different levels of abstraction in the modelling of the com-

30 2.3 Performance Estimation Approaches

ponents and their communication are used. The level of abstraction for modelling the
communication allows for a trade-off between simulation time and accuracy.

The approach presented in [48] introduces a hardware–software co-simulator which
provides substantial speed-ups over traditional co-simulation methods by permitting
dynamic changes in the level of detail when simulating communication channels be-
tween system components. As part of this simulation environment, implemented as a
PTOLEMY domain ([50]), [49] introduces a new language for component and interface
specification, the Pia language. The importance of a well-defined modelling language
to support the development an executable model that properly represents the system
to be designed is also addressed in [51]. The Parallel Object-Oriented Specification
Language (POOSL) is introduced here and the simulation method towards the perfor-
mance estimation is explained.

However, these techniques still require a simulation of the complete system, limit-
ing their computational efficiency. In order to substantially improve the performance
without sacrificing user access to detail, [52] proposes a simulator which separates
communication from behaviour.

Probabilistic models have also been used in simulation-based approaches, as the
method presented in [53] has done. This work describes a faster technique as compared
to cycle-accurate simulation. The methodology is based on probabilistic modelling of
system components customised with application behaviour.

2.3.2.2 Trace-Based Performance Analysis Strategies

These are generally based on trace transformation techniques. A trace is a track of the
system execution that contains information concerning computations and communica-
tions of the system components. These methods take as input a trace generated by an
application process and generate, as output, a trace accepted by an architecture model
and which contains the architecture level operations. Thus, a trace transformation
provides the mapping of application level communication primitives onto architecture
level communication primitives.

This basic idea of collecting an execution trace and using it for performance estima-
tion has been used in the field of high performance processor design, for instance for
cache simulation ([59] and [60]).

The work introduced in [61] focuses on the mapping and exploration stage in the
design of embedded signal processing systems. In particular, it covers the mapping of
primitives used for expressing communication behaviour at the application level onto
primitives used to implement the communication in architectures. It uses the per-

2.3 Performance Estimation Approaches 31

formance analysis tool SPADE ([62]) (System level Performance Analysis and Design
space Exploration) to provide accurate feedback on the performance of application–
architecture–mapping combinations.

In [63], a new simulation method is performed that is also based on the disjunction
between both models — the algorithm and the architecture. This work illustrates that
by means of a joint simulation of complementary models it is possible to perform a
simulation of the architecture for data dependent algorithms. It also demonstrates that
the comparison of different architecture alternatives can easily be carried out by the
use of interchangeable architecture models.

Furthermore, there are some hybrid trace-based performance analysis methodolo-
gies, as for example the one presented in [64] for driving the design of bus-based SoC
communication architectures, and in [65] and [66] for multi-channel communication
architectures. An initial co-simulation of the system is performed, with the commu-
nication described in an abstract manner (using POLIS [67] as a hardware–software
co-design tool and PTOLEMY [68] for system level simulation). An abstract set of
traces is then extracted. It contains the information about the computations and
communications of the system components. These traces are represented as a Commu-
nication Analysis Graph (CAG), whose analysis provides an estimation of the system
performance as well as various statistics about the components and their communica-
tion. An important feature of this approach is its ability to model various dynamic
effects of the communication architecture and to consider the inter-dependencies be-
tween the computations, synchronisations, and data communications performed by the
various components while estimating the system performance.

2.3.2.3 Static Performance Estimation Methods

These techniques try to avoid the computationally prohibitive alternative of exhaustive
simulation, arguing that an efficient exploration of the system design space necessitates
fast performance estimation. They include models of the communication time between
components of the system and often assume systems where the computations and com-
munications can be statically scheduled ([54]). The communication time estimations
used in these systems are either overly optimistic, since they ignore dynamic effects
such as wait time due to bus contention, or are overly pessimistic by assuming a worst
case scenario for bus contention. This last case is addressed, for instance, in [55], which
issues a worst case performance analysis of a system described as a set of concurrent
communicating processes.

Several techniques use different kinds of graph models suitable for hardware–software
partitioning of single processes. For example, [56] presents a Control Data Flow Graph

32 2.3 Performance Estimation Approaches

(CDFG) and the required transformations on it before partitioning in order to achieve
a structure that makes an accurate estimation of the communication overhead between
nodes mapped to different processors feasible. Another interesting approach pursuing
the performance estimation for hard real time systems is presented in [57] and [58].
It is based on an abstract graph representation, a Conditional Process Graph (CPG),
which captures at process level both the data and control flow. The analysis of the
graph allows the reduction of the pessimism of the estimation by using the knowledge
about the data and control dependencies.

Finally, [76] presents a methodology for performance prediction of parallel programs
that comprises a procedural application and machine specification paradigm based on
the performance simulation language PAMELA ([77]). The analytical evaluation is
based on conventional static program analysis techniques called serialisation analysis.
This evaluation technique is only able to handle simple models with fixed delays.

2.3.2.4 Analytical Performance Estimation Methods

The analytical methods are based on models of the tasks related to the application
domain and a means of characterising the performance of the target architecture. The
goal of such methods is to quickly identify interesting architectures, which may then
be subjected to a more detailed evaluation.

In [69] and [70], a novel analytical method to explore the design space of packet pro-
cessing architectures on system level is presented. The proposed framework consists of
a task ([71]) and a resource model and a real time calculus which is used to analytically
determine properties such as delay and throughput. The design space exploration is
posed as a multi-objective optimisation problem. To speed-up the exploration, it uses
several linear approximations in the real time calculus ([72]).

The approach proposed in [73] extends the POOSL language ([74]) with the capabil-
ities to express probabilistic behaviour and to analyse performance figures analytically.
The key idea is the development of a real time probabilistic process calculus that is
able to express the basic concepts of POOSL. Furthermore, [75] describes a perfor-
mance analysis algorithm for a set of tasks executing on a heterogeneous distributed
system. This algorithm handles both upper and lower bounds on process execution
time, considers data dependencies between processes and handles preemption and task
pipelining.

Completing the system performance estimation methodologies, [79] proposes an ap-
proach which takes advantages of both system and RT levels of abstraction and com-

2.3 Performance Estimation Approaches 33

bines both static and dynamic analysis techniques in order to obtain the best trade-off
between speed and accuracy. The four main steps in the overall flow are: execution time
computation of basic elements; back annotation; architecture modelling; and system
level simulation.

A comparison of the above-mentioned approaches for system performance estimation
can be found in Chapter 3. On the basis of this comparison, the advantages and
disadvantages of the previous methods are extracted and the need for a new strategy
is founded.

34 2.4 VLSI Architectures for Networking Applications

2.4 VLSI Architectures for Networking Applications

The main application scenario of the current work, VLSI networking architectures, has
undergone continuous evolution as the speed and functionality of local and wide area
networks have grown. Both performance and flexibility requirements have to be fulfilled
by the VLSI networking devices. Among the performance requirements, the increasing
number of users, the extensive applications (video, audio) and the LAN (Gigabit Eth-
ernet) and WAN speed (OC-48, OC-192) can be mentioned. The most suitable design
solution to reach these demands is their implementation as hard-wired logic (ASIC).
On the other hand, it has to be considered that a rising flexibility to cope with the
new data protocols (e.g. IP v.6), to support advanced services (e.g. Quality of Service)
and to reduce the time-to-market is essential. And this requirement of flexibility can
only be reached by using programmable hardware, i.e., FPGAs or processor cores. To
meet the functionality and performance requirements of present and emerging network
applications, the current trend is to use Programmable microprocessors on Network
Interfaces (PNI) that can be customised with domain-specific software ([80]). This
trend has created the so-called Network Processors market niche. They deliver hard-
ware level performance to software programmable systems. This powerful combination
offers a revolutionary approach to the design of communication systems.

In order to understand the new aspects and characteristics offered by Network Pro-
cessors, an overview of the network infrastructure as well as the evolution of the VLSI
networking architectures design is presented below.

2.4.1 Network Infrastructure

Nowadays, data networks carry a broad variety of traffic and therefore a broad range
of infrastructure equipment becomes necessary. The decision as to which equipment is
required in a particular segment of the market can be made by considering four main
factors: speed; cost; intelligence; and flexibility ([81]). Thus, a trade-off among them
has to made.

Before pointing out the main market segments of network equipment, an introduction
to the layers and functionalities involved in a computer network is necessary.

2.4.1.1 Computer Networks

Internet, can be defined as a method of interconnecting physical networks and a set of
conventions for using networks that allow the computers they reach to interact ([82]).

2.4 VLSI Architectures for Networking Applications 35

During the early stages of building the Internet the main goal was to set up a de-
centrally organised interconnection of computers with redundancy so that a breakdown
of a part of the network would not affect the connectivity and efficiency of the overall
Internet. Consequently, every computer attached to a network is assigned a unique ad-
dress. Since routes through the network are not determined statically but dynamically
depending on the current state of the network, every single packet must be processed
by every intermediate network node from the source to the destination of a transmis-
sion. Packets from different transmissions should be treated equally by the network
and nodes make a best effort to handle all packets in the order of their arrival.

2.4.1.1.1 Communication Layers in a TCP/IP Network. The communica-
tion over a data network is influenced by different problems such as hardware failure,
network congestion, packet delay or loss, data corruption and data duplication or se-
quence errors. One solution for coping with these problems is the use of complex data
communication systems that do not rely on only a single protocol for handling all
transmission tasks. They require a protocol family or protocol suite.

Hosts in the Internet can be reached through routers. The routers decide the path
that packets should follow. The Internet Protocol Suite (TCP/IP) provides the rules
for communication, i.e., among others it defines the details of message formats, deter-
mines how the networking equipment responds when a message arrives, defines how
a computer handles errors or other abnormal conditions and provides computer com-
munication independency of any particular vendor’s network hardware. The TCP/IP
software is organised into five conceptual layers. Figure 2.4 shows these layers as well
as the type of data as it passes through a router.

Each layer can only pass information to the next higher or lower layer through de-
fined interfaces. At each layer, protocols define the operations and responses necessary
to exchange information between peer layers at different network nodes. This informa-
tion is held by layer-specific header fields that are added to traffic entities. Lower layers
only consider the transmission of traffic between neighbouring network nodes whereas
the higher layers affect the end-to-end transmission through several intermediate nodes.
The Open Systems Interconnection (OSI) reference model by ISO is composed of seven
abstract layers. Nevertheless, as already mentioned above, the Transmission Con-
trol/Internet Protocol (TCP/IP) stack used by the Internet only considers five of them
([83]). They are:

1. Physical Network: This is the lowest layer. It considers the plain transmission
of data streams through a physical medium, e.g., a copper wire, between neigh-
bouring nodes;

36 2.4 VLSI Architectures for Networking Applications

Transport

Application

Network
Interface

Internet

Transport

Application

Network
Interface

Internet

Network
Interface

Internet

Physical Net1 Physical Net2

Identical

message

Identical

packet

Identical

datagram

Identical

frame

Identical

datagram

Identical

frame

Host A Host B

Router R

Figure 2.4: TCP/IP Conceptual Layers

2. Network Interface: This layer is responsible for reliable transmission of data units
(frames) between neighbouring nodes;

3. Internet layer: This is the lowest layer that affects the plain end-to-end trans-
mission of data packets. It defines the basic unit of transfer across the network
and includes the concepts of destination addressing and routing;

4. Transport layer: The transport layer is responsible for end-to-end transmission of
aggregated packets, the so-called segments or messages. A reliable transmission
may be enabled by packet sequencing and flow control;

5. Application layer: This layer deals with the exchange of data between applica-
tions running at different network nodes. For instance, the FTP protocol handles
whole file transfers and the HTTP protocol is responsible for web page downloads.

The TCP/IP protocols are extremely flexible in that almost any underlying tech-
nology (e.g., Ethernet, FDDI, ATM, ARPANET and X25) can be used to transfer
TCP/IP traffic.

2.4.1.1.2 Communication Processing Tasks. There are two broad categories
of communication tasks as can be seen in Figure 2.5 ([84]):

2.4 VLSI Architectures for Networking Applications 37

• Forwarding Plane tasks: They perform operations on the forwarding path, where
the data communication occurs in real time. These constitute the core operations
for a networking device, and hence are performance critical. In a switch or a
router, these are the functions that receive, process, and transmit packets into
and out of the device;

• Control Plane tasks: They perform less time-critical control and management
functions that determine general device operation. In a switch or a router, these
functions control routing table maintenance, port states, and higher level man-
agement.

Classification

Data Parsing

Media Access Control

Physical Layer

Data Transformation

Queuing / Scheduling

Topology Management

Signaling

Network Management

Policy Applications

Control
Plane

Forwarding
Plane

Figure 2.5: Communication Processing Tasks

From now on, more attention is given to the forwarding plane tasks, where a high
speed path is required. These forwarding functions include some common functions
encountered in every router or switch and other functions related to advanced services
within the Internet, which are not yet included in every router or switch. The first
three functions of the following list belong to the first group, whereas the last two
belong to the second group.

• Media Access Control: Low layer protocols, such as Ethernet, SONET framing,
ATM cell processing, etc., are implemented. These protocols define how the
data is represented on the communication channel and the rules governing how
that channel is accessed. There has been a great standardisation among network
devices in this area (due to standard-based protocol definitions) and, at the same
time, is an area of greatest diversity (due to the wide and ever-growing variety
of protocols);

38 2.4 VLSI Architectures for Networking Applications

• Data Parsing: Cell or packet headers containing relevant addresses, protocol
information, etc., are parsed. Switching devices today need the flexibility to gain
access to and examine a wide variety of information at all layers of the OSI model.
And they have to perform it in real time and on a conditional packet-by-packet
basis;

• Data Transformation: Data within or between protocols is modified or translated
into other formats. It can range from address translation within a given protocol
(such as IP) to full protocol encapsulation or conversion (such as between IP and
ATM);

• Classification: A packet or cell is identified against a set of criteria defined at
layers 2, 3, 4 or higher of the OSI model. Once data is parsed, it has to be
classified in order to determine the required action. These actions might include
such basic functions as a filtering/forwarding decision, as well as advanced QoS
and accounting functions based on a specific end-to-end traffic flow;

• Traffic Management: This group comprises forwarding and control plane tasks.
The forwarding functions include the queueing, policing and scheduling of data
traffic through the device according to defined QoS parameters, based on the
results of classification and established policies. These functions are key to sup-
porting convergence of voice, video and data in next generation networks.

2.4.1.1.3 Classification of Computer Networks. Communication networks can
be classified under different criteria ([86]), according to geographic coverage and accord-
ing to connectivity. Under the first criterion, the Local Area Networks (LAN) intercon-
nect end devices within a relatively small area, while the Wide Area Networks(WAN)
interconnect LANs. A WAN network of intermediate extension limited to a town or
a city is also called a Metropolitan Area Network (MAN). Under the second criterion,
the connectivity, it can be differentiated into Autonomous Systems (AS), the access
network (where an Internet Service Provider (ISP) gives the Autonomous System ac-
cess to Internet) and the core or backbone network. Nevertheless, an AS can also be
composed of an access/core network. An additional level can be defined between the
access and the core network, called the distribution network. The distribution network
provides the transit between the access and core parts of the network.

2.4.1.2 Network Equipment

Traditional switch and router definitions are no longer applicable as capabilities have
expanded and overlapped. It is now more useful to look at where the equipment resides

2.4 VLSI Architectures for Networking Applications 39

in the network than at what its internal architecture is ([86]). Concerning this criterion,
a distinction can be made between service provider and access equipment.

• Enterprise Equipment. In the enterprise environment, Ethernet LAN switches
make up the bulk of the infrastructure. At the workgroup level, layer 2 switches
provide low cost and high port densities. Higher in the network hierarchy, back-
bone switches aggregate the bandwidth from many workgroup switches. Back-
bone switches add Layer 3 and higher capabilities, replacing the traditional role
of routers in the LAN backbone. Routers have been relegated to the edge, making
the connection between the LAN and the WAN;

• Service Provider Equipment. At the edge of the WAN we find edge routers, which
must handle many protocols. These devices handle lower speed links but must
have a great deal of intelligence and flexibility. Behind these devices is the optical
core of the WAN. Here, switching must occur at wire speed over high speed links.
ATM switches comprise most of todays WAN core;

• Access Equipment. It can be thought of as the glue connecting users to the
service providers. Much of this equipment serves as an aggregation point.

2.4.2 VLSI Networking Architectures Design

The design of the network equipment powering the Internet revolution has brought
about rapid changes over the last decade. Nowadays, the network equipment vendors
are racing to provide the newly converged voice-video-data communication infrastruc-
ture. Furthermore, conservative estimates for aggregate bandwidth on the Internet
backbone indicate a doubling each year for the past ten years, and further expansion
at these levels is likely to continue for some time ([89]). One consequence of this growth
is the demand for greater performance, flexibility, reliability and cost effectiveness in
the primary components (e.g., routers and switches) which control the flow of data
through the network ([87]).

2.4.2.1 Evolution of VLSI Networking Architectures

In former times, networking devices were built as a combination of general purpose
CPUs, discrete logic and ASSP (Application Specific Standard Products). Their
software-based nature was the key to adapting to new protocol standards and the
additional functionality required by the networks. Although these designs were large,
complex and slow, they met the needs of early networks.

40 2.4 VLSI Architectures for Networking Applications

Over time, as network interface speed and density increased, the performance of
general purpose processors was no longer sufficient. This led network vendors to develop
simpler, fixed-function devices that were built on the basis of ASICs. These devices
traded off the programmability of software-based designs for hardware-based speed. As
ASIC technology progressed, more and more functionality was incorporated into the
hardware. This was in part possible thanks to the protocol consolidation around IP
and Ethernet as the dominant enterprise network technology, which reduced the need
for product flexibility.

Today, the situation has substantially changed. The convergence of public voice and
data networks is leading to increased time-to-market pressure and shorter product life
cycles. And this is happening just when product development cycles are growing due
to complex ASIC designs and associated software re-designs. Furthermore, although IP
is emerging as the dominant protocol, new IP capabilities, such as Quality of Service
(QoS), are appearing. In addition, the number of different interface types, ranging
from sub-T1 through OC-48 in the WAN space and to 10/100 and Gigabit Ether-
net in the LAN area, is increasing rather than decreasing. As a result, networking
products require the same programmability and flexibility that was available in the
early CPU-based architectures in order to quickly adapt to emergence standards, while
maintaining the performance gains achieved through ASICs. These requirements have
pushed the emersion on the market of the so-called Network Processors (NP). They de-
liver hardware level performance to software programmable systems. In Figure 2.6, the
area covered by each of the design solutions mentioned above concerning performance
vs. functionality and flexibility is shown.

Functionality & flexibility

P
er

fo
rm

an
ce

Custom
Design
ASICs

Gen. Purp. CPUs

Network
Processors

Figure 2.6: VLSI Networking Architectures

2.4 VLSI Architectures for Networking Applications 41

2.4.2.2 Design Trade-Offs

Switches and routers have been designed using a mix of standard RISC processors,
ASICs, and ASSPs. RISC processors are used as the host processor, handling control
and management functions. ASSPs are used on line cards to provide Medium Access
Control (MAC), framer, and physical interface functions. Everything between the
CPU and the ASSP has been the domain of ASICs. ASICs have implemented linecard
interfaces to the proprietary backplane bus or switch fabric. Until recently, most switch
fabrics were developed using ASICs. Moreover, protocol acceleration functions were
implemented in ASICs. Network Processors are primarily intended to replace ASICs.

2.4.3 Network Processors

The previous Section depicts the evolution of VLSI networking architectures which has
led to the development of the Network Processors. Many different architectures for
NPs that reach high speeds and offer flexibility have appeared in the last while thanks
above all to multi-threading software engines and powerful co-processors. Network
Processors are suited to process packets at high speed and are adaptable to other/new
complementary services.

With port speeds up to Gigabit Ethernet and OC-12, first generation network pro-
cessors had only two strong market target segments: LAN backbone switches and edge
routers. Second generation network processors are targeting speeds up to OC-192.

2.4.3.1 Common Characteristics

For the conception of these new architectures, the following characteristics of the ap-
plication scenario, i.e., networking packet processing functionalities, have been taken
into account.

Packet streams only have dependencies among packets of the same flow but none
across different flows. This ensures that the processing can easily be distributed over
several processors. That is, there is an inherent parallelism associated with the pro-
cessing of separate independent packet flows. Thus, the problems of complex syn-
chronisation and inter-processor communication that are typically encountered when
dealing with parallelisation of many traditional computer applications is not present.
Therefore, the performance of the packet processing within a router can be increased
considerably by dividing the tasks and using several processing units of modest speed.
Moreover, the tasks involved in the processing of a packet is fairly simple, mainly con-
sisting of extracting data from a bit stream and doing some pattern matching or table

42 2.4 VLSI Architectures for Networking Applications

lookups. As a result optimised processors can be developed for this purpose (usually
referred to as packet engines), which fit into only a few square millimetres of silicon.

Typically, packet engines are multi-threaded in order to take advantage of the large
number of incoming packets. Thus, each engine holds one or more packets while it
processes the current one. If the processing of the current packet stalls (for example,
because of a memory access), the engine switches to the next selected context which
holds a packet. In this way, the engine does not waste time waiting for the memory
response.

Many Network Processors supplement the packet engines with co-processors, which
carry out costly functions such as packet classification or policing. They are usually
implemented as fixed function logic blocks. Their functions may nevertheless be con-
figurable.

Two further characteristics of the existing Network Processor architectures are the
inclusion of a general purpose processor for performing control plane tasks and the
implementation of four basic external interface types: Line interface; fabric interface;
memory interface (often consists of several physical connections); and interface to the
host.

2.4.3.2 Main Attributes

After presenting the common characteristics of Network Processors in Section above,
their key attributes can be summarised in the following points ([85]):

• Programmability: A Network Processor supports a wide range of interfaces, pro-
tocols (for packets, cells and data streams) and product types. This requires
programmability at all levels of the protocol stack, from layer 2 through layer 7;

• System Flexibility: Software implementation of the functions between the phys-
ical interfaces and the switching fabric allows simpler upgrade paths. It is an
important feature when looking at the constantly changing networking world;

• Processing Capabilities: An optimised processing architecture is required (up to
Gigabits per second) to support wire speed operation at high bandwidths and
still have processing headroom for advanced applications;

• Functional Integration: A high-level of system integration reduces part count and
system complexity. At the same time, it improves the performance compared to a
design that incorporates multiple components and also avoids the interconnection
bottlenecks;

2.4 VLSI Architectures for Networking Applications 43

• Simple Programming Model: The target code for a Network Processor might be
easily understandable by the developer in order to be useful. Programming in
C/C++ has two main advantages: Millions of skilled programmers and many
more lines of code already exist and it enhances the future portability of the
code base, enabling use in future generations of Network Processors and industry
standard programming interfaces;

• Open Programming Interfaces: The processor’s architecture must support generic
Communications Programming Interfaces (CPI) to simplify the programming
task and allow future software reuse and software reliability.

