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Abstract

Specification languages and automated design methods are increasingly be-
ing used to master the growing complexity in the development of embedded
electronic systems. The work presented here uses the “Specification and De-
scription Language” SDL as basis of an automated design process targeting
application specific hardware particularly for hard real-time systems.

The SDL specification is annotated with deadlines, event streams and
event dependencies which capture the timing requirements and properties of
the embedding system. The next step towards an electronic circuit is a VHDL
description of the required behaviour. Different principles for the transfor-
mation of SDL into VHDL, the implementation models, are presented. The
server model maps each SDL process to its own VHDL entity with its own
message queue. The activity thread implementation in contrast executes all
transitions, which are triggered in the SDL processes by one external signal
or timer output, directly one after the other, abolishing the internal com-
munication between the processes. In the presented design process, a SDL-
Compiler generates VHDL from textual SDL. The statemachine part is linked
with so called run-time components, which implement reusable functions like
message queues, timers, and communication channels. Commercial synthe-
sis tools create the electronic circuit from the VHDL design. The complete
design flow was integrated with a HW/SW rapid prototyping environment.

Hard real-time systems require the beforehand proof that all deadlines
will be met. A real-time analysis is presented which calculates the worst case
response times to external events, considering the timing constraints, differ-
ent implementation models and run-time components. An upper bound on
the necessary length of the message queues is derived as well. The consider-
ation of event dependencies during real-time analysis brings a relaxation of
a possibly too pessimistic worst case scenario. The presented methods have
been tested in the rapid prototyping environment on a FPGA-based target
architecture with the help of several application examples. The results from
these experiences allow an evaluation of both the resource requirements and
real-time properties of the hardware automatically generated from SDL.
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Chapter 1

Introduction

1.1 Background

The development of embedded electronic systems presents an increasing chal-
lenge for industry and academia: Most new features in many domains, e.g.
in automotive and telecommunications, depend on electronics. The increas-
ing density and speed of electronic circuits correspond with an increasing
complexity to be mastered during the design process. Sharp competition
leads to shortening design cycles and pressure on the development costs,
while engineering manpower is turning into a scarce resource. At the same
time, embedded systems have to meet stringent requirements, among others
functionality, reliability, size and power consumption. Very central among
these rank soft and hard real-time requirements. These express the embedded
system’s ability to respond not only correctly but also within a given time.

Modern design methodologies, realized in HW/SW–codesign environ-
ments like [EHB+96], [COH+99], [BCG+97] (see also [GVNG94], [Wol94]),
aim to meet these challenges by introducing systematic, formal design meth-
ods and increasing the degree of automation in the design process. They start
with a model of the system under development in one or several specification
languages. The use of a system model in a formal specification language has
several advantages. Firstly, its defined semantics allow a concise description
and avoid the ambiguities of a natural language. Secondly, validation with
the help of simulation, formal verification or real–time analysis is possible.
Thirdly, a formally defined language makes it possible to write compilers
which translate it into a different language. This opens the path to an au-
tomated design process, which ensures that an implementation is reached in
shorter time, is hopefully error free and consistent with the specification.

Embedded systems typically consist of microprocessors respectively pro-

1



2 CHAPTER 1. INTRODUCTION

cessor cores executing software, and application specific hardware. During
the automated design process, a suitable architecture of processors, buses
and custom hardware is determined and the specification is partitioned and
mapped to the available execution units. The next steps towards imple-
mentation are communication refinement, automated code generation and
synthesis of hardware and software.

Rapid prototyping has been proposed as a method to find errors and flaws
in the embedded system’s requirements at a very early stage of development.
To make this possible, the specification is executed in the real environment
in form of a working prototype. In order to rapidly obtain such a prototype,
an automated design process like outlined above is used, targeting a rapid
prototyping platform. In a rapid prototyping application, the execution of
the specification in software means high flexibility, short design cycles and
good debug facilities. Application specific hardware on the other hand is
very often necessary as a link to the embedding process, i.e. for glue logic
or a custom bus protocol, and as execution unit for processes with short
deadlines. Here, too, it is possible to reach a high degree of flexibility by
using reprogrammable FPGAs.

In many application areas, the focus of rapid prototyping lies only on the
functional correctness of the embedded system. For hard real–time systems
however, it is also necessary to include the real–time aspects already at the
prototyping stage: In the design of a system that has to meet hard dead-
lines, the timing requirements of the embedding system have to be modeled
correctly. This is a non-trivial, error-prone task. A real–time analysis in the
prototyping stage and the real–time execution of the prototype show if the
timing situation has been understood correctly. In contrast to simulation,
the idea of a prototype is to be executed in the real world with real data. If
the application to be designed has to meet hard timing requirements, they
generally will have to be met by a prototype executing in the same environ-
ment, too. A schedulability analysis must give the proof that it is safe to
execute the prototype.

A multitude of specification languages and methods are used in embed-
ded systems design, i.e. C, C++, VHDL, Esterel, Statecharts, Matlab and
SDL. Several properties of the “Specification and Description Language” SDL
make it well suited for a design methodology like outlined above. SDL allows
implementation independent system modeling at a high level of abstraction,
in graphical and textual form. Its formal semantics form a solid basis for
validation and simulation. Due to SDL’s asynchronous execution and com-
munication scheme, dividing and joining models is easy, which allows for
more flexibility in architectural synthesis, and efficient implementations on
distributed systems. Other, non–technical criteria, are maturity and popu-
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larity of the language, and the well developed tool support. SDL’s standard-
ization ([ITU94]) makes it suitable for official authorization procedures, in
some of which it is already mandatory. SDL is a supported input format of
a considerable number of commercial and academic codesign environments,
as outlined in chapter 2.

The automated design flow from SDL to software is state of the art and
widely used. The ability to automatically generate application specific hard-
ware from SDL enables the use of SDL in a HW/SW–codesign environment.
This makes it possible to use SDL specifications for hardware and software.

1.2 Scope

The work presented here deals with the automated design of application spe-
cific hardware from SDL in a rapid prototyping HW/SW–codesign environ-
ment. It is targeted towards reactive hard real-time embedded controllers.
Timing constraints are assumed to have the form of end-to-end deadlines,
i.e. a given response time that may elapse until the reaction to an external
event is finished. In hard real-time systems, in contrast to soft real-time, the
violation of a deadline can lead to catastrophic consequences, up the loss of
lives. In this class of systems the correct real-time behavior has to be proven
during design. Analyzability and guaranteeable worst case response times
therefore take precedence over average or best case throughput and latency.

In the rapid prototyping scenario, for cost and flexibility reasons, as much
functionality as possible will be implemented in software. Application specific
hardware is necessary for processes with deadlines that are too short to be
met in software and as a connection to the embedding environment. The
envisioned type of application therefore are fast I/O-tasks with relatively
low computational complexity. In this sense, application specific hardware is
regarded like a pre-processor for external events rather than a co-processor.

The automated design process is part of the rapid prototyping environ-
ment REAR presented in [PMK+00]. Its rapid prototyping target architec-
ture is a configurable and scalable heterogenous multiprocessor system. A
board with a field programmable gate array (FPGA), the so called config-
urable I/O processor CIOP, is tightly coupled with the microprocessor based
units. Functionality targeted to hardware can be specified in SDL. Addi-
tionally, standard or custom hardware modules, e.g. written in the hardware
description language VHDL, can be included in the HW/SW-codesign envi-
ronment. To automatically generate hardware from SDL, a compiler trans-
lates textual SDL to VHDL. This work investigates the efficiency of the gen-
erated hardware in terms of resource usage and timing properties. Different
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implementation models are developed together with the real-time analysis
algorithms needed to determine the guaranteeable worst case behaviour.

1.3 Overview

There is a number of research groups and commercial efforts in the context of
embedded systems design with SDL, some of which also include application
specific hardware. An overview of them is given in chapter 2.

Chapter 3 introduces the specification language SDL. Next to the func-
tional specification, real-time analysis requires a description of the timely
properties of the embedding system, which are expressed with the help of
event streams. These, together with the given deadlines, define the timing
contstraints of the system to be designed. Finally, a method for including
predefined, non-SDL components in the specification is suggested.

The transformation principle behind the automated generation of hard-
ware from SDL is called the implementation model. Chapter 4 presents three
implementation models for SDL, the server model, the serialized and the par-
allel activity thread model, as well as the combination possibilities of them.
As will be seen, next to the hardware generated for each new specification,
there is a number of reusable components like e.g. message queues imple-
menting SDL’s asynchronous communication, and timers to be considered.
In analogy to software they are named “run-time components”.

With functional specification, timing constraints and implementation
model known, the real-time analysis from chapter 5 is possible. The pri-
mary task here is the calculation of the worst case response times to external
events, considering the different implementation models and run-time com-
ponents. As by-product, an upper bound on the necessary length of the
message queues can be given. The consideration of event dependencies dur-
ing real-time analysis can bring a relaxation of a possibly too pessimistic
worst case scenario.

Chapter 6 details the automated design process from SDL to hardware. It
describes the rapid prototyping environment in which the presented methods
were integrated. The abstract SDL specification is not directly translated to
a netlist of logic gates. Instead it is compiled into a high level model in the
hardware description language VHDL, using the so called SDL-Compiler.
After this step, reusable and additional external hardware components are
integrated with the generated VDHL blocks. This includes the interface to
the likewise automatically generated software. The complete VHDL model
is processed further using commercial synthesis and place-and-route tools.

The rapid prototyping environment also formed the testbed for several
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application examples. They were used to gather on-hand experience in a real
environment. The gained hardware synthesis and real-time analysis results
are presented together with an evaluation in chapter 7. The work finishes
with conlusions and indications of future work in chapter 8.
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Chapter 2

Related Work

In the last 30 years, an extremely large number of specification languages has
been developed. For a classification, [GVNG94] identifies four basic concepts:
concurrency (control or data oriented concurrency), hierarchy (structural or
behavioral hierarchy), communication (message passing or shared memory)
and synchronization (synchronous or asynchronous). In different fields of
application, languages with different characteristics have been found to be
useful. A good overview is e.g. given in [JRM+99].

The degree of abstraction required depends on the phase of the design
process. During the requirements phase, a modeling at system level is appro-
priate. Here, the required functionality is defined. Architecture and imple-
mentation details are not fixed yet. There are few indications about timing,
except for some global constraints. At the algorithmical level and register
transfer (RT) level, the level of detail increases, until the implementation is
completely defined.

Table 2.1 which was adapted from [MdCP01] lists typical time granular-
ities and models of computations at the different levels of abstraction. It
shows representative specification languages used in the hardware and soft-
ware domain and their association to these design levels.

For the description of hardware at the algorithmical and RT-level, the
languages VHDL and Verilog ([IEE00],[IEE95]) are de-facto standard with
an excellent tool support. In a VHDL model at RT-level, be it a structural
or a behavioural description, each operation is assigned to one clock cycle.
RT-level synthesis tools, like e.g. Synopsys Design Compiler translate it to
a equivalent network of registers and combinational logic. After logic op-
timization, resource allocation and mapping a netlist of components from a

7
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Time
Granularity

Computational
Model

HW
Languages

SW
Languages

System
Level

Transactions Task graphs,
communicating
processes

StateCharts,
SDL, Java

SDL, Matlab,
Java, Esterel

Algorithm
and
Functional
Level

Computational
Steps

Control Flow
Graph, Data Flow
Graph

VHDL, Verilog,
C/C++ with
extensions,
e.g. SystemC

C/C++

Register
Transfer
Level

Clock Cycles Finite State
Machines,
Boolean equations

VHDL, Verilog,
RT-C

Assembler

Table 2.1: Specification Language Overview

target library is generated. From this netlist, vendor-specific place-and-route
tools generate a layout of the digital circuit.

In contrast to this, at the algorithmical level, the timing is not or only
very roughly fixed. Here as well, a description in VHDL or Verilog is usual.
This kind of model can be handled by a high-level synthesis tool like e.g.
[BR98]. It generates a processor, consisting of controller and data path, which
implements the specified behaviour. To achieve this, the steps scheduling,
resource allocation and binding have to be performed. The loosely defined
timing means, that a given operation, e.g. an addition, can be scheduled
in different clock cycles. This makes it possible to find a schedule, where
components, e.g. the adder, can be reused and therefore resources saved.

In the last years, many institutions have attempted to introduce C-based
languages for hardware design at algorithmical and RT-level (e.g. Stanford’s
HardwareC, Irvine’s SpecC, SystemC by Synopsys, C-Level by EASICS, Cyn-
libs by CynApps). The idea is to use the wide-spread language C and C-based
development environments by extending C with libraries and classes to ex-
press hardware specific concepts, in particular concurrency and timing. In
most of these frameworks, the level of detail is exactly the same as in dedi-
cated hardware languages. Therefore, even though the same language as for
software is used, due to the implementation specific degree of detail, no uni-
fied view on the entire system can be taken. The acceptance in the hardware
design community on the other hand is difficult. The willingness to adapt
a new language is especially low if the advantages are not clearly seen. A
further problem lies in the lacking standardization of the various proposals.

A number of HW/SW-Codesign approaches are based on the specifica-
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tion language SDL. A SDL specification consists of parallel processes, whose
behaviour is specified with extended finite state machines. SDL processes
communicate via asynchronous messages.
Pulkkinen ([PK92]) and Turner ([CT97]) use SDL to model electronic

circuits at RT-level. SDL’s event triggered semantics, the lacking features
for an exact modeling of time and the missing broadcast mechanism make
it poorly suited for a detailed description of electronic devices and circuits.
This results in long winded, clumsy specifications. The advantage over the
already presented HW modeling methods, e.g. VHDL, remains unclear, as
well as how these approaches could be integrated in an automated hardware
design flow.

All other approaches use SDL for a functional specification at system
level. Two implementation models, which preserve the semantics of SDL
are the server model and the activity thread model. In the server model,
each SDL process is implemented as a single RTOS task in SW, respectively
as a separate VHDL entity in the HW implementation, each with its own
message queue. In contrast to this, the activity thread model maps each
activity thread, i.e. each chain of activations in the SDL model caused by
one stimulating event (an event from the environment or a timer output), to
one RTOS task respectively HW entity.

The terms server model and activity thread model stem from the telecom-
munications area, where they are used to describe different stategies to im-
plement multilayer communication systems ([Svo89]). In the server model,
each protocol unit from one OSI layer is implemented as a single software
task, communicating with other layers via messages. In the activity thread
model, one software task processes an incoming or outgoing request through
several layers, avoiding queueing and process management overhead.
Henke and Mitschele-Thiel ([HKMT97]) proposes the employment of

efficient methods known from the manual implementation of communication
systems in an automated software design process based on SDL. In their re-
alization of the activity thread model, each SDL process is implemented as
a reentrant procedure. Each activity thread is a sequence of calls to these
procedures, whereby each SDL-signal-output statement is replaced by the
procedure call corresponding to the signal’s destination process. Here, spe-
cial attention has to be paid towards a sementically correct implementation,
especially in the cases “multiple output statements” and “action after out-
put” (for more details see section 4.4). Two execution models, the basic and
extended activity thread model, are presented. In the basic activity thread
model, all activity threads are implemented in one operating system (OS)
task; the processing of a new external signal is postponed until the process-
ing of the previous signal has been finished. In the extended activity thread
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model, each activity thread is implemented in its own OS-thread. Here,
timely interleaving of several activity threads is possible and depends on the
applied scheduling strategy. Obviously, the procedures implementing SDL
processes have to be protected with a semaphore.
Commercial code generators for SDL targeting software, like SDT’s

CAdvanced, CBasic and CMicro C-code generators ([Tel]), only support the
server implementation model. In an implementation of a SDL specification
on a single processor, the theoretically parallel SDL processes are sequen-
tialized. The timely ordering depends on the scheduling algorithm. In the
so called light integration (all SDL processes in one OS task), scheduling is
implemented in the task body which is generated by the code generator. In
a tight integration scheme, one SDL process equals one OS task; here, the
scheduling is determined by the operating system. Naturally, these imple-
mentation decisions have a strong impact on the real-time behaviour. This
problem area is investigated in [Kol01].

Several approaches generate VHDL using the server model. The main
focus here is mapping the abstract communication between SDL processes
to existing interfaces and protocols.

A framework for the automated design of high-performance communica-
tion subsystems is presented by Schiller in [CS98]. The parallel, hardware-
based target architecture consists of RISC-processors, specialized protocol
function units, programmable and synthesizable protocol automata, and
memory, connected via a crossbar switch. C-code for the processors, mi-
crocode for the programmable protocol automata and especially RT-level
VHDL for the synthesizable protocol automata are generated from SDL.
One synthesizable protocol automaton, which implements one SDL process,
consists of an I/O-interface connecting it to the input queue and the crossbar
switch, an ALU-interface to a local ALU, and an execution and control unit;
i.e. control and data path are seperated. I/O-interface and ALU-interface
are predefined components adapted to the target architecture. The execu-
tion and control unit is generated by a SDL-to-VHDL compiler. It imple-
ments only the bare finite state machine of the SDL process. The storage
of state and variables and all data operations are located in the ALU. The
direct generation of register-transfer level, i.e. cycle-fixed VHDL is possible,
because the data width is fixed to 32 bit and the execution duration of oper-
ations of the ALU is known, once the compiler has mapped all parts of the
transition to ALU-commands. This work is very specialized and efficient for
communication protocols, but not easily transferable to other applications.

The SDL–to–VHDL translator described by Glunz in [Glu94] and
[GKRM93] presents an architecture for implementing general SDL specifi-
cation in hardware. The target architecture for each SDL process consists of
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3 parallel VHDL entities: a receiver unit, a message queue and a processing
unit. The receiver unit is responsible for the input of SDL messages. It must
run independently from the other units to ensure SDL’s non-blocking send-
operation. The message queue stores the incoming SDL messages. The pro-
cessing unit directly implements the extended finite state machine (EFSM) of
the SDL process. This architecture is the basis for several other approaches
([DMVJ97],[BRM+99]), and is also presented in greater detail in section 4.3.
An important focus of the work is SDLs abstract communication. It presents
a formalism to describe the actual hardware channels and their protocols
which realize the communication. For modularity and reuse, the protocols
can be layered, distinguishing between application independent and appli-
cation specific. At the lowest level, the protocols are defined in RT-level
VHDL. An implementation description finally maps the logical SDL signal
channels to these physical channels, which are taken from a library. It fur-
ther defines the necessary length and the coding and decoding procedures for
the message queue. Even though the main target of this SDL-to-VHDL sys-
tem seems to have been on simulation, Glunz emphasizes that the generated
VHDL is synthesizable, which has been confirmed in [Rin98]. The direct
generation of RT-level VHDL from SDL is possible, because the integrated
protocol implementations are at RT-level and all data operations at SDL level
are written in “native” VHDL and directly inserted in the generated finite
state machine. The scheduling of these operation is hence the responsibil-
ity of the designer at SDL level, which represents somewhat a contradiction
to the desired implementation independent SDL system specification. The
modular and layered specification of receiver unit and also message queue is
very flexible. Compared with “monolithic” components, however, it leads to
a resource and execution time overhead, which adds to the communication
overhead inherent to all server model implementations.

In [DMVJ97], the VHDL generation is embedded in the codesign en-
vironment COSMOS. An SDL description is translated to an intermediate
format, which consists of processes communicating via remote procedure calls
over abstract channels. Each SDL process is allocated one abstract channel,
which represents the input message queue and its interface. The SDL pro-
cesses’ behaviour is translated to the corresponding finite state machine.
During a partitioning step, state machines may be splitted and merged.
During an interactive, human guided compilation, the abstract channels are
mapped to communication units. For these, finally an implementation from
a library is selected and the required interfaces and interconnections are gen-
erated. The generated VHDL model is targeted at simulation and high level
synthesis, i.e. timing and the final RT-level hardware architecture are not
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fixed in the SDL-to-VHDL step. Arexsys1, the commercial spin–off of the
TIMA laboratory, markets a codesign environment based on COSMOS. The
CASE-tool environment, which includes cosimulation, architectural explo-
ration and design implementation is described in [MdCP01]). A case study,
where these tools were used for the HW/SW codesign of an image process-
ing unit at Aerospatiale Missile Division (specification in SDL, generation
of C and VHDL) is presented in [ABG+99]. Interestingly, in the COSMOS
environment high level synthesis is no longer used for further processing of
the generated VHDL. As also noted in [BRM+99], high level synthesis of-
ten yields poor results when generating the controller and datapath for the
VHDL model of the SDL processes’ behaviour, which already is in form of a
finite state machine. On the other hand, it is not possible to predict in the
general case what kind of operations will be specified in the SDL transitions,
and therefore how many cycles they will need in hardware. The solution,
like described in [CSMJ00], is to use only the scheduling step of high level
synthesis, that is to assign all operations in the generated VHDL to clock
cycles. The structure of the FSM is left intact and resource allocation and
binding are performed by RT-level synthesis tools.

The Cadence Cierto VCC environment ([Cad99a]) 2 is based on Berke-
ley’s Polis approach ([BCG+97]). Similarily to the Arexsys evironment pre-
sented above, it aims at a continuous design flow from a system level speci-
fication towards implementation. It supports a number of input languages,
e.g. Esterel, C, VHDL and a subset of SDL. Next to architectural exploration,
cosimulation and performance estimation, also a link to an implementation
in C and VHDL is described in [Cad99b]. However, no details on the imple-
mentation of SDL processes in hardware have been found.

Slomka et al. present in [SDMH00] a rapid prototyping system for
high performance communication systems based on SDL. The core of their
co-design system is a Java based SDL-Compiler, which was utilized and devel-
oped further in cooperation with the rapid prototyping project presented in
this work. For the data-intensive applications from the communication sys-
tems domain, a mixed hardware synthesis approach is applied ([BRM+99]).
Run-time components are defined and synthezised at RT-level while the be-
haviour of the SDL process, possibly with many data operations, is synthe-
sized using a high-level synthesis system. To address the already mentioned
limitations of high-level synthesis, a novel implementation scheme is pro-
posed in [SDM01]. Similar to Schillers work ([CS98]), each SDL process is
separated into control and data path. The finite state machine of the SDL

1www.arexsys.com
2www.cadence.com/technology/hwsw/ciertovcc
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process is implemented at RT-level in one hardware or software entity, while
the body of the transitions form a separate entity, which can be synthesized
using high-level synthesis. In contrast to Schiller, no predefined ALU is used,
but an own processing unit is synthesized for each transition. First results
indicate a considerable communication overhead, which leads to a only min-
imally reduced resource usage.

The work of Hemani et al. ([SKH98], [HSK+99]) is based on a concept
aiming to support SDL’s dynamic process creation feature also in hardware.
Here, one entity is created for each SDL process class, storing and loading
the context of each process instance after a simple schedule. Due to the
dynamic instantiation, a signal’s receiver cannot be determined statically.
This necessitates a central supervisor unit in the communication subsystem.
What remains unclear is at which point the overhead caused by this infra-
structure is smaller than the resources multiple instances provided from the
start would cause. For a large number of active instances, on the other hand,
the serialization due to the shared processing unit would cause a very slow
response time. This in turn challenges the decision for implementation in
hardware compared with software.

Concluding, it can be remarked that the large body of work concerning
automated implementation of SDL in hardware utilizes the server implemen-
tation model. Much attention is paid to the realization of SDLs abstract
communication on concrete components and protocols. A further issue is
the refinement of timing down to the cycle-true specification required for
the synthesis of a digital circuit. None of the approaches known address the
problem of real-time behaviour and analysis.
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Chapter 3

Specification with SDL

This work uses the Specification and Description Language SDL for the func-
tional specification of the system under development. Section 3.1 presents
the language SDL, concentrating on the language features relevant for im-
plementation in general and on the subset which is supported in hardware.

SDL is however not intended for the specification of non-functional as-
pects. In the context of hard real-time systems, particularly the real-time
constraints are of importance. This is dealt with in section 3.2, which intro-
duces the language annotations chosen for expressing timing constraints, and
the underlying event stream model for describing the temporal behaviour of
the embedding system.

Next to the parts of the design functionally described in SDL, it is also
possible to include predefined hardware components and IP in the design
process, which is described in section 3.3.

3.1 Functional Specification with SDL

3.1.1 Background

SDL is a Specification and Description Language standardized as ITU (In-
ternational Telecommunication Union) Recommendation Z.100 for the speci-
fication of telecommunication systems ([ITU94]). The first description of the
language stems from 1980. Since then, a new language version is presented
every four years, with a varying size of differences between subsequent ver-
sions. In SDL-88, the basic concepts and model of computation as well as
syntax and semantic are fully defined. SDL-92 introduced object oriented
design and is the language version currently supported by all commercial
SDL-tools and is also the basis of this work. The latest major SDL version is

15
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SDL-2000, which aims at a seamless link with object modelling, in particular
UML, and an improved use of SDL for implementation.

SDL can be regarded as a profile of the well known UML (Unified Model-
ing Language) model from the Object Management Group. In some respects
it exceeds the UML requirements and has well defined semantics where UML
has vaguer “semantic variation points”. The class models of SDL follow the
usual UML object model notation. The language SDL has a graphical rep-
resentation (SDL-GR) and an equivalent textual representation (SDL-PR).

Initially, SDL has been developed for the telecommunications domain.
It is however well suited to describe event-driven, reactive systems in gen-
eral, and has increasingly been used in the design of all kinds of embedded
systems. Today, there exists an excellent tool support for SDL. It includes
support for system modeling, syntax and semantic check, formal verification,
simulation, links to testing and implementation in software. Largest vendor
is Telelogic AB, Sweden, with its tool SDT. This work used SDT Version 3.1.

3.1.2 Language Elements of SDL-92

Like mentioned above, SDL-92 introduces object orientated features. Object
orientation is useful for the specification and design process, since objects
with similar characteristics can be combined in classes. In SDL-92, object
classes are called “types”. An actual implementation, however, always con-
sists of instantiated objects, but not of classes. Instances in SDL can be
either instantiated types or can be directly described. How these instances
were derived is not important from the implementation point of view; par-
ticularly if dynamic object creation is not supported, which is assumed in
this work. Therefore, without restriction of generality, SDL’s object oriented
features are not considered for the rest of this work. All language objects,
e.g. processes, blocks, signals, are regarded as instances.

Process 2System Z Block B

run

Sig in

i:=i+1

Sig out(i)

run

run

i=0

Block B

Block A

Channel b

Process 1

Process 3

Signalroute 1

Process 2

Figure 3.1: Example SDL System Structure
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Structure in SDL is expressed with a hierarchy of blocks and processes
(see Figure 3.1). A SDL system consists of one or several blocks, which
can in turn be build of blocks. Communicating blocks and the environment
are connected via channels. The lowest level of refinement are the parallel
SDL processes, which can communicate via signals1 over signal routes. Each
process keeps incoming signals in its own private message queue.

The Behaviour of a SDL process is described in form of an extended
finite state machine (EFSM), consisting of states and transitions. Figure 3.2
summarizes the most important elements of the EFSM with their graphical
and textual representation.

Process 

Condition
Enabling 
Signal /
Continous

Input
Priority

Transition Elements

Procedure
Call

Task

Output

Decision

Triggers

Save

Input
Creation

Process

Comment

Nextstate

Termination

Start Symbol

General

State

Figure 3.2: SDL-92 EFSM Elements

The start symbol denotes the initial transition, which is executed once at
the start of the SDL system. It brings the SDL process into a defined state,
but can also contain arbitrary transition elements.

SDL knows a number of different triggers which can be defined for a
transition from a state: The signal input triggers the transition upon the
arrival of the denoted signal, removing the signal from the message queue. A
continuous signal triggers when the given boolean expression evaluates true.
Enabling conditions combine the first two, triggering only when the signal is
availiable and the condition is fulfilled; the signal remains in the queue until
this is the case. Priority inputs are a special case of the input symbol. They
define that the given signal is to be consumed first, even if it is not the first
in the message queue. The save-statement indicates that the given signal has
to be kept in the queue, even if it has no transition to trigger in the current
state.

1In cases where a confusion with VHDL signals is possible, SDL signals will exchange-
ably be termed SDL messages.
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The transition body can contain an arbitrary number of tasks, outputs,
decisions, procedure calls, and the nextstate-symbol, to name the most im-
portant. A task is a container for data operations, which can be expressed
formally using arithmetic expressions, but also informal text. The output-
statement sends the given signal to a given process or signal route. Recurring
parts of the state machine can be put into a procedure, which can be called
from anywhere in the process. Nextstate defines the state that has to be
assumed at the end of the transition. The process creation and termination-
symbol specify the dynamic creation and termination of the given process at
run time, which is however excluded from the implementation in hardware.

SDL’s chief communication mechanism is asynchronous sending and re-
ceiving of SDL signals, which can optionally carry data. Generally, data is
declared local to each process and cannot be accessed from outside. There
are however three exceptions to this rule. Remote procedures belong to the
context of the exporting process, but can be called from a different process,
and therefore can allow access to the remote process’s data. The import-
construct allows reading local variables of a remote process, but only values,
which have been released with the explicit export-statement. These two
mechanisms form no principal exception from SDL’s basic communication
scheme. They can in fact be implemented using signal interchange and ad-
ditional states. In contrast to this stands the view/reveal -mechanism, which
allows a process to always read the actual value of the revealed variable of
the remote process. The use of view/reveal is not recommended by Z.100.

Data types in SDL are abstract data types, i.e. the definition of liter-
als, operators and their semantics is possible in the system specification.
There are, however, a few predefined data types for frequently used types
like boolean, integer, real, character, charstring, time and duration, as well as
composite types like array and struct. With the help of a syntype-definition,
a new name for an existing data type can be given and, useful with regard
towards an implementation in hardware, its range of values can be limited.

SDL assumes a global Time, whose actual value is accessible with the
now -statement. It makes, however, no assumptions on a timely synchroniza-
tion of actions, nor on communication and execution times. Similarily, the
scaling of the predefined time and duration data types is left as an imple-
mentation issue. A timer can be started from inside a process transition.
After the given duration, it sends a signal to the requesting process, using
the process’ message queue.
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3.1.3 Model of Computation

Blocks in SDL are useful as hierarchical structuring element, and e.g. de-
fine the visibility of viewed variables, but they have no influence on the
behaviour of the SDL system, which is entirely defined by the processes.
SDL processes are defined to be concurrent, i.e. no specific execution order is
prescribed. Synchronization and communication take place asynchronously
over the SDL signals, with a non-blocking send and blocking receive. Pro-
cesses are therefore modelled as independent from each other as possible,
meaning communication and synchronization must only be realized where it
is explicitly demanded by the specification with the statements send, import,
view and remote procedure call.

Processes are activated when a transition is triggered. Like outlined in
section 3.1.2, the two basic trigger mechanisms are signal input and con-
tinuous signals, where a boolean condition is evaluated. The variables con-
tained in such a boolean equation, however, can only be local variables or
imported/viewed variables from other processes. To trigger a transition, the
values of these variables would have to change, which in turn can only hap-
pen inside a triggered transition. This means, that an activation of any part
of the SDL system can only be initiated by either a signal from the system’s
environment or an output from a timer. Signals from the environment, i.e.
external events, and timer outputs are subsumed with the expression trig-
gering events of the SDL system. 2

The detailed model of computation of a single SDL process is as follows:
First, the message queue is checked if it contains a signal which has a pri-
ority input in the current state, and if true the corresponding transition is
executed. Secondly, the first signal in the queue is evaluated. If an input for
this signal is specified in the current state, and if applicable the enabling con-
dition evaluates true, the transition is triggered, and the signal is removed
from the queue. The signal remains in the queue as long as the enabling
condition is false. If there is no input statement for the signal, it is removed
from the queue and discarded. In the case of a save-statement, it is kept in
the queue. At this point, the next signal in the message queue is regarded.
Only if there is no more signals in the queue to be processed, the continuous
signals are evaluated.

This execution policy means that the processes’ message queue cannot be
a simple First-In-First-Out-Buffer (FIFO). In order to realize priority input,
save and enabling conditions, it has to be possible to view all buffer ele-
ments, and to remove signals from random positions. If these three language

2An exception are the so called spontanous transitions, which are used to model random
behaviour, like e.g. system failures.
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elements are excluded, the message queue is reduced to a FIFO. Obviously,
this has consequences on the modeling style. Without a save-statement, for
instance, it is no longer possible to use the message queue as a buffer for data
to be processed later, since the signals are removed from the queue as fast
as possible, either to be consumed or discarded.

Returning once again to the classification criteria proposed by Gajski
mentioned at the beginning of chapter 2, the specification language SDL is
characterized by control oriented concurrency. In contrast to data-oriented
languages, which describe data streams and their interaction, SDL processes
specify concurrency and synchronization of the control structures. SDLs
blocks imply a structural hierarchy. Since process behaviour cannot be fur-
ther refined in SDL-92, no behavioural hierarchy is given. Communication is
mainly realized via message passing with the exception of the view/reveal-
mechanism which implements a shared memory concept. Synchronization is
asynchronous, in an event-driven fashion using messages (SDL signals).

3.1.4 Discussion

Summarizing the previous sections, SDL is excellently suited for the specifi-
cation of control-dominated, event-driven systems, whose behaviour can be
described in the fashion of a finite state machine. Descriptions in SDL are
advantageous for implementation on distributed systems, since a minimum
on assumptions is made concerning synchronization and communication be-
tween processes. SDL favours an implementation independent specification
at an abstract level. It dissociates the functionality from the communication
and the interface to the outside, with advantages in reusability and main-
tainability. Further, already mentioned advantages are its standardizition,
maturity, popularity and well developed tool support.

On the other hand, SDL is not intended for an explicit description of
data flows, nor for continuous systems. It is possible to create a periodic
behaviour with the help of one or several timers, which trigger arithmetic
operations inside the finite state machines. Tools like Matlab or MatrixX,
however, are certainly better equipped for the design of e.g. a closed loop
control. Neither has SDL been envisioned for a detailed description of an
implementation or for instance defining an architecture of processing units,
busses and software components.

A major weak point in SDL is the concept of time. The language has
no provision for a precise specification of timing constraints. Expressing
time with the help of SDL timers is, according to [Ols94], only possible in
systems where “tolerances on the time intervals are > 100 times the average
instruction time of the CPU”. The problems arising with the SDL timer
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concept particularly in software implementations on a single processor are
adressed in [Kol01]. Further disadvantages include the lack of a broadcast
mechanism and the lack of a behavioural hierarchy inside SDL processes,
which can lead to cluttered processes.

3.2 Timing Constraints

Reactive systems can be modelled adequately in SDL, where a SDL system is
activated by triggering events, i.e. a timer output or an external event from
the environment. In reactive real-time systems, this response to an event has
to occur within a given time, the deadline. In the context of reactive systems,
relative, end-to-end deadlines can be assumed. A real-time analysis has to
prove that the system under development will meet the given deadlines. To
be able to perform such a real-time analysis, the timely behaviour of the
environment has to be modelled. It is necessary to have information, e.g.
bounds on, the timely distribution of the triggering events, since the reaction
time to one event can be influcenced by other events, depending on the time
of their occurence.

In hard real-time systems, where a deadline miss has to be avoided under
all circumstances, the worst case has to be covered. In this case, the well
known methods which have been developed to describe queueing systems
([Kle75]) cannot be applied, since they are based on statistics and therefore
only allow statements on e.g. mean values and distribution, but not on the
worst case. On the other hand, it is not useful to enumerate all possible
points in time of the occurence of the different events, and it is a severe
restriction to stipulate that events may only occur at a few, discrete points
in time (e.g. only periodically). The method employed instead is to give
bounds on the timely distribution of the events. For real-time analysis, as
will be seen in chapter 5, the minimum timely distance of events is relevant.
A very powerful model to express this is the event stream model proposed by
Gresser ([Gre93b]), which will be outlined below.

Event stream model The basic information expressed by the event
stream model is how many events of a type can occur within a given time
interval I, under the assumption that I can be located anywhere in time.

Definition: aj is the smallest time interval in which j events can occur
(3.1)
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1 5 100 t14 15
a1 = 0, a2 = 4, a3 = 8

Figure 3.3: Finite event sequence

Obviously, a1 = 0 is always given, since one event can occur in one in-
stant. The small example in Figure 3.3 depicts the worst case event sequence
consisting of three events that would satisfy a1 = 0, a2 = 4, a3 = 8. The time
in this and in the following examples is given in absolute numbers without
measurement unit; it can be multiplied with any time unit. Time values from
the set of real numbers are assumed. To find out if any given event sequence
complies with aj, a window of size aj has to be moved along the time axis.
At no time, more than j events may show in the window.

In order to be able to also completely characterize a infinite sequence of
events, a second parameter, the cycle zj is introduced:

Definition: aj + k · zj is the smallest time interval in which

(k + 1) · j events can occur,

k ∈ N0 (3.2)

Now, like depicted in Figure 3.4, an event sequence with period 4 can be
described with a1 = 0, z1 = 4.

aj and zj together are termed an event tuple:

(

Cycle zj

Interval aj

)

If no cycle can be given, zj = ∞ is assumed. An event stream is a set
of event tuples, whereby the restrictions given by all event tuples have to
be equally fulfilled. Now it is possible to concisely describe complex event
combinations, e.g. sporadic events, jitter and event groups.
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(

zn

an

)}

(3.3)

The event function E(I) expresses the constraints given by the event
stream in a different fashion: For any given time interval I it gives the max-
imum number of events which can occur in it, taking into account all event
tuples. The contribution Ej(I) of one event tuple j to the event function is
given as:
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1 5 100 t14 15

a1 = 0, z1 = 4

Figure 3.4: Periodic event sequence
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The operator bxc denotes the integer-function, which rounds off its ar-
gument to the nearest integer smaller or equal than x. Figure 3.5 shows
graphically the contribution Ej(I) of one event tuple i to the event function.

The event function E(I) of the event stream is the sum of the contribu-
tions of all n event tuples:
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(3.5)

Figure 3.6 depicts an example event stream with one possible event se-
quence compliant with these restrictions on the left-hand side of the figure.
Expressed in words, the event stream poses the following bounds: In a time
interval of length 3 never more than 3 events may occur, whereby any time
interval of length 1 may contain 2 events at maximum, and only one event
may occur at the same time (interval length 0); this can repeat itself after
7 time units. The event function corresponding to the given event stream is
drawn on the bottom of the figure.

However, not every combination of event tuples constitutes a valid event
stream, in the sense that in contains no internal inconsistencies. Such a
inconsitency is given when the minimum interval for a number of events can
only be reached by violating the restrictions given by a different event tuple.
This is expressed by the following equation, which has to be met for all I to
obtain a valid event stream:

∀I2 > I1 : E(I2)− E(I1) ≤ E(I2 − I1) (3.6)
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Figure 3.5: Contribution to the event function by one event tuple

Event dependencies While event streams describe the temporal charac-
teristic of one event type, event dependencies deal with relations between
events of different types. Like before, minimal time distance between events
are of interest for a worst case analysis. Therefore, in addition to the event
streams, for each group of dependent events a event dependency matrix
EDM is given:

EDM =

(

ed11 ed12
ed21 ed22

)

Each element ekl of the EAM denotes the minimal temporal distance
between an occurrence of k and a subsequent occurrence of l. Obviously,
edkk is equal to the distance between two events of a type a2 given by the
event stream.

Summary The temporal characteristics of the embedding system are spec-
ified with deadlines, event streams and event dependencies, which give a
lower bound on the timely distance of events. Event streams and deadlines
are annotated to the triggering events (external signals and timer outputs),
event dependency to the system properties in the SDL system. Keywords
and syntax of these annotations are subsumed in Table 3.1. Deadlines, event
streams, respectively the derived event functions, and event dependencies are
input to the real-time analysis presented in chapter 5.
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Real–Time Extensions

#RZA ES{ (z1 a1) [, (zj aj)]∗ } event stream ES

#RZA Deadline d deadline d

#RZA ED k l ed event dependency edkl

Table 3.1: SDL Annotations
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3.3 Predefined Components

From the point of view of the SDL system, predefined components are func-
tional blocks which are specified in a different language than SDL. The scope
of this work does not include general multi-language design like outlined in
[JRM+99], e.g. a specification given in equal parts in SDL and Matlab. The
focus here, with a specific view towards implementation in hardware, is on
standard components for which highly optimized designs already exist. An
example are peripheral components at the interface to the embedding system
like e.g. a PWM module, for which commercial IP versions are available.

It is possible to explicitly include such a predefined component in the SDL
system specification. A SDL block is assigned to represent the predefined
component as a black box. In an annotation to SDL, the assignment to
the component is fixed. The SDL block can either be left empty; this is
allowed in SDL to account for early specification phases. Or it can contain a
description of the component’s behaviour in SDL, if the component should be
included in the simulation at SDL level. The predefined component is linked
to the rest of the SDL system using the well known communication methods:
When SDL signals are used, the included components actively communicate
with the SDL processes via the message queues. With shared variables and
remote procedure calls, on the other hand, the component can be accessed
from within a SDL process, i.e. in the task bodies of the finite state machine
transitions.

The inclusion of the components in the final SDL implementation, as well
as the realization of the specified communication with the rest of the SDL
system, have to be performed as part of the automated design process, which
is described in chapter 6.



Chapter 4

Implementation of SDL in
Hardware

This chapter describes how an implementation of a SDL specification can be
realized in an application specific electronic circuit. For this, an important
influence is the state-of-the-art hardware design method, which is shortly
introduced in section 4.1. It is based on an abstract specification of the
hardware in the description language VHDL, which is synthesized into a
synchronous circuit design using commercial tools.

Section 4.2 shows the hardware implementation of a single SDL process,
which is specified in VHDL. The basic architecture consists of a hardware
implementation of the processes’ finite state machine and additional so called
run-time-components, which implement SDL’s abstract communication, the
message queue, and e.g. timers. This VHDL model is independent of the
intended target architecture, be it a single FPGA tightly coupled with soft-
ware execution units like in the already mentioned rapid prototyping system,
a multi-FPGA system or an ASIC. How such a VHDL specification can be au-
tomatically generated from SDL, and the integration in a hardware/software-
environment, is detailed in chapter 6.

The architecture presented in section 4.2 is basis of the different imple-
mentation models for an entire SDL system. The most straightforward of
these, the server implementation model, is presented in section 4.3. It di-
rectly reflects the process structure of the SDL system, and is the model used
in all other hardware implementation approaches for SDL.

In contrast to this stands the activity thread model known from the soft-
ware domain, which functionally combines the activities in the SDL system
which are triggered by one event. It is introduced, with two implementa-
tion alternatives, in section 4.4. Section 4.5 finally presents techniques for
combining the two implementation models.

27



28 CHAPTER 4. IMPLEMENTATION OF SDL IN HARDWARE

4.1 Hardware Design with VHDL

The language VHDL (VHSIC hardware description language) originated in
the 1980ies from the VHSIC (Very high speed integrated circuit) programme
of the U.S. department of defense. It has been standardized by the IEEE
([IEE00],[LWS94]), and is by now, next to Verilog, quasi-standard in the
hardware design domain.

A VHDL model consists of two major parts: The entity defines a compo-
nent’s interface, i.e. its inputs and outputs. One or several architectures de-
scribe the component’s functionality. VHDL allows different views on the de-
scribed hardware. In a behavioral description a component is defined through
the reactions of its output signals to changes in the input signals. Sequential
statements, which may occur inside a so called VHDL process, include con-
structs like if-else-branches, loops, data operations or procedure calls, similar
to software programming languages. Every statement, e.g. a signal assign-
ment, outside of a process is a concurrent statement, i.e. it expresses the
hardware’s parallelity. A structural description defines a component by its
composition of sub-components, which in turn are defined in VHDL. Struc-
tural and behavioral descriptions can be used side by side in one model.

The different levels of abstraction known in hardware design have al-
ready been briefly introduced in chapter 2. A VHDL description at al-
gorithmic level typically uses functions, procedures, processes and control
structure to express functionality, but has no relation to a concrete real-
ization in hardware, and no timing is fixed. At register-transfer level the
circuit’s properties are defined by operations and the transfer of the pro-
cesses’ data between registers. The temporal sequence of operations is given,
i.e. all operations are assigned to fixed clock cycles and reset-signals are
integrated. The description can be structural, where registers, adders, mul-
tiplexers, etc. are connected, or behavioural. Behavioural descriptions at RT
level typically are of finite state machine style, where statements of the type
wait until clock’event and clock = ’1’ indicate the different clock cy-
cles. A VHDL description at RT level already determines implicitly the
structure of the electronic circuit. At the logic level the circuit is described
by logic operations on digital signals and their temporal properties (delays).
A behavioural view at this level consists of boolean equations, while a struc-
tural description is a netlist connecting basic elements, i.e. AND/OR-gates
and Flip-Flops, from a target technology dependent library.

While it is possible to write a VHDL specification at all levels of abstrac-
tion, the state-of-the-art design flow starts at algorithmic or RT-level and
uses commercial tools to create a circuit design. Figure 4.1 depicts a possi-
ble design flow targeting a FPGA architecture. High level synthesis takes a
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specification at algorithmic level and generates a RT-level architecture of a
data-path and a controller. The main steps in this process are the assign-
ment of components (resource allocation) and of clock cycles (scheduling)
to the operations. Logic synthesis transforms a VHDL specification at RT
level into a netlist at logic level. Depending on the tool, only a subset of the
VHDL language can be synthesized. Usually vendor specific tools perform
placing and routing of the netlist, generating the programmable bitfile, which
contains the circuit design for the FPGA.

FPGA Bitfile

VHDL (RT level)

VHDL (RT level)

Logic Synthesis

Netlist (logic level)

VHDL (algorithmic level)

Place&Route

High Level Synthesis

Figure 4.1: Hardware design flow targeting FPGA

4.2 Implementation of a Single SDL Process

4.2.1 Component view

A SDL specification consists of processes, which communicate over abstract
communication primitives. For the implementation of a SDL process in hard-
ware, the processes’ behaviour must be realized, and a concrete implementa-
tion of the communication must be found. The latter, in contrast to the pro-
cess behaviour, is not explicitly contained in the specification, but is defined
implicitly by SDL’s model of computation. The functionality, i.e. message
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queue, send- and receive-primitives, is required by all processes, but at the
same time highly dependent on the actual conditions of the implementation,
e.g. the available communication hardware. The concept therefore is to em-
ploy reusable components from a library, termed run-time components. In
analogy to the software world, they provide an infrastructure for the SDL
process and serve to isolate the application from the underlying target archi-
tecture. Next to the SDL communication, this concept is also applied to the
implementation of SDL timers. The run-time components are not generated
automatically, but hand-written and optimized. They are most efficiently
specified in VHDL at RT-level. Like indicated in [BRM+99], further run-
time components are conceivable, e.g. for the storage of process variables in
a separate memory. They are however not considered in this work. Further
it should be noted that dynamic process creation is not supported in this
work. The result of the above considerations is the basic architecture for
implementing SDL in hardware, which is shown in Figure 4.2. Expressed in
VHDL, it corresponds to a structural view of the implementation.

Signal
Channels

Message
Queue

Finite State
Machine

Signal
Channels

EFSM

Timer

Figure 4.2: Basic hardware architecture implementing one SDL process

Section 4.2.2 describes the implementation of the process behaviour in
the block EFSM (extended finite state machine) in detail. The refinement
of SDL’s communication, the selection of the run-time components and their
inclusion in the hardware design, which is a focus of most projects targeting
SDL to hardware (e.g. [Glu94], [DMVJ97]), is addressed in chapter 6. In the
following, the functionality required of the run-time components is defined,
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and a brief characterization of the component library which has been used in
the exemplary implementations on the rapid prototyping target architecture
is given.

The signal channel is the actual medium over which SDL signals are
sent, which consist of a signal ID and optionally additional data. Obviously,
a great variety is possible, depending on the source and destination of the
channel – hardware, software, the system environment –, the realization of
the channel – point-to-point, bus – and the channel’s protocol. For a signal
output, a write on the channel occurs from inside the EFSM. Therefore, a
send macro or procedure implementing the channels protocol is needed for
the EFSM implementation. Analogously, the message queue requires a macro
for receiving signals from the channel. At both sides, coding and decoding
functions for signal ID and data have to be defined.

The processes’ message queue realizes SDL’s asynchronous communi-
cation insofar as a signal can be received even if the process is currently
not ready to process it. This makes a non-blocking send possible, within
the limits given by the signal channel’s protocol. The message queue has
input interfaces to one or several signal channels, implementing the chan-
nels’ protocol, and an interface to the finite state machine, where the EFSM
requests a signal when it is ready to process it. If the process contains no
save-statement, priority input or enabling condition, the message queue can
store the signals after a simple first-in-first-out principle. In this case, the
requested SDL signal is always removed from the queue. If one of the three
mentioned trigger conditions occurs in the process, the EFSM determines if
the current SDL signal is consumed in the current state, or if it has to be
kept in the message queue. In the latter case, the next signal in the queue is
regarded.

In SDL specifications, a message queue of infinite length is assumed. For
the implementation, however, the queue has to be dimensioned carefully.
Since the signal storage causes a very high hardware effort, it should be as
short as possible. A message queue which is too short, on the other hand,
violates SDL’s semantics since it causes an unexpected delay, in an extreme
example it can cause a deadlock. A real-time analysis, like presented in
chapter 5, can give bounds on the required size. In practice, a message queue
length of 1 or 0 is often sufficient. If it can e.g. be shown, that the minimal
distance of triggering events is always longer than the execution time of the
SDL process, the special case of message queue length 0, i.e. the completely
synchronous coupling between sender and receiver, can be applied.

The SDL timer is well suited to be implemented in an independent run-
time component. It can be reset and started from inside the process, and
the duration can be set. If started, it runs independently of the EFSM and
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notifies its termination by sending a SDL signal to the message queue. For
the message queue, the interface to the timer is not different from any other
signal channel.

The run-time components used in the examples (see also Appendix C)
are implemented fairly straightforward. Connections are made point-to-point
over simple wires, with a simple hand-shake protocol. The message queue’s
input interface guards all input channels, performing the hand-shake if it
detects a send request. If several channels attempt to send simultanously,
a fixed order is given. EFSM and message queue equally perform a simple
hand-shake. The queue queue_ln stores the SDL signals in a FIFO from a
commercial IP-library for queue sizes larger than 1. A message queue of size
1 (queue_l1) contains one register. In the queue of length 0 (queue_l0),
signal channel is directly connected with the EFSM, and no signal storing is
performed.

Further components form the necessary interfaces between SDL pro-
cess and message queue and the embedded system’s environment and the
HW/SW-interface. One set of components (rwdecode and doutmux) pro-
vide the interface to the local bus connecting the FPGA with the software-
based units, decoding the bus signals and accessing the bus over three-
state buffers. In the case of a write access from software, the component
write_to_sdl_signal intermediately stores the SDL signal and sends it to
the destination process using the hand-shake protocol. For the direction
hardware to software, the component hw_sw_queue receives the signals to
send from all processes and stores them in a queue. If the queue is not
empty, the software-based unit is notified over an interrupt and can read the
signal from the queue. At the border to the embedding system, the com-
ponent edge_to_sdl_signal observes the signal level of a defined FPGA
output pin, and upon observing a previously defined rising or falling edge
sends a predefined SDL signal to a process. In addition to that, direct read
and write access to external pins is possible from within the SDL processes.

4.2.2 Finite State Machine Implementation in VHDL

One hardware entity implements the behaviour of the SDL process strictly
after SDL’s model of computation presented in section 3.1.3. The specifi-
cation of this hardware entity is given in VHDL. Before the details of the
implementation are presented, however, a discussion is necessary which level
of abstraction is suitable.

The SDL processes’ behaviour is given in form of a extended finite state
machine. Like mentioned in section 4.1, this kind of description is customary
in a RT-level specification. It has to be observed, though, that the states of



4.2. IMPLEMENTATION OF A SINGLE SDL PROCESS 33

the SDL EFSM do not directly correspond to states of the hardware circuit.
The state of a synchronous electronic circuit denotes everything that has to
be stored in a register between two clock cycles. A complete SDL transition,
however, will usually require more than one clock cycle, since a hand-shake
with the message queue has to be performed and possibly a signal has to be
sent requiring the execution of the signal channel’s protocol. Additionally,
the transition can contain arbitrarily complex computation inside the SDL
tasks. A direct transcription of the EFSM in VHDL will therefore yield a
so called implicit state machine description, containing additional states in
the transitions. Commercial synthesis tools are able to translate this type of
specification into an explicit state machine for further processing.

SDL however does not define the exact timing information required at
RT-level. In the case of the interfaces to message queue and signal channels,
the exact timing is given by the RT-level specification of the components, like
outlined in the previous section. This is not the case for the computation
inside the transitions. If the process behaviour is specified at algorithmic
level of abstraction, the high-level synthesis tool performs the scheduling of
operations to clock cycles. In addition, the separation of controller and data
path makes component reuse possible, which is particularly interesting if
many complex data operations are contained in the SDL tasks. [BRM+99]
indicates how an algorithmic specification and the cycle-fixed communication
interfaces can be integrated during high-level synthesis. The drawback of
high-level synthesis, on the other hand, is a considerable overhead incurred by
separate controller and data path. It can particularly be found in applications
with low computational complexity, where little can be gained by resource
sharing.

Taking into account the assumption of section 1.2 that mainly simple
control-dominated processes are targeted to hardware, the following pro-
ceeding is therefore proposed: SDL processes are implemented in RT-level
VHDL, applying a very rough scheduling whereby each SDL task is assigned
to a clock cycle. The underlying assumption that this is a valid schedule
has proven to be true in the majority of the conducted application exam-
ples. For cases where one SDL task’s operation does not fit in one clock
cycle, the scheduling step of high level synthesis is used. The EFSM struc-
ture is conserved, and after scheduling RT synthesis is performed. A similar
combination of RT and high level synthesis is presented in [CSMJ00].

Figure 4.3 depicts the basic VHDL frame implementing one SDL process,
considering only the case of a simple FIFO message queue. The EFSM
is specified in one VHDL process, i.e. in a behavioural description, which
can be easily derived from the SDL model. During reset, signals and local
variables are initialized. The second branch is evaluated only once after reset
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main: PROCESS

BEGIN

IF reset = ’1’ THEN

-- initialize data --

ELSIF init = ’1’ THEN

-- execute start transition --

ELSE

IF (signal in queue) THEN

-- get signal from queue --

CASE signal IS

WHEN a =>

CASE state IS

WHEN Z =>

-- execute transition 1 --

WHEN Y =>

-- execute transition 2 --

END CASE;

WHEN b =>

-- execute transition 3 --

END CASE;

ELSE

-- evaluate continuous signals

END IF;

END IF;

WAIT UNTIL clock = ’1’ AND clock’event;

END PROCESS main;

Figure 4.3: VHDL frame for one SDL process

and contains the start transition. During normal operation, the message
queue is regarded first. If it contains a signal, it is removed and evaluated.
Depending on the current state, which is kept in a local variable, a transition
is executed. The EFSM can contain conditional branches, data operations
and the assignment of a new state, which are all directly translated to VHDL.
For the sending of a SDL signal, the appropriate channel protocol is inserted.
Only if the message queue is empty, continuous signals are evaluated and the
respective transitions executed.

