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Abstract

This thesis presents a mixed-precision implementation of a finite volume limiter for the
ADER-DG Algorithm. The implementation extends the Python API of the ExaHyPE
engine, which is built on top of the Peano framework. It allows for specifying the
numerical precision of the individual kernels of the ADER solver and Finite Volume
Limiter, and is then used to study the resulting error margin when using mixed
precision. In particular, we assess how sensitive the kernels of the finite volume limiter
are to the use of double, single, and half precision. The question addressed is, in which
settings mixed precision is viable, considering its potential error margin.
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1 Introduction

High-performance computing (HPC) applications are increasingly relying on numerical
methods that balance accuracy and computational efficiency. One such method is
the Arbitrary DERivative Discontinuous Galerkin (ADER-DG) algorithm. A crucial
component of the algorithm is the finite volume limiter, which tries to ensure numerical
stability when dealing with high-order gradients and discontinuities.

With the release of support for two different 16-bit floating point types (see table
1.1) in the newest C++23 standard [Int24] and the growing importance of hardware
accelerators such as GPUs, it is clear that mixed-precision computing has emerged as
a promising technique. Mixed-precision and especially exploiting low precision can
improve performance due to reduced memory usage, lower costs of data transfer, higher
cache locality, and higher intra-instruction level parallelism. This can, for example, be
seen in the works of Gupta et al.[Gup+15] and Micikevicius et al. [Mic+17], where
low-precision types were used to train neural networks. The challenge lies in adaptively
choosing the precision in different algorithms and implementations while maintaining
acceptable levels of numerical accuracy.

This thesis explores a mixed-precision implementation of the finite volume limiter
within the ADER-DG algorithm. We examine both the ADER-DG algorithm with a
posteriori subcell limiting introduced by Dumbser et al. [Dum+14], as well as the ADER-
DG algorithm with static subcell limiting. An implementation of both is supported
in the hyperbolic partial differential equation (PDE) engine ExaHyPE [Rei+20]. The
ExaHyPE engine provides a generic implementation of the ADER-DG algorithm and
allows the user to specify problem specifics and the respective limiter through a Python
API. The presented mixed-precision implementation simply extends this Python API to
enable the configuration of the precisions of each major kernel of the limiters.

A similar study by Marot-Lassauzaie et al. [MB25], has already investigated a mixed-
precision implementation for the ADER-DG algorithm implemented in ExaHyPE. They
enable users to configure precision individually for the core kernels of the ADER-DG
algorithm and then assess how mixed precision arithmetic affects convergence and
stability across four representative hyperbolic PDEs (elastic/acoustic waves, shallow
water, Euler equations). Their key finding is that while fp64 is necessary for high-order
convergence, fp32 may suffice in moderate-resolution cases, and pure fp16 or bf16 often
fails—though mixed-precision configurations can sometimes restore stability.
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1 Introduction

However, their investigation explicitly excludes scenarios involving the finite volume
limiter, focusing solely on smooth problems where no limiting is required. This
leaves open the question of how mixed-precision strategies perform in the presence
of discontinuities and shocks. This is precisely where the limiter becomes active and
numerical robustness is critical.

Even though performance and memory usage are two key motivations for using low
or mixed precision, we only focus on the accuracy of the algorithm. This is because
performance and memory usage are strongly dependent on the underlying hardware.
Especially when using the half-precision types float16 and bfloat16, performance and
memory usage can deteriorate severely if the hardware does not support them.

In chapter 2 we give an abstract introduction to the underlying theoretical back-
grounds of the algorithms. Chapter 3 briefly explains the framework and how the
algorithms’ components are employed. Finally, chapter 4 visualizes the impact of mixed
precision, and chapter 5 gives a summary of which practices are reasonable when
employing mixed-precision.

Type Standard Mantissa bits Exponent bits
bfloat16_t Brain floating point 7 8
float16_t IEEE binary 16 10 5
float32 IEEE binary 16 23 8
float64 IEEE binary 16 52 11

Table 1.1: C++23 floating-point types
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2 Theoretical Background

This chapter introduces some of the theoretical backgrounds that are helpful to under-
stand the project as a whole. Since mathematical detail is not crucial to our argument,
we will refrain from exploring it here.

2.1 The ADER-DG Algorithm

The ADER-DG algorithm combines Arbitrary DERivative (ADER) time integration
with the Discontinuous Galerkin (DG) method to solve hyperbolic partial differential
equations with high-order accuracy in both space and time. The computational domain
is divided into a mesh of elements (or cells), where each element holds a high-order
polynomial approximation of the solution. These polynomials are allowed to be
discontinuous across cell boundaries, which gives the method flexibility and makes
it ideal for adaptive mesh refinement and complex geometries. Instead of using
traditional time-stepping like Runge-Kutta [GMM15], ADER-DG computes the solution
over an entire time step using one local space-time prediction within each cell. This
one-step update significantly reduces the need for synchronization across domain
boundaries, which enhances parallel scalability and overall efficiency. To account for
interactions between cells, numerical fluxes are computed at the cell interfaces. While
this works well in smooth regions, non-physical oscillations can occur near shocks or
discontinuities. To prevent this, ADER-DG is often combined with a finite-volume
subcell limiter that locally switches to a more robust scheme where needed. This
combination of accuracy, efficiency, and robustness makes ADER-DG a powerful tool
for large-scale simulations in fields like fluid dynamics, astrophysics, and seismology.
For a detailed explanation of ADER and DG, we refer the reader to the works by Titarev
et al. [TT02] and Shu [Shu09], respectively.