The key attributes concerning speed and flexibility pursued by the Network Pro-
cessors introduce in their design a scenario of multiple alternatives. The evaluation
of every architecture–partition alternative for such complex systems at a low-level of
detail would take a long time. Because of the time-to-market pressure, this cannot
be any more affordable. Therefore, the selection of the optimal target architecture as
well as the partitioning of the design functionalities that keeps the constraints should
start at a high-level of abstraction, i.e., at system level, where the designer has more
freedom to evaluate different trade-offs.
Moreover, from the point of view of the user of a certain Network Processor, the de-
cision concerning the best allocation of the functionalities to be implemented onto the
corresponding architecture can be facilitated if a model of the system at a high-level
of abstraction is provided.

44 2.4 VLSI Architectures for Networking Applications

Chapter 3

Performance Estimation for Design
Space Exploration

3.1 Chapter Introduction

Nowadays, the product life cycles become shorter and shorter, rendering rapid design
cycles a critical issue. This creates the need for a fast exploration process of design
alternatives, where the performance estimation plays a decisive role in ranking the
design alternatives. If this exploration is performed at a higher level of abstraction, a
huge scenario of low level alternatives is covered, as can be seen in Figure 3.1. Although
no low level details can be observed and investigated at a high level of abstraction, it
is sufficient to discriminate among several different alternatives and reduce the design
space. Only the best alternatives will be further evaluated at lower levels of detail.

Design space exploration can be considered one of the most important issues within
system level design. It tries to find the best architecture–partition alternative, which
means the optimal partition of the system functionalities between hardware and soft-
ware and, at the same time, the right architecture resources (hardware components
and communication protocols). Performance estimation is characterised by measuring
utilisation and throughput of the resources.

Addressing the design space exploration, the proposed methodology introduces a fast
procedure which is based on a reconfigurable functional graph. This new methodology
allows a fast evaluation of a broader range of possible architecture–partition alternatives
without requiring a re-building of the initial functional graph. It is only necessary to
provide the information concerning the new architecture–partition configuration to be
tested.

46 3.2 Design Space Exploration

Specification

Alternative realisations
Low

High

A
bs

tr
ac

ti
on

C
os

to
f

m
od

el
li

ng
/

ev
al

ua
ti

on

Low

High

O
pp

or
tu

ni
ti

es
Estimation models

Abstract executable
models

Cycle−accurate
models

Synthesisable
VHDL models

explore

explore

Figure 3.1: Abstraction Levels for Models

First, the basic concepts behind design space exploration and performance estimation
are introduced. Next, a comparison of existing approaches is performed and, thus, the
need for improvements deduced. Then, the integration of the proposed performance es-
timation method within the design flow is depicted. Last, the boundary conditions and
the assumptions made for the development of the proposed methodology are presented.

3.2 Design Space Exploration

When facing a new application-specific design the designer tries to find a feasible solu-
tion that satisfies the constraints, such as real time deadlines, and that also optimises
design objectives like cost and power. The challenge is, thus, to select the architecture
such that the design fulfills the requirements. The architectural choices inherently rep-
resent a broad scenario. If choices of partitioning and mapping are also considered, the
exploration becomes more and more complex.

Traditionally, hardware–software design methodologies have started from a pre-
defined target architecture. They include hardware–software and interface synthesis
along with partitioning and mapping. Such methodologies deliver accurate results for
evaluation, but have drawbacks in terms of speed and cost due to the fact that the
tasks involved require a lot of effort and are very time consuming. In contrast to the
classical methodologies, the exploration iteration at the system level includes only the
partitioning and mapping step. It is a faster scheme, but needs some techniques to

3.2 Design Space Exploration 47

estimate the performance parameters from abstract models for each component and
mapping. Moreover, partitioning and mapping are NP-complete ([90]) problems and,
therefore, there is a huge space for exploration, making good heuristic algorithms and
methods necessary.

The designer has to make some trade-offs in the exploration process. At the system
level, a larger part of the design space can be explored in a given time. Although it
is less accurate than an exploration at a lower level of abstraction, it helps to narrow
down the design space. Once it becomes smaller, the exploration can include lower
design steps. The exploration is then more accurate at the expense of taking longer to
construct, evaluate and change the corresponding models.

Exploration is an iterative process where each iteration comprises different steps
of the system design. Figure 3.2 depicts the framework followed by the proposed
method for the design space exploration at the system level. At the starting point, the
functionalities of the system to be implemented are described. And, at the same time,
a target architecture for the implementation is selected. In an intermediate stage, the
estimation of the performance achieved by every functionality from the specification
mapped to the possible processing units of the target architecture is performed and
stored in a library. After carrying out the mapping and scheduling of the functionalities
onto the target architecture, the estimation of the system performance value for the
selected architecture–partition alternative is calculated. Only when the performance
constraints are met, are further steps in the design flow procedure carried out; otherwise
a new mapping has to be tested. Furthermore, if no mapping meets the constraints,
a re-allocation of the target architecture is required. This leads to a re-organisation
and/or addition of components or communication primitives.

Next, the challenges introduced by the design space exploration of complex systems
is illustrated by means of a mathematical formula. Such formula computes the num-
ber of possible alternatives for mapping a given number of functions onto different
target architectures with a variable number of processing units and different kinds of
technology for each processing unit.

The number of solutions for mapping a system specification made of n tasks (i.e.,
functions) on an architecture made of k no-empty modules (i.e., processing units) may
be computed using the Stirling numbers of the second kind ([96]), S(n,k). S(n.k) is
given by the following sum:

S(n, k) =
1

k!

k−1∑
i=0

(−1)i

(
k

i

)
(k − i)n (3.1)

They satisfy the following recurrence relation, which forms the basis of recursive

48 3.2 Design Space Exploration

Block Level
Perf. Estimation

System Level
Perf. Estimation

SW
Processor

Models

HW
Models

Specification
(Functionalities) Target Architecture

(Resources)

Mapping &
Scheduling

Figure 3.2: Design Space Exploration

algorithms for generating them:

S(n, k) = kS(n− 1, k) + S(n− 1, k − 1) (3.2)

Since a set of n elements can only be partitioned into 1 or n subsets in a single way,

S(n, 1) = S(n, n) = 1 (3.3)

A subset of these numbers can be seen in following Table 3.1 ([97]).

Moreover, if p different kinds of technology exist to implement each module (for
example, each module may be implemented as specific hardware or targeted as a soft-
ware executed on a specific processor), the number of possible architecture–partition
alternatives (NA) increases, as shown by Formula 3.4.

NA(n, p) =
n∑

k=1

pkS(n, k) (3.4)

Observing the previous numbers and Formulas it is readily apparent that as the com-
plexity of the system grows, the number of architecture–partition alternatives increases
exponentially. For example, considering a system composed of 6 functions and where

3.3 Performance Estimation 49

Table 3.1: Stirling Numbers of the Second Kind

k
1 2 3 4 5 6 7 8

n
1 1
2 1 1
3 1 3 1
4 1 7 6 1
5 1 15 25 10 1
6 1 31 90 65 15 1
7 1 63 301 350 140 21 1
8 1 127 966 1701 1050 266 28 1

2 different kinds of technology are used for each processing unit, the design space will
contain

NA(6, 2) =
6∑

k=1

2kS(6, k) = 2430 (3.5)

possible architecture–partition solutions.

For each alternative, the construction of the model and the synthesis and low level
co-simulation may take days. Thus, the synthesis and the simulation at the cycle level
of every single architecture to measure its performance cannot be afforded. These facts
constitute the basis of the motivation for the proposed methodology. This is the need
for a system level performance estimation methodology together with an exploration
strategy in order to narrow down the design space. The performance estimation method
must support an easy (in terms of modelling effort), fast (in terms of simulation time)
and accurate architecture exploration.

3.3 Performance Estimation

The estimation of performance plays an important role in design space exploration. It
guides the selection of the target architecture as well as the partitioning and mapping of
the functionalities onto the previously selected architecture. These decisions are made
on the basis of various metrics which vary with design objectives and constraints.

50 3.3 Performance Estimation

Performance estimation involves two steps ([91]):

• Modelling of the system specification and the architecture: In this stage, the
functionalities described in the system specification and the components which
make up the architecture are represented in an abstract form, i.e. a formal
representation or a sequence of instructions in any programming language;

• Evaluation of the performance: In this second stage, the models previously de-
fined are processed and the related performance metrics extracted. The evalua-
tion can be done in two different ways, i.e., analytical evaluation or evaluation
by simulation. The analytical evaluation performs a sequence of transformations
after which a set of equations are obtained. When using simulation, the models
are executed with a time scale.

3.3.1 Performance Estimation Requirements

Performance estimation involves certain requirements concerning accuracy, modelling
effort and evaluation effort. These issues depend on the level of abstraction. Within
the context of design space exploration, additional issues have to be considered, as for
example adaptability and generality of modelling and evaluation ([78]). A definition of
each requirement and how they vary with the level of abstraction is provided below.

• Accuracy: Closeness of performance metrics evaluated by the estimation to the
exact values of the real implementation. The accuracy increases with the detail
grade of the modelling;

• Modelling effort: Cost and time to model the architecture and application. It
decreases with increase in level of abstraction due to the fact that at higher levels
of abstractions, fewer features of the components have to be modelled;

• Evaluation effort: Speed of evaluation. The evaluation effort increases with the
detail grade of the modelling. Analytical evaluation is the fastest. On the other
hand, if the evaluation is simulation-based, increasing the detail of the model
means that the simulation kernel has to handle a larger number of events. This
results in larger simulation times;

• Adaptability: Ability to change the level of detail of different models while keep-
ing the framework fixed. It allows the performance of the evaluation at various
levels of abstraction. A high adaptability implies less overall modelling effort for
design space exploration;

3.3 Performance Estimation 51

• Generality of modelling and evaluation: Retargetability of modelling and eval-
uation. It can be said that a methodology is general, if during design space
exploration, less effort is needed to change the system components or their inter-
nal architecture.

A further important requirement for a performance estimation method that is to
be integrated in a design space exploration schema is the re-building effort, i.e., the
effort necessary before a new alternative can be tested. The proposed methodology
addresses this requirement by applying a graph whose structure does not have to be
re-constructed each time a new alternative is explored.

Since communication is the main bottleneck in modern application domains ([92]),
the performance of interconnections are crucial to the performance of the complete
system. Therefore, the effect of performance degradation due to conflicts on intercon-
nection should be accounted for in the system performance estimation. The proposed
methodology also addresses this issue by taking into account the internal system com-
munication.

3.3.2 Categorisation of Performance Estimation Approaches

In principle, the performance evaluation approaches can be classified based on the level
of abstraction of the models and based on their evaluation methodology.
From the first point of view, at higher level of abstraction the models capture only
timing details, whereas the functionality of the application and the architecture are
either completely ignored or captured in less detail. When the level of abstraction
is decreased, timing as well as functionality and architecture are captured in greater
detail.
Considering the evaluation methodology, the performance evaluation approaches from
analytical models (models at high levels of abstraction) can be further divided into
two levels: evaluation by analytical methods and evaluation by means of simulation.
And for the evaluation of models at lower levels of abstraction, different architecture
simulators are utilised, such as simulators for instruction level models, cycle-accurate
models and RTL and logic level models.

Figure 3.3 depicts where the different groups of performance estimation approaches
mentioned above are introduced in the pyramid of models shown in Figure 3.1. More-
over, Figure 3.3 illustrates how the requirements concerning accuracy, modelling cost
and execution time change with the different abstraction levels. Subsequently, these
performance estimation methods are explained in detail.

52 3.3 Performance Estimation

Logic Level Models

RTL Models

Cycle−accurate Models

Instruction Level Models

Analytical Models &
Analytical Evaluation

Analytical Models &
Evaluation by Simulation

Design Space
Low

High

A
b

st
ra

ct
io

n

E
v

al
ua

ti
o

n
T

im
e

M
o

de
ll

in
g

C
o

st

A
cc

u
ra

cy

Low Low Low

High High High

Figure 3.3: Performance Estimation Abstraction Levels

3.3.2.1 Analytical Modelling and Evaluation

At the highest level of abstraction, the models only describe functional behaviour and
timing. A series of transformations is performed on such models in order to get a set of
equations, which are solved to get the pursued performance numbers. These simplified
models can be evaluated simply by solving mathematical equations and, therefore,
the evaluation is very fast. Furthermore, the modelling effort is small and covers a
wide range of design space. But, on the other hand, the accuracy of the extracted
performance values is low because many details of the system are missing.

3.3.2.2 Analytical Modelling and Evaluation by Means of Simulation

The evaluation of analytical models of complex systems with greater detail is not pos-
sible with analytical techniques. Most of them suffer from state explosion problems or
they do not account for resource contention. In these cases, the most frequent alterna-
tive to evaluate such analytical models is discrete event simulation. As simulation goes
through a sequence of states one at a time, it can handle any lower level of abstracted
models and deliver more accurate results. Nevertheless, most of the time simulation
techniques are slow and speed depends on the abstraction level of the input models.

3.3 Performance Estimation 53

3.3.2.3 Instruction Level Models

At the instruction level, the detail of modelling the architecture allows the verification
of the functional specification. The application code is translated into machine code in-
structions for the target processor. The executable instruction level model is simulated,
carrying out the machine code instructions. The performance metrics are determined
using fixed delay models for instruction execution and memory access. Therefore,
these models provide more accurate performance results for single processor architec-
tures but at the cost of simulation time. However, these models cannot describe the
cycle boundary behaviour and its difficulties in modelling pipelining and instruction
level parallelism. Moreover, the interaction and communication between the processor
and other components within the architecture cannot be handled. Hence, instruction
level models cannot be used for the performance evaluation of multi-processor systems.

3.3.2.4 Cycle-Accurate Models

Cycle-accurate models include micro-architecture level details. During simulation,
machine-code instructions are executed one by one and events in each cycle can be
traced. These models describe the correct functional behaviour and timing of the
architecture at each cycle boundary, avoiding the constraints of the previous models
concerning modelling of pipelining, parallelism and inter-component communication.

3.3.2.5 RTL and Logic Level Models

Register transfer level (RTL) and logic level models describe both functional and timing
details and the logic level models can be realised in silicon. At this level, much more
extensive information than in the previous models is found. For the performance
evaluation of systems it is not necessary to reach the logic level because the RTL
model suffices to have clock cycle-accurate detail of events.

In [78], the author shows a comparison of different architecture simulators working
at instruction, cycle-accurate and RT level. SPIM is an instruction level simulator for
MIPS 3000, tmsim is a cycle-accurate simulator for TriMedia architecture and DLX
is an RTL model in VHDL. In order to compare the simulation speeds, it is assumed
that a simple video algorithm takes 300 RISC-like instructions per pixel for one video
frame of 720x576 pixels. The last column of Table 3.2 shows the simulation time spent
by each of the three above-mentioned architecture simulators for processing one such
frame.

54 3.4 Comparison of Performance Estimation Approaches

3.4 Comparison of Performance Estimation Appro-

aches

Every group of performance estimation approaches presented in the previous Section
aim at determining how many times the system passes through the different states.
What differentiates one approach from the other is the concept of state, which depends
on the level of abstraction.

Next, the existing performance estimation techniques presented in Chapter 2.3 are
classified according to the groups defined above and their advantages and disadvan-
tages are discussed. Later, the hardware–software co-design procedures introduced in
Chapter 2.2 are analysed in terms of inter-component communication support and im-
plementation procedure. These two characteristics determine their accuracy and their
potential for automation.

3.4.1 Advantages and Disadvantages

The analytical approaches model a simplified system and can be evaluated analytically
or by means of simulation.
The analytical evaluation of analytical models aims at minimising modelling time and
solution time, while providing sufficient prediction accuracy to reduce the design space.
They are suitable for the initial design stages where prediction cost is of a higher pri-
ority than optimum prediction accuracy, given the huge design space involved. The
static performance estimation methods presented in Section 2.3.2 belong to this group.
In the case that the system is too complex or there is a need for detailed modelling,
the simulation is one of the most suitable alternatives to evaluate such systems. The
analytical performance estimation techniques introduced in Section 2.3.2 fall into this
category. For instance, the performance simulation language PAMELA ([77]) contains
constructs for capturing dependencies, resource contention, execution delay and con-

Table 3.2: Comparison of Architecture Simulators

Simulator Architecture Accuracy Sim. Speed Performance
SPIM MIPS 3000 instruction level 200000 ins./sec. 10 min.
tmsim TriMedia cycle accurate level 40000 ins./sec. 54 min.
DLX DLX RTL level 500 ins./sec. 1.2 days

3.4 Comparison of Performance Estimation Approaches 55

ditional control flow. If the model under study has just the three first features, then
it can be evaluated analytically, otherwise simulation is required. PAMELA has been
used in [76] for the implementation of an analytic performance modelling approach,
while in [78] PAMELA has been applied in design space exploration for stream-based
data flow architectures following a simulation-based approach.

The simulation-based approaches presented in Section 2.3.2 use either simulators for
instruction level, cycle-accurate or RTL models. The simulators for instruction level
models are not able to handle multi-processor systems due to the fact that timing
details are only available at instruction boundaries. In contrast, the simulators for
logic level models make it a very time consuming task to run software on it. Therefore,
the most commonly used approach is the cycle-accurate simulation, where many logic
level details are omitted to speed-up the simulation. Nevertheless, the cycle-accurate
simulation is also a time consuming approach.

Lastly, the trace-based techniques introduced in Section 2.3.2 apply both analytical
and simulation-based methods. They extract from the initial specification the infor-
mation about the computations and communications of the system components. With
this information and the parameters of the system resources, such techniques deliver
an estimation of the final performance. Trace-based techniques are suitable for cases
where the initial co-simulation is not easily reproducible. The extraction of traces from
the initial co-simulation has direct influence on the inspection of diverse architecture
combinations. Nevertheless, the traces to be extracted are fixed in advance as well as
their sequence. A change during the evaluation phase is not possible.

3.4.2 Support of Co-Design Procedures

Analysing the co-design procedures presented in Chapter 2.2 in terms of inter-component
communication support and implementation process, and considering the comparative
Table 2.1, it can be concluded that the communication aspect of the estimation of the
performance is only covered by two of the approaches, Chinook ([93]) and SpecC ([19]).
In both cases the partitioning process is done manually. Only by Cosyma ([94]) has
the partitioning process been automated. However, the communication is only taken
into account locally, without considering the influence of other units, a factor which
could drastically modify the final performance results.

After the refinement of the architectural model, the SpecC methodology provides
accurate estimations for the whole range of software and hardware components. But an
estimation of the time a selected bus is used by a given communication channel can only
be extracted after communication refinement. The partitioning of the functions has
already to be determined in the previous stage, without considering the communication

56 3.4 Comparison of Performance Estimation Approaches

effects.

In Chinook, the design space exploration is enabled by applying single system spec-
ifications that capture the reactive real time behaviour of the system. At the higher
level, Chinook facilitates easy migration of functionality among processing elements
and manages the communication requests between the processors. This enables de-
signers to rapidly evaluate different architecture partitioning. However, these decisions
require user interaction.

Hardware and software performance estimations, but no communication estimations,
are extracted following the hardware and software synthesis respectively and are used
by Polis ([67]) during the partitioning step. It makes this procedure unsuitable for
systems where access conflicts to shared elements occur often. Nevertheless, recently,
related works have been presented, such as [95], which studies the effects of shared
memory buses during system level performance analysis in the Polis co-design environ-
ment.

Finally, concerning the existing system level development environments also pre-
sented in previous Chapter, it can be concluded that they are prepared for testing
different hardware–software architecture–partition alternatives. Nevertheless, this ex-
ploration becomes a time consuming task due to the extensive customisation required
and the necessary rebuilding of the structure in case new building blocks have to be
added. Furthermore, often they require a high modelling effort (for example, in VCC
four models are necessary for one design) and own a tool-specific description language.

3.4.3 Need for Improvements

After presenting the disadvantages and deficiencies encountered in the existing ap-
proaches for performance estimation and in the co-design procedures, it can be con-
cluded that there is a need for a fast performance estimation methodology that captures
architecture (including the communication aspect) as well as application behaviour
in order to speed-up the design space exploration. For achieving this purpose, the
methodology has to support a fast (in terms of simulation time and re-building effort)
exploration of various design choices as well as variations in the target architecture.
It also has to support the modelling of inter-component communication and simul-
taneous access conflicts which arise in multi-processor architectures. Moreover, these
goals have to be achieved without losing much accuracy in the extracted performance
values. Finally, an automation of the whole estimation procedure would allow an easy
and faster design space exploration.

The method proposed in the present thesis covers the requirements mentioned above.

3.5 Integration in the Design Flow 57

The adopted approach is based on a graph model which is evaluated by means of
simulation. The new methodology consists of a two-step procedure. First, the system
is modelled in terms of a graph, where the relevant information concerning the target
architecture is annotated and a mechanism to solve resource contentions is added.
This functional modelling accelerates the exploration of further alternatives without
requiring a re-building of the structure if the hardware structure is changed. Second,
the evaluation is performed by means of simulation at the system level. It allows a more
detailed analysis than analytical evaluation. And, at the same time, the simulation runs
faster than a simulation at a lower level of abstraction.

3.5 Integration in the Design Flow

In Figure 3.4, the positioning of the proposed performance estimation methodology
within the system level design flow is depicted. It follows the framework presented in
Figure 3.2 for design space exploration at system level.

Product
Planning

Specification Design

Functional Spec.

Architectural Spec.

System Design

HW Design Spec.

SW Design HW Design

HW

SW Design Spec.

Co−Simulation / Emulation

Functional
Validation

SW

Block Level
Perf. Estimation

System Level
Perf. Estimation

SW
Processor
Models

HW
Models

Mapping &
Scheduling

Figure 3.4: Integration Performance Estimation Process in the Design Flow

The first step in the design flow is the description of the system functionality in
terms of an executable functional specification. This description is then functionally

58 3.5 Integration in the Design Flow

validated and, when no changes in the specification are needed, the architecture ex-
ploration phase begins. This stage comprises the selection of the target architecture
and the partitioning of the functionalities. Furthermore, the partitioning includes the
following steps: mapping; hardware sharing; scheduling; interfacing; and pipelining,
which cannot be considered independently but are related to each other. A decision
concerning these parameters is taken and, along with the system description and the
selected target architecture, they constitute the inputs for the performance estimation
procedure. In case the performance results for the tested architecture–partition alter-
native do not meet the predefined performance constraints, a new partition and/or
target architecture has to be tried. The process flow remains in this loop as long as
the constraints are not satisfy. Once the architecture–partition alternative that fulfills
the requirements is found, the further steps in the design flow are performed. Then,
the hardware, software and interface parts are designed, followed by the co-synthesis
phase and the back-end.

The framework for the estimation of the performance achieved by a certain alter-
native is divided into two stages: Block Level performance estimation and System
Level performance estimation. In the first stage, the performance values for each sub-
functionality mapped to each processing unit are calculated. This task is performed
with the help of hardware and software processor models. These values are then stored
in an internal library which is accessed by the System Level performance estimation.
In this second stage, the processing time of each sub-functionality is annotated, de-
pending on the processing unit to which it is mapped to. Moreover, the conflicts when
accessing the shared elements are solved, the transfer time through the communication
medium is annotated and the related queues are simulated.