Local variables of the SDL process are translated to VHDL variables be-
longing to the process scope, using the VHDL data types analogous to the
predefined SDL data types “boolean” and “integer”. View/reveal and im-
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port/export are implemented by direct wires to and from the process, the
latter with explicit assignment of the new visible value. Remote procedure
calls can be resolved at SDL level by additional wait states and signal ex-
change. In that fashion, they can be likewise integrated in the presented
VHDL frame.

Commercial CASE-tools often extend SDL by proprietary commands
which are inserted inside SDL comments, e.g. for assigning a priority to SDL
processes or the inclusion of code in the target implementation language.
In the latter case, the specified native C-code is inserted in the implemen-
tation by the code generator. The same is possible for a hardware target
as well, by inserting VHDL-code contained in the specification inside a task
statement. This proceeding leads to implementation dependent descriptions
and breaches the benefits of standardizing SDL, but is often useful for a last
fine-tuning for efficiency.

4.3 Server Implementation Model

A SDL specification typically consists not of one, but of several processes
interconnected by signals. In the server implementation model, each SDL
process is implemented on its own after the basic architecture presented in
section 4.2. The processes, each with its own EFSM and private message
queue, are connected via signal channels. The term server model is cho-
sen for this straightforward implementation scenario because here each SDL
process acts like a server, which exclusively waits for requests in the form
of triggering SDL signals. In SDL, processes are concurrent. In a software
implementation, several processes usually have to share one processor. In
a hardware implementation, in contrast to this, SDL processes are imple-
mented in truly parallel fashion. Several processes may be active at the
same time. In fact, each SDL process in hardware can be regarded like one
small processor implementing the specified behaviour.

Figure 4.4 shows an exemplary SDL specification and figure 4.5 the cor-
responding server model implementation. The specification consists of a
network of five SDL processes, communicating via messages mij. A transi-
tion triggered by message mij consists of a task cij and the sending of a new
message mi(j+1).
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Figure 4.4: SDL specification example

4.4 Activity Thread Implementation Model

The activity thread implementation model takes an alternative view of the
SDL specification. Seen from a black-box view, the implementation displays
the behaviour defined in SDL, but is internally built after a different fashion.
The activity thread model takes advantage of SDL’s property outlined in sec-
tion 3.1.3, that a SDL system is only active if triggered by an external event
from the environment or a timer output. It analyzes the chain of activations
in a SDL system caused by such a triggering event. The event is received by
an SDL process, triggers a transition, where in turn an SDL signal may be
sent to a second process, and so forth. This chain of activations in such a
task precedence system is called “activity thread”. Activity threads contain
state choices, branch at multiple SDL output statements in a transition, and
terminate with the sending of a message to the environment or with the con-
summation of an SDL message in a process without triggering a new SDL
output. Figure 4.6 shows the task precedence graph of the SDL example
introduced in figure 4.4, consisting of two activity threads.

All actions and state changes contained in the transitions along an ac-
tivity thread are implemented sequentially. Signal outputs are replaced by
the activities triggered in the receiving SDL process , thereby avoiding the
message send and receive overhead between the processes.

An activity thread is implemented in one VHDL process. It requires
the basic architecture and run-time support presented in section 4.2. A
message queue, whose length is determined by real-time analysis, ensures
that no signals are lost. SDL signal output to the environment is realized over
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send-macros to signal channels. The activity thread’s behaviour is likewise
implemented in a finite state machine, which is depicted in Figure 4.7. The
VHDL realization of the content of the transitions is identical to the already
presented EFSM implementation of a single SDL process. The only difference
lies in the control flow. Several levels of conditional branches are introduced
for the state choice of all SDL processes involved in the activity thread.
Depending on the SDL model, a high degree of nesting may be reached.
Conditional branches for the various input signals on the other hand are
superfluous.

Since all internal communication is abolished, signal channels and mes-
sage queues are saved. This has the additional benefit that, given a low
complexity of transition, several transitions belonging to different SDL pro-
cesses can be scheduled in one clock cycle. This reduction of execution time
is not possible in the server model, because transitions are separated by the
signal channels.

Special attention has to be paid to a semantically correct implementation
concerning process data consistency. The state transitions of one process
must exclude each other mutually, i.e. they may not be executed at the same
time and one transition must be finished, before the next transition of the
same SDL process is executed. To ensure this, it is necessary to reorder the
execution of each transition in such a fashion that the signal output, which
in the activity thread model is replaced by the transition of the destination
process, comes after all other operations. This constitutes no change in the
specified behaviour, but only delays the start of the next transition until the
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Figure 4.6: Task precedence graph of the SDL system from figure 4.4

current transition is finished. In the other case, a loop in the SDL system
could make it possible that a second transition of one process is started before
the first has been finished.

The activity thread branches when several SDL outputs are contained
in one SDL transition. This can be resolved inside the VHDL process by
executing the branches one after the other. To achieve a parallel execution,
the branches have to be implemented in concurrent VHDL processes, which
can be connected with the help of the methods presented in section 4.5.

In general, a SDL system has more than one triggering event and there-
fore consists of several activity threads. In hardware, each activity thread
could be executed in parallel. This would correspond to a dedicated proces-
sor exclusively waiting for each external event. Depending on the type of
application, and on the temporal specification of embedding and embedded
system a second alternative can be more efficient in area and response time.
Figure 4.8 shows the two architecture alternatives, using the example from
figure 4.4.

In the serialized activity thread architecture, all activity threads are
implemented in one VHDL process. One event at a time is taken from the
input message queue, and the corresponding activity thread is executed. The
VHDL finite state machine frame in Figure 4.7 therefore is complemented by
conditional branches depending on the triggering signal. The activity threads
are serialized inside one VHDL process. This has the effect that no problems
due to mutual access on the data shared by the activity threads, i.e. state
and local variables of the SDL processes, can occur.

The parallel activity thread architecture implements each activity
thread in its own parallel VHDL process with its own input message queue.
It is obviously possible that transitions belonging to one SDL process are
part of different activity threads. In this case, different concurrent activity
threads must be able to access this processes’ state and local variables. At
the same time, it must be provided that only one transition belonging to one
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main: PROCESS

BEGIN

IF reset = ’1’ THEN

-- initialize data --

ELSIF init = ’1’ THEN

-- execute start transitions --

ELSE

IF (signal in queue) THEN

-- get signal from queue --

CASE state_process_1 IS

WHEN X =>

-- execute task 1 --

-- execute state change --

-- signal output to process_2 is replaced:

CASE state_process_2 IS

WHEN A =>

-- execute transition 2 --

WHEN B =>

-- execute transition 3 --

END CASE;

WHEN Y =>

-- execute transition 4 --

END CASE;

END IF;

END IF;

WAIT UNTIL clock = ’1’ AND clock’event;

END PROCESS main;

Figure 4.7: VHDL frame for one activity thread

SDL process is executed at the same time. Otherwise, the consistency of the
shared data is not guaranteed and faulty execution is possible. Therefore,
an additional run-time component is required, which implements the storage
of shared process state and local variables, protected by a lock mechanism.
Like shown in chapter 5, short blocking times are crucial for real-time execu-
tion and analysis. The implementation of signal outputs after the rest of the
transition, which is required for semantical correctness, has the additional
advantage of minimal blocking times of the shared process data.

A shared data component stores the local state and variable data of one
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Figure 4.8: Activity thread model alternatives

SDL process. It has to provide read and write access to several activity
threads as well as a mutual exclusion mechanism. For the case of several
activity threads attempting to execute a transition of the process, different
strategies are possible. A first-come-first-serve policy resembles most closely
the original execution order of the SDL specification. A second option is a
locking order after priorities, which are firmly assigned to the different activ-
ity threads. In the case of the shared data component, the implementation
after FCFS creates higher cost than the priority scheme, because the locking
request (in contrast to a SDL signal) needs not to be further transmitted.
A FIFO storing the requests therefore creates a hardware overhead. In both
cases, the preemption of transitions is not possible. For the experiments on
the rapid prototyping system, a priority based component was used.

4.5 Combination of Implementation Models

Each SDL signal connects two SDL processes in an asynchronous manner.
Because of this quality it can serve as a connection point between parts
of the SDL system implemented after different implementation models. In
particular this means:

• Each SDL signal can start an activity thread, coming from the en-
vironment, a timer, or an SDL process implemented after the server
model.



4.5. COMBINATION OF IMPLEMENTATION MODELS 41

• Each activity thread (or a branch of an activity thread) can be termi-
nated by the sending of an SDL signal to the environment, to a different
activity thread, or to a server process.

The already mentioned scenario with several consecutive output state-
ments in one transition can be implemented concurrently by a SDL signal
connection to a second VHDL process implementing the part of the activity
thread belonging to this signal.

A second interface between different implementation models can be given
by the shared data component. It ensures the SDL processes’ integrity, while
its transitions can arbitrarily be implemented in different VHDL processes.
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Chapter 5

Real-Time Analysis

Once the implementation model for the SDL system has been determined and
the run-time components have been chosen from the library like described
in chapter 4, the temporal behaviour of the implementation is fixed. The
worst-case and best-case execution times of the EFSM and the run-time
components can directly be read from their respective VHDL descriptions.
As part of the specification outlined in chapter 3, the temporal properties
of the environment have been defined with the help of event streams and
event dependency matrices. With all this information assembled, a real-time
analysis is possible, which gives guarantees on the worst-case reaction time
to external events. As a by-product, the necessary length of message queues
can be determined.

After the definition of the analysis model and the terms used throughout
this chapter in section 5.1, section 5.2 presents the real-time analysis for the
server implementation model. In a first step, the reaction time to a triggering
signal is determined from the execution time and the worst case waiting time
of the signal in the message queue. Since the latter is influenced by the
occurence of other signals, taking event dependencies into account can greatly
reduce too pessimistic assumptions. The inclusion of event dependencies in
the real-time analysis is described in section 5.2.2. The event streams of
triggering events from the environment or timers are assumed to be given as
part of the specification. In a network of SDL processes, a SDL process can
be triggered by a signal originating from a different SDL process. The event
stream of such an “internal” SDL signal can be derived from the triggering
event streams and the worst and best case execution times of the sending
process, like presented in section 5.2.3.

As outlined in section 4.4, the structure of a serialized activity thread
implementation is identical to a server process. In section 5.3, therefore, the
real-time analysis methods of the server model are applied to serialized activ-

43
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ity threads. In the parallel activity thread model, the server model’s waiting
times in the message queue correspond to blocking times at the shared pro-
cess data components. Section 5.4 presents the real-time analysis for this
implementation model, taking into consideration the execution scheme in-
side the separate activity threads. Section 5.5 deals with the analysis of
an entire SDL system consisting of several processes, implemented after the
server model or a combination of the different implementation models. Sec-
tion 5.6 finally investigates the required depth of the message queue and the
effects of a queue dimensioned too small on the real-time behaviour.

5.1 Real-Time Analysis Model

5.1.1 Definitions

As mentioned before, this work concentrates on event-driven reactive hard
real-time systems, where the worst-case, i.e. maximum response time to a
triggering event has to be determined.

Process P
g

f

e

qe, ceESϕ

ESγ

ESε

qf , cf

Figure 5.1: Top-level view of an implementation process P

An implementation entity P to be investigated, which can either be a
SDL server process or an activity thread, has a set IP of SDL input signals.
Each SDL signal i ∈ IP can originate from one of several signal sources
ι ∈ Si. Si is the set of all signal sources which can output signal i. Each

signal source ι is characterized by an event stream ESι :
{

(

zj
aj

)

j=1...n

}

. For

each signal i, the queueing time qi is required to receive and enqueue it,
and the computation ci is triggered by it in the receiving implementation
process. Hereby, ci denotes the worst case execution time and cmin,i the best
case execution time necessary to process the event in the EFSM.

For event tuples describing periodic events, i.e. zj < ∞, the worst case
steady utilization of the implementation process is given by:



5.1. REAL-TIME ANALYSIS MODEL 45

U =
∑

i∈IP

n
∑

j=1

ci
zj

(5.1)

A correlation between two signal sources can be expressed with an event
dependency matrix EDM , whose elements edκι denote the minimum tem-
poral distance between an occurrence of a signal originating from κ and a
subsequent occurrence of a signal originating from ι.

The worst case waiting time w of a signal in the message queue and the
overall worst case reaction time r have to be determined by the real-time
analysis.
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re→f

weqe ce

ce→f

re,A

Figure 5.2: Timing relationship in a precedence system

The temporal relationship between these values is detailed in figure 5.2.
A signal e is received using the channel’s protocol and put into the message
queue. The EFSM, running independently of the queue, removes the signal
from the queue and executes the appropriate transition, during which one or
several new SDL signals can be output. The queueing time q encompasses
qreceive and qenqueue, where depending on the message queue’s implementation
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qenqueue can already be contained in qreceive. Computation ce caused by signal
e in the EFSM consists of the time d to remove the signal from the message
queue plus the time to execute the transition, which is detailed below. Ad-
ditionally, the time ce→f is defined, which denotes the time until a signal f ,
which is triggered by e, is output during the transition.

Accordingly, re,A denotes the time that elapses until the reaction of im-
plementation process A to e is finished. re,A consists of queuing time qe,
execution time ce and additional waiting time we in the message queue. The
reaction time re→f in contrast denotes the time until the signal f has been
output in reaction to e. Like detailed in figure 5.2, re→f comprises we, qe,
the execution time ce→f plus the time sf necessary to output f on the signal
channel.

Figure 5.2 reveals that due to the hardware’s parallelism, the activities in
the EFSMs and message queues of a precedence system overlap in time. A
task precedence graph is an alternative view of the SDL system, which clearly
displays the precedence relations in the SDL system and helps determining
which signals, processes and transitions are involved in the reaction to an
external signal. An example of a task precedence graph was already shown
in chapter 4 in figure 4.6.
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Figure 5.3: Derivation of the task precedence graph

As can be seen in figure 5.3b, a transition triggered by a signal in the
EFSM can contain different computations and signal outputs due to con-
ditional execution. The transitions contained in the task precedence graph
(5.3c) therefore do not correspond directly to the original transitions of the
EFSM. Instead, they enumerate the different behaviour alternatives which
can be triggered by an input signal. In the following, t stands for a transi-
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tion in the task precedence graph. Te denotes the set of transitions t which
can be triggered by signal e. tt represents the time required to execute the
transition t, not including the time to output any signals. Ot is the set of
signals which are output in transition t.

A signal e can appear several times in the task precedence graph. This
is the case when, like e.g. in figure 5.3, the signal output is inside condi-
tional branches, occurs in several transitions, or when the signal is output
of different SDL processes. In the following, it is however required that the
destination process P of each signal e has to be unique. If this is not the case
in the SDL specification, differentiating signal names have to be introduced.
Each occurence of the signal in the task precedence graph is a unique source
ε of this signal e. Se denotes the set of all sources of signal e in the SDL
system. The derivation of the event streams and event dependencies of the
internal signal sources is adressed in section 5.2.3 and 5.2.4.

The part of the task precedence graph triggered by one external signal
is termed task precedence system (TPS). A branch Re describes one specific
path through the task precedence system triggered by the external signal e.
It is a sequence of transitions t, beginning with the first transition triggered
by e. It constitutes one possible reaction to the external signal e. Be is the
set of all branches in the task precedence system triggered by signal e, and
therefore fully defines this task precedence system. Z denotes the set of all
task precedence systems of the entire SDL system, characterized by their
triggering signals e. Two further sets of signals are needed for the activity
thread implementation model: Ee is the set of all signals of the TPS e which
are sent to the environment. AP,e is the set of all signals of TPS e which are
received by process P .

Figure 5.4 summarizes the variables relevant for real-time analysis.

5.1.2 Level of Abstraction

The view on the system to be analyzed outlined in the previous section
shows a high level of abstraction. The SDL system is simplified to external
signals triggering a computation, described only by an upper and lower bound
on its duration, during which new signals can be sent. As will be seen in
the following, at this level of detail it is possible to perform a real-time
analysis which is guaranteed to cover the worst case. The analysis algorithms
require a limited effort and can be automated. This method however has
two major drawbacks. Firstly, the general use of the maximum computation
time without regard of the function described in the EFSM can lead to overly
pessimistic worst case assumptions. An example is a frequent external signal
that only every n occurences triggers the output of an internal signal with



48 CHAPTER 5. REAL-TIME ANALYSIS

IP set of input signals of process P
Se set of signal sources of signal e
Te set of transitions triggered by signal e
Ot set of output signals of transition t

Z set of task precedence systems (TPS) forming the SDL system
R sequence of transitions characterizing one path of a TPS
Be set of branches R constituting the TPS triggered by signal e
Ee set of all signals sent to the environment in TPS e

AP,e set of all signals received by process P in TPS e

ESε event stream of signal source ε
edεϕ minimum distance between signals from sources ε and ϕ

w waiting time in message queue
b blocking time of shared data
re,P reaction time of process P to signal e
re→f time required for output of f in reaction to e

c,cmax worst case execution time
cmin best case execution time
ce execution time required to process signal e
ce→f execution time for the output of f

tt time required to execute transition t (without signal sending)
se time required to send signal e
q queueing time
d dequeueing time
l time required to lock shared data
u time required to unlock shared data

Figure 5.4: Variables used during real-time analysis

a very long computation. Secondly, the behaviour of a SDL process using
priority input, save and enabling conditions statements can not be described
using this abstract model. This is due to the fact that in this case signals are
not always consumed instantaneously, but may be kept in the message queue.
It then depends on the functionality of the EFSM and not the given event
stream of the external signal, when the respective computation is triggered.

The two adressed problems would require including the functionality de-
scribed in the SDL system in the real-time analysis in order to obtain more
detailed information which transition is executed in which situation. At this
level of detail, however, it is no longer possible to find a general solution
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yielding the worst case reaction time. By executing the SDL specification,
different scenarios would have to be created, with an enormous effort and no
guarantee that the worst case has been met.

Taking into account this tradeoff, the following procedure is proposed.
The use of SDL is restricted to a subset excluding the priority input, save
and enabling conditions statements, and real-time analysis is performed at
the described high level of abstraction. If the result is too pessimistic, such
that no feasible implementation can be found, in a second step further infor-
mation can be added to the real-time model by the designer. With additional
event streams and event dependencies, knowledge about the functionality can
be expressed. In the example mentioned above, an event stream annotated
to the internal signal could express that it occurs only infrequently. A second
helpful notion is the concept of modes, which can express the mutual exclu-
sion of entire groups of signals or computations depending on the operation
mode of the system. These ideas are seized in the treatment of SDL systems
in section 5.5.

5.2 Server Implementation Model

5.2.1 Reaction Time

A SDL process’ reaction time to a signal, like outlined in section 5.1, consists
of the queueing time q, the computation time c and a variable waiting time
w. In a server model implementation, the computation time ce consists of
the dequeuing time, the time to execute the transition triggered by e plus
the time required to output the signals:

ce,max = max (de + tt +
∑

i∈Ot

si ∀t ∈ Te) (5.2)

Waiting timew arises when the processing of the signal is delayed because
of other signals. Such a delay can occur at both entities which comprise the
SDL process, the message queue and the EFSM. Figure 5.5 shows such a
situation, where three signals are sent simultaneously to a SDL process.

Depending on the channel protocol and the implementation of the queue,
a first delay will arise if the message queue can not be written simultaneously.
The EFSM processes the signals sequentially in first-come-first-serve order,
resulting in a possible second delay. It becomes clear from figure 5.5 that
those two delays overlap due to the parallel execution of message queue and
EFSM. For the real-time analysis it is therefore sufficient to calculate the
waiting time only from the execution order in the EFSM. An upper bound of
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Figure 5.5: Detailed view of the waiting time

the response time of one SDL process to a signal e is given by equation (5.3),
utilizing the maximum possible queueing times if the queueing times of the
signals differ.

re = max(qi∈IP ) +we + ce (5.3)

The problem to be solved now is identical to the determination of the
reaction time of software tasks on a single processor with a first-come-first-
serve-scheduler and no preemption, where the computation triggered by one
signal corresponds to one task. In a first step, no event dependencies are
considered.

Figure 5.6 serves to illustrate one basic effect of a pure first-come-first-
serve strategy when the waiting time of one event e, in the example signal b,
has to be found: Events arriving after e have no effect on the waiting time,
since they are strictly proceeded later. Instead, the history of events arriving
before e determines the waiting time of e. To qualify the worst case waiting
time, a bound has to be given on the number of signals with their respective
required amount of computing which can already wait in the message queue
at the time of arrival of signal e.

t0 denotes the time of arrival of signal e. Now, for each time interval I
before t0, the maximum number of all signals i ∈ IP that can arrive from
signal source ι ∈ Si within I is specified as Eι(I), each arrival requesting
ci computation time. Therefore, the entire amount of computation time
requested within interval I can be written as
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Figure 5.6: First-come-first-serve computation with different event sequences

C(I) =
∑

i∈IP

∑

ι∈Si

Eι(I) · ci for independent signals

Since C(I) is calculated for all signals i ∈ IP , it also includes all previous
occurences and the current arrival of the observed signal e. Under the as-
sumption that I is a busy period, i.e. that the EFSM is never idle respectively
the message queue never empty within I, the amount of computation already
performed within I is I. Taking also into account, that the computation for
the current signal e is by definition not part of the waiting time, the waiting
time for e considering interval I is:

we(I) = C(I)− I − ce

An interval I is a busy period if its requested computation is larger than
or equal to the interval, i.e. C(I) − I ≥ 0. The term C(I) − I is equivalent
to the unfinished work U(t) which is used in queueing theory (e.g. [Kle75]).
The worst case waiting time now is given as the maximum we of all I which
meet the busy period criterion:
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we,max = max
(

C(I)− I − ce

)

(5.4)

Starting with I = 0, only intervals until the first break of the busy period,
i.e. the first time C(I)− I drops below zero, have to be investigated. Taking
into account the required property of a valid event stream formulated in
equation 3.6, it can be shown that the first maximum of we can never be
exceeded later.

It should be noted that equation 5.4 makes no assumption on the temporal
distribution of the signals, the required computation and the signal’s dead-
lines, i.e. it is valid for all event streams. Obviously, if the steady maximum
utilization is larger than 100%, which means that the requested computa-
tion C(I) exceeds I for all possible I, the worst case waiting time increases
without bound.

Figure 5.7 shows the derivation of we,max for the example already used
in figure 5.6. Note that the worst case reached for signal B corresponds to
scenario 2 in figure 5.6.

An important special case, which simplifies the derivation of wmax, is
given when the entire computation requested by all signals which can occur
simultaneously is smaller than the given minimum distance of any two sig-
nals i from source ι, i.e. C(0) ≤ a2,min. For this situation it can be shown
that the worst case reaction time is already found at I = 0, and is given as:

we,max = C(0)− ce for C(0) ≤ a2,ι ∀ ι ∈ Si, i ∈ IP (5.5)

The guarantee that the worst case response time is lower than the mini-
mum distance of any two signals in turn is equivalent to the statement that
the message queue will never contain the same two signals.

In purely periodic systems, the mean steady utilization must be below
100%:

U =
∑

i∈IP

n
∑

j=1

ci
zj
≤ 1 (5.6)

If this is the case, it can be shown that the worst case waiting time is also
already reached at I = 0. The necessary and sufficient condition ensuring
that a deadline equal to the period can always be met is again C(0) ≤ a2,min.

5.2.2 Event Dependencies

Taking event dependencies into account, in the present case the specified
pairwise minimum event distances edαβ between two event sources α and β,
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Figure 5.7: Determination of w for the example from figure 5.6

can greatly relax real-time analysis. It has no longer to be assumed that
all events can occur at the same time. Since the FCFS processing order
is not affected, like before, the maximum computation which can wait in
the message queue at the time of arrival of an observed event e has to be
determined. In contrast to the previous section, however, it can not be
directly derived from the event functions. The sum of Eι(I) assumes the
worst case of all events occuring as soon as the event distances aj allow.
Depending on the given event dependencies, this might no longer be possible.
It is then no longer evident in the general case, which event sequence leads
to the worst case.

The task to determine the worst case waiting time of a signal e now
can be formulated as follows: For each interval I preceding a point in time
t0, find the maximum possible required computation C(I) which satisfies
the specified event functions and event dependencies, given the occurence of
signal e at t0.
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One possible solution to the described problem is the enumeration of
all possible events sequences like described in [Gre93a], using a branch-and-
bound search algorithm. Each node of the search tree built by the algorithm
corresponds to an event sequence which precedes the occurrence of signal e
at the time interval I = 0 as root node, as illustrated in figure 5.8.

"22"

"2"

"12"

"112" "212" "122" "222"

Figure 5.8: Possible event sequences preceding an occurence of signal 2 at t0

Each node is characterized by the minimum time interval I in which this
particular sequence can occur, and the overall computation C requested by
this sequence in the interval. Starting from one node, a branch to a new
node is introduced for each different signal i from source ι that can occur
before. The time distance to this new signal, which determines the I of the
new node, is given by the event streams and event dependencies. A node
which will clearly not lead to the worst case, since there exists at least one
other node with both a larger C and a smaller I, needs not to be explored
further and can be deleted. The search tree has to be built breadth first to
avoid the exploration of branches which could be deleted early.

Each node contributes a candidate for the worst case requested compu-
tation C(I) for its interval I. C(I) is the sum of the computation requested
by the node’s event sequence plus the maximum computation which can be
caused by additional independent signals in this interval. From figure 5.9 it
becomes clear that the time intervals I do not increase uniformly from node
to node. It is therefore useful to record each new node in a list sorted after
the time intervals I. All possible candidates for one particular Ix have been
found if the nodes of all branches still active have reached intervals larger
than Ix.

Analogously to section 5.2, it can be shown that only intervals I have to
be investigated until the first I0 where all nodes show C(I)−I < 0. Once the
maximum requested computation C(I) for each interval I has been found,
the worst case waiting time can be determined using equation 5.4. It is clear
that the search tree grows exponentially with nm, where n is the number of
dependent events and m the number of signals in the event sequence. This
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Figure 5.9: Search tree example

becomes particularly dramatic if groups of n > 2 dependent events are given.
In practice, however, only a very limited number of sequential events has to
be considered: In the special case where each signal has to be processed before
the next of its kind arrives, only nodes in the depth m ≤ n can contribute
to the current signals waiting time. In general, all nodes with m > n and
C(I) − I > 0 signify that signals accumulate in the message queue. If the
steady utilization is not larger than 100%, obviously this can occur only for
limited time intervals I.

Figure 5.9 depicts an exemplary search tree for an occurence of signal 2
at time t0. It can be seen that at each level only one node needs to be
followed further, since all other nodes can be deleted after the condition
C(I) − I < 0. The worst case waiting time for signal 2 in this example
results in w2,max = C(1)− 1− c2 = 1.
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5.2.3 Output Event Stream

The analysis of entire SDL systems also requires the event streams of internal
SDL signals, which do not originate from the environment, but are output
of SDL processes. Figure 5.10 depicts such a scenario where several signals
are input to a SDL process P . The transition triggered by signal a outputs
the internal signal d.
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Figure 5.10: Example for internal signal d

Figure 5.10 illustrates the effect of a possible delay of the processing of a
from signal source α due to other signals. The timing diagram shows that d
can occur in shorter time distances than specified in the event stream ESα,
albeit obviously never shorter than the minimum execution time ca,min.

The problem to be solved in order to determine a new valid event stream
ESδ describing the new source δ of signal d is to find the shortest possible
time intervals a1, a2, a3, etc., in which one, two, three, etc., signals d can
occur. It becomes evident from figure 5.10 that the minimum event distance
between two signals d results when one occurence of a, which is maximally
delayed, is followed by a signal a which is immediately processed. When the
minimum interval for two signals is known, the time interval for three signals
obviously is minimum when a third signal also occurs as early as possible.

The worst case scenario is therefore characterized as follows: One signal a
has to wait the maximum time in the queue and requires the maximum
execution time ca,max. All following events a are processed as early as possible
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in the shortest execution time ca,min. Regarding the other signals, this means
that as many as possible occur before the observed signal a, and none after1.
All parameters of this worst case are known already. ca,min and ca,max are
given, the maximum waiting time wa,max of signal a can be determined using
the algorithms from section 5.2.1 and 5.2.2, and the minimum distances of
following signals a is given by ESα.

The basic rule for deriving the event stream ESδ from ESα can be di-
rectly read from the description of the worst case scenario. The minimum
time interval for j signals d is equal to the minimum interval specified for j
signals a, diminished by the worst case delay for a, consisting of the maxi-
mum waiting time and the difference between ca,max and ca,min. Expressed in
other words, the event stream ESδ results from event stream ESα subjected
to a jitter J with

J = wa,max + ca,max − ca,min (5.7)

Each interval of ESα has to be shortened by J , while at the same time
observing the two given conditions:

aj ≥ 0 (negative time intervals are not possible) (5.8)

aj − aj−1 ≥ ca,min (minimum event distance is ca,min) (5.9)

This is identical to a left shift of event function Eα(I) by J , which when
necessary has to be modified such that the two conditions are met.

Figure 5.11 gives an algorithm which generates the worst case ESδ from
ESα for any given J , generating an event stream that complies with the
conditions given in equation 5.8 and 5.9. Since condition 5.9 is independent
of J , the algorithm has to be applied also in cases where no waiting time due
to other signals can occur. The example from figure 5.10 is seized again in
figure 5.12, where both the graphical modification of the event function and
the application of the algorithm are demonstrated.

The special case C(0) ≤ a2,ι ∀ ι ∈ Si, i ∈ IP , which has been already
mentioned, greatly simplifies the derivation of ESδ. It guarantees that J ≤
a2 − ca,min. In this case, for each event tuple of ESα the rules given in
table 5.1 can be directly applied.

Remark on the utilization of wa,max: It is possible that the worst case
wa,max results from previous occurences of the observed signal a. If a dis-
plays a bursty behaviour, which means that only a limited number of signals

1Since their event streams give only a minimum and no maximum event distance, this
is compatible with their time specification.
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Table 5.1: Derivation of ESδ from ESα for J ≤ a2 − ca,min

a can occur one after the other, the proposed algorithm is slightly too pes-
simistic. It assumes the maximum number of consecutive signals a after t0,
which is inconsistent with the occurences of a before t0 necessary to reach
the maximum wa,max. If a very exact analysis is required, a modified ESα
which takes the previous occurences of a into account can be used in the
presented algorithm. In general, however, the described slightly too negative
assumption can be accepted.
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**** Generation of event stream ESδ ****

(1) generate intermediate event stream ES ′

with z′l := zj,a, a′l := aj,a − J

(2) investigate smallest a′l of ES ′

IF (a′l < 0)
k := 1
ak,d := 0
zk,d :=∞
IF (z′l 6=∞)

a′l := a′l + z′l
z′l := z′l

ELSE

remove z′l, a
′
l from ES ′

END IF

LOOP until ES ′ is empty

(3) investigate smallest a′l of ES ′

IF (a′l − ak,d < ca,min)

k := k + 1
ak,d := ak−1,d + ca,min

zk,d :=∞
IF (z′l 6=∞)

a′l := a′l + z′l
z′l := z′l

ELSE

remove z′l, a′l from ES ′

END IF

ELSE

k := k + 1
ak,d := a′l
zk,d := z′l
remove z′l, a′l from ES ′

END IF

END LOOP

ELSE

ESδ := ES ′

END IF

Figure 5.11: Derivation of ESδ from ESα for general J
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5 100 I15−5−8

1 5 100

1

I15

ca,min

Eα(I)

E′(I) = Eα(I + 8)

Eδ(I)

ESα :
{(

7
0

)}

; ca,min = 2; ca,max = 3; wmax,a = 7; ⇒ J = 8

(1) intermediate event stream ES ′ :
{(

7
−8

)}

(2) smallest a′l = −8 < 0:
k := 1; ak,d := 0; zk,d :=∞
⇒ new ESδ :

{(

∞
0

)}

z′l = 7 6=∞:

a′l := a′l + z′l = −1⇒ new ES ′ :
{(

7
−1

)}

LOOP until ES ′ is empty

(3) smallest a′l = −1
a′l − ak,d = −1− 0 < ca,min:

k := 2; ak,d := ak−1,d + ca,min = 0 + 2 = 2; zk,d :=∞
⇒ new ESδ :

{(

∞
0

)

,
(

∞
2

)}

z′l = 7 6=∞:

a′l := a′l + z′l = 6⇒ new ES ′ :
{(

7
6

)}

(3) smallest a′l = 6
a′l − ak,d = 6− 2 > ca,min:

k := 3; ak,d := a′l; zk,d := z′l
⇒ new ESδ :

{(

∞
0

)

,
(

∞
2

)

,
(

7
6

)}

⇒ new ES ′ : {}
END LOOP

⇒ ESδ :
{(

∞
0

)

,
(

∞
2

)

,
(

7
6

)}

Figure 5.12: Graphical and algorithmical derivation of Eδ(I) for the example
from figure 5.10
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5.2.4 Derived Event Dependencies

Event dependencies are given as part of the specification for external SDL
signals. For specific scenarios they can additionally be derived by an analysis
of the implementation.

Event dependencies between signals from one SDL process Be-
tween two internal SDL signals originating from the same SDL process, a
minimum event distance is automatically given by the fact the EFSM can
only execute one transition at a time. Figure 5.13 details this causal relation.
In the depicted example, signal a triggers the output of signal c and signal b
triggers d. The minimum distance of an event d to a predecessor c from a
different transition is at least equal to the minimum execution time of the
rest of the transition where c is sent plus the execution time of the transition
triggered by b up to the sending of d:

edγδ = ca,min − ca→c,max − sc + cb→d,min + sd (5.10)

t

t

t

Transition 1

EFSM P

Signal d

Signal c

Signal a

t

t

Signal b

sendsendsend

Transition 2Process P

Process P

send

b d d

a

b

ca c
Process P

edγδ

ca,min cb,mincb,min ca,min

edδγ

δ

γ

Figure 5.13: Event dependencies between signals from one SDL process (dif-
ferent transitions)
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Figure 5.14 shows the situation of two events sent during the same transi-
tion. The minimum distance between the new signal sources β and γ, under
the assumption that b is sent before c, is given as:

edβγ = ca→c,min + sc − ca→b,max − sb

edγβ = ca,min − ca→c,max − sc + ca→b,min + sb
(5.11)

t

t

Transition 1

EFSM P

Signal c

Signal b

t

t

Signal a

t
send c

Process P

send c send bsend b

a a

c

bb

c
Process P

edβγ

ca,min

β

edγβ

γ

Figure 5.14: Event dependency between signals from one SDL process (one
transition)

Propagation of event dependencies between SDL processes Fig-
ure 5.15 shows two SDL processes P and Q. The signal e triggers process P
to output signal g after at least time re,min, and at most re,max. Analogously
signal f triggers Q to output signal k in time rf , with rf,min < rf < rf,max.

Given event dependencies edεϕ and edϕε, under certain circumstances min-
imum distances between g and k can be guaranteed as well:

edγκ =

{

edεϕ + rf,min − re,max if edεϕ + rf,min ≥ re,max

0 else
(5.12)
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Figure 5.15: Propagation of event dependencies between SDL processes

and

edκγ =

{

edϕε + re,min − rf,max if edϕε + re,min ≥ rf,max

0 else
(5.13)

5.3 Serialized Activity Thread

A serialized activity thread implementation is structurally identical to the
implementation of a single process after the server model. All signals are
received by a message queue. An independently running finite state machine
removes the signals from the queue in first-come-first-serve order, and ex-
ecutes the according activity thread. Therefore, the algorithms presented
for the server model in section 5.2 can be directly applied to the serialized
activity thread model.

The execution time ce triggered by a signal e, which is a central param-
eter of real-time analysis, consists of the dequeueing time de and the time
required to execute the entire activity thread, including any si required to
output an external signal i to a channel. The execution time of the activ-
ity thread is determined by its VHDL implementation. The execution times
of the tasks along the activity thread can be added. Where the activity
thread branches due to multiple output statements, the execution times of
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all branches have to be added. The conditional execution of parts of the ac-
tivity thread, in contrast, represents a true alternative. The execution times
of these parts therefore contribute candidates for the maximum respectively
minimum computation time of the activity thread. Therefore, the worst case
execution time triggered by e is given as follows:

ce,max = de +max
(

∑

t∈R

tt +
∑

i∈Ee

si ∀R ∈ Be

)

(5.14)

For the exemplary SDL system used in chapter 4 (see figure 4.6 and 4.8),
this results in execution times cat,m = dm+max({tt1+tt4+tt7}, {tt2+tt5+
tt7}) and cat,n = dn + tt3 + tt6 + tt7 + tt8 + st.

The execution time of an activity thread generally bears no similarity to
the execution times of processes involved in the processing of the same signal
in a server model implementation. In the activity thread, the sending and
receiving of internal signals is missing. It only contains transitions actually
involved in processing the signal, which is not reflected in the cmax and cmin

of the SDL processes. On the other hand, a possible parallel processing
in different SDL processes is executed sequentially in the serialized activity
thread model.

5.4 Parallel Activity Thread

The basic architecture of a parallel activity thread implementation process
consists of one message queue and one activity thread which processes the
incoming signals in first-come-first-serve order. The algorithms presented in
section 5.2 are therefore valid as well for this implementation model. The
analysis is simplified by the fact that here one implementation process always
deals with only one signal type.

The challenge of the parallel activity thread model lies in the determina-
tion of the worst case execution time ce triggered by signal e. Figure 5.16
shows possible cm and cn of the activity threads triggered by signals m and
n of the example presented in chapter 4.

The execution time of transition t of SDL process P is denoted tt. Like
already outlined in section 4.4, in the activity thread implementation it is
necessary to change the execution order of the transition in such a way that
the output of a new signal occurs after everything else in the transition. tt by
definition does not contain any signal outputs. Outputs of internal signals are
replaced by the transitions triggered in the receiving processes. The time si
to send signals i to the environment has to be considered separately. Before a
transition of a SDL process which appears in several activity threads can be
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Figure 5.16: Parallel execution of activity threads from figure 4.8

executed, the shared data component has to be locked, which takes locking
time l. After the transition tt, the component is released again in time u.
The entire time the shared data component is blocked is denoted bt. When
the shared data component is blocked by a different activity thread, waiting
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time wi elapses before any transition of process P can be executed. Hereby,
i(t) denotes the SDL signal i which is the specified trigger for the transition
t to be executed2. The main task of the real-time analysis for the parallel
activity thread model is to determine the worst case waiting times wi,max for
all transitions involved in the activity thread.

The overall maximum execution time of activity thread at which is trig-
gered by signal e is the maximum execution time of the transitions plus the
time required to send signals to the environment, plus the overall maximum
waiting time, which has to be determined using the methods from the fol-
lowing section.

ce,max = de +max
(

∑

t∈R

(l+ tt + u) +
∑

i(t),t∈R

wat,i,max +
∑

i∈Ee

si ∀R ∈ Be

)

(5.15)

5.4.1 Waiting Time

The waiting time wi before the computation triggered by signal i at process
P can be performed is caused by other accesses to the shared data compo-
nent. An activity thread can contain several transitions belonging to the
same process P , e.g. resulting from a branch or loop in the activity thread.
One activity thread has however only one active execution at one time, and
the execution ordering in the implementation ensures that each transition is
finished before the next is started. Therefore, one activity thread can access
a shared data component only once at a time.

Each activity thread at from the set Z of all task precedence systems, i.e.
activity threads, has a set AP,at of mutual exclusive accesses to the shared
data component of process P at the internal signals i. Each signal i can
trigger in process P one of the transitions t of the set Ti, causing the execution
time tt. For this transition, the shared data component is blocked during the
blocking time bt = l + tt + u. Therefore, signal i can block the component
for the maximum time

bi = max(bt) ∀t ∈ Ti.

First-Come-First-Serve The fact that one access to the shared data has
to be finished before the next from the same activity thread is initiated,
means that only one request from an activity thread can wait for the shared

2Throughout this section, the term “signal i” does not stand for the literal sending of
a signal, but serves to identify a specific point in the activity thread.
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data access at the same time. This special case has already occured several
times in section 5.2. Using the results from this section, and assuming event
independence, the worst case waiting time is the sum of the maximum block-
ing time that can be caused by all other activity threads a at process P at
the same time. The waiting time is therefore equal for all accesses to process
P from within activity thread at and can be written as:

wat,e,max =
∑

{a | a∈Z∧ a6=at}

max (bf ) ∀f ∈ AP,a (5.16)

Priority-Based Access If several activity threads attempt to lock a
shared data component, after this policy the thread with the highest pri-
ority is granted the lock to the component. Threads with lower priority are
not preempted, however. Here, too, a shared data component can only be
accessed from one activity thread once at a time. It is however possible that
several subsequent accesses from high priority activity threads contribute to
the waiting time of a thread with lower priority. The event streams of inter-
nal signals are therefore necessary to calculate the worst case waiting time
at a shared data component.

The event streams of the internal signal sources can be derived with the
algorithm described in section 5.2.3, using the execution time of the entire
activity thread ce,min and ce,max. In order to resolve the cycle that ce,max

depends on the waiting time still to be determined, it is necessary to assume
that each activity thread has the same priority at all shared data components.
The waiting time of each thread with lower priority then only depends on
the event streams of higher priority threads.

The waiting time of the activity thread with the highest priority at shared
data component of process P is then equal to the maximum blocking time
of all other possible (non preemptable!) accesses to P :

wat,e,max = max (bf ){a | a∈Z∧ a6=at} ∀f ∈ AP,a (5.17)

With this, ce,max and the internal event streams of the high priority ac-
tivity thread can be calculated, and with that the waiting time of the thread
with the next lower priority. For each activity thread at, Kat denotes the
set of threads with higher priority, and Lat the set of lower priority threads.
The waiting time of activity thread at now is the longest busy period of all
threads with higher priority plus the blocking time of a non preemptable
lower priority thread:
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wat,e,max = max
(

∑

k∈Kat, f∈AP,k, ϕ∈Sf

Eϕ(I)·bf

)

+max (bl)l∈Lat ∀I ≤ Eϕ(I)·bf

(5.18)

The above equation considers only one access to P from each activity
thread. If at contains several signals of P , they inevitably have a minimum
time distance and are therefore treated in the following section.

5.4.2 Event Dependencies

The event dependencies of internal signals in the activity thread implementa-
tion can be derived using the equations from section 5.2.4, using the execution
times of the activity threads and with s = 0 of all internal signals.

The waiting time of a signal e from source ε which can be caused by the
occurence of a signal f from source ϕ in a different activity thread is reduced
if the minimum event distance edϕε between the two signals is taken into
account. Figure 5.17 illustrates the influence of a minimum event distance
between f and e on the maximum blocking time of i.

t

t

t

t

AT m

AT n

e

fSignal f

Signal e

lock P releasetransition x transition t

transition y wait lock P transition t release

bf

edϕε we

Figure 5.17: Blocking time influenced by event dependency edϕε
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First-Come-First-Serve Since only one access of each activity thread
has to be considered, the maximum waiting time of signal e at process P in
activity thread at for the FCFS-scheme is given as follows:

wat,e,max =
∑

{a | a∈Z∧ a6=at}

(max (bf )− edϕε) ∀f ∈ AP,a (5.19)

For signals without event dependency, edϕε = 0 can be used.

Priority-Based Access As outlined before, in the priority based access
scheme it is possible that high priority activity threads influence the waiting
time of a signal e more than once. For the determination of we therefore
the maximum busy period of the activity threads with higher priority needs
to be found. The event streams of the internal signals can be derived with
the method described in the previous section. In order to find the worst case
event sequence which satisfies both the conditions set by the event streans and
the minimum event distance, a variant of the branch-and-bound algorithm
presented in section 5.2.2 can be used. To be investigated are all event
sequences containing the observed signal e and all signals of activity threads
with higher priority which form a busy period. CK(I) denotes the entire
blocking time caused by high priority signals, where here Eϕ,s(I) denotes the
number of signal occurences given by the found event sequence s:

CK,s(I) =
∑

k∈Kat, f∈AP,k, ϕ∈Sf

Eϕ,s(I) · bf (5.20)

I is a busy period, if CK,s(I)− I ≥ 0 is given. If signal e would occur at
I = 0, the waiting time would be maximum, but depending on the minimum
event distances this might not be possible. Instead, the found event sequence
gives the interval Ie, after which e can occur. This is illustrated in figure 5.18.
The waiting time is thus reduced, and can be calculated as:

we,s = CK,s(I)− Ie +max (bl)l∈Lat (5.21)

The worst case waiting time for e now is the maximum waiting time of all
event sequences s which constitute a busy period of the high priority threads.
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Signal a:

Signal b:

Signal e:

I=4, C =5K

t0

. . . . . .

. . .

t0

t0

K = {a, b}, L = {}, ca = 1, cb = 3, edβα = 2, edβε = edεα = 1

⇒ Ie = 1; we,s = CK,s − Ie = 4

Figure 5.18: Partial view of Search Tree

5.5 SDL System Analysis

5.5.1 Overall Reaction Time

The entire range of possible reactions of the SDL system to an external
trigger e is described by the set Be, which contains all branches R of the
according task precedence system. The sequence of transitions given by one
R constitutes one possible reaction to the signal e. The worst case time
required to execute this reaction rR is to be determined by the analysis of
the entire SDL system.

In a pure server model implementation, each transition t of R is con-
tained in the implementation process of the SDL process it belongs to. In
a pure activity thread implementation, all transitions which are triggered
by one external signal are contained in one implementation process. If a
combination of the implementation models has been chosen, the transitions
belonging to R can be part of different implementation processes. In order to
identify the internal signals which mark the border between the implementa-
tion processes, a subset of R named RI is defined. RI denotes the sequence
of transitions t which are each the start of a new implementation process.
In other words, each signal i(t) which triggers a transition t ∈ RI is output
signal of one implementation process and trigger to the next implementation
process. Obviously, in a server model implementation, R = RI.

tk denotes the kth transition of a total of n transitions in RI, and ik =
i(tk) denotes its triggering signal. The overall time rR to finish reaction R is
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then given as

rR =
n−1
∑

k=1

rik→ik+1
with ik = i(tk), tk ∈ RI (5.22)

with

rik→ik+1
= qik +wik + cik→ik+1

. (5.23)

The event streams and event dependencies of the internal signals can
be derived with the algorithms described in sections 5.2.3 and 5.2.4. The
execution times t, s, q, d, l and u are given by the VHDL implementation.
With this input, the worst case reaction times rik→ik+1

of the implementation
processes, i.e. the time required to output signal ik+1 after trigger ik, can be
bound with the methods of section 5.2, 5.3 and 5.4.

5.5.2 Derivation of Internal Event Streams

It becomes clear from the above that the event streams of all internal signals
are necessary for the real-time analysis. They can be derived stepwise after
the method described in the following:

For each implementation process, which is entirely triggered by external
signals, the real-time analysis can be performed and the output event streams
and event dependencies determined. In the next step, all implementation
processes are analyzed whose input event streams are now completely defined,
in turn deriving the output event streams.

It is nevertheless possible that a cycle exists in the form that the anal-
ysis of implementation process P1 depends on the output event stream of
process P2. P2 in turn can only be analyzed if the output event stream of
P1 is known. An example of such a situation is depicted in figure 5.19. In
such a case the following procedure is proposed: Starting with process P1,
the unknown event stream of signal b is approximated with the event tuple
z =∞, a = 0, and the real-time analysis is performed. With the thus gener-
ated output event stream for signal c, process P2 is analyzed, deriving a new
estimate for event stream ESβ. If with the new event stream the condition
C(0) ≤ a2,ι ∀ ι ∈ Si, i ∈ IP1 is fulfilled, the special case is given that only
one occurence of each signal can influence the reaction time. The real-time
analysis performed with ESβ =

{(

∞
0

)}

then has yielded a correct result and
the derived ES and r are correct. If the condition is not fulfilled, the analysis
cycles is calculated again with the new ESβ, until no more changes occur.
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Figure 5.19: Cyclic dependency between ESγ and ESβ

5.5.3 Inclusion of Additional Information

As outlined in section 5.1.2, it is not possible that the real-time analysis
evaluates functional dependencies contained in the SDL processes, which
may in some cases lead to overly pessimistic results. One possibility for
the designer to smoothly include background information in the real-time
analysis without increasing the complexity is with additional event streams
and event dependencies. Next to the given event streams of external signals,
each internal signal source α can be annotated with a given event stream
ESα and event dependencies, which are used instead of the generated values
in the real-time analysis. In such a fashion it is e.g. possible to express that
an internal signal is only sent every n occurences of the triggering external
signal.

The concept of operation modes goes one step further. With their
help, the designer can express the knowlege that there exists a number of
different operation conditions of the SDL system, with different external
conditions and also with distinctive internal functionality. For the real-time
analysis, each mode has its own set of analysis variables which characterize
the SDL system. In particular, by selecting the signals contained in IP and
AP , it can be taken into account that certain external or internal signals
never occur in one particular mode. Specific temporal correlation of a mode
is introduced with event streams and event dependencies. Knowledge on
different behaviour in a mode can be put down by selecting the transitions
contained in Te.

5.6 Message Queue Depth

Message queues are expensive to implement in hardware, and the area re-
quired significantly increases with the depth of the queue. It is therefore
desirable to dimension them as small as possible. A message queue which is
undersized, on the other hand, causes unexpected behaviour at run-time. De-
pending on the implementation, SDL signals might be delayed or lost which
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leads to higher reaction times than anticipated by the real-time analysis or
behaviour which diverges from the SDL specification. For these reasons it is
imperative to know the required queue depth as exactly as possible.

5.6.1 Required Message Queue Depth

The required message queue depth of process P can be found by assuming
a queue which is deep enough and determining the maximum number m of
signals which can wait in the queue at any given time. At first, no event
dependencies are considered.

In the already well known special case C(0) ≤ a2,ι ∀ ι ∈ Si, i ∈ IP , it
is guaranteed that a signal is processed before the next of its type arrives.
This leads to the trivial solution that the queue maximally needs to hold one
signal of each type from each signal source, i.e.

m =
∑

i∈IP

dim(Si) (5.24)

In the general case, the number of signals in the queue at a given time
can be determined after the following consideration: During a time interval
I, the maximum number of signals which can arrive is given by E(I). Now
a departure function D(I) is defined, which denotes the number of signals
whose processing is finished during I. During I, (D(I) + 1) signals are
removed from the queue. Assuming that the queue is empty at the begin of
I, the number of signals in the queue after I is

M(I) =
∑

i∈IP

∑

ι∈Si

Eι(I)− (D(I) + 1) (5.25)

The sought maximum message queue length then is the maximum of all
possible M(I).

For the departure function D(I) it is useful to take one more look at the
function C(I)−I which has been calculated for the derivation of the reaction
time. Like mentioned before, it is identical to the unfinished work in the
system U(t) defined in queueing theory. After [Kle75], in a FCFS scheme
the departure instants from the system can be derived “by extrapolating
the linearly decreasing portion of U(t) down to the horizontal axis; at these
intercepts a customer departure occurs and a new customer service begins”.
Thus, at each of these departure instants D(I) increases by one, starting
with D(0) = 0. This is illustrated in figure 5.20 (a) and (b).

If several signals can arrive simultanously, the execution order is not de-
fined. All possible execution orders have to be investigated, as they lead to
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Figure 5.20: Derivation of queue depth for example from figure 5.7

different departure functions D(I). This is depicted in figure 5.20 (a) and
(d). For the different departure functions, the number of messages in the
queue M(I) is calculated using equation 5.25 (figure 5.20 (c) and (f)). Here,
M(I) = −1 means that currently no signal is in the system, i.e. that the
queue is empty and the EFSM is idle. The next arriving signal will be pro-
cessed immediately. When M(I) = 0, the queue is empty, but the EFSM is
busy, i.e. the next signal will be put in the message queue.

The worst case is given at the earliest possible arrival of signals, which is
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ensured by the properties of the event streams defined in equation 3.6. As is
the case with the worst case reaction time, with equation 3.6 it can be shown
that only I < I0 with C(I0) − I0 ≤ 0 have to be investigated. At the same
time, this condition ensures that the message queue is empty at t = 0. With
that, the maximum required message queue depth m is:

m = max(M(I)) ∀I < I0 with C(I0)− I0 ≤ 0 (5.26)

5.6.2 Event Dependencies

The consideration of minimum distances between signals can lead to reduced
required message queue depths. Like before, the task is to find the worst
case sequence of events which satisfies the constraints given by the event
streams and the event dependencies, and which generates the worst case,
here regarding the message queue depth. In order to find this worst case
event sequence, the branch and bound algorithm described in section 5.2.2
can be used, with one modification. In contrast to the reaction time, for
the queue depth it is not ensured that a node with a larger C and at the
same time smaller I than a second node will always lead to the worse case.
Therefore, only nodes with C(I) < I can be deleted.

After the search tree has been built after this fashion, all leaf nodes are
investigated, i.e. the event sequence given by each distinctive branch is con-
sidered. For each event sequence, E(I) and C(I) are calculated, starting
with the earliest signal as I = 0. The fact that for each additional signal
C(I) < I is given, means also that the message queue is empty before I = 0.
Using C(I) and E(I), D(I) and M(I) can be derived like described in the
previous section. Figure 5.21 illustrates this for the example already used in
figure 5.7 and 5.20, with an additional event distance edαβ = edβα = 1. This
procedure has to be repeated for all possible root nodes starting with signal
e ∈ IP . Like before, the required message queue depth is the maximum of
all derived M(I).
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Figure 5.21: Derivation of queue depth for example from figure 5.7 with
additional event dependency edαβ = edβα = 1
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5.6.3 Undersized Queues

That a queue has been dimensioned too small means that it is possible for a
signal to arrive when the queue is full. The consequences of this depend on
the strategy implemented in the signal channel and the queue. If the channel
protocol does not provide a handshake or similar, the signal is lost. This
leads to a behaviour at run-time which unpredictably deviates from the SDL
specification, possibly leading to a completely changed functionality. The
second possibility is that the sending of the SDL signal is blocked until the
queue is again ready to receive a signal. This, too, is a discrepancy to the
non-blocking send assumed in SDL, but it leads only to a temporally and
not functionally changed behaviour, which is detailed below.

If a message queue is one place too small, the sending of a signal e to
that process can maximally be delayed for the longest execution time of all
signals which can occur simultaneously. This delay is termed z. It does not
increase the worst case reaction time to this particular signal e, since the
waiting time already includes all other simultaneous signals. The execution
time of the transition sending the signal, however, is prolongeated by z. This
affects the worst case reaction times of all other reactions R which involve
the process P sending signal e. Furthermore, it is possible that due to the
increased execution time the queue depth calculated for process P is also no
longer valid. In that fashion the delay might be propagated throughout the
SDL system. These effects, however, can be calculated beforehand during the
real-time analysis by calculating new reaction times which take the shortened
queue depths into consideration. If the laxity given by the deadlines is large
enough, the message queues can deliberately be dimensioned too small such
as to save hardware area.
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Chapter 6

Automated Design Process

While the implementation models and the real-time analysis presented in the
previous chapters are in fact independent of the employed design method, the
basic idea has been to automate the process of generating an implementation
from the SDL specification. Section 6.1 details the problems which have to be
solved during an automated design process. The rapid prototyping frame-
work REAR, which realizes such an automated design from SDL and was
used to test the concepts presented in this work, is described in section 6.2.