The methodology proposed in this thesis covers the second stage, the System Level
performance estimation. Nevertheless, the results of the Block Level performance esti-
mation are required as inputs before performing the latter stage. The next two Chap-
ters 4 and 5 explain the procedure and implementation of the proposed methodology
in detail.

3.5.1 Inputs Required by the Performance Estimation

As depicted in Figure 3.4, the proposed performance estimation methodology requires
as input the information concerning the system specification, the allocated target ar-
chitecture, the results of the partitioning phase and the Block Level performance esti-
mation values.

The system specification is first of all divided into a set of smaller pieces, so-called
granules. In the proposed methodology, a decision concerning the granularity of the

3.5 Integration in the Design Flow 59

functions has to be predefined. A compromise between fine coarse granularity (function
level, command level or instruction level) has to be reached and used further on in the
definition and description of the single functionalities. When choosing the granules,
the memory organisation has to be taken into account due to the fact that internal
transfers are only possible when a function has finished execution.

On the other side, a target architecture for the implementation is selected. In the
hardware–software partitioning phase, a mapping of the previously defined granules to
hardware or software is performed. The aspects to be considered when dealing with
the hardware–software partitioning problem are as follows:

• Hardware–software mapping: Decision regarding the processing unit in which a
function is executed. The key aspect of this decision is that a processor can only
execute a single function at a time, while a hardware unit can be synthesised to
execute multiple functions concurrently;

• Hardware sharing: Minimisation of the hardware area by sharing hardware re-
sources for different units if possible;

• Interfacing: Insertion of the required communication between two consecutive
functions mapped to two different processing units;

• Scheduling: Determination of the order in which the functions are fulfilled. The
scheduling has, for instance, to guarantee that a processor is only occupied by
one function at a time. The execution of functions sharing the same hardware
resources has to be scheduled as well. Finally, all transfers on each communication
channel have to be sequentialised;

• Functional pipelining: Restart of the system for new incoming data although
the old inputs have not yet finished execution. Using functional pipelining, the
overall system execution time of the schedule can be optimised.

Most of these aspects are interacting (e.g. hardware sharing and scheduling; two
functions sharing the same hardware resource have to be sequentialised) and, there-
fore, they have to be considered together. A decision concerning these parameters is
taken and used further on.

3.5.2 Boundary Conditions

Considering the inputs of the methodology presented in the previous paragraph, some
boundary conditions have to be taken into account when developing the new method-

60 3.5 Integration in the Design Flow

ology. Such boundary conditions are introduced and explained below.

The proposed methodology is oriented to support the design of multi-processing,
multi-threading SoC networking architectures. Architectures such as these, for in-
stance the packet processors, are intended to deal with the user plane functions (no
control/management plane functions) at the edge of the network, where high speed is
required.

These architectures contain, mainly, multiple RISC embedded processors, powerful
co-processors to accelerate some costly functions and memory and interface blocks.
Different communication resources connect all building blocks with each other. A bus-
based communication is very often found. An important characteristic of the RISC
embedded processors is its multi-threading hardware support to avoid idle times when
waiting on results from other resources. The modelling and evaluation support of this
multi-threading characteristic also constitutes a novelty aspect of the proposed method,
which has not been previously covered by other performance estimation approaches.

Furthermore, an abstract bus-based System-on-Chip architecture is taken as the
basis for the development of the methodology. Communication among units takes
place through one or several shared buses and point-to-point connections are supported
as well. For the applicability of the methodology to other kinds of communication
architectures, as for instance a ring, it would be necessary to adapt the arbitration
mechanism of the buses.

Figure 3.5 shows the abstract target architecture taken as a basis for the development
of the proposed methodology. It contains several processing units (PUk), memory units
(Mp) and the required interface units to the peripheries. The processing units can be

either low level RISC (Reduced Instruction Set Computer) processors (PEn) with
multi-threading capability and no RTOS (Real Time Operating System) running on
them, or hardware blocks (ACm) accelerating certain functions. The memory units
can be either global or local to specific blocks. The data communication among the
different units takes place through a common bus (one or several dedicated units),
except for the access to the local memories. When more than one master attempts to
initiate an access to the common bus, an arbiter is necessary to manage the requests.

The methodology contains constructs for capturing dependencies, resource con-
tention, execution delay and conditional control flow. Therefore, it is applicable
to systems having multiple processors as well as application-specific hardware units.
Moreover, hardware multi-threading embedded processors, which are often found in
networking packet processors, are supported as well.

For the parameters related to the partitioning phase, which are required as inputs
for the performance estimation method, the following assumptions are made. First of

3.5 Integration in the Design Flow 61

M 1

M p

Intf. Unit

ACm

PE n

PE2

PE1

AC1

Mm

Figure 3.5: Target Architecture

all, the mapping of the functionalities onto the selected target architecture is taken as
input. Second, because of the predefined bus-based communication architecture, every
slave processing unit attached to a certain bus is shared by the master processing units
linked to the same bus. Third, the borders between processing units are detected and,
between the functions concerned, a mechanism to access the shared communication
medium binding both processing units is introduced. Fourth, an ASAP (As Soon
As Possible) scheduling algorithm is assumed, i.e., the functions executed as soon as
practicable while maintaining the constraints imposed by the other aspects related to
the partitioning phase. Fifth and last, it is assumed that functional pipelining is not
feasible and, moreover, the hardware units do not support pipeline execution.

62 3.5 Integration in the Design Flow

Chapter 4

System Level Performance
Estimation for Multi-Processing,
Multi-Threading SoC Architectures

4.1 Chapter Introduction

The present work introduces a novel system level performance estimation methodology
which supports a fast design space exploration based on a functional graph. The re-
building effort is considerably lower when applying the proposed methodology rather
than building up a structural model of the target architecture at a lower level of ab-
straction. For the modelling of such a graph, a novel usage of the system level language
SystemC has been applied.

This Chapter is organised as follows: First, the fundamentals of the methodology
are introduced and the selected abstract target architecture is depicted. The modelling
and evaluation approach applied for the development of the proposed methodology is
then presented. Last, the system performance estimation scheme is depicted and the
related issues are explained in detail.

4.2 Fundamentals of the Methodology

Figure 4.1 illustrates two different approaches that can be followed when pursuing a
first estimation of the performances achieved by a concrete architecture–partition al-
ternative. On the one hand, a structural model of the target architecture is built up

64 4.2 Fundamentals of the Methodology

according to the selected partition of the functionalities. It delivers a precise estima-
tion, but most of the time the effort and time it takes to try a new alternative is
considerable when a change of the hardware architecture is required. On the other
hand, the functionalities are described in terms of a formal representation, such as a
deterministic graph, and the relevant information of the target architecture is added to
the graph. This information comprises, first, the performance of each function mapped
to the selected processing unit and, second, the resolution of resource conflicts. In
this case, the simulation time and modelling effort towards a re-partitioning is less
costly because the structure of the graph does not have to be rebuilt each time a
new architecture–partition alternative is to be tested. Consequently more partition
alternatives can be simulated and evaluated. After choosing a partitioning that meets
the performance constraints, the path towards synthesis (back-end) goes through a
structural model of the target architecture. This step is costly in terms of design, but
fortunately it has to be done only once after selecting the best partition alternative that
meets the constraints through the loop described above. The proposed methodology
introduces the second approach. A functional model based on a graph representation
endorsed with a mechanism to solve resource contentions is used for the estimation of
the performance instead of a structural model.

PU1
PU2

PU3M2

M1

Specification

Partitioning

Architecture

Structural Model

Process Graph

Perf. Est. Model

Synthesis

PU1
PU2

PU3M2

M1

Specification

Partitioning

Architecture

Structural Model

Synthesis

Figure 4.1: Estimation of Performance

4.3 Modelling Approach 65

4.3 Modelling Approach

The main application scenario of the present thesis, i.e., networking architectures, is
control-dominated. The further processing of the packets crossing in a networking
equipment depends on the values of certain fields and on external configuration infor-
mation. This kind of system is suitable to be modelled using a Conditional Process
Graph (CPG), which is able to capture both data and control dependencies. That is
the main reason for choosing the CPG proposed by Petru Eles ([98]) as the basis for
developing the proposed methodology. Further graph-based representations that also
capture data and control dependencies, like the Control Data Flow Graph (CDFG)
presented in [56], are mainly intended for application scenarios built up around infinite
loops, which is not the case of the networking data flow.

Petru Eles uses an abstract model for system representation based on a directed,
acyclic polar graph. Each node of the graph represents a process. Such a process can
either be a computation process specified by the designer or a so-called communication
process which captures the message-passing activity. The edges of the graph are either
simple or conditional edges. A conditional edge has one associated condition value.
Transmission on such an edge takes place only if the associated condition value is true
and not, like on simple edges, for each activation of the input process. The graph is
polar, which means that there are two nodes, called source and sink, that conventionally
represent the first and last process. Now, considering an architecture consisting of
several processing units connected through buses, each computation process of the
graph is assigned to a processing unit and each communication process, which connects
computation processes assigned to different resources, is assigned to a communication
channel. A mapped process graph is thus built up.

For the modelling of the graph, the industry standard system level language SystemC
has been chosen. It provides flexibility of modelling at various levels of abstraction and
performs faster simulation. SystemC also helps in modelling timing, reactivity and
concurrency and in evaluating resource contentions. Such characteristics make this
language especially suitable for describing the initial Conditional Process Graph and,
later on, for annotating the timing information and inserting additional nodes which
model the internal system communication and the required arbitration and synchroni-
sation mechanisms.
In the proposed methodology based on the CPG and employing the support of Sys-
temC, an Annotated SystemC Conditional Synchronisation Graph (ASCSG) ([99]) is
built. It comprises three phases, the Functional, Architectural and Communication
phase, which are built one on top of the previous one.

The definition of the three phases which build up the ASCSG and their main char-
acteristics are presented next ([100]).

66 4.3 Modelling Approach

4.3.1 Functional Annotated SystemC Conditional Synchroni-
sation Graph (Functional ASCSG)

The Functional ASCSG contains the description of the system functionalities in form of
a Conditional Process Graph (CPG). The initial implementation of the graph, shown
in Figure 4.2, includes computation nodes (Cpi). They represent the single processes
into which the system functionality has been divided. The edges of the graph are
either simple or conditional edges. A conditional edge has one associated condition
value (Kj). Transmission on such a node takes place only if the associated condition

value is true and not, as on simple edges, for each activation of the input process.

Before starting the description of the Functional model, a decision concerning the
granularity of the computation nodes has to be taken. A compromise between fine
coarse granularity (function level, command level or instruction level) has to be reached
and the selected level has to be used further on in the definition and description of the
computation nodes.

Each computation node is modelled as a SystemC module. Each module comprises
the node functionality and the required input and output ports. The conjunction of
such modules in the predefined sequence describes the complete system functionality.

K2

K1

K1

K2

Cp1

Cp2 Cp8

Cp3

Cp4

Cp5

Cp6
Cp7

Cp9

Cp11 Cp12 Cp13

Cp14

Cp10

Cp15

"Stimuli"

"Display"

Figure 4.2: Functional ASCSG

4.3 Modelling Approach 67

4.3.2 Architectural Annotated SystemC Conditional Synchro-
nisation Graph (Architectural ASCSG)

The Architectural phase models the mapping of each computation node (Cpi) onto a
processing unit (PUk) which belongs to the selected target architecture presented in
Figure 3.5. Furthermore, in the case of a multi-threading software implementation,
the computation nodes are mapped to the selected threads (µthrt-n) inside a multi-
threading embedded processor.

The result of this mapping is the annotation of each computation node, CPi, with
its execution time, (t[CPi/PUk]), depending on the processing unit, PUk, on which
it is mapped. The internal library, where the results of the Block Level performance
estimation are stored, provides the performance data of each block mapped to the
selected processing unit.

In Figure 4.3, a mapping alternative for the previous Functional ASCSG (Figure 4.2)
is depicted. For instance, the computation nodes CP2, CP3 and CP6 are mapped to the
processing unit PU1. PU1 is a multi-threading embedded processor and therefore the
computation nodes mapped to this processor are further assigned to the corresponding
threads. In this case, the CP2 and CP3 are mapped to one thread and the CP6 to a
second thread.

K2

K1

K1

K2

Cp1

Cp2

"Stimuli"

"Display"

t [Cp2/PU1]

µthn_p

PUk

Cp3
t [Cp3/PU1]

Cp6
t [Cp6/PU1]

Cp5
t [Cp5/PU2]

Cp7
t [Cp7/PU2]

Cp4
t [Cp4/PU2]

Cp15

Cp8
t [Cp8/PU3]

Cp9
t [Cp9/PU4]

Cp10
t [Cp10/PU3]

Cp11
t [Cp11/PU4]

Cp12
t [Cp12/PU3]

Cp13
t [Cp13/PU3]

Cp14
t [Cp14/PU4]

Figure 4.3: Architectural ASCSG

68 4.3 Modelling Approach

After defining the mapping of the computation nodes onto the processing units, the
computation nodes which are mapped to the same processing unit and are triggered
by diverse Cpi running in parallel have to be detected. For accessing such nodes, an
arbitration mechanism to store the requests and process them in a predefined order
has to be provided. Such a mechanism is referred to as a shared element mechanism
(Shelj). In order to send the access-requests to the Shelj an access node (Acci-j) has

to be interleaved between the shared computation node and the node which attempts
to access it for writing or reading. Such Acci-j is attached to the corresponding Shelj
which keeps the requests until the shared element mechanism grants access to the
shared computation node, as shown in Figure 4.4.

PU3

PU0

Cp3

PU1
Acc1−2

Shel3
Cp2

Cp1

Acc2−3

Cp6

Acc4−5

Cp5

Cp4

Acc5−6

Figure 4.4: Shared Computation Node

4.3.3 Communication Annotated SystemC Conditional Syn-
chronisation Graph (Communication ASCSG)

In order to cover dynamic effects of the system internal communication, additional
nodes, the so-called communication nodes, are introduced, which capture the message
passing activity. They can either be external communication nodes, i.e., communication
nodes inserted between computation nodes mapped to different processing units (e.g.,
Cmei-j my is inserted between CPi and CPj which are mapped to different PUks); or

internal communication nodes, i.e., communication nodes inserted between computation
nodes mapped to different threads within a multi-threading embedded processor (e.g.,
Cmii-j nt is inserted between CPi and CPj which are mapped to different µthrt-ns).

Each Cmei-j my is assigned to a Communication Medium, my, whereas each Cmii-j nt

4.3 Modelling Approach 69

is assigned to a multi-threading embedded processor, PEn.

For the modelling of the communication between processing units and the synchroni-
sation between threads, two arbitration mechanisms are required. The Command Bus
Arbiter (CBAy) arbitrates the access to the shared communication media whereas the

Event Arbiter (CEAn) synchronises the threads within a multi-threading embedded
processor. A CBAy is added for each communication medium, my, and the corre-

sponding external communication nodes (Cmei-j my) are attached to it. Furthermore,

a CEAn is added for each multi-threading embedded processor, pn, and the corre-
sponding internal communication nodes are attached to it (Cmii-j nt). Both arbitration

mechanisms implement a management policy which has to be provided. By default, a
priority-based policy for the CBA and a round-robin arbitration scheme for the CEA
are supported. These elements can be seen in Figure 4.5 where a section of the Com-
munication ASCSG which enhances the previous Architectural ASCSG (Figure 4.3) is
depicted.

K1

K1

Cp1

Cp2

"Stimuli"

"Display"

t [Cp2/PU1]

Cp3
t [Cp3/PU1]

Cp6
t [Cp6/PU1]

Cp5
t [Cp5/PU2]

Cp7
t [Cp7/PU2]

Cp4
t [Cp4/PU2]

Cp15

Cme2−4_m1

Cme3−5_m1

Cme6−7_m1

CBA1

CEA1

Cmi4−5_p2

Cmi4−7_p2

CEA2

Cmi3−6_p1

Figure 4.5: Communication ASCSG

70 4.4 Evaluation Approach

4.4 Evaluation Approach

The previously modelled Annotated SystemC Conditional Synchronisation Graph -
(ASCSG) is evaluated by means of simulation. It allows a more detailed analysis
than analytical evaluation and, at the same time, the simulation runs faster than a
simulation at a lower level of abstraction.

The initial model of the graph, the Functional ASCSG, which only contains the
functional description of the system specification, is simulated in order to provide the
correctness of the input specification.

The simulation of the Architectural ASCSG determines the parallel/sequential pro-
cessing of nodes, taking into account the restriction imposed by the mapping and the
scheduling information, i.e., the determination of the sequence in which the operations
are fulfilled. By default, an ASAP scheduling procedure is supported, in which each
operation is performed as soon as the previous one has been completed. The only
restrictions imposed are the ones concerning the access to shared resources. Each ini-
tiator owns a priority number which will grant it access on the basis determined by the
management policy implemented by the corresponding shared resource.

Finally, the evaluation of the Communication ASCSG cover the system internal com-
munication, i.e., the communication between processing units and the synchronisation
between threads within a multi-threading embedded processor. The activities that are
considered in both cases are explained below.

For the case of a bus-based communication architecture, the following aspects are
considered during a data transmission:

• The initiator processing unit first signals its intention to the Command Bus Ar-
biter (CBAy) through the corresponding external communication node (Cmei-j my).

It will grant access to the target communication medium;

• A management policy for each CBAy has to be selected. A default priority-based

policy is implemented.

During an inter-thread communication the following is taken into account:

• The context/s that are ready to run signalise their status to the Context Event
Arbiter (CEAn) (waiting for a context switch event) through an internal com-
munication node (Cmii-j nt);

• Once the active thread performs a context switch, this command is signalised to
the CEAn through the corresponding Cmii-j nt;

4.5 System Performance Estimation Scheme 71

• A management policy for each CEAn has to be selected in order to decide which
is the next thread to run.

The simulation of the Communication ASCSG delivers the performance characteris-
tics required for the evaluation of a concrete architecture–partition alternative. Some
examples of the performance values that can be extracted from the simulation are the
following: processing time; delay in accessing each shared communication medium;
arbitration delay; delay in accessing each shared processing unit; load of each shared
processing unit; delay accessing the process unit by a thread; and the context switch
delay. For the extraction of further performance values, the methodology can be easily
adapted.

For these evaluation purposes, a test-bench is built around the graph model. This
test-bench feeds the graph with stimuli and displays the simulation results of the graph,
as can be seen in Figures 4.2, 4.3 and 4.5.

4.5 System Performance Estimation Scheme

The estimation of the performance of a certain solution (i.e., a certain mapping–
scheduling alternative of a system specification onto a selected target architecture)
is carried out following the procedure depicted in Figure 4.6. As mentioned above,
it comprises three phases, the Functional, Architectural and Communication phase,
which are built one on top of the previous one. On the left side, the inputs of each
phase are shown, i.e., the required information for the modelling of the graph. And on
the right side, the outputs of each phase are depicted, i.e., the evaluation of the graph
performed in each phase.

4.5.1 Inputs for the Modelling of the ASCSG

The single processes which make up the complete system functionality are selected
from a library of functions. Such a library is created by the designer and contains the
description of each process in form of a SystemC module. Such modules are then linked
in the predefined sequence in order to build up the Functional ASCSG. The test-bench
functions required for the further evaluation of the graph are additionally defined and
bound to the graph for feeding the model with stimuli and displaying the results.

The inputs required by the Architectural ASCSG are the following. First of all, the
resources (types and number of processing units, memories and interface units) of the
target architecture have to be provided. Furthermore, in case of embedded processors,

72 4.5 System Performance Estimation Scheme

Functional
Model

(I)

Architectural
Model

(II)

Communication
Model
(III)

Specification
* Computation nodes [Cpi]
(SystemC Modules)

* Sequence of nodes

* Test−bench
Functional ASCSG

Functional validation

* Communication:
* Architecture
* Parameters
* Management Policy

* Mapping:

* [Cmei−j] <−> [Comm. M.]

* [Cmii−j] <−> [PEn]

Communication ASCSG
* Comm. nodes (internal & external)

System Level perf. estimation

* Architecture:
* Structure/ Resources
* Parameters

* Mapping:

* [Cp i] <−> [PUk]

* [Cp i] <−> [µ tht −n]

* Scheduling information

Architectural ASCSG
* Execution time
* Paral/Seq. process of nodes

Figure 4.6: System Performance Estimation Scheme

it has to be defined whether they support multi-threading and, in the affirmative case,
the number of threads supported. Secondly, the information concerning the mapping
of computation nodes onto the resources and threads has to be defined. Lastly, the
predefined scheduling of the computation nodes is also taken as input in order to define
the overall flow of functions.

The last phase, the Communication ASCSG, requires as inputs the structure of the
communication architecture, the related parameters for each communication medium
(bandwidth and frequency) and the management policy implemented when accessing a
shared communication medium and when sharing a processing unit by several threads.
Furthermore, the mapping of the communication nodes, the external ones onto the com-
munication media and the internal ones onto the multi-threading embedded processors,
is necessary.

During the modelling of the ASCSG, different issues have to be considered. The
definition of each issue and the proposed approaches to model them in SystemC are
presented below.

4.5 System Performance Estimation Scheme 73

4.5.1.1 Sequence of Nodes

The computation nodes in the Functional ASCSG are triggered by events, either input
data changes or rising/falling edges in case of boolean inputs, as can be seen in Figure
4.7. The sensitivity list of each process inside each computation node defines the signals
or ports which trigger the corresponding process. In this way, the process graph which
makes up the system specification is built up.

4.5.1.2 Convergence of Paths

Within a process graph, it can occur that the outputs of two or more computation nodes
sourcing from different branches which are not exclusive to each other meet together.
At this point, it cannot be assured that the upper nodes deliver the outcome with the
same latency. Therefore, the meeting node has to wait until all required inputs are
available. In order to avoid the loss of intermediate results, a fifo channel (SystemC
primitive channel sc fifo), as depicted in Figure 4.8, has to bind each upper node
with the meeting one. This case has to be taken into account when modelling the
Functional ASCSG.

K1 K1

K2

K
2

rdy

rdy

* Changes on input data ()

* Rising/falling edges ()

Cp1

Cp2 Cp3

Cp4

Cp5

Cp6
Cp7

Cp8

Cp9

Cp10 Cp11

Figure 4.7: Sequence of Nodes

sc_fifo

Cp0 Cp1

Cp2

sc_fifo

Figure 4.8: Convergence of
Nodes

74 4.5 System Performance Estimation Scheme

4.5.1.3 Flexible Mapping

The proposed technique allows the exploration of different mapping–scheduling alter-
natives without requiring a re-building of the graph structure. This is possible owing
to a flexible mapping of the computation nodes onto the hardware units and onto
processors and threads, Figure 4.9, which belong to the target architecture. The anno-
tation of each computation node with the respective execution time (x), depending on
the processing unit on which it is mapped, is carried out using the SystemC statement
wait(x,SC NS). The usage of timing control statements is only possible in SC THREAD or
SC CTHREAD processes. Hence, the processes involved have to be defined as SC CTHREAD

if they are sensitive to an edge of a clock or as SC THREAD in the general case. At this
stage, special care must be taken because multiple interacting synchronous processes
must have at least one timing control statement in every path.

Cp7

PU2

PU3

thread0
thread1

PU_1 PU_2 ... PU_k ... PU_n

Cp1

Cp2

...

Cpi

...

Cpm

Execution time: t[Cpi/PUk]

thread0

Cp8

Cp9

Cp1

PU1

PU0

Cp2

Cp3

Cp4

Cp5

Cp6

Figure 4.9: Mapping onto PE/Thread–AC

4.5.1.4 Multiple Instances of Computation Nodes

In the case of multiple processing units or threads performing the same functionality, as
shown in Figure 4.10, the corresponding computation nodes are defined only once and
instantiated several times. In SystemC, this can be performed by defining a pointer
to the related computation node (Cpi*) and making several instances of the node in
the main file, which can be customised at elaboration time by passing constructor
arguments.

4.5 System Performance Estimation Scheme 75

Cp1

...

.

.

.

.

.

.

.

.

.

... ...

PE1 PE2

thread0 thread1
threadn

Cp2[0] Cp2[1] Cp2[n]

PE0

thread0

Figure 4.10: Multiple Instances of Computation Nodes

4.5.2 Outputs of the Evaluation of the ASCSG

The evaluation of each of the three models, the Functional, the Architectural and the
Communication ASCSG, is performed by means of simulation. The outputs of these
simulations are presented below.

4.5.2.1 Functional Validation

The evaluation of the Functional ASCSG results in its functional validation, which
provides the correctness of the specification. For this purpose, a test-bench is built
around the model, which can be reused in further models later on. The test-bench
(Figure 4.11) comprises a module to generate the stimuli and a module to visualise the
results.

4.5.2.2 Processing of Nodes

The evaluation of the Architectural ASCSG results in the annotation of each compu-
tation node with its execution time and in the determination of the parallel/sequential
processing of nodes.

76 4.5 System Performance Estimation Scheme

stimuli_create

.dat

transmit

timer

display

receive

DUT

(Design Under Test)

−−−−−−
−−−−−−

timeout

input

output

start_
timer

Cp1

Cp2

Cp3 Cp4

Cp5

Cp6

Cp7

Cp8

Cp9

Figure 4.11: Functional Validation

4.5.2.3 Tracking and Monitoring

From the simulation of the Communication ASCSG, several performance values are
extracted whose evaluation determines the performance estimation of the system. The
proposed methodology is prepared to deliver such values, which can be very useful for
the designer to analyse each alternative. The analysis of the results is then a task for
the designer, who uses this methodology for exploring different architecture–partition
alternatives, but not a task of the methodology itself.

Some examples of such values are: processing time of each processing unit; delay
accessing each communication medium; arbitration delays; delay accessing each shared
processing unit; load of each shared processing unit; delay accessing the process unit
inside each embedded processor by each thread; and context-switch delays. In case the
designer requires additional performance values for which the proposed methodology
is not a priori configured, the designer can access the provided code for the arbitration
mechanisms and call the value extraction() function for the required parameters.

Chapter 5

Implementation

5.1 Chapter Introduction

The exploration of several architecture–partition alternatives and even the inspection
of different target architectures is facilitated, provided that the user interaction can
be automated. Using configuration files, the method is fed with the required input
parameters. Then, a parser analyses the syntax of the corresponding configuration file
and lastly a generator creates the related SystemC file. These files are further compiled
and linked to the SystemC core and specific libraries in order to generate the pursued
executable models, the Functional, Architectural and Communication model.

First, this Chapter shows the implementation procedure for the creation of the Func-
tional, Architectural and Communication ASCSG. Subsequently, the data structures
and configuration files used when pursuing the automation of the method procedure
are presented.

5.2 Implementation of the ASCSG

The procedure towards the construction of the Annotated SystemC Conditional Syn-
chronisation Graph is depicted in Figure 5.1. A three-step procedure has been devel-
oped for the modelling of the Functional, Architectural and Communication model.
The first column shows the required input parameters, files and templates for each
model. The supply of such parameters constitutes the first step of the procedure.
A generator takes this information and creates the corresponding configuration files.
Each of them takes into account the configuration file of the previous more abstract

78 5.2 Implementation of the ASCSG

graph. In the second stage, these configuration files are then parsed in order to gen-
erate the corresponding SystemC file. Finally, these SystemC files are compiled with
a C/C++ compiler and linked to the SystemC core and specific libraries. In this way
the executable files are generated whose simulation deliver the functional validation of
the specification (simulation of the main functional.o) and the extraction of the per-
formance values for the selected alternative (simulation of the main communication.o).

* Include section

* Module section

* Global Variable section

*
*

C
Cl

h
o
a

c
n e
k
n l

s
s

e
e

c
c

t
t

i
i

o
o

n
n

funct_config_file

include "header_1.h"

...

SC_MODULE (module_i)

{ ...}

Functions
Library

Scanner

arch_config_file

* For each Cpi:
− Number of instances

− Mapping to PU

− Execution time

* Borders among PUs/threads

* For each shared element:
− Read/write

− Execution time

Communication nodes
Access shared comm. media

(template)

−−−−−−−−−−−−−

−−−−−−−−−−−−−

* Subset of functions

* Modules‘s interfaces

* Connection information

Function
Parameters

* Architecture resources

* Mapping:

*[Cpi] <−>[Puk]

*[Cpi] <−>[µth −]

* Scheduling info

Architecture
Parameters

*Communication media

*Mapping:

*[Cmei j] <−>

*[Cmii−j] <−> PE

*Management Policy for
CBA & CEA

Communication
Parameters

comm_config_file

* For each medium:
− Bandwidth and frequency

− umber of bandwidth−words
per transfer

* For each communication node:
− External/Internal

− odule/hierarchical channel

− Source/target data−type

− Read/write

− Bandwidth f the apping
medium

− Data bandwidth−words

− Request priority

1.) main_functional.cpp

2.) main_architectural.cpp

3.) main_communication.cpp

Parser +
Generator

Parser
Generator

Parser +
Generator

Generator

Generator

Generator

−−−−−−−−−−−−−

−−−−−−−−−−−−−
Access shared elements

(template)

−[Comm.M]

o m

M

N

+

][]

t n

n

Figure 5.1: ASCSG Implementation Procedure

The input parameters for the creation of each model as well as the format of the
corresponding configuration file are explained in the next Sections. As depicted in
Chapter 3.5, these input parameters are provided by previous steps in the design flow.

5.2.1 Creation of the Functional Model

When building up the Functional model for the selected application, the subset of
required functions is defined. After that, a scanner looks inside the library of functions

5.2 Implementation of the ASCSG 79

to extract the interface information for each SystemC module. Subsequently, a user
interface allows the designer to introduce the connections between modules. A port
type of and data type of check is then performed in order to avoid a connection error.
Taking into account the input information, a functional configuration file is generated
which is parsed further on for the creation of the functional executable file.

5.2.2 Creation of the Architectural Model

The structure and the resources of the target architecture have to be provided when pur-
suing the Architectural model. Therefore, a list is defined which contains the available
processing units (PUk) (either embedded RISC processors (PEn) with multi-threading
capability and no RTOS running on them, or hardware blocks (ACm) accelerating
certain functions), memory units (Mp) and interface units to the external world. Fur-

thermore, for each embedded processor the number of supported threads has to be
specified.

The processing time of each computation node mapped to the diverse processing
units is pre-determined. These execution time values are stored in a library, Table 5.1,
which is accessible by the mapping process. The entries marked with an “X” mean
that the related mapping is not feasible.

Table 5.1: Possible Mapping Execution Times

PU1 PU2 ... PUk ... PUn

Cp1 t[Cp 1/PU1] t[Cp1/PU2] — t[Cp1/PUk] — t[Cp1/PUn]

... — — — — — —
Cpi t[Cpi/PU1] X — t[Cpi/PUk] — t[Cpi/PUn]

... — — — — — —
Cpm t[Cpm/PU1] t[Cpm/PU2] — X — t[Cpm/PUn]

The mapping process performs the assignment of computation nodes to the avail-
able processing units and, in the case of implementation in multi-threading embedded
processors, the assignment of computation nodes to the threads within a processor.
Moreover, the computation nodes which make up the initial graph can be instantiated
more than once and mapped to different processing units and threads.

The information contained in the architectural configuration file for each computation
node is: number of instances; mapping of each instance (processing unit number and

80 5.2 Implementation of the ASCSG

priority); and, depending on the mapping, its execution time, which is extracted from
the Mapping Execution Times library (Table 5.1).

After the mapping has been performed, the borders between processing units are
detected. A fifo channel is introduced between two consecutive computation nodes
which belong to different processing units and are not shared by other nodes. This
prevents the loss of information between such nodes. The case of computation nodes
triggered by diverse nodes running in parallel is solved by providing a mechanism that
arbitrates the requests coming from the different nodes attempting to access the shared
computation node at the same time or while it is busy (see Figure 4.4). In the case
of a simultaneous access attempt, the arbitration mechanism takes into account the
priority of the computation nodes which initiate the access attempts to decide which
computation node accesses the shared node first. As already mentioned in previous
Chapter 4, such a mechanism is referred to as a shared element mechanism (Shelj).

In order to model such arbitration mechanism, a template, shel<SHEL EXEC>, has
been own defined. For its customisation, the execution time of the shared computation
node (SHEL EXEC) is required. Moreover, an access node (Acci-j) is interleaved between

the computation node that initiates the access attempt and the shared computation
node. It is responsible for requesting the read/write access to the Shelj and waits

until it grants access. A template for it has also been defined, acc<T, R W>, which is
customised providing the data type of the computation node that initiates the access
attempt (T), whether it is a read or write access (R W) and the priority of the request.
This last parameter is passed as a constructor argument to the node module. In the case
in which either the transmission initiator or the receiver is implemented as a hierarchical
channel (which implements the ch if<T> interface), the template acc ch<T, R W>
has to be used instead.

Template 1 Templates for Shared Elements and Access Nodes

template <int SHEL EXEC>
class shel: public shel if, public sc module {...};

template <class T, bool R W>
class acc: public sc module {...};

template <class T, bool R W>
class acc ch: public sc module {...};

Figure 5.2 below depicts the access for writing and reading of two instances of two
computation nodes (Cpi[n] and Cpi[n+1] for writing and Cpk[n] and Cpk[n+1] for
reading) mapped to two different embedded processors (PEn and PEn+1), to two

shared ones (Cpj[n] and Cpj[n+1]) mapped to an accelerator (ACm). For each data

segment to be transfered an access node (Acci-j) has to be inserted. It accesses the

5.2 Implementation of the ASCSG 81

corresponding shared element mechanism (Shelj) through a port that is able to call the

interface functions implemented in the Shelj (sc port<shel if>).

Cpi[n]

Cpj[n]

Cpk[n]

Cpi[n+1]

Cpj[n+1]

Cpk[n+1]

Acci−j [n]

Shelm

PEn

PEn

PEn+1

PEn+1

ACm

sc_port<shel_if>

sc_port<shel_if>
sc_port<shel_if>

sc_port<
shel_if>

Accj−k [n]

Acci−j [n+1]

Accj−k [n+1]

Figure 5.2: Access to a Shared Computation Node

5.2.3 Creation of the Communication Model

The last model, the Communication model, includes the characteristics of the Func-
tional and Architectural models and introduces the communication architecture of the
system. A list of the available communication media is defined for the external commu-
nication. Furthermore, the available threads within each embedded processor, which
was already defined for the construction of the Architectural model, is also used here
for the definition of the inter-thread synchronisation.

Each time a transfer through a certain communication medium takes place, an exter-
nal communication node (Cmei-j my) is inserted, as shown in Figure 5.3. Such a node

provides the access of a processing unit to the selected communication medium. It also
calculates the duration for a certain transfer, taking into account the data to be trans-
mitted and the bandwidth and frequency of the communication medium. Each external
communication node has to be mapped to the medium where the transfer takes place.

82 5.2 Implementation of the ASCSG

Cpi[n]

Cpj[n]

Cpk[n]

Cpi[n+1]

Cpj[n+1]

Cpk[n+1]

Cmei−j_ma[n+1]Cmei−j_ma[n]

PEn

PEn

PEn+1

PEn+1

ACm

CBAa

shelm

Acci−j[n]

CBAa

Acci−j[n+1]

Cmej−k_ma[n]

Accj−k[n]

Cmej−k_ma[n+1]

Accj−k[n+1]

sc_port<cba_if>

sc_port<shel_if>

Figure 5.3: Access to a Shared Communication Medium

This mapping information is provided as an input parameter for the creation of the
Communication model. For the modelling of such nodes, a template has been defined,
cme<T, M BW, M LW T, R W>, whose customisation requires the following parameters:
source/target data type (T); bandwidth of the mapping medium (M BW); number of
words of bandwidth to be transmitted at once through the medium (M LW T); whether
it is a read or write request (R W); and the priority of the request. This last parameter
is passed as a constructor argument to the node module. In the case in which either
the computation node which initiates the write transmission or the computation node
which initiates the read transmission is implemented as a hierarchical channel (which
implements the ch if<T> interface), the template cme ch<T, M BW, M LW T, R W>
has to be used instead, as seen in Figure 5.4.

Template 2 Template for External Communication Nodes

template <class T, int M BW, int M LW T, bool R W>
class cme: public sc module {...};

template <class T, int M BW, int M LW T, bool R W>
class cme ch: public channel if<T>, public sc module {...};

Furthermore, each communication medium has an associated Command Bus Arbiter

5.2 Implementation of the ASCSG 83

Cpj[n] Cpj[n+1]

Cme_chi−j_ma[n]

CBAa

shelp

Mp

sc_port<ch_if> sc_port<ch_if>

sc_port<ch_if> sc_port<ch_if>

sc_port<cba_if> sc_port<cba_if>

sc_
port<

sh
el_

if>
sc_port<shel_if>sc_port<ch_if> sc_port<ch_if>

Cpi[n] Cpi[n+1]

PEn PEn+1

Acc_chi−j [n] Acc_chi−j [n+1]

Cme_chi−j_ma[n+1]

Figure 5.4: Access to a Shared Communication Medium from/to a Hierarchical Channel

(CBAy), which implements a management policy in order to select the first request

to be served. It is accessed by the related external communication nodes (Cmei-j my)

through a port which is able to call the interface functions implemented in the CBAy
(sc port<cba if>). A template for it has also been created, cba<M BW, M LW T,

M FREQ>. For each communication medium, a CBAy has to be included which is

accessed by the corresponding Cmei-j my. The required parameters for its customisa-

tion are the bandwidth (M BW), the number of words of bandwidth to be transmitted
at once (M LW T) and the frequency (M FREQ).

Template 3 Template for Command Bus Arbiters

template <int M BW, int M LW T, int M FREQ>
class cba: public cba if, public sc module {...};

Analogously, each time a synchronisation among threads has to be modelled, an
internal communication node (Cmii-j nt) is inserted, as can be seen in Figure 5.5. The

mapping information between the internal communication nodes and the corresponding
multi-threading embedded processors is also provided as an input parameter for the
creation of the Communication model. A template for the modelling of these nodes is

84 5.2 Implementation of the ASCSG

provided, cmi<T, Ev Sw>, whose customisation requires only the source/target data
type (T), whether the node waits for an event or signalises a context switch (Ev Sw)
and the thread number which initiates the request. This last parameter is passed as a
constructor argument to the node module. In the case in which either the computation
node which initiates the write transmission or the computation node which initiates
the read transmission is implemented as a hierarchical channel (which implements the
ch if<T> interface) the template cmi ch<T, Ev Sw> has to be used instead.

Template 4 Template for Internal Communication Nodes

template <class T, bool Ev Sw>
class cmi: public sc module {...};

template <class T, bool Ev Sw>
class cmi ch: public channel if<T>, public sc module {...};

Cpi[n]

Cpj[n]

Cpk[n]

Cpi[n+1]

Cpj[n+1]

Cpk[n+1]

Cmei−j_ma[n+1]Cmei−j_ma[n]

Accj−k [n] Accj−k [n+1]

th
re

ad
t−

P
E

p

ACm

CBAa
sc_port <cea_if>

shelm

Acci−j [n]

Cmej−k_ma[n]

CBAa

Cmej−k_ma[n+1]

Acci−j [n+1]
sc_port <shel_if>

Cmii−j_pt[n]

Cmij−k_pt[n]

Cmii−j_pt+1[n+1]

Cmij−k_pt+1[n+1]

CEAn

CEAn

sc_port <cba_if>

th
re

ad
t+

1−
P

E
p

sc_port <cea_if>Cmii−j_pt[n] Cmii−j_pt+1[n+1]

Cmij−k_pt[n] Cmij−k_pt+1[n+1]

Figure 5.5: Context Switch and Context Event Notification in a Multi-Threading Pro-
cessor

The synchronisation among threads within a multi-threading embedded processor is
arbitrated by the Context Event Arbiter (CEAn), which is accessed by the internal

5.3 Automation Approach 85

communication nodes (Cmii-j nt). It implements a management policy in order to

decide which is the next thread within the processor to run. Each Cmii-j nt has to be

mapped to the multi-threading embedded processor whose threads it synchronises. For
each multi-threading processor, a CEAn is instantiated, whose customisation requires
the number of supported threads (N UTH). A template cea<N UTH> has been defined
for this purpose.

Template 5 Template for Context Event Arbiters

template <int N UTH>
class cea: public cea if, public sc module {...};

5.3 Automation Approach

Once the input functional specification and the target architecture, the building blocks
and the communication structure, have been defined, the exploration of several mapping–
scheduling alternatives requires only the information concerning the mapping of the
computation nodes onto the processing units, the scheduling information and the map-
ping of the external communication nodes onto the communication media and the
mapping of the internal communication nodes onto the multi-threading embedded pro-
cessors. With these parameters, the implementation procedure presented in Section 5.2
is automated and the Communication ASCSG for every mapping–scheduling alterna-
tive is extracted. The evaluation and comparison of the corresponding output graphs
give the designer the required references for choosing the most adequate alternative.

For the development of the scanners and parsers required by the automation process,
the Lex and Yacc tools ([101]) have been used (in particular, the GNU free version of
Lex, Flex ([102]), and of Yacc, Bison ([103])). Lex and Yacc help by generating pro-
grams that transform structured input. Furthermore, they allow for rapid application
prototyping, easy modification and simple maintenance of programs. Specifically, Flex
is a tool for generating scanners, i.e., programs which recognise lexical patterns in text.
And Bison is a general purpose parser generator that converts a grammar description
for a context-free grammar into a C program to parse that grammar.

5.3.1 Data Structure for the Implementation

A common design approach is followed with the data structures shown in Figures 5.6,
5.7 and 5.8, which are further annotated in subsequent steps. These sample data
structures are intended to clarify the semantics of the automation.

86 5.3 Automation Approach

For each computation node (Cpi) a data structure with the following fields, as shown
in Figure 5.6, is built up: name (CP NAME); identification (ID); whether it is mod-
elled as a hierarchical channel or as a module (HC MOD); and number of instances
(NUM INST). Furthermore, the data structure comprises a pointer to the contained
ports (port list); and a second pointer to the mapping information of each instance
(mapp list).

CP_NAME

ID
HC_

MOD
NUM
_INST

port
_list

mapp
_list

PT_NAME DT

PM BN UDT
SIG
_N

opp_l

CP PT

PU_NUM PU_PRIO EXEC SH_CP

Other nodes and their ports

.

.

.

.

.

.

Figure 5.6: Computation Node Data Structure

In the same way, the required information for each port is: name (PT NAME); data
type (DT); whether it is a SystemC/C++ built-in or a user-defined data type (UDT);
port mode (PM); whether it is bound (BN) and the name of the signal attached to it
(SIG N). Moreover, a pointer, opp-l, to the attached computation node (CP) and the
related port (PT) is also added.

The mapping process associates to each instance the parameters concerning the
processing unit number (PU NUM), the priority of the processing unit (PU PRIO), its
execution time (EXEC), and whether it is a shared node (SH CP).

As has been seen in the previous Section, the detection of a computation node trig-
gered by multiple computation nodes implies the insertion of an access node in between
and an arbitration mechanism, which is referred to as a shared element mechanism.
The data structures for these two elements are shown in Figure 5.7.

Each access node contains its name (ACC NAME), identification (ID), data type to
pass across (DT), and whether it attempts a read or a write request to/from the shared

5.3 Automation Approach 87

ACC_NAME

ID DT R_W

port
_list

PT_NAME

DT PT_MOD

opp_l

CP PT

Other nodes and their ports

.

.

.

SHEL

SHEL_NAME

ID
SH_CP
_EXEC

.

.

.

Figure 5.7: Access Node / Shared Element Data Structure

computation node (R W). A pointer to the list of its ports, port list, gives access to
the information related to each port: Name (PT NAME); data type (DT); and port
mode (PT MOD). A further pointer, opp-l, binds each port either to the computation
node (CP) concerned and the related port (PT), or to the arbitration mechanism, the
shared element (SHEL).

The information required for each shared element in order to further customise the
related template is: name (SHEL NAME); identification (ID); and the execution time
of the shared computation node (SH CP EXEC).

The last step towards the creation of the communication ASCSG comprises the
insertion of internal and external communication nodes for the synchronisation among
threads and the access to the communication media, respectively. The customisation
of such additional nodes requires certain parameters which are further annotated in
their data structure as shown in Figure 5.8.

Each communication node data structure comprises its name (CM NAME), identifi-
cation (ID), type (internal or external) (TYP), whether it is modelled as a hierarchical
channel or as a module (HC MOD), whether it attempts a read or a write request
(R W) in case of an external communication node or whether it waits for an event or
signalises a context switch in case of an internal one, bandwidth of the communication

88 5.3 Automation Approach

CM_NAME

ID TYP

R_W/
Ev_Sw

port
_list

PT_NAME

DT PT_MOD

opp_l

CP PT

Other nodes and their ports

.

.

.

SHEL

SHEL_NAME

ID SH_CP
_EXEC

.

.

.

HC_
MOD

M_BW
BW_WD
_NUM PRIO

ARB

CP PTSHELARB

ARB_NAME

ID BW

.

.

FREQ BW_WD
_NUM

Figure 5.8: Communication Node / Arbiter Data Structure

medium (M BW)1, number of words of bandwidth to be transmitted at once through
the medium (BW WD NUM)2, and priority of the initiator (PRIO). A pointer to the
list of its ports, port list, gives access to the information related to each port: name
(PT NAME); data type (DT); and port mode (PT MOD). A further pointer, opp-l,
binds each port either to the computation node (CP) concerned and the related port
(PT), or to the arbitration mechanism, the shared element (SHEL), or to the arbitra-
tion mechanism (ARB), the Context Event Arbiter and the Command Bus Arbiter for
the internal and external communication nodes, respectively.