6.1 Design Tasks

An SDL specification describes the desired functionality of the system under
development at a high level of abstraction, with SDL processes communicat-
ing over messages. It intentionally contains no implementation details, which
have now to be decided during the design process.

The first step is the partitioning and mapping of the SDL specification
on the available execution units, which also fixes the mapping to hardware
and software. At the same time, a decision on the implementation model has
to be made, which in turn influences the granularity of the partitioning.

A central task is the communication refinement, where SDL’s abstract
communication is mapped to actual channels and protocols. This involves
the communication within and between hardware and software based ex-
ecution units. Additionally, the connection to the environment has to be
implemented. From the view of the specification, everything not contained
in the SDL system is the environment. Therefore, communication might
have to be established to a software task or hardware circuit on the same
execution unit, to a different processing node or via sensors and actors to the
physical environment of the electronic system itself. For a hardware imple-
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mentation, the run-time components for the mentioned signal transfers and
the message queues have to be chosen and parametrized. The queues have
to be dimensioned in their depth and their signal coding needs to be fixed.

Time in SDL is dimensionless; it is left to the implementation to define
which amount of actual time corresponds to one time unit in the specification.
During the design process, a timer component has to be chosen from the
library. The parametrization of its input clock frequency and its data width,
together with a possible scaling of the time values in the specification, define
the resolution of time in the implementation.

For the implementation of the process behaviour, a description in a hard-
ware language has to be generated from the SDL specification. This can be
a VHDL model like described in section 4.2, but naturally the use of other
hardware description languages and other finite-state machine specification
techniques is equally possible. In the hardware model of the EFSM, the
access to the chosen run-time components, message queues, communication
channels and timers, has to be inserted.

The SDL processes and run-time components have to connected with each
other and with additional predefined components which have been included
at SDL level like described in section 3.3. This results in a structural model
of the hardware implementing the entire SDL system. Finally, the high level
hardware design has to be synthesized into a netlist of components in the
target technology, placed and routed.

6.2 Rapid Prototyping Environment REAR

The aim of the rapid prototyping environment REAR1 ([PMK+00]) is to sub-
stantially reduce development times of real–time applications by confirming
the functional and temporal requirements at a very early stage of develop-
ment with the help of an executable prototype. It integrates two complemen-
tary tasks: On the one hand it provides an automated design environment
for a rapid and facile generation of a working prototype. On the other hand,
the design process is extended with real–time requirement specification and
analysis in order to prove that the embedded system will meet all timing
requirements, and to verify that the timing requirements have been mod-
eled correctly. The concepts and methods presented in this work have been
implemented and tested in the REAR environment.

1Rapid Prototyping Environment for Advanced Real–Time Systems
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6.2.1 Target Architecture

The rapid prototyping target architecture was designed to support real–
time analysis in guaranteeing realistic, not–too–pessimistic worst–case ex-
ecution times. The basis for this is the task classification model presented in
[FFKM97], where each type of real–time task corresponds to a best suited
type of processing unit, in terms of performance and deterministic execution
times. It is a configurable and scalable heterogeneous multiprocessor system
consisting of standard off–the–shelf components, which are tightly coupled
by a global PCI–bus (figure 6.1).

RTU

HPU I/O

CIOP

other PCI device

RTU

CPU

DRAM

Cache

PCI

Console
SCSI

global bus (PCI)

Ethernet

Embedding System

CTRL PCI

DPRAM FPGA

CPU PCI

SRAM

CPU PCI

SRAM

I/O

Figure 6.1: Rapid prototyping target architecture – block diagram

The High Performance Unit (HPU), which is used for soft real–time tasks
and as the development host, is based on standard computer architectures
to benefit from technological advances. The Real–Time Unit (RTU) is opti-
mized for hard real–time tasks with short response times, which do not allow
predictions of the cache behaviour. Instead, the slower RAM–access times
have to be used for the determination of worst case execution times.

The Configurable I/O-Processors (CIOP) consist of one Xilinx FPGA
for application specific hardware and optionally an additional dual ported
RAM, which can be used for e.g. message buffers and as temporary memory
for the FPGA. The CIOP acts as separate application specific processing
unit for tasks with deadlines too short to be met in software and provides a
flexible way of linking the prototyping architecture to the embedding process.
It is the target of the automated hardware design process described in this
chapter. The FPGA is connected to the other processing units over a PCI bus
interface, and additionally to the RTU with a direct connection to a CPLD
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Figure 6.2: Photo of the rapid prototyping target architecture

implementing glue logic which links it to microprocessor’s local bus. Signals
to and from the embedding process can be directly interconnected with I/O-
pins of the FPGA. A more detailed description of the target architecture with
a first CIOP from own development is given in [FKMF97]. The experiments
referred to in chapter 7 have been conducted on the Spyder-Virtex-X2 rapid-
prototyping board developed by FZI, Karlsruhe ([For00]). The FPGA board
has been operated with a clock period of 30 ns.

6.2.2 Rapid Prototyping Design Process

Figure 6.3 shows an overview of the rapid prototyping design process. It
starts with a specification in SDL, using the Telelogic’s CASE tool SDT for
editing, syntax and semantic check and for the simulation at functional level
([Tel]). A typical screenshot of SDT with a SDL system diagram, system
organizer and simulator is shown in figure 6.4. The timing constraints, i.e.
deadlines, event streams and event dependencies, are annotated to the SDL
specification.

The prose representation of the SDL specification is output from SDT and
is parsed by the SDL-Compiler presented in [BRM+99]. It has been extended
in [Lar98] to extract the information relevant for the real-time analysis. This
includes the SDL system’s task precedence graph and the annotated timing
constraints. This real-time analysis model, together with the worst case
execution times obtained from the target architecture, is the input of the
real-time analysis ([Pet00], [Kol01]).

The SDL model is partitioned by manually mapping entire SDL processes
on the processing units of the target architecture REAR, depending on their
timing requirements and computational complexity. This mapping is also
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Figure 6.3: Rapid prototyping design process – overview

annotated to the SDL system. For the SW part SDT’s CAdvanced code gen-
erator is used to generate C-code. Each implementation process is mapped
to one task of the freely available real–time operating system RTEMS as
target, into which message–based earliest deadline first scheduling has been
integrated, as detailed in [Kol01]. A retargetable IPC layer hides the sys-
tem’s heterogeneity and provides high level primitives for local and remote
(inter–unit) communication and synchronization ([FMF98]).

VHDL Code Generation Figure 6.5 shows a closer view of the design
process targeting application specific hardware. The textual SDL descrip-
tion is parsed by the SDL-Compiler, which is based on JavaCC. The parser
builds in several passes of the semantical analysis an internal model of the
SDL system, which is then used to output the VHDL implementation for
all SDL processes annotated with “map-on-asic”. For an implementation
after the server model, the internal system model is traversed following the
hierarchical structure of the SDL system, i.e. its composition of processes.
For each process, the EFSM is output in VHDL. The code generation after
the activity thread model, in contrast, has a recursive structure. Starting
with the external signals, for each signal the receiving process is determined,
and the appropriate transitions in the destination are output in VHDL. Each
transition has to be processed twice: In the first pass, the VHDL implemen-
tation for the entire transition except the signal outputs is generated. The
second pass deals with the transition’s signal outputs where in turn the signal
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Figure 6.4: CASE-tool SDT – screenshot

destination is determined, starting the next recursion level. This two-step
procedure ensures that the transition is finished before the next transition is
started, which has already been postulated in section 4.4. [Rei97] gives de-
tails on the SDL parser and on the VHDL generation after the server model.
The generation of VHDL code for the activity thread model is dealt with in
[MK00].

The support of SDL language features in the design process respectively
by the SDL-Compiler is summarized in table 6.1. The currently supported
SDL subset is sufficient for the specification of a wide range of designs. In
future versions, the features listed in the second row could be added. In con-
trast to this, there is a number of SDL constructs which are not supported
because they are either not suitable for implementation in general or specifi-
cally for an implementation in hardware, or because they are not covered by
the real-time analysis.

Component Integration The inclusion and adaption of the run-time
components, which is dependent on the target architecture, the used library
and the actual application, is not task of the SDL-Compiler. Instead, the
compiler can insert generic procedure calls for “send”, “remove-from-queue”,
etc. in the generated VHDL code, which can later be replaced by interfaces
to the run-time components by the high-level synthesis system CADDY-II,
like described in [BRM+99]. Figure 6.5 depicts a second option, which is
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Figure 6.5: Rapid prototyping hardware design process

intended for the RT-level synthesis flow, and was used in the presented ex-
periments. Here, the interfaces to the run-time components are inserted via
macro replacement in a link-step after the SDL-Compiler. The generated
VHDL-code contains macro calls in all places relevant for the run-time in-
terface, i.e. in the FSM at “send”, “remove”, “set-timer”, but also in the
entity and variable declarations. The link step is realized with the power-
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Supported Support possible Not supported

FSM control flow:
State, Nextstate,
Task, Decision, Label,
Join, Input, Output,
Continous Signals;
SDL Data Types;
Timer; View/Reveal;
Native VHDL code

Procedures, Macros,
Export/Import; Ob-
ject oriented specifica-
tion

Non-Deteterminisms;
Informal Text; Dy-
namic Process Cre-
ation; Abstract Data
Types; Save, Prior-
ity Input, Enabling
Conditions

Table 6.1: Supported SDL Language Features

ful freeware macro processor m4 ([Ren94]). The macro replacement process
is controlled by a set of configuration files, which include the necessary im-
plementation details. They define the run-time components to be used and
their parametrization, as well as the communication channels and additional
components of the system design. Figure 6.6 depicts the block structure of
such a system on the target architecture’s CIOP.

The VHDL models of all components are synthesized by the Synopsys
design compiler, which generates a gate-level net list specific for the target
technology FPGA. The net list is placed and routed on the target FPGA by
the Xilinx software, which generates a bit-file which can be downloaded on
the FPGA via the board’s PCI interface.

As figure 6.5 indicates, the hardware design process is semi-automated:
Next to the SDL specification and the run-time components, the m4 configu-
ration files are to be written by hand. The rest of the design process is tool
supported. Design iterations with modified SDL specifications or changed
parameters require no manual interference, as long as the implementation
details in the configuration are not affected.
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Chapter 7

Experimental Results and
Evaluation

The rapid prototyping design environment presented in the previous chapter
has been used as a test bed for different application examples. The aim here
was firstly to demonstrate the feasibility of an automated generation of appli-
cation specific hardware from SDL. Secondly, the most important properties
of the generated hardware, resource usage and timing, and the trade-offs
between the different implementation models were to be investigated. This
chapter first gives a rough characterization of three used application exam-
ples; they are given in detail in the appendix. The resources needed by the
generated hardware are fixed during hardware synthesis. Section 7.2 reports
the results from the implementation and compares the synthesis results for
the application examples and implementation models. The CAN bus physi-
cal layer has stringent real-time requirements, and was therefore selected for
a comparison of its timing properties in section 7.3. Section 7.4 summarizes
and evaluates the results from the application examples.

7.1 Application Examples

7.1.1 CAN-bus physical layer

CAN [E+94] is a serial field bus which was originally developed for com-
munication in vehicles, but has reached by now widespread use in the field
of production automation. The CAN bus runs a masterless, message ori-
ented bus protocol with CSMA/CA (Carrier-Sense Multiple Access/Collision
Avoidance) access mode. Bus access is granted to each participant by bitwise
arbitration using individual message IDs. Several cooperating error detection

89
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mechanisms guarantee fast system wide error detection and error recovery.
CSMA/CA bus access, in combination with message priorities, the short data
block length (max. 8 Byte) and data rates up to 1 Mbit/s lead to very short
message latencies.

According to the OSI layer model for communication systems, the phys-
ical layer provides the transmission of unstructured bits across the physical
medium. For this, it defines the signal coding and timing of the bits, as well
as the physical connection to the bus. The CAN bus has a Non-Return-to-
Zero (NRZ) signal coding, i.e. the bus level is high or low during the entire
bit time. To ensure that the bit stream on the bus contains enough signal
edges for a time synchronization of all participants, bit stuffing of width five
is employed. This means, that the sender of a message inserts a stuffing bit
of the opposite polarity after each sequence of five equal bits. These stuffing
bits are removed by the receiver, restoring the original message.

Time
Segment

Synchronization
Segment

Phase
Buffer

Segment 1

Phase
Buffer

Segment 2

Propagation

Bit Time

Sample Time

Figure 7.1: Internal bit timing in CAN

The internal bit timing provided in CAN divides each bit time into four
non overlapping segments, as depicted in figure 7.1. The synchronization
segment denotes the beginning of a new bit in the stream. The propagation
time segment can be dimensioned to accomodate the maximum propagation
delay between sender to receiver. The sample time is fixed by the width of the
two phase buffer segments. While the synchronization segment is one time
unit long, the width of the other segments is configurable between one and
eight time units, with a total bit length between 8 and 25 time units. CAN
avoids the overhead created by explicit start bits like used in asynchronous
transmission. Instead, the signal edges contained in the bit stream are used
to synchronize the bus participants in the following manner: each receiver
expects the next signal edge during the synchronization segment. If it apears
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earlier or later, the receiver adapts the sample time and at the same time the
beginning of the next bit time by adjusting the two phase buffer segments.
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Figure 7.2: SDL specification of the CAN physical layer (SDL processes)

Figure 7.2 shows the process structure of the physical layer’s SDL speci-
fication. The SDL block physical layer has interfaces to the physical bus and
to the CAN data link layer (DLL), which is not further considered here. It
implements the following functionality:

• Configurable timing parameters

• Simultaneous sending and receiving

• Communication of bits to send and bits received via SDL messages
from/to data link layer

• Start from reset state upon bit to send from DLL or observed edge on
bus

• Reset upon signal from DLL

The process Clock outputs the internal time units using a SDL timer.
The process Timer counts the time units and delivers internal events at the
begin of a new bit interval (signal can_clock) and at the sample time (signal
sample_now). The process Synchronization observes the edges on the bus
(rx_edge) and adapts if necessary the phase buffer segments, which are made
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available to the process Timing with the SDL construct view/reveal. The
process BitStuffing watches the bit stream on the bus and gives a notification
(stuff_now) when a stuffing bit is to be inserted respectively to be removed.
The process Receiver samples the bus and sends the received bit (signal rx)
to the data link layer. The process Transmitter gets the bits to send from
the DLL (signal tx) and outputs them on the bus at the appropriate time
(signal can_clock). The process Controller keeps track of the overall reset
state of the block and starts and resets the other processes. The complete
SDL specification of the physical layer can be found in appendix A.

7.1.2 Servo Motor Controller

In a rapid prototyping application, six simple servo motors of the kind used
in modelling were to be controlled. The servos require a pulse code modu-
lated control signal, with a TTL-compatible high-signal of 1 to 2 ms duration,
repeated every 10 to 30 ms, as depicted in figure 7.3. The length of the im-
pulse determines the angle of the motor between 0◦ and 90◦. The application
required a defined position of the motors beginning at power on.

High

J6K�L�M�KNPOJ6L�QNPO
Low

Figure 7.3: Timing of the servo motor control signal

Figure 7.4 depicts the block diagram of the servo motor controller’s SDL
specification. Each servo is controlled by one SDL process with one SDL
timer for the length of the high pulse (position) and one SDL timer measuring
the base period. During the start transition, both timers are initialized and
started. Upon the output of the position timer, the control signal pin is
pulled low. When the base timer is run down, both timers are restarted and
the output pin is set high. At any time, a new duration for the position timer
can be set via the external signal pos_x. The entire SDL specification of the
servo motor controller is given in appendix A.

7.1.3 Assembly Line

The example termed assembly line does not have a corresponding physical
experimental setup comparable to the CAN-bus or the servo motors. It is a
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Figure 7.4: SDL specification of the servo motor controller

SDL specification of a manufacturing situation which was intended for test
of the code generation after the different implementation models. It was
implemented on the rapid prototyping environment REAR and triggered
with events from software instead of real sensors.

In the assembly line scenario, two band conveyers bring two different
kinds of half-products. Each product passes a photo sensor, which triggers
the signal in1 respectively in2 in the SDL specification (see figure 7.5 and ap-
pendix A). In the process Controller, each half-product is counted, and if the
required amount is reached, the motor of the corresponding band conveyor
is stopped. The two motors are controlled each by one SDL process (Mo-
tor1 and Motor2), and are equipped with a common emergency stop button,
which triggers the external signal emergency_stop, upon which both motors
are stopped. A fourth process ProductCounter keeps count of the succesfully
assembled batches of half-products.
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Figure 7.5: SDL specification of the assembly line example

7.2 Resource Usage of the Implementation

A first evaluation of the resource usage of the implementations can be derived
from the number of the inferred memory devices. The reports given by
Synopsys during synthesis allow a detailed analysis of the use of flip-flops.
It will be discussed later to what extent this can be used as an indication of
the entire resource requirements.

7.2.1 Resource Estimations

Like described in section 4.2.1, the implementation of a SDL specification
on a FPGA consists of the implementation processes (server processes or ac-
tivity threads), and the necessary run-time components. An analysis of the
inferred memory devices which are reported by synopsys showed that it is
possible to estimate the resource usage of both the run-time components and
the generated processes based on a few implementation decisions and char-
acteristic numbers of the SDL system. These are summarized in table 7.6.
In the following, the memory device estimations (N = number of flip-flops)
for the different components of the implementation are given.

queue l0 The message queue of length 0 stores no signals. It only performs
a multiplexing between the input channels and interfaces between the channel
protocol and the EFSM:

Nqueue l0 = c+ 2 · dld(c)e+ 1 (7.1)
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dq width of the message queue (signal ID + data)
lq length of the message queue
c number of input channels
dv data width of a SDL processes local variable
dt data width of a timer
ds width a signal to send (signal ID + data)
s number of SDL states of a process
i number of implicit states of a process

Figure 7.6: Variables determining resource usage

queue l1 The message queue of length 1 can store one signal. It executes
the channel protocol at the input, and asynchronously the handshake with
the EFSM:

Nqueue l1 = dq + c+ dld(c)e+ 4 (7.2)

queue ln The message queue of length n = lq has the functionality of the
queue_l1, but additionally contains a FIFO of size dq× lq from a commercial
component library (the intermediate input register inferred in the current
implementation could be optimized):

Nqueue ln = (lq + 1) · dq + c+ dld(c)e+ 4 (7.3)

timer The SDL timer contains one register of the timer width containing
the timer value, plus additional registers for reset and the channel protocol
for sending the timer signal. Additionally, a adder/subtractor is required.

Ntimer = dt + 4 (7.4)

write to sdl signal This component reads a SDL signal from the asyn-
chronous bus, stores it intermediately, and sends it to its destination process
using the channel protocol.

Nwrite to sdl signal = max(dq) + 3 (7.5)

hw sw queue The hardware-software-queue receives all signals with desti-
nation SW from c source processes, and stores them in a FIFO of size dq× lq.
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It asserts an interrupt when the queue is not empty, and removes the signal
from the FIFO after it has detected a read access from the software side:

Nhw sw queue = (lq + 1) · dq + c+ dld(c)e+ 4 (7.6)

edge to sdl signal This component sends a predefined SDL signal to a
SDL process when it detects a defined edge on an input pin. Since the signal
ID is constant, it is hard wired to ’0’ and ’1’:

Nedge to sdl signal = 3 (7.7)

shared var The shared variable component for the parallel activity thread
model stores the local variables and state information of one SDL process P .
It can be accessed from c activity threads:

Nshared var =
∑

vars of process P

(dv) + dld(sP + 1)e+ c+ dld(c)e+ 1 (7.8)

mcsrr and count32 Each FPGA design contains a “master control, status
and revision register” which identifies what is loaded in the FPGA, as well
as a 32 bit counter helping as a kind of “heartbeat” during debugging.

Nmcsrr+count32 = 34 (7.9)

EFSM server process The EFSM implementing a server process per-
forms a handshake to the queue. It stores the queue input, all local variables
and the process state, plus if applicable a timer value and revealed variables.
One register is inferred for each destination process of the SDL signals to
send. Additional memory elements are necessary for the implicit states con-
tained in the VHDL specification. These are determined during synthesis,
and depend mainly on the complexity of the transitions.

Nserver process = dld(s+ 1)e+ dq + i+ 4+

+
∑

local vars

(dv) +
∑

revealed vars

(dv) +
∑

timers

(dt + 2) +
∑

destinations

(ds + 1)

(7.10)
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EFSM serial activity thread The EFSM of a serial activity thread im-
plementation, similar to the server process, stores the local variables and
states of all involved SDL processes. It contains memory for the queue in-
put, timer variables and for the signals to be sent to the environment.

Nserial atm = dld(s+ 1)e+ dq + i+ 4+

+
∑

local vars

(dv) +
∑

timers

(dt + 2) +
∑

destinations

(ds + 1) (7.11)

EFSM parallel activity thread The EFSM implementing one activity
thread in the parallel activity thread model has the well known interface to
the message queue, and the registers for timers and signals to send to the
environment. It needs memory for the variables and states of all involved
SDL processes. In the case of a modified write of variables to the shared
variable component, additional registers are inferred.

Nparallel atm = dq + i+ 4 +
∑

SDL processes

(

dld(s+ 1)e+
∑

local vars

(dv)
)

+
∑

modified vars

(dv) +
∑

timers

(dt + 2) +
∑

destinations

(ds + 1)
(7.12)

7.2.2 CAN-bus physical layer

During synthesis, synopsys logs the memory elements it has inserted in each
VHDL entity, shown by name for all VHDL variables, signals and implicit
states. It is therefore possible to determine exactly for which parts of the
implementation and for which tasks in the EFSM the Flip-Flops (FFs) were
used. Figure 7.7 and 7.8 summarize these synthesis results, which allow a
comparison between the implementation models. The synthesis has been
performed for the clock period of the FPGA board of 30 ns. The synthesis
of the serial activity thread implementation however required a higher clock
period.

Figure 7.7 shows the FF usage of the entire FPGA design, consisting
of run-time components, message queues and the implementation processes
(EFSMs). The group run-time components includes the timers, bus interface,
SDL signal input and output, revision register and counter, like outlined in
the previous section. Here, the serial ATM implementation has slightly lower
requirements than server and parallel ATM, since only one EFSM has to be
supplied with signals, leading to a lower communication effort. The serial
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Figure 7.7: CAN bus: memory elements of the entire FPGA design

ATM’s message queue portion is smaller for the same reason. The SDL
specification contains more external input signals than processes, leading
to a larger number of activity threads in the parallel ATM implementation
than server processes in the server implementation. The number of queues
in the parallel ATM therefore is higher, they do however not require a great
depth as one AT only receives one signal type. In the preset case this leads
to in a higher resource usage for the message queues of the server model.
The shared data components only appear in the parallel ATM, and will be
referred to later in this subsection. The implementation of the EFSM is
the largest factor distinguishing the implementation models, and is therefore
further broken down in figure 7.8.

The number of FFs required for the group “variables and SDL states” in
the server model and serial ATM directly corresponds to the number of bits
needed to store the variables and states defined in SDL (it is slightly higher in
the server model because revealed variables are stored doubly). It is identical
to the number of FFs in the shared data component of the parallel activity
thread model. As equation 7.12 already shows, the EFSM of the parallel
ATM also needs storage place for local copies of the process data. Since in a
pure parallel ATM implementation, an activity thread is created for each of
the numerous external input signals, the group variables and states is greatly
multiplied in the parallel ATM.

According to the specification, the SDL timer is accessed only from one
SDL process. Therefore, server model and serial ATM require one register
storing the timer value. This is doubled in the parallel ATM, because the
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Figure 7.8: CAN bus: memory elements of the EFSM implementation

timer is started from within two ATs.

The number of FFs contained in “queue input” directly corresponds to
the number of implementation processes (EFSMs) in the design. Therefore,
it is smallest in the serial ATM and largest in the parallel ATM.

Like outlined in the previous subsection, for each destination process a
register is necessary to store the signal to send. Since in the activity thread
model only signals to the environment are sent, the group “signal send” is
small. The server model, in contrast, requires many FFs because there is
much communication taking place between the processes.

The FFs summarized in “control and implicit states” are used for the
handshake with the queue, the timer, the shared data component and for
the channel protocol. Their number therefore firstly depends on the number
of processes, being low in the serial ATM and higher in the server model.
The parallel ATM here has additional high requirements due to the many
EFSMs and additionally numerous accesses to the shared data components.

7.2.3 Servo motor controller

Due to the simple structure of the SDL system, where one external signal
corresponds to one SDL process, the parallel ATM implementation of the
servo motor controller is identical to the server implementation. Therefore,
only server model and serial ATM are compared. Like in the previous sub-
section, figure 7.9 and 7.10 show the required memory elements of the entire
design and the EFSMs.
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Figure 7.9: Servo controller: memory elements of the entire FPGA design

The large number of required run-time components results from the 12
timers, which are necessary in both implemention models. The signal I/O in
the serial ATM is simplified due to the lower number of EFSMs, leading to
a slightly smaller “run-time components” group.

The serial ATM requires one queue for the one EFSM, which however
needs to be deeper than the 6 queues of the server model. The number of
FFs required by “message queues” in the server model is therefore larger by
about a factor 4.

Figure 7.10 details the memory elements required by the EFSMs. Like
before in the CAN example, there is no difference between server model and
serial ATM in the resources needed for variables, states and timer access. The
“queue input” group, like to be expected, is larger by a factor 6 in the server
model than in the serial ATM. No signals are sent in both implementation
models. The server model requires more control registers, but the group
“control and implicit states” is increased by less than factor 6 since the serial
ATM contains more implicit states.

7.2.4 Assembly line

Figure 7.11 summarizes the resource requirements of the assembly line ap-
plication example. The group “run-time components” contains no timers.
The differences in the signal I/O are due to the structure of the SDL system:
Two server processes receive external signals, and one outputs a signal to the
environment. Therefore, the parallel ATM and the server model require the
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Figure 7.10: Servo controller: memory elements of the EFSM implementation

same signal I/O resources, which are reduced in the serial ATM.
The number of SDL processes in this example is equal to the number of

external input signals. Therefore, the FFs needed for the message queues
are the same in server model and parallel ATM, while they are lower in the
serial ATM.

Here, too, the largest contribution comes from the EFSM implementation,
which is shown in figure 7.12. Again, the group “variables and states” is the
same in server model and serial ATM, and equals the size of the “shared
data” group of the parallel ATM. The local variables of the parallel ATM’s
EFSMs lead to a very large “variables and state” group. There are no timer
accesses. The “queue input” section is like before proportional to the number
of implementation processes.
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Figure 7.11: Assembly line: memory elements of the entire FPGA design
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Figure 7.12: Assembly line: memory elements of the EFSM implementation
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7.2.5 FPGA Resource Usage

The results shown up to now originated from synthesis and depended solely
from the VHDL hardware description. The reports in this subsection come
from the implementation on the target Xilinx Virtex FPGA. This means that
they give an indication how many resources are actually needed, but they
are at the same time technology dependent and not generally transferrable
to different target architectures.

The Xilinx Virtex FPGA has a regular architecture that comprises an
array of configurable logic blocks (CLBs) surrounded by programmable in-
put/output blocks, interconnected by a hierarchy of routing resources. The
CLBs like depicted in figure 7.13 are built of two identical slices, which con-
sist of two 4-input look-up tables (LUTs) and two memory elements. The
LUTs can serve as versatile function generators or as RAM. The two mem-
ory elements can be configured as either edge-triggerd D-type flip-flops or
level-sensitive latches. Each slice contains additional logic for the optimized
implementation of arithmetic functions, and multiplexers between the LUTs
and the memory elements.

Virtex™ 2.5 V Field Programmable Gate Arrays

6 DS003 (v.2.2) May 23, 2000 - Final Product Specification 

R

Additional Logic

The F5 multiplexer in each slice combines the function gen-
erator outputs. This combination provides either a function
generator that can implement any 5-input function, a 4:1
multiplexer, or selected functions of up to nine inputs.

Similarly, the F6 multiplexer combines the outputs of all
four function generators in the CLB by selecting one of the
F5-multiplexer outputs. This permits the implementation of
any 6-input function, an 8:1 multiplexer, or selected func-
tions of up to 19 inputs.

Each CLB has four direct feedthrough paths, one per LC.
These paths provide extra data input lines or additional
local routing that does not consume logic resources. 

Arithmetic Logic

Dedicated carry logic provides fast arithmetic carry capabil-
ity for high-speed arithmetic functions. The Virtex CLB sup-
ports two separate carry chains, one per Slice. The height
of the carry chains is two bits per CLB.

The arithmetic logic includes an XOR gate that allows a
1-bit full adder to be implemented within an LC. In addition,
a dedicated AND gate improves the efficiency of multiplier
implementation.

The dedicated carry path can also be used to cascade
function generators for implementing wide logic functions.

BUFTs 

Each Virtex CLB contains two 3-state drivers (BUFTs) that
can drive on-chip busses. See “Dedicated Routing” on
page 9. Each Virtex BUFT has an independent 3-state con-
trol pin and an independent input pin. 

Block SelectRAM

Virtex FPGAs incorporate several large Block SelectRAM
memories. These complement the distributed LUT Selec-
tRAMs that provide shallow RAM structures implemented
in CLBs.

Block SelectRAM memory blocks are organized in col-
umns. All Virtex devices contain two such columns, one
along each vertical edge. These columns extend the full
height of the chip. Each memory block is four CLBs high,
and consequently, a Virtex device 64 CLBs high contains
16 memory blocks per column, and a total of 32 blocks.
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Figure 7.13: Xilinx Virtex configurable logic block consisting of two slices

The tables 7.1, 7.2 and 7.3 summarize the results from the three applica-
tion examples. The columns “% of FFs/LUTs in slices” indicate how many
of the theoretical two FFs/LUTs per slice were actually used, according to
the number of FFs and LUTs reported by Xilinx. At first sight it is clear
that not nearly 100% of the resources in the allocated slices can be used. The
reason for this does not lie, as this was the case in older FPGA generations,
in a high usage of CLBs for routing, which was never higher than 2%. Re-
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slices FFs % of FFs in slices LUTs % of LUTs in slices

Server model 917 653 36% 1413 77%

Serial ATM 592 314 27% 983 83%
% of server model 64% 48% 69%

Parallel ATM 1734 1365 39% 2161 62%
% of server model 189% 209% 153%

Table 7.1: Xilinx resource usage CAN-bus physical layer

sponsible instead is presumably the fact that the resources of a slice can not
be allocated completely independently, leading to many slices where only a
part of the elements are used.

It can be seen that the number of used resources is proportional to the
number of memory elements, which have been analyzed in the previous sub-
sections. Comparisons based on the memory elements are therefore valid.
The number of required slices however is determined by both memory ele-
ments and look-up tables.

The rows “% of server model” indicate which role the combinational logic,
multiplexers and arithmetic functions play, which are covered in the LUTs
and not the memory elements. The decrease respectively increase in resource
usage between the implementation models is different if one regards the over-
all slices, the flip-flops, or the look-up tables. The serial ATM always requires
more slices than indicated by the FFs. The reason for this is the overpro-
portional need for logic and multiplexers caused by the very complex state
machine of the one EFSM, which shows an extreme deep nesting of if-else-
statements. The resource usage of the parallel ATM, in contrast to this, is
rather determined by the multiple storage of the process data. The state
machines are generally simpler than those of the server model. Therefore,
the increase of required slices is lower than indicated by the FFs.

A final comparison between the implementation models is drawn with the
inclusion of the results from the real-time analysis in subsection 7.4.
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slices FFs % of FFs in slices LUTs % of LUTs in slices

Server model 1178 1108 47% 1559 66%

Serial ATM 835 701 42% 1083 65%
% of server model 71% 63% 69%

Table 7.2: Xilinx resource usage servo motor controller

slices FFs % of FFs in slices LUTs % of LUTs in slices

Server model 345 217 31% 538 78%

Serial ATM 217 101 23% 343 79%
% of server model 63% 47% 64%

Parallel ATM 485 321 33% 703 72%
% of server model 141% 148% 131%

Table 7.3: Xilinx resource usage assembly line
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7.3 Real-Time Analysis Results

7.3.1 Timing Requirements and Operation Modes

The CAN bus protocol gives a very exact definition of the timing, from which
event streams and event dependencies of external and some internal signals,
as well as the deadlines can be derived. Figure 7.1 depicts the internal
timing of one message bit, while figure 7.14 shows the composition of one
CAN message frame.

Frame (7)
End of

’0’

Data0..8 BytesIdentifier (11)

Start of Frame (1)

Remote Transmission
Request−Bit (1)

Acknowledge+

Data Frame

Interframe−
Space (3)

CRC (15)

Control Field (6)

Delimiter Bits (3)

’1’

Figure 7.14: CAN message frame

In the following, the 13 external signals of the physical layer specification
are listed, together with a short description and their event streams and,
if applicable, deadlines. Here, Pbit denotes the duration of one message bit
of the local physical layer, with Pbit = 1

fCAN
. Pbit,sender is the duration of

one bit on the physical bus, which is determined by the actual sender of the
message. When a message is received, Pbit and Pbit,sender can diverge slightly
due to oscillator tolerances. Psub is the period of the sub-bit cycle, with
Pbit = 10 · Psub in the experiments.

tx is sent from the DLL and contains the next bit to be transmitted on
the bus. If the process has been idle, the process Controller is notified via
signal tx_local, which starts the processes Clock, Timing and Bitstuffing.
The signal arrives every bit time, with a jitter jtx.

EStx :

{(

∞

0

)

,

(

Pbit

Pbit − jtx

)}

tx off signals from the DLL that the transmittion of the current SDL mes-
sage is finished. The minimum distance is therefore the minimum length of a
CAN message, i.e. 47 bits. To prevent the sending of a next bit, the triggered
state change must be concluded before the next signal controller_clock.
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EStx off :

{(

47 · Pbit
0

)}

stuff, stuff off mark the portion of the message where bitstuffing is
performed, starting with the beginning of the message and ending after
the CRC field. The event distance is the minimum length of a CAN
message, with a dependency between the two signals: edstuff,stuff off =
34 · Pbit; edstuff off,stuff = 13 · Pbit; Both signals must be processed before
the next sample_now.

ESstuff = ESstuff off :

{(

47 · Pbit
0

)}

sleep is sent from the DLL at the end of a CAN message, and puts the
physical layer in the reset state.

ESsleep :

{(

47 · Pbit
0

)}

rx edge is a signal which is sent to the process Synchronization at every
rising or falling edge on the CAN bus. It is used to update the timing
parameters of the current bit, and therefore must be processed before the
next sub-bit cycle.

ESrx edge :

{(

Pbit,sender

0

)}

rx sync edge is sent to the process Controller at every falling edge on the
CAN bus. If the process is idle, this edge signifies that a new message is being
sent on the bus, and the physical layer is activated in order to receive the
message, and the DLL is notified. The start of Clock, Timing and BitStuffing
must be fast enough, so that the first bit is sampled correctly.

ESrx sync edge :

{

2 ·

(

Pbit,sender

0

)}

CC is the output of the timer which is started periodically by process
Clock with the period Psub. It comprises the internal sub-bit clock of the
physical layer, which triggers the processes Timing, BitStuffing, Transmitter
and Receiver.
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ESCC :

{(

Psub

0

)}

can clock, sample now are internal signals output by process Timing.
They are output with a period of Pbit, and have an event distance of
P1 = synchronization segment+propagation segment+buffer segment 1 re-
spectively P2 = buffer segment 2 between them (see also figure 7.1). This
information is additionally given for the real-time analysis.

EScan clock = ESsample now :

{(

Pbit

0

)}

controller period, buffer seg 1, buffer seg 2, signal seg are signals
for the configuration of the physical layer, which have to be sent by the DLL
before the physical layer can operate.

ESconfiguration :

{(

∞

0

)}

reset pl is the central reset signal of the physical layer. It does not occur
periodically. Since no actions have to be performed after reset, there is no
tight deadline.

ESreset pl :

{(

∞

0

)}

It greatly simplifies real-time analysis to introduce operation modes,
which define mutually exlusive groups of signals which can be analyzed seper-
ately. Table 7.4 shows three possible operation modes of the physical layer:
The group Configuration contains signals which do not occur at all during
normal operation. The group Start/Reset summarizes the signals which
are sent at the startup of the physical layer at the beginning of the CAN
message, or the reset when the message is finished. The signals in the third
group Run are used during the transmission or reception of a message. It
is useful to separate the two last groups for real-time analysis, because the
entire group Run is switched on and off by the group Start/Reset. This
means that no Run-signals can occur simultaneously to Start-signals, and
when the Reset-signals appear, the Run-signals are stopped and their dead-
lines are no longer interesting.
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Mode Configuration Start/Reset Run

Signals reset_pl,
controller_period,
buffer_seg_1,
buffer_seg_2,
signal_seg

sleep, tx_local,
start_clock,
start_stuff,
start_timing,
reset_stuff,
reset_clock,
reset_sync

CC, ctrl_clock,
sample_now,
can_clock,
stuff_now, stuff,
stuff_off, tx,
tx_off, rx_edge,
rx_sync_edge

Table 7.4: Assignment of SDL signals to operation modes

The real-time analysis is demonstrated on a reaction to the internal timer
signal CC. The task precedence system (TPS) triggered by signal CC is shown
in figure 7.15, slightly simplified in order to keep the figure understandable.
The reaction to be observed is the output of signal rx, which is marked
in figure 7.15 by the heavy boxes. Also marked are the parts of the TPS
which influence the real-time behaviour of the reaction. The deadline for the
reaction CC→rx is given by the internal timing of the CAN message bit: If
too much time elapses between the timer output and rx, the bus is sampled
too late. A reasonable value for the deadline is two sub-bit cycles, i.e. 2 ·Psub.

As a simplification of the real-time analysis to be performed, no message,
transmission or synchronization errors are considered.

7.3.2 Server Model

The real-time analysis of the server model implementation is performed in
two steps. First, the SDL processes are analyzed. For each, the processing
times c, the reaction times r and the output event streams are determined.
The processing times c are obtained by summarizing the clock cycles in the
VHDL implementation. After the simple scheduling applied during code
generation, clock cycles are inserted at each SDL task, and at the end of
the EFSM transition. To this add the clock cycles contained in the run-time
components, which are given in table 7.5. Additionally, the maximum and
minimum times s for sending the SDL signals have to be determined. In
the second step, the task precedence system of the reaction to be analyzed
is followed, summarizing the reaction times on the way in order to obtain
the overall reaction time. In the following, only the SDL processes involved
in the observed task precedence systems are regarded, concentrating on the
operation mode Run.
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Figure 7.15: Task precedence system triggered by signal CC

Run-time system

The message queue of the utilized run-time components can not receive two
SDL signals simultaneously. If it is possible that up to k messages are sent
to one SDL process at the same time, the minimum sending time s has for
the worst case to be multiplied by k, i.e. smax = k · s. Table 7.5 summarizes
the execution times required by the used implementations of the run-time
components.

Process Clock

1. Input signals in mode Run: CC

2. Execution times:

cCC,send,max = d+ 2 + sctrl clock,max = 7

cCC,send,min = cCC,send,max

cCC→ctrl clock = d = 3

3. Reaction time:

• ESCC :
{(

Psub
0

)}

• In a periodic system, the utilization must be below or equal 100%:

cCC,max ≤ Psub (7.13)

• If equation (7.13) holds, the maximum reaction time can be found
at I = 0, like described in equation (5.5):

rCC,max = q+w + c

= q+ C(0)− cCC + cCC

= q+ cCC,max = 9

(7.14)
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clock cycles simultaneous signals
sctrl clock s —
scan clock,tsm 3 · s tx, tx_off
sstuff now,tsm 3 · s tx, tx_off

ssample now sync,max 2 · s rx_edge

ssample now rcv,max 2 · s stuff_now

sstuffnowrcv 2 · s sample_now

ssample now stuff,max 2 · s stuff

srx,max s —
s 2
q 2
d 3

Table 7.5: Execution times required by run-time components

and

rCC→ctrl clock = q+ cCC→ctrl clock = 5; (7.15)

4. Output event stream: Since w = 0 and cCC,send,min = cCC,send,max,
equation (5.7) yields J = 0. Therefore,

ESctrl clock = ESCC :

{(

Psub

0

)}

(7.16)

Process Timing

1. Input signals in mode Run: ctrl_clock

2. Execution times:

cctrl clock,send,max = d+ 2 + ssample now sync,max + ssample now rcv,max

+ ssample now stuff,max = 3 + 2 + 4 + 4 + 4 = 17

cctrl clock→sample now rcv = d+ 1 = 4

cctrl clock→sample now sync = d+ 1 + ssample now rcv,max = 8

cctrl clock→sample now stuff = d+ 1 + ssample now sync,max + ssample now rcv,max = 12

3. Reaction time:

• ESctrl clock :
{(

Psub
0

)}
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• In a periodic system, the utilization must be below or equal 100%:

cctrl clock,max ≤ Psub (7.17)

• Again, the maximum reaction time can be found at I = 0, like
described in equation (5.5):

w = 0

rctrl clock,max = q+ cctrl clock = 19
(7.18)

and

rctrl clock→sample now rcv = q+ cctrl clock→sample now rcv = 2 + 4 = 6;
(7.19)

4. Output event stream: The additional information from section 7.3.1 is
used here.

ESsample now = EScan clock :

{(

Pbit

0

)}

edcan clock,sample now = P1

edsample now,can clock = P2

(7.20)

Process BitStuffing

1. Input signals in mode Run: sample_now, stuff, stuff_off

2. Execution times:

cstuff = cstuff off = d+ 2

csample now,send,max = d+ 2 + sstuff now rcv + sstuff now tsm =

3 + 2 + 4 + 6 = 15

csample now,send,min = d+ 2 + 2 · s = 9

csample now→stuff now rcv = d+ 1 = 4

csample now→stuff now tsm = d+ 1 + sstuff now rcv = 8

3. Reaction time:

• Event streams and dependencies:

ESstuff = ESstuff off :

{(

47 · Pbit
0

)}

edstuff,stuff off = 34 · Pbit; edstuff off,stuff = 13 · Pbit;

ESsample now :

{(

Pbit

0

)}

(7.21)
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• In a periodic system, the utilization must be below or equal 100%:

csample now,max

Pbit
+
cstuff + cstuff off

47 · Pbit
≤ 1

⇒csample now,max +
cstuff + cstuff off

47
≤ Pbit

(7.22)

• Event dependency:

cstuff = cstuff off << 13 · Pbit

⇒ only one signal of both has to be considered

• I = 0:
C(0) = csample now + cstuff

• I > 0: Since with equation (7.22) csample now < Pbit and cstuff <
47 · Pbit, no larger C(I)− I can be reached than at I = 0

• Maximum reaction time therefore:

rsample now,max = rstuff = rstuff off = q+ csample now + cstuff
(7.23)

and

rsample now→stuff now rcv = q+ cstuff + csample now→stuff now rcv

rsample now→stuff now tsm = q+ cstuff + csample now→stuff now tsm

(7.24)

4. Output event stream: With equation (5.7) yields J = cstuff +
cCC,send,max − cCC,send,min. Therefore,

ESstuff now :

{(

∞

0

)(

Pbit

Pbit − cstuff − 6

)}

(7.25)



114 CHAPTER 7. EXPERIMENTAL RESULTS AND EVALUATION

Process Receiver

1. Input signals in mode Run: sample_now, stuff_now

2. Execution times:

cstuff now = d+ 1 = 4

csample now,send,max = d+ 2 + srx,max = 7

csample now,send,min = csample now,send,max

csample now→rx = d+ 1 = 4

3. Reaction time:

• Input event streams:

ESsample now = EScan clock :

{(

Pbit

0

)}

ESstuff now :

{(

∞

0

)(

Pbit

Pbit − cstuff − 6

)} (7.26)

• Utilization condition:

csample now + cstuff now ≤ Pbit (7.27)

• Event dependencies: Signal stuff_now is triggered by signal
sample_now_stuff, which is output in the same transition as sig-
nal sample_now_rcv. With equation (5.13) and (5.11) (propa-
gation of event dependencies between SDL processes, event de-
pendencies between signals from one SDL process), therefore, an
event dependency can be derived:

edsample now,stuff now = rsample now→stuff now rcv,min = 6

edsample now stuff,sample now = ca,min − ca→c,max − sc + ca→b,min + sb

= 15

edstuff now,sample now = edsample now stuff,sample now

− rsample now,min + rstuff now,max = 6

(7.28)

• Investigating signal sample_now at I = 0: C(0) = csample now;
stuff_now has no influence because ed > cstuff now; no I > 0 to
be considered because csample now < Pbit postulated.
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• Reaction time of signal sample_now:

rsample now,max = q+w + c

= q+ csample now,max = 9
(7.29)

and
rsample now→rx = q+ csample now→rx = 6; (7.30)

4. Output event stream: Since w = 0 and csample now,send,min =
csample now,send,max, equation (5.7) yields J = 0. Therefore,

ESrx = ESsample now :

{(

Pbit

0

)}

(7.31)

Overall Reaction Time

As can be seen in figure 7.15, the reaction CC→rx to be investigated in-
volves the processes Clock, Timing and Receiver, with the intermediate sig-
nals ctrl_clock, sample_now. In order to obtain the overall reaction time
rCC→rx, the reaction times of the involved signals have to be added:

rCC→rx = rCC→ctrl clock + rctrl clock→sample now

+ rsample now→rx + srx

= 5 + 6 + 6 + 2 = 19 cycles

(7.32)

With the clock period of 30 ns used in the experimental setup, the reac-
tion time which should be shorter than the given deadline therefore is:

rCC→rx = 0.57 µs ≤ 2 · Psub (7.33)

With

Psub =
1

10
·

1

fCAN
(7.34)

this results in a upper bound on the possible CAN bus frequency:

fCAN ≤
2

10 · rCC→rx

= 351
kbit

s
(7.35)
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7.3.3 Serial Activity Thread Model

Execution Times

Like before, the execution times c are obtained by summarizing the clock
cycles in the VHDL implementation. A more realistic analysis is obtained,
when the operation modes are considered also at this step. In that case,
branches in the EFSM that are triggered by internal signals not contained in
the observed mode are not summarized in the execution time. The execution
times of the serial ATM implementation for operation mode Run are shown
in the following:

stuff: cstuff = d+ 2
stuff_off: cstuff off = d+ 2

tx: ctx = d+ 1
tx_off: ctx off = d+ 1
rx_edge: crx edge = d+ 3

rx_sync_edge: crx sync edge = d+ 1
CC: cCC = d+ 7 + srx,max

cCC→rx = d+ 3

Overall Reaction Time

Between the signals stuff and stuff_off, as well as between tx and tx_off,
there are the given event dependencies with ed > c. Therefore, only one
signal of each pair has to be considered at a time.

The requested computation at I = 0 then results in:

C(0) = cstuff + ctx + crx edge + crx sync edge + cCC = 31 (7.36)

The worst case waiting time of signal CC based on C(0) then is

wCC = C(0)− cCC = 19; (7.37)

with the maximum reaction time

rCC→rx = q+wCC + cCC→rx + srx

= 2 + 19 + 3 + 3 + 2 = 29;
(7.38)

Now, it has to be shown that this is in fact the worst case. Like before,
the deadline for the reaction CC→rx is given as 2·Psub. The minimum sub-bit
period Psub then is:
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rmax ≤ 2 · Psub ⇒ Psub ≥
rmax

2
= 14.5 (7.39)

Figure 7.16 shows the plot of C(I)− I of the serial ATM implementation
for Psub = 14.5 cycles. It can be clearly seen that the maximum value of
C(I)− I appears at I = 0, like is to be expected in a periodical system.
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Figure 7.16: C(I)− I for Pbit = 14.5 cycles

The obtained minimum value for Psub translates to a maximum CAN bus
frequency of:

fCAN =
1

10 · Psub
=

1

10 · 14.5 · 30 ns
= 230

kbit

s
(7.40)

7.3.4 Parallel Activity Thread Model

The reaction time of the parallel activity thread model consists of the exe-
cution time in the activity thread plus additional waiting time at the shared
data components. In a first step, therefore, the blocking times caused by the
transitions of the activity threads are determined. The access to the shared
data in the run-time components used in the experiments is granted based
on priorities. For the computation of the waiting time at the shared data
component, the event streams and dependencies of the thread with higher
priority, and the highest possible blocking time through a lower priority ac-
tivity thread, need to be known.
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clock cycles
lock l 2

unlock u l
queue length 0: q0 2

d0 0

Table 7.6: Execution times required by run-time components

In addition to table 7.5, the execution times of the run-time components
of the parallel activity thread model given in table 7.6 are required. Again,
only signals and activity threads of the observed operation mode Run need
to be regarded.

Blocking Times

Activity Thread CC

bCC,Clock = l+ u+ 1 = 4

bCC,T iming = l+ u+ 1 = 4

bCC,Bitstuffing = l+ u+ 1 = 4

bCC,Receiver = l+ u+ 1 = 4

bCC,Transmitter = l+ u+ 1 = 4

bCC,Synchronization = l+ u = 4

Activity Thread stuff

bstuff,Bitstuffing = l+ u+ 1 = 4

Activity Thread stuff off

bstuff off,Bitstuffing = l+ u+ 1 = 4

Activity Thread tx

btx,T ransmitter = l+ u = 3

Activity Thread tx off

btx off,Transmitter = l+ u = 3
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Activity Thread rx edge

brx edge,Synchronization = l+ u+ 2 = 5

Activity Thread rx sync edge

brx sync edge,Synchronization = l+ u = 3

Waiting time in activity thread CC

The reaction CC→rx to be investigated is part of the activity thread CC, which
has been given the highest priority in the implementation. The reaction
involves the processes Clock, Timing and Receiver, with the intermediate
signals ctrl_clock, sample_now. First, the maximum waiting times at these
processes has to be determined.

Process Clock Input signals in mode Run: CC ⇒ no blocking by other
ATs

Process Timing Input signals in mode Run: ctrl_clock⇒ no blocking
by other ATs

Process Receiver Input signals in mode Run: sample_now, stuff_now
are part of the same AT ⇒ no blocking by other ATs

Processes Synchronization, Bitstuffing are involved after the sending
of signal rx and therefore do not contribute to rCC→rx.

Overall Reaction Time

rCC→rx = q+ d+ bCC,Clock + bCC,T iming + bCC,Receiver + srx

= 2 + 4 + 4 + 4 + 2 = 16

rmax ≤ 2 · Psub ⇒ Psub ≥
rmax

2
= 8 (7.41)

This corresponds to a maximum CAN bus frequency of:

fCAN =
1

10 · Psub
=

1

10 · 8 · 30 ns
= 416

kbit

s
(7.42)
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7.4 Evaluation

The application examples presented in this chapter have been specified in
SDL and implemented on the rapid prototyping target architecture using the
automated design process presented in chapter 6. The implementations have
been tested and found to work properly in their respective environments, i.e.
CAN-bus network, servo motors and software interface. This shows that the
automated generation of application specific hardware from SDL is feasible.
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Figure 7.17: Resource usage overview of the application examples

The results from the application examples can be used for a comparison of
the three implementation models in terms of required hardware resources and
guaranteeable reaction time. Figure 7.17 summarizes the synthesis results
already discussed in detail in section 7.2. In all three examples the serial
activity thread model has the lowest resource usage, followed by the server
model. The parallel activity thread model requires more FPGA resources
than the server model, except for the servo motor controller example, where
parallel ATM and server model are identical due to the structure of the
SDL specification. Figure 7.18 shows the results of the real-time analysis
carried out in section 7.3. Here, the order is reversed with the parallel ATM
guaranteeing the shortest time for the investigated reaction CC → rx, and
the serial ATM the longest.

Obviously, the results gained with the examples, absolute numbers as well
as the comparative values, highly depend on many individual features, which
can lead to different results. Among those influencing factors are the type of
application, the manner of SDL specification, the used VHDL code generator
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Figure 7.18: Maximum response time for the CAN bus example

and the used run-time components. What the detailed analysis of resource
usage and the run-time analysis in this chapter allow, however, are a number
of observations on the trade-offs between the implementation models which
are based on their fundamental qualities:

1. The server model has the advantage of a parallel execution at SDL
process level. Particularly if a task precedence system branches, i.e.
when during one transition several signals are sent to different SDL
processes, the server model allows a parallel execution. Both variants
of the activity thread model execute different branches of one activity
thread sequentially. This obviously has an effect on the reaction time.
A second effect particular to the activity thread model is the multiple
implementation of functionality of one transition, which is triggered in
different activity threads. This can lead to an increased resource usage.

2. Parallel execution units which have to interact with each other always
increase the hardware resource requirements, because data has to be
stored several times. In the server model, in the form of SDL signals,
which are stored multiply along the signal flow in the task precedence
system: In the message queue, in the EFSM input register, possibly
in a SDL variable and finally in the send register for the next internal
signal. In a dual manner, the parallel activity thread model centralizes
the signal flow, but distributes the local data, i.e. states and variables
of the SDL processes. These are stored in the shared data component,
and as a local copy in all involved activity threads.

3. The distribution of data storage described in (2.) not only requires
hardware resources, but also leads to an overhead in time, since data
has to be transferred during execution. In both the server and the
parallel activity thread model this happens at identical points of the
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SDL specification, always when a SDL signal is sent. In the server im-
plementation, this takes time due to the message transferral between
signal channel, queue, and EFSM. In the parallel ATM, the activity
thread must obtain the shared data, and write it back after the transi-
tion. Since generally the sending of a signal requires more time than to
obtain and release the process data, the parallel activity thread model
has a temporal advantage, depending on the implementation of the
run-time components. Further improvements in the real-time analysis
result from the facile implementation of a priority based access in the
shared data component.

4. The serial activity thread model stores both the process data and sig-
nals only once locally, and internal signals are abolished. Due to the
serialization there are no access conflicts. The resource and time effort
described in (2.) and (3.) are therefore not relevant here, which leads
to minimum resource usage and execution time. However, the serial
execution also means that all external signals share one execution unit
and the possible parallelity in hardware is unused. This can lead to
waiting times, depending on the event streams and dependencies, and
therefore to longer worst case reaction times.



Chapter 8

Conclusions and Future Work

The aim of this work is to provide a framework for and to evaluate the auto-
mated generation of application specific hardware from SDL specifications,
particularly for hard real-time systems, which require the possibility of a
before-hand worst case real-time analysis. A useful application of such an
environment is rapid prototyping, in which it was integrated and tested with
real-world examples.

The presented design method starts with a specification in SDL, extended
by annotations, which capture the real-time requirements of the system under
development. Event streams and event dependencies are used to describe
the temporal behaviour of the system’s environment in form of minimum
distances between external events. End-to-end deadlines give the maximum
time a reaction to an event is allowed to take. In the described automated
rapid-prototyping design process, the CASE tool SDT is used for specification
and simulation of the SDL model.