The information required for each arbitration mechanism in order to further cus-
tomise the related template is: name (ARB NAME); identification (ID); bandwidth
(BW)2 and frequency (FREQ)2 of the communication medium; and number of words
of bandwidth to be transmitted at once through the medium (BW WD NUM)2.

5.3.2 Configuration Files

The Functional model is created using a subset of the library of functions and the
explicity interconnection information of their ports, which is completely specified in
the functional configuration file.

1Only required in case of an external communication node

5.3 Automation Approach 89

Since the task of specifying the interconnects is bit consumed, an option of inter-
actively creating the initial configuration file is implemented to which the subset of
functions is the input. The input files are scanned for the port definition, types, names
and only the feasible links are displayed from which the user can select the appropriate
one. The configuration file for the Functional model can also be tuned manually, thus
reserving time for its creation. This configuration file is then parsed and fed to the
data structure defined above in Figure 5.6 (with the exception of the elements of the
mapping list, which are defined after the mapping process). Finally, these linked
lists are simply traversed and processed iteratively in order to generate the simulatable
Functional model (main functional.cpp).

Specifically, the simulatable Functional model is a SystemC main file which is divided
into the following sections: include files; channel declaration; module instantiation;
and trace file section. Thus, the functional configuration file consists of the following
sections:

• Include section: Contains the name of the header files to be included;

• Module section: Comprises the name of the modules along with their parameters
and the list of all their ports and ports details. Moreover, it contains the list of
modules and ports to which each of the own ports are connected;

• Global Variable section: Includes more general information as, for example, the
desired name of the output file, the trace file name and its type, i.e., vcd or wif;

• Clock section: Specifies the details for every clock and their parameters;

• Channel section: Defines the links between ports, either through SystemC hard-
ware signals or through SystemC primitive channels.

The steps towards creating the Architectural model imply the mapping of every
instance of each computation node to the selected functional unit of the target archi-
tecture. This is done by making the computation node hold more information inside
its data structure. This information includes, for each instance, the processing unit
number to which it is mapped, its priority and the corresponding execution time, which
is picked up from the Mapping Execution Times library (see Table 5.1).

With these parameters a process detects whether shared computation nodes exist
and, in the affirmative case, the corresponding flag inside its data structure is set.
Furthermore, a list of required access nodes and another of the corresponding shared
elements are created. The required information for their customisation is extracted
from both the access initiator and the shared computation node.

90 5.3 Automation Approach

In practice, the architectural configuration file extends the functional configuration
file that has to be available in this step. The Module section additionally comprises the
mapping information of each computation node instance and the lists of access nodes
and shared elements along with their details. This architectural configuration file is
then parsed and fed to the data structures defined in Figures 5.6 and 5.7. Finally,
these linked lists are simply traversed and processed iteratively in order to generate
the simulatable Architectural model (main architectural.cpp).

The last step involved in creating the Communication model carries out the inser-
tion of internal and external communication nodes and the corresponding arbitration
mechanisms to access the multi-threading embedded processors and shared media,
respectively. For these additional elements, two new linked lists are created. The map-
ping of the internal and external transmissions to the target embedded processors and
communication media gives the input information required by their customisation.

The communication configuration file extends the Module section of the architec-
tural configuration file with these two new linked lists of communication nodes and
arbitration mechanisms. This configuration file is again parsed and fed to the data
structures defined in Figures 5.6, 5.7 and 5.8. Once again and lastly, these linked
lists are simply traversed and processed iteratively in order to generate the simulatable
Communication model (main communication.cpp).

In summary, it has been shown that by means of successive configuration files, which
are built one on top of the previous one, the executable SystemC files for the three
models which make up the ASCSG can be generated. The configuration file for the
Functional model is defined once at the beginning and remains unchanged during the
exploration of different architecture–partition alternatives. As depicted in Figure 5.9,
each time a new alternative is to be tested, it is only necessary to add the information
concerning the architecture–partition configuration of this new alternative. With this
configuration information, the corresponding configuration files are created. These are
then parsed and the Architectural and Communication ASCSG are generated. The
evaluation by means of simulation of the last model, the Communication ASCSG,
delivers the pursued performance estimation values for the alternative under study.

As already introduced in Chapter 1, the proposed performance estimation method-
ology is thought to be integrated in a hardware–software co-design procedure, where
several target architectures have to be explored and an easy re-mapping of the func-
tions onto the target architecture should be possible. The hardware–software co-design
procedure defines the input parameters required by the proposed methodology and,
therefore, it is only necessary to agree on the format to pass these parameters to the
corresponding configuration files previously presented.

5.3 Automation Approach 91

Configuration
Information

Number of Alternatives

X

Automatic Generation

Evaluation

Performance
Estimation

1 x

Figure 5.9: Performance Estimation by Means of Configuration Information

The procedure towards the exploration of architecture–partition alternatives can be
automated in this way. This automation, together with the implementation of an
exploration strategy, will facilitate the analysis of several possible alternatives. It will
lead, further on, to the selection of the most suitable solution that meets the design
requirements in terms of performance. Nevertheless, the solution reached at the end
of the exploration process depends on the strategy how the performance data is used
for changing the solution.

92 5.3 Automation Approach

Chapter 6

Methodology Verification

6.1 Chapter Introduction

In order to position the advantages and disadvantages of the proposed methodology, its
results in terms of evaluation time and accuracy have to be verified. For this purpose,
the results achieved by the method based on the ASCSG have to be compared with
the results delivered by a model at a lower level of abstraction. A cycle-accurate model
is chosen as a reference for the verification of the proposed methodology.

In order to perform this comparison, a case study is selected for which both proce-
dures, the ASCSG and the cycle-accurate model, are applied. The simulation time and
output throughput delivered by the cycle-accurate model are compared with the values
provided by the methodology based on the ASCSG. The same procedure is repeated for
diverse architecture–partition configurations in order to cover different possible scenar-
ios. A flexible hardware–software co-simulation platform substantially facilitates this
step. It consists of several modules which simulate hardware specific blocks, software
running onto multi-threading embedded RISC processors and their interaction with
memory blocks and interfaces with the external world.

The system level language SystemC has been used as the specification language for
both the proposed system level performance estimation methodology and the modelling
of the cycle-accurate co-simulation platform. This issue makes the comparison of results
of both models easier and more reliable.

This Chapter is organised as follows: First of all, the existing co-simulation tech-
niques are explained in order to show the different possibilities when building a co-
simulation platform. Then, the selected target platform architecture is presented,
followed by the modelling of the co-simulation platform. Lastly, the implementation

94 6.2 Hardware–Software Co-Simulation Techniques

of the skeleton of the co-simulation platform together with its different functional and
memory units is depicted.

6.2 Hardware–Software Co-Simulation Techniques

A hardware–software co-simulation technique is used to verify the correct interaction of
hardware and software. The available techniques for hardware–software co-simulation
can be characterised by a number of factors ([4]), which include:

• Performance: The co-simulation techniques offer different levels of operational
capacity. It is, however, the combined hardware–software performance of the
system that is important. For instance, it is irrelevant how fast the software side
of the system is executed if the hardware simulation is left unaccelerated. When
dealing with performance, it is crucial to address the acceleration of the entire
system rather than that of the separate hardware or software components;

• Timing accuracy: The accuracy of the results must be maintained when increas-
ing the level of abstraction of the model in order to achieve equitable values. No
level of performance can be justified if it cannot correctly represent the expected
behaviour of the system under test. Optimisations that cause a reduction in
the level of accuracy must be under user control and discretion. For example,
many interactions between hardware and software are sensitive to timing con-
straints. The absence of accurate instruction timing may make it impossible to
truly validate the hardware–software interface;

• Model availability: In some co-simulation techniques, a Bus Functional Model
(BFM) of the processor is required in order to model the transactions on the bus.
Nevertheless, if a detailed simulation of the processor is required, an Instruction
Set (IS) Model is needed for meaningful hardware–software co-simulation. Fur-
thermore, the performance of the interface connecting such models and the rest
of the system must be highly optimised;

• Visibility of internal state for debugging purposes: A common debugging envi-
ronment must offer a layered view of the software at both the process and code
levels and the hardware depending on the user needs. Visibility of the processor
states and ability to create breakpoints are important elements of an effective
hybrid system debugging environment;

• Cross-domain optimisation: There are also many cross-domain optimisations that
can be made. In essence, it relies on the ability to selectively suppress activity

6.2 Hardware–Software Co-Simulation Techniques 95

from crossing the hardware–software boundary in a manner that does not result
in a loss of accuracy or accessibility to data.

The existing co-simulation techniques to date can be classified into techniques re-
quiring processor models and techniques not requiring processor models, as presented
in [104].

6.2.1 Techniques Requiring Processor Models

These techniques are used when a full model of the processor used in the co-simulation is
available. All of the important elements for state storage of the processor are preserved
but the data path that connects them is abstracted out of the model. The processor
is described in terms of its instruction set. That is, a collection of instructions is
modelled, where each instruction defines a relationship between constituents that are
internal (registers, on-chip memory) or external (on-board memories) to the processor.
Full bit level accuracy exists within the models.

Instruction set models allow both high-level and assembly code to be executed and
debugged. They can exist at three different levels of accuracy:

• Nano Second Accurate Timing model: The most accurate software model uses
a processor model that has a nano second accurate timing for all the pins and
the complete functionality. However, the simulation is slow. The propagation of
many events is necessary because each pin can change at unique times. Typical
performances for these types of models are in the 1 to 100 instructions per second
range;

• Cycle-Accurate model: Cycle-accurate models cover the internal and external
state of the model at every bus cycle. This means that the exact bus behaviour
of the target device will be observed. The transitions occur at each clock edge.
This means that there are fewer unique event times in the system, making the
simulator run faster. Typical performance numbers for this type of model are 50
to 1,000 instructions per second;

• Instruction Set Simulator (ISS): This model of the processor emulates the in-
struction set accurately, which means that the values in registers and memory
are correctly modelled ([105]). While they do guarantee that all of the correct bus
cycles will be performed and that the total number of cycles for the instruction
will be correct, they do not guarantee that the bus operations will occur during
the correct clock cycles. They also do not attempt to assure the correct inter-
nal state at individual clock boundaries. These models are adequate for most

96 6.2 Hardware–Software Co-Simulation Techniques

situations. These kinds of instruction emulation models can run from 2,000 to
20,000 instructions per second. Some inaccuracy may occur when bus sharing for
contention exists, since the exact time of the bus cycles may not be correct.

6.2.2 Techniques not Requiring Processor Models

If software and hardware communicate through communication methods such that
the time between communications has no effect on functionality, a faster method of
simulation is possible. At this level, there is no need for a processor model. The software
is compiled on the host machine and linked with the simulator. The techniques used
can be divided into synchronised handshake, virtual hardware, bus functional models
and other hardware modellers.

• Synchronised Handshake: The detailed communication between hardware and
software is then replaced with a synchronising handshake. The software runs at
the speed of the workstation and the hardware is simulated on the hardware simu-
lator. The overall simulation speed will be dominated by the hardware simulator
performance and can be measured in MIPS (Million Instruction Per Second);

• Virtual Hardware: Only software is simulated creating for it a virtual operating
system and the corresponding machine code in pure software that has no relation
to the real hardware. Disk I/O is mapped into the host operating system. It is
one of the fastest simulations but with the least accuracy;

• Bus Functional Model (BFM): Bus functional models allow the simulation of the
hardware but there is no simulation of the software ([105]). The performance
is limited by the hardware simulation. A bus functional model of a processor
encapsulates the bus functionality of a processor. Such a model can only execute
bus transactions on the processor bus (with cycle accuracy) but cannot execute
any instructions. The BFM provides a programming interface that can be used
by the software directly. Since the software runs on the host processor (on which
development is done), this model is un-timed because the software execution time
is not accurate. A BFM is therefore an abstract processor model that can be used
to verify how a processor interacts with its peripherals. Thus, a BFM represents
a key component in any co-verification solution. In the design methodology used
for the implementation of the current hardware–software platform, a BFM is used
throughout the design process;

• Hardware Modeller: Systems based around complex processors often use hard-
ware modellers to emulate the CPU. Current implementations of hardware mod-
ellers have the most accurate models from a functionality point of view but have

6.3 Target Platform Architecture 97

only modest performance. Hardware modellers typically run in the 10 to 50
instructions per second range;

• Emulation: Emulators map the hardware part of the design down onto pro-
grammable hardware. The programmable hardware implements the behaviour
of the loaded design and realises its execution at the supported frequency (e.g.
1 MHz to 10 MHz). Historically, these devices have suffered from high cost,
very long design iteration times, and a lack of comprehensive debug capabilities.
Emulation provides the closest simulation to a real prototype that is possible.

In the present work, the decision concerning the model to be used as reference is taken
as a compromise between modelling effort and content of system details. Whereas a real
implementation and even the design of a model at logic or RT level of a complex system
would require a big design effort and would take a lot of time, a cycle-accurate model
comprises more details of the system than the proposed methodology and delivers
accurate cycle counts. That is the reason for choosing a cycle-accurate model as a
reference for the verification of the proposed methodology.

6.3 Target Platform Architecture

As a basis for the development of the co-simulation platform, the target architecture de-
picted in Figure 6.1 has been chosen. It consists of a bus-based System-on-Chip (SoC)
architecture which comprises diverse processing units (PUk), memory units (Mp) and

the required interface units to the external world. The processing units can either be
embedded RISC processors (PEn) with multi-threading capability and no RTOS run-
ning on them, or hardware blocks (ACm) accelerating certain functions. The memory
units can be either global or local to specific blocks. The communication structure
consists of two buses, a command and a data bus, which are accessed by every unit,
except for the access to the local memories where a point-to-point connection is im-
plemented. When more than one master attempts to initiate an access to one of the
common buses, an arbiter decides which request is served first.

As already mentioned in Chapter 1, a case study is selected for the comparison of
the results delivered by both procedures, the ASCSG and the cycle-accurate model.
The selected case study deals with the processing of packets at the edge of the net-
work, where high speed in the data path is required. The functions to be implemented
are restricted to the user plane functions (see Chapter 2.4) from the input side of a
packet processor (i.e., a router or a gateway). Therefore, the TCP/IP processing +

98 6.4 Modelling Approach

Mm

ARB
_CB

Interface Unit

PE2

PEn

PE1

ACm

AC1
M1

Mp

ARB
_DB

.

.

.

.

co
m

m
an

d_
bu

s

da
ta

_b
us

Figure 6.1: Target Platform Architecture

DiffServ functionalities are supported. It comprises, for example, packet recognition,
packet verification, checksum computation, mark and modification, packet classifica-
tion, policing and the implementation of the longest prefix match algorithm amongst
others. The target platform architecture depicted in Figure 6.1 is conceived to cope
with such functionalities. The structure of this architecture is based on the Network
Processor from Intel IXP1200 ([106]), which is mainly intended to process packets at
the edge of the network.

6.4 Modelling Approach

Once the existing co-simulation techniques have been examined and the target plat-
form architecture introduced, a decision concerning the modelling of the co-simulation
platform for verifying the proposed methodology has been taken. Two different co-
simulation techniques have been applied:

• First, a functional model of the platform has been developed. It consists of an
Un-Timed Co-Simulation Model which verifies the correctness of hardware and

6.4 Modelling Approach 99

software working together. For this purpose a Bus Functional Model (BFM) of
the processor which encapsulates its bus functionality has been built up.

• Secondly, a Cycle-Accurate Co-Simulation Model has been developed. An In-
struction Set Simulator (ISS) of the multi-threading embedded processor has
been modelled. It provides accurate cycle counts required by the cycle-accurate
performance analysis. The functions of the system specification to be imple-
mented in software have then been translated into machine code which is read by
the ISS. A cycle-accurate model of the hardware blocks is also required at this
point.

6.4.1 Skeleton of the Co-Simulation Platform

As mentioned in the previous Section, the internal structure of the selected platform
architecture is based on the Network Processor from Intel IXP1200 ([106]). It is a
fixed architecture which includes six programmable packet engines plus an additional
StrongArm processor. The IXP1200 can connect to an external host processor through
a 32-bit PCI bus. It also connects directly to up to 256 MB of external SDRAM for
storing packet data and up to 8 MB of SRAM to store routing information. It includes
a hardware hash unit for generation of polynomial keys, useful for quickly looking up
IP addresses. The IXP1200 supports only a single external bus (the IX bus) for packet
data. Intel rates the 200 MHz IXP1200 at 3.0 million packets per second (Mpps) when
performing Layer 3 routing on 64-byte packets.

The co-simulation platform built up in the present work is a generic model of the
IXP1200. It consists of a flexible hardware–software bus-based co-simulation platform
able to simulate and verify complex architectures that involve embedded processors and
hardware blocks. The number of such internal processing units is made configurable
in order to be able to test different architecture–partition alternatives.

As is the case for the IXP1200, the data/command transmission among resources is
restricted to a bus-based communication, except for the point-to-point link to access
the local memories.

Figure 6.2 depicts the implemented co-simulation platform. The number of multi-
threading embedded processors (PEn) and hardware blocks acting as accelerators of
certain costly functions (ACm) is configurable. Each unit has an identification number
that is also used as a priority number when solving concurrent access to a shared
communication medium.

The embedded processors work in parallel controlling the whole processing of the
packets entering the system. First of all, they pick up the packets from the receive FIFO

100 6.4 Modelling Approach

RFIFO

SRAM

AC0

d
at

a_
b

u
s

co
m

m
an

d
_

bu
s

...

arb_db

SRAM

...

arb_cb

PE0

SDRAM

Figure 6.2: Bus-Based Co-Simulation Platform

(RFIFO), where they are stored in the arrival sequence. Secondly, the processors start
performing the sequence of functions. Some of them are performed internally, requiring
only some table lookups to the global SRAM. Other costly functions are carried out
in a dedicated external accelerator and, therefore, the required information has to
be passed to the hardware block. Once the processing of a packet has finished, the
processor stores it in the packet memory (SDRAM).

Inside each multi-threading embedded processor, a configurable number of contexts 1

is available. A control mechanism cares for the context switches and implements a
policy mechanism to decide which is the next thread to run. The instruction memory
inside each processor is also divided into as many parts as there are contexts. The
corresponding number of program counters point to the different context sections into
which the instruction memory is divided.

The embedded processors act as masters when sending a command request to the
shared functional units through the command bus. The target functional units store the
requests in an input command FIFO and process them in the sequence in which they

1The separate programs that share execution time on a processor are referred to as program
contexts or contexts.

6.4 Modelling Approach 101

arrive. The data bus is shared by the functional units to perform the data transmissions
indicated in the processed requests. Once a certain command has been completed, the
target unit signalises it to the initiator (the master who sent the command request
first) by sending it the corresponding event. In a multi-threading embedded processor,
such events are the inputs that wake up contexts, which were put to sleep after sending
the related requests.

Next, the different functional units included in the platform and its communication
structure are explained in detail.

6.4.2 Functional Units

The current co-simulation platform contains the following functional units: embedded
RISC processors; hardware blocks acting as accelerators of costly functions; and shared
memories.

6.4.2.1 Embedded RISC Processor

The internal architecture of each embedded RISC processor is shown in Figure 6.3.
It follows the scheme of the Intel IXP1200. It supports a 32-bit RISC instruction set
tailored to networking and communication applications. The frequency of operation is
parametrisable and all instructions are executed in a single cycle.

The main features of each embedded RISC processor are: hardware multi-threading
support for a predefined number of threads; a programmable instruction memory; two
blocks of 32-bit general purpose registers; and two blocks of 32-bit transfer registers for
transferring data into and out of the processor; an Arithmetic Logic Unit (ALU;) and
a shifter. The size of the instruction memory as well as the size of the general purpose
and transfer registers are parametrisable.

Each embedded processor contains a programmable instruction memory that holds
the microcode program. The predefined number of threads associated with each pro-
cessor share the instruction memory. It is 32-bit wide and its size is parametrisable.

Furthermore, each embedded processor supports two blocks of a parametrisable num-
ber of 32-bit general purpose registers (A GPR and B GPR). They are addressed using
absolute addressing, i.e., every register is shared among all the threads within a pro-
cessor.

Data is moved into and out of the embedded processors via the transfer registers.
Each processor supports a parametrisable number of 32-bit bus transfer registers, di-

102 6.4 Modelling Approach

A_GPRs B_GPRs

A B

ALU

Shifter

Status

BUS_TR_RD BUS_TR_WR

W

PCs

Program
Memory

Instr. Reg.

CSR

CONTROL
UNIT

Event_
handler

Command FIFO
.
.

Context
Event

Arbiter

Decoder

Control
Bus

Command Bus Data Bus
E

ve
nt

s
(f

ro
m

ex
te

rn
al

un
it

s)

Figure 6.3: Embedded RISC Processor

vided into two sets of read (BUS TR RD) and write (BUS TR WR) transfer registers.
Each register subset connects to the other functional units via a common data bus.
They are addressed using absolute addressing.

The embedded processors contain a 32-bit ALU and a Shifter that are capable of
performing a single cycle operation. The two inputs of the ALU can operate on data
supplied by the read transfer registers, general purpose registers and immediate data
within the instruction. The ALU can perform addition, subtraction and logical opera-
tions. They generate sign, zero and carry out condition codes which are stored in the
Status register.

The embedded RISC processors issue references to the other functional units within
the platform via a shared command bus. When a processor thread executes a reference
instruction, a command is generated by the Control Bus unit and placed into a two
entry Command FIFO within the processor. The access to the command bus is then
arbitrated by the Command Bus Arbiter, which determines the processor allowed to
access the shared command bus.

Finally, each embedded processor contains a set of control and status registers
(CSRs). A processor can access its own set of local CSRs, but only for reading.

Each embedded processor instruction is pipelined through a five stage Control Unit.

6.4 Modelling Approach 103

Once the execution pipeline is filled with instructions, an instruction is executed in
every cycle. Instructions such as branch, jump/return and context switching result
in a branch decision that may introduce an aborted instruction to the pipeline that
reduces the efficiency of the processor.

Hardware multi-threading support allows the predefined number of program contexts
to share execution time on an embedded processor. When a thread is not executing,
each program context is preserved in hardware through separate program counters,
signal event states, and a register set for each context within the Control and Status
Registers (CSRs). When a thread is put to sleep, a context switch occurs and another
program context begins executing. The overhead associated with switching contexts is
a maximum of one instruction cycle.

Figure 6.4 depicts the hardware blocks which implement the multi-threading support.
The Events from the other functional units are held and then handled by the Event
Handler module, which sets the corresponding flags within the related registers of the
CSR. Furthermore, there is a Context Event Arbiter that determines the processor
thread to be allowed to run when a thread is put to sleep.

CSR

Event
Handler

Context
Event

Arbiter
Arb.