The next step towards an electronic circuit realizing the behaviour spec-
ified in SDL is a VHDL description of this behaviour. Here, different basic
principles for the transformation of SDL into VHDL, the implementation
models, are presented. The server model maps each SDL process to its
own VHDL entity (implementation process) with its own message queue and
asynchronous communication. The activity thread implementation in con-
trast executes all transitions, which are triggered in the SDL processes by
one external signal or timer output, directly one after the other, abolishing
the internal communication between the processes. The serial activity thread
model joins all of these activity threads in one implementation process with
one message queue. After the parallel activity thread model, each activity
thread has its own entity. In this case, the local variables and states of the
SDL processes must be made accessible to the involved activity threads in a
synchronized manner.

123
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In all implementation models it is possible to differentiate between parts
of the implementation, which are new every time depending on the speci-
fication, and parts which occur in similar fashion every time, like message
queues, timers and signal channels. For these reusable system parts, the run-
time components are provided. In the rapid-prototyping environment, the
VHDL model is generated automatically from SDL using the SDL-Compiler.
In the generated code, the interfaces to the run-time components have the
form of macro-statements. In a later “link”-step, these are replaced by the
necessary access protocols, and the components of the design are integrated.
Next, commercial synthesis, place and route tools create the FPGA design
for the target architecture.

To be able to cover the worst case in finite analysis time, the real-time
analysis takes an abstract view of the implemented system: It observes imple-
mentation processes (server processes and activity threads), and their min-
imum and maximum execution times, which are derived from the VHDL
description. Additionally, it uses the SDL systems’ task precedence graph,
which contains the information which signal is triggered in which transition.
The functionality of the specification, i.e. which transition is executed when,
can not be included. This proceeding can in some cases lead to overly pes-
simistic results, which can be improved by the inclusion of event dependen-
cies, of additional system information and of operation modes in the analysis.

The main aim of the real-time analysis is the determination of the worst
case reaction time to an event. For this, the maximum waiting time in
the message queue of each implementation process must be known. In the
used first-come-first-serve execution scheme, the waiting time results from
the unfinished work which is still in the queue at the time of arrival of the
observed event and which can be computed for the worst case from the event
streams and execution times of the signals. If the given event dependencies
are to be considered, it is necessary to find at first the sequence of events,
which leads to the maximum waiting time in the queue. This is done with
a branch-and-bound search algorithm, which due to the break-off rule needs
not to be followed too deeply, and gives an on-line search result. For the
analysis of an entire SDL system, the event streams of internal signals are also
required. For FCFS, a graphical and an algorithmical procedure is presented,
which uses the maximum and minimum execution time and the waiting time
of the implementation process to determine the output event stream. Next to
the event stream, it is also possible to derive event dependencies of internal
signals, which result on one hand from a signal origin from the same SDL
process, or on the other hand from the propagation of event dependencies
between input signals.

The methods described so far are applicable to all implementation models;
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for the parallel activity thread model, however, it is additionally necessary
to determine the waiting times at the shared data components, which have
to be added to the execution time of the implementation process. For this,
the access policy to the shared data (FCFS or priority based) and the event
dependencies are considered, as well as the fact that one activity thread can
access only one shared data component at the same time.

In some cases cyclic dependencies must be resolved before the maximum
reaction times of all implementation processes are known. Then, the maxi-
mum overall time for a reaction to an external signal which can span across
several implementation processes can be calculated. Here, in contrast to the
computation of the maximum waiting time, not the complete reaction of each
process to the triggering signal must be considered, but instead only up to
the output of the next signal in the observed task precedence system.

A second aim of the real-time analysis is to find the maximum necessary
message queue length. For this, a departure function is defined which de-
pends on the already known unfinished work in the message queue. Together
with the event streams, it is used to determine the maximum filling level of
the queue, for independent and for dependent input signals.

The presented methods have been tested with the help of application ex-
amples in the rapid prototyping environment. The three examples, the CAN
bus physical layer, the servo motor controller and the assembly line example,
were specified in SDL. With the automated design process, VHDL code was
generated and the components were integrated into a complete VHDL design.
The examples were executed on the target architecture, and tested in the real
environment. An analysis of the synthesis result reveales that it is possible
to make a reasonable estimate of the memory element resources required by
the run-time components and the generated implementation processes based
on a few parameters of the implementation, like signal and variable width,
number of input and output channels and number of states. For the three
application examples, the examination of the usage of the memory elements
illustrates the differences between the implementation models and the dif-
ferent reasons for high resource requirements in different application types.
The technology dependent resource usage finally reported by the place and
route tool confirms the first estimates based on the memory elements.

The CAN bus example, which has stringent real-time requirements, is
used to demonstrate the real-time analysis, using one of the task precedence
systems of the physical layer. First, the event streams, event dependencies
and deadlines are determined. In a second step, operation modes are defined,
which prove to be very useful during the analysis. The worst case reaction
time of the observed signal is calculated for all three implementation models.

The analysis of the resource usage shows that in all implementation mod-
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els a certain overhead is caused by SDL’s model of computation and com-
munication, and also by the automated code generation. One main reason is
the effect, that automatically a large number of intermediate storage places
is generated, among others queue, queue input of the EFSM, variables, timer
values and signals to send. In those registers, often the same value is stored
severalfold, which is an effect that would not occur in a hand implementa-
tion without the use of SDL. An optimized code generator could improve this
drawback only partly. In a comparison of the different implementation mod-
els, the serial activity thread model shows the lowest resource requirements,
since all variables and signals are stored only once locally. The parallel activ-
ity thread shows a high resource usage, particularly if there are many activity
threads and process variables.

Considering the achievable response time of the generated hardware, the
above said applies analogously: The transferral of data between the multiple
storage places requires time, which causes the response times to be relatively
high compared to a possible hand implementation. A number of clock cycles
could be saved with improved run-time components and code generation,
but a certain overhead is bound to remain. Comparing the implementation
models, the parallel activity thread model shows a temporal advantage over
the server model. Although the serial activity thread model has shorter
execution times, the serialization can lead to higher worst-case waiting times,
which result in longer reaction times.

Concluding, the results from the implementation show that the auto-
mated generation of hardware from SDL is feasible and well integratable in
a HW/SW rapid prototyping environment. The presented method shows
a number of advantages: high-level specification and simulation, automated
code generation, integration with software, good suitability for free partition-
ing and implementation on distributed systems. If these advantages balance
the described overhead in resource usage and response time, depends on the
application. In a rapid prototyping environment, this will often be the case.

One possibility for improvement of the current design environment has
already been mentioned, and lies in an optimization of the code generator
and the run-time components in terms of resource usage and execution times,
in order to investigate what the actual minimum requirements for SDL im-
plementations are.

The so far realized design process has put the focus on the functional code
generation. The next development could be a user-supported, automated
communication refinement and component integration step. This would also
facilitate the combination of different implementation models in one system,
which like the results indicate could be advantageous.

Further development is possible in the field of the real-time analysis.
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The algorithms developed in this work can and should be automated and
integrated with the design environment. The first-come-first-serve execution
scheme is disadvantageous from a worst-case point of view. A priority-based
scheme, like already partly implemented in the parallel activity thread model,
does not collide with SDL’s semantics. It could be implemented in the server
model with the help of several parallel message queues, which are accessed by
the EFSM in a fixed priority order. This changed execution mode of course
would have to be integrated in the real-time analysis.

Finally, the communication protocol of the signal channels, which depends
on the used run-time components, could also be investigated during real-time
analysis. It could utilize the results from the already presented analysis of
the implementation processes, e.g. internal event streams and dependencies.
It could in turn deliver more exact bounds on the sending time of signals
than the ones used in this work. The aim would be an integrated real-time
analysis of signal channels and implementation processes.
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Appendix A

Application Examples

Appendix A contains the complete SDL specifications of the used application
examples, directly printed from the CASE tool SDT.

A.1 CAN Bus Physical Layer

Source directory rw /home/muth/rtsg/diss/SDL/can/

SDL System Structure --- CAN

Process Controller rw Controller.spr

Process BitStuffing rw BitStuffing.spr

Process Transmitter rw Transmitter.spr

Process Receiver rw Receiver.spr

Process Clock rw Clock.spr

Process Timing rw Timing.spr

Process Synchronization rw Synchronization.spr

Block PhysicalLayer rw PhysicalLayer.sbk

System CanController_small rw CanController_small.ssy

Other Documents

Figure A.1: SDL specification of the CAN physical layer
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System CanController_small 1(1)

syntype cc_duration = Integer
            constants 0:1023
endsyntype;

syntype int_bit_time = Integer
            constants 0:31
endsyntype;

SIGNAL
tx(Boolean),rx(Boolean),
rx_edge,rx_sync_edge,
tx_level(Boolean),
sleep,awoken,
tx_off, stuff,stuff_off,
reset_pl, 
controller_period(cc_duration), signal_seg(int_bit_time), 
buffer_seg_1(int_bit_time),buffer_seg_2(int_bit_time),
stuff_error,sync_error;

PhysicalLayer

ControllerSignals

sleep, tx_off, stuff, stuff_off,
reset_pl,controller_period,
signal_seg, buffer_seg_1,
buffer_seg_2

awoken

BusSignalsrx

tx

ErrorSignals

stuff_error,
sync_error

CanBusSignals

tx_level
rx_edge,
rx_sync_edge
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Block PhysicalLayer 1(1)
SIGNAL
start_stuff, reset_stuff, 
start_timing, reset_sync,
start_clock, reset_clock, 
controller_clock, can_clock, sample_now,
sample_now_1,sample_now_2,
stuff_now(Boolean),tx_local;

Controller

Clock

BitStuffing Timing Synchronization

Transmitter Receiver

ControllerSignals
R4

reset_pl,
sleep

awoken

R25

rx_sync_edge
CanBusSignals

R8

start_stuff,
reset_stuff

R12start_clock,
reset_clock

R2

start_timing

R7

reset_sync

R28

controller_period
ControllerSignals

R13controller_clock

R15

rx_edge
CanBusSignals

ControllerSignals
R5

stuff, 
stuff_off

R26

signal_seg,
buffer_seg_1,
buffer_seg_2

ControllerSignals

R14

can_clock,
sample_now

ErrorSignals
R10

stuff_error

R16

sample_now

R11
sync_error

ErrorSignals
R24

stuff_now

R17

stuff_now

R19

can_clock R22

sample_now

R23

tx_local

ControllerSignals
R18
tx_off

R3

rx
BusSignals

BusSignals
R21

tx

R6

tx_level

CanBusSignals
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Process Controller 1(1)

/*${map on asic}*/

Idle

Idle

rx_sync_edge

awoken

start_clock

start_timing

start_stuff

Busy

tx_local

start_clock

start_timing

start_stuff

Busy

Busy

sleep

reset_clock

reset_sync

reset_stuff

Idle

*

reset_pl

reset_clock

reset_sync

reset_stuff

Idle
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Process BitStuffing 1(1)

/*${map on asic}*/
syntype int_stuff_length = Integer
            constants 0:5
endsyntype;
dcl stuff_bit Boolean;
dcl stuff Boolean;

dcl identical_bits int_stuff_length;
dcl rx Boolean;

Busy

sample_now_1 * *

Idle
/*#VHDL{ -- read CAN rx level  

   m4_read_variable(BitStuffing,rx,rx)}*/
’’ 

stuff_off stuff

* stuff:=False
stuff := True,

stuff_bit := false,
identical_bits := 0

start_stuff stuff=true - -

Busy rx = true and 
stuff_bit = true

 rx = false and 
stuff_bit = false

identical_bits := 0,
stuff_bit := 

not(rx)
identical_bits = 4 Busy

identical_bits :=
identical_bits + 1 stuff_error reset_stuff

identical_bits = 4 Idle

stuff_now(stuff_bit) 
via R17

stuff_now(stuff_bit) 
via R24

Busy

True

False

False

True

True

False

False
True

True

False
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Process Transmitter 1(1)

/*${map on asic}*/
dcl Tx Boolean;
dcl stuff_bit Boolean;

Idle * Send SendStuffBit

/*#VHDL{
tx <= ’1’;}*/
Tx := True

tx(Tx) tx_off tx(Tx) tx(Tx)

Idle tx_local Idle Send SendStuffBit

Send

Send Send SendStuffBit

can_clock stuff_now
(stuff_bit) can_clock

SendStuffBit

/*#VHDL{
m4_write_signal(Transmitter,tx,tx)}*/’’

/*#VHDL{
m4_write_signal(Transmitter,stuff_bit,tx)}*/’’

Send Send
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Process Receiver 1(1)

/*${map on asic}*/
dcl rx Boolean;

Receive Receive StuffNow

sample_now_2 stuff_now next bit
is a stuff-bit sample_now this bit is a stuff-bit,

therefore ignored

/*#VHDL{ 
m4_read_variable(Receiver,rx,rx)}*/

’’
StuffNow Receive

rx(rx)

Receive
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Process Clock 1(1)

/*${map on asic}*/
Timer CC;
syntype cc_duration = Integer
            constants 0:1023
endsyntype;
dcl controller_period cc_duration;

ResetState

start_clock

Reset (CC)

Set(Now+controller_period,CC)

Busy

Busy

CC

controller_clock

Set(Now+controller_period,CC)

Busy

*

reset_clock

Reset(CC)

ResetState

*

controller_period(controller_period)

-
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Process Timing 1(1)

/*${map on asic}*/

syntype int_bit_time = Integer
            constants 0:31
endsyntype;

viewed sample_time, bit_time int_bit_time;
dcl revealed bit_position int_bit_time;
dcl first_bit Boolean;

Busy

controller_clock

Busy
bit_position =

view(sample_time)-1

first_bit = true

* first_bit := false

start_timing sample_now_1 via R16

bit_position := 0,
first_bit := true sample_now via R22

Busy sample_now via R14

sample_now via R16

bit_position >=
view (bit_time)-1

bit_position := 
bit_position + 1

bit_position := 0

can_clock via R14

can_clock via R19

Busy

True

False

True

False

False

True
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Process Synchronization 1(2)

/*${map on asic}*/

syntype int_bit_time = Integer
            constants 0:31
endsyntype;

dcl buffer_seg_1_conf int_bit_time;
dcl buffer_seg_2_conf int_bit_time;
dcl signal_seg_conf int_bit_time;
dcl buffer_seg_1 int_bit_time;
dcl buffer_seg_2 int_bit_time;
dcl signal_seg int_bit_time;
viewed bit_position int_bit_time;
dcl diff_int int_bit_time;
dcl revealed sample_time, bit_time int_bit_time;
dcl sample_time_conf, bit_time_conf int_bit_time;

Idle

Idle can_clock rx_edge

Before_sampling -

* *

reset_sync buffer_seg_1(buffer_seg_1_conf)

signal_seg := signal_seg_conf,
buffer_seg_1 := buffer_seg_1_conf,
buffer_seg_2 := buffer_seg_2_conf

-

*

sample_time_conf :=
1 + signal_seg_conf
+ buffer_seg_1_conf buffer_seg_2(buffer_seg_2_conf)

bit_time_conf := 
1+ signal_seg_conf

+ buffer_seg_1_conf 
+ buffer_seg_2_conf

-

*

sample_time := sample_time_conf,
bit_time := bit_time_conf signal_seg(signal_seg_conf)

Idle -
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Process Synchronization 2(2)

Before_sampling

sample_now

Sampling_done

Sampling_done

can_clock

Before_sampling

was_too_fast

can_clock

sample_time := sample_time_conf,
bit_time := bit_time_conf

Before_sampling

sample_now

-

wait_next_interval

can_clock

bit_time := bit_time_conf

Before_samplingSampling_done

rx_edge

diff_int :=
bit_time 

- view(bit_position)

 view (bit_position) <
sample_time+1

sync_error

bit_time := bit_time - diff_int

wait_next_interval

Before_sampling

rx_edge

view (bit_position) >
sample_time-2

sync_error

sample_time := sample_time + bit_position,
bit_time := bit_time + bit_position

was_too_fast

was_too_slow

can_clock

-

sample_now

diff_int<
buffer_seg_2

buffer_seg_2 :=
buffer_seg_2 

- diff_int

bit_time := 
sample_time 

+ buffer_seg_2

wait_next_interval

buffer_seg_2 := 1

True

False

True

False

True

False
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A.2 Servo Motor Controller

Source directory rw /a/nobody/raid_home/muth/rtsg/diss/SDL/servo/

Analysis Model

Used Files

Process servo_1 rw servo_1.spr

Process servo_2 rw servo_2.spr

Process servo_3 rw servo_3.spr

Process servo_4 rw servo_4.spr

Process servo_5 rw servo_5.spr

Process servo_6 rw servo_6.spr

Block control_block rw control_block.sbk

System servo_control rw servo_control.ssy

TTCN Test Specification

Other Documents

Figure A.2: SDL specification of the servo motor controller
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System servo_control 1(1)

syntype timer_type_1 = Integer
            constants 0:120000
endsyntype;
signal pos_1(timer_type_1),
       pos_2(timer_type_1),
       pos_3(timer_type_1),
       pos_4(timer_type_1),
       pos_5(timer_type_1),
       pos_6(timer_type_1);

control_block
c1

pos_1,pos_2,pos_3,pos_4,pos_5,pos_6
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Block control_block 1(1)

servo_1

servo_2

servo_3

servo_4

servo_5

servo_6

c1
r1

pos_1

c1
r2

pos_2

c1
r3

pos_3

c1
r4

pos_4

c1
r5

pos_5

c1
r6

pos_6
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Process servo_1 1(1)

/*${map on asic}*/
Timer BASE_1;
Timer POSITION_1;
syntype timer_type_1 = Integer
            constants 0:120000
endsyntype;
syntype timer_type_2 = Integer
            constants 0:520000
endsyntype;
dcl pos timer_type_1;
dcl base_p timer_type_2;base_p 

   := 500000
/* 15,0ms */

pos := 80000
/* 2,4ms */

Reset(BASE_1);
Set(Now+base_p,

    BASE_1)

Reset(POSITION_1);
Set(Now+pos,

    POSITION_1)

’set output’
/*#VHDL{

servo_out_1 <= ’1’;}*/

run

run

POSITION_1

’reset output’
/*#VHDL{

servo_out_1 <= ’0’;}*/

-

run

BASE_1

Set(Now+base_p,
    BASE_1)

Set(Now+pos,
    POSITION_1)

’set output’
/*#VHDL{

servo_out_1 <= ’1’;}*/

-

run

pos_1(pos)

-



150 APPENDIX A. APPLICATION EXAMPLES

Process servo_2 1(1)

/*${map on asic}*/
Timer BASE_2;
Timer POSITION_2;
syntype timer_type_1 = Integer
            constants 0:120000
endsyntype;
syntype timer_type_2 = Integer
            constants 0:520000
endsyntype;
dcl pos timer_type_1;
dcl base_p timer_type_2;base_p 

   := 500000
/* 15,0ms */

pos := 80000
/* 2,4ms */

Reset(BASE_2);
Set(Now+base_p,

    BASE_2)

Reset(POSITION_2);
Set(Now+pos,

    POSITION_2)

’set output’
/*#VHDL{

servo_out_2 <= ’1’;}*/

run

run

POSITION_2 

’reset output’
/*#VHDL{

servo_out_2 <= ’0’;}*/

-

run

BASE_2

Set(Now+base_p,
    BASE_2)

Set(Now+pos,
    POSITION_2)

’set output’
/*#VHDL{

servo_out_2 <= ’1’;}*/

-

run

pos_2(pos)

-
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Process servo_6 1(1)

/*${map on asic}*/
Timer BASE_6;
Timer POSITION_6;
syntype timer_type_1 = Integer
            constants 0:120000
endsyntype;
syntype timer_type_2 = Integer
            constants 0:520000
endsyntype;
dcl pos timer_type_1;
dcl base_p timer_type_2;base_p 

   := 500000
/* 15,0ms */

pos := 80000
/* 2,4ms */

Reset(BASE_6);
Set(Now+base_p,

    BASE_6)

Reset(POSITION_6);
Set(Now+pos,

    POSITION_6)

’set output’
/*#VHDL{

servo_out_6 <= ’1’;}*/

run

run

POSITION_6

’reset output’
/*#VHDL{

servo_out_6 <= ’0’;}*/

-

run

BASE_6

Set(Now+base_p,
    BASE_6)

Set(Now+pos,
    POSITION_6)

’set output’
/*#VHDL{

servo_out_6 <= ’1’;}*/

-

run

pos_6(pos)

-
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A.3 Assembly Line

Source directory rw /a/nobody/raid_home/muth/rtsg/diss/SDL/assembly/

Process motor1 rw motor1.spr

Process motor2 rw motor2.spr

Process product_counter rw product_counter.spr

Process process1 rw process1.spr

Block block1 rw block1.sbk

System assembly_line rw assembly_line.ssy

Analysis Model

Used Files

SDL System Structure

TTCN Test Specification

Other Documents

Figure A.3: SDL specification of the assembly line example
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system assembly_line 1(1)

syntype data_type = Integer
  constants 0 : 63
endsyntype;
signal
  in1,
  in2,
  reset_sig,
  out1(data_type),
  out2(data_type),
  stopped,
  emergency_stop;

block1
chan

 out1, out2, stopped  in1, in2, reset_sig, emergency_stop
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block block1 1(1)

signal
  motor_stop,motor_start,emergency_stop_int;

motor1 motor2

process1 product_counter

chan sr4
 emergency_stop

sr5

 emergency_stop_int

sr6

 stopped
chan

sr8

 stopped, reset_sig
sr2

 motor_start,motor_stop, reset_sig sr3

 motor_start,motor_stop, reset_sig

chan
sr1

 out1, out2

 in1, in2, reset_sig
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process motor1 1(1)

dcl
  go Boolean;

 go

 go

motor_stop

 stopped

stopped

motor_start

 go

 go

 emergency_stop

 emergency_stop_int

 emergency_halt

 stopped, emergency_halt

 reset_sig

 go
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process motor2 1(1)

dcl
  go Boolean;

 go

 go

 motor_stop

 stopped via sr6

 stopped via sr8

 stopped

stopped

motor_start

go

 go

 emergency_stop_int

 emergency_halt

 stopped, emergency_halt

 reset_sig

 reset_sig via sr8

 go
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process product_counter 1(1)

syntype data_type = Integer
  constants 0 : 63
endsyntype;
dcl
  count data_type;

count := 0

 run

 run

 stopped

count := count + 1

 run

 run

 reset_sig

count := 0

 run
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process process1 1(1)

syntype data_type = Integer
  constants 0 : 63
endsyntype;
dcl
  data1,
  data2 data_type;
dcl
  c_true,
  c_false Boolean;

 empty  empty  * 

data1 := 0,
  data2 := 0,

  c_true := True,
  c_false := False

 in1  in2  reset_sig

 motor_start via sr2data1 := data1 + 1 data2 := data2 + 1  reset_sig via sr2

motor_start via sr3 data1 = 4 data2 = 3  reset_sig via sr3

 empty  motor_stop via sr2 out1(data1)  motor_stop via sr3 out2(data2)  empty

data1 := 0  empty data2 := 0  empty

 out1(data1)  out2(data2)

 a1_full_2_empty  a1_empty_2_full

 a1_empty_2_full Lbl1  a1_full_2_empty Lbl2

 in1 data1 := 0  in2 data2 := 0

data1 := data1 + 1  out1(data1) data2 := data2 + 1  out2(data2)

data1 = 4  a1_full_2_full data2 = 3  a1_full_2_full

 motor_stop via sr2 out1(data1)  motor_stop via sr3 out2(data2)

Lbl1  - Lbl2  -

(True) (False) (True) (False)

(True) (False) (True) (False)
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Generated VHDL Code

To print the generated VDHL code of all application examples, or even the
complete code of one example, would require an unreasonable amount of
space. To give an impression of the generated hardware, a few of the gen-
erated VHDL files of the application example “assembly line” are printed
here:

• Top-level VHDL file of the server model implementation (figure B.1)

• SDL process motor1, server implementation, before m4 macro replace-
ment (figure B.2)

• SDL process motor2, server implementation, after m4 macro replace-
ment (figure B.3)

• SDL process process1, server implementation (figure B.4)

• EFSM Parallel activity thread implementation of AT emergency_stop

(figure B.5)

• EFSM Serial activity thread implementation (figure B.6)

159
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O

R
K

.A
L
L

;
U
S
E

 W
O

R
K

.c
o

n
fig

.
A
L
L

; 
  
 

U
S
E

 W
O

R
K

.s
ig

n
a

lli
st

.
A
L
L

;
U
S
E

 C
IO

P
.
A
L
L

;
U
S
E

 S
D

L
.
A
L
L

;
U
S
E

 U
N

IS
IM

.
A
L
L

;

E
N
T
I
T
Y

 a
ss

e
m

b
ly

_
lin

e
 

I
S

  
  

P
O
R
T

 (
  
  
  
  
 

−
−

 P
A

D
S

 .
..

  
  
  
  
S

Y
S

_
C

L
K

: 
  
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
; 

−
−

 c
lk

, 
re

se
t

  
  
  
  
G

N
E

T
2

_
G

R
E

S
E

T
_

0
 :
 

I
N

 s
td

_
lo

g
ic

;
  
  
  
  
F

R
D

_
0

: 
i
n

 s
td

_
lo

g
ic

;
  
  
  
  
F

W
R

_
0

: 
i
n

 s
td

_
lo

g
ic

;
  
  
  
  

−
−

 S
p

yd
e

r 
lo

ca
l b

u
s 

in
te

rf
a

ce
  
  
  
  
L

A
: 

i
n

 s
td

_
lo

g
ic

_
ve

ct
o

r 
(3

1
 

d
o
w
n
t
o

 2
);

  
  
  
  
L

B
E

0
_

0
: 

i
n

 s
td

_
lo

g
ic

;
  
  
  
  
L

B
E

1
_

0
: 

i
n

 s
td

_
lo

g
ic

;
  
  
  
  
L

B
E

2
_

0
: 

i
n

 s
td

_
lo

g
ic

;
  
  
  
  
L

B
E

3
_

0
: 

i
n

 s
td

_
lo

g
ic

;
  
  
  
  
L

D
: 

i
n
o
u
t

 s
td

_
lo

g
ic

_
ve

ct
o

r 
(3

1
 

d
o
w
n
t
o

 0
);

  
  
  
  

−
−

 g
a

lil
e

o
 lo

ca
l b

u
s 

in
te

rf
a

ce
  
  
  
  
A

D
D

R
: 
  
  
  
  
  

I
N

  
  
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

 4
 

D
O
W
N
T
O

 0
);

  
  
  
  
C

S
B

, 
R

W
B

, 
R

D
B

: 
 

I
N

  
  
  
st

d
_

lo
g

ic
; 

−
−

 c
se

l,
  
  
  
  
D

A
T

A
: 
  
  
  
  
  

I
N
O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

3
1

 
D
O
W
N
T
O

 0
);

  
  
  
  

−
−

 g
a

lil
e

o
 in

te
rr

u
p

t
  
  
  
  
B

IN
T

5
: 
  
  
  
  
 

O
U
T

  
  
 s

td
_

lo
g

ic
;

  
  
  
  

−
−

 L
E

D
s

  
  
  
  
F

P
G

A
_

L
E

D
_

0
 :
 

o
u
t

 s
td

_
lo

g
ic

;
  
  
  
  
F

P
G

A
_

L
E

D
_

1
 :
 

o
u
t

 s
td

_
lo

g
ic

;
  
  
  
  

−
−

 .
..
 io

−
p

o
rt

s
  
  
  
  
  
 

−
−

 d
ri
ve

r 
in

te
rf

a
ce

O
E

_
A

, 
D

IR
_

A
 

: 
O
U
T

st
d

_
lo

g
ic

;
O

E
_

B
, 
D

IR
_

B
 

: 
O
U
T

st
d

_
lo

g
ic

;
O

E
_

C
, 
D

IR
_

C
 

: 
O
U
T

st
d

_
lo

g
ic

;
O

E
_

D
, 
D

IR
_

D
 

: 
O
U
T

st
d

_
lo

g
ic

;
O

E
_

E
F

, 
D

IR
_

E
, 
D

IR
_

F
  

: 
O
U
T

st
d

_
lo

g
ic

;

  
  
  
  
D

: 
  
  
  
  
  
  
 

O
U
T

  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

8
−

1
 

D
O
W
N
T
O

 0
)

 
 

 
 

  
  
  
  
 )

;
e
n
d

 a
ss

e
m

b
ly

_
lin

e
;

A
R
C
H
I
T
E
C
T
U
R
E

 a
ss

e
m

b
ly

_
lin

e
_

a
rc

h
 

O
F

 a
ss

e
m

b
ly

_
lin

e
 

I
S

−
−

 s
p

yd
e

r 
a

d
a

p
tio

n
:

S
I
G
N
A
L

  
C

L
O

C
K

, 
G

S
E

T
R

E
S

E
T

: 
  
  
  
st

d
_

lo
g

ic
; 

−
−

 c
lk

, 
re

se
t

S
I
G
N
A
L

  
L

E
D

: 
  
  
  
  
  
 s

td
_

lo
g

ic
;

−
−

 g
e

n
e

ra
l s

ig
n

a
ls

:
S
I
G
N
A
L

 id
in

: 
  
  
  
  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

3
1

 
D
O
W
N
T
O

 0
);

S
I
G
N
A
L

 id
o

u
t2

, 
id

o
u

t3
, 

  
  
  
 id

o
u

t4
, 
id

o
u

t5
, 

  
  
  
 id

o
u

t6
, 
id

o
u

t7
: 
 s

td
_

lo
g

ic
_

ve
ct

o
r(

3
1

 
D
O
W
N
T
O

 0
);

S
I
G
N
A
L

 z
e

ro
3

2
: 
  
  
  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

3
1

 
D
O
W
N
T
O

 0
);

S
I
G
N
A
L

 r
e

g
re

a
d

: 
  
  
  
  
st

d
_

lo
g

ic
;

S
I
G
N
A
L

 r
e

g
w

ri
te

: 
  
  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

 7
 

D
O
W
N
T
O

 0
);

−
−

 R
E

G
IS

T
E

R
S

:
−

−
 M

C
S

R
R

 (
0

):
S
I
G
N
A
L

 m
cs

rr
ct

rl
: 
  
  
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

1
 

D
O
W
N
T
O

 0
);

S
I
G
N
A
L

 im
cs

rr
o

u
t:
  
  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

3
1

 
D
O
W
N
T
O

 0
);

S
I
G
N
A
L

 m
cs

rr
o

u
t:
  
  
  
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

3
1

 
D
O
W
N
T
O

 0
);

S
I
G
N
A
L

 r
e

se
t:
  
  
  
  
  
 s

td
_

lo
g

ic
;

S
I
G
N
A
L

 s
o

ft
re

se
t:
  
  
  
 s

td
_

lo
g

ic
; 
  
  
 

−
−

 a
lia

s 
fo

r 
m

cs
rr

ct
rl
(0

)
S
I
G
N
A
L

 m
ie

n
: 
  
  
  
  
  
 s

td
_

lo
g

ic
; 
  
  
 

−
−

 a
lia

s 
fo

r 
m

cs
rr

ct
rl
(1

)
−

−
 C

O
U

N
T

 (
1

):
S
I
G
N
A
L

 c
o

u
n

tc
lr
: 
  
  
  
 s

td
_

lo
g

ic
;

S
I
G
N
A
L

 c
o

u
n

to
u

t:
  
  
  
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

3
1

 
D
O
W
N
T
O

 0
);

  
 

S
I
G
N
A
L

  
 h

w
sw

q
u

e
u

e
_

ch
a

n
n

e
l: 

st
d

_
lo

g
ic

_
ve

ct
o

r(
1

9
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 s

e
n

d
_

h
w

sw
q

u
e

u
e

: 
st

d
_

lo
g

ic
_

ve
ct

o
r(

2
−

1
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 a

ck
_

h
w

sw
q

u
e

u
e

: 
st

d
_

lo
g

ic
_

ve
ct

o
r(

2
−

1
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 n

o
t_

e
m

p
ty

_
in

t,
in

tp
e

n
d

: 
st

d
_

lo
g

ic
;

  
 

−
−

 in
p

u
t 
si

g
n

a
ls

 p
ro

ce
ss

 p
ro

ce
ss

1
  
 

S
I
G
N
A
L

  
 

p
r
o
c
e
s
s

1
_

ch
a

n
n

e
l: 

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
in

_
ch

a
n

n
e

ls
_

p
ro

ce
ss

1
*q

u
e

u
e

_
w

i
d

th
_

p
ro

ce
ss

1
−

1
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 s

e
n

d
_

p
ro

ce
ss

1
: 
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
p

ro
ce

ss
1

−
1

 
d
o
w
n
t
o

 
0

);
  
 

S
I
G
N
A
L

  
 a

ck
_

p
ro

ce
ss

1
: 
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
p

ro
ce

ss
1

−
1

 
d
o
w
n
t
o

 0
);   
 

S
I
G
N
A
L

  
 

p
r
o
c
e
s
s

1
_

e
n

v_
ch

a
n

n
e

l: 
st

d
_

lo
g

ic
_

ve
ct

o
r(

3
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 

p
r
o
c
e
s
s

1
_

e
n

v_
se

n
d

: 
st

d
_

lo
g

ic
;

  
 

S
I
G
N
A
L

  
 

p
r
o
c
e
s
s

1
_

e
n

v_
a

ck
: 
st

d
_

lo
g

ic
;

  
 

−
−

 in
p

u
t 
si

g
n

a
ls

 p
ro

ce
ss

 m
o

to
r1

  
 

S
I
G
N
A
L

  
 m

o
to

r1
_

ch
a

n
n

e
l: 

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
in

_
ch

a
n

n
e

ls
_

m
o

to
r1

*q
u

e
u

e
_

w
id

th
_

m
o

to
r1

−
1

 
d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 s

e
n

d
_

m
o

to
r1

: 
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
m

o
to

r1
−

1
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 a

ck
_

m
o

to
r1

: 
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
m

o
to

r1
−

1
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 m

o
to

r1
_

e
n

v_
ch

a
n

n
e

l: 
st

d
_

lo
g

ic
_

ve
ct

o
r(

3
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 m

o
to

r1
_

e
n

v_
se

n
d

: 
st

d
_

lo
g

ic
;

  
 

S
I
G
N
A
L

  
 m

o
to

r1
_

e
n

v_
a

ck
: 
st

d
_

lo
g

ic
;

  
 

−
−

 in
p

u
t 
si

g
n

a
ls

 p
ro

ce
ss

 m
o

to
r2

  
 

S
I
G
N
A
L

  
 m

o
to

r2
_

ch
a

n
n

e
l: 

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
in

_
ch

a
n

n
e

ls
_

m
o

to
r2

*q
u

e
u

e
_

w
id

th
_

m
o

to
r2

−
1

 
d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 s

e
n

d
_

m
o

to
r2

: 
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
m

o
to

r2
−

1
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 a

ck
_

m
o

to
r2

: 
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
m

o
to

r2
−

1
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 m

o
to

r2
_

e
n

v_
ch

a
n

n
e

l: 
st

d
_

lo
g

ic
_

ve
ct

o
r(

3
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 m

o
to

r2
_

e
n

v_
se

n
d

: 
st

d
_

lo
g

ic
;

  
 

S
I
G
N
A
L

  
 m

o
to

r2
_

e
n

v_
a

ck
: 
st

d
_

lo
g

ic
;

  
 

−
−

 in
p

u
t 
si

g
n

a
ls

 p
ro

ce
ss

 p
ro

d
u

ct
_

co
u

n
te

r
  
 

S
I
G
N
A
L

  
 p

ro
d

u
ct

_
co

u
n

te
r_

ch
a

n
n

e
l: 

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
in

_
ch

a
n

n
e

ls
_

p
ro

d
u

ct
_

co
u

n
te

r*
q

u
e

u
e

_
w

id
th

_
p

ro
d

u
ct

_
co

u
n

te
r−

1
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 s

e
n

d
_

p
ro

d
u

ct
_

co
u

n
te

r:
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
p

ro
d

u
ct

_
co

u
n

te
r−

1
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 a

ck
_

p
ro

d
u

ct
_

co
u

n
te

r:
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
p

ro
d

u
ct

_
co

u
n

te
r−

1
 

d
o
w
n
t
o

 0
);

Figure B.1: Top-level VHDL file of application example assembly line
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S
I
G
N
A
L

  
 p

ro
d

u
ct

_
co

u
n

te
r_

e
n

v_
ch

a
n

n
e

l: 
st

d
_

lo
g

ic
_

ve
ct

o
r(

3
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

  
 p

ro
d

u
ct

_
co

u
n

te
r_

e
n

v_
se

n
d

: 
st

d
_

lo
g

ic
;

  
 

S
I
G
N
A
L

  
 p

ro
d

u
ct

_
co

u
n

te
r_

e
n

v_
a

ck
: 
st

d
_

lo
g

ic
;

C
O
M
P
O
N
E
N
T

 r
rw

d
e

co
d

e
 

−
−

 G
a

lil
e

o
 L

o
ca

l B
u

s 
R

/W
 D

e
co

d
e

r

  
  

P
O
R
T

 (
  
  
  
  
cl

o
ck

, 
re

se
t:
  
 

I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
  
a

: 
  
  
  
  
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

4
 

D
O
W
N
T
O

 0
);

  
  
  
  
cs

e
l: 

  
  
  
  
  

I
N

  
  
  
st

d
_

lo
g

ic
; 
  
  
 

−
−

 C
S

#
 c

h
ip

 s
e

le
ct

  
  
  
  
rw

: 
  
  
  
  
  
  

I
N

  
  
  
st

d
_

lo
g

ic
; 
  
  
 

−
−

 R
/W

#
  
  
  
  
rd

b
: 
  
  
  
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
; 
  
  
 

−
−

 R
D

#
  
  
  
  
re

a
d

: 
  
  
  
  
  

O
U
T

  
  
 s

td
_

lo
g

ic
;

  
  
  
  
w

ri
te

: 
  
  
  
  
 

O
U
T

  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

7
 

D
O
W
N
T
O

 0
)

  
  
);

E
N
D

 
C
O
M
P
O
N
E
N
T

;

C
O
M
P
O
N
E
N
T

 s
rw

d
e

co
d

e
 

−
−

 S
p

yd
e

r 
L

o
ca

l B
u

s 
R

/W
 D

e
co

d
e

r
  
  

P
O
R
T

 (
  
  
  
  
cl

o
ck

, 
re

se
t:
  
 

I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
  
a

: 
  
  
  
  
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

3
1

 
D
O
W
N
T
O

 2
);

  
  
  
  
rw

: 
  
  
  
  
  
  

I
N

  
  
  
st

d
_

lo
g

ic
; 
  
  
 

−
−

 R
/W

#
  
  
  
  
rd

b
: 
  
  
  
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
; 
  
  
 

−
−

 R
D

#
  
  
  
  
re

a
d

: 
  
  
  
  
  

O
U
T

  
  
 s

td
_

lo
g

ic
;

  
  
  
  
w

ri
te

: 
  
  
  
  
 

O
U
T

  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

7
 

D
O
W
N
T
O

 0
)

  
  
);

E
N
D

 
C
O
M
P
O
N
E
N
T

;

C
O
M
P
O
N
E
N
T

 v
d

o
u

tm
u

x8
  

−
−

 V
ir
te

x 
D

a
ta

 I
n

/O
u

t 
M

u
x

  
  

P
O
R
T

 (
  
  
  
  
cl

o
ck

, 
re

se
t:
  
 

I
N

  
  
  
st

d
_

lo
g

ic
; 
  
  
 

−
−

 u
n

u
se

d
  
  
  
  
re

a
d

: 
  
  
  
  
  

I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
  
a

d
d

r:
  
  
  
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

 4
 

D
O
W
N
T
O

 0
);

  
  
  
  
d

in
o

u
t:
  
  
  
  
 

I
N
O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

3
1

 
D
O
W
N
T
O

 0
);

  
  
  
  
d

in
0

, 
d

in
1

, 
d

in
2

, 
d

in
3

, 
d

in
4

, 
d

in
5

, 
d

in
6

, 
d

in
7

:
  
  
  
  
  
  
  
  
  
  
  
  

I
N

  
  
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

3
1

 
D
O
W
N
T
O

 0
);

  
  
  
  
d

o
u

t:
  
  
  
  
  
 

O
U
T

  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

3
1

 
D
O
W
N
T
O

 0
)

  
  
);

E
N
D

 
C
O
M
P
O
N
E
N
T

;

C
O
M
P
O
N
E
N
T

 m
cs

rr
 

−
−

 M
a

st
e

r 
C

o
n

tr
o

l/S
ta

tu
s 

+
 R

e
vi

si
o

n
 R

e
g

is
te

r
  
  

G
E
N
E
R
I
C

 (
  
  
  
  
d

e
si

g
n

: 
  
  
  
  
IN

T
E

G
E

R
 :
=

 1
0

; 
  
  
  
  
  

−
−

 r
e

fe
r 

to
 c

io
p

.h
  
  
  
  
re

v:
  
  
  
  
  
  
IN

T
E

G
E

R
 :
=

 3
;

  
  
  
  
n

ct
rl
: 
  
  
  
  
 I
N

T
E

G
E

R
 :
=

 2
  
  
);

  
  

P
O
R
T

 (
  
  
  
  
cl

o
ck

, 
re

se
t:
  
 

I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
  
w

ri
te

: 
  
  
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
  
d

in
: 
  
  
  
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

3
1

 
D
O
W
N
T
O

 0
);

  
  
  
  
ct

rl
: 
  
  
  
  
  

B
U
F
F
E
R

  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
ct

rl
−

1
 

D
O
W
N
T
O

 0
);

  
  
  
  
d

o
u

t:
  
  
  
  
  
 

O
U
T

  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

3
1

 
D
O
W
N
T
O

 0
)

  
  
);

E
N
D

 
C
O
M
P
O
N
E
N
T

;

C
O
M
P
O
N
E
N
T

 c
o

u
n

t3
2

  
  

P
O
R
T

 (
  
  
  
  
cl

o
ck

, 
cl

e
a

r:
  
 

I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
  
co

u
t:
  
  
  
  
  
 

O
U
T

  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r 

(3
1

 
D
O
W
N
T
O

 0
)

  
  
);

E
N
D

 
C
O
M
P
O
N
E
N
T

;

C
O
M
P
O
N
E
N
T

 w
ri
te

_
to

_
sd

l_
si

g
n

a
l

  
  

G
E
N
E
R
I
C

 (
d

a
ta

_
w

id
th

: 
  
 in

te
g

e
r 

:=
 3

2
);

  
  

P
O
R
T

 (
  
  
cl

o
ck

: 
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
re

se
t:
  
  
  

I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
w

ri
te

: 
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
d

a
ta

_
in

: 
  
 

I
N

  
  
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

d
a

ta
_

w
id

th
−

1
 

d
o
w
n
t
o

 0
);

  
  
se

n
d

: 
  
  
  

O
U
T

  
  
 s

td
_

lo
g

ic
;

  
  
a

ck
: 
  
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
d

a
ta

_
o

u
t:
  
 

B
U
F
F
E
R

  
st

d
_

lo
g

ic
_

ve
ct

o
r(

d
a

ta
_

w
id

th
−

1
 

d
o
w
n
t
o

 0
)

  
  
);

E
N
D

 
C
O
M
P
O
N
E
N
T

;

C
O
M
P
O
N
E
N
T

 s
d

l_
si

g
n

a
l_

to
_

e
n

v 
  
  

G
E
N
E
R
I
C

 (
 d

a
ta

_
w

id
th

: 
  
  
in

te
g

e
r 

:=
 8

);
  
  

P
O
R
T

 (
  
  
cl

o
ck

: 
  
  
 

I
N

  
st

d
_

lo
g

ic
;

  
  
re

se
t:
  
  
  

I
N

  
st

d
_

lo
g

ic
;

  
  
se

n
d

: 
  
  
  

I
N

  
st

d
_

lo
g

ic
;

  
  
a

ck
: 
  
  
  
 

O
U
T

 s
td

_
lo

g
ic

;
  
  
d

a
ta

_
in

: 
  
 

I
N

  
st

d
_

lo
g

ic
_

ve
ct

o
r(

d
a

ta
_

w
id

th
−

1
 

d
o
w
n
t
o

 0
)

−
−

  
  
n

e
w

_
si

g
n

a
l: 

O
U

T
 s

td
_

lo
g

ic
;

−
−

  
 s

ig
n

a
l_

re
a

d
:I
N

  
st

d
_

lo
g

ic
;

  
 ;
 d

a
ta

_
o

u
t:
  
 

O
U
T

 s
td

_
lo

g
ic

_
ve

ct
o

r(
d

a
ta

_
w

id
th

−
1

 
d
o
w
n
t
o

 0
)

  
  
);

E
N
D

 
C
O
M
P
O
N
E
N
T

;

C
O
M
P
O
N
E
N
T

 h
w

_
sw

_
q

u
e

u
e

_
ln

_
d

n
_

cn
 

−
−

 H
W

−
>

S
W

−
Q

u
e

u
e

  
 

G
E
N
E
R
I
C

 (
  
  
  
q

u
e

u
e

_
w

id
th

,q
u

e
u

e
_

d
e

p
th

,n
u

m
_

ch
a

n
n

e
ls

: 
In

te
g

e
r)

;
  
 

P
O
R
T

 (
  
  
  
cl

k:
  
  
  
  
  

I
N

  
st

d
_

lo
g

ic
;

  
  
  
re

se
t:
  
  
  
  

I
N

  
st

d
_

lo
g

ic
;

−
−

 K
a

n
a

le
in

g
a

n
g

  
  
  
se

n
d

: 
  
  
  
  

I
N

  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

ch
a

n
n

e
ls

−
1

 
d
o
w
n
t
o

 0
);

  
  
  
a

ck
: 
  
  
  
  
 

O
U
T

 s
td

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
d

a
ta

_
in

: 
  
  
 

I
N

  
st

d
_

lo
g

ic
_

ve
ct

o
r(

q
u

e
u

e
_

w
id

th
*n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

−
−

 S
ch

n
itt

st
e

lle
 z

u
m

 H
W

/S
W

−
In

te
rf

a
ce

  
  
  
n

o
t_

e
m

p
ty

: 
  
 

O
U
T

 s
td

_
lo

g
ic

;
  
  
  
p

o
p

: 
  
  
  
  
 

I
N

  
st

d
_

lo
g

ic
;

  
  
  
d

a
ta

_
o

u
t:
  
  
 

O
U
T

 s
td

_
lo

g
ic

_
ve

ct
o

r(
q

u
e

u
e

_
w

id
th

−
1

 
D
O
W
N
T
O

 0
)

  
  
  
);

E
N
D

 
C
O
M
P
O
N
E
N
T

;

  
 

C
O
M
P
O
N
E
N
T

 s
d

l_
tim

e
r

  
  
 

G
E
N
E
R
I
C

(w
id

th
 :
 I
n

te
g

e
r;

  
  
  
  
  
si

g
n

a
l_

id
_

w
id

th
: 
  
  
 in

te
g

e
r;

  
  
  
  
  
si

g
n

a
l_

id
: 
  
  
  
  
  
 in

te
g

e
r)

;
  
  
 

P
O
R
T

 (
  
  
 c

lk
,r

e
se

t 
 :
 

i
n

 s
td

_
lo

g
ic

;
  
  
 s

ta
rt

  
  
  
: 

i
n

 s
td

_
lo

g
ic

;
  
  
 t
ic

ks
  
  
  
: 

i
n

 s
td

_
lo

g
ic

_
ve

ct
o

r(
w

id
th

 −
 1

 
d
o
w
n
t
o

 0
);

  
  
 s

e
n

d
  
  
  
 :
 

O
U
T

 s
td

_
lo

g
ic

;
  
  
 a

ck
  
  
  
  
: 

I
N

 s
td

_
lo

g
ic

;
  
  
 s

ig
n

a
l_

o
u

t 
: 

O
U
T

 s
td

_
lo

g
ic

_
ve

ct
o

r(
si

g
n

a
l_

id
_

w
id

th
−

1
 

d
o
w
n
t
o

 0
))

;
  
 

e
n
d

 
C
O
M
P
O
N
E
N
T

;

C
O
M
P
O
N
E
N
T

 e
d

g
e

_
to

_
sd

l_
si

g
n

a
l

  
  

G
E
N
E
R
I
C

 (
  
  
  
  
si

g
n

a
l_

id
_

w
id

th
: 
  
  
  
 in

te
g

e
r 

:=
 1

0
;

  
  
  
  
si

g
n

a
l_

id
: 
  
  
  
  
  
  
 in

te
g

e
r 

:=
 0

;
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ki

n
d

_
o

f_
e

d
g

e
: 
  
  
  
  
  
in

te
g

e
r 

:=
 0

  
  
  
  

−
−

 0
: 
se

n
d

 o
n

 f
a

lli
n

g
 e

d
g

e
  
  
  
  

−
−

 1
: 
se

n
d

 o
n

 r
is

in
g

 e
d

g
e

  
  
  
  

−
−

 2
: 
se

n
d

 o
n

 b
o

th
 r

is
in

g
 a

n
d

 f
a

lli
n

g
 e

d
g

e
  
  
);

  
  

P
O
R
T

 (
  
  
  
  
cl

o
ck

: 
  
  
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
  
re

se
t:
  
  
  
  
  

I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
  
si

g
n

a
l_

in
: 
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
  
se

n
d

: 
  
  
  
  
  

O
U
T

  
  
 s

td
_

lo
g

ic
;

  
  
  
  
a

ck
: 
  
  
  
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
  
d

a
ta

_
o

u
t:
  
  
  
 

O
U
T

  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

si
g

n
a

l_
id

_
w

id
th

−
1

 
d
o
w
n
t
o

 0
)

  
  
);

E
N
D

 
C
O
M
P
O
N
E
N
T

;

C
O
M
P
O
N
E
N
T

 s
h

a
re

d
_

va
r

  
 

G
E
N
E
R
I
C

 (
  
  
  
d

a
ta

_
w

id
th

,n
u

m
_

ch
a

n
n

e
ls

: 
In

te
g

e
r)

;
  
 

P
O
R
T

 (
  
  
  
cl

k:
  
  
  
  
  
  
  

I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
re

se
t:
  
  
  
  
  
  

I
N

  
  
  
st

d
_

lo
g

ic
;

−
−

 K
a

n
a

le
in

g
a

n
g

  
  
  
re

q
u

e
st

: 
  
  
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

ch
a

n
n

e
ls

−
1

 
d
o
w
n
t
o

 0
);

  
  
  
g

ra
n

t:
  
  
  
  
  
  

O
U
T

  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

ch
a

n
n

e
ls

−
1

 
d
o
w
n
t
o

 0
);

  
  
  
w

ri
te

: 
  
  
  
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

ch
a

n
n

e
ls

−
1

 
d
o
w
n
t
o

 0
);

  
  
  
d

a
ta

_
in

: 
  
  
  
  
 

I
N

  
  
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

d
a

ta
_

w
id

th
*n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t

o
 0

);
  
  
  
d

a
ta

_
o

u
t:
  
  
  
  
 

O
U
T

  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

d
a

ta
_

w
id

th
−

1
 

D
O
W
N
T
O

 0
)

  
  
  
);

E
N
D

 
C
O
M
P
O
N
E
N
T

;

  
 

C
O
M
P
O
N
E
N
T

 f
sm

_
p

ro
ce

ss
_

p
ro

ce
ss

1
  
  
  

p
o
r
t

  
  
  
(

  
  
  
cl

k:
I
N

st
d

_
lo

g
ic

;
  
  
  
re

se
t:

I
N

st
d

_
lo

g
ic

;

  
  
  

−
−

 D
ir
e

ct
 S

ig
n

a
ls

  
  
  

−
−

 O
u

t−
C

h
a

n
n

e
ls

: 
  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r1
:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
4

−
1

 
D
O
W
N
T
O

 0
);

  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r2
:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
4

−
1

 
D
O
W
N
T
O

 0
);

  
  
  
si

g
n

a
l_

o
u

t_
h

w
sw

q
u

e
u

e
:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
4

−
1

 
D
O
W
N
T
O

 0
);

   
  
  
d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

: 
  

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

6
−

1
 

D
O
W
N
T
O

 0
);

   
  
  
se

n
d

_
o

u
t:
  
 

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

o
u

t_
ch

a
n

n
e

ls
_

p
ro

ce
ss

1
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
a

ck
_

o
u

t:
  
 

I
N

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

o
u

t_
ch

a
n

n
e

ls
_

p
ro

ce
ss

1
−

1
 

d
o
w
n
t
o

 0
);

  
  
  

  
  
  

−
−

 I
n

−
C

h
a

n
n

e
ls

 
  
  
  
si

g
n

a
l_

a
n

d
_

d
a

ta
_

in
: 
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
p

ro
ce

ss
1

*q
u

e
u

e
_

w
id

t
h

_
p

ro
ce

ss
1

−
1

 
d
o
w
n
t
o

 0
);

 
  
  
  
se

n
d

_
in

:
I
N

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
p

ro
ce

ss
1

−
1

 
d
o
w
n
t
o

 0
);

  
  
  
a

ck
_

in
:

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
p

ro
ce

ss
1

−
1

 
d
o
w
n
t
o

 0
)

  
  
  

  
  
  
 )

;
  
 

E
N
D

 
C
O
M
P
O
N
E
N
T

;

  
 

C
O
M
P
O
N
E
N
T

 f
sm

_
p

ro
ce

ss
_

m
o

to
r1

  
  
  

p
o
r
t

  
  
  
(

  
  
  
cl

k:
I
N

st
d

_
lo

g
ic

;
  
  
  
re

se
t:

I
N

st
d

_
lo

g
ic

;

  
  
  

−
−

 D
ir
e

ct
 S

ig
n

a
ls

  
  
  

−
−

 O
u

t−
C

h
a

n
n

e
ls

: 
  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r2
:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
4

−
1

 
D
O
W
N
T
O

 0
);

    
  
  
se

n
d

_
o

u
t:
  
 

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

o
u

t_
ch

a
n

n
e

ls
_

m
o

to
r1

−
1

 
d
o
w
n
t
o

 0
);

  
  
  
a

ck
_

o
u

t:
  
 

I
N

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

o
u

t_
ch

a
n

n
e

ls
_

m
o

to
r1

−
1

 
d
o
w
n
t
o

 0
);

  
  
  

  
  
  

−
−

 I
n

−
C

h
a

n
n

e
ls

 
  
  
  
si

g
n

a
l_

a
n

d
_

d
a

ta
_

in
: 
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
m

o
to

r1
*q

u
e

u
e

_
w

id
th

_
m

o
to

r1
−

1
 
d
o
w
n
t
o

 0
);

 
  
  
  
se

n
d

_
in

:
I
N

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
m

o
to

r1
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
a

ck
_

in
:

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
m

o
to

r1
−

1
 

d
o
w
n
t
o

 0
)

  
  
  

  
  
  
 )

;
  
 

E
N
D

 
C
O
M
P
O
N
E
N
T

;

  
 

C
O
M
P
O
N
E
N
T

 f
sm

_
p

ro
ce

ss
_

m
o

to
r2

  
  
  

p
o
r
t

  
  
  
(

  
  
  
cl

k:
I
N

st
d

_
lo

g
ic

;
  
  
  
re

se
t:

I
N

st
d

_
lo

g
ic

;

  
  
  

−
−

 D
ir
e

ct
 S

ig
n

a
ls

  
  
  

−
−

 O
u

t−
C

h
a

n
n

e
ls

: 
  
  
  
si

g
n

a
l_

o
u

t_
p

ro
d

u
ct

_
co

u
n

te
r:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
4

−
1

 
D
O
W
N
T
O

 0
);

  
  
  
si

g
n

a
l_

o
u

t_
h

w
sw

q
u

e
u

e
:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
4

−
1

 
D
O
W
N
T
O

 0
);

    
  
  
se

n
d

_
o

u
t:
  
 

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

o
u

t_
ch

a
n

n
e

ls
_

m
o

to
r2

−
1

 
d
o
w
n
t
o

 0
);

  
  
  
a

ck
_

o
u

t:
  
 

I
N

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

o
u

t_
ch

a
n

n
e

ls
_

m
o

to
r2

−
1

 
d
o
w
n
t
o

 0
);

  
  
  

  
  
  

−
−

 I
n

−
C

h
a

n
n

e
ls

 
  
  
  
si

g
n

a
l_

a
n

d
_

d
a

ta
_

in
: 
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
m

o
to

r2
*q

u
e

u
e

_
w

id
th

_
m

o
to

r2
−

1
 
d
o
w
n
t
o

 0
);

 
  
  
  
se

n
d

_
in

:
I
N

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
m

o
to

r2
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
a

ck
_

in
:

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
m

o
to

r2
−

1
 

d
o
w
n
t
o

 0
)

  
  
  

  
  
  
 )

;
  
 

E
N
D

 
C
O
M
P
O
N
E
N
T

;

  
 

C
O
M
P
O
N
E
N
T

 f
sm

_
p

ro
ce

ss
_

p
ro

d
u

ct
_

co
u

n
te

r
  
  
  

p
o
r
t

  
  
  
(

  
  
  
cl

k:
I
N

st
d

_
lo

g
ic

;
  
  
  
re

se
t:

I
N

st
d

_
lo

g
ic

;

  
  
  

−
−

 D
ir
e

ct
 S

ig
n

a
ls

  
  
  

−
−

 O
u

t−
C

h
a

n
n

e
ls

: 
   
  
  

−
−

 I
n

−
C

h
a

n
n

e
ls

 
  
  
  
si

g
n

a
l_

a
n

d
_

d
a

ta
_

in
: 
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
p

ro
d

u
ct

_
co

u
n

te
r*

q
u

e
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u
e

_
w

id
th

_
p

ro
d

u
ct

_
co

u
n

te
r−

1
 

d
o
w
n
t
o

 0
);

 
  
  
  
se

n
d

_
in

:
I
N

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
p

ro
d

u
ct

_
co

u
n

te
r−

1
 

d
o
w
n
t
o

 0
);   
  
  
a

ck
_

in
:

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
p

ro
d

u
ct

_
co

u
n

te
r−

1
 

d
o
w
n
t
o

 
0

)

  
  
  

  
  
  
 )

;
  
 

E
N
D

 
C
O
M
P
O
N
E
N
T

;

B
E
G
I
N

  
  

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

  
  

−
−

 S
P

Y
D

E
R

 A
D

A
P

T
IO

N
:

  
  

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

  
  
C

L
O

C
K

 <
=

 S
Y

S
_

C
L

K
;

  
  
G

S
E

T
R

E
S

E
T

 <
=

 
N
O
T

 G
N

E
T

2
_

G
R

E
S

E
T

_
0

;
  
  
F

P
G

A
_

L
E

D
_

0
 <

=
 L

E
D

;

  
  
L

E
D

 <
=

 
N
O
T

 (
co

u
n

to
u

t(
2

4
) 

A
N
D

 c
o

u
n

to
u

t(
2

3
) 

A
N
D

  
  
  
  
  
  
  
  
co

u
n

to
u

t(
2

2
) 

A
N
D

 c
o

u
n

to
u

t(
2

1
))

;

  
  
ze

ro
3

2
 <

=
 (

O
T
H
E
R
S

 =
>

 ’0
’)
;

  
  

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

  
  

−
−

 D
ri
ve

rs
  
  

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

  
  
O

E
_

A
  
<

=
 ’1

’; 
−

−
 d

is
a

b
le

d
  
  
D

IR
_

A
 <

=
 ’0

’;

  
  
O

E
_

B
  
<

=
 ’0

’; 
−

−
 e

n
a

b
le

d
  
  
D

IR
_

B
 <

=
 ’0

’; 
−

−
 in

p
u

t

  
  
O

E
_

C
  
<

=
 ’1

’; 
−

−
 d

is
a

b
le

d
  
  
D

IR
_

C
 <

=
 ’0

’;
  
  

  
  
O

E
_

D
  
<

=
 ’0

’; 
−

−
 e

n
a

b
le

d
  
  
D

IR
_

D
 <

=
 ’1

’; 
−

−
 o

u
tp

u
t

  
  
O

E
_

E
F

  
<

=
 ’1

’; 
−

−
 d

is
a

b
le

d
  
  
D

IR
_

E
 <

=
 ’0

’;
  
  
D

IR
_

F
 <

=
 ’0

’;

  
  

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

  
  

−
−

 D
e

b
u

g
 S

ig
n

a
ls

  
  

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

  
  

  
  
D

(0
) 

<
=

 r
e

g
w

ri
te

(2
);

  
  
D

(1
) 

<
=

 s
e

n
d

_
p

ro
ce

ss
1

(0
);

  
  
D

(2
) 

<
=

 a
ck

_
p

ro
ce

ss
1

(0
);

  
  
D

(3
) 

<
=

 s
e

n
d

_
h

w
sw

q
u

e
u

e
(0

);
  
  
D

(4
) 

<
=

 a
ck

_
h

w
sw

q
u

e
u

e
(0

);

  
  
D

(7
 

d
o
w
n
t
o

 5
) 

<
=

 (
O
T
H
E
R
S

 =
>

 ’0
’)
;

  
  

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

  
  

−
−

 R
E

G
IS

T
E

R
 A

C
C

E
S

S
:

  
  

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

  
  

−
−

 in
st

a
n

tia
te

 t
h

e
 r

e
a

d
/w

ri
te

 d
e

co
d

e
r 

a
n

d
 d

a
ta

 in
/o

u
t 
m

u
lti

p
le

xe
r

  
  
rr

w
d

e
co

d
e

i: 
rr

w
d

e
co

d
e

  
  
  
  

P
O
R
T

 
M
A
P

 (
  
  
  
  
  
  
cl

o
ck

 =
>

 C
L

O
C

K
, 
re

se
t 
=

>
 G

S
E

T
R

E
S

E
T

,
  
  
  
  
  
  
a

 =
>

 A
D

D
R

, 
cs

e
l =

>
 C

S
B

, 
rw

 =
>

 R
W

B
, 
rd

b
 =

>
 R

D
B

,
  
  
  
  
  
  
re

a
d

 =
>

 r
e

g
re

a
d

, 
w

ri
te

 =
>

 r
e

g
w

ri
te

  
  
  
  
);

  
  
d

o
u

tm
u

x8
i: 

vd
o

u
tm

u
x8

  
  
  
  

P
O
R
T

 
M
A
P

 (
  
  
  
  
  
  
cl

o
ck

 =
>

 C
L

O
C

K
, 
re

se
t 
=

>
 G

S
E

T
R

E
S

E
T

, 
−

−
 u

n
u

se
d

  
  
  
  
  
  
re

a
d

 =
>

 r
e

g
re

a
d

,
  
  
  
  
  
  
a

d
d

r 
=

>
 A

D
D

R
, 
d

in
o

u
t 
=

>
 D

A
T

A
,

  
  
  
  
  
  
d

in
0

 =
>

 m
cs

rr
o

u
t,
 d

in
1

 =
>

 c
o

u
n

to
u

t,
  
  
  
  
  
  
d

in
2

 =
>

 id
o

u
t2

, 
d

in
3

 =
>

 id
o

u
t3

,
  
  
  
  
  
  
d

in
4

 =
>

 id
o

u
t4

, 
d

in
5

 =
>

 id
o

u
t5

,
  
  
  
  
  
  
d

in
6

 =
>

 id
o

u
t6

, 
d

in
7

 =
>

 id
o

u
t7

,
  
  
  
  
  
  
d

o
u

t 
=

>
 id

in
  
  
  
  
  
  
  
  
  
  
  
  

−
−

 in
te

rn
a

l d
a

ta
 in

  
  
  
  
);

  
  

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

  
  

−
−

 R
E

G
IS

T
E

R
S

  
  

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

  
  

−
−

 in
st

a
n

tia
te

 t
h

e
 m

a
st

e
r 

co
n

tr
o

l/s
ta

tu
s/

re
vi

si
o

n
 r

e
g

is
te

r
  
  

−
−

 w
ith

 in
te

rr
u

p
t 
p

e
n

d
in

g
 (

IP
),

 m
a

st
e

r 
in

te
rr

u
p

t 
e

n
a

b
le

 (
M

IE
)

  
  

−
−

 a
n

d
 s

o
ft
 r

e
se

t 
(S

R
) 

si
g

n
a

ls
:

  
  
m

cs
rr

o
u

t(
3

1
) 

<
=

 in
tp

e
n

d
;

  
  
m

cs
rr

o
u

t(
3

0
) 

<
=

 n
o

t_
e

m
p

ty
_

in
t;

  
  
m

cs
rr

o
u

t(
2

9
 

D
O
W
N
T
O

 0
) 

<
=

 im
cs

rr
o

u
t(

2
9

 
D
O
W
N
T
O

 0
);

  
  
in

tp
e

n
d

 <
=

 n
o

t_
e

m
p

ty
_

in
t;
 

−
−

 a
lle

 I
n

te
rr

u
p

ts
 O

R
  
  
B

IN
T

5
 <

=
 

N
O
T

 (
m

ie
n

 
A
N
D

 in
tp

e
n

d
);

  
  

−
−

 a
ss

e
rt

 t
h

e
 in

te
rr

u
p

t 
p

in

  
  
m

ie
n

  
  
  
  
<

=
 m

cs
rr

ct
rl
(1

);
  
  
so

ft
re

se
t 
  
<

=
 m

cs
rr

ct
rl
(0

);

  
  
m

cs
rr

i: 
  
  
m

cs
rr

  
  
  
  

P
O
R
T

 
M
A
P

 (
C

L
O

C
K

, 
G

S
E

T
R

E
S

E
T

, 
re

g
w

ri
te

(0
),

 id
in

, 
m

cs
rr

ct
rl
,

im
cs

rr
o

u
t)

;

  
  
re

se
t 
<

=
 s

o
ft
re

se
t 

O
R

 G
S

E
T

R
E

S
E

T
;

  
  

−
−

 in
st

a
n

tia
te

 t
h

e
 3

2
 b

it 
co

u
n

te
r 

(c
le

a
re

d
 o

n
 (

so
ft
) 

re
se

t)
:

  
  
co

u
n

tc
lr
 <

=
 r

e
se

t;
  
  
co

u
n

ti:
  
  
 c

o
u

n
t3

2
  
  
  
  

P
O
R
T

 
M
A
P

 (
C

L
O

C
K

, 
co

u
n

tc
lr
, 
co

u
n

to
u

t)
;

h
w

sw
q

u
e

u
e

_
i: 

h
w

_
sw

_
q

u
e

u
e

_
ln

_
d

n
_

cn
  
 

G
E
N
E
R
I
C

 
M
A
P

(
  
  
  
q

u
e

u
e

_
w

id
th

 =
>

 1
0

,
  
  
  
q

u
e

u
e

_
d

e
p

th
 =

>
 2

,
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n

u
m

_
ch

a
n

n
e

ls
 =

>
 2

)
  
 

P
O
R
T

 
M
A
P

(
  
  
  
cl

k 
=

>
 C

L
O

C
K

,
  
  
  
re

se
t 
=

>
 r

e
se

t,
−

−
 K

a
n

a
le

in
g

a
n

g
  
  
  
se

n
d

 =
>

 s
e

n
d

_
h

w
sw

q
u

e
u

e
,

  
  
  
a

ck
 =

>
 a

ck
_

h
w

sw
q

u
e

u
e

,
  
  
  
d

a
ta

_
in

 =
>

 h
w

sw
q

u
e

u
e

_
ch

a
n

n
e

l,
−

−
 S

ch
n

itt
st

e
lle

 z
u

m
 H

W
/S

W
−

In
te

rf
a

ce
  
  
  
n

o
t_

e
m

p
ty

 =
>

 n
o

t_
e

m
p

ty
_

in
t,

  
  
  
p

o
p

 =
>

 r
e

g
w

ri
te

(4
),

  
  
  
d

a
ta

_
o

u
t 
=

>
 id

o
u

t4
(1

0
−

1
 

d
o
w
n
t
o

 0
)

  
  
  
);

  
 g

a
l_

in
p

u
t_

p
ro

ce
ss

1
: 
w

ri
te

_
to

_
sd

l_
si

g
n

a
l

  
  

G
E
N
E
R
I
C

 
M
A
P

 (
d

a
ta

_
w

id
th

 =
>

 4
)

  
  

P
O
R
T

 
M
A
P

(
  
  
cl

o
ck

=
>

C
L

O
C

K
,

  
  
re

se
t=

>
re

se
t,

  
  
w

ri
te

=
>

re
g

w
ri
te

(2
),

  
  
d

a
ta

_
in

=
>

id
in

(4
−

1
 

d
o
w
n
t
o

 0
),

  
  
se

n
d

=
>

se
n

d
_

p
ro

ce
ss

1
(0

),
  
  
a

ck
=

>
a

ck
_

p
ro

ce
ss

1
(0

),
  
  
d

a
ta

_
o

u
t 
=

>
 id

o
u

t2
 (

4
−

1
 

d
o
w
n
t
o

 0
))

;

  
  

p
r
o
c
e
s
s

1
_

ch
a

n
n

e
l(
4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 id
o

u
t2

 (
4

−
1

 
d
o
w
n
t
o

 0
);

  
 

p
r
o
c
e
s
s

1
_

i: 
fs

m
_

p
ro

ce
ss

_
p

ro
ce

ss
1

  
 

P
O
R
T

 
M
A
P

  
 (

  
  
  

−
−

 in
p

u
t 
si

g
n

a
ls

  
  
  
se

n
d

_
in

 =
>

 s
e

n
d

_
p

ro
ce

ss
1

,
  
  
  
a

ck
_

in
 =

>
 a

ck
_

p
ro

ce
ss

1
,

  
  
  
si

g
n

a
l_

a
n

d
_

d
a

ta
_

in
=

>
 

p
r
o
c
e
s
s

1
_

ch
a

n
n

e
l,

  
  
  

−
−

 d
ir
e

ct
 s

ig
n

a
ls

  
  
  
  

−
−

 t
im

e
r

  
  
  

−
−

 o
u

tp
u

t 
si

g
n

a
ls

  
  
  

  
  
  
se

n
d

_
o

u
t(

0
) 

=
>

 s
e

n
d

_
m

o
to

r1
(0

),
  
  
  
  
 

  
  
  
se

n
d

_
o

u
t(

1
) 

=
>

 s
e

n
d

_
m

o
to

r2
(0

),
  
  
  
  
 

  
  
  
se

n
d

_
o

u
t(

2
) 

=
>

 s
e

n
d

_
h

w
sw

q
u

e
u

e
(0

),
  
  
  
  
 

  
  
  
a

ck
_

o
u

t(
0

) 
=

>
 a

ck
_

m
o

to
r1

(0
),

  
  
  
  
 

  
  
  
a

ck
_

o
u

t(
1

) 
=

>
 a

ck
_

m
o

to
r2

(0
),

  
  
  
  
 

  
  
  
a

ck
_

o
u

t(
2

) 
=

>
 a

ck
_

h
w

sw
q

u
e

u
e

(0
),

  
  
  
  
 

  
  
  

  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r1
 =

>
 m

o
to

r1
_

ch
a

n
n

e
l(
3

 
d
o
w
n
t
o

 0
),

 
  
  
  
  

  
  
  

  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r2
 =

>
 m

o
to

r2
_

ch
a

n
n

e
l(
3

 
d
o
w
n
t
o

 0
),

 
  
  
  
  

  
  
  
d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

 =
>

 h
w

sw
q

u
e

u
e

_
ch

a
n

n
e

l(
5

 
d
o
w
n
t
o

 0
),

  
  
  
si

g
n

a
l_

o
u

t_
h

w
sw

q
u

e
u

e
 =

>
 h

w
sw

q
u

e
u

e
_

ch
a

n
n

e
l(
9

 
d
o
w
n
t
o

 6
),

 
    
  
  

−
−

 c
lo

ck
, 
re

se
t

  
  
  
re

se
t 
=

>
 r

e
se

t,
  
  
  
cl

k 
=

>
 C

L
O

C
K

  
 )

;
    
 g

a
l_

in
p

u
t_

m
o

to
r1

: 
w

ri
te

_
to

_
sd

l_
si

g
n

a
l

  
  

G
E
N
E
R
I
C

 
M
A
P

 (
d

a
ta

_
w

id
th

 =
>

 4
)

  
  

P
O
R
T

 
M
A
P

(
  
  
cl

o
ck

=
>

C
L

O
C

K
,

  
  
re

se
t=

>
re

se
t,

  
  
w

ri
te

=
>

re
g

w
ri
te

(3
),

  
  
d

a
ta

_
in

=
>

id
in

(4
−

1
 

d
o
w
n
t
o

 0
),

  
  
se

n
d

=
>

se
n

d
_

m
o

to
r1

(1
),

  
  
a

ck
=

>
a

ck
_

m
o

to
r1

(1
),

  
  
d

a
ta

_
o

u
t 
=

>
 id

o
u

t3
 (

4
−

1
 

d
o
w
n
t
o

 0
))

;

  
  
m

o
to

r1
_

ch
a

n
n

e
l(
8

−
1

 
d
o
w
n
t
o

 4
) 

<
=

 id
o

u
t3

 (
4

−
1

 
d
o
w
n
t
o

 0
);

  
 m

o
to

r1
_

i: 
fs

m
_

p
ro

ce
ss

_
m

o
to

r1
  
 

P
O
R
T

 
M
A
P

  
 (

  
  
  

−
−

 in
p

u
t 
si

g
n

a
ls

  
  
  
se

n
d

_
in

 =
>

 s
e

n
d

_
m

o
to

r1
,

  
  
  
a

ck
_

in
 =

>
 a

ck
_

m
o

to
r1

,
  
  
  
si

g
n

a
l_

a
n

d
_

d
a

ta
_

in
=

>
 m

o
to

r1
_

ch
a

n
n

e
l,

  
  
  

−
−

 d
ir
e

ct
 s

ig
n

a
ls

  
  
  
  

−
−

 t
im

e
r

  
  
  

−
−

 o
u

tp
u

t 
si

g
n

a
ls

  
  
  

  
  
  
se

n
d

_
o

u
t(

0
) 

=
>

 s
e

n
d

_
m

o
to

r2
(1

),
  
  
  
  
 

  
  
  
a

ck
_

o
u

t(
0

) 
=

>
 a

ck
_

m
o

to
r2

(1
),

  
  
  
  
 

  
  
  

  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r2
 =

>
 m

o
to

r2
_

ch
a

n
n

e
l(
7

 
d
o
w
n
t
o

 4
),

 
    
  
  

−
−

 c
lo

ck
, 
re

se
t

  
  
  
re

se
t 
=

>
 r

e
se

t,
  
  
  
cl

k 
=

>
 C

L
O

C
K

  
 )

;

  
 m

o
to

r2
_

i: 
fs

m
_

p
ro

ce
ss

_
m

o
to

r2
  
 

P
O
R
T

 
M
A
P

  
 (

  
  
  

−
−

 in
p

u
t 
si

g
n

a
ls

  
  
  
se

n
d

_
in

 =
>

 s
e

n
d

_
m

o
to

r2
,

  
  
  
a

ck
_

in
 =

>
 a

ck
_

m
o

to
r2

,
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s
i
g
n
a
l
_
a
n
d
_
d
a
t
a
_
i
n
=
>
 
m
o
t
o
r
2
_
c
h
a
n
n
e
l
,

 
 
 
 
 
 

−
−

 d
ir
e

ct
 s

ig
n

a
ls

 
 
 
 
 
 
 
 

−
−

 t
im

e
r

 
 
 
 
 
 

−
−

 o
u

tp
u

t 
si

g
n

a
ls

 
 
 
 
 
 

 
 
 
 
 
 
s
e
n
d
_
o
u
t
(
0
)
 
=
>
 
s
e
n
d
_
p
r
o
d
u
c
t
_
c
o
u
n
t
e
r
(
0
)
,
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
s
e
n
d
_
o
u
t
(
1
)
 
=
>
 
s
e
n
d
_
h
w
s
w
q
u
e
u
e
(
1
)
,
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
a
c
k
_
o
u
t
(
0
)
 
=
>
 
a
c
k
_
p
r
o
d
u
c
t
_
c
o
u
n
t
e
r
(
0
)
,
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
a
c
k
_
o
u
t
(
1
)
 
=
>
 
a
c
k
_
h
w
s
w
q
u
e
u
e
(
1
)
,
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
s
i
g
n
a
l
_
o
u
t
_
p
r
o
d
u
c
t
_
c
o
u
n
t
e
r
 
=
>
 
p
r
o
d
u
c
t
_
c
o
u
n
t
e
r
_
c
h
a
n
n
e
l
(
3
 
d
o
w
n
t
o
 
0
)
,
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
s
i
g
n
a
l
_
o
u
t
_
h
w
s
w
q
u
e
u
e
 
=
>
 
h
w
s
w
q
u
e
u
e
_
c
h
a
n
n
e
l
(
1
9
 
d
o
w
n
t
o
 
1
6
)
,
 

 
 

 
 
 
 
 
 

−
−

 c
lo

ck
, 
re

se
t

 
 
 
 
 
 
r
e
s
e
t
 
=
>
 
r
e
s
e
t
,

 
 
 
 
 
 
c
l
k
 
=
>
 
C
L
O
C
K

 
 
 
)
;

  
 
 
p
r
o
d
u
c
t
_
c
o
u
n
t
e
r
_
i
:
 
f
s
m
_
p
r
o
c
e
s
s
_
p
r
o
d
u
c
t
_
c
o
u
n
t
e
r

 
 
 
P
O
R
T
 
M
A
P

 
 
 
(

 
 
 
 
 
 

−
−

 in
p

u
t 
si

g
n

a
ls

 
 
 
 
 
 
s
e
n
d
_
i
n
 
=
>
 
s
e
n
d
_
p
r
o
d
u
c
t
_
c
o
u
n
t
e
r
,

 
 
 
 
 
 
a
c
k
_
i
n
 
=
>
 
a
c
k
_
p
r
o
d
u
c
t
_
c
o
u
n
t
e
r
,

 
 
 
 
 
 
s
i
g
n
a
l
_
a
n
d
_
d
a
t
a
_
i
n
=
>
 
p
r
o
d
u
c
t
_
c
o
u
n
t
e
r
_
c
h
a
n
n
e
l
,

 
 
 
 
 
 

−
−

 d
ir
e

ct
 s

ig
n

a
ls

 
 
 
 
 
 
 
 

−
−

 t
im

e
r

 
 
 
 
 
 

−
−

 o
u

tp
u

t 
si

g
n

a
ls

 
 
 
 
 
 

−
−

 c
lo

ck
, 
re

se
t

 
 
 
 
 
 
r
e
s
e
t
 
=
>
 
r
e
s
e
t
,

 
 
 
 
 
 
c
l
k
 
=
>
 
C
L
O
C
K

 
 
 
)
;

E
N
D
 
a
s
s
e
m
b
l
y
_
l
i
n
e
_
a
r
c
h
;
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−
−

 G
e

n
e

ra
te

d
 b

y 
S

D
L

2
V

H
D

L
 V

e
rs

io
n

 0
.3

p
re

−
−

 f
ro

m
 s

o
u

rc
e

 .
./
..
/.
./
S

D
L

/a
ss

e
m

b
ly

_
lin

e
.s

d
l a

t 
A

p
r 

3
, 
2

0
0

1
 1

2
:4

9
:4

6
 P

M

L
I
B
R
A
R
Y

 ie
ee
;

U
S
E
 
i
e
e
e
.
s
t
d
_
l
o
g
i
c
_
1
1
6
4
.
a
l
l
;

U
S
E
 
i
e
e
e
.
s
t
d
_
l
o
g
i
c
_
a
r
i
t
h
.
a
l
l
;

m
4
_
l
i
b
r
a
r
i
e
s

−
−

 T
h

is
 c

o
d

e
 is

 g
e

n
e

ra
te

d
 f
o

r 
R

e
g

is
te

r−
T

ra
n

sf
e

r−
S

yn
th

e
si

s 
(R

T
S

)

e
n
t
i
t
y
 
f
s
m
_
p
r
o
c
e
s
s
_
m
o
t
o
r
1
 
i
s

 
 
p
o
r
t

 
 
(

 
 
 
 
c
l
k
 
:
 
i
n
 
S
t
d
_
L
o
g
i
c
;

 
 
 
 
d
o
n
e
_
o
u
t
 
:
 
o
u
t
 
S
t
d
_
L
o
g
i
c

 
 
 
 
;

 
 
 
 
r
e
s
e
t
 
:
 
i
n
 
S
t
d
_
L
o
g
i
c
;

 
 
 
 
m
4
_
p
o
r
t
_
d
e
c
l
a
r
a
t
i
o
n
s
(
m
4
_
p
r
o
c
e
s
s
_
n
a
m
e
)

 
 
)
;

e
n
d
 
f
s
m
_
p
r
o
c
e
s
s
_
m
o
t
o
r
1
;

a
r
c
h
i
t
e
c
t
u
r
e
 
f
s
m
_
p
r
o
c
e
s
s
_
m
o
t
o
r
1
_
a
r
c
h
 
o
f
 
f
s
m
_
p
r
o
c
e
s
s
_
m
o
t
o
r
1
 
i
s

m
4
_
s
i
g
n
a
l
_
d
e
c
l
a
r
a
t
i
o
n
s

m
4
_
c
o
m
p
o
n
e
n
t
_
d
e
c
l
a
r
a
t
i
o
n

b
e
g
i
n

 
 
m
4
_
c
o
m
p
o
n
e
n
t
_
i
n
s
t
a
n
t
i
a
t
i
o
n

 
 
s
o
m
e
P
r
o
c
e
s
s
:
 
p
r
o
c
e
s
s

 
 
 
 
t
y
p
e
 
S
i
g
n
e
d
_
V
e
c
t
o
r
 
i
s
 
a
r
r
a
y
(
I
n
t
e
g
e
r
 
r
a
n
g
e
 
<
>
)
 
o
f
 

S
ig

n
e

d
(
9
 
d
o
w
n
t
o
 
0
)
;

 
 
 
 
m
4
_
v
a
r
i
a
b
l
e
_
d
e
c
l
a
r
a
t
i
o
n

 
 
 
 
v
a
r
i
a
b
l
e
 
d
a
t
a
I
n
 
:
 
S
t
d
_
L
o
g
i
c
_
V
e
c
t
o
r
(
m
4
_
q
u
e
u
e
_
w
i
d
t
h
 
d
o
w
n
t
o
 
0
)
;

 
 
 
 
v
a
r
i
a
b
l
e
 
r
e
a
d
y
I
n
 
:
 
S
t
d
_
L
o
g
i
c
;

 
 
 
 
v
a
r
i
a
b
l
e
 
d
o
n
e
 
:
 
S
t
d
_
L
o
g
i
c
;

 
 
 
 
v
a
r
i
a
b
l
e
 
i
n
i
t
P
h
a
s
e
 
:
 
B
o
o
l
e
a
n
;

 
 
 
 
v
a
r
i
a
b
l
e
 
c
u
r
r
e
n
t
P
r
o
c
e
s
s
O
r
S
e
r
v
i
c
e
I
d
 
:
 
I
n
t
e
g
e
r
 
r
a
n
g
e
 
2
 
d
o
w
n
t
o
 
0
 
;

 
 
 
 
v
a
r
i
a
b
l
e
 
t
r
a
n
s
i
t
i
o
n
P
a
r
t
I
d
 
:
 
I
n
t
e
g
e
r
 
r
a
n
g
e
 
0
 
d
o
w
n
t
o
 
0
;

 
 
 
 
v
a
r
i
a
b
l
e
 
s
t
a
t
e
_
1
 
:
 
I
n
t
e
g
e
r
 
r
a
n
g
e
 
3
 
d
o
w
n
t
o
 
0
;

 
 
 
 
v
a
r
i
a
b
l
e
 
g
o
_
1
_
b
 
:
 
S
t
d
_
L
o
g
i
c
;

 
 
b
e
g
i
n

 
 
 
 
m
4
_
e
v
e
r
y
_
t
i
m
e

 
 
 
 
w
a
i
t
 
u
n
t
i
l
 
c
l
k
’
e
v
e
n
t
 
a
n
d
 
c
l
k
 
=
 
’
1
’
;

 
 
 
 
i
f
 
(
r
e
s
e
t
 
=
 
’
1
’
)
 
t
h
e
n
 

 
 
 
 
 
 
i
n
i
t
P
h
a
s
e
 
:
=
 
t
r
u
e
;

 
 
 
 
 
 
c
u
r
r
e
n
t
P
r
o
c
e
s
s
O
r
S
e
r
v
i
c
e
I
d
 
:
=
 
1
;

 
 
 
 
 
 
t
r
a
n
s
i
t
i
o
n
P
a
r
t
I
d
 
:
=
 
0
;

 
 
 
 
 
 
m
4
_
s
i
g
n
a
l
_
i
n
i
t
i
a
l
i
z
a
t
i
o
n
s

 
 
 
 
e
l
s
i
f
 
(
i
n
i
t
P
h
a
s
e
 
=
 
t
r
u
e
)
 
t
h
e
n
 

 
 
 
 
 
 
i
n
i
t
P
h
a
s
e
 
:
=
 
f
a
l
s
e
;

 
 
 
 
 
 
s
t
a
t
e
_
1
 
:
=
 
1
;

 
 
 
 
e
l
s
e
 

 
 
 
 
 
 
m
4
_
r
e
c
e
i
v
e
(
r
e
a
d
y
I
n
,
 
d
a
t
a
I
n
)
;

 
 
 
 
 
 
i
f
 
r
e
a
d
y
I
n
 
=
 
’
1
’
 
t
h
e
n

 
 
 
 
 
 
 
 
c
a
s
e
 
d
a
t
a
I
n
 
(
m
4
_
h
e
a
d
e
r
_
r
a
n
g
e
)
 
i
s

 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
"

10
00
"
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 

−
−

 R
e

ce
iv

e
 s

ig
n

a
l m

o
to

r_
st

o
p

 
 
 
 
 
 
 
 
 
 
 
 
c
a
s
e
 
s
t
a
t
e
_
1
 
i
s

 
 
 
 
 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
1
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
s
t
a
t
e
_
1
 
:
=
 
2
;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
2
 
|
 
3
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
o
t
h
e
r
s
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
n
u
l
l
;

 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
 
c
a
s
e
;

 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
"

10
01
"
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 

−
−

 R
e

ce
iv

e
 s

ig
n

a
l m

o
to

r_
st

a
rt

 
 
 
 
 
 
 
 
 
 
 
 
c
a
s
e
 
s
t
a
t
e
_
1
 
i
s

 
 
 
 
 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
2
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
s
t
a
t
e
_
1
 
:
=
 
1
;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
1
 
|
 
3
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
o
t
h
e
r
s
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
n
u
l
l
;

 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
 
c
a
s
e
;

 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
"

01
11
"
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 

−
−

 R
e

ce
iv

e
 s

ig
n

a
l e

m
e

rg
e

n
cy

_
st

o
p

 
 
 
 
 
 
 
 
 
 
 
 
c
a
s
e
 
s
t
a
t
e
_
1
 
i
s

 
 
 
 
 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
1
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−
−

 S
e

n
d

 s
ig

n
a

l e
m

e
rg

e
n

cy
_

st
o

p
_

in
t 
w

ith
 I
d

 1
0

 t
o

 m
o

to
r2

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
m
4
_
s
e
n
d
(
e
m
e
r
g
e
n
c
y
_
s
t
o
p
_
i
n
t
,
 
m
o
t
o
r
2
,
 
1
0
1
0
)
;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
s
t
a
t
e
_
1
 
:
=
 
3
;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
2
 
|
 
3
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
o
t
h
e
r
s
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
n
u
l
l
;

 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
 
c
a
s
e
;

 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
"

00
11
"
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 

−
−

 R
e

ce
iv

e
 s

ig
n

a
l r

e
se

t_
si

g
 
 
 
 
 
 
 
 
 
 
 
 
c
a
s
e
 
s
t
a
t
e
_
1
 
i
s

 
 
 
 
 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
2
 
|
 
3
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
s
t
a
t
e
_
1
 
:
=
 
1
;

 
 
 
 
 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
1
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
o
t
h
e
r
s
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
n
u
l
l
;

 
 
 
 
 
 
 
 
 
 
 
 
e
n
d
 
c
a
s
e
;

 
 
 
 
 
 
 
 
 
 
w
h
e
n
 
o
t
h
e
r
s
 
=
>

 
 
 
 
 
 
 
 
 
 
 
 
n
u
l
l
;

 
 
 
 
 
 
 
 
e
n
d
 
c
a
s
e
;

 
 
 
 
 
 
e
n
d
 
i
f
;

 
 
 
 
 
 
d
o
n
e
_
o
u
t
 
<
=
 
d
o
n
e
;

 
 
 
 
e
n
d
 
i
f
;

 
 
e
n
d
 
p
r
o
c
e
s
s
 
s
o
m
e
P
r
o
c
e
s
s
;

e
n
d
 
f
s
m
_
p
r
o
c
e
s
s
_
m
o
t
o
r
1
_
a
r
c
h
;

Figure B.2: Server implementation SDL process motor1 (before m4 macro
replacement)
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−
−

 G
e

n
e

ra
te

d
 b

y 
S

D
L

2
V

H
D

L
 V

e
rs

io
n

 0
.3

p
re

−
−

 f
ro

m
 s

o
u

rc
e

 .
./
..
/.
./
S

D
L

/a
ss

e
m

b
ly

_
lin

e
.s

d
l a

t 
A

p
r 

3
, 
2

0
0

1
 1

2
:4

9
:4

6
 P

M

L
I
B
R
A
R
Y

 ie
ee

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

1
1

6
4

.
a
l
l

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

a
ri
th

.
a
l
l

;

l
i
b
r
a
r
y

 S
D

L;

U
S
E

 W
O

R
K

.c
o

n
fig

.
a
l
l

;
U
S
E

 S
D

L
.
a
l
l

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

u
n

si
g

n
e

d
.

a
l
l

;

−
−

 T
h

is
 c

o
d

e
 is

 g
e

n
e

ra
te

d
 f
o

r 
R

e
g

is
te

r−
T

ra
n

sf
e

r−
S

yn
th

e
si

s 
(R

T
S

)

e
n
t
i
t
y

 f
sm

_
p

ro
ce

ss
_

m
o

to
r2

 
i
s

  
p
o
r
t

  
(

  
  
cl

k 
: 

i
n

 S
td

_
L

o
g

ic
;

  
  
d

o
n

e
_

o
u

t 
: 

o
u
t

 S
td

_
L

o
g

ic
  
  
;

  
  
re

se
t 
: 

i
n

 S
td

_
L

o
g

ic
;

  
  

  
  
  

−
−

 D
ir
e

ct
 S

ig
n

a
ls

  
  
  

−
−

 O
u

t−
C

h
a

n
n

e
ls

: 
  
  
  
si

g
n

a
l_

o
u

t_
p

ro
d

u
ct

_
co

u
n

te
r:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
4

−
1

 
D
O
W
N
T
O

 0
);

  
  
  
si

g
n

a
l_

o
u

t_
h

w
sw

q
u

e
u

e
:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
4

−
1

 
D
O
W
N
T
O

 0
);

    
  
  
se

n
d

_
o

u
t:
  
 

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

o
u

t_
ch

a
n

n
e

ls
_

m
o

to
r2

−
1

 
d
o
w
n
t
o

 0
);

  
  
  
a

ck
_

o
u

t:
  
 

I
N

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

o
u

t_
ch

a
n

n
e

ls
_

m
o

to
r2

−
1

 
d
o
w
n
t
o

 0
);

  
  
  

  
  
  

−
−

 I
n

−
C

h
a

n
n

e
ls

 
  
  
  
si

g
n

a
l_

a
n

d
_

d
a

ta
_

in
: 
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
m

o
to

r2
*q

u
e

u
e

_
w

id
th

_
m

o
to

r2
−

1
 
d
o
w
n
t
o

 0
);

 
  
  
  
se

n
d

_
in

:
I
N

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
m

o
to

r2
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
a

ck
_

in
:

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
m

o
to

r2
−

1
 

d
o
w
n
t
o

 0
)

  
  
  

  
);
e
n
d

 f
sm

_
p

ro
ce

ss
_

m
o

to
r2

;

a
r
c
h
i
t
e
c
t
u
r
e

 f
sm

_
p

ro
ce

ss
_

m
o

to
r2

_
a

rc
h

 
o
f

 f
sm

_
p

ro
ce

ss
_

m
o

to
r2

 
i
s

 S
I
G
N
A
L

 g
e

t_
si

g
:

st
d

_
lo

g
ic

;
S
I
G
N
A
L

 s
ig

_
re

a
d

y:
  
  
  
 s

td
_

lo
g

ic
;

S
I
G
N
A
L

 d
a

ta
: 
  
  
  
  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

4
−

1
 

D
O
W
N
T
O

 0
);

C
O
M
P
O
N
E
N
T

 q
u

e
u

e
_

l1
_

d
n

_
cn

  
 

G
E
N
E
R
I
C

 (
  
  
  
q

u
e

u
e

_
w

id
th

, 
q

u
e

u
e

_
d

e
p

th
,n

u
m

_
ch

a
n

n
e

ls
: 
In

te
g

e
r)

;
  
 

P
O
R
T

 (
  
  
  
cl

k:
 
I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
re

se
t:

 
I
N

  
  
  
st

d
_

lo
g

ic
;

−
−

 K
a

n
a

le
in

g
a

n
g

  
  
  
se

n
d

:
 
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
a

ck
:

 
O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
d

a
ta

_
in

:
 
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
*q

u
e

u
e

_
w

id
th

−
1

 
d
o
w
n
t
o

 0
);

−
−

 S
ch

n
itt

st
e

lle
 z

u
m

 P
ro

ze
ss

  
  
  
g

e
t_

si
g

:
 
I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
si

g
_

re
a

d
y:

 
O
U
T

  
  
 s

td
_

lo
g

ic
;

  
  
  
d

a
ta

:
 
O
U
T

  
st

d
_

lo
g

ic
_

ve
ct

o
r(

q
u

e
u

e
_

w
id

th
−

1
 

D
O
W
N
T
O

 0
)

  
  
  
);

E
N
D

 
C
O
M
P
O
N
E
N
T

;

b
e
g
i
n

    
th

is
_

q
u

e
u

e
: 
q

u
e

u
e

_
l1

_
d

n
_

cn
  
  
 

G
E
N
E
R
I
C

 
M
A
P

 (
q

u
e

u
e

_
w

id
th

=
>

4
, 

  
  
  
  
  
  
  
  
  
q

u
e

u
e

_
d

e
p

th
=

>
1

,
  
n

u
m

_
ch

a
n

n
e

ls
=

>
n

u
m

_
in

_
ch

a
n

n
e

ls
_

m
o

to
r2

)
  
  
 

P
O
R
T

 
M
A
P

 (
cl

k=
>

cl
k,

 r
e

se
t=

>
re

se
t,
 s

e
n

d
=

>
se

n
d

_
in

, 
a

ck
=

>
a

ck
_

in
, 

  
  
 

d
a

ta
_

in
=

>
si

g
n

a
l_

a
n

d
_

d
a

ta
_

in
,g

e
t_

si
g

=
>

g
e

t_
si

g
,

  
  
  
 s

ig
_

re
a

d
y=

>
si

g
_

re
a

d
y,

d
a

ta
=

>
d

a
ta

);

  
so

m
e

P
ro

ce
ss

: 
p
r
o
c
e
s
s

  
  

t
y
p
e

 S
ig

n
e

d
_

V
e

ct
o

r 
i
s

 
a
r
r
a
y

(I
n

te
g

e
r 

r
a
n
g
e

 <
>

) 
o
f

 
S

ig
n

e
d

(9
 
d
o
w
n
t
o

 0
);

  
  

  
  

v
a
r
i
a
b
l
e

 d
a

ta
In

 :
 S

td
_

L
o

g
ic

_
V

e
ct

o
r(

4
 

d
o
w
n
t
o

 0
);

  
  

v
a
r
i
a
b
l
e

 r
e

a
d

yI
n

 :
 S

td
_

L
o

g
ic

;
  
  

v
a
r
i
a
b
l
e

 d
o

n
e

 :
 S

td
_

L
o

g
ic

;
  
  

v
a
r
i
a
b
l
e

 in
itP

h
a

se
 :
 B

o
o

le
a

n
;

  
  

v
a
r
i
a
b
l
e

 c
u

rr
e

n
tP

ro
ce

ss
O

rS
e

rv
ic

e
Id

 :
 I
n

te
g

e
r 

r
a
n
g
e

 2
 
d
o
w
n
t
o

 0
 ;

  
  

v
a
r
i
a
b
l
e

 t
ra

n
si

tio
n

P
a

rt
Id

 :
 I
n

te
g

e
r 

r
a
n
g
e

 0
 
d
o
w
n
t
o

 0
;

  
  

v
a
r
i
a
b
l
e

 s
ta

te
_

1
 :
 I
n

te
g

e
r 

r
a
n
g
e

 3
 
d
o
w
n
t
o

 0
;

  
  

v
a
r
i
a
b
l
e

 g
o

_
1

_
b

 :
 S

td
_

L
o

g
ic

;
  

b
e
g
i
n

  
  

  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

 =
 ’1

’;

  
  

i
f

 (
re

se
t 
=

 ’1
’)
 

t
h
e
n

 
  
  
  
in

itP
h

a
se

 :
=

 t
ru

e
;

  
  
  
cu

rr
e

n
tP

ro
ce

ss
O

rS
e

rv
ic

e
Id

 :
=

 1
;

  
  
  
tr

a
n

si
tio

n
P

a
rt

Id
 :
=

 0
;

  
  
  

  
  

e
l
s
i
f

 (
in

itP
h

a
se

 =
 t
ru

e
) 

t
h
e
n

 
  
  
  
in

itP
h

a
se

 :
=

 f
a

ls
e

;
  
  
  
st

a
te

_
1

 :
=

 1
;

  
  

e
l
s
e

 
  
  
  

  
  
  

  
  
  
g

e
t_

si
g

 <
=

 ’1
’;

  
  
  

i
f

 s
ig

_
re

a
d

y 
=

 ’1
’ 

t
h
e
n

  
  
  
  
 d

a
ta

In
(4

−
1

 
d
o
w
n
t
o

 0
):

=
 d

a
ta

;
  
  
  
  
 r

e
a

d
yI

n
 :
=

 ’1
’;

  
  
  
  
 g

e
t_

si
g

 <
=

 ’0
’;

  
  
  
  
 

w
h
i
l
e

 s
ig

_
re

a
d

y 
=

 ’1
’ 

l
o
o
p

  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  

e
l
s
e

  
  
  
  
 r

e
a

d
yI

n
 :
=

 ’0
’;

  
  
  

e
n
d

 
i
f

;
  
  
  

i
f

 r
e

a
d

yI
n

 =
 ’1

’ 
t
h
e
n

  
  
  
  

c
a
s
e

 d
a

ta
In

 (
4

−
1

 
d
o
w
n
t
o

 0
) 

i
s

  
  
  
  
  

w
h
e
n

 "
10

00
" 

=
>

  
  
  
  
  
  

−
−

 R
e

ce
iv

e
 s

ig
n

a
l m

o
to

r_
st

o
p

  
  
  
  
  
  

c
a
s
e

 s
ta

te
_

1
 

i
s

  
  
  
  
  
  
  

w
h
e
n

 1
 =

>
  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l s
to

p
p

e
d

 w
ith

 I
d

 6
 t
o

 c
h

a
n

  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
h

w
sw

q
u

e
u

e
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
01

10
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
1

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

1
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
1

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
h

w
sw

q
u

e
u

e
 <

=
 "

00
00

";

Figure B.3: Server implementation SDL process motor2
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w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l s
to

p
p

e
d

 w
ith

 I
d

 6
 t
o

 p
ro

d
u

ct
_

co
u

n
te

r
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
p

ro
d

u
ct

_
co

u
n

te
r(

4
−

1
 

d
o
w
n
t
o

 0
) 

<
=

 "
01

10
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
p

ro
d

u
ct

_
co

u
n

te
r 

<
=

 "
00

00
";

  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  
st

a
te

_
1

 :
=

 2
;

  
  
  
  
  
  
  

w
h
e
n

 2
 |
 3

 =
>

  
  
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  
  
  

n
u
l
l

;
  
  
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  
  
  

w
h
e
n

 "
10

01
" 

=
>

  
  
  
  
  
  

−
−

 R
e

ce
iv

e
 s

ig
n

a
l m

o
to

r_
st

a
rt

  
  
  
  
  
  

c
a
s
e

 s
ta

te
_

1
 

i
s

  
  
  
  
  
  
  

w
h
e
n

 2
 =

>
  
  
  
  
  
  
  
  
st

a
te

_
1

 :
=

 1
;

  
  
  
  
  
  
  

w
h
e
n

 1
 |
 3

 =
>

  
  
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  
  
  

n
u
l
l

;
  
  
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  
  
  

w
h
e
n

 "
10

10
" 

=
>

  
  
  
  
  
  

−
−

 R
e

ce
iv

e
 s

ig
n

a
l e

m
e

rg
e

n
cy

_
st

o
p

_
in

t
  
  
  
  
  
  

c
a
s
e

 s
ta

te
_

1
 

i
s

  
  
  
  
  
  
  

w
h
e
n

 1
 =

>
  
  
  
  
  
  
  
  
st

a
te

_
1

 :
=

 3
;

  
  
  
  
  
  
  

w
h
e
n

 2
 |
 3

 =
>

  
  
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  
  
  

n
u
l
l

;
  
  
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  
  
  

w
h
e
n

 "
00

11
" 

=
>

  
  
  
  
  
  

−
−

 R
e

ce
iv

e
 s

ig
n

a
l r

e
se

t_
si

g
  
  
  
  
  
  

c
a
s
e

 s
ta

te
_

1
 

i
s

  
  
  
  
  
  
  

w
h
e
n

 2
 |
 3

 =
>

  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l r
e

se
t_

si
g

 w
ith

 I
d

 3
 t
o

 p
ro

d
u

ct
_

co
u

n
te

r
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
p

ro
d

u
ct

_
co

u
n

te
r(

4
−

1
 

d
o
w
n
t
o

 0
) 

<
=

 "
00

11
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
p

ro
d

u
ct

_
co

u
n

te
r 

<
=

 "
00

00
";

  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  
st

a
te

_
1

 :
=

 1
;

  
  
  
  
  
  
  

w
h
e
n

 1
 =

>
  
  
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  
  
  

n
u
l
l

;
  
  
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  

n
u
l
l

;
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  

e
n
d

 
i
f

;
  
  
  
d

o
n

e
_

o
u

t 
<

=
 d

o
n

e
;

  
  

e
n
d

 
i
f

;
  

e
n
d

 
p
r
o
c
e
s
s

 s
o

m
e

P
ro

ce
ss

;
e
n
d

 f
sm

_
p

ro
ce

ss
_

m
o

to
r2

_
a

rc
h

;
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−
−

 G
e

n
e

ra
te

d
 b

y 
S

D
L

2
V

H
D

L
 V

e
rs

io
n

 0
.3

p
re

−
−

 f
ro

m
 s

o
u

rc
e

 .
./
..
/.
./
S

D
L

/a
ss

e
m

b
ly

_
lin

e
.s

d
l a

t 
A

p
r 

3
, 
2

0
0

1
 1

2
:4

9
:4

6
 P

M

L
I
B
R
A
R
Y

 ie
ee

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

1
1

6
4

.
a
l
l

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

a
ri
th

.
a
l
l

;

l
i
b
r
a
r
y

 S
D

L;

U
S
E

 W
O

R
K

.c
o

n
fig

.
a
l
l

;
U
S
E

 S
D

L
.
a
l
l

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

u
n

si
g

n
e

d
.

a
l
l

;

−
−

 T
h

is
 c

o
d

e
 is

 g
e

n
e

ra
te

d
 f
o

r 
R

e
g

is
te

r−
T

ra
n

sf
e

r−
S

yn
th

e
si

s 
(R

T
S

)

e
n
t
i
t
y

 f
sm

_
p

ro
ce

ss
_

p
ro

ce
ss

1
 

i
s

  
p
o
r
t

  
(

  
  
cl

k 
: 

i
n

 S
td

_
L

o
g

ic
;

  
  
d

o
n

e
_

o
u

t 
: 

o
u
t

 S
td

_
L

o
g

ic
  
  
;

  
  
re

se
t 
: 

i
n

 S
td

_
L

o
g

ic
;

  
  

  
  
  

−
−

 D
ir
e

ct
 S

ig
n

a
ls

  
  
  

−
−

 O
u

t−
C

h
a

n
n

e
ls

: 
  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r1
:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
4

−
1

 
D
O
W
N
T
O

 0
);

  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r2
:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
4

−
1

 
D
O
W
N
T
O

 0
);

  
  
  
si

g
n

a
l_

o
u

t_
h

w
sw

q
u

e
u

e
:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
4

−
1

 
D
O
W
N
T
O

 0
);

   
  
  
d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

: 
  

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

6
−

1
 

D
O
W
N
T
O

 0
);

   
  
  
se

n
d

_
o

u
t:
  
 

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

o
u

t_
ch

a
n

n
e

ls
_

p
ro

ce
ss

1
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
a

ck
_

o
u

t:
  
 

I
N

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

o
u

t_
ch

a
n

n
e

ls
_

p
ro

ce
ss

1
−

1
 

d
o
w
n
t
o

 0
);

  
  
  

  
  
  

−
−

 I
n

−
C

h
a

n
n

e
ls

 
  
  
  
si

g
n

a
l_

a
n

d
_

d
a

ta
_

in
: 
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
p

ro
ce

ss
1

*q
u

e
u

e
_

w
id

t
h

_
p

ro
ce

ss
1

−
1

 
d
o
w
n
t
o

 0
);

 
  
  
  
se

n
d

_
in

:
I
N

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
p

ro
ce

ss
1

−
1

 
d
o
w
n
t
o

 0
);

  
  
  
a

ck
_

in
:

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
p

ro
ce

ss
1

−
1

 
d
o
w
n
t
o

 0
)

  
  
  

  
);
e
n
d

 f
sm

_
p

ro
ce

ss
_

p
ro

ce
ss

1
;

a
r
c
h
i
t
e
c
t
u
r
e

 f
sm

_
p

ro
ce

ss
_

p
ro

ce
ss

1
_

a
rc

h
 

o
f

 f
sm

_
p

ro
ce

ss
_

p
ro

ce
ss

1
 

i
s

 S
I
G
N
A
L

 g
e

t_
si

g
:

st
d

_
lo

g
ic

;
S
I
G
N
A
L

 s
ig

_
re

a
d

y:
  
  
  
 s

td
_

lo
g

ic
;

S
I
G
N
A
L

 d
a

ta
: 
  
  
  
  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

4
−

1
 

D
O
W
N
T
O

 0
);

C
O
M
P
O
N
E
N
T

 q
u

e
u

e
_

l1
_

d
n

_
cn

  
 

G
E
N
E
R
I
C

 (
  
  
  
q

u
e

u
e

_
w

id
th

, 
q

u
e

u
e

_
d

e
p

th
,n

u
m

_
ch

a
n

n
e

ls
: 
In

te
g

e
r)

;
  
 

P
O
R
T

 (
  
  
  
cl

k:
 
I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
re

se
t:

 
I
N

  
  
  
st

d
_

lo
g

ic
;

−
−

 K
a

n
a

le
in

g
a

n
g

  
  
  
se

n
d

:
 
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
a

ck
:

 
O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
d

a
ta

_
in

:
 
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
*q

u
e

u
e

_
w

id
th

−
1

 
d
o
w
n
t
o

 0
);

−
−

 S
ch

n
itt

st
e

lle
 z

u
m

 P
ro

ze
ss

  
  
  
g

e
t_

si
g

:
 
I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
si

g
_

re
a

d
y:

 
O
U
T

  
  
 s

td
_

lo
g

ic
;

  
  
  
d

a
ta

:
 
O
U
T

  
st

d
_

lo
g

ic
_

ve
ct

o
r(

q
u

e
u

e
_

w
id

th
−

1
 

D
O
W
N
T
O

 0
)

  
  
  
);

E
N
D

 
C
O
M
P
O
N
E
N
T

;

b
e
g
i
n

    
th

is
_

q
u

e
u

e
: 
q

u
e

u
e

_
l1

_
d

n
_

cn
  
  
 

G
E
N
E
R
I
C

 
M
A
P

 (
q

u
e

u
e

_
w

id
th

=
>

4
, 

  
  
  
  
  
  
  
  
  
q

u
e

u
e

_
d

e
p

th
=

>
1

,
  
n

u
m

_
ch

a
n

n
e

ls
=

>
n

u
m

_
in

_
ch

a
n

n
e

ls
_

p
ro

ce
ss

1
)

  
  
 

P
O
R
T

 
M
A
P

 (
cl

k=
>

cl
k,

 r
e

se
t=

>
re

se
t,
 s

e
n

d
=

>
se

n
d

_
in

, 
a

ck
=

>
a

ck
_

in
, 

  
  
 

d
a

ta
_

in
=

>
si

g
n

a
l_

a
n

d
_

d
a

ta
_

in
,g

e
t_

si
g

=
>

g
e

t_
si

g
,

  
  
  
 s

ig
_

re
a

d
y=

>
si

g
_

re
a

d
y,

d
a

ta
=

>
d

a
ta

);

  
so

m
e

P
ro

ce
ss

: 
p
r
o
c
e
s
s

  
  

t
y
p
e

 S
ig

n
e

d
_

V
e

ct
o

r 
i
s

 
a
r
r
a
y

(I
n

te
g

e
r 

r
a
n
g
e

 <
>

) 
o
f

 
S

ig
n

e
d

(9
 
d
o
w
n
t
o

 0
);

  
  

  
  

v
a
r
i
a
b
l
e

 d
a

ta
In

 :
 S

td
_

L
o

g
ic

_
V

e
ct

o
r(

4
 

d
o
w
n
t
o

 0
);