Events

(from other funct. units)

change_ctx

type_swap

type_event

Figure 6.4: Multi-Threading Modelling

Reset

Run

To_sleep

Next_ctx

Enable

Wake_
signal

Wake_ctx
ctx_set[x][10] = 1

ctx_enable[x]=
1

ct
x_

en
ab

le
[x

]=
0

c t
x

_s
e t

[x
][

1
0]

=
0

change_ctx = 0

change_ctx = 1

Figure 6.5: FSM of Context Event Ar-
biter

Once a context switch command arrives, the Context Event Arbiter makes the de-
cision based on the values of the corresponding bits within the concerning registers of
the CSR. The transitions between states is shown in Figure 6.5. The Finite State Ma-
chine (FSM) starts in the Reset state, where the FSM is initialised. It is immediately
followed by the Run state, where the contexts are activated. The information related
to each context is stored in the corresponding registers within the CSR during the
To sleep state. The FSM remains in this state until a context switch command arrives
from the control unit. Once it occurs, the Next ctx state chooses the next context to
run. In the following two states, Enable and Wake signal, it is checked whether the

104 6.4 Modelling Approach

chosen context is enabled and ready to run. In the affirmative case the Wake ctx state
wakes up the selected context and, in the case in which such context is neither enabled
nor ready, a next context is chosen, going back to the Next ctx state.

6.4.2.2 Hardware Blocks – Accelerators

The hardware units are thought to perform certain costly functions such as packet
classification and the longest prefix match algorithm within networking applications.
They communicate with the embedded processors through the command and data bus.

The embedded processors send command requests to the hardware unit which are
stored in an internal input Command FIFO. The requests are then processed in the
order in which they arrived. The processing of a request implies data transmission
to/from the read/write transfer registers of the initiator processor through the data
bus. The data required as input by the implemented function is stored in an internal
Receive FIFO which is served in the arrival sequence. On the other hand, the pursued
results are stored in an internal Transmit Memory in the location reserved for the
thread processor which sent the corresponding request. In this way the processing of a
read command will pick up the result from the corresponding address in the Transmit
Memory and send it to the Read Transfer Register of the initiator processor. In the
case in which the result required by a read command is not available at the moment
the command is to be processed, the request is enqueued at the end of the input
Command FIFO. Once a certain command has been completed, the hardware unit
signalises this event to the initiator thread processor, sending the corresponding event
to the processor. An internal Control Unit manages the complete procedure and stores
the control information of the actual request being processed.

Figure 6.6 shows a generic internal architecture of a hardware block.

The hardware units can own a local memory which is accessed by a point-to-point
connection. These local memories are usually dedicated for storing auxiliary tables
required by the implemented algorithm. A considerable number of lookups to these
tables has to be performed. These usually constitute the bottlenecks.

6.4.2.3 Shared Memories

The shared memories of the platform are the Receive FIFO (RFIFO), the SRAM and
the SDRAM. The first one, the RFIFO, stores the arriving packets from the medium
access layer. The SRAM is destined to store auxiliary tables and descriptors required
by diverse algorithms that will be implemented inside the embedded processors. And,
lastly, the SDRAM stores the packet data inside the platform. These functional units

6.4 Modelling Approach 105

Command
FIFO

Control Unit

Hardware Block

HW
Function

Command
Bus

Data
Bus

Receive
FIFO

Transmit
Memory

Flags

Figure 6.6: Internal Architecture of a Hardware Block

are shared by the different embedded processors and are accessed in the same way as
the hardware blocks.

The command requests sent by the processors are stored in an internal input Com-
mand FIFO and served in the order of arrival. Once a read/write request is processed,
the corresponding data transmission to/from the read/write transfer registers of the
initiator processor is performed through the data bus. Once a certain command has
been completed, the memory unit signalises it to the initiator thread processor, sending
it the corresponding event. An internal Control Unit manages the complete procedure.
The internal architecture of a shared memory is illustrated in Figure 6.7.

6.4.3 Communication Structure

The command and data bus constitute the central communication media of the bus-
based SoC architecture. Each bus collect the read/write requests from the correspond-
ing units acting as masters of each bus and handle them depending on their priority. In
order to perform this function, the buses need the information concerning the data to
be transmitted, the priority of the initiator, the source and target of the transmission
and, in case it is required, the source/destination address.

During the transmission, the bus status is set to BUS WAIT and, when the transfer
ends, the bus status is set back to BUS OK. The bus status only gets the state BUS ERROR

when a transfer has failed. An internal routine then determines the cause of the failure.

106 6.4 Modelling Approach

Command
FIFO

Control Unit

Shared Memory

Memory Command
Bus

Data
Bus

Figure 6.7: Internal Architecture of a Shared Memory

6.4.3.1 Command Bus

When an embedded processor of the platform attempts to perform a request to a
shared functional unit, it first has to send a command request to the selected target
unit through the command bus. Therefore, the embedded processors act as masters of
the command bus and the hardware blocks and shared memories act as slaves, as can
be seen in Figure 6.8.

to SDRAM

to SRAM
to HW−
blocks

.

.

.

to RFIFO

to arb_cb

to RISC−
processors

Figure 6.8: Command Bus

to SDRAM

to SRAM to HW−
blocks

.

.

.

to RFIFO

to arb_db

to RISC−
processors

Figure 6.9: Data Bus

6.4 Modelling Approach 107

6.4.3.2 Data Bus

The command requests are then stored in a receive FIFO inside the functional units
and served in the order of arrival. The processing of a command by a functional unit
implies a data transmission to/from the read/write transfer registers of the initiator
processor. Such data transmissions are then performed through the data bus, which is
shared by every functional unit. Contrary to the command bus, the hardware blocks
and shared memories act as masters of the data bus and the embedded processors with
their respective transfer registers as slaves. A scheme of the data bus is depicted in
Figure 6.9.

108 6.4 Modelling Approach

Chapter 7

Results and Evaluation

7.1 Chapter Introduction

In this Chapter, the procedure followed by the proposed performance estimation method-
ology is illustrated by means of a case study. The construction of the three models on
which the method is based, the Functional, Architectural and Communication model, is
explained step by step. This procedure is performed for several architecture–partition
alternatives. Subsequently, the results of the method concerning modelling effort, simu-
lation runtime and accuracy are extracted and analysed. At the end of the Chapter, the
method results are compared with the results obtained by other system performance
estimation techniques.

7.2 Case Study

As already mentioned in Chapter 2.4, the main application area of the present thesis
are VLSI networking architectures. Therefore, a packet processor inside a router in
a TCP/IP network is taken as a case study for illustrating the complete methodol-
ogy. Different architecture–partition alternatives are selected and the achieved perfor-
mance values are extracted and, later on, analysed. Moreover, in order to demonstrate
the gains concerning compilation and simulation runtime and to stress the accuracy
achieved by the proposed methodology, these metrics are compared with the results ob-
tained by simulating the cycle-accurate co-simulation platform presented in Chapter 6.
For this reason, the platform was conceived to cope with TCP/IP packet processing
functionalities.

110 7.2 Case Study

7.2.1 Packet Processor Functionalities

Hosts in a TCP/IP network are bound through routers. The routers determine the
path that the packets should follow in order to reach the destination address.

In general, a packet processor inside a linecard receives the data coming from the data
link layer and passes it to the network layer. Later on, the packet header corresponding
to the network layer is processed and the packet is sent to the next hop, i.e., the next
router in the path to the destination address. Packets reach the packet processor from
an external interface, the MAC (Medium Access Control) framer. They are processed
by the packet processor and stored again in the framer of the corresponding output
interface to be sent to the next router.

The main jobs of a packet processor are the following ([86]):

• Header parsing: Fields within the packet header have to be extracted because
they contain the information required to decide how the packet will be processed.
The parsing needs not be limited to the network layer header, but may also
comprise headers of higher OSI layers;

• Classification and Forwarding: A packet has to pass the following processing
stages to be classified and routed:

– Filtering: A certain number of rules assure that only authorised packets
pass through the following processing elements;

– Classification: Context information is assigned to a packet depending on
the header fields and according to a set of rules. Accounting and billing
facilities as well as QoS-aware packet handling are thus enabled;

– Next Hop Lookup: Using the destination address field within the packet
header, the outgoing link to the next hop is determined;

– Quality of Service (QoS) Differentiation: Traffic classes are processed with
different priorities;

– Accounting and billing: Traffic statistics are gathered for network engineer-
ing, for checking service level agreements and reservations as well as for
billing customers according to the current network load and their actual
traffic profile.

• Packet Modification: Certain fields within the packet header are modified (e.g.,
the TTL (Time To Live) is decremented, the new TOS (Type of Service) byte
extracted from the classification is inserted and the new CHK (header checksum)
is calculated).

7.2 Case Study 111

• Policing: Once a packet has been classified, its context information is available
and, with it, the packet flow to which the packet belongs. Service guarantees can
now be checked by verifying Service Level Agreements (SLAs) between customers
and the provider of a service for that flow;

• Queueing: After a packet has been admitted for a possible transmission, it must
be buffered in the system until it will be either chosen by the link scheduler for
transmission or be discarded in case of a congested link;

• Link Scheduling: It is a kind of arbiter that must decide which of the buffered
packets will be transferred next through the outgoing link of a networking node.

7.2.2 TCP/IP Packet Processing Data Flow

A subset of the TCP/IP packet functionalities inside the receive functions of a packet
processor is taken as a case study. The corresponding data flow is depicted in Figure
7.1. The functions to be implemented are restricted to the user plane functions and
comprise TCP/IP processing v.4 + DiffServ functionalities such as: packet recognition,
packet verification, checksum computation, mark and modification, packet classifica-
tion, policing and the implementation of the longest prefix match algorithm.

Transmit Receive
Input

Packet−
Processor

Verify_
IP−

header

Read_
RFIFO

Modify_
IP−

header

Classify_
TCP/IP−
packet

Policing_
TCP/IP−
packet

Lpm_
TCP/IP−
packet

Store_
SDRAM

stimuli_create

.dat

timer

timeoutstart_
timer

display

−−−−−−
−−−−−−

Figure 7.1: Case Study: Input Packet Processing

The packet is first picked up from the receive FIFO (RFIFO) within the interface unit
(read rfifo). Further on, the header length, the protocol version and the checksum are

112 7.3 Modelling of Architecture–Partition Alternatives

verified (verify packet). Subsequently, the packet is classified (classify packet).
Later, the modification of some fields takes place (modify packet), as for example the
decrement of the TTL (Time To Live) field and the subsequent new CHK (Checksum)
calculation. The policing algorithm is then performed (policing packet) and after
obtaining the next hop IP address (performing the LPM (Longest Prefix Match) algo-
rithm) (lpm packet), the packet is finally stored in the packet memory (store sdram).

7.3 Modelling of Architecture–Partition Alterna-

tives

This Section addresses the construction of the three models, Functional, Architec-
tural and Communication ASCSG, for the case study. The goal is to explore different
architecture–partition alternatives. For this purpose the Functional model is built up at
the beginning and remains unchanged when adding the different architecture–partition
configuration information of the alternatives to be tested. The construction of the Ar-
chitectural and Communication models is automated by means of a configuration file
that is fed with the information concerning the different alternatives to be explored.

The single functions are modelled as SystemC modules (the so-called computation
nodes) with their respective input and output ports and are stored in the library of
functions. The initial graph is then built up by collecting the selected computation
nodes from the library and linking them in the order defined by the specification. The
Functional model can comprise multiple instances of the initial graph.

The Functional ASCSG taken as a basis for the exploration is depicted in Figure
7.2.It models the parallel processing of two TCP/IP packets within a packet processor.
As already mentioned above, this Functional model then remains unchanged while
different architecture–partition alternatives are tested.

As examples of possible architecture–partition solutions, three different alternatives
are presented next:

• First Alternative: Towards the creation of the Architectural model for a first al-
ternative, every computation node of each packet processing flow, except the clas-
sify packet function, are mapped to two different processing units, the embedded
processors PE0 and PE1. The classify packet function of both packet processing
flows are mapped to another processing unit, the hardware block AC0, in order
to accelerate this costly function. This node thus becomes a shared computation
node. Finally, the rfifo and sdram functions of both packet processing flows are

7.3 Modelling of Architecture–Partition Alternatives 113

src[0]

verf[0]

mod[0]

class[0]

pol[0]

drop ?

lpm [0]

str[0]

sdram[0]

rfifo[0]

src[1]

verf[1]

mod[1]

class[1]

pol[1]

drop ?

lpm [1]

str[1]

sdram[1]

rfifo[1]

Figure 7.2: Case Study: Functional ASCSG

mapped to the shared interface unit and memory, respectively. These nodes thus
also become shared computation nodes.

With this mapping information, a generator creates the corresponding configura-
tion file for the Architectural model. For its generation, the corresponding execu-
tion time values are extracted from the Mapping Execution Times library (Table
5.1) and are further annotated inside the computation nodes. These execution
time values have been previously calculated using for it block level performance
estimation techniques.

Moreover, in order to avoid access conflicts when attempting to reach a shared
computation node, an arbitration mechanism, referred to as a shared element
mechanism (Shelj) as defined in Chapter 4, is automatically added. It is accessed

by the corresponding access nodes (Acci-j), which is interleaved between the com-

putation node which initiates the read/write request and the shared computation
node. This mechanism handles each request depending on the priority of the
processing unit to which the initiator computation node is mapped.

The definition of the communication architecture for the current case study de-
termines a command and a data bus as the communication media. Both the com-
mand and data bus are bound to the two embedded processors, to the hardware
block and to the interface unit and memory unit. The bandwidth and frequency
of both buses are provided as parameters to the communication media.

Each time a transfer between two computation nodes mapped to different process-

114 7.3 Modelling of Architecture–Partition Alternatives

test−bench

SDRAM

RFIFO

PE0 PE1

src[0]

verf[0]

mod[0]

class[0]

pol[0]

drop ?

lpm [0]

str[0]

sdram[0]

rfifo[0]

src[1]

verf[1]

mod[1]

class[1]

pol[1]

drop ?

lpm [1]

str[1]

sdram[1]

rfifo[1]
acc

cme

acc

cme

cme

acc

cme

acc

cme

acc

cme

acc

acc
cme

acc

cme

shel1

shel2

shel3

CBA1CBA2

CBA1CBA2

AC0

Figure 7.3: First Alternative: Two PEs and One AC

ing units takes place, two sequential external communication nodes (Cmei-j my)

have to be inserted, one mapped to the command bus and the other to the data
bus. In the first case, the embedded processors, PE0 and PE1, act as masters
sending a command request to the selected shared processing unit through the
command bus. In the second case, the shared processing units, AC0, RFIFO
and SDRAM, act as masters sending a read/write request to the initiator em-
bedded processor through the data bus. For performing such tasks, both the
embedded processors and the shared processing units access the corresponding
Command Bus Arbiter (CBAy). Each CBAy takes into account the priority of

the initiator of the transfer. With this information concerning the communica-
tion architecture, its parameters and the mapping of the communication nodes to
the corresponding communication medium, a generator creates the corresponding
configuration file for the Communication model.

The resulting Communication ASCSG for this architecture–partition alternative
with two embedded processors and one hardware block accelerating the classi-
fication (classify packet) function is depicted in Figure 7.3. For clarity, Figure

7.3 Modelling of Architecture–Partition Alternatives 115

RFIFO

AC0

d
at

a_
b

u
s

co
m

m
an

d
_

bu
s

arb_db

SRAM 0

arb_cb

PE0

SDRAM

PE1

Figure 7.4: Target Architecture First Alternative

7.4 illustrates the structure of the target architecture selected for this alterna-
tive. Last Figure also depicts the selected configuration of the cycle-accurate
co-simulation platform, whose simulation results will be compared to the results
delivered by the ASCSG.

• Second Alternative: By providing a new configuration information for the build-
ing of the Architectural and Communication ASCSG, a different architecture–
partition alternative for the Functional model described in Figure 7.2 can easily be
explored. In this case (Figure 7.5) the longest prefix match algorithm (lpm packet
function) for the calculation of the IP address of the next hop is mapped to a
second hardware block (AC1) instead of implementing it inside the embedded
processors. This single function is thus sped up. However, a communication
overhead is now added. Also for purposes of clarity, Figure 7.6 illustrates the
structure of the target architecture selected for this second alternative. Last
Figure also depicts the selected configuration of the cycle-accurate co-simulation
platform, whose simulation results will be compared to the results delivered by
the ASCSG.

• Third Alternative: Again, by providing new configuration information, a different
architecture–partition alternative can easily be explored. This third case makes
use of the multi-threading capability of one embedded RISC processors (PEn).
Two contexts within an embedded processor carry out the selected packet pro-
cessing functionalities in parallel, except for the classify packet function that is

116 7.3 Modelling of Architecture–Partition Alternatives

PE0 PE1

verf[0]

mod[0]

class[0]

pol[0]

drop ?

lpm [0]

str[0]

verf[1]

mod[1]

class[1]

pol[1]

drop ?

lpm [1]

str[1]

acc

cme

cme

acc

cme

acc

acc

cme

shel2

CBA1CBA2

CBA1CBA2

acc

cme

cme

acc

acc

cme

cme

acc

shel4

CBA1CBA2

... ...

......

AC0

AC1

Figure 7.5: Second Alternative: Two PEs and Two ACs

executed externally by a hardware accelerator. Each time a context performs
a read/write function from/to an external unit (e.g. RFIFO, Accelerator or
SDRAM), the thread is put to sleep and allows the other thread to run if it is
ready. Such a mechanism is controlled by the Context Event Arbiter (CEAn)
of the corresponding embedded processor. Once the corresponding external unit
notifies the related thread that the request is ready, the external unit signalises
(i.e., sends an event signal to the Context Event Arbiter) that the context is
ready to run. Nevertheless, it still has to wait until the current active context
is put to sleep. As can be seen in Figure 7.7, each time a context change or an
event signal takes place, an internal communication nodes (Cmii-j nt) has to be

inserted, which accesses the CEA of the embedded processor to which is mapped.

Combining the mapping of computation nodes to the different processing units of the
selected target architecture and, in the case of mapping to the embedded processors
(PE), to the threads (µthr) supported by each processor, many different architecture–
partition alternatives can be tested easily and rapidly. Moreover, the initial Functional
model can be enlarged to describe the parallel processing of more packets. The com-

7.4 Simulation Results 117

SRAM 1

RFIFO

AC0

d
at

a_
b

u
s

co
m

m
an

d
_

bu
s

arb_db arb_cb

PE0

SDRAM

PE1

AC0 SRAM 0

AC1

Figure 7.6: Target Architecture Second Alternative

binations show in Table 7.1 have been explored in accordance with the procedure pre-
sented above. The number of packets processed in parallel by each test is shown in the
first row. In order to get an overview of the order of magnitude, the successive rows
provide the number of access nodes/shared element mechanisms (acc/shel), external
communication nodes/Command Bus Arbiters (cme/cba) and internal communication
nodes/Context Event Arbiters (cmi/cea) to be inserted by the method based on the
ASCSG depending on the alternative to be tested.

7.4 Simulation Results

The simulation of the Communication ASCSG for the case study delivers the per-
formance values required for the evaluation of a concrete architecture–partition alter-
native. For understanding the results obtained, the simulation environment and the
predefinitions are introduced first.

7.4.1 Simulation Environment

For the functional validation of the system specification and the further evaluation of
the final Communication model, a test-bench is built around the graph. It is responsible
for feeding the corresponding model with stimuli and checking the results at the output.

118 7.4 Simulation Results

PE0−
thread0

verf[0]

mod[0]

class[0]

pol[0]

drop ?

lpm [0]

str[0]

verf[1]

mod[1]

class[1]

pol[1]

drop ?

lpm [1]

str[1]

acc

cme

cme

acc

cme

acc

acc

cme

shel2

CBA1CBA2

CBA1CBA2

... ...

......

cmi cmi

cmi cmi

cmi cmi

cmi cmi

PE0−
thread1

CEA1

CEA1

AC0

Figure 7.7: Third Alternative: One Multi-Threading PE and One AC

As can be seen in Figure 7.1, the test-bench comprises a module to generate the
TCP/IP packets (Transmit) and two modules to receive and visualise the outcoming
packets (Receive and Display). The generation module reads the corresponding field
values of each packet from a text file to which new packets can easily be added. Then
a timer is responsible for sending the generated packets to the output port of the
module, and therefore to the input packet processor, with a determined frequency. The
interarrival time between consecutive packets is parameterisable, which determines the
input throughput. Considering, for instance, a hypothetical 24-byte TCP/IP packet
(only the IP header and the two fields, SP (Source Port) and DP (Destination Port),
of the TCP header) and an interleaved time of 25 ns, the input throughput is then 915
Mbyte/s. At the output side, the Display module monitors the packets as they reach
the last function of the TCP/IP packet processing data flow. The arrival time for each
packet is recorded in order to be able to calculate the output throughput.

The same environment, as well as the stimuli and input throughput, are used for
the simulation of the cycle-accurate co-simulation platform. In this way, the values
obtained from both methods can be compared fairly afterwards.

7.4 Simulation Results 119

Table 7.1: Architecture–Partition Alternatives Explored

1 PE 2 PE 4 PE
1 µthr 2 µthr 4 µthr 2 µthr 4 µthr 2 µthr 4 µthr

num pack 1 2 4 4 8 8 16
acc/shel 2/2 4/2 8/2 8/2 16/2 16/2 32/2

no AC cme/cba 4/2 8/2 16/2 16/2 32/2 32/2 64/2
cmi/cea 2/1 4/1 8/1 8/2 16/2 16/4 32/4
acc/shel 4/3 8/3 16/3 16/3 32/3 32/3 64/3

AC class cme/cba 8/2 16/2 32/2 32/2 64/2 64/2 128/2
cmi/cea 4/1 8/1 16/1 16/2 32/2 32/4 64/4

AC class acc/shel 6/4 12/4 24/4 24/4 48/4 48/4 96/4
& cme/cba 12/2 24/2 48/2 48/2 96/2 96/2 192/2

AC lpm cmi/cea 6/1 12/1 24/1 24/2 48/2 48/4 96/4

7.4.2 Simulation Predefinitions

Before running the simulations, some parameters concerning the different components
of the target architecture as well as the values related to the block level performance
estimation have to be determined. As an example, the values shown in the following
tables are selected for the present case study.

Tables 7.2 and 7.3 show the values for the parameters concerning frequency of the
processing units and the frequency, bandwidth and maximum number of longwords
(32-bits) to be transmitted at once through each communication medium, the data
bus and the command bus.

Table 7.2: Parameter Processing Units

System component Frequency
RISC processors [PEn] 200 MHz

HW units [ACm] 200 MHz

Table 7.4 summarises the performance values of each system function mapped to the
processing units of the selected target architecture. The entries marked with an “X”
mean that such mapping is not feasible.

120 7.4 Simulation Results

Table 7.3: Parameter Communication Media

System component Frequency Bandwidth Max. num. longwords
Data bus 200 MHz 32 bits 6

Command bus 200 MHz 32 bits 1

Table 7.4: Values Block Level Performance Estimation

System function RISC processor HW unit
read rfifo 25 ns X

verify packet 1075 ns X
modify packet 750 ns X
classify packet 1150 ns 125 ns
policing packet 1275 ns 80 ns

lpm packet 1750 ns 100 ns
store sdram 25 ns X

7.4.3 Output Throughput

In the current case study, which comprises a subset of the TCP/IP packet functional-
ities inside the receive functions of a packet processor, the processing of each packet
ends with its storage in the packet memory (SDRAM). Therefore, for measuring the
output throughput achieved by a certain alternative, the arrival time of the incoming
packets in the SDRAM are recorded. Then the throughput is calculated at the end of
the selected simulation time.