  
  

v
a
r
i
a
b
l
e

 r
e

a
d

yI
n

 :
 S

td
_

L
o

g
ic

;
  
  

v
a
r
i
a
b
l
e

 d
o

n
e

 :
 S

td
_

L
o

g
ic

;
  
  

v
a
r
i
a
b
l
e

 in
itP

h
a

se
 :
 B

o
o

le
a

n
;

  
  

v
a
r
i
a
b
l
e

 c
u

rr
e

n
tP

ro
ce

ss
O

rS
e

rv
ic

e
Id

 :
 I
n

te
g

e
r 

r
a
n
g
e

 2
 
d
o
w
n
t
o

 0
 ;

  
  

v
a
r
i
a
b
l
e

 t
ra

n
si

tio
n

P
a

rt
Id

 :
 I
n

te
g

e
r 

r
a
n
g
e

 0
 
d
o
w
n
t
o

 0
;

  
  

v
a
r
i
a
b
l
e

 s
ta

te
_

1
 :
 I
n

te
g

e
r 

r
a
n
g
e

 4
 
d
o
w
n
t
o

 0
;

  
  

v
a
r
i
a
b
l
e

 d
a

ta
1

_
1

_
i :

 
U

n
si

g
n

e
d

(5
 
d
o
w
n
t
o

 0
);

  
  

v
a
r
i
a
b
l
e

 d
a

ta
2

_
1

_
i :

 
U

n
si

g
n

e
d

(5
 
d
o
w
n
t
o

 0
);

  
  

v
a
r
i
a
b
l
e

 c
_

tr
u

e
_

1
_

b
 :
 S

td
_

L
o

g
ic

;
  
  

v
a
r
i
a
b
l
e

 c
_

fa
ls

e
_

1
_

b
 :
 S

td
_

L
o

g
ic

;
  

b
e
g
i
n

  
  

  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

 =
 ’1

’;

  
  

i
f

 (
re

se
t 
=

 ’1
’)
 

t
h
e
n

 
  
  
  
in

itP
h

a
se

 :
=

 t
ru

e
;

  
  
  
cu

rr
e

n
tP

ro
ce

ss
O

rS
e

rv
ic

e
Id

 :
=

 1
;

  
  
  
tr

a
n

si
tio

n
P

a
rt

Id
 :
=

 0
;

  
  
  

  
  

e
l
s
i
f

 (
in

itP
h

a
se

 =
 t
ru

e
) 

t
h
e
n

 
  
  
  
in

itP
h

a
se

 :
=

 f
a

ls
e

;
  
  
  
d

a
ta

1
_

1
_

i :
=

 c
o

n
v_

u
n

si
g

n
e

d
(0

, 
6

);
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

 =
 ’1

’;
  
  
  
d

a
ta

2
_

1
_

i :
=

 c
o

n
v_

u
n

si
g

n
e

d
(0

, 
6

);
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

 =
 ’1

’;
  
  
  
c_

tr
u

e
_

1
_

b
 :
=

 ’1
’;

  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

 =
 ’1

’;
  
  
  
c_

fa
ls

e
_

1
_

b
 :
=

 ’0
’;

  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

 =
 ’1

’;
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l m
o

to
r_

st
a

rt
 w

ith
 I
d

 9
 t
o

 m
o

to
r1

  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r1
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
10

01
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
m

o
to

r1
 <

=
 "

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l m
o

to
r_

st
a

rt
 w

ith
 I
d

 9
 t
o

 m
o

to
r2

  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r2
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
10

01
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
1

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

1
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
1

) 
<

=
 ’0

’;

Figure B.4: Server implementation SDL process process1
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 s

ig
n

a
l_

o
u

t_
m

o
to

r2
 <

=
 "

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
st

a
te

_
1

 :
=

 1
;

  
  

e
l
s
e

 
  
  
  

  
  
  

  
  
  
g

e
t_

si
g

 <
=

 ’1
’;

  
  
  

i
f

 s
ig

_
re

a
d

y 
=

 ’1
’ 

t
h
e
n

  
  
  
  
 d

a
ta

In
(4

−
1

 
d
o
w
n
t
o

 0
):

=
 d

a
ta

;
  
  
  
  
 r

e
a

d
yI

n
 :
=

 ’1
’;

  
  
  
  
 g

e
t_

si
g

 <
=

 ’0
’;

  
  
  
  
 

w
h
i
l
e

 s
ig

_
re

a
d

y 
=

 ’1
’ 

l
o
o
p

  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  

e
l
s
e

  
  
  
  
 r

e
a

d
yI

n
 :
=

 ’0
’;

  
  
  

e
n
d

 
i
f

;
  
  
  

i
f

 r
e

a
d

yI
n

 =
 ’1

’ 
t
h
e
n

  
  
  
  

c
a
s
e

 d
a

ta
In

 (
4

−
1

 
d
o
w
n
t
o

 0
) 

i
s

  
  
  
  
  

w
h
e
n

 "
00

01
" 

=
>

  
  
  
  
  
  

−
−

 R
e

ce
iv

e
 s

ig
n

a
l i

n
1

  
  
  
  
  
  

c
a
s
e

 s
ta

te
_

1
 

i
s

  
  
  
  
  
  
  

w
h
e
n

 1
 =

>
  
  
  
  
  
  
  
  
d

a
ta

1
_

1
_

i :
=

 d
a

ta
1

_
1

_
i +

 c
o

n
v_

u
n

si
g

n
e

d
(1

, 
6

);
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

 =
 ’1

’;
  
  
  
  
  
  
  
  

i
f

 d
a

ta
1

_
1

_
i =

 c
o

n
v_

u
n

si
g

n
e

d
(4

, 
6

) 
t
h
e
n

  
  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l m
o

to
r_

st
o

p
 w

ith
 I
d

 8
 t
o

 m
o

to
r1

  
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r1
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
10

00
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
m

o
to

r1
 <

=
 "

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  
  
d

a
ta

1
_

1
_

i :
=

 c
o

n
v_

u
n

si
g

n
e

d
(0

, 
6

);
  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

 =
 ’1

’;
  
  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l o
u

t1
 w

ith
 I
d

 4
 t
o

 c
h

a
n

  
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
h

w
sw

q
u

e
u

e
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
01

00
";

  
  
  
  
  
  
  
 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

(6
−

1
 

d
o
w
n
t
o

 0
)

  
  
  
  
  
<

=
 c

o
n

v_
st

d
_

lo
g

ic
_

ve
ct

o
r(

d
a

ta
1

_
1

_
i, 

6
);

  
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

2
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

 <
=

 "
00

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  
  
st

a
te

_
1

 :
=

 2
;

  
  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l o
u

t1
 w

ith
 I
d

 4
 t
o

 c
h

a
n

  
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
h

w
sw

q
u

e
u

e
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
01

00
";

  
  
  
  
  
  
  
 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

(6
−

1
 

d
o
w
n
t
o

 0
)

  
  
  
  
  
<

=
 c

o
n

v_
st

d
_

lo
g

ic
_

ve
ct

o
r(

d
a

ta
1

_
1

_
i, 

6
);

  
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

2
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

 <
=

 "
00

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  
  
st

a
te

_
1

 :
=

 1
;

  
  
  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  
  

w
h
e
n

 3
 =

>
  
  
  
  
  
  
  
  
d

a
ta

1
_

1
_

i :
=

 d
a

ta
1

_
1

_
i +

 c
o

n
v_

u
n

si
g

n
e

d
(1

, 
6

);
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

 =
 ’1

’;
  
  
  
  
  
  
  
  

i
f

 d
a

ta
1

_
1

_
i =

 c
o

n
v_

u
n

si
g

n
e

d
(4

, 
6

) 
t
h
e
n

  
  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l m
o

to
r_

st
o

p
 w

ith
 I
d

 8
 t
o

 m
o

to
r1

  
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r1
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
10

00
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
m

o
to

r1
 <

=
 "

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  
  
d

a
ta

1
_

1
_

i :
=

 c
o

n
v_

u
n

si
g

n
e

d
(0

, 
6

);
  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

 =
 ’1

’;
  
  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l o
u

t1
 w

ith
 I
d

 4
 t
o

 c
h

a
n

  
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
h

w
sw

q
u

e
u

e
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
01

00
";

  
  
  
  
  
  
  
 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

(6
−

1
 

d
o
w
n
t
o

 0
)

  
  
  
  
  
<

=
 c

o
n

v_
st

d
_

lo
g

ic
_

ve
ct

o
r(

d
a

ta
1

_
1

_
i, 

6
);

  
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

2
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

 <
=

 "
00

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  
  
st

a
te

_
1

 :
=

 4
;

  
  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l o
u

t1
 w

ith
 I
d

 4
 t
o

 c
h

a
n

  
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
h

w
sw

q
u

e
u

e
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
01

00
";

  
  
  
  
  
  
  
 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

(6
−

1
 

d
o
w
n
t
o

 0
)

  
  
  
  
  
<

=
 c

o
n

v_
st

d
_

lo
g

ic
_

ve
ct

o
r(

d
a

ta
1

_
1

_
i, 

6
);

  
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

2
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

 <
=

 "
00

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  
  

w
h
e
n

 2
 |
 4

 =
>

  
  
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  
  
  

n
u
l
l

;
  
  
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  
  
  

w
h
e
n

 "
00

10
" 

=
>

  
  
  
  
  
  

−
−

 R
e

ce
iv

e
 s

ig
n

a
l i

n
2

  
  
  
  
  
  

c
a
s
e

 s
ta

te
_

1
 

i
s

  
  
  
  
  
  
  

w
h
e
n

 1
 =

>
  
  
  
  
  
  
  
  
d

a
ta

2
_

1
_

i :
=

 d
a

ta
2

_
1

_
i +

 c
o

n
v_

u
n

si
g

n
e

d
(1

, 
6

);
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

 =
 ’1

’;
  
  
  
  
  
  
  
  

i
f

 d
a

ta
2

_
1

_
i =

 c
o

n
v_

u
n

si
g

n
e

d
(3

, 
6

) 
t
h
e
n

  
  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l m
o

to
r_

st
o

p
 w

ith
 I
d

 8
 t
o

 m
o

to
r2

  
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r2
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
10

00
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
1

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

1
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
1

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
m

o
to

r2
 <

=
 "

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  
  
d

a
ta

2
_

1
_

i :
=

 c
o

n
v_

u
n

si
g

n
e

d
(0

, 
6

);
  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

 =
 ’1

’;
  
  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l o
u

t2
 w

ith
 I
d

 5
 t
o

 c
h

a
n

  
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
h

w
sw

q
u

e
u

e
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
01

01
";

  
  
  
  
  
  
  
 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

(6
−

1
 

d
o
w
n
t
o

 0
)

  
  
  
  
  
<

=
 c

o
n

v_
st

d
_

lo
g

ic
_

ve
ct

o
r(

d
a

ta
2

_
1

_
i, 

6
);

  
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

2
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’0

’;
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 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

 <
=

 "
00

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  
  
st

a
te

_
1

 :
=

 3
;

  
  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l o
u

t2
 w

ith
 I
d

 5
 t
o

 c
h

a
n

  
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
h

w
sw

q
u

e
u

e
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
01

01
";

  
  
  
  
  
  
  
 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

(6
−

1
 

d
o
w
n
t
o

 0
)

  
  
  
  
  
<

=
 c

o
n

v_
st

d
_

lo
g

ic
_

ve
ct

o
r(

d
a

ta
2

_
1

_
i, 

6
);

  
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

2
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

 <
=

 "
00

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  
  
st

a
te

_
1

 :
=

 1
;

  
  
  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  
  

w
h
e
n

 2
 =

>
  
  
  
  
  
  
  
  
d

a
ta

2
_

1
_

i :
=

 d
a

ta
2

_
1

_
i +

 c
o

n
v_

u
n

si
g

n
e

d
(1

, 
6

);
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

 =
 ’1

’;
  
  
  
  
  
  
  
  

i
f

 d
a

ta
2

_
1

_
i =

 c
o

n
v_

u
n

si
g

n
e

d
(3

, 
6

) 
t
h
e
n

  
  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l m
o

to
r_

st
o

p
 w

ith
 I
d

 8
 t
o

 m
o

to
r2

  
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r2
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
10

00
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
1

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

1
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
1

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
m

o
to

r2
 <

=
 "

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  
  
d

a
ta

2
_

1
_

i :
=

 c
o

n
v_

u
n

si
g

n
e

d
(0

, 
6

);
  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

 =
 ’1

’;
  
  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l o
u

t2
 w

ith
 I
d

 5
 t
o

 c
h

a
n

  
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
h

w
sw

q
u

e
u

e
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
01

01
";

  
  
  
  
  
  
  
 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

(6
−

1
 

d
o
w
n
t
o

 0
)

  
  
  
  
  
<

=
 c

o
n

v_
st

d
_

lo
g

ic
_

ve
ct

o
r(

d
a

ta
2

_
1

_
i, 

6
);

  
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

2
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

 <
=

 "
00

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  
  
st

a
te

_
1

 :
=

 4
;

  
  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l o
u

t2
 w

ith
 I
d

 5
 t
o

 c
h

a
n

  
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
h

w
sw

q
u

e
u

e
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
01

01
";

  
  
  
  
  
  
  
 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

(6
−

1
 

d
o
w
n
t
o

 0
)

  
  
  
  
  
<

=
 c

o
n

v_
st

d
_

lo
g

ic
_

ve
ct

o
r(

d
a

ta
2

_
1

_
i, 

6
);

  
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

2
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
2

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 d

a
ta

_
o

u
t_

h
w

sw
q

u
e

u
e

 <
=

 "
00

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  
  

w
h
e
n

 3
 |
 4

 =
>

  
  
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  
  
  

n
u
l
l

;
  
  
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  
  
  

w
h
e
n

 "
00

11
" 

=
>

  
  
  
  
  
  

−
−

 R
e

ce
iv

e
 s

ig
n

a
l r

e
se

t_
si

g
  
  
  
  
  
  

c
a
s
e

 s
ta

te
_

1
 

i
s

  
  
  
  
  
  
  

w
h
e
n

 1
 |
 2

 |
 3

 |
 4

 =
>

  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l r
e

se
t_

si
g

 w
ith

 I
d

 3
 t
o

 m
o

to
r1

  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r1
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
00

11
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
m

o
to

r1
 <

=
 "

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  

−
−

 S
e

n
d

 s
ig

n
a

l r
e

se
t_

si
g

 w
ith

 I
d

 3
 t
o

 m
o

to
r2

  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
m

o
to

r2
(4

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 "
00

11
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
1

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

1
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
1

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
m

o
to

r2
 <

=
 "

00
00

";
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
’1

’;
  
  
  
  
  
  
  
  
st

a
te

_
1

 :
=

 1
;

  
  
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  
  
  

n
u
l
l

;
  
  
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  

n
u
l
l

;
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  

e
n
d

 
i
f

;
  
  
  
d

o
n

e
_

o
u

t 
<

=
 d

o
n

e
;

  
  

e
n
d

 
i
f

;
  

e
n
d

 
p
r
o
c
e
s
s

 s
o

m
e

P
ro

ce
ss

;
e
n
d

 f
sm

_
p

ro
ce

ss
_

p
ro

ce
ss

1
_

a
rc

h
;
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−
−

 G
e

n
e

ra
te

d
 b

y 
S

D
L

2
V

H
D

L
 V

e
rs

io
n

 0
.3

p
re

−
−

 f
ro

m
 s

o
u

rc
e

 .
./
..
/.
./
S

D
L

/a
ss

e
m

b
ly

_
lin

e
.s

d
l a

t 
F

e
b

 1
, 
2

0
0

1
 7

:5
0

:2
8

 P
M

L
I
B
R
A
R
Y

 ie
ee

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

1
1

6
4

.
a
l
l

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

a
ri
th

.
a
l
l

;

l
i
b
r
a
r
y

 S
D

L;

U
S
E

 W
O

R
K

.c
o

n
fig

.
a
l
l

;
U
S
E

 S
D

L
.
a
l
l

;
U
S
E

 W
O

R
K

.a
ss

e
m

b
ly

_
lin

e
_

p
a

ck
a

g
e

.
a
l
l

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

u
n

si
g

n
e

d
.

a
l
l

;

e
n
t
i
t
y

 a
t_

e
m

e
rg

e
n

cy
_

st
o

p
 

i
s

  
p
o
r
t

  
  
(

  
  
 c

lk
,r

e
se

t
: 

i
n

 s
td

_
lo

g
ic

;
  
  
 

  
  
  

−
−

 D
ir
e

ct
 S

ig
n

a
ls

   
  
  

−
−

 S
h

a
re

d
 D

a
ta

 A
cc

e
ss

 

  
  
  
re

q
u

e
st

_
p

ro
ce

ss
1

: 
 

O
U
T

  
 s

td
_

lo
g

ic
;

  
  
  
g

ra
n

t_
p

ro
ce

ss
1

: 
 

I
N

  
 s

td
_

lo
g

ic
;

  
  
  
w

ri
te

_
p

ro
ce

ss
1

: 
 

O
U
T

  
 s

td
_

lo
g

ic
;

  
  
  
sh

a
re

d
_

d
a

ta
_

in
_

p
ro

ce
ss

1
: 

I
N

 s
td

_
lo

g
ic

_
ve

ct
o

r(
1

7
−

1
 

D
O
W
N
T
O

 0
);

  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
p

ro
ce

ss
1

: 
O
U
T

 s
td

_
lo

g
ic

_
ve

ct
o

r(
1

7
−

1
 

D
O
W
N
T
O

 0
);

   
  
  
re

q
u

e
st

_
m

o
to

r1
: 
 

O
U
T

  
 s

td
_

lo
g

ic
;

  
  
  
g

ra
n

t_
m

o
to

r1
: 
 

I
N

  
 s

td
_

lo
g

ic
;

  
  
  
w

ri
te

_
m

o
to

r1
: 
 

O
U
T

  
 s

td
_

lo
g

ic
;

  
  
  
sh

a
re

d
_

d
a

ta
_

in
_

m
o

to
r1

: 
I
N

 s
td

_
lo

g
ic

_
ve

ct
o

r(
3

−
1

 
D
O
W
N
T
O

 0
);

  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r1
: 

O
U
T

 s
td

_
lo

g
ic

_
ve

ct
o

r(
3

−
1

 
D
O
W
N
T
O

 0
);

   
  
  
re

q
u

e
st

_
m

o
to

r2
: 
 

O
U
T

  
 s

td
_

lo
g

ic
;

  
  
  
g

ra
n

t_
m

o
to

r2
: 
 

I
N

  
 s

td
_

lo
g

ic
;

  
  
  
w

ri
te

_
m

o
to

r2
: 
 

O
U
T

  
 s

td
_

lo
g

ic
;

  
  
  
sh

a
re

d
_

d
a

ta
_

in
_

m
o

to
r2

: 
I
N

 s
td

_
lo

g
ic

_
ve

ct
o

r(
3

−
1

 
D
O
W
N
T
O

 0
);

  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r2
: 

O
U
T

 s
td

_
lo

g
ic

_
ve

ct
o

r(
3

−
1

 
D
O
W
N
T
O

 0
);

   
  
  
re

q
u

e
st

_
p

ro
d

u
ct

_
co

u
n

te
r:

  
O
U
T

  
 s

td
_

lo
g

ic
;

  
  
  
g

ra
n

t_
p

ro
d

u
ct

_
co

u
n

te
r:

  
I
N

  
 s

td
_

lo
g

ic
;

  
  
  
w

ri
te

_
p

ro
d

u
ct

_
co

u
n

te
r:

  
O
U
T

  
 s

td
_

lo
g

ic
;

  
  
  
sh

a
re

d
_

d
a

ta
_

in
_

p
ro

d
u

ct
_

co
u

n
te

r:
 

I
N

 s
td

_
lo

g
ic

_
ve

ct
o

r(
7

−
1

 
D
O
W
N
T
O

 0
);

  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
p

ro
d

u
ct

_
co

u
n

te
r:

 
O
U
T

 s
td

_
lo

g
ic

_
ve

ct
o

r(
7

−
1

 
D
O
W
N
T
O

 0
);

      
  
  

−
−

 O
u

t−
C

h
a

n
n

e
ls

: 
   
  
  

−
−

 I
n

−
C

h
a

n
n

e
ls

 
  
  
  
si

g
n

a
l_

a
n

d
_

d
a

ta
_

in
: 
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
a

t_
e

m
e

rg
e

n
cy

_
st

o
p

*q
u

e
u

e
_

w
id

th
_

a
t_

e
m

e
rg

e
n

cy
_

st
o

p
−

1
 

d
o
w
n
t
o

 0
);

 
  
  
  
se

n
d

_
in

:
I
N

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
a

t_
e

m
e

rg
e

n
cy

_
st

o
p

−
1

 
d
o
w
n
t
o

 0
);

  
  
  
a

ck
_

in
:

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
a

t_
e

m
e

rg
e

n
cy

_
st

o
p

−
1

 
d
o
w
n
t

o
 0

)

  
  
  

  
  
 )

;
e
n
d

 a
t_

e
m

e
rg

e
n

cy
_

st
o

p
;

a
r
c
h
i
t
e
c
t
u
r
e

 a
ss

e
m

b
ly

_
lin

e
_

a
rc

h
 

o
f

 a
t_

e
m

e
rg

e
n

cy
_

st
o

p
 

i
s

 S
I
G
N
A
L

 g
e

t_
si

g
:

st
d

_
lo

g
ic

;
S
I
G
N
A
L

 s
ig

_
re

a
d

y:
  
  
  
 s

td
_

lo
g

ic
;

S
I
G
N
A
L

 d
a

ta
: 
  
  
  
  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

4
−

1
 

D
O
W
N
T
O

 0
);

C
O
M
P
O
N
E
N
T

 q
u

e
u

e
_

l1
_

d
n

_
cn

  
 

G
E
N
E
R
I
C

 (
  
  
  
q

u
e

u
e

_
w

id
th

, 
q

u
e

u
e

_
d

e
p

th
,n

u
m

_
ch

a
n

n
e

ls
: 
In

te
g

e
r)

;
  
 

P
O
R
T

 (
  
  
  
cl

k:
 
I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
re

se
t:

 
I
N

  
  
  
st

d
_

lo
g

ic
;

−
−

 K
a

n
a

le
in

g
a

n
g

  
  
  
se

n
d

:
 
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
a

ck
:

 
O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
d

a
ta

_
in

:
 
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
*q

u
e

u
e

_
w

id
th

−
1

 
d
o
w
n
t
o

 0
);

−
−

 S
ch

n
itt

st
e

lle
 z

u
m

 P
ro

ze
ss

  
  
  
g

e
t_

si
g

:
 
I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
si

g
_

re
a

d
y:

 
O
U
T

  
  
 s

td
_

lo
g

ic
;

  
  
  
d

a
ta

:
 
O
U
T

  
st

d
_

lo
g

ic
_

ve
ct

o
r(

q
u

e
u

e
_

w
id

th
−

1
 

D
O
W
N
T
O

 0
)

  
  
  
);

E
N
D

 
C
O
M
P
O
N
E
N
T

;

b
e
g
i
n

    
th

is
_

q
u

e
u

e
: 
q

u
e

u
e

_
l1

_
d

n
_

cn
  
  
 

G
E
N
E
R
I
C

 
M
A
P

 (
q

u
e

u
e

_
w

id
th

=
>

4
, 

  
  
  
  
  
  
  
  
  
q

u
e

u
e

_
d

e
p

th
=

>
1

,
  
n

u
m

_
ch

a
n

n
e

ls
=

>
n

u
m

_
in

_
ch

a
n

n
e

ls
_

a
t_

e
m

e
rg

e
n

cy
_

st
o

p
)

  
  
 

P
O
R
T

 
M
A
P

 (
cl

k=
>

cl
k,

 r
e

se
t=

>
re

se
t,
 s

e
n

d
=

>
se

n
d

_
in

, 
a

ck
=

>
a

ck
_

in
, 

  
  
 

d
a

ta
_

in
=

>
si

g
n

a
l_

a
n

d
_

d
a

ta
_

in
,g

e
t_

si
g

=
>

g
e

t_
si

g
,

  
  
  
 s

ig
_

re
a

d
y=

>
si

g
_

re
a

d
y,

d
a

ta
=

>
d

a
ta

);

  
m

a
in

: 
p
r
o
c
e
s
s

  
  
 

V
A
R
I
A
B
L
E

 t
m

p
: 
  
  
  
  

st
d

_
lo

g
ic

_
ve

ct
o

r 
(3

2
−

1
 

d
o
w
n
t
o

 0
);

  
  

  
  

v
a
r
i
a
b
l
e

 d
a

ta
In

 :
 S

td
_

L
o

g
ic

_
V

e
ct

o
r(

4
 

d
o
w
n
t
o

 0
);

  
  

v
a
r
i
a
b
l
e

 r
e

a
d

yI
n

 :
 S

td
_

L
o

g
ic

;
  
  

v
a
r
i
a
b
l
e

 in
itP

h
a

se
 :
 B

o
o

le
a

n
;

  
  

−
−

 s
d

l s
ta

te
s

  
  

v
a
r
i
a
b
l
e

 m
o

to
r1

S
ta

te
: 
In

te
g

e
r 

r
a
n
g
e

 3
 
d
o
w
n
t
o

 0
;

  
  

v
a
r
i
a
b
l
e

 m
o

to
r2

S
ta

te
: 
In

te
g

e
r 

r
a
n
g
e

 3
 
d
o
w
n
t
o

 0
;

  
  

v
a
r
i
a
b
l
e

 
p
r
o
c
e
s
s

1
S

ta
te

: 
In

te
g

e
r 

r
a
n
g
e

 4
 
d
o
w
n
t
o

 0
;

  
  

v
a
r
i
a
b
l
e

 p
ro

d
u

ct
_

co
u

n
te

rS
ta

te
: 
In

te
g

e
r 

r
a
n
g
e

 1
 
d
o
w
n
t
o

 0
;

  
  

−
−

 s
d

l v
a

ri
a

b
le

s
  
  

v
a
r
i
a
b
l
e

 m
o

to
r1

va
rs

: 
m

o
to

r1
V

a
rs

T
yp

e
;

  
  

v
a
r
i
a
b
l
e

 m
o

to
r2

va
rs

: 
m

o
to

r2
V

a
rs

T
yp

e
;

  
  

v
a
r
i
a
b
l
e

 
p
r
o
c
e
s
s

1
va

rs
: 

p
r
o
c
e
s
s

1
V

a
rs

T
yp

e
;

  
  

v
a
r
i
a
b
l
e

 p
ro

d
u

ct
_

co
u

n
te

rv
a

rs
: 
p

ro
d

u
ct

_
co

u
n

te
rV

a
rs

T
yp

e
;

  
  

−
−

 t
e

m
p

 v
a

ri
a

b
le

s 
fo

r 
co

n
d

iti
o

n
s

  
  

v
a
r
i
a
b
l
e

 c
o

n
d

iti
o

n
_

1
: 
B

o
o

le
a

n
;

  
  

v
a
r
i
a
b
l
e

 c
o

n
d

iti
o

n
_

2
: 
B

o
o

le
a

n
;

Figure B.5: Parallel activity thread implementation of AT emergency stop
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v
a
r
i
a
b
l
e

 c
o

n
d

iti
o

n
_

3
: 
B

o
o

le
a

n
;

  
  

v
a
r
i
a
b
l
e

 c
o

n
d

iti
o

n
_

4
: 
B

o
o

le
a

n
;

  
b
e
g
i
n

  
  

i
f

 (
re

se
t 
=

 ’1
’)
 

t
h
e
n

  
  
  
in

itP
h

a
se

 :
=

 t
ru

e
;

  
  
  

tm
p

 :
=

 (
o
t
h
e
r
s

 =
>

 ’0
’)
;

  
  

e
l
s
i
f

 (
in

itP
h

a
se

 =
 t
ru

e
) 

t
h
e
n

  
  
in

itP
h

a
se

 :
=

 f
a

ls
e

;
  
  
  
m

o
to

r1
S

ta
te

 :
=

 1
;

  
  
  

−
−

 r
e

le
a

se
 p

ro
ce

ss
 d

a
ta

  
  
  
 

  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r1
(2

) 
<

=
 m

o
to

r1
V

a
rs

.g
o

_
b

; 
 

  
  
  
  
  
  
  
  
tm

p
 :
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
m

o
to

r1
S

ta
te

,3
2

);
  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r1
(1

 
d
o
w
n
t
o

 0
) 

<
=

 t
m

p
(2

−
1

 
d
o
w
n
t
o

 0
);

 
  
  

  
 

  
  
  

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r1
 <

=
 ’1

’;
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r1
 <

=
 ’0

’;
  
  
  
  
  
  
  
  
re

q
u

e
st

_
m

o
to

r1
 <

=
 ’0

’; 
  
  
  

−
−

 N
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
m

o
to

r2
S

ta
te

 :
=

 1
;

  
  
  

−
−

 r
e

le
a

se
 p

ro
ce

ss
 d

a
ta

  
  
  
 

  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r2
(2

) 
<

=
 m

o
to

r2
V

a
rs

.g
o

_
b

; 
 

  
  
  
  
  
  
  
  
tm

p
 :
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
m

o
to

r2
S

ta
te

,3
2

);
  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r2
(1

 
d
o
w
n
t
o

 0
) 

<
=

 t
m

p
(2

−
1

 
d
o
w
n
t
o

 0
);

 
  
  

  
 

  
  
  

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r2
 <

=
 ’1

’;
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r2
 <

=
 ’0

’;
  
  
  
  
  
  
  
  
re

q
u

e
st

_
m

o
to

r2
 <

=
 ’0

’; 
  
  
  

−
−

 N
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
1

_
i :

=
 0

;
  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
2

_
i :

=
 0

;
  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.c
_

tr
u

e
_

b
 :
=

 ’1
’;

  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.c
_

fa
ls

e
_

b
 :
=

 ’0
’;

  
  
  

p
r
o
c
e
s
s

1
S

ta
te

 :
=

 1
;

  
  
  

−
−

 r
e

le
a

se
 p

ro
ce

ss
 d

a
ta

  
  
  
 

  
  
  
  
  
  
  
  
tm

p
 :
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
1

_
i,3

2
);

  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
p

ro
ce

ss
1

(1
6

 
d
o
w
n
t
o

 1
1

) 
<

=
 t
m

p
(6

−
1

 
d
o
w
n
t
o

 0
);

  
 

  
  
  
  
  
  
  
  
tm

p
 :
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
2

_
i,3

2
);

  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
p

ro
ce

ss
1

(1
0

 
d
o
w
n
t
o

 5
) 

<
=

 t
m

p
(6

−
1

 
d
o
w
n
t
o

 0
);

  
 

  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
p

ro
ce

ss
1

(4
) 

<
=

 
p
r
o
c
e
s
s

1
V

a
rs

.c
_

tr
u

e
_

b
; 
 

  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
p

ro
ce

ss
1

(3
) 

<
=

 
p
r
o
c
e
s
s

1
V

a
rs

.c
_

fa
ls

e
_

b
; 
 

  
  
  
  
  
  
  
  
tm

p
 :
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
p
r
o
c
e
s
s

1
S

ta
te

,3
2

);
  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
p

ro
ce

ss
1

(2
 

d
o
w
n
t
o

 0
) 

<
=

 t
m

p
(3

−
1

 
d
o
w
n
t
o

 0
);

 
  
  

  
  

  
  

  
  

  
 

  
  
  

  
  
  
  
  
  
  
  
w

ri
te

_
p

ro
ce

ss
1

 <
=

 ’1
’;

  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  
w

ri
te

_
p

ro
ce

ss
1

 <
=

 ’0
’;

  
  
  
  
  
  
  
  
re

q
u

e
st

_
p

ro
ce

ss
1

 <
=

 ’0
’; 

  
  
  

−
−

 N
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  

−
−

 p
ro

ce
ss

1
 s

e
n

d
s 

si
g

n
a

l m
o

to
r_

st
a

rt
 t
o

 p
ro

ce
ss

 m
o

to
r1

  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

m
o

to
r1

":
  
  
  

−
−

 o
b

ta
in

 p
ro

ce
ss

 d
a

ta

  
  
  

  
  
  
  
  
  
  
  
re

q
u

e
st

_
m

o
to

r1
 <

=
 ’1

’;
  
  
  
  
  
  
  
  

w
h
i
l
e

 g
ra

n
t_

m
o

to
r1

 /
=

 ’1
’ 

l
o
o
p

  
  
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  

e
n
d

 
l
o
o
p

; 
  
  
  
 

  
  
  
  
  
  
  
  
m

o
to

r1
V

a
rs

.g
o

_
b

 :
=

 s
h

a
re

d
_

d
a

ta
_

in
_

m
o

to
r1

(2
);

  
  
  
  
  
  
  
  
  
m

o
to

r1
S

ta
te

 :
=

 c
o

n
v_

in
te

g
e

r(
sh

a
re

d
_

d
a

ta
_

in
_

m
o

to
r1

(1
 

d
o
w
n
t
o

 0
))

;

  
  

  
 

  
  
  

−
−

 P
ro

ce
ss

 m
o

to
r1

 a
cc

e
p

ts
 s

ig
n

a
l m

o
to

r_
st

a
rt

 in
 s

ta
te

 s
to

p
p

e
d

  
  
  

i
f

 (
(m

o
to

r1
S

ta
te

 =
 2

))
 

t
h
e
n

  
  
  
  
m

o
to

r1
S

ta
te

 :
=

 1
;

  
  
  
  

−
−

 r
e

le
a

se
 p

ro
ce

ss
 d

a
ta

  
  
  
  
 

  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r1
(2

) 
<

=
 m

o
to

r1
V

a
rs

.g
o

_
b

; 
 

  
  
  
  
  
  
  
  
tm

p
 :
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
m

o
to

r1
S

ta
te

,3
2

);
  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r1
(1

 
d
o
w
n
t
o

 0
) 

<
=

 t
m

p
(2

−
1

 
d
o
w
n
t
o

 0
);

 
  
  

  
 

  
  
  
  

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r1
 <

=
 ’1

’;
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r1
 <

=
 ’0

’;
  
  
  
  
  
  
  
  
re

q
u

e
st

_
m

o
to

r1
 <

=
 ’0

’; 
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  

e
l
s
e

  
  
  
  

−
−

 r
e

le
a

se
 p

ro
ce

ss
 d

a
ta

  
  
  
  
 

  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r1
(2

) 
<

=
 m

o
to

r1
V

a
rs

.g
o

_
b

; 
 

  
  
  
  
  
  
  
  
tm

p
 :
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
m

o
to

r1
S

ta
te

,3
2

);
  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r1
(1

 
d
o
w
n
t
o

 0
) 

<
=

 t
m

p
(2

−
1

 
d
o
w
n
t
o

 0
);

 
  
  

  
 

  
  
  
  

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r1
 <

=
 ’1

’;
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r1
 <

=
 ’0

’;
  
  
  
  
  
  
  
  
re

q
u

e
st

_
m

o
to

r1
 <

=
 ’0

’; 
  
  
  

e
n
d

 
i
f

;
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 m

o
to

r1
  
  
  

−
−

 p
ro

ce
ss

1
 s

e
n

d
s 

si
g

n
a

l m
o

to
r_

st
a

rt
 t
o

 p
ro

ce
ss

 m
o

to
r2

  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

m
o

to
r2

":
  
  
  

−
−

 o
b

ta
in

 p
ro

ce
ss

 d
a

ta
  
  
  

  
  
  
  
  
  
  
  
re

q
u

e
st

_
m

o
to

r2
 <

=
 ’1

’;
  
  
  
  
  
  
  
  

w
h
i
l
e

 g
ra

n
t_

m
o

to
r2

 /
=

 ’1
’ 

l
o
o
p

  
  
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  

e
n
d

 
l
o
o
p

; 
  
  
  
 

  
  
  
  
  
  
  
  
m

o
to

r2
V

a
rs

.g
o

_
b

 :
=

 s
h

a
re

d
_

d
a

ta
_

in
_

m
o

to
r2

(2
);

  
  
  
  
  
  
  
  
  
m

o
to

r2
S

ta
te

 :
=

 c
o

n
v_

in
te

g
e

r(
sh

a
re

d
_

d
a

ta
_

in
_

m
o

to
r2

(1
 

d
o
w
n
t
o

 0
))

;

  
  

  
 

  
  
  

−
−

 P
ro

ce
ss

 m
o

to
r2

 a
cc

e
p

ts
 s

ig
n

a
l m

o
to

r_
st

a
rt

 in
 s

ta
te

 s
to

p
p

e
d

  
  
  

i
f

 (
(m

o
to

r2
S

ta
te

 =
 2

))
 

t
h
e
n

  
  
  
  
m

o
to

r2
S

ta
te

 :
=

 1
;

  
  
  
  

−
−

 r
e

le
a

se
 p

ro
ce

ss
 d

a
ta

  
  
  
  
 

  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r2
(2

) 
<

=
 m

o
to

r2
V

a
rs

.g
o

_
b

; 
 

  
  
  
  
  
  
  
  
tm

p
 :
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
m

o
to

r2
S

ta
te

,3
2

);
  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r2
(1

 
d
o
w
n
t
o

 0
) 

<
=

 t
m

p
(2

−
1

 
d
o
w
n
t
o

 0
);
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w

ri
te

_
m

o
to

r2
 <

=
 ’1

’;
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r2
 <

=
 ’0

’;
  
  
  
  
  
  
  
  
re

q
u

e
st

_
m

o
to

r2
 <

=
 ’0

’; 
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  

e
l
s
e

  
  
  
  

−
−

 r
e

le
a

se
 p

ro
ce

ss
 d

a
ta

  
  
  
  
 

  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r2
(2

) 
<

=
 m

o
to

r2
V

a
rs

.g
o

_
b

; 
 

  
  
  
  
  
  
  
  
tm

p
 :
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
m

o
to

r2
S

ta
te

,3
2

);
  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r2
(1

 
d
o
w
n
t
o

 0
) 

<
=

 t
m

p
(2

−
1

 
d
o
w
n
t
o

 0
);

 
  
  

  
 

  
  
  
  

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r2
 <

=
 ’1

’;
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r2
 <

=
 ’0

’;
  
  
  
  
  
  
  
  
re

q
u

e
st

_
m

o
to

r2
 <

=
 ’0

’; 
  
  
  

e
n
d

 
i
f

;
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 m

o
to

r2
  
  
  
p

ro
d

u
ct

_
co

u
n

te
rV

a
rs

.c
o

u
n

t_
i :

=
 0

;
  
  
  
p

ro
d

u
ct

_
co

u
n

te
rS

ta
te

 :
=

 1
;

  
  
  

−
−

 r
e

le
a

se
 p

ro
ce

ss
 d

a
ta

  
  
  
 

  
  
  
  
  
  
  
  
tm

p
 :
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
p

ro
d

u
ct

_
co

u
n

te
rV

a
rs

.c
o

u
n

t_
i,3

2
);

  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
p

ro
d

u
ct

_
co

u
n

te
r(

6
 

d
o
w
n
t
o

 1
) 

<
=

 t
m

p
(6

−
1

 
d
o
w
n
t
o

 0
)

; 
  

  
  
  
  
  
  
  
  
tm

p
 :
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
p

ro
d

u
ct

_
co

u
n

te
rS

ta
te

,3
2

);
  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
p

ro
d

u
ct

_
co

u
n

te
r(

0
 

d
o
w
n
t
o

 0
) 

<
=

 t
m

p
(1

−
1

 
d
o
w
n
t
o

 0
)

; 
  
  

  
 

  
  
  

  
  
  
  
  
  
  
  
w

ri
te

_
p

ro
d

u
ct

_
co

u
n

te
r 

<
=

 ’1
’;

  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  
w

ri
te

_
p

ro
d

u
ct

_
co

u
n

te
r 

<
=

 ’0
’;

  
  
  
  
  
  
  
  
re

q
u

e
st

_
p

ro
d

u
ct

_
co

u
n

te
r 

<
=

 ’0
’; 

  
  
  

−
−

 N
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  

e
l
s
e

  
  
  

  
  
  

  
  
  
g

e
t_

si
g

 <
=

 ’1
’;

  
  
  

i
f

 s
ig

_
re

a
d

y 
=

 ’1
’ 

t
h
e
n

  
  
  
  
 d

a
ta

In
(4

−
1

 
d
o
w
n
t
o

 0
):

=
 d

a
ta

;
  
  
  
  
 r

e
a

d
yI

n
 :
=

 ’1
’;

  
  
  
  
 g

e
t_

si
g

 <
=

 ’0
’;

  
  
  
  
 

w
h
i
l
e

 s
ig

_
re

a
d

y 
=

 ’1
’ 

l
o
o
p

  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  

e
l
s
e

  
  
  
  
 r

e
a

d
yI

n
 :
=

 ’0
’;

  
  
  

e
n
d

 
i
f

;
  
  
  

i
f

 r
e

a
d

yI
n

 =
 ’1

’ 
t
h
e
n

  
  
  
  

c
a
s
e

 c
o

n
v_

in
te

g
e

r(
d

a
ta

In
 (

4
−

1
 

d
o
w
n
t
o

 0
))

 
i
s

  
  
  
  
  

−
−

 T
ra

ce
 o

f 
S

ig
n

a
l "

e
m

e
rg

e
n

cy
_

st
o

p
" 

w
ith

 id
 7

: 
  
  
  
  
  

−
−

 D
e

st
in

a
tio

n
 is

 m
o

to
r1

  
  
  
  
  

w
h
e
n

 e
m

e
rg

e
n

cy
_

st
o

p
S

ig
n

a
l =

>
  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

m
o

to
r1

":
  
  
  
  
  
  

−
−

 o
b

ta
in

 p
ro

ce
ss

 d
a

ta
  
  
  
  
  
  

  
  
  
  
  
  
  
  
re

q
u

e
st

_
m

o
to

r1
 <

=
 ’1

’;
  
  
  
  
  
  
  
  

w
h
i
l
e

 g
ra

n
t_

m
o

to
r1

 /
=

 ’1
’ 

l
o
o
p

  
  
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  

e
n
d

 
l
o
o
p

; 
  
  
  
  
  
  
 

  
  
  
  
  
  
  
  
m

o
to

r1
V

a
rs

.g
o

_
b

 :
=

 s
h

a
re

d
_

d
a

ta
_

in
_

m
o

to
r1

(2
);

  
  
  
  
  
  
  
  
  
m

o
to

r1
S

ta
te

 :
=

 c
o

n
v_

in
te

g
e

r(
sh

a
re

d
_

d
a

ta
_

in
_

m
o

to
r1

(1
 

d
o
w
n
t
o

 0
))

;

  
  

  
 

  
  
  
  
  
  

−
−

 P
ro

ce
ss

 m
o

to
r1

 a
cc

e
p

ts
 s

ig
n

a
l e

m
e

rg
e

n
cy

_
st

o
p

 in
 s

ta
te

 g
o

  
  
  
  
  
  

i
f

 (
(m

o
to

r1
S

ta
te

 =
 1

))
 

t
h
e
n

  
  
  
  
  
  
  

−
−

 S
ig

n
a

l p
a

ra
m

e
te

r 
"g

e
tS

ig
n

a
lP

a
ra

m
e

te
r"

 is
 ig

n
o

re
d

.
  
  
  
  
  
  
  
m

o
to

r1
S

ta
te

 :
=

 3
;

  
  
  
  
  
  
  

−
−

 r
e

le
a

se
 p

ro
ce

ss
 d

a
ta

  
  
  
  
  
  
  
 

  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r1
(2

) 
<

=
 m

o
to

r1
V

a
rs

.g
o

_
b

; 
 

  
  
  
  
  
  
  
  
tm

p
 :
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
m

o
to

r1
S

ta
te

,3
2

);
  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r1
(1

 
d
o
w
n
t
o

 0
) 

<
=

 t
m

p
(2

−
1

 
d
o
w
n
t
o

 0
);

 
  
  

  
 

  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r1
 <

=
 ’1

’;
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r1
 <

=
 ’0

’;
  
  
  
  
  
  
  
  
re

q
u

e
st

_
m

o
to

r1
 <

=
 ’0

’; 
  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  

−
−

 m
o

to
r1

 s
e

n
d

s 
si

g
n

a
l e

m
e

rg
e

n
cy

_
st

o
p

_
in

t 
to

 p
ro

ce
ss

 m
o

to
r2

  
  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

m
o

to
r2

":
  
  
  
  
  
  
  

−
−

 o
b

ta
in

 p
ro

ce
ss

 d
a

ta
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
re

q
u

e
st

_
m

o
to

r2
 <

=
 ’1

’;
  
  
  
  
  
  
  
  

w
h
i
l
e

 g
ra

n
t_

m
o

to
r2

 /
=

 ’1
’ 

l
o
o
p

  
  
  
  
  
  
  
  
  
 

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  

e
n
d

 
l
o
o
p

; 
  
  
  
  
  
  
  
 

  
  
  
  
  
  
  
  
m

o
to

r2
V

a
rs

.g
o

_
b

 :
=

 s
h

a
re

d
_

d
a

ta
_

in
_

m
o

to
r2

(2
);

  
  
  
  
  
  
  
  
  
m

o
to

r2
S

ta
te

 :
=

 c
o

n
v_

in
te

g
e

r(
sh

a
re

d
_

d
a

ta
_

in
_

m
o

to
r2

(1
 

d
o
w
n
t
o

 0
))

;

  
  

  
 

  
  
  
  
  
  
  

−
−

 P
ro

ce
ss

 m
o

to
r2

 a
cc

e
p

ts
 s

ig
n

a
l e

m
e

rg
e

n
cy

_
st

o
p

_
in

t 
in

 s
ta

te
 g

o
  
  
  
  
  
  
  

i
f

 (
(m

o
to

r2
S

ta
te

 =
 1

))
 

t
h
e
n

  
  
  
  
  
  
  
  
m

o
to

r2
S

ta
te

 :
=

 3
;

  
  
  
  
  
  
  
  

−
−

 r
e

le
a

se
 p

ro
ce

ss
 d

a
ta

  
  
  
  
  
  
  
  
 

  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r2
(2

) 
<

=
 m

o
to

r2
V

a
rs

.g
o

_
b

; 
 

  
  
  
  
  
  
  
  
tm

p
 :
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
m

o
to

r2
S

ta
te

,3
2

);
  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r2
(1

 
d
o
w
n
t
o

 0
) 

<
=

 t
m

p
(2

−
1

 
d
o
w
n
t
o

 0
);

 
  
  

  
 

  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r2
 <

=
 ’1

’;
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r2
 <

=
 ’0

’;
  
  
  
  
  
  
  
  
re

q
u

e
st

_
m

o
to

r2
 <

=
 ’0

’; 
  
  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  

−
−

 r
e

le
a

se
 p

ro
ce

ss
 d

a
ta

  
  
  
  
  
  
  
  
 

  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r2
(2

) 
<

=
 m

o
to

r2
V

a
rs

.g
o

_
b

; 
 

  
  
  
  
  
  
  
  
tm

p
 :
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
m

o
to

r2
S

ta
te

,3
2

);
  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r2
(1

 
d
o
w
n
t
o

 0
) 

<
=

 t
m

p
(2

−
1

 
d
o
w
n
t
o

 0
);

 
  
  

  
 

  
  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r2
 <

=
 ’1

’;
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r2
 <

=
 ’0

’;
  
  
  
  
  
  
  
  
re

q
u

e
st

_
m

o
to

r2
 <

=
 ’0

’; 
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e
n
d

 
i
f

;
  
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 m

o
to

r2
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  

−
−

 r
e

le
a

se
 p

ro
ce

ss
 d

a
ta

  
  
  
  
  
  
  
 

  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r1
(2

) 
<

=
 m

o
to

r1
V

a
rs

.g
o

_
b

; 
 

  
  
  
  
  
  
  
  
tm

p
 :
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
m

o
to

r1
S

ta
te

,3
2

);
  
  
  
  
  
  
  
  
sh

a
re

d
_

d
a

ta
_

o
u

t_
m

o
to

r1
(1

 
d
o
w
n
t
o

 0
) 

<
=

 t
m

p
(2

−
1

 
d
o
w
n
t
o

 0
);

 
  
  

  
 

  
  
  
  
  
  
  

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r1
 <

=
 ’1

’;
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
  
w

ri
te

_
m

o
to

r1
 <

=
 ’0

’;
  
  
  
  
  
  
  
  
re

q
u

e
st

_
m

o
to

r1
 <

=
 ’0

’; 
  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 m

o
to

r1
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  

e
n
d

 
i
f

;
  
  

e
n
d

 
i
f

;
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

 =
 ’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
e
n
d

 
p
r
o
c
e
s
s

 m
a

in
;

e
n
d

 a
ss

e
m

b
ly

_
lin

e
_

a
rc

h
;
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−
−

 G
e

n
e

ra
te

d
 b

y 
S

D
L

2
V

H
D

L
 V

e
rs

io
n

 0
.3

p
re

−
−

 f
ro

m
 s

o
u

rc
e

 .
./
..
/.
./
S

D
L

/a
ss

e
m

b
ly

_
lin

e
.s

d
l a

t 
F

e
b

 1
, 
2

0
0

1
 1

0
:4

5
:1

5
 A

M

L
I
B
R
A
R
Y

 ie
ee

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

1
1

6
4

.
a
l
l

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

a
ri
th

.
a
l
l

;

l
i
b
r
a
r
y

 S
D

L;

U
S
E

 W
O

R
K

.c
o

n
fig

.
a
l
l

;
U
S
E

 S
D

L
.
a
l
l

;
U
S
E

 W
O

R
K

.a
ss

e
m

b
ly

_
lin

e
_

p
a

ck
a

g
e

.
a
l
l

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

u
n

si
g

n
e

d
.

a
l
l

;

e
n
t
i
t
y

 a
t_

a
ss

e
m

b
ly

_
lin

e
 

i
s

  
p
o
r
t

  
  
(

  
  
 c

lk
,r

e
se

t
: 

i
n

 s
td

_
lo

g
ic

;
  
  
 

  
  
  

−
−

 D
ir
e

ct
 S

ig
n

a
ls

  
  
  

−
−

 O
u

t−
C

h
a

n
n

e
ls

: 
E

n
v

  
  
  
si

g
n

a
l_

o
u

t_
E

n
v:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
4

−
1

 
D
O
W
N
T
O

 0
);

   
  
  
d

a
ta

_
o

u
t_

E
n

v:
  
 

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

6
−

1
 

D
O
W
N
T
O

 0
);

   
  
  
se

n
d

_
o

u
t:
  
 

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

o
u

t_
ch

a
n

n
e

ls
_

a
t_

a
ss

e
m

b
ly

_
lin

e
−

1
 

d
o
w

n
t
o

 0
);

  
  
  
a

ck
_

o
u

t:
  
 

I
N

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

o
u

t_
ch

a
n

n
e

ls
_

a
t_

a
ss

e
m

b
ly

_
lin

e
−

1
 

d
o
w
n
t

o
 0

);
  
  
  

  
  
  

−
−

 I
n

−
C

h
a

n
n

e
ls

 
  
  
  
si

g
n

a
l_

a
n

d
_

d
a

ta
_

in
: 
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
a

t_
a

ss
e

m
b

ly
_

lin
e

*q
u

e
u

e
_

w
id

th
_

a
t_

a
ss

e
m

b
ly

_
lin

e
−

1
 

d
o
w
n
t
o

 0
);

 
  
  
  
se

n
d

_
in

:
I
N

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
a

t_
a

ss
e

m
b

ly
_

lin
e

−
1

 
d
o
w
n
t
o

 
0

);
  
  
  
a

ck
_

in
:

O
U
T

  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

in
_

ch
a

n
n

e
ls

_
a

t_
a

ss
e

m
b

ly
_

lin
e

−
1

 
d
o
w
n
t
o

 0
)

  
  
  

  
  
 )

;
e
n
d

 a
t_

a
ss

e
m

b
ly

_
lin

e
;

a
r
c
h
i
t
e
c
t
u
r
e

 a
ss

e
m

b
ly

_
lin

e
_

a
rc

h
 

o
f

 a
t_

a
ss

e
m

b
ly

_
lin

e
 

i
s

 S
I
G
N
A
L

 g
e

t_
si

g
:

st
d

_
lo

g
ic

;
S
I
G
N
A
L

 s
ig

_
re

a
d

y:
  
  
  
 s

td
_

lo
g

ic
;

S
I
G
N
A
L

 d
a

ta
: 
  
  
  
  
  
 s

td
_

lo
g

ic
_

ve
ct

o
r(

4
−

1
 

D
O
W
N
T
O

 0
);

C
O
M
P
O
N
E
N
T

 q
u

e
u

e
_

l1
_

d
n

_
cn

  
 

G
E
N
E
R
I
C

 (
  
  
  
q

u
e

u
e

_
w

id
th

, 
q

u
e

u
e

_
d

e
p

th
,n

u
m

_
ch

a
n

n
e

ls
: 
In

te
g

e
r)

;
  
 

P
O
R
T

 (
  
  
  
cl

k:
 
I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
re

se
t:

 
I
N

  
  
  
st

d
_

lo
g

ic
;

−
−

 K
a

n
a

le
in

g
a

n
g

  
  
  
se

n
d

:
 
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
a

ck
:

 
O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
d

a
ta

_
in

:
 
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
*q

u
e

u
e

_
w

id
th

−
1

 
d
o
w
n
t
o

 0
);

−
−

 S
ch

n
itt

st
e

lle
 z

u
m

 P
ro

ze
ss

  
  
  
g

e
t_

si
g

:
 
I
N

  
  
  
st

d
_

lo
g

ic
;

  
  
  
si

g
_

re
a

d
y:

 
O
U
T

  
  
 s

td
_

lo
g

ic
;

  
  
  
d

a
ta

:
 
O
U
T

  
st

d
_

lo
g

ic
_

ve
ct

o
r(

q
u

e
u

e
_

w
id

th
−

1
 

D
O
W
N
T
O

 0
)

  
  
  
);

E
N
D

 
C
O
M
P
O
N
E
N
T

;

b
e
g
i
n

    
th

is
_

q
u

e
u

e
: 
q

u
e

u
e

_
l1

_
d

n
_

cn
  
  
 

G
E
N
E
R
I
C

 
M
A
P

 (
q

u
e

u
e

_
w

id
th

=
>

4
, 

  
  
  
  
  
  
  
  
  
q

u
e

u
e

_
d

e
p

th
=

>
1

,
  
n

u
m

_
ch

a
n

n
e

ls
=

>
n

u
m

_
in

_
ch

a
n

n
e

ls
_

a
t_

a
ss

e
m

b
ly

_
lin

e
)

  
  
 

P
O
R
T

 
M
A
P

 (
cl

k=
>

cl
k,

 r
e

se
t=

>
re

se
t,
 s

e
n

d
=

>
se

n
d

_
in

, 
a

ck
=

>
a

ck
_

in
, 

  
  
 

d
a

ta
_

in
=

>
si

g
n

a
l_

a
n

d
_

d
a

ta
_

in
,g

e
t_

si
g

=
>

g
e

t_
si

g
,

  
  
  
 s

ig
_

re
a

d
y=

>
si

g
_

re
a

d
y,

d
a

ta
=

>
d

a
ta

);

  
m

a
in

: 
p
r
o
c
e
s
s

  
  