Table 7.5 shows the output throughput for the different architecture–partition al-
ternatives which have been tested. The analysis of the results and the subsequent
decisions for modifications are then a task of the designer, who uses the methodology
to evaluate different possible implementations.

7.4.4 Performance Values

As already mentioned in previous Chapters, the simulation of the Communication
ASCSG delivers the values related to the dynamic behaviour of the system. The
evaluation of such values can be very helpful for the designer to find, for instance,
where the bottlenecks of a certain alternative are found.

7.4 Simulation Results 121

Table 7.5: Output Throughput (packets/s)

1 PE 2 PE 4 PE
1 µthr 2 µthr 4 µthr 2 µthr 4 µthr 2 µthr 4 µµthr

none 147625 151859 150633 302022 299482 603669 598519
AC class 154704 168110 165141 333516 330330 664999 662367

lpm 184191 211903 203740 423355 409741 848812 823715

The proposed methodology is prepared to extract the following performance values
from the simulation of the Communication ASCSG: processing time; delay in accessing
each shared communication medium; arbitration delay; delay in accessing each shared
processing unit; load of each shared processing unit; delay in accessing the process unit
by a thread; and the context switch delay. For the extraction of further performance
values, the methodology can be easily adapted.

In order to depict these performance values, an architecture–partition alternative is
selected from the ones presented in Table 7.1. As an example, the alternative composed
of four embedded processors, with hardware support of four threads each, and two
hardware accelerators for speeding up the classification and the calculation of the next
hop functions is chosen.

The proposed methodology extracts the above-mentioned performance values and
delivers them to the designer. Therefore, the values for the selected alternative are
then defined and illustrated as an output of the methodology, but are not analysed.

First of all, the queue of requests for both the command and data bus along with the
time are depicted in Figures 7.8 and 7.9. The Command Bus Arbiter of the command
and data bus stores the requests and serves them when the addressed communication
medium becomes free.

The requests waiting to access the accelerators, which are shared by all embedded
processors, deliver the trace represented in Figures 7.10 and 7.11. Such requests are
stored and handled by the mechanism implemented in the corresponding shared element
mechanism.

Within a multi-threading embedded processor, the number of contexts which are
ready to run at a certain point in time, but that they have to wait until the current
active context is put to sleep, can be registered. Until they are served, these requests
are buffered in the Context Event Arbiter of the processor, which is responsible for
deciding the next context to run. Figures 7.12 and 7.13 show these values for the first
and second embedded processor.

122 7.4 Simulation Results

0

1

2

3

4

5

6

time (ns)

re
q

u
e

s
ts

150000

Figure 7.8: Queue Command Bus

0

1

2

3

time (ns)

re
q

u
e

s
ts

150000

Figure 7.9: Queue Data Bus

0

1

2

3

4

time (ns)

re
q

u
e

s
ts

150000

Figure 7.10: Queue Classify Accelera-
tor

0

1

2

3

4

5

time (ns)

re
q

u
e

s
ts

150000

Figure 7.11: Queue LPM Accelerator

The read/write requests to/from a certain communication medium cannot always
be handled immediately because the target communication medium is busy at that
moment. Moreover, the access to a communication medium is managed by its corre-
sponding Command Bus Arbiter, which takes into account the priority of the initiator
of the request. In the present example, the priorities decrease with the increase of the
embedded processor and thread number, respectively (i.e., the first thread of the first
processor owns the highest priority and the fourth thread of the fourth processor the
lowest). The delays when attempting to access the command bus for writting, along
with the simulation time, behave as shown in Figure 7.14 for the first thread of each
embedded processor and in Figure 7.15 for each thread of the first embedded processor.
The delays when attempting to access the data bus for writting are depicted in Figures
7.16 and 7.17.

In the same way, the read/write requests to/from the shared units (accelerators and

7.4 Simulation Results 123

0

1

15000

2

3

4

5

time (ns)

re
q

u
e

s
ts

Figure 7.12: Queue Events PE 0

0

1

15000

2

3

4

5

time (ns)

re
q

u
e

st
s

Figure 7.13: Queue Events PE 1

0

20

40

60

80

100

120

0 20000 40000 60000 80000 100000 120000 140000

time (ns)

d
e

la
y

(n
s

) PE0_µthr0

PE1_µthr0

PE2_µthr0

PE3_µthr0

Figure 7.14: Delay Write Request
Command Bus; PEs

0

10

20

30

40

50

60

70

0 20000 40000 60000 80000 100000 120000 140000

time (ns)

d
e

la
y

(n
s

)

PE0_µthr0

PE0_µthr1

PE0_µthr2

PE0_µthr3

Figure 7.15: Delay Write Request
Command Bus; Threads

memory units) exhibit a delay when trying to access the target unit while it is busy.
The variations on the write delay depending on the point in time the request arrives
is depicted in Figures 7.18 and 7.19 for the shared hardware unit accelerating the
classification function, and in Figures 7.20 and 7.21 for the selected hardware unit to
speed-up the calculation of the next hop.

Within a multi-threading embedded processor, only one thread of execution gets the
control of the processing unit at a time. This means that the other threads have to
wait until the current thread is put to sleep. This wait time is depicted in Figures 7.22
and 7.23 for every thread within the first and second processors, respectively.

124 7.5 Simulation Speed of the ASCSG

0

2

4

6

8

10

12

14

0 20000 40000 60000 80000 100000 120000 140000

time (ns)

d
e

la
y

(n
s

) PE0_µthr0

PE1_µthr0

PE2_µthr0

PE3_µthr0

Figure 7.16: Delay Write Request Data
Bus; PEs

6,5

7

7,5

8

8,5

0 20000 40000 60000 80000 100000 120000 140000

time (ns)

d
e

la
y

(n
s

)

PE0_µthr0

PE0_µthr1

PE0_µthr2

PE0_µthr3

Figure 7.17: Delay Write Request Data
Bus; Threads

0

100

200

300

400

500

600

700

800

900

0 20000 40000 60000 80000 100000 120000 140000

time (ns)

d
e

la
y

(n
s

) PE0_µ thr0

PE1_µ thr0

PE2_µ thr0

PE3_µ thr0

Figure 7.18: Delay Write Request Clas-
sify; PEs

0

1

2

3

4

5

6

7

8

0 20000 40000 60000 80000 100000 120000 140000

time (ns)

d
e

la
y

(n
s

) PE0_µthr0

PE0_µthr1

PE0_µthr2

PE0_µthr3

Figure 7.19: Delay Write Request Clas-
sify; Threads

7.5 Simulation Speed of the ASCSG

Once the Communication ASCSG for the different architecture–partition alternatives
explored has been built, the corresponding SystemC file (main communication.cpp)
for each alternative is compiled and linked with the SystemC core and specific libraries,
and the related executable file is created. The execution of such a file corresponds to
the simulation of the corresponding model.

The simulations have been carried out on a notebook with a mobile AMD Athlon
XP 2000+ processor (frequency 1667 MHz) under the Linux operating system.

The second column of Table 7.6 shows the values concerning the elaboration plus
simulation time for each architecture–partition alternative explored by simulating the

7.5 Simulation Speed of the ASCSG 125

0

100

200

300

400

500

600

700

800

900

0 20000 40000 60000 80000 100000 120000 140000

time (ns)

d
e

la
y

(n
s

) PE0_µthr0

PE1_µthr0

PE2_µthr0

PE3_µthr0

Figure 7.20: Delay Write Request
LPM; PEs

0

50

100

150

200

250

300

0 20000 40000 60000 80000 100000 120000 140000

time (ns)

d
e

la
y

(n
s

)

PE0_µthr0

PE0_µthr1

PE0_µthr2

PE0_µthr3

Figure 7.21: Delay Write Request
LPM; Threads

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

time (ns)

d
e

la
y

(n
s

) µthr0

µthr1

µthr2

µthr3

Figure 7.22: Delay Wait Event PE 0

0

1000

2000

3000

4000

5000

6000

7000

8000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

time (ns)

d
e

la
y

(n
s

) µtrh0

µthr1

µthr2

µthr3

Figure 7.23: Delay Wait Event PE 1

corresponding Communication ASCSG. Furthermore, the same architecture–partition
alternatives have been tested using the cycle-accurate co-simulation platform presented
in Chapter 6. The elaboration plus simulation time achieved by the cycle-accurate
simulations are presented in the third column. Both models have been stimulated with
the same input throughput of 915 Mbyte/s during 200,000 ns.

Lastly, the fourth column shows the decrease of simulation time achieved by the
proposed method based on the ASCSG, taking as a basis the results of the cycle-
accurate model. The equation used for the calculation of the gain in terms of simulation
time is given by Formula 7.1.

Gain =
T sim[Cycleacc.]− T sim[ASCSG]

T sim[Cycleacc.]
∗ 100 (7.1)

126 7.5 Simulation Speed of the ASCSG

Table 7.6: Simulation Speed

ASCSG (sec) Cycle acc.(sec) Gain (%)
1 PE 2 µthr

0 AC 1.6 5.12 68.75
1 AC 0.93 2.42 61.57
2 AC 5.62 15.71 64.23

4 µthr
0 AC 3.02 9.36 67.74
1 AC 1.73 5.03 65.61
2 AC 8.92 28.8 69.03

2 PE 2 µthr
0 AC 2.93 8.34 64.87
1 AC 1.76 7.91 77.75
2 AC 8.35 27.05 69.13

4 µthr
0 AC 6.03 17.92 66.35
1 AC 3.66 12.87 71.56
2 AC 25.19 68.96 63.47

4 PE 2 µthr
0 AC 6.05 21.71 72.13
1 AC 3.7 10.65 65.26
2 AC 24.03 77.39 68.95

4 µthr
0 AC 14.13 40.09 64.75
1 AC 14.01 43.63 67.89
2 AC 69.62 239.63 70.95

The results demonstrate an increase of the simulation speed around 70% when ap-
plying the method based on the ASCSG as compared to the cycle-accurate model.
Moreover, the compilation time of the cycle-accurate model exceeds the compilation
time of the ASCSG model by an order of magnitude of 20.

These results confirm the expectations concerning the acceleration of the simula-
tion when increasing the level of abstraction of the modelling. For complex systems,
this reduction of compilation and simulation time will allow the exploration of more
architecture–partition alternatives than when a model is applied at a lower level of
abstraction. Nevertheless, for a fast exploration procedure, is the modelling effort
required prior the simulation a more decisive factor (see Section 7.7).

7.6 Accuracy of the ASCSG 127

7.6 Accuracy of the ASCSG

In order to determine the accuracy of the results delivered by the proposed methodol-
ogy, the output throughput is taken as a performance value for performing the com-
parison with the cycle-accurate model. The simulation of the Communication ASCSG
is compared with the output throughput achieved by the cycle-accurate co-simulation
platform for the different architecture–partition alternatives explored. Both models
have been stimulated with the same input throughput of 915 Mbyte/s during 200,000
ns.

Table 7.7 shows the output throughput achieved by both models (the second column
displays the results achieved by the ASCSG and the third shows the results delivered
by the cycle-accurate model) together with the deviation (fourth column) introduced
by the ASCSG, using the cycle-accurate results as a basis for the comparison. The
equation used for the calculation of the deviation is given by Formula 7.2.

Deviation =
Output throughput[Cycleacc.]−Output throughput[ASCSG]

Output throughput[Cycleacc.]
∗ 100

(7.2)

The observation of the fourth column of the table indicates a low deviation of around
1.5% overestimation for the performance results delivered by the ASCSG. Thus, it can
be concluded that the method based on the ASCSG delivers highly accurate results.
This makes the proposed methodology reliable to be used for fair performance estima-
tions early in the design. This overestimation delivered by the ASCSG can be explained
considering the non-deterministic behaviour of the ISS (Instruction Set Simulator of the
cycle-accurate platform) with respect to external events due to its five-stage pipeline.
On the contrary, the ASCSG is modelled to react immediately to external events.

This achievement has been possible by considering the internal communication of the
system and by providing a mechanism for solving conflicts when accessing the shared
communication media. Moreover, the consideration of the hardware multi-threading
support by the embedded processors has led to accurate results by providing an arbiter
mechanism that controls the context switches within such processors.

7.7 Modelling Effort of the ASCSG

When studying and comparing the speed by analysing different architecture–partition
alternatives, more must be taken into consideration than the simulation time alone.

128 7.7 Modelling Effort of the ASCSG

Table 7.7: Simulation Accuracy

ASCSG (pck/sec) Cycle acc.(pck/sec) Deviation (%)
1 PE 2 µthr

0 AC 152,880 151,859 -0.67
1 AC 168,528 168,110 -0.25
2 AC 212,976 211,903 -0.51

4 µthr
0 AC 152,659 150,633 -1.34
1 AC 166,649 165,141 -0.91
2 AC 209,147 203,740 -2.65

2 PE 2 µthr
0 AC 304,080 302,022 -0.68
1 AC 335,922 333,516 -0.72
2 AC 425,547 423,355 -0.52

4 µthr
0 AC 301,753 299,482 -0.76
1 AC 332,504 330,330 -0.66
2 AC 419,811 409,741 -2.46

4 PE 2 µthr
0 AC 607,913 603,669 -0.70
1 AC 668,384 664,999 -0.51
2 AC 853,415 848,812 -0.54

4 µthr
0 AC 603,068 598,519 -0.76
1 AC 665,573 662,367 -0.48
2 AC 836,121 823,715 -1.51

More importantly, the modelling effort required prior to the simulation also has to
be taken into account. When applying a structural model of the system under study
for design space exploration, the analysis of different architecture–partition alternatives
demands, in most cases but not always, a re-building of the structure of the model. The
modelling effort associated to such re-building depends on the type of action required.
If only an addition of an existing block is performed, the effort is generally not very
high. However, if a new block has to be modelled and linked to the system architecture,
the modelling and adjustment can demand considerable effort. Therefore, it can be
concluded that the effort and, consequently, time needed for such re-building makes
the exploration of many different alternatives nearly infeasible in many cases.

7.7 Modelling Effort of the ASCSG 129

The proposed methodology offers a solution to this problem by applying a model
based on a process graph that remains unchanged during the exploration of different
architecture–partition alternatives. Once the functional specification, the architec-
ture structure and resources, and the communication media are defined, the proposed
methodology offers a low modelling effort when testing different partition alternatives.
The configuration information is then provided for each alternative to be tested. Fig-
ure 7.24 depicts the few necessary parameters that are comprised in the configuration
information for each alternative. First of all, the Architectural model requires the new
mapping of functions onto the available processing units and the scheduling informa-
tion. Secondly, the Communication model needs the new mapping of the external
communication transfers onto the selected communication media and of the internal
communication transfers to the corresponding multi-threading embedded processors.
Following this procedure, many alternatives can be explored by providing only the
corresponding configuration information.

Functional
Model

(I)

Architectural
Model

(II)

Communication
Model

(III)

Configuration Information:

* Mapping
− Functions
− Communication

* Scheduling

Process Graph

Perf. Est. Model

* System−Level Performance Estimation

Partitioning

Specification
Target

Architecture
1 X

Number of Alternatives
X

Automatic

Figure 7.24: Modelling Effort

130 7.8 Comparison with Other Performance Estimation Methods

7.8 Comparison with Other Performance Estima-

tion Methods

Different approaches towards the estimation of the performance achieved by a certain
architecture–partition alternative can be found in the literature (see Chapter 2.3). They
address the problem at different levels of abstraction and they use different techniques
to solve it, generally reaching a compromise among different parameters, as for example
the modelling effort, the exploration time and the accuracy of the results.

The methodology proposed in this thesis covers some of the weaknesses of the existing
approaches up to date. In particular, the new method based on the Annotated SystemC
Conditional Synchronisation Graph (ASCSG) addresses the problem concerning the re-
building effort, i.e., the modelling effort necessary each time a new partition alternative
is to be tested. This is a decisive factor if many alternatives have to be explored.

Three representative performance estimation methods at system level have been
selected and a comparative study, together with the proposed methodology, has been
performed. The results can be seen in Table 7.8. These three selected approaches
address different techniques to deliver the performance of the system under study.

Next, the main advantages and disadvantages of each method are determined and,
later on, they are compared with the enhancements of the new methodology based on
the ASCSG.

The performance analysis method proposed by K. Lahiri (ECE Department, Univer-
sity of California, San Diego) in [66] constitutes a hybrid trace-based technique only
suitable for the design of on-chip communication architectures. During the partitioning
decision, the communication architecture is not taken into account and, moreover, the
partitioning of the functionalities remains unchanged when exploring the communica-
tion structure. This approach achieves an acceptable accuracy (around 4%). However,
a high modelling effort is required for the first phase.

The main goal of the approach suggested by A. Baghdadi (TIMA Laboratories,
Grenoble) ([79]) is the achievement of a fast architecture exploration loop. It leads
to a trade-off between speed and accuracy, where a variable deviation of around 10%
makes the results fairly unreliable.

Third, the approach proposed by L. Thiele (ETH Zurich) in [69] consists of an
analytical procedure for the estimation of performance achieved by packet processors.
This allows a fast exploration of several alternatives with a very low re-building effort,
but the results highly differ from a real implementation. For this reason, further
estimations at lower levels of abstraction have to be performed. Moreover, the results

7.8 Comparison with Other Performance Estimation Methods 131

Table 7.8: Comparison Performance Estimation Approaches

K. Lahiri ([66]) A. Baghdadi ([79]) L. Thiele ([69]) ASCSG
Classification Trace-based Sim.-based Analytical Sim.-based

and static
Scope Selection Fast Selection Fast

communication architecture architecture reconfigurable
architecture exploration of packet system perf.

loop processors estimation
Level of RTL and RTL and System System

abstraction System System

Language 1stph.: Esterel SDL C/C++ SystemC
2ndph.: C/C++

HW–SW POLIS & MUSIC — —
co-simulation PTOLEMY

Modelling 1stph.: high RTL: high low low
effort 2ndph.: very low Explor.: low

Accuracy around 4% around 10% low around 1.5%
Simulation 1stph.: long RTL: very long medium short

time 2ndph.: very short Explor.: short Linear.: short

lose accuracy when the necessary curves (arrival curves for describing packet rates and
service curves for describing bounds on the computation capability of the resources)
have to be linearised for reaching a faster simulation.

The proposed method delivers fast simulations comparable to the speed of the second
phase of Lahiri’s technique and to the speed of the exploration loop of Baghdadi’s
approach. At the same time, the accuracy of the ASCSG results is noticeably higher
than the ones delivered by Thiele and by Baghdadi. Even more important when the
number of alternatives to be tested is high is the modelling effort required prior to
the simulation. By applying the ASCSG, the modelling effort is comparable to the
low effort required by the procedure from Thiele. Lastly, from the point of view of
the applicability, the spectrum covered by the ASCSG is wider than the spectrum
of Lahiri (only applicable to select the on-chip communication architecture) and of
Thiele (intended for the architecture selection of packet processors). In principle, the
ASCSG is applicable to every control-dominated system with the only restriction of
not containing infinite loops in the initial functional specification.

132 7.8 Comparison with Other Performance Estimation Methods

In summary, it can be said that the new methodology offers the advantages concern-
ing modelling effort, simulation time and accuracy of the results that are individually
provided by the existing techniques. Moreover, it emphasises the problem concern-
ing the rebuilding effort, i.e., the modelling effort necessary each time a new partition
alternative is to be tested.

Chapter 8

Summary and Conclusions

The increasing size, speed and complexity of the latest designs makes that the classical
hardware–software co-design procedures do no longer meet the design requirements
posed by today’s complex systems. A higher level of abstraction than RTL is needed.
At system level, the designer has more freedom to explore the trade-offs and detect the
bottlenecks. This would be very costly at lower levels of abstraction.

The challenges introduced by the design space exploration of complex systems pass
through the exploration of a large number of architecture–partition alternatives. This
challenge requires both a fast performance estimation methodology with a low mod-
elling effort and an exploration strategy for narrowing down the possible solutions.
This will allow the designer to cope with the large number of alternatives and find the
one that optimally meets the requirements.

In general, the estimation of the performance achieved by a certain architecture–
partition alternative involves two steps: the modelling of the specification and the
architecture; and the evaluation of the performance. Concerning the first step, the
system functionalities and the components which make up the architecture can be
represented by applying some formal representation, such as deterministic graphs and
analytical models, or by building up a structural model of the target architecture and
mapping the functionalities onto the architecture. This last technique delivers a precise
estimation, but, most of the times, the time and effort it takes to try a new alternative is
considerable. On the other hand, describing the functionalities in terms of a graph and
adding the relevant information of the target architecture to the graph, the simulation
time and effort towards a re-partitioning is less costly and consequently more partition
alternatives can be simulated and evaluated. After choosing a partitioning that meets
the performance constraints, the way towards synthesis (back-end) goes through a
structural model of the target architecture. This step is costly in terms of design,

134

but it now has to be done only once. The proposed methodology addresses this last
approach.

In this thesis, a novel methodology for the estimation of the performance of System-
on-Chip solutions has been presented. An Annotated SystemC Conditional Synchroni-
sation Graph (ASCSG) is built up for this purpose. This graph comprises the functional
specification of the system and is further annotated with information concerning the
target architecture and the selected partitioning of the functionalities onto the avail-
able resources. Furthermore, the required mechanisms to solve resource contentions are
added to the graph. The simulation of this graph covers the dynamic behaviour of the
system and delivers its performance estimation. It is particularly significant that the
modelling effort when applying the proposed method is considerably lower than when
a structural model of the target architecture is built up at a lower level of abstraction.
At the same time, the new methodology speeds up the simulation and enhances the
accuracy of the results of existing approaches. These characteristics allow a fast and
easy exploration of several alternatives.

The implementation of the method is based on the system level language SystemC.
It is noteworthy that a novel usage of this language has been applied for the description
and further annotation of the ASCSG. Existing approaches have applied SystemC to
describe the system functionalities and the target architecture in a structural way.
SystemC characteristics such as the modelling of time, reactivity and concurrency, and
its help in evaluating resource contentions, make this language especially suitable for
the implementation of the methodology.

The proposed method is oriented towards supporting the design of multi-processing,
multi-threading architectures for networking applications. The new challenges with
regard to speed (hardware implementation) and flexibility (software implementation)
pursued by the most recent networking architectures introduces in their design a sce-
nario of multiple alternatives. In order to find the best compromise between hardware
and software, the exploration of many architecture–partition alternatives is required.
Moreover, from the point of view of the user of such multi-processing, multi-threading
architectures, the methodology also plays an important role. In this case, the flexibil-
ity in terms of mapping of the functions onto the fixed processing units and threads
opens a large scenario of alternatives. The decision concerning the optimal mapping
which meets the requirements is facilitated if a model of the system at a high-level of
abstraction is provided.

The application of the proposed methodology has been illustrated by means of a
case study from the networking world. Different architecture–partition alternatives
have been explored and the results have been shown. The main criteria selected for
the evaluation of the methodology have been: the modelling effort required prior the

135

simulation when exploring a new alternative; the duration of the simulation for each
alternative; and the accuracy of the performance results obtained. Together, these three
criteria are the basis for a fast, reconfigurable and accurate performance estimation
methodology.

Concerning the modelling effort, the proposed methodology based on the ASCSG
requires a low re-building effort when a new partition alternative is to be tested. It
only requires the new configuration information concerning mapping and scheduling
for generating the executable model, whose simulation delivers the performance values.

For the calculation of the other two criteria, the executable models for the alter-
natives tested have been run and the simulation time and output throughput have
been extracted. As a basis for the comparison, the results of cycle-accurate platform
have been used, where both metrics have also been measured. The analysis of the
results demonstrates a considerable reduction of simulation time when applying the
method based on the ASCSG (around 70%), whereas the accuracy remains within an
acceptable tolerance (around 1.5% overestimation).

Next, the restrictions encountered during the development of the proposed method-
ology are summarised and some ideas for extending them are given. They can be the
subject of future work.

First, the design of VLSI networking architectures has been selected as the main ap-
plication scenario. Nevertheless, further control-dominated application scenarios with
data and control dependencies can be, in principle, explored by applying the proposed
method. A restriction to this generalisation is encountered in application scenarios
whose specifications contain infinite loops. For such cases, a graph-based represen-
tation able to capture both data and control dependencies and mainly intended for
handling loops, could be used as a basis for the development of a similar methodology.

The inter-components communication architecture has been restricted to point-to-
point and bus-based System-on-Chip architectures. The extension of the methodology
to cope with other kinds of on-chip communication structures, such as an on-chip
crossbar switch ([107]), can be considered in the future.

A third aspect that has been left open is the extension of the methodology to cover
other scheduling algorithms besides the ASAP (As Soon As Possible) algorithm. Ei-
ther a dynamic or a static scheduling algorithm could be implemented depending on
the characteristics of the application scenario. A kind of control unit or an RTOS
(Real Time Operating System) constitute two possible realisations for implementing
the selected scheduling algorithm.

136

Note that the integration of the new method in a design environment capable of
discriminating among partition alternatives depending on their performance has not
been implemented yet. Therefore, a further extension of this thesis would be the
integration of the method inside a design space exploration environment, where the
new alternatives to be tested are automatically chosen.

After summarising the most important issues covered in this thesis, it can be con-
cluded that the proposed methodology solves the shortcomings concerning modelling
effort, simulation time and accuracy of the results, which are individually present in
existing approaches. Especially significant is that the new methodology offers a low re-
building effort before testing new architecture–partition alternatives, a fast simulation
runtime and an automation of the procedure. Moreover, the accuracy of the perfor-
mance results is maintained within an acceptable tolerance thanks to the consideration
of the internal communication of the system.

Bibliography

[1] Semiconductor Industry Association (SIA) home page,
http://www.semichips.org/home.cfm.

[2] International Technology Roadmap for Semiconductors (ITRS) home page,
http://public.itrs.net.

[3] J.Plantin, E.Stoy, Aspects on System-Level Design, Proc. 7th International Work-
shop on HW/SW Codesign (CODES/CASHE’99), Rome, Italy, May 1999.

[4] B.Batley, R.Klein, S.Leef, Hardware/Software Co-Simulation Strategies for the
Future, Menthor Graphics Corporation. White Paper

[5] P.Alexander, P.Flake, B.Bailey, C.Eisner, W.Rosenstiel, M.Fujita, Who Cares
About System Verification?, Panel Session, Forum on Specification and Design
Languages (FDL’02), Marseille, France, September 2002.

[6] J.Gerlach, W.Rosenstiel, System Level Design Using the SystemC Modeling Plat-
form, Proc. Workshop on System Design Automation (SDA’01), Dresden, Germany,
March 2000.

[7] A.Gerstlauer, R.Dömer, J.Peng, D.J.Gajski, System Design: A Practical Guide
with SpecC, Kluwer Academic Publishers, 2001.

[8] M.Jersak, D.Ziegenbein, F.Wolf, K.Richter, R.Ernst, Embedded System Design
Using the SPI Workbench, Proc. Forum on Specification and Design Languages
(FDL’00), Tübingen, Germany, September 2000.

[9] N.Sherwani, Algorithms for VLSI Physical Design Automation, Kluwer Academic
Publishers, 1993.

[10] ACCELLERA home page, http://www.accelera.org.

[11] Rosetta home page, http://www.sldl.org.

138 BIBLIOGRAPHY

[12] T.Grötker, S.Liao, G.Martin, S.Swan, System Design with SystemC, Kluwer
Academic Publishers, 2002.

[13] Electronic Design Automation home page, http://www.edaltd.co.uk.

[14] CoCentric SystemC Compiler home page, http://www.synopsys.com/products/co-
centric systemC/cocentric systemC ds.html.

[15] Forte Design Systems home page, http://www.forteds.com.

[16] ODETTE home page, http://odette.offis.de.

[17] SystemC-plus home page, http://odette.offis.de/systemc-plus/systemc-plus.php.

[18] SpecC, http://www.ics.uci.edu/ specc/index.html.

[19] Daniel D.Gajski, Jianwen Zhu, SpecC: Specification Language and Methodology,
Kluwer Academic Publishers, 2000.

[20] SDL home page, http://www.sdl-forum.org.

[21] Esterel home page, http://www-sop.inria.fr/meije/esterel/esterel-eng.html.

[22] UML home page, http://www.omg.org/uml.

[23] SystemVerilog home page, http://www.eda.org/sv-ec.

[24] G.DeMicheli, M.Sami Hardware/Software Co-Design, Kluwer Academic Publish-
ers, 1996.

[25] R.Niemann, Hardware/Software Co-Design for Data Flow Dominated Embedded
Systems, Kluwer Academic Publishers, 1998.

[26] PTOLEMY home page, http://ptolemy.eecs.berkeley.edu.

[27] R.Camposano, J.Wilberg, Embedded System Design, Design Automation for Em-
bedded Systems, vol.1, no.1-2, pp.5-50, 1996.

[28] COSYMA home page,
http://www.ida.ing.tu-bs.de/research/projects/home.e.shtml

[29] R.K.Gupta, G.De Micheli, A Co-Synthesis Approach to Embedded System Design
Automation, Design Automation for Embedded Systems, vol.1, no.1-2, pp.69-120,
1996.

[30] POLIS home page, http://www-cad.eecs.berkeley.edu/ polis.

BIBLIOGRAPHY 139

[31] CHINOOK home page, http://www.cs.washington.edu/research/chinook.

[32] Cadence home page, http://www.cadence.com.

[33] Cadence Virtual Component Co-Design (VCC) home page,
http://www.cadence.com/products/vcc.html.

[34] Summit home page, http://www.sd.com.

[35] P.Bjureus, A.Jantsch, Performance Analysis with Confidence Intervals for Embed-

ded Software Processes, Proc. 14th International Symposium on System Synthesis
(ISSS’01), Montreal, Quebec, Canada, October 2001.

[36] J.K.Suzuki, A.Sangiovanni-Vincentelli, Efficient Software Performance Estima-

tion Methods for Hardware/Software Codesign, Proc. 33rd Design Automation
Conference (DAC’96), Las Vegas, USA, June 1996.

[37] J.R.Bammi, E.Harcourt, W.Krujitzer, L.Lavagno, M.T.Lazarescu, Software Per-

formance Estimation Strategies in a System-Level Design Tool, Proc. 8th Interna-
tional Workshop on HW/SW Codesign (CODES’00), San Diego, USA, May 2000.

[38] J.Liu, M.Lajolo, A.Sangiovanni-Vincentelli, Software Timing Analysis Using

HW/SW Cosimulation and Instruction Set Simulator, Proc. 6th International
Workshop on HW/SW Codesign (CODES/CASHE’98), Seattle, USA, 1998.

[39] M.Lajolo, M.Lazarescu, A.Sangiovanni-Vincentelli, A Compilation-Based Soft-

ware Estimation Scheme for Hardware/Software Co-Simulation, Proc. 7th Inter-
national Workshop on HW/SW Codesign (CODES/CASHE’99), Rome, Italy, May
1999.

[40] J.Gong, D.Gajski, S.Narayan, Software Estimation from Executable Specifications,
Technical Report ICS-93-5. March 1993.

[41] S.Malik, M.Martonosi, Static Timing Analysis of Embedded Software, Proc. 34th

Design Automation Conference (DAC’97), Anaheim, USA, June 1997.

[42] J.Henkel, R.Ernst, High-Level Estimation Techniques for Usage in Hard-
ware/Software Co-Design, Proc. Asia South Pacific - Design Automation Con-
ference (ASP-DAC’98), Yokohama, Japan, February 1998.

[43] S.Narayan, D.D.Gajski, Area and Performance Estimation from System-Level
Specifications, University of California Irvine, Dept. of Information and Computer
Science, Technical Report ICS-92-16. 1992.

140 BIBLIOGRAPHY

[44] F.Vahid, D.Gajski Incremental Hardware Estimation During Hardware/Software
Functional Partitioning, IEEE Transactions on VLSI Systems, vol.3, no.3,
p.459.464, September 1995.

[45] J.Henkel, R.Ernst, A Path-Based Technique for Estimating Hardware Runtime in

HW/SW-CoSynthesis, Proc. IEEE/ACM 8th International Symposium on System
Synthesis (ISSS’95), Cannes, France, September 1995.

[46] J.Henkel, Automatisierte Hardware/Software Partitionierung im Entwurf integri-
erter Echtzeitsysteme, Ph. Dissertation submitted to the Technische Universität
Carolo-Wilhelmina zu Braunschweig, Germany, 1996.

[47] P.V.Knudsen, J.Madsen, Integrating Communication Protocol Selection with

Hardware/Software Codesign, Proc. IEEE/ACM 8th International Symposium on
System Synthesis (ISSS’95), Cannes, France, September 1995.

[48] K.Hines, G.Borrielo, Optimizing Communication in Embedded System

Co-Simulation, Proc. 5th International Workshop on HW/SW Codesign
(CODES/CASHE’97), Braunschweig, Germany, 1997.

[49] K.Hines, G.Borrielo, Dynamic Communication Models in Embedded System Co-

Simulation, Proc. 34th Design Automation Conference (DAC’97), Anaheim, USA,
1997.

[50] J.Davis, C.Hylands, J.Janneck, E.A.Lee, J.Liu, X.Liu, S.Neuendorffer, S.Sachs,
M.Stewart, K.Vissers, P.Whitaker, Y.Xiong, Overview of the Ptolemy Project,
Technical Memorandum UCB/ERL M01/11. March 2001.

[51] B.D.Theelen, J.P.M. Voeten, L.J.van Bokhoven, G.G.de Jong, A.M.M.Niemegeers,
P.H.A.van der Putten, M.P.J. Stevens, J.C.M.Baeten, System-Level Modelling and

Performance Analysis, Proc. STW/IEEE 1st PROGRESS Workshop, Katzow,
Germany, September 2000.

[52] J.A. Rowson, A.Sangiovanni-Vincentelli, Interface-Based Design, Proc. 34th De-
sign Automation Conference (DAC’97), Anaheim, USA, 1997.

[53] C.P.Joshi, A New Performance Evaluation Approach for System Level Design

Space Exploration, Proc. 15th International Symposium on System Synthesis
(ISSS’02), Kyoto, Japan, 2002.

[54] M.Gasteier, M.Glesner, Bus-Based Communication Synthesis on System Level,
ACM Transactions on Design Automation of Electronic Systems, pp. 1-11, January
1999.

BIBLIOGRAPHY 141

[55] S.Dey, S.Bommu, Performance Analysis of a System of Communicating Processes,
Proc. IEEE/ACM International Conference on Computer Aided Design (ICCAD
97), San Jose, USA, November 1997.

[56] P.V.Knudsen, J.Madsen, Graph-Based Communication Analysis for Hard-

ware/Software Codesign, Proc. 7th International Workshop on HW/SW Codesign
(CODES/CASHE’99), Rome, Italy, 1999.

[57] P.Pop, P.Eles, Z.Peng, Performance Estimation for Embedded Systems with Data

and Control Dependencies, Proc. 8th International Workshop on HW/SW Codesign
(CODES’00), San Diego, USA, May 2000.

[58] P.Eles, A.Doboli, P.Pop, Z.Peng, Scheduling with Bus Access Optimization for
Distributed Embedded Systems, IEEE Transactions on VLSI Systems, vol.8, no.5,
pp. 472-491, October 2000.

[59] D.A.Patterson, J.L.Hennessy, Computer Architecture: A Quantitative Approach,
San Mateo, CA, USA. Morgan Kaufman, 1989.

[60] WARTS: Wisconsin Architectural Research Tools Set, Comput. Sci. Dept. Univ.
Wisconsin, http://www.cs.wisc.edu/larus/warts.html

[61] P.Liverse, P.v.Wolf, E.Deprettere, A Trace Transformation Technique for Com-

munication Refinement, Proc. 9th International Workshop on HW/SW Codesign
(CODES/CASHE’01), Copenhagen, Denmark, April 2001.

[62] P.Liverse, P.v.Wolf, E.Deprettere, K.Vissers, A Methodology for Architecture Ex-
ploration of Heterogeneous Signal Processing Systems, Proc. IEEE Workshop on
Signal Processing Systems (SiPS’99), Taipei, Taiwan, 1999.

[63] H.Mooshofer, Entwurfsmethodik für eine flexible Architektur zur Videoobjekt-
Segmentierung, Ph. Dissertation submitted to the Technische Universität München,
2002.

[64] K.Lahiri, A.Raghunathan, S.Dey Fast Performance Analysis of Bus-Based
System-On-Chip Communication Architectures, Proc. IEEE/ACM International
Conference on Computer Aided Design (ICCAD 99), San Jose, USA, November
1999.

[65] K.Lahiri, A.Raghunathan, S.Dey, Performance Analysis of Systems With Multi-
Channel Communication Architectures, Proc. International Conference on VLSI
Design, Calcutta, India, January 2000.

142 BIBLIOGRAPHY

[66] K.Lahiri, A.Raghunathan, S.Dey, System-Level Performance Analysis for Design-
ing On-Chip Communication Architectures, IEEE Transactions on Computer-Aided
Design, vol.20, no.6, June 2001.

[67] F.Balarin, M.Chiodo, H.Hsieh, A.Jureska, L.Lavagno, C.Passerone,
A.Sangiovanni-Vincentelli, E.Sentovich, K.Suzuki, B.Tabbara, Hardware-Software
Co-Design of Embedded Systems: The POLIS Approach, Kluwer Academic
Publishers, 1997.

[68] J.Buck, S.Ha, E.A.Lee, D.D.Masserchmitt, Ptolemy: A Framework for Simulating
and Prototyping Heterogeneous Systems, International Journal on Computing and
Simulation, vol.4, pp.155-182, April 1994.

[69] L.Thiele, S.Chakraborty, M.Gries, S.Künzli, A Framework for Evaluating De-

sign Tradeoffs in Packet Processing Architectures, Proc. 39th Design Automation
Conference (DAC’02), New Orleans, USA, June 2002.

[70] L.Thiele, S.Chakraborty, M.Gries, S.Künzli, Design Space Exploration of Network
Processor Architectures, to appear as a book chapter in Network Processor Design
2002: Design Principles and Practices.

[71] L.Thiele, S.Chakraborty, M.Gries, A.Maxiaguine, J.Greutert, Embedded Software

in Network Processors - Models and Algorithms, 1st Workshop on Embedded Soft-
ware, Lake Tahoe, USA, 2001.

[72] L.Thiele, S.Chakraborty, M.Naedele, Real Time Calculus for Scheduling Hard
Real-Time Systems, Proc. IEEE International Symposium on Circuits and Systems
(ISCAS’00), vol.4, pp.101-104, Geneva, Switzerland, May 2000.

[73] J.P.M.Voeten, I.G.Stappers, M.C.W.Geilen, L.J.van Bokhoven, P.H.A.van der
Putten, M.P.J.Stevens, An Analytical Approach Towards System Level Perfor-

mance Analysis, Proc. IEEE/STW 10th Workshop on Circuits, Systems and Signal
Processing, Utrecht, Netherlands, November 1999.

[74] J.P.M.Voeten, P.H.A.van der Putten, M.C.W.Geilen, M.P.J.Stevens, Towards
System Level Performance Modelling, Proc. IEEE ProRISC’98, Utrecht, STW,
Technology Foundation, pp.593-597, 1998.

[75] T.Yen, W.Wolf, Performance Estimation for Real-Time Distributed Embedded
Systems, IEEE Transactions on Parallel and Distributed Systems, vol.9, no.11,
November 1998.

[76] A.J.C.van Gemund, Symbolic Performance Modeling of Parallel Systems, IEEE
Transactions on Parallel and Distributed Systems, January 2003.

BIBLIOGRAPHY 143

[77] The PAMELA Language, http://ce.et.tudelft.nl/gemund/Pamela/pamela.html.

[78] A.C.J.Kienhuis, Design Space Exploration of Stream-Based Dataflow Architec-
tures: Methods and Tools, Ph.Dissertation submitted to the Delft University of
Technology, 1999.

[79] A.Baghdadi, N.E.Zergainoh, W.O.Cesario, A.A.Jerraya, Combining a Perfor-
mance Estimation Methodology with a Hardware/Software Codesign Flow Support-
ing Multiprocessor Systems, IEEE Transactions on Software Engineering, vol.28,
no.9, September 2002.

[80] P.Crowley, M.E.Fiuczynski, J.L.Baer, B.N.Bershad, Characterizing Processor Ar-
chitectures for Programmable Network Interfaces, Proc. International Conference
on Supercomputing, Santa Fe, USA, May 2000.

[81] L.Gwennap, B.Wheeler, A Guide to Network Processors, MicroDesign Resources,

1st edition, 2000.

[82] Douglas E. Comer, Internetworking with TCP/IP Vol. I: Principles, Protocols,
and Architecture, Prentice Hall, 1995.

[83] Andrew S. Tannenbaum, Computer Networks, Prentice Hall, 3rd edition, 1996.

[84] D.Husak, R. Gohn, Network Processor Programming Models: The Key to Achiev-
ing Faster Time-to-Market and Extending Product Life, C-Port White Paper.

[85] D.Husak, Network Processors: A Definition and Comparison, C-Port White
Paper.

[86] M.Gries, Algorithm-Architecture Trade-Offs in Network Processor Design,
Ph.Dissertation submitted to the Swiss Federal Institute of Technology Zurich
(ETH), 2001.

[87] T.Wolf, M.A.Franklin, COMMBECH - A Telecommunications Benchmark for
Network Processors, Proc. IEEE International Symposium on Performance Analysis
of System and Software, Austin, USA, April 2000.

[88] T.Wolf, M.A.Franklin, E.Spitznagel, Design Tradeoffs for Embedded Network Pro-
cessors, Internal Report WUCS-00-24, Washington University of St. Louis. July
2000.

[89] K.Coffman, A.Odlyzko, The Size and Growth Rate of the Internet, First Monday,
http://www.firstmonday.dk/issues/issue3 10/coffman/index.html, 3, 10, October
1998.

144 BIBLIOGRAPHY

[90] Corman, Leiserson, Rivest, Introduction to Algorithms, McGraw-Hill, 1002.

[91] C.P.Joshi, A New Performance Evaluation Approach for System Level Design
Space Exploration, Master Thesis submitted to the Indian Institute of Technology
Delhi, 2002.

[92] A.Rastogi, M.Balakrishnan, A.Kumar, Integrating Communication Cost Estima-
tion in Embedded Systems Design: A PCI Case Study, Proc. of International
Conference on VLSI Design, Bangalore, India, January 2001.

[93] P.Chou, R.Ortega, K.Hines, K.Partridge, G.Borriello, The Chinook Hard-
ware/Software Co-Synthesis System, Proc. International Symposium on System
Synthesis, Cannes, France, 1995.

[94] J.Henkel, R.Ernst, High-Level Estimation Techniques for Usage in HW/SW Co-
Design, Proc. Asia South Pacific - Design Automation Conference (ASP-DAC’98),
Yokohama, Japan, February 1998.

[95] M.Lajolo, A.Raghunathan, S.Dey, L.Lavagno, A.Sangiovanni Vincentelli, A Case
Study on Modeling Shared Memory Access Effects During Performance Analysis

of HW/SW Systems, Proc. 6th International Workshop on HW/SW Codesign
(CODES/CASHE’98). Seattle, USA, March 1998.

[96] M.Abramowitz, I.A.Stegun (Eds.), Stirling Numbers of the Second Kind, 24.1.4
in Handbook of Mathematical Functions with Formulas, Graphs and Mathematical

Tables, 9th edition, New-York: Dover, pp.824-825, 1972.

[97] The Combinatorial Object Server, http://www.theory.csc.uvic.ca/cos/inf/setp/Set-
Partitions.html.

[98] P.Eles, K.Kuchcinski, Z.Peng, A.Doboli, P.Pop, Scheduling of Conditional Process
Graphs for the Synthesis of Embedded Systems, Proc. International Conference on
Design Automation and Test in Europe (DATE’98), Paris, France, February 1998.

[99] N.Pazos, W.Brunnbauer, J.Foag, T.Wild, System-Level Performance Estimation
for VLSI Networking-Architectures Methodology, Proc. International Workshop on
IP Based SoC Design, Grenoble, France, December 2001.

[100] N.Pazos, W.Brunnbauer, J.Foag, T.Wild, System-Based Performance Estimation
of Multi-Processing, Multi-Threading SoC Networking Architectures, Proc. Forum
on Specification and Design Languages (FDL’02), Marseille, France, September
2002.

BIBLIOGRAPHY 145

[101] J.R.Levine, T.Mason, D.Brown, lex & yacc, O’Reilly & Associates, Inc. 2nd

Edition, 1992.

[102] V.Paxson, Flex, A Fast Scanner Generator, Version 2.5,
ftp://prep.ai.mit.edu/pub/gnu.

[103] C.Donnelly, R.Stallman , Bison, The Yacc-Compatible Parser Generator, Ver-
sion 1.25, ftp://prep.ai.mit.edu/pub/gnu.

[104] J.Rowson, Hardware/Software Co-Simulation, Proc. IEEE Design Automation
Conference (DAC’94), June 1994.

[105] L.Semeria, A.Ghosh, Methodology for Hardware/Software Co-Verification in
C/C++, Proc. Asia South Pacific - Design Automation Conference (ASP-DAC’00),
Yokohama, Japan, January 2000.

[106] Intel IXP1200 Network Processor home page,
http://www.intel.com/design/network/products/npfamily/ixp1200.htm.

[107] F.Karim, A.Nguyen, S.Dey, R.Rao, On-Chip Communication Architecture for

OC-768 Network Processors, Proc. 38rd Design Automation Conference (DAC’01),
Las Vegas, USA, 2001.