 

V
A
R
I
A
B
L
E

 t
m

p
: 
  
  
  
  

st
d

_
lo

g
ic

_
ve

ct
o

r 
(3

2
−

1
 

d
o
w
n
t
o

 0
);

  
  

  
  

v
a
r
i
a
b
l
e

 d
a

ta
In

 :
 S

td
_

L
o

g
ic

_
V

e
ct

o
r(

4
 

d
o
w
n
t
o

 0
);

  
  

v
a
r
i
a
b
l
e

 r
e

a
d

yI
n

 :
 S

td
_

L
o

g
ic

;
  
  

v
a
r
i
a
b
l
e

 in
itP

h
a

se
 :
 B

o
o

le
a

n
;

  
  

−
−

 s
d

l s
ta

te
s

  
  

v
a
r
i
a
b
l
e

 m
o

to
r1

S
ta

te
: 
In

te
g

e
r 

r
a
n
g
e

 3
 
d
o
w
n
t
o

 0
;

  
  

v
a
r
i
a
b
l
e

 m
o

to
r2

S
ta

te
: 
In

te
g

e
r 

r
a
n
g
e

 3
 
d
o
w
n
t
o

 0
;

  
  

v
a
r
i
a
b
l
e

 
p
r
o
c
e
s
s

1
S

ta
te

: 
In

te
g

e
r 

r
a
n
g
e

 4
 
d
o
w
n
t
o

 0
;

  
  

v
a
r
i
a
b
l
e

 p
ro

d
u

ct
_

co
u

n
te

rS
ta

te
: 
In

te
g

e
r 

r
a
n
g
e

 1
 
d
o
w
n
t
o

 0
;

  
  

−
−

 s
d

l v
a

ri
a

b
le

s
  
  

v
a
r
i
a
b
l
e

 m
o

to
r1

va
rs

: 
m

o
to

r1
V

a
rs

T
yp

e
;

  
  

v
a
r
i
a
b
l
e

 m
o

to
r2

va
rs

: 
m

o
to

r2
V

a
rs

T
yp

e
;

  
  

v
a
r
i
a
b
l
e

 
p
r
o
c
e
s
s

1
va

rs
: 

p
r
o
c
e
s
s

1
V

a
rs

T
yp

e
;

  
  

v
a
r
i
a
b
l
e

 p
ro

d
u

ct
_

co
u

n
te

rv
a

rs
: 
p

ro
d

u
ct

_
co

u
n

te
rV

a
rs

T
yp

e
;

  
  

−
−

 t
e

m
p

 v
a

ri
a

b
le

s 
fo

r 
co

n
d

iti
o

n
s

  
  

v
a
r
i
a
b
l
e

 c
o

n
d

iti
o

n
_

1
: 
B

o
o

le
a

n
;

  
  

v
a
r
i
a
b
l
e

 c
o

n
d

iti
o

n
_

2
: 
B

o
o

le
a

n
;

  
  

v
a
r
i
a
b
l
e

 c
o

n
d

iti
o

n
_

3
: 
B

o
o

le
a

n
;

  
  

v
a
r
i
a
b
l
e

 c
o

n
d

iti
o

n
_

4
: 
B

o
o

le
a

n
;

  
b
e
g
i
n

  
  

i
f

 (
re

se
t 
=

 ’1
’)
 

t
h
e
n

  
  
  
in

itP
h

a
se

 :
=

 t
ru

e
;

  
  
  

tm
p

 :
=

 (
o
t
h
e
r
s

 =
>

 ’0
’)
;

  
  

e
l
s
i
f

 (
in

itP
h

a
se

 =
 t
ru

e
) 

t
h
e
n

  
  
in

itP
h

a
se

 :
=

 f
a

ls
e

;
  
  
  
m

o
to

r1
S

ta
te

 :
=

 1
;

  
  
  

−
−

 N
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
m

o
to

r2
S

ta
te

 :
=

 1
;

  
  
  

−
−

 N
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
1

_
i :

=
 0

;
  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
2

_
i :

=
 0

;
  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.c
_

tr
u

e
_

b
 :
=

 ’1
’;

  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.c
_

fa
ls

e
_

b
 :
=

 ’0
’;

  
  
  

p
r
o
c
e
s
s

1
S

ta
te

 :
=

 1
;

  
  
  

−
−

 N
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  

−
−

 p
ro

ce
ss

1
 s

e
n

d
s 

si
g

n
a

l m
o

to
r_

st
a

rt
 t
o

 p
ro

ce
ss

 m
o

to
r1

  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

m
o

to
r1

":
  
  
  

−
−

 P
ro

ce
ss

 m
o

to
r1

 a
cc

e
p

ts
 s

ig
n

a
l m

o
to

r_
st

a
rt

 in
 s

ta
te

 s
to

p
p

e
d

  
  
  

i
f

 (
(m

o
to

r1
S

ta
te

 =
 2

))
 

t
h
e
n

  
  
  
  
m

o
to

r1
S

ta
te

 :
=

 1
;

  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  

e
l
s
e

Figure B.6: Serial activity thread implementation (EFSM)
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e
n
d

 
i
f

;
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 m

o
to

r1
  
  
  

−
−

 p
ro

ce
ss

1
 s

e
n

d
s 

si
g

n
a

l m
o

to
r_

st
a

rt
 t
o

 p
ro

ce
ss

 m
o

to
r2

  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

m
o

to
r2

":
  
  
  

−
−

 P
ro

ce
ss

 m
o

to
r2

 a
cc

e
p

ts
 s

ig
n

a
l m

o
to

r_
st

a
rt

 in
 s

ta
te

 s
to

p
p

e
d

  
  
  

i
f

 (
(m

o
to

r2
S

ta
te

 =
 2

))
 

t
h
e
n

  
  
  
  
m

o
to

r2
S

ta
te

 :
=

 1
;

  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  

e
l
s
e

  
  
  

e
n
d

 
i
f

;
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 m

o
to

r2
  
  
  
p

ro
d

u
ct

_
co

u
n

te
rV

a
rs

.c
o

u
n

t_
i :

=
 0

;
  
  
  
p

ro
d

u
ct

_
co

u
n

te
rS

ta
te

 :
=

 1
;

  
  
  

−
−

 N
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  

e
l
s
e

  
  
  

  
  
  

  
  
  
g

e
t_

si
g

 <
=

 ’1
’;

  
  
  

i
f

 s
ig

_
re

a
d

y 
=

 ’1
’ 

t
h
e
n

  
  
  
  
 d

a
ta

In
(4

−
1

 
d
o
w
n
t
o

 0
):

=
 d

a
ta

;
  
  
  
  
 r

e
a

d
yI

n
 :
=

 ’1
’;

  
  
  
  
 g

e
t_

si
g

 <
=

 ’0
’;

  
  
  
  
 

w
h
i
l
e

 s
ig

_
re

a
d

y 
=

 ’1
’ 

l
o
o
p

  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  

e
l
s
e

  
  
  
  
 r

e
a

d
yI

n
 :
=

 ’0
’;

  
  
  

e
n
d

 
i
f

;
  
  
  

i
f

 r
e

a
d

yI
n

 =
 ’1

’ 
t
h
e
n

  
  
  
  

c
a
s
e

 c
o

n
v_

in
te

g
e

r(
d

a
ta

In
 (

4
−

1
 

d
o
w
n
t
o

 0
))

 
i
s

  
  
  
  
  

−
−

 T
ra

ce
 o

f 
S

ig
n

a
l "

e
m

e
rg

e
n

cy
_

st
o

p
" 

w
ith

 id
 7

: 
  
  
  
  
  

−
−

 D
e

st
in

a
tio

n
 is

 m
o

to
r1

  
  
  
  
  

w
h
e
n

 e
m

e
rg

e
n

cy
_

st
o

p
S

ig
n

a
l =

>
  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

m
o

to
r1

":
  
  
  
  
  
  

−
−

 P
ro

ce
ss

 m
o

to
r1

 a
cc

e
p

ts
 s

ig
n

a
l e

m
e

rg
e

n
cy

_
st

o
p

 in
 s

ta
te

 g
o

  
  
  
  
  
  

i
f

 (
(m

o
to

r1
S

ta
te

 =
 1

))
 

t
h
e
n

  
  
  
  
  
  
  

−
−

 S
ig

n
a

l p
a

ra
m

e
te

r 
"g

e
tS

ig
n

a
lP

a
ra

m
e

te
r"

 is
 ig

n
o

re
d

.
  
  
  
  
  
  
  
m

o
to

r1
S

ta
te

 :
=

 3
;

  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  

−
−

 m
o

to
r1

 s
e

n
d

s 
si

g
n

a
l e

m
e

rg
e

n
cy

_
st

o
p

_
in

t 
to

 p
ro

ce
ss

 m
o

to
r2

  
  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

m
o

to
r2

":
  
  
  
  
  
  
  

−
−

 P
ro

ce
ss

 m
o

to
r2

 a
cc

e
p

ts
 s

ig
n

a
l e

m
e

rg
e

n
cy

_
st

o
p

_
in

t 
in

 s
ta

te
 g

o
  
  
  
  
  
  
  

i
f

 (
(m

o
to

r2
S

ta
te

 =
 1

))
 

t
h
e
n

  
  
  
  
  
  
  
  
m

o
to

r2
S

ta
te

 :
=

 3
;

  
  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 m

o
to

r2
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 m

o
to

r1

  
  
  
  
  

−
−

 T
ra

ce
 o

f 
S

ig
n

a
l "

in
1

" 
w

ith
 id

 1
: 

  
  
  
  
  

−
−

 D
e

st
in

a
tio

n
 is

 p
ro

ce
ss

1
  
  
  
  
  

w
h
e
n

 
i
n

1
S
i
g
n
a
l

 =
>

  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

p
ro

ce
ss

1
":

  
  
  
  
  
  

−
−

 P
ro

ce
ss

 p
ro

ce
ss

1
 a

cc
e

p
ts

 s
ig

n
a

l i
n

1
 in

 s
ta

te
 e

m
p

ty
  
  
  
  
  
  

i
f

 (
(
p
r
o
c
e
s
s

1
S

ta
te

 =
 1

))
 

t
h
e
n

  
  
  
  
  
  
  

−
−

 S
ig

n
a

l p
a

ra
m

e
te

r 
"g

e
tS

ig
n

a
lP

a
ra

m
e

te
r"

 is
 ig

n
o

re
d

.
  
  
  
  
  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
1

_
i :

=
 

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
1

_
i +

 1
;

  
  
  
  
  
  
  
co

n
d

iti
o

n
_

1
 :
=

 
p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
1

_
i =

 4
;

  
  
  
  
  
  
  

c
a
s
e

 c
o

n
d

iti
o

n
_

1
 

i
s

  
  
  
  
  
  
  
  

w
h
e
n

 t
ru

e
 =

>
  
  
  
  
  
  
  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
1

_
i :

=
 0

;
  
  
  
  
  
  
  
  
  

p
r
o
c
e
s
s

1
S

ta
te

 :
=

 2
;

  
  
  
  
  
  
  
  

w
h
e
n

 f
a

ls
e

 =
>

  
  
  
  
  
  
  
  
  

p
r
o
c
e
s
s

1
S

ta
te

 :
=

 1
;

  
  
  
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  

c
a
s
e

 c
o

n
d

iti
o

n
_

1
 

i
s

  
  
  
  
  
  
  
  

w
h
e
n

 t
ru

e
 =

>
  
  
  
  
  
  
  
  
  

−
−

 p
ro

ce
ss

1
 s

e
n

d
s 

si
g

n
a

l m
o

to
r_

st
o

p
 t
o

 p
ro

ce
ss

 m
o

to
r1

  
  
  
  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

m
o

to
r1

":
  
  
  
  
  
  
  
  
  

−
−

 P
ro

ce
ss

 m
o

to
r1

 a
cc

e
p

ts
 s

ig
n

a
l m

o
to

r_
st

o
p

 in
 s

ta
te

 g
o

  
  
  
  
  
  
  
  
  

i
f

 (
(m

o
to

r1
S

ta
te

 =
 1

))
 

t
h
e
n

  
  
  
  
  
  
  
  
  
  
m

o
to

r1
S

ta
te

 :
=

 2
;

  
  
  
  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 m

o
to

r1
  
  
  
  
  
  
  
  
  

−
−

 S
ig

n
a

l o
u

t1
 is

 s
e

n
t 
to

 e
n

vi
ro

n
m

e
n

t.
  
  
  
  
  
  
  
  
  
d

a
ta

_
o

u
t_

E
n

v(
6

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
1

_
i, 

6
);

  
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
E

n
v(

4
−

1
 

d
o
w
n
t
o

 0
) 

<
=

 "
01

00
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
  

w
h
e
n

 f
a

ls
e

 =
>

  
  
  
  
  
  
  
  
  

−
−

 S
ig

n
a

l o
u

t1
 is

 s
e

n
t 
to

 e
n

vi
ro

n
m

e
n

t.
  
  
  
  
  
  
  
  
  
d

a
ta

_
o

u
t_

E
n

v(
6

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
1

_
i, 

6
);

  
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
E

n
v(

4
−

1
 

d
o
w
n
t
o

 0
) 

<
=

 "
01

00
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  
  
  
  

−
−

 P
ro

ce
ss

 p
ro

ce
ss

1
 a

cc
e

p
ts

 s
ig

n
a

l i
n

1
 in

 s
ta

te
 a

1
_

e
m

p
ty

_
2

_
fu

ll
  
  
  
  
  
  

e
l
s
i
f

 (
(
p
r
o
c
e
s
s

1
S

ta
te

 =
 3

))
 

t
h
e
n

  
  
  
  
  
  
  

−
−

 S
ig

n
a

l p
a

ra
m

e
te

r 
"g

e
tS

ig
n

a
lP

a
ra

m
e

te
r"

 is
 ig

n
o

re
d

.
  
  
  
  
  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
1

_
i :

=
 

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
1

_
i +

 1
;

  
  
  
  
  
  
  
co

n
d

iti
o

n
_

3
 :
=

 
p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
1

_
i =

 4
;

  
  
  
  
  
  
  

c
a
s
e

 c
o

n
d

iti
o

n
_

3
 

i
s

  
  
  
  
  
  
  
  

w
h
e
n

 t
ru

e
 =

>
  
  
  
  
  
  
  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
1

_
i :

=
 0

;
  
  
  
  
  
  
  
  
  

p
r
o
c
e
s
s

1
S

ta
te

 :
=

 4
;

  
  
  
  
  
  
  
  

w
h
e
n

 f
a

ls
e

 =
>

  
  
  
  
  
  
  
  
  

−
−

 n
o

 s
ta

te
 c

h
a

n
g

e
 f
o

r 
p

ro
ce

ss
 p

ro
ce

ss
1

  
  
  
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  

c
a
s
e

 c
o

n
d

iti
o

n
_

3
 

i
s

  
  
  
  
  
  
  
  

w
h
e
n

 t
ru

e
 =

>
  
  
  
  
  
  
  
  
  

−
−

 p
ro

ce
ss

1
 s

e
n

d
s 

si
g

n
a

l m
o

to
r_

st
o

p
 t
o

 p
ro

ce
ss

 m
o

to
r1

  
  
  
  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

m
o

to
r1

":
  
  
  
  
  
  
  
  
  

−
−

 P
ro

ce
ss

 m
o

to
r1

 a
cc

e
p

ts
 s

ig
n

a
l m

o
to

r_
st

o
p

 in
 s

ta
te

 g
o

  
  
  
  
  
  
  
  
  

i
f

 (
(m

o
to

r1
S

ta
te

 =
 1

))
 

t
h
e
n

  
  
  
  
  
  
  
  
  
  
m

o
to

r1
S

ta
te

 :
=

 2
;

  
  
  
  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 m

o
to

r1
  
  
  
  
  
  
  
  
  

−
−

 S
ig

n
a

l o
u

t1
 is

 s
e

n
t 
to

 e
n

vi
ro

n
m

e
n

t.
  
  
  
  
  
  
  
  
  
d

a
ta

_
o

u
t_

E
n

v(
6

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
1

_
i, 

6
);

  
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
E

n
v(

4
−

1
 

d
o
w
n
t
o

 0
) 

<
=

 "
01

00
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;
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e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
  

w
h
e
n

 f
a

ls
e

 =
>

  
  
  
  
  
  
  
  
  

−
−

 S
ig

n
a

l o
u

t1
 is

 s
e

n
t 
to

 e
n

vi
ro

n
m

e
n

t.
  
  
  
  
  
  
  
  
  
d

a
ta

_
o

u
t_

E
n

v(
6

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
1

_
i, 

6
);

  
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
E

n
v(

4
−

1
 

d
o
w
n
t
o

 0
) 

<
=

 "
01

00
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 p

ro
ce

ss
1

  
  
  
  
  

−
−

 T
ra

ce
 o

f 
S

ig
n

a
l "

in
2

" 
w

ith
 id

 2
: 

  
  
  
  
  

−
−

 D
e

st
in

a
tio

n
 is

 p
ro

ce
ss

1
  
  
  
  
  

w
h
e
n

 
i
n

2
S
i
g
n
a
l

 =
>

  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

p
ro

ce
ss

1
":

  
  
  
  
  
  

−
−

 P
ro

ce
ss

 p
ro

ce
ss

1
 a

cc
e

p
ts

 s
ig

n
a

l i
n

2
 in

 s
ta

te
 e

m
p

ty
  
  
  
  
  
  

i
f

 (
(
p
r
o
c
e
s
s

1
S

ta
te

 =
 1

))
 

t
h
e
n

  
  
  
  
  
  
  

−
−

 S
ig

n
a

l p
a

ra
m

e
te

r 
"g

e
tS

ig
n

a
lP

a
ra

m
e

te
r"

 is
 ig

n
o

re
d

.
  
  
  
  
  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
2

_
i :

=
 

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
2

_
i +

 1
;

  
  
  
  
  
  
  
co

n
d

iti
o

n
_

2
 :
=

 
p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
2

_
i =

 3
;

  
  
  
  
  
  
  

c
a
s
e

 c
o

n
d

iti
o

n
_

2
 

i
s

  
  
  
  
  
  
  
  

w
h
e
n

 t
ru

e
 =

>
  
  
  
  
  
  
  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
2

_
i :

=
 0

;
  
  
  
  
  
  
  
  
  

p
r
o
c
e
s
s

1
S

ta
te

 :
=

 3
;

  
  
  
  
  
  
  
  

w
h
e
n

 f
a

ls
e

 =
>

  
  
  
  
  
  
  
  
  

p
r
o
c
e
s
s

1
S

ta
te

 :
=

 1
;

  
  
  
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  

c
a
s
e

 c
o

n
d

iti
o

n
_

2
 

i
s

  
  
  
  
  
  
  
  

w
h
e
n

 t
ru

e
 =

>
  
  
  
  
  
  
  
  
  

−
−

 p
ro

ce
ss

1
 s

e
n

d
s 

si
g

n
a

l m
o

to
r_

st
o

p
 t
o

 p
ro

ce
ss

 m
o

to
r2

  
  
  
  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

m
o

to
r2

":
  
  
  
  
  
  
  
  
  

−
−

 P
ro

ce
ss

 m
o

to
r2

 a
cc

e
p

ts
 s

ig
n

a
l m

o
to

r_
st

o
p

 in
 s

ta
te

 g
o

  
  
  
  
  
  
  
  
  

i
f

 (
(m

o
to

r2
S

ta
te

 =
 1

))
 

t
h
e
n

  
  
  
  
  
  
  
  
  
  
m

o
to

r2
S

ta
te

 :
=

 2
;

  
  
  
  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  
  
  
  

−
−

 S
ig

n
a

l s
to

p
p

e
d

 is
 s

e
n

t 
to

 e
n

vi
ro

n
m

e
n

t.
  
  
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
E

n
v(

4
−

1
 

d
o
w
n
t
o

 0
) 

<
=

 "
01

10
";

  
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
  
  
  

−
−

 m
o

to
r2

 s
e

n
d

s 
si

g
n

a
l s

to
p

p
e

d
 t
o

 p
ro

ce
ss

 p
ro

d
u

ct
_

co
u

n
te

r
  
  
  
  
  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

p
ro

d
u

ct
_

co
u

n
te

r"
:

  
  
  
  
  
  
  
  
  
  

−
−

 P
ro

ce
ss

 p
ro

d
u

ct
_

co
u

n
te

r 
a

cc
e

p
ts

 s
ig

n
a

l s
to

p
p

e
d

 in
 s

ta
te

 r
u

n
  
  
  
  
  
  
  
  
  
  

i
f

 (
(p

ro
d

u
ct

_
co

u
n

te
rS

ta
te

 =
 1

))
 

t
h
e
n

  
  
  
  
  
  
  
  
  
  
  
p

ro
d

u
ct

_
co

u
n

te
rV

a
rs

.c
o

u
n

t_
i :

=
 p

ro
d

u
ct

_
co

u
n

te
rV

a
rs

.c
o

u
n

t_
i

 +
 1

;
  
  
  
  
  
  
  
  
  
  
  
p

ro
d

u
ct

_
co

u
n

te
rS

ta
te

 :
=

 1
;

  
  
  
  
  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 p

ro
d

u
ct

_
co

u
n

te
r

  
  
  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 m

o
to

r2
  
  
  
  
  
  
  
  
  

−
−

 S
ig

n
a

l o
u

t2
 is

 s
e

n
t 
to

 e
n

vi
ro

n
m

e
n

t.

  
  
  
  
  
  
  
  
  
d

a
ta

_
o

u
t_

E
n

v(
6

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
2

_
i, 

6
);

  
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
E

n
v(

4
−

1
 

d
o
w
n
t
o

 0
) 

<
=

 "
01

01
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
  

w
h
e
n

 f
a

ls
e

 =
>

  
  
  
  
  
  
  
  
  

−
−

 S
ig

n
a

l o
u

t2
 is

 s
e

n
t 
to

 e
n

vi
ro

n
m

e
n

t.
  
  
  
  
  
  
  
  
  
d

a
ta

_
o

u
t_

E
n

v(
6

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
2

_
i, 

6
);

  
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
E

n
v(

4
−

1
 

d
o
w
n
t
o

 0
) 

<
=

 "
01

01
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  
  
  
  

−
−

 P
ro

ce
ss

 p
ro

ce
ss

1
 a

cc
e

p
ts

 s
ig

n
a

l i
n

2
 in

 s
ta

te
 a

1
_

fu
ll_

2
_

e
m

p
ty

  
  
  
  
  
  

e
l
s
i
f

 (
(
p
r
o
c
e
s
s

1
S

ta
te

 =
 2

))
 

t
h
e
n

  
  
  
  
  
  
  

−
−

 S
ig

n
a

l p
a

ra
m

e
te

r 
"g

e
tS

ig
n

a
lP

a
ra

m
e

te
r"

 is
 ig

n
o

re
d

.
  
  
  
  
  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
2

_
i :

=
 

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
2

_
i +

 1
;

  
  
  
  
  
  
  
co

n
d

iti
o

n
_

4
 :
=

 
p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
2

_
i =

 3
;

  
  
  
  
  
  
  

c
a
s
e

 c
o

n
d

iti
o

n
_

4
 

i
s

  
  
  
  
  
  
  
  

w
h
e
n

 t
ru

e
 =

>
  
  
  
  
  
  
  
  
  

p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
2

_
i :

=
 0

;
  
  
  
  
  
  
  
  
  

p
r
o
c
e
s
s

1
S

ta
te

 :
=

 4
;

  
  
  
  
  
  
  
  

w
h
e
n

 f
a

ls
e

 =
>

  
  
  
  
  
  
  
  
  

−
−

 n
o

 s
ta

te
 c

h
a

n
g

e
 f
o

r 
p

ro
ce

ss
 p

ro
ce

ss
1

  
  
  
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  

c
a
s
e

 c
o

n
d

iti
o

n
_

4
 

i
s

  
  
  
  
  
  
  
  

w
h
e
n

 t
ru

e
 =

>
  
  
  
  
  
  
  
  
  

−
−

 p
ro

ce
ss

1
 s

e
n

d
s 

si
g

n
a

l m
o

to
r_

st
o

p
 t
o

 p
ro

ce
ss

 m
o

to
r2

  
  
  
  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

m
o

to
r2

":
  
  
  
  
  
  
  
  
  

−
−

 P
ro

ce
ss

 m
o

to
r2

 a
cc

e
p

ts
 s

ig
n

a
l m

o
to

r_
st

o
p

 in
 s

ta
te

 g
o

  
  
  
  
  
  
  
  
  

i
f

 (
(m

o
to

r2
S

ta
te

 =
 1

))
 

t
h
e
n

  
  
  
  
  
  
  
  
  
  
m

o
to

r2
S

ta
te

 :
=

 2
;

  
  
  
  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  
  
  
  

−
−

 S
ig

n
a

l s
to

p
p

e
d

 is
 s

e
n

t 
to

 e
n

vi
ro

n
m

e
n

t.
  
  
  
  
  
  
  
  
  
  
si

g
n

a
l_

o
u

t_
E

n
v(

4
−

1
 

d
o
w
n
t
o

 0
) 

<
=

 "
01

10
";

  
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
  
  
  

−
−

 m
o

to
r2

 s
e

n
d

s 
si

g
n

a
l s

to
p

p
e

d
 t
o

 p
ro

ce
ss

 p
ro

d
u

ct
_

co
u

n
te

r
  
  
  
  
  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

p
ro

d
u

ct
_

co
u

n
te

r"
:

  
  
  
  
  
  
  
  
  
  

−
−

 P
ro

ce
ss

 p
ro

d
u

ct
_

co
u

n
te

r 
a

cc
e

p
ts

 s
ig

n
a

l s
to

p
p

e
d

 in
 s

ta
te

 r
u

n
  
  
  
  
  
  
  
  
  
  

i
f

 (
(p

ro
d

u
ct

_
co

u
n

te
rS

ta
te

 =
 1

))
 

t
h
e
n

  
  
  
  
  
  
  
  
  
  
  
p

ro
d

u
ct

_
co

u
n

te
rV

a
rs

.c
o

u
n

t_
i :

=
 p

ro
d

u
ct

_
co

u
n

te
rV

a
rs

.c
o

u
n

t_
i

 +
 1

;
  
  
  
  
  
  
  
  
  
  
  
p

ro
d

u
ct

_
co

u
n

te
rS

ta
te

 :
=

 1
;

  
  
  
  
  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 p

ro
d

u
ct

_
co

u
n

te
r

  
  
  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 m

o
to

r2
  
  
  
  
  
  
  
  
  

−
−

 S
ig

n
a

l o
u

t2
 is

 s
e

n
t 
to

 e
n

vi
ro

n
m

e
n

t.
  
  
  
  
  
  
  
  
  
d

a
ta

_
o

u
t_

E
n

v(
6

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
2

_
i, 

6
);
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 s

ig
n

a
l_

o
u

t_
E

n
v(

4
−

1
 

d
o
w
n
t
o

 0
) 

<
=

 "
01

01
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
  

w
h
e
n

 f
a

ls
e

 =
>

  
  
  
  
  
  
  
  
  

−
−

 S
ig

n
a

l o
u

t2
 is

 s
e

n
t 
to

 e
n

vi
ro

n
m

e
n

t.
  
  
  
  
  
  
  
  
  
d

a
ta

_
o

u
t_

E
n

v(
6

−
1

 
d
o
w
n
t
o

 0
) 

<
=

 c
o

n
v_

st
d

_
lo

g
ic

_
ve

ct
o

r(
p
r
o
c
e
s
s

1
V

a
rs

.d
a

ta
2

_
i, 

6
);

  
  
  
  
  
  
  
  
 s

ig
n

a
l_

o
u

t_
E

n
v(

4
−

1
 

d
o
w
n
t
o

 0
) 

<
=

 "
01

01
";

  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’1

’;
  
  
  
  
  
  
  
 

w
h
i
l
e

 a
ck

_
o

u
t(

0
) 

/=
 ’1

’ 
l
o
o
p

  
  
  
  
  
  
  
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

=
’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
  
  
  
  
  
  
 

e
n
d

 
l
o
o
p

;
  
  
  
  
  
  
  
 s

e
n

d
_

o
u

t(
0

) 
<

=
 ’0

’;
  
  
  
  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 p

ro
ce

ss
1

  
  
  
  
  

−
−

 T
ra

ce
 o

f 
S

ig
n

a
l "

re
se

t_
si

g
" 

w
ith

 id
 3

: 
  
  
  
  
  

−
−

 D
e

st
in

a
tio

n
 is

 p
ro

ce
ss

1
  
  
  
  
  

w
h
e
n

 r
e

se
t_

si
g

S
ig

n
a

l =
>

  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

p
ro

ce
ss

1
":

  
  
  
  
  
  

−
−

 P
ro

ce
ss

 p
ro

ce
ss

1
 a

cc
e

p
ts

 s
ig

n
a

l r
e

se
t_

si
g

 in
 s

ta
te

 *
  
  
  
  
  
  

−
−

 s
ig

n
a

l i
s 

a
cc

e
p

te
d

 in
 a

n
y 

st
a

te
  
  
  
  
  
  

−
−

 S
ig

n
a

l p
a

ra
m

e
te

r 
"g

e
tS

ig
n

a
lP

a
ra

m
e

te
r"

 is
 ig

n
o

re
d

.
  
  
  
  
  
  

p
r
o
c
e
s
s

1
S

ta
te

 :
=

 1
;

  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  

−
−

 p
ro

ce
ss

1
 s

e
n

d
s 

si
g

n
a

l r
e

se
t_

si
g

 t
o

 p
ro

ce
ss

 m
o

to
r1

  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

m
o

to
r1

":
  
  
  
  
  
  

−
−

 P
ro

ce
ss

 m
o

to
r1

 a
cc

e
p

ts
 s

ig
n

a
l r

e
se

t_
si

g
 in

 s
ta

te
 s

to
p

p
e

d
  
  
  
  
  
  

i
f

 (
(m

o
to

r1
S

ta
te

 =
 2

) 
O
R

 (
m

o
to

r1
S

ta
te

 =
 3

))
 

t
h
e
n

  
  
  
  
  
  
  
m

o
to

r1
S

ta
te

 :
=

 1
;

  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 m

o
to

r1
  
  
  
  
  
  

−
−

 p
ro

ce
ss

1
 s

e
n

d
s 

si
g

n
a

l r
e

se
t_

si
g

 t
o

 p
ro

ce
ss

 m
o

to
r2

  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

m
o

to
r2

":
  
  
  
  
  
  

−
−

 P
ro

ce
ss

 m
o

to
r2

 a
cc

e
p

ts
 s

ig
n

a
l r

e
se

t_
si

g
 in

 s
ta

te
 s

to
p

p
e

d
  
  
  
  
  
  

i
f

 (
(m

o
to

r2
S

ta
te

 =
 2

) 
O
R

 (
m

o
to

r2
S

ta
te

 =
 3

))
 

t
h
e
n

  
  
  
  
  
  
  
m

o
to

r2
S

ta
te

 :
=

 1
;

  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  

−
−

 m
o

to
r2

 s
e

n
d

s 
si

g
n

a
l r

e
se

t_
si

g
 t
o

 p
ro

ce
ss

 p
ro

d
u

ct
_

co
u

n
te

r
  
  
  
  
  
  
  

−
−

 T
ra

ce
 o

f 
P

ro
ce

ss
 "

p
ro

d
u

ct
_

co
u

n
te

r"
:

  
  
  
  
  
  
  

−
−

 P
ro

ce
ss

 p
ro

d
u

ct
_

co
u

n
te

r 
a

cc
e

p
ts

 s
ig

n
a

l r
e

se
t_

si
g

 in
 s

ta
te

 r
u

n
  
  
  
  
  
  
  

i
f

 (
(p

ro
d

u
ct

_
co

u
n

te
rS

ta
te

 =
 1

))
 

t
h
e
n

  
  
  
  
  
  
  
  
p

ro
d

u
ct

_
co

u
n

te
rV

a
rs

.c
o

u
n

t_
i :

=
 0

;
  
  
  
  
  
  
  
  
p

ro
d

u
ct

_
co

u
n

te
rS

ta
te

 :
=

 1
;

  
  
  
  
  
  
  
  

−
−

 n
o

w
 p

ro
ce

ss
 o

u
tp

u
t 
st

a
te

m
e

n
ts

  
  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 p

ro
d

u
ct

_
co

u
n

te
r

  
  
  
  
  
  

e
l
s
e

  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 m

o
to

r2
  
  
  
  
  
  

−
−

 e
n

d
 o

f 
tr

a
ce

 o
f 
p

ro
ce

ss
 p

ro
ce

ss
1

  
  
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

  
  
  
  

e
n
d

 
c
a
s
e

;
  
  
  

e
n
d

 
i
f

;
  
  

e
n
d

 
i
f

;
  
  

w
a
i
t

 
u
n
t
i
l

 c
lk

 =
 ’1

’ 
a
n
d

 c
lk

’e
ve

n
t;

  
e
n
d

 
p
r
o
c
e
s
s

 m
a

in
;

e
n
d

 a
ss

e
m

b
ly

_
lin

e
_

a
rc

h
;
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Appendix C

SDL Run-Time Components

Here, the VHDL source code of the run-time components used in the appli-
cation examples is shown:

• Message queue length 0 (figure C.1)

• Message queue length 1 (figure C.2)

• Message queue length n (figure C.3)

• FPGA bus interface (figure C.4)

• SDL signal input components (figure C.5)

• SDL signal output component (figure C.6)

• SDL timer (figure C.7)

• Shared data component for parallel ATM (figure C.8)
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−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
 M

e
ss

a
g

e
 q

u
e

u
e

 le
n

g
th

 0
−

−
−

−
 A

d
a

p
ts

 t
h

e
 s

ig
n

a
l c

h
a

n
n

e
l p

ro
to

co
l t

o
 t
h

e
 h

a
n

d
sh

a
ke

 e
xp

e
ct

e
d

 
−

−
 b

y 
th

e
 E

F
S

M
; 
m

u
lti

p
le

xe
s 

th
e

 d
a

ta
 f
ro

m
 t
h

e
 s

ig
n

a
l c

h
a

n
n

e
ls

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

L
I
B
R
A
R
Y

 ie
ee

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

1
1

6
4

.
a
l
l

;

E
N
T
I
T
Y

 q
u

e
u

e
_

l0
_

d
n

_
cn

 
I
S

  
 

G
E
N
E
R
I
C

 (
  
  
  
q

u
e

u
e

_
w

id
th

,q
u

e
u

e
_

d
e

p
th

,n
u

m
_

ch
a

n
n

e
ls

: 
In

te
g

e
r)

;
  
 

P
O
R
T

 (
  
  
  
cl

k:
I
N

st
d

_
lo

g
ic

;
  
  
  
re

se
t:

I
N

st
d

_
lo

g
ic

;
−

−
 K

a
n

a
le

in
g

a
n

g
  
  
  
se

n
d

:
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
a

ck
:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
d

a
ta

_
in

:
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
q

u
e

u
e

_
w

id
th

*n
u

m
_

ch
a

n
n

e
ls

−
1

 
d
o
w
n

t
o

 0
);

−
−

 S
ch

n
itt

st
e

lle
 z

u
m

 P
ro

ze
ss

  
  
  
g

e
t_

si
g

:
I
N

st
d

_
lo

g
ic

;
  
  
  
si

g
_

re
a

d
y:

O
U
T

st
d

_
lo

g
ic

;
  
  
  
d

a
ta

:
O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
q

u
e

u
e

_
w

id
th

−
1

 
D
O
W
N
T
O

 0
)

  
  
  
);

 
E
N
D

 q
u

e
u

e
_

l0
_

d
n

_
cn

;

A
R
C
H
I
T
E
C
T
U
R
E

 q
u

e
u

e
_

a
 

O
F

 q
u

e
u

e
_

l0
_

d
n

_
cn

 
I
S

  
 

T
Y
P
E

 lo
ca

l_
a

rr
a

y 
i
s

 
a
r
r
a
y

 (
n

a
tu

ra
l 

r
a
n
g
e

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
d
o
w
n
t
o

 0
) 

  
  
  
  
  
  
  
  
  
  
  
 

o
f

 s
td

_
lo

g
ic

_
ve

ct
o

r(
q

u
e

u
e

_
w

id
th

−
1

 
d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

 d
in

_
in

t:
lo

ca
l_

a
rr

a
y;

  
 

S
I
G
N
A
L

 a
ck

_
in

te
rn

a
l:

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

 s
ig

_
re

a
d

y_
in

te
rn

a
l: 

st
d

_
lo

g
ic

;
  
 

S
I
G
N
A
L

 c
h

a
n

n
e

l: 
n

a
tu

ra
l 

r
a
n
g
e

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
D
O
W
N
T
O

 0
;

B
E
G
I
N

  
 c

o
n

v_
d

a
ta

_
in

: 
F
O
R

 i 
i
n

 0
 
T
O

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
G
E
N
E
R
A
T
E

  
  
  
 d

in
_

in
t(

i)
 <

=
 d

a
ta

_
in

((
i+

1
)*

q
u

e
u

e
_

w
id

th
−

1
 

d
o
w
n
t
o

 i*
q

u
e

u
e

_
w

id
th

);
 

  
 

  
 

E
N
D

 
G
E
N
E
R
A
T
E

;

  
 a

ck
 <

=
 a

ck
_

in
te

rn
a

l;

  
 s

ig
_

re
a

d
y 

<
=

 s
e

n
d

(c
h

a
n

n
e

l)
; 

  
 d

a
ta

 <
=

 d
in

_
in

t(
ch

a
n

n
e

l)
;

  
 r

e
ce

iv
e

_
p

ro
ce

ss
: 

P
R
O
C
E
S
S

 (
cl

k,
 r

e
se

t)
  
  
  

V
A
R
I
A
B
L
E

 n
e

xt
_

ch
a

n
n

e
l: 

b
o

o
le

a
n

;
  
  
  

V
A
R
I
A
B
L
E

 c
h

a
n

n
e

l_
tm

p
: 
n

a
tu

ra
l 

r
a
n
g
e

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
D
O
W
N
T
O

 0
;

  
 

B
E
G
I
N

  
  

I
F

 r
e

se
t 
=

 ’1
’ 

T
H
E
N

  
  
  
a

ck
_

in
te

rn
a

l <
=

 (
O
T
H
E
R
S

 =
>

 ’0
’)
;

  
  
  
n

e
xt

_
ch

a
n

n
e

l :
=

 t
ru

e
;

  
  
  
ch

a
n

n
e

l <
=

 0
;

  
  
  
ch

a
n

n
e

l_
tm

p
 :
=

 0
;

  
  
  
si

g
_

re
a

d
y_

in
te

rn
a

l <
=

 ’0
’;

  
 

E
L
S
I
F

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
 ’1

’ 
T
H
E
N

  
  
  
  
 

I
F

 n
e

xt
_

ch
a

n
n

e
l =

 t
ru

e
 

T
H
E
N

  
 

  
  

F
O
R

 i 
I
N

 0
 
T
O

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
L
O
O
P

  
  
  
  
  
  
  
 

I
F

 s
e

n
d

(i
) 

=
 ’1

’ 
T
H
E
N

  
 

  
  
  
  
  
 c

h
a

n
n

e
l <

=
 i;

  
 

  
  
  
  
  
 c

h
a

n
n

e
l_

tm
p

 :
=

 i;
  
  
  
  
  
 n

e
xt

_
ch

a
n

n
e

l :
=

 f
a

ls
e

;
  
  
  
  
  
 

E
X
I
T

;
  
  
  
 

E
N
D

 
I
F

;
  
  
  
  
  
  

E
N
D

 
L
O
O
P

;
 
E
N
D

 
I
F

;

  
  
  
  
 

I
F

 n
e

xt
_

ch
a

n
n

e
l =

 f
a

ls
e

 
T
H
E
N

  
  
  
  
  
  
a

ck
_

in
te

rn
a

l(
ch

a
n

n
e

l_
tm

p
) 

<
=

 ’1
’;

  
  
  
  
 

E
N
D

 
I
F

;

 
I
F

 a
ck

_
in

te
rn

a
l(
ch

a
n

n
e

l_
tm

p
) 

=
 ’1

’ 
T
H
E
N

  
  
 a

ck
_

in
te

rn
a

l(
ch

a
n

n
e

l_
tm

p
) 

<
=

 ’0
’;

  
  
 n

e
xt

_
ch

a
n

n
e

l :
=

 t
ru

e
;

  
E
N
D

 
I
F

;

  
 

E
N
D

 
I
F

; 
−

−
 c

lk
’e

ve
n

t
  
 

E
N
D

 
P
R
O
C
E
S
S

 r
e

ce
iv

e
_

p
ro

ce
ss

;

E
N
D

 q
u

e
u

e
_

a
;

Figure C.1: Message queue length 0
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−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

 M
e

ss
a

g
e

 q
u

e
u

e
 le

n
g

th
 1

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

L
I
B
R
A
R
Y

 ie
ee

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

1
1

6
4

.
a
l
l

;

E
N
T
I
T
Y

 q
u

e
u

e
_

l1
_

d
n

_
cn

 
I
S

  
 

G
E
N
E
R
I
C

 (
  
  
  
q

u
e

u
e

_
w

id
th

,q
u

e
u

e
_

d
e

p
th

,n
u

m
_

ch
a

n
n

e
ls

: 
In

te
g

e
r)

;
  
 

P
O
R
T

 (
  
  
  
cl

k:
I
N

st
d

_
lo

g
ic

;
  
  
  
re

se
t:

I
N

st
d

_
lo

g
ic

;
−

−
 K

a
n

a
le

in
g

a
n

g
  
  
  
se

n
d

:
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
a

ck
:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
d

a
ta

_
in

:
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
q

u
e

u
e

_
w

id
th

*n
u

m
_

ch
a

n
n

e
ls

−
1

 
d
o
w
n

t
o

 0
);

−
−

 S
ch

n
itt

st
e

lle
 z

u
m

 P
ro

ze
ss

  
  
  
g

e
t_

si
g

:
I
N

st
d

_
lo

g
ic

;
  
  
  
si

g
_

re
a

d
y:

O
U
T

st
d

_
lo

g
ic

;
  
  
  
d

a
ta

:
O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
q

u
e

u
e

_
w

id
th

−
1

 
D
O
W
N
T
O

 0
)

  
  
  
);

 
E
N
D

 q
u

e
u

e
_

l1
_

d
n

_
cn

;

A
R
C
H
I
T
E
C
T
U
R
E

 q
u

e
u

e
_

a
 

O
F

 q
u

e
u

e
_

l1
_

d
n

_
cn

 
I
S

  
 

T
Y
P
E

 lo
ca

l_
a

rr
a

y 
i
s

 
a
r
r
a
y

 (
n

a
tu

ra
l 

r
a
n
g
e

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
d
o
w
n
t
o

 0
) 

  
  
  
  
  
  
  
  
  
  
  
 

o
f

 s
td

_
lo

g
ic

_
ve

ct
o

r(
q

u
e

u
e

_
w

id
th

−
1

 
d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

 d
in

_
in

t:
lo

ca
l_

a
rr

a
y;

  
 

S
I
G
N
A
L

 a
ck

_
in

te
rn

a
l:

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

 q
u

e
u

e
_

re
g

: 
st

d
_

lo
g

ic
_

ve
ct

o
r(

q
u

e
u

e
_

w
id

th
−

1
 

D
O
W
N
T
O

 0
);

  
 

S
I
G
N
A
L

 w
ri
te

,r
e

a
d

: 
st

d
_

lo
g

ic
;

  
 

S
I
G
N
A
L

 s
ig

_
re

a
d

y_
in

te
rn

a
l, 

in
v_

re
se

t:
 s

td
_

lo
g

ic
;

B
E
G
I
N

  
 c

o
n

v_
d

a
ta

_
in

: 
F
O
R

 i 
i
n

 0
 
T
O

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
G
E
N
E
R
A
T
E

  
  
  
 d

in
_

in
t(

i)
 <

=
 d

a
ta

_
in

((
i+

1
)*

q
u

e
u

e
_

w
id

th
−

1
 

d
o
w
n
t
o

 i*
q

u
e

u
e

_
w

id
th

);
 

  
 

  
 

E
N
D

 
G
E
N
E
R
A
T
E

;

  
 s

ig
_

re
a

d
y 

<
=

 s
ig

_
re

a
d

y_
in

te
rn

a
l; 

  
 a

ck
 <

=
 a

ck
_

in
te

rn
a

l;

  
 d

a
ta

 <
=

 q
u

e
u

e
_

re
g

;
   
 r

e
ce

iv
e

_
p

ro
ce

ss
: 

P
R
O
C
E
S
S

 (
cl

k,
 r

e
se

t)
  
  
  

T
Y
P
E

 s
ta

te
_

ty
p

e
 

I
S

 (
re

a
d

y,
 w

ri
tin

g
_

fif
o

);
  
  
  

V
A
R
I
A
B
L
E

 c
h

a
n

n
e

l: 
n

a
tu

ra
l 

r
a
n
g
e

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
D
O
W
N
T
O

 0
;

  
  
  

V
A
R
I
A
B
L
E

 s
ta

te
: 
st

a
te

_
ty

p
e

;
  
  
  

V
A
R
I
A
B
L
E

 n
e

xt
_

ch
a

n
n

e
l: 

b
o

o
le

a
n

;
  
 

B
E
G
I
N

  
  

I
F

 r
e

se
t 
=

 ’1
’ 

T
H
E
N

  
  
  
a

ck
_

in
te

rn
a

l <
=

 (
O
T
H
E
R
S

 =
>

 ’0
’)
;

  
  
  
n

e
xt

_
ch

a
n

n
e

l :
=

 t
ru

e
;

  
  
  
ch

a
n

n
e

l :
=

 0
;

  
  
  
w

ri
te

 <
=

 ’0
’;

  
  
  
q

u
e

u
e

_
re

g
  
<

=
 (

O
T
H
E
R
S

 =
>

 ’0
’)
;

  
 

E
L
S
I
F

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
 ’1

’ 
T
H
E
N

  
 

I
F

 r
e

a
d

 =
 ’1

’ 
T
H
E
N

  
  
  
w

ri
te

 <
=

 ’0
’;

  
 

E
N
D

 
I
F

;

  
  
  
  
  
  

I
F

 n
e

xt
_

ch
a

n
n

e
l =

 t
ru

e
 

T
H
E
N

  
 

  
  
  
 

F
O
R

 i 
I
N

 0
 
T
O

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
L
O
O
P

  
  
  
  
  
  
  
  
  

I
F

 s
e

n
d

(i
) 

=
 ’1

’ 
T
H
E
N

  
 

  
  
  
  
  
  
  
ch

a
n

n
e

l :
=

 i;
  
  
  
  
  
  
  
n

e
xt

_
ch

a
n

n
e

l :
=

 f
a

ls
e

;
  
  
  
  
  
  
  

E
X
I
T

;
  
  
  
  
  

E
N
D

 
I
F

;
  
  
  
  
  
  
  
 

E
N
D

 
L
O
O
P

;
  
  

E
N
D

 
I
F

;

  
  
  
  
  
  

I
F

 n
e

xt
_

ch
a

n
n

e
l =

 f
a

ls
e

 
T
H
E
N

  
  
  
  
  
  
  
 

I
F

 w
ri
te

 =
 ’0

’ 
T
H
E
N

  
 

  
  
  
  
  
  
  
  
  
q

u
e

u
e

_
re

g
 <

=
 d

in
_

in
t(

ch
a

n
n

e
l)
;

  
  
  
  
  
  
  
  
  
a

ck
_

in
te

rn
a

l(
ch

a
n

n
e

l)
 <

=
 ’1

’;
  
w

ri
te

 <
=

 ’1
’;

  
  
  
  
  
  
  
 

E
L
S
E

  
  
  
  
  
  
  
  
  

−
−

 s
e

n
d

e
n

d
e

r 
P

ro
ze

ss
 b

e
ko

m
m

t 
ke

in
 a

ck
 −

>
 b

lo
ck

ie
rt

,
  
  
  
  
  
  
  
  
  

−
−

 b
is

 w
ie

d
e

r 
P

la
tz

 in
 q

u
e

u
e

  
  
  
  
  
  
  
 

E
N
D

 
I
F

;
  
  

E
N
D

 
I
F

;

  
 

I
F

 a
ck

_
in

te
rn

a
l(
ch

a
n

n
e

l)
 =

 ’1
’ 

T
H
E
N

  
  
  
a

ck
_

in
te

rn
a

l(
ch

a
n

n
e

l)
 <

=
 ’0

’;
  
  
  
n

e
xt

_
ch

a
n

n
e

l :
=

 t
ru

e
;

  
 

E
N
D

 
I
F

;

  
 

E
N
D

 
I
F

; 
−

−
 c

lk
’e

ve
n

t
  
 

E
N
D

 
P
R
O
C
E
S
S

 r
e

ce
iv

e
_

p
ro

ce
ss

;

  
 q

u
e

u
e

_
p

ro
ce

ss
: 

P
R
O
C
E
S
S

 (
cl

k,
 r

e
se

t)
  
 

B
E
G
I
N

  
  
  

I
F

 (
re

se
t=

’1
’)
 

T
H
E
N

  
  
  
  
 s

ig
_

re
a

d
y_

in
te

rn
a

l <
=

 ’0
’;

 r
e

a
d

 <
=

 ’0
’;

  
  
  

E
L
S
I
F

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
 ’1

’ 
T
H
E
N

  
  
  
  
 

I
F

 g
e

t_
si

g
 =

 ’1
’ 

T
H
E
N

  
  
  
  
  
  

I
F

 w
ri
te

 =
 ’1

’ 
T
H
E
N

  
  
  
  
  
  
  
 r

e
a

d
 <

=
 ’1

’;
  
  
  
  
  
  
  
 s

ig
_

re
a

d
y_

in
te

rn
a

l <
=

 ’1
’;

  
  
  
  
  
  

E
L
S
E

  
  
  
  
  
  
  
 s

ig
_

re
a

d
y_

in
te

rn
a

l <
=

 ’0
’;

  
  
  
  
  
  

E
N
D

 
I
F

;
  
  
  
  
 

E
N
D

 
I
F

;

 
I
F

 w
ri
te

 =
 ’0

’ 
T
H
E
N

  
  
 r

e
a

d
 <

=
 ’0

’;
  

E
N
D

 
I
F

;

 
I
F

 s
ig

_
re

a
d

y_
in

te
rn

a
l =

 ’1
’ 

T
H
E
N

  
  
si

g
_

re
a

d
y_

in
te

rn
a

l <
=

 ’0
’;

 
E
N
D

 
I
F

;

  
  
  

E
N
D

 
I
F

;
  
 

E
N
D

 
P
R
O
C
E
S
S

 q
u

e
u

e
_

p
ro

ce
ss

;

E
N
D

 q
u

e
u

e
_

a
;

Figure C.2: Message queue length 1



184 APPENDIX C. SDL RUN-TIME COMPONENTS

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

 M
e

ss
a

g
e

 q
u

e
u

e
 le

n
g

th
 n

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

L
I
B
R
A
R
Y

 ie
ee

;
l
i
b
r
a
r
y

 D
W

A
R

E
,D

W
06

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

1
1

6
4

.
a
l
l

;
u
s
e

 D
W

0
6

.D
W

0
6

_
co

m
p

o
n

e
n

ts
.
a
l
l

;
u
s
e

 D
W

A
R

E
.D

W
p

a
ck

a
g

e
s.
a
l
l

;

E
N
T
I
T
Y

 q
u

e
u

e
_

ln
_

d
n

_
cn

 
I
S

  
 

G
E
N
E
R
I
C

 (
  
  
  
q

u
e

u
e

_
w

id
th

,q
u

e
u

e
_

d
e

p
th

,n
u

m
_

ch
a

n
n

e
ls

: 
In

te
g

e
r)

;
  
 

P
O
R
T

 (
  
  
  
cl

k:
I
N

st
d

_
lo

g
ic

;
  
  
  
re

se
t:

I
N

st
d

_
lo

g
ic

;
−

−
 K

a
n

a
le

in
g

a
n

g
  
  
  
se

n
d

:
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
a

ck
:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
d

a
ta

_
in

:
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
q

u
e

u
e

_
w

id
th

*n
u

m
_

ch
a

n
n

e
ls

−
1

 
d
o
w
n

t
o

 0
);

−
−

 S
ch

n
itt

st
e

lle
 z

u
m

 P
ro

ze
ss

  
  
  
g

e
t_

si
g

:
I
N

st
d

_
lo

g
ic

;
  
  
  
si

g
_

re
a

d
y:

O
U
T

st
d

_
lo

g
ic

;
  
  
  
d

a
ta

:
O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
q

u
e

u
e

_
w

id
th

−
1

 
D
O
W
N
T
O

 0
)

  
  
  
);

 
E
N
D

 q
u

e
u

e
_

ln
_

d
n

_
cn

;

A
R
C
H
I
T
E
C
T
U
R
E

 q
u

e
u

e
_

a
 

O
F

 q
u

e
u

e
_

ln
_

d
n

_
cn

 
I
S

  
 

T
Y
P
E

 lo
ca

l_
a

rr
a

y 
i
s

 
a
r
r
a
y

 (
n

a
tu

ra
l 

r
a
n
g
e

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
d
o
w
n
t
o

 0
) 

  
  
  
  
  
  
  
  
  
  
  
 

o
f

 s
td

_
lo

g
ic

_
ve

ct
o

r(
q

u
e

u
e

_
w

id
th

−
1

 
d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

 d
in

_
in

t:
lo

ca
l_

a
rr

a
y;

  
 

S
I
G
N
A
L

  
 a

ck
_

in
te

rn
a

l:
st

d
_

lo
g

ic
_

ve
ct

o
r(

n
u

m
_

ch
a

n
n

e
ls

−
1

 
d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

 f
f_

in
, 
ff
_

o
u

t:
 s

td
_

lo
g

ic
_

ve
ct

o
r(

q
u

e
u

e
_

w
id

th
−

1
 

D
O
W
N
T
O

 0
);

  
 

S
I
G
N
A
L

 f
f_

w
ri
te

, 
ff
_

re
a

d
, 
ff
_

fu
ll,

 f
f_

e
m

p
ty

: 
st

d
_

lo
g

ic
;

  
 

S
I
G
N
A
L

 o
n

e
, 
si

g
_

re
a

d
y_

in
te

rn
a

l, 
in

v_
re

se
t:
 s

td
_

lo
g

ic
;

B
E
G
I
N

  
fif

o
: 
D

W
_

fif
o

_
s1

_
sf

  
g
e
n
e
r
i
c

 
m
a
p

 (
d

e
p

th
 =

>
 q

u
e

u
e

_
d

e
p

th
, 
w

id
th

 =
>

 q
u

e
u

e
_

w
id

th
,

  
  
  
  
  
  
  
 a

e
_

le
ve

l =
>

 1
, 
a

f_
le

ve
l =

>
 q

u
e

u
e

_
d

e
p

th
−

1
,

  
  
  
 e

rr
_

m
o

d
e

 =
>

 0
, 
rs

t_
m

o
d

e
 =

>
 0

)
  

p
o
r
t

 
m
a
p

 (
d

a
ta

_
in

 =
>

 f
f_

in
,

  
  
  
  
  
  
p

u
sh

_
re

q
_

n
 =

>
 f
f_

w
ri
te

,
  
  
  
  
  
  
p

o
p

_
re

q
_

n
 =

>
 f
f_

re
a

d
,

  
  
  
  
  
  
d

ia
g

_
n

 =
>

 o
n

e
,

  
  
  
  
  
  
cl

k 
=

>
 c

lk
,

  
  
  
  
  
  
rs

t_
n

  
=

>
 in

v_
re

se
t,

  
  
  
  
  
  
d

a
ta

_
o

u
t 
=

>
 d

a
ta

,
  
  
  
  
  
  
fu

ll 
=

>
 f
f_

fu
ll,

  
  
  
  
  
  
e

m
p

ty
 =

>
 f
f_

e
m

p
ty

);

  
 c

o
n

v_
d

a
ta

_
in

: 
F
O
R

 i 
i
n

 0
 
T
O

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
G
E
N
E
R
A
T
E

  
  
  
 d

in
_

in
t(

i)
 <

=
 d

a
ta

_
in

((
i+

1
)*

q
u

e
u

e
_

w
id

th
−

1
 

d
o
w
n
t
o

 i*
q

u
e

u
e

_
w

id
th

);
 

  
 

  
 

E
N
D

 
G
E
N
E
R
A
T
E

;

  
 in

v_
re

se
t 
<

=
 

N
O
T

 (
re

se
t)

;
  
 o

n
e

 <
=

 ’1
’;

  
 s

ig
_

re
a

d
y 

<
=

 s
ig

_
re

a
d

y_
in

te
rn

a
l; 

  
 a

ck
 <

=
 a

ck
_

in
te

rn
a

l;
   
 r

e
ce

iv
e

_
p

ro
ce

ss
: 

P
R
O
C
E
S
S

 (
cl

k,
 r

e
se

t)
  
  
  

T
Y
P
E

 s
ta

te
_

ty
p

e
 

I
S

 (
re

a
d

y,
 w

ri
tin

g
_

fif
o

);

  
  
  

V
A
R
I
A
B
L
E

 c
h

a
n

n
e

l: 
n

a
tu

ra
l 

r
a
n
g
e

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
D
O
W
N
T
O

 0
;

  
  
  

V
A
R
I
A
B
L
E

 s
ta

te
: 
st

a
te

_
ty

p
e

;
  
  
  

V
A
R
I
A
B
L
E

 n
e

xt
_

ch
a

n
n

e
l: 

b
o

o
le

a
n

;
  
 

B
E
G
I
N

  
  

I
F

 r
e

se
t 
=

 ’1
’ 

T
H
E
N

  
  
  
ff
_

w
ri
te

 <
=

 ’1
’;

  
  
  
a

ck
_

in
te

rn
a

l <
=

 (
O
T
H
E
R
S

 =
>

 ’0
’)
;

  
  
  
n

e
xt

_
ch

a
n

n
e

l :
=

 t
ru

e
;

  
  
  
ch

a
n

n
e

l :
=

 0
;

  
  
  
ff
_

in
  
<

=
 (

O
T
H
E
R
S

 =
>

 ’0
’)
;

  
 

E
L
S
I
F

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
 ’1

’ 
T
H
E
N

  
  
  
  
  
  

I
F

 n
e

xt
_

ch
a

n
n

e
l =

 t
ru

e
 

T
H
E
N

  
 

  
  
  
 

F
O
R

 i 
I
N

 0
 
T
O

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
L
O
O
P

  
  
  
  
  
  
  
  
  

I
F

 s
e

n
d

(i
) 

=
 ’1

’ 
T
H
E
N

  
 

  
  
  
  
  
  
  
ch

a
n

n
e

l :
=

 i;
  
  
  
  
  
  
  
n

e
xt

_
ch

a
n

n
e

l :
=

 f
a

ls
e

;
  
  
  
  
  
  
  

E
X
I
T

;
  
  
  
  
  

E
N
D

 
I
F

;
  
  
  
  
  
  
  
 

E
N
D

 
L
O
O
P

;
  
  

E
N
D

 
I
F

;

  
  
  
  
  
  

I
F

 n
e

xt
_

ch
a

n
n

e
l =

 f
a

ls
e

 
T
H
E
N

  
  
  
  
  
  
  
 

I
F

 f
f_

fu
ll 

/=
 ’1

’ 
T
H
E
N

  
 

  
  
  
  
  
  
  
  
  
ff
_

in
 <

=
 d

in
_

in
t(

ch
a

n
n

e
l)
;

  
  
  
  
  
  
  
  
  
ff
_

w
ri
te

 <
=

 ’0
’;

  
  
  
  
  
  
  
  
  
a

ck
_

in
te

rn
a

l(
ch

a
n

n
e

l)
 <

=
 ’1

’;

  
  
  
  
  
  
  
 

E
L
S
E

  
  
  
  
  
  
  
  
  

−
−

 s
e

n
d

e
n

d
e

r 
P

ro
ze

ss
 b

e
ko

m
m

t 
ke

in
 a

ck
 −

>
 b

lo
ck

ie
rt

,
  
  
  
  
  
  
  
  
  

−
−

 b
is

 w
ie

d
e

r 
P

la
tz

 in
 q

u
e

u
e

  
  
  
  
  
  
  
 

E
N
D

 
I
F

;
  
  
  
  
  
 

E
N
D

 
I
F

;

  
 

I
F

 a
ck

_
in

te
rn

a
l(
ch

a
n

n
e

l)
 =

 ’1
’ 

T
H
E
N

  
  
  
a

ck
_

in
te

rn
a

l(
ch

a
n

n
e

l)
 <

=
 ’0

’;
  
  
  
n

e
xt

_
ch

a
n

n
e

l :
=

 t
ru

e
;

  
 

E
N
D

 
I
F

;

  
 

I
F

 f
f_

w
ri
te

 =
 ’0

’ 
T
H
E
N

  
  
  
ff
_

w
ri
te

 <
=

 ’1
’;

  
 

E
N
D

 
I
F

;

  
 

E
N
D

 
I
F

; 
−

−
 c

lk
’e

ve
n

t
  
 

E
N
D

 
P
R
O
C
E
S
S

 r
e

ce
iv

e
_

p
ro

ce
ss

;

  
 q

u
e

u
e

_
p

ro
ce

ss
: 

P
R
O
C
E
S
S

 (
cl

k,
 r

e
se

t)
  
 

B
E
G
I
N

  
  
  

I
F

 (
re

se
t=

’1
’)
 

T
H
E
N

  
  
  
  
 s

ig
_

re
a

d
y_

in
te

rn
a

l <
=

 ’0
’;

  
  
  
  
 f
f_

re
a

d
 <

=
 ’1

’;
  
  
  

E
L
S
I
F

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
 ’1

’ 
T
H
E
N

  
  
  
  
 

I
F

 g
e

t_
si

g
 =

 ’1
’ 

T
H
E
N

  
  
  
  
  
  

I
F

 f
f_

e
m

p
ty

 /
=

 ’1
’ 

T
H
E
N

  
  
  
  
  
  
  
 f
f_

re
a

d
 <

=
 ’0

’;
  
  
  
  
  
  
  
 s

ig
_

re
a

d
y_

in
te

rn
a

l <
=

 ’1
’;

  
  
  
  
  
  

E
L
S
E

  
  
  
  
  
  
  
 s

ig
_

re
a

d
y_

in
te

rn
a

l <
=

 ’0
’;

  
  
  
  
  
  

E
N
D

 
I
F

;
  
  
  
  
 

E
N
D

 
I
F

;

Figure C.3: Message queue length n
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I
F
 
f
f
_
r
e
a
d
 
=
 
’
0
’
 
T
H
E
N

 
 
 
 
f
f
_
r
e
a
d
 
<
=
 
’
1
’
;

 
E
N
D
 
I
F
;

 
I
F
 
s
i
g
_
r
e
a
d
y
_
i
n
t
e
r
n
a
l
 
=
 
’
1
’
 
T
H
E
N

 
 
 
 
s
i
g
_
r
e
a
d
y
_
i
n
t
e
r
n
a
l
 
<
=
 
’
0
’
;

 
E
N
D
 
I
F
;

 
 
 
 
 
 
E
N
D
 
I
F
;

 
 
 
E
N
D
 
P
R
O
C
E
S
S
 
q
u
e
u
e
_
p
r
o
c
e
s
s
;

E
N
D
 
q
u
e
u
e
_
a
;

−
−

p
ra

g
m

a
 t
ra

n
sl

a
te

_
o

ff
l
i
b
r
a
r
y

 D
W

06
;

C
O
N
F
I
G
U
R
A
T
I
O
N
 
c
o
n
f
_
q
u
e
u
e
 
O
F
 
q
u
e
u
e
_
l
n
_
d
n
_
c
n
 
I
S

 
 
 
F
O
R
 
q
u
e
u
e
_
a

 
 
 
 
 
 
 
 
 
F
O
R
 
f
i
f
o
:

 
 
 
 
 
 
 
 
 
 
D
W
_
f
i
f
o
_
s
1
_
s
f
 
U
S
E
 
c
o
n
f
i
g
u
r
a
t
i
o
n
 
D
W
0
6
.
D
W
_
f
i
f
o
_
s
1
_
s
f
_
c
f
g
_
s
i
m
;

 
 
 
 
 
 
 
E
N
D
 
F
O
R
;

 
 
 
E
N
D
 
F
O
R
;

E
N
D
 
c
o
n
f
_
q
u
e
u
e
;

−
−

p
ra

g
m

a
 t
ra

n
sl

a
te

_
o

n
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−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

 F
P

G
A

 B
u

s 
in

te
rf

a
ce

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
 8

 r
e

g
is

te
r 

m
u

lti
p

le
xe

r 
a

n
d

 a
cc

e
ss

 lo
g

ic
 f
o

r 
S

p
yd

e
r 

V
ir
te

x 
F

P
G

A
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

L
I
B
R
A
R
Y

 ie
ee

;
L
I
B
R
A
R
Y

 C
IO

P
;

U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

1
1

6
4

.
A
L
L

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

a
ri
th

.
A
L
L

;
U
S
E

 C
IO

P
.
A
L
L

;

E
N
T
I
T
Y

 v
d

o
u

tm
u

x8
 

I
S

  
  

P
O
R
T

 ( cl
o

ck
:

I
N

st
d

_
lo

g
ic

;
−

−
 u

n
u

se
d

re
se

t:
I
N

st
d

_
lo

g
ic

;
−

−
 u

n
u

se
d

re
a

d
:

I
N

st
d

_
lo

g
ic

;
a

d
d

r:
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
4

 
D
O
W
N
T
O

 0
);

d
in

o
u

t:
I
N
O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
3

1
 

D
O
W
N
T
O

 0
);

d
in

0
, 
d

in
1

, 
d

in
2

, 
d

in
3

, 
d

in
4

, 
d

in
5

, 
d

in
6

, 
d

in
7

:
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
3

1
 

D
O
W
N
T
O

 0
);

d
o

u
t:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
3

1
 

D
O
W
N
T
O

 0
)

  
  
);

E
N
D

 v
d

o
u

tm
u

x8
;

A
R
C
H
I
T
E
C
T
U
R
E

 d
o

u
tm

u
x8

a
 

O
F

 v
d

o
u

tm
u

x8
 

I
S

B
E
G
I
N

d
o

u
t 
<

=
 d

in
o

u
t;

re
a

d
b

u
f:
 

p
r
o
c
e
s
s

 (
re

a
d

,a
d

d
r,

d
in

0
,d

in
1

,d
in

2
,d

in
3

,d
in

4
,d

in
5

,d
in

6
,d

in
7

)
b
e
g
i
n

  
i
f

 (
re

a
d

 =
 ’1

’)
 

t
h
e
n

  
  

c
a
s
e

 A
D

D
R

 (
4

 
d
o
w
n
t
o

 0
) 

i
s

  
  
  

w
h
e
n

 "
00

00
0"

 =
>

 d
in

o
u

t 
<

=
 d

in
0

;
  
  
  

w
h
e
n

 "
00

00
1"

 =
>

 d
in

o
u

t 
<

=
 d

in
1

;
  
  
  

w
h
e
n

 "
00

01
0"

 =
>

 d
in

o
u

t 
<

=
 d

in
2

;
  
  
  

w
h
e
n

 "
00

01
1"

 =
>

 d
in

o
u

t 
<

=
 d

in
3

;
  
  
  

w
h
e
n

 "
00

10
0"

 =
>

 d
in

o
u

t 
<

=
 d

in
4

;
  
  
  

w
h
e
n

 "
00

10
1"

 =
>

 d
in

o
u

t 
<

=
 d

in
5

;
  
  
  

w
h
e
n

 "
00

11
0"

 =
>

 d
in

o
u

t 
<

=
 d

in
6

;
  
  
  

w
h
e
n

 "
00

11
1"

 =
>

 d
in

o
u

t 
<

=
 d

in
7

;
  
  
  

w
h
e
n

 
o
t
h
e
r
s

 =
>

 d
in

o
u

t 
<

=
 (

o
t
h
e
r
s

 =
>

 ’Z
’)
;

  
  

e
n
d

 
c
a
s
e

;
  

e
l
s
e

  
  
d

in
o
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<
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h
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−
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;
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.
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T
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 c
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N
D
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N
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A
N
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d

b
 

A
N
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N
O
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A
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w
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A
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<
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;
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e

n
 

A
N
D

 (
N
O
T

 a
(2

))
 

A
N
D

 (
  
  
a

(1
))

 
A
N
D

 (
  
  
a

(0
))

;
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;
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S
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E
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:
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E

G
E
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;
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IN
T

E
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E
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n
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:
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E
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O
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T
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g
ic

;
re

se
t:

I
N

st
d

_
lo
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d
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T
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U
F
F
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T
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O
U
T
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_
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o
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D
O
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T
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E
N
D
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;

A
R
C
H
I
T
E
C
T
U
R
E
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F
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S

B
E
G
I
N

  
  
d
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O
W
N
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O
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1
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 c
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g
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−

n
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d

o
u
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rl
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E
F
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1
6

 
D
O
W
N
T
O
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 c
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d
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u
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1
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D
O
W
N
T
O
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 c
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n

v_
st

d
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g
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d
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O
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O
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 c
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R
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C
E
S
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 c
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B
E
G
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 c
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S
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 c
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H
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H
E
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 d
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L
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 c
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N
D
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F

;
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N
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I
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;
  
  

E
N
D

 
p
r
o
c
e
s
s

 p
1

;
E
N
D

 m
cs

rr
a

;

Figure C.4: FPGA bus interface
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E
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’ 

t
h
e
n

w
ri
te

_
o

ld
 <

=
 ’0

’;
  
  

e
l
s
i
f

 c
lo

ck
 =

 ’1
’ 

a
n
d

 c
lo

ck
’e

ve
n

t 
t
h
e
n

i
f

 in
te

rn
a

l_
w

ri
te

 =
 ’1

’ 
a
n
d

 w
ri
te

_
o

ld
 <

=
 ’0

’ 
t
h
e
n

in
te

rn
a

l_
se

n
d

 <
=

 ’1
’;

e
n
d

 
i
f

;

  
  

i
f

 in
te

rn
a

l_
se

n
d

 =
 ’1

’ 
a
n
d

 a
ck

 =
 ’1

’ 
t
h
e
n

in
te

rn
a

l_
se

n
d

 <
=

 ’0
’;

  
  
  
  

e
n
d

 
i
f

;

w
ri
te

_
o

ld
 <

=
 in

te
rn

a
l_

w
ri
te

;

  
  

e
n
d

 
i
f

;
  

e
n
d

 
p
r
o
c
e
s
s

 w
ri
te

_
e

d
g

e
;

E
N
D

 w
ri
te

_
to

_
sd

l_
si

g
n

a
l_

a
;

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

 o
n

 o
cc

u
re

n
ce

 o
f 
in

p
u

t 
si

g
n

a
l e

d
g

e
 s

e
n

d
 a

 s
d

l−
si

g
n

a
l 

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

L
I
B
R
A
R
Y

 IE
E

E
;

L
I
B
R
A
R
Y

 C
IO

P
;

L
I
B
R
A
R
Y

 U
N

IS
IM

;
U
S
E

 I
E

E
E

.s
td

_
lo

g
ic

_
1

1
6

4
.

A
L
L

;
U
S
E

 I
E

E
E

.s
td

_
lo

g
ic

_
a

ri
th

.
A
L
L

;
U
S
E

 C
IO

P
.
A
L
L

;
U
S
E

 U
N

IS
IM

.
A
L
L

;

E
N
T
I
T
Y

 e
d

g
e

_
to

_
sd

l_
si

g
n

a
l 

I
S

  
  

G
E
N
E
R
I
C

 (
  
  
  
  
si

g
n

a
l_

id
_

w
id

th
: 

in
te

g
e

r 
:=

 1
0

;
  
  
  
  
si

g
n

a
l_

id
:

in
te

g
e

r 
:=

 0
;

  
  
  
  
ki

n
d

_
o

f_
e

d
g

e
:

in
te

g
e

r 
:=

 0
  
  
);

  
  

P
O
R
T

 ( cl
o

ck
:

I
N

st
d

_
lo

g
ic

;
re

se
t:

I
N

st
d

_
lo

g
ic

;
si

g
n

a
l_

in
:

I
N

st
d

_
lo

g
ic

;
se

n
d

:
O
U
T

st
d

_
lo

g
ic

;
a

ck
:

I
N

st
d

_
lo

g
ic

;
d

a
ta

_
o

u
t:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
si

g
n

a
l_

id
_

w
id

th
−

1
 

d
o
w
n
t
o

 0
)

  
  
);

E
N
D

 e
d

g
e

_
to

_
sd

l_
si

g
n

a
l;

A
R
C
H
I
T
E
C
T
U
R
E

 e
d

g
e

_
to

_
sd

l_
si

g
n

a
l_

a
 

O
F

 e
d

g
e

_
to

_
sd

l_
si

g
n

a
l 

I
S

Figure C.5: Signal input components
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C
O
M
P
O
N
E
N
T

 F
D

C
  
  
  
  
  
  
  
  
  
  
  
  
  

−
−

 X
ili

n
x 

L
ib

ra
ry

 C
o

m
p

o
n

e
n

t 
F

D
C

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

−
−

 D
−

F
F

 w
ith

o
u

t 
cl

o
ck

 e
n

a
b

le
 a

n
d

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

−
−

 a
sy

n
ch

ro
n

o
u

s 
re

se
t

  
 

P
O
R
T

(
  
  
  
Q

:
O
U
T

  
 s

td
_

lo
g

ic
;

  
  
  
D

:
I
N

  
  
st

d
_

lo
g

ic
;

  
  
  
C

:
I
N

  
  
st

d
_

lo
g

ic
;

  
  
  
C

L
R

:
I
N

  
  
st

d
_

lo
g

ic
  
 )

;
e
n
d

 
C
O
M
P
O
N
E
N
T

;

S
I
G
N
A
L

 in
te

rn
a

l_
se

n
d

, 
in

te
rn

a
l_

w
ri
te

: 
  
  
st

d
_

lo
g

ic
;

S
I
G
N
A
L

 s
ig

n
a

l_
in

_
n

e
g

, 
in

te
rn

a
l_

w
ri
te

_
n

e
g

: 
st

d
_

lo
g

ic
;

S
I
G
N
A
L

 w
ri
te

_
o

ld
:

  
  
  
  
  
  
  
  
  
st

d
_

lo
g

ic
;

S
I
G
N
A
L

 t
m

p
: 

  
  
st

d
_

lo
g

ic
_

ve
ct

o
r(

3
2

−
1

 
d
o
w
n
t
o

 0
);

B
E
G
I
N

  
d

a
ta

_
o

u
t 
<

=
 t
m

p
(s

ig
n

a
l_

id
_

w
id

th
−

1
 

d
o
w
n
t
o

 0
);

  
tm

p
  
  
  
<

=
 c

o
n

v_
st

d
_

lo
g

ic
_

ve
ct

o
r(

si
g

n
a

l_
id

, 
3

2
);

 
  
se

n
d

  
  
 <

=
 in

te
rn

a
l_

se
n

d
;

  
si

g
n

a
l_

in
_

n
e

g
  
<

=
 

N
O
T

(s
ig

n
a

l_
in

);
  
in

te
rn

a
l_

w
ri
te

 <
=

 
N
O
T

(i
n

te
rn

a
l_

w
ri
te

_
n

e
g

);

  
sy

n
ch

ro
n

iz
e

_
w

ri
te

: 
F

D
C

  
  
  
  
  
  
  

−
−

 a
sy

n
ch

ro
n

e
s 

w
ri
te

−
S

ig
n

a
l a

u
f

  
P
O
R
T

 
M
A
P

 (
  
  
  
  
  
  
  
  
  
  
  
  
  

−
−

 c
lo

ck
 s

yn
ch

ro
n

is
ie

re
n

  
  
 Q

  
 =

>
 in

te
rn

a
l_

w
ri
te

_
n

e
g

,
  
  
 D

  
 =

>
 s

ig
n

a
l_

in
_

n
e

g
,

  
  
 C

  
 =

>
 c

lo
ck

,
  
  
 C

L
R

 =
>

 r
e

se
t

  
);

    
w

ri
te

_
e

d
g

e
: 

p
r
o
c
e
s
s

 (
cl

o
ck

, 
re

se
t)

  
b
e
g
i
n

  
  

i
f

 r
e

se
t 
=

 ’1
’ 

t
h
e
n

  
  
  
  
in

te
rn

a
l_

se
n

d
 <

=
 ’0

’;
  
  
  
  
w

ri
te

_
o

ld
  
  
 <

=
 ’1

’;
  
  

e
l
s
i
f

 c
lo

ck
 =

 ’1
’ 

a
n
d

 c
lo

ck
’e

ve
n

t 
t
h
e
n

  
  
  
  

i
f

 in
te

rn
a

l_
w

ri
te

 =
 ’1

’ 
t
h
e
n

  
  
  
  
  
  

i
f

 (
(w

ri
te

_
o

ld
 =

 ’0
’)
 

a
n
d

 (
(k

in
d

_
o

f_
e

d
g

e
 =

 2
) 

o
r

 (
ki

n
d

_
o

f_
e

d
g

e
 =

 1
))

) 
t
h
e
n

  
  
  
  
  
  
  
  
in

te
rn

a
l_

se
n

d
 <

=
 ’1

’;
  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  

e
l
s
e

  
  
  
  
  
  

i
f

 (
(w

ri
te

_
o

ld
 =

 ’1
’)
 

a
n
d

 (
(k

in
d

_
o

f_
e

d
g

e
 =

 2
) 

o
r

 (
ki

n
d

_
o

f_
e

d
g

e
 =

 0
))

) 
t
h
e
n

  
  
  
  
  
  
  
  
in

te
rn

a
l_

se
n

d
 <

=
 ’1

’;
  
  
  
  
  
  

e
n
d

 
i
f

;
  
  
  
  

e
n
d

 
i
f

;
i
f

 in
te

rn
a

l_
se

n
d

 =
 ’1

’ 
a
n
d

 a
ck

 =
 ’1

’ 
t
h
e
n

  
  
  
  
  
  
in

te
rn

a
l_

se
n

d
 <

=
 ’0

’;
  
  
  
  

e
n
d

 
i
f

;
w

ri
te

_
o

ld
 <

=
 in

te
rn

a
l_

w
ri
te

;
  
  

e
n
d

 
i
f

;
  

e
n
d

 
p
r
o
c
e
s
s

 w
ri
te

_
e

d
g

e
;

E
N
D

 e
d

g
e

_
to

_
sd

l_
si

g
n

a
l_

a
;

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−
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−
−

−
−

 S
D

L
 S

ig
n

a
l I

n
te

rf
a

ce
s 

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−

L
I
B
R
A
R
Y

 ie
ee

;
l
i
b
r
a
r
y

 D
W

A
R

E
,D

W
06

;
L
I
B
R
A
R
Y

 U
N

IS
IM

;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

1
1

6
4

.
a
l
l

;
u
s
e

 D
W

0
6

.D
W

0
6

_
co

m
p

o
n

e
n

ts
.
a
l
l

;
u
s
e

 D
W

A
R

E
.D

W
p

a
ck

a
g

e
s.
a
l
l

;
U
S
E

 U
N

IS
IM

.
A
L
L

;

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

 h
w

−
>

sw
 m

e
ss

a
g

e
 q

u
e

u
e

 w
ith

 s
d

l−
si

g
n

a
l i

n
p

u
t 
in

te
rf

a
ce

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

E
N
T
I
T
Y

 h
w

_
sw

_
q

u
e

u
e

_
ln

_
d

n
_

cn
 

I
S

  
 

G
E
N
E
R
I
C

 (
  
  
  
q

u
e

u
e

_
w

id
th

,q
u

e
u

e
_

d
e

p
th

,n
u

m
_

ch
a

n
n

e
ls

: 
In

te
g

e
r)

;
  
 

P
O
R
T

 (
  
  
  
cl

k:
I
N

st
d

_
lo

g
ic

;
  
  
  
re

se
t:

I
N

st
d

_
lo

g
ic

;
−

−
 c

h
a

n
n

e
l i

n
p

u
t

  
  
  
se

n
d

:
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);   
  
  
a

ck
:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);   
  
  
d

a
ta

_
in

:
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
q

u
e

u
e

_
w

id
th

*n
u

m
_

ch
a

n
n

e
ls

−
1

 
d
o
w
n

t
o

 0
);

−
−

 t
o

 H
W

/S
W

−
in

te
rf

a
ce

  
  
  
n

o
t_

e
m

p
ty

:
O
U
T

st
d

_
lo

g
ic

;
  
  
  
p

o
p

:
I
N

st
d

_
lo

g
ic

;
  
  
  
d

a
ta

_
o

u
t:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
q

u
e

u
e

_
w

id
th

−
1

 
D
O
W
N
T
O

 0
)

  
  
  
);

 
E
N
D

 h
w

_
sw

_
q

u
e

u
e

_
ln

_
d

n
_

cn
;

A
R
C
H
I
T
E
C
T
U
R
E

 q
u

e
u

e
_

a
 

O
F

 h
w

_
sw

_
q

u
e

u
e

_
ln

_
d

n
_

cn
 

I
S

  
 

T
Y
P
E

 lo
ca

l_
a

rr
a

y 
i
s

 
a
r
r
a
y

 (
n

a
tu

ra
l 

r
a
n
g
e

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
d
o
w
n
t
o

 0
) 

  
  
  
  
  
  
  
  
  
  
  
 

o
f

 s
td

_
lo

g
ic

_
ve

ct
o

r(
q

u
e

u
e

_
w

id
th

−
1

 
d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

 d
in

_
in

t:
lo

ca
l_

a
rr

a
y;

  
 

S
I
G
N
A
L

 a
ck

_
in

te
rn

a
l:

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

 f
f_

in
, 
ff
_

o
u

t:
 s

td
_

lo
g

ic
_

ve
ct

o
r(

q
u

e
u

e
_

w
id

th
−

1
 

D
O
W
N
T
O

 0
);

  
 

S
I
G
N
A
L

 f
f_

w
ri
te

, 
ff
_

re
a

d
, 
ff
_

fu
ll,

 f
f_

e
m

p
ty

: 
st

d
_

lo
g

ic
;

  
 

S
I
G
N
A
L

 in
te

rn
a

l_
p

o
p

, 
p

o
p

_
o

ld
: 
st

d
_

lo
g

ic
;

  
 

S
I
G
N
A
L

 o
n

e
, 
in

v_
re

se
t:
 s

td
_

lo
g

ic
;

C
O
M
P
O
N
E
N
T

 F
D

C
 

−
−

 X
ili

n
x 

L
ib

ra
ry

 C
o

m
p

o
n

e
n

t 
F

D
C

  
  
  
  
  
  
  
 

−
−

 D
−

F
F

 w
ith

o
u

t 
cl

o
ck

 e
n

a
b

le
 a

n
d

 a
sy

n
ch

ro
n

o
u

s 
re

se
t

  
 

P
O
R
T

(
  
  
  
Q

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
: 
 

O
U
T

  
 s

td
_

lo
g

ic
;

  
  
  
D

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
: 
 

I
N

  
  
st

d
_

lo
g

ic
;

  
  
  
C

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
: 
 

I
N

  
  
st

d
_

lo
g

ic
;

  
  
  
C

L
R

  
  
  
  
  
  
  
  
  
  
  
  
  
  
: 
 

I
N

  
  
st

d
_

lo
g

ic
);

e
n
d

 
C
O
M
P
O
N
E
N
T

;

B
E
G
I
N

  
fif

o
: 
D

W
_

fif
o

_
s1

_
sf

  
g
e
n
e
r
i
c

 
m
a
p

 (
d

e
p

th
 =

>
 q

u
e

u
e

_
d

e
p

th
, 
w

id
th

 =
>

 q
u

e
u

e
_

w
id

th
,

  
  
  
  
  
  
  
 a

e
_

le
ve

l =
>

 1
, 
a

f_
le

ve
l =

>
 q

u
e

u
e

_
d

e
p

th
−

1
,

  
  
  
 e

rr
_

m
o

d
e

 =
>

 0
, 
rs

t_
m

o
d

e
 =

>
 0

)
  

p
o
r
t

 
m
a
p

 (
d

a
ta

_
in

 =
>

 f
f_

in
,

  
  
  
  
  
  
p

u
sh

_
re

q
_

n
 =

>
 f
f_

w
ri
te

,
  
  
  
  
  
  
p

o
p

_
re

q
_

n
 =

>
 f
f_

re
a

d
,

  
  
  
  
  
  
d

ia
g

_
n

 =
>

 o
n

e
,

  
  
  
  
  
  
cl

k 
=

>
 c

lk
,

  
  
  
  
  
  
rs

t_
n

  
=

>
 in

v_
re

se
t,

  
  
  
  
  
  
d

a
ta

_
o

u
t 
=

>
 d

a
ta

_
o

u
t,

  
  
  
  
  
  
fu

ll 
=

>
 f
f_

fu
ll,

  
  
  
  
  
  
e

m
p

ty
 =

>
 f
f_

e
m

p
ty

);

  
 c

o
n

v_
d

a
ta

_
in

: 
F
O
R

 i 
i
n

 0
 
T
O

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
G
E
N
E
R
A
T
E

  
  
  
 d

in
_

in
t(

i)
 <

=
 d

a
ta

_
in

((
i+

1
)*

q
u

e
u

e
_

w
id

th
−

1
 

d
o
w
n
t
o

 i*
q

u
e

u
e

_
w

id
th

);
 

  
 

  
 

E
N
D

 
G
E
N
E
R
A
T
E

;

  
 n

o
t_

e
m

p
ty

 <
=

 
N
O
T

 f
f_

e
m

p
ty

;

  
 in

v_
re

se
t 
<

=
 

N
O
T

 (
re

se
t)

;
  
 o

n
e

 <
=

 ’1
’;

  
 a

ck
 <

=
 a

ck
_

in
te

rn
a

l;
   
 r

e
ce

iv
e

_
p

ro
ce

ss
: 

P
R
O
C
E
S
S

 (
cl

k,
 r

e
se

t)
  
  
  

T
Y
P
E

 s
ta

te
_

ty
p

e
 

I
S

 (
re

a
d

y,
 w

ri
tin

g
_

fif
o

);
  
  
  

V
A
R
I
A
B
L
E

 c
h

a
n

n
e

l: 
n

a
tu

ra
l 

r
a
n
g
e

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
D
O
W
N
T
O

 0
;

  
  
  

V
A
R
I
A
B
L
E

 s
ta

te
: 
st

a
te

_
ty

p
e

;
  
  
  

V
A
R
I
A
B
L
E

 n
e

xt
_

ch
a

n
n

e
l: 

b
o

o
le

a
n

;
  
 

B
E
G
I
N

  
  

I
F

 r
e

se
t 
=

 ’1
’ 

T
H
E
N

  
  
  
ff
_

w
ri
te

 <
=

 ’1
’;

  
  
  
a

ck
_

in
te

rn
a

l <
=

 (
O
T
H
E
R
S

 =
>

 ’0
’)
;

  
  
  
n

e
xt

_
ch

a
n

n
e

l :
=

 t
ru

e
;

  
  
  
ch

a
n

n
e

l :
=

 0
;

  
  
  
ff
_

in
  
<

=
 (

O
T
H
E
R
S

 =
>

 ’0
’)
;

  
 

E
L
S
I
F

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
 ’1

’ 
T
H
E
N

  
  
  
  
  
  

I
F

 n
e

xt
_

ch
a

n
n

e
l =

 t
ru

e
 

T
H
E
N

  
 

  
  
  
 

F
O
R

 i 
I
N

 0
 
T
O

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
L
O
O
P

  
  
  
  
  
  
  
  
  

I
F

 s
e

n
d

(i
) 

=
 ’1

’ 
T
H
E
N

  
 

  
  
  
  
  
  
  
ch

a
n

n
e

l :
=

 i;
  
  
  
  
  
  
  
n

e
xt

_
ch

a
n

n
e

l :
=

 f
a

ls
e

;
  
  
  
  
  
  
  

E
X
I
T

;
  
  
  
  
  

E
N
D

 
I
F

;
  
  
  
  
  
  
  
 

E
N
D

 
L
O
O
P

;
  
  

E
N
D

 
I
F

;

  
  
  
  
  
  

I
F

 n
e

xt
_

ch
a

n
n

e
l =

 f
a

ls
e

 
T
H
E
N

  
  
  
  
  
  
  
 

I
F

 f
f_

fu
ll 

/=
 ’1

’ 
T
H
E
N

  
 

  
  
  
  
  
  
  
  
  
ff
_

in
 <

=
 d

in
_

in
t(

ch
a

n
n

e
l)
;

  
  
  
  
  
  
  
  
  
ff
_

w
ri
te

 <
=

 ’0
’;

  
  
  
  
  
  
  
  
  
a

ck
_

in
te

rn
a

l(
ch

a
n

n
e

l)
 <

=
 ’1

’;

  
  
  
  
  
  
  
 

E
L
S
E

  
  
  
  
  
  
  
  
  

−
−

 s
e

n
d

e
n

d
e

r 
P

ro
ze

ss
 b

e
ko

m
m

t 
ke

in
 a

ck
 −

>
 b

lo
ck

ie
rt

,
  
  
  
  
  
  
  
  
  

−
−

 b
is

 w
ie

d
e

r 
P

la
tz

 in
 q

u
e

u
e

  
  
  
  
  
  
  
 

E
N
D

 
I
F

;
  
  
  
  
  
 

E
N
D

 
I
F

;

  
 

I
F

 a
ck

_
in

te
rn

a
l(
ch

a
n

n
e

l)
 =

 ’1
’ 

T
H
E
N

  
  
  
a

ck
_

in
te

rn
a

l(
ch

a
n

n
e

l)
 <

=
 ’0

’;
  
  
  
n

e
xt

_
ch

a
n

n
e

l :
=

 t
ru

e
;

  
 

E
N
D

 
I
F

;

  
 

I
F

 f
f_

w
ri
te

 =
 ’0

’ 
T
H
E
N

  
  
  
ff
_

w
ri
te

 <
=

 ’1
’;

  
 

E
N
D

 
I
F

;

  
 

E
N
D

 
I
F

; 
−

−
 c

lk
’e

ve
n

t

Figure C.6: Signal output



190 APPENDIX C. SDL RUN-TIME COMPONENTS

 
 
 
E
N
D
 
P
R
O
C
E
S
S
 
r
e
c
e
i
v
e
_
p
r
o
c
e
s
s
;

 
 
 
s
y
n
c
h
r
o
n
i
z
e
_
r
e
a
d
:
 
F
D
C
 
 

−
−

 a
sy

n
ch

ro
n

e
s 

re
a

d
−

S
ig

n
a

l a
u

f 
cl

o
ck

 s
yn

ch
ro

n
is

ie
re

n
 
 
 
P
O
R
T
 
M
A
P
 
(

 
 
 
 
Q
 
=
>
i
n
t
e
r
n
a
l
_
p
o
p
,
 
D
 
=
>
 
p
o
p
,
 
C
 
=
>
 
c
l
k
,
 
C
L
R
 
=
>
 
r
e
s
e
t
)
;

 
 
r
e
a
d
_
e
d
g
e
:
 
p
r
o
c
e
s
s
 
(
c
l
k
,
 
r
e
s
e
t
)

 
 
b
e
g
i
n

 
 
 
 
i
f
 
r
e
s
e
t
 
=
 
’
1
’
 
t
h
e
n

p
o
p
_
o
l
d
 
<
=
 
’
0
’
;

f
f
_
r
e
a
d
 
<
=
 
’
1
’
;

 
 
 
 
e
l
s
i
f
 
c
l
k
 
=
 
’
1
’
 
a
n
d
 
c
l
k
’
e
v
e
n
t
 
t
h
e
n

i
f
 
i
n
t
e
r
n
a
l
_
p
o
p
 
=
 
’
1
’
 
a
n
d
 
p
o
p
_
o
l
d
 
<
=
 
’
0
’
 
t
h
e
n

f
f
_
r
e
a
d
 
<
=
 
’
0
’
;

e
n
d
 
i
f
;

 
 
 
 
i
f
 
f
f
_
r
e
a
d
 
=
 
’
0
’
 
t
h
e
n

f
f
_
r
e
a
d
 
<
=
 
’
1
’
;

 
 
 
 
 
 
 
 
e
n
d
 
i
f
;

p
o
p
_
o
l
d
 
<
=
 
i
n
t
e
r
n
a
l
_
p
o
p
;

 
 
 
 
e
n
d
 
i
f
;

 
 
e
n
d
 
p
r
o
c
e
s
s
 
r
e
a
d
_
e
d
g
e
;

E
N
D
 
q
u
e
u
e
_
a
;

−
−

p
ra

g
m

a
 t
ra

n
sl

a
te

_
o

ff
l
i
b
r
a
r
y

 D
W

06
;

C
O
N
F
I
G
U
R
A
T
I
O
N
 
c
o
n
f
_
q
u
e
u
e
 
O
F
 
q
u
e
u
e
_
l
n
_
d
n
_
c
n
 
I
S

 
 
 
F
O
R
 
q
u
e
u
e
_
a

 
 
 
 
 
 
 
 
 
F
O
R
 
f
i
f
o
:

 
 
 
 
 
 
 
 
 
 
D
W
_
f
i
f
o
_
s
1
_
s
f
 
U
S
E
 
c
o
n
f
i
g
u
r
a
t
i
o
n
 
D
W
0
6
.
D
W
_
f
i
f
o
_
s
1
_
s
f
_
c
f
g
_
s
i
m
;

 
 
 
 
 
 
 
E
N
D
 
F
O
R
;

 
 
 
E
N
D
 
F
O
R
;

E
N
D
 
c
o
n
f
_
q
u
e
u
e
;

−
−

p
ra

g
m

a
 t
ra

n
sl

a
te

_
o

n
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−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

 S
D

L
 T

im
e

r
−

−
 

−
−

 
−

−
 s

ta
rt

: 
’1

’ s
e

ts
 in

te
rn

a
l c

o
u

n
te

r 
a

n
d

 r
e

se
ts

 a
la

rm
; 

−
−

 a
s 

so
o

n
 a

s 
st

a
rt

 is
 ’0

’ t
h

e
 c

o
u

n
td

o
w

n
 s

ta
rt

s
−

−
 a

la
rm

: 
w

h
e

n
 t
h

e
 c

o
u

n
te

r 
ru

n
s 

o
u

t 
th

e
 s

p
e

ci
fie

d
 S

D
L

 s
ig

n
a

l i
s 

se
n

t
−

−
 t
o

 s
to

p
 t
h

e
 t
im

e
r 

st
a

rt
 t
h

e
 t
im

e
r 

w
ith

 p
a

ra
m

e
te

r 
0

 o
r 

a
ss

e
rt

 r
e

se
t

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

l
i
b
r
a
r
y

 ie
ee

;
L
I
B
R
A
R
Y

 U
N

IS
IM

;
l
i
b
r
a
r
y

 s
yn

op
sy

s;
u
s
e

 ie
e

e
.s

td
_

lo
g

ic
_

1
1

6
4

.
a
l
l

;
u
s
e

 ie
e

e
.s

td
_

lo
g

ic
_

a
ri
th

.
a
l
l

;
u
s
e

 ie
e

e
.s

td
_

lo
g

ic
_

si
g

n
e

d
.

a
l
l

;
U
S
E

 U
N

IS
IM

.
A
L
L

;
u
s
e

 s
yn

o
p

sy
s.

a
tt
ri
b

u
te

s.
a
l
l

;

e
n
t
i
t
y

 s
d

l_
tim

e
r 

i
s

  
g
e
n
e
r
i
c

(w
id

th
 :
 

in
te

g
e

r 
:=

 8
;

  
  
  
  
  
si

g
n

a
l_

id
_

w
id

th
: 

in
te

g
e

r 
:=

 3
;

  
  
  
  
  
si

g
n

a
l_

id
:

in
te

g
e

r 
:=

 2
);

  
p
o
r
t

  
  
(

  
  
 c

lk
,r

e
se

t
: 

I
N

 s
td

_
lo

g
ic

;
  
  
 s

ta
rt

: 
I
N

 s
td

_
lo

g
ic

;
  
  
 t
ic

ks
: 

I
N

 s
td

_
lo

g
ic

_
ve

ct
o

r(
w

id
th

 −
 1

 
d
o
w
n
t
o

 0
);

  
  
 s

e
n

d
: 

O
U
T

 s
td

_
lo

g
ic

;
  
  
 a

ck
: 

I
N

 s
td

_
lo

g
ic

;
  
  
 s

ig
n

a
l_

o
u

t
: 

O
U
T

 s
td

_
lo

g
ic

_
ve

ct
o

r(
si

g
n

a
l_

id
_

w
id

th
−

1
 

d
o
w
n
t
o

 0
)

  
  
 )

;
e
n
d

 s
d

l_
tim

e
r;

a
r
c
h
i
t
e
c
t
u
r
e

 s
d

l_
tim

e
r_

a
 

o
f

 s
d

l_
tim

e
r 

i
s

  
C
O
M
P
O
N
E
N
T

 F
D

C
 

−
−

 X
ili

n
x 

L
ib

ra
ry

 C
o

m
p

o
n

e
n

t 
F

D
C

E
  
  
  
  
  
  
  
 

−
−

 D
−

F
F

 w
ith

 c
lo

ck
 e

n
a

b
le

 a
n

d
 a

sy
n

ch
ro

n
o

u
s 

re
se

t
  
 

P
O
R
T

(
  
  
  
Q

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
: 
 

O
U
T

  
 s

td
_

lo
g

ic
;

  
  
  
D

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
: 
 

I
N

  
  
st

d
_

lo
g

ic
;

  
  
  
C

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
: 
 

I
N

  
  
st

d
_

lo
g

ic
;

  
  
  
C

L
R

  
  
  
  
  
  
  
  
  
  
  
  
  
  
: 
 

I
N

  
  
st

d
_

lo
g

ic
);

  
e
n
d

 
C
O
M
P
O
N
E
N
T

;

  
s
i
g
n
a
l

 a
la

rm
, 
ff
_

cl
e

a
r,

 o
n

e
 :
 s

td
_

lo
g

ic
;

  
s
i
g
n
a
l

 t
m

p
: 
st

d
_

lo
g

ic
_

ve
ct

o
r 

(3
2

−
1

 
d
o
w
n
t
o

 0
);

  
a
t
t
r
i
b
u
t
e

 a
sy

n
c_

se
t_

re
se

t 
o
f

 r
e

se
t:
 

s
i
g
n
a
l

 
i
s

 "
tr

ue
";

b
e
g
i
n

  
o

n
e

 <
=

 ’1
’;

  
si

g
n

a
l_

o
u

t 
<

=
 t
m

p
(s

ig
n

a
l_

id
_

w
id

th
−

1
 

d
o
w
n
t
o

 0
);

  
tm

p
 <

=
 c

o
n

v_
st

d
_

lo
g

ic
_

ve
ct

o
r(

si
g

n
a

l_
id

, 
3

2
);

 
  

−
−

 (
w

o
rk

a
ro

u
n

d
 b

e
ca

u
se

 s
yn

o
p

sy
s 

o
n

ly
 a

cc
e

p
ts

 in
te

g
e

r 
ty

p
e

 g
e

n
e

ri
cs

)

  
 a

la
rm

_
o

cc
u

re
d

: 
F

D
C

 
  
 

P
O
R
T

 
M
A
P

 (
  
  
Q

 =
>

se
n

d
, 
D

 =
>

 o
n

e
, 
C

 =
>

 a
la

rm
, 
C

L
R

 =
>

 f
f_

cl
e

a
r)

;

  
sy

n
c_

re
se

t:
 

p
r
o
c
e
s
s

 (
cl

k,
 r

e
se

t)
  

b
e
g
i
n

  
  

i
f

 r
e

se
t 
=

 ’1
’ 

t
h
e
n

  
  
ff
_

cl
e

a
r 

<
=

 ’1
’;

  
  

e
l
s
i
f

 c
lk

 =
 ’1

’ 
a
n
d

 c
lk

’e
ve

n
t 

t
h
e
n

  
  

i
f

 a
ck

 =
 ’1

’ 
t
h
e
n

  
  
ff
_

cl
e

a
r 

<
=

 ’1
’;

  
  

e
l
s
e

  
  
ff
_

cl
e

a
r 

<
=

 ’0
’;

  
  
  
  
  
  

e
n
d

 
i
f

;
  
  

e
n
d

 
i
f

;
  

e
n
d

 
p
r
o
c
e
s
s

 s
yn

c_
re

se
t;

  
m

a
in

: 
p
r
o
c
e
s
s

 (
cl

k,
 r

e
se

t)
  
  

v
a
r
i
a
b
l
e

 t
ic

ke
r 

: 
u

n
si

g
n

e
d

(w
id

th
−

1
 

d
o
w
n
t
o

 0
);

  
  

v
a
r
i
a
b
l
e

 r
u

n
 :
 b

o
o

le
a

n
;

  
b
e
g
i
n

  
  

i
f

 (
re

se
t 
=

 ’1
’)
 

t
h
e
n

  
  
  
tic

ke
r 

:=
 c

o
n

v_
u

n
si

g
n

e
d

(0
, 
w

id
th

);
  
  
  
ru

n
 :
=

 f
a

ls
e

;
  
  
  
a

la
rm

 <
=

 ’0
’;

  
  

e
l
s
i
f

 c
lk

 =
 ’1

’ 
a
n
d

 c
lk

’e
ve

n
t 

t
h
e
n

  
  
  

i
f

 (
st

a
rt

 =
 ’1

’)
 

t
h
e
n

tic
ke

r 
:=

 
u

n
si

g
n

e
d

(e
xt

(t
ic

ks
, 
w

id
th

))
;

  
  
  
  
a

la
rm

 <
=

 ’0
’;

i
f

 (
tic

ke
r 

/=
 c

o
n

v_
u

n
si

g
n

e
d

(0
, 
w

id
th

))
 

t
h
e
n

  
ru

n
 :
=

 t
ru

e
;

e
l
s
e

  
ru

n
 :
=

 f
a

ls
e

;
e
n
d

 
i
f

;
  
  
  

e
l
s
e
i
f

 (
ru

n
 =

 t
ru

e
) 

t
h
e
n

  
tic

ke
r 

:=
 t
ic

ke
r 

−
 c

o
n

v_
u

n
si

g
n

e
d

(1
, 
w

id
th

);
  

i
f

 (
tic

ke
r 

=
 c

o
n

v_
u

n
si

g
n

e
d

(0
, 
w

id
th

))
 

t
h
e
n

  
  
ru

n
 :
=

 f
a

ls
e

;
  
  
a

la
rm

 <
=

 ’1
’;

  
e
n
d

 
i
f

;
e
n
d

 
i
f

;
  
  
  

e
n
d

 
i
f

;
  
  

e
n
d

 
i
f

;
  

e
n
d

 
p
r
o
c
e
s
s

 m
a

in
;

e
n
d

 s
d

l_
tim

e
r_

a
;

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−

Figure C.7: SDL timer
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−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

−
−

L
I
B
R
A
R
Y

 ie
ee

;
L
I
B
R
A
R
Y

 S
D

L;
U
S
E

 ie
e

e
.s

td
_

lo
g

ic
_

1
1

6
4

.
a
l
l

;

E
N
T
I
T
Y

 s
h

a
re

d
_

va
r 

I
S

  
 

G
E
N
E
R
I
C

 (
  
  
  
d

a
ta

_
w

id
th

,n
u

m
_

ch
a

n
n

e
ls

: 
In

te
g

e
r)

;
  
 

P
O
R
T

 (
  
  
  
cl

k:
I
N

st
d

_
lo

g
ic

;
  
  
  
re

se
t:

I
N

st
d

_
lo

g
ic

;
−

−
 K

a
n

a
le

in
g

a
n

g
  
  
  
re

q
u

e
st

:
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
g

ra
n

t:
O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
w

ri
te

:
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
n

u
m

_
ch

a
n

n
e

ls
−

1
 

d
o
w
n
t
o

 0
);

  
  
  
d

a
ta

_
in

:
I
N

st
d

_
lo

g
ic

_
ve

ct
o

r(
d

a
ta

_
w

id
th

*n
u

m
_

ch
a

n
n

e
ls

−
1

 
d
o
w
n
t

o
 0

);
  
  
  
d

a
ta

_
o

u
t:

O
U
T

st
d

_
lo

g
ic

_
ve

ct
o

r(
d

a
ta

_
w

id
th

−
1

 
D
O
W
N
T
O

 0
)

  
  
  
);

 
E
N
D

 s
h

a
re

d
_

va
r;

A
R
C
H
I
T
E
C
T
U
R
E

 s
h

a
re

d
_

va
r_

a
 

O
F

 s
h

a
re

d
_

va
r 

I
S

  
 

S
I
G
N
A
L

  
 d

o
u

t_
in

t:
st

d
_

lo
g

ic
_

ve
ct

o
r(

d
a

ta
_

w
id

th
−

1
 

d
o
w
n
t
o

 0
);

  
 

t
y
p
e

 lo
ca

l_
a

rr
a

y 
i
s

 
a
r
r
a
y

 (
n

a
tu

ra
l 

r
a
n
g
e

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
d
o
w
n
t
o

 0
) 

o
f

 s
td

_
lo

g
i

c_
ve

ct
o

r(
d

a
ta

_
w

id
th

−
1

 
d
o
w
n
t
o

 0
);

  
 

S
I
G
N
A
L

 d
in

_
in

t:
lo

ca
l_

a
rr

a
y;

B
E
G
I
N

  
 d

a
ta

_
o

u
t 
<

=
 d

o
u

t_
in

t;

  
 c

o
n

v_
d

a
ta

_
in

: 
F
O
R

 i 
i
n

 0
 
T
O

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
G
E
N
E
R
A
T
E

  
  
  
 d

in
_

in
t(

i)
 <

=
 d

a
ta

_
in

((
i+

1
)*

d
a

ta
_

w
id

th
−

1
 

d
o
w
n
t
o

 i*
d

a
ta

_
w

id
th

);
  
 

   
 

E
N
D

 
G
E
N
E
R
A
T
E

;

  
 a

cc
e

ss
_

co
n

tr
o

l: 
P
R
O
C
E
S
S

 (
cl

k,
 r

e
se

t)
  
  
  

V
A
R
I
A
B
L
E

 c
h

a
n

n
e

l: 
n

a
tu

ra
l 

r
a
n
g
e

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
D
O
W
N
T
O

 0
;

  
  
  

V
A
R
I
A
B
L
E

 n
e

xt
_

ch
a

n
n

e
l: 

b
o

o
le

a
n

;
  
 

B
E
G
I
N

  
  

I
F

 r
e

se
t 
=

 ’1
’ 

T
H
E
N

  
  
  
g

ra
n

t 
<

=
 (

O
T
H
E
R
S

 =
>

 ’0
’)
;

  
  
  
n

e
xt

_
ch

a
n

n
e

l :
=

 t
ru

e
;

  
  
  
ch

a
n

n
e

l :
=

 0
;

  
  
  
d

o
u

t_
in

t 
<

=
 (

O
T
H
E
R
S

 =
>

 ’0
’)
;

  
 

E
L
S
I
F

 c
lk

’e
ve

n
t 

a
n
d

 c
lk

=
 ’1

’ 
T
H
E
N

  
  
  
  
  
 

I
F

 n
e

xt
_

ch
a

n
n

e
l =

 f
a

ls
e

 
T
H
E
N

  
  
  
  
  
  
  
 

I
F

 r
e

q
u

e
st

(c
h

a
n

n
e

l)
 =

 ’0
’ 

T
H
E
N

  
  
  
  
  
  
  
  
  
g

ra
n

t(
ch

a
n

n
e

l)
 <

=
 ’0

’;
  
ch

a
n

n
e

l :
=

 0
;

  
  
  
  
  
n

e
xt

_
ch

a
n

n
e

l :
=

 t
ru

e
;

  
  
  
  
  
  
  
 

E
N
D

 
I
F

;
  
  
  
  
  
 

E
N
D

 
I
F

;

  
  
  
  
  
 

I
F

 n
e

xt
_

ch
a

n
n

e
l =

 t
ru

e
 

T
H
E
N

  
 

  
  
  
 

F
O
R

 i 
I
N

 0
 
T
O

 n
u

m
_

ch
a

n
n

e
ls

−
1

 
L
O
O
P

  
  
  
  
  
  
  
  
  

I
F

 r
e

q
u

e
st

(i
) 

=
 ’1

’ 
T
H
E
N

  
 

  
  
  
  
  
  
  
ch

a
n

n
e

l :
=

 i;
  
  
  
  
  
  
  
n

e
xt

_
ch

a
n

n
e

l :
=

 f
a

ls
e

;
  
  
  
g

ra
n

t(
ch

a
n

n
e

l)
 <

=
 ’1

’;
  
  
  
  
  
  
  

E
X
I
T

;

  
  
  
  
  

E
N
D

 
I
F

;
  
  
  
  
  
  
  
 

E
N
D

 
L
O
O
P

;
  
 

E
N
D

 
I
F

;

  
 

I
F

 w
ri
te

(c
h

a
n

n
e

l)
 =

 ’1
’ 

T
H
E
N

d
o

u
t_

in
t 
<

=
 d

in
_

in
t(

ch
a

n
n

e
l)
;

  
 

E
L
S
E

d
o

u
t_

in
t 
<

=
 d

o
u

t_
in

t;
  
 

E
N
D

 
I
F

;

  
 

E
N
D

 
I
F

; 
−

−
 c

lk
’e

ve
n

t
  
 

E
N
D

 
P
R
O
C
E
S
S

 a
cc

e
ss

_
co

n
tr

o
l;

E
N
D

 s
h

a
re

d
_

va
r_

a
;

Figure C.8: Shared data component