2.2 The Finite Volume Limiter

As already mentioned, the ADER-DG method delivers high-order accuracy in regions
where the solution is smooth. However, near discontinuities, such as shocks or steep
gradients, it can produce oscillations that lead to physically inadmissible values. To
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2 Theoretical Background

maintain both accuracy and stability, a finite volume limiter is incorporated. The core
idea is to identify areas in the computational domain—called troubled cells—where
the ADER-DG solution becomes unreliable. Instead of applying the high-order DG
method there, the solution is locally recomputed using a more robust finite volume
scheme. This finite volume approach is inherently more stable near discontinuities and
effectively controls oscillations by using piecewise constant approximations instead
of high-degree polynomials. After performing a stable update on the subcells, the
limited solution is projected back into a high-order polynomial representation, allowing
the method to preserve its overall accuracy where the solution remains smooth. By
combining the precision of ADER-DG in smooth regions with the robustness of finite
volume methods near discontinuities, the finite volume limiter ensures that the solver
is both accurate and stable across a wide range of challenging problems.

2.2.1 A Posteriori Limiting

One way to employ the finite volume limiter within the ADER-DG algorithm is through
an a posteriori limiting approach. This technique involves detecting troubled cells after
computing the high-order discontinuous Galerkin solution and then locally applying
the more robust finite volume scheme to maintain stability and prevent oscillations
near discontinuities.

Physical Admissibility Criterion

One method for detecting troubled cells is the Physical Admissibility Criterion. As the
name suggests, this method works by checking whether certain values are violating
physical properties. An example would be that the density or water level inside a cell
should not be negative. Users have the ability to define these properties, which will
then be validated. If a property is violated in a cell, the cell is marked as troubled, and
the finite volume scheme is triggered.

Discrete Maximum Principle

Another method for detecting troubled cells is the Discrete Maximum Principle. This
method uses information from neighboring cells to determine if the current cell is
troubled. To do so, an interval based on the minimum and maximum values of the
neighboring cells is defined. If the solution of the current cell after the next step now
overshoots or undershoots this interval, the cell is marked as troubled. Although
this method does not guarantee physical admissibility, it can still be used to maintain
numerical stability. The idea behind this criterion is also related to smoothness: If a cell
violates the discrete maximum principle, for example by being smaller than both its
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2 Theoretical Background

left and right neighbors, it creates a local minimum, implying a gradient change from
negative to positive within a single cell. This kind of behavior signals a kink in the
current cell and is precisely what we aim to detect and correct.

A Posteriori Limiting is useful when it is difficult to foresee where physically inad-
missible values might develop. The downside of this flexibility is that this method can
be computationally expensive. Checking for errors requires communication between
neighboring regions, which is expensive, especially for parallelism. Also, a rollback
and recomputation of the solutions is needed, which in ExaHyPE requires multiple
additional traversals over the domain. More on A Posteriori Limiting can be viewed in
the work by Zanotti et al. [Zan+15].

2.2.2 Static Limiting

Another way of employing the finite volume limiter is through static limiting. While
a posteriori limiting dynamically applies the finite volume limiter only when certain
conditions are violated during the simulation, static limiting takes a more conservative
approach. In static limiting, the decision to apply a limiter is made in advance, typically
based on fixed geometric, physical, or user-defined indicators that mark specific regions
of the domain as "sensitive". This approach reduces the overhead associated with a
posteriori limiting by allowing communication to be established once at the beginning,
since it remains unchanged over time. However, this approach requires insight into the
"sensitive" regions of the problem, as areas outside the scope of the static limiter will
not benefit from any limiting.
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3 Implementation Details

This chapter first outlines the technical structure of the project, describing how various
tools such as Peano, ExaHyPE, Jinja2, and Python interact to create a user-defined
simulation executable. Secondly, we will also show the changes that were necessary to
realize a mixed precision finite volume limiter.

3.1 Framework Introduction

3.1.1 Peano

At the heart of the project lies the Peano framework, a highly efficient, Adaptive Mesh
Refinement (AMR) engine designed for dynamically adaptive cartesian grids. Peano
stores these meshes in a spacetree structure and relies on space-filling curves (such as
the Peano or Hilbert curve) to efficiently traverse these. This enhances cache locality
and supports parallelism, making it suitable for many high-performance computing
applications. To read more on the Peano Framework, we refer to the work of Weinzierl
[Wei19].

3.1.2 ExaHyPE

Building on top of Peano, ExaHyPE provides a lightweight layer for defining and solving
hyperbolic partial differential equations (PDEs). ExaHyPE delegates grid traversal and
task orchestration to Peano, while exposing a flexible interface for problem-specific
physics and solvers. Notably, ExaHyPE allows the user to define problem specifics such
as solvers, fluxes, initial conditions, and boundary conditions. For a comprehensive
overview of the flexibility offered by ExaHyPE, we refer the reader to the work of
Reinarz et al. [Rei+20]. The general form of PDEs solved by ExaHyPE is given by:

∂Q
∂t

+∇ · F(Q,∇Q) + B(Q) · ∇Q = S(Q) +
nψ

∑
i=1

δi (3.1)

where

• Q = (Q1, Q2, . . . , Qm)T is the vector of conserved variables (e.g., water height,
density).
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3 Implementation Details

• ∂Q
∂t denotes the time derivative of the conserved variables.

• ∇ · F(Q,∇Q) is the divergence of the flux tensor, which may depend on both Q
and its spatial gradients ∇Q. This term represents conservative fluxes.

• B(Q) · ∇Q represents non-conservative products, which cannot be expressed as
a divergence of a flux and may model geometric or physical effects.

• S(Q) includes source terms depending on the state vector only, such as gravita-
tional forces or friction.

• ∑
nψ

i=1 δi are distributional source terms (e.g., Dirac delta functions) that model
localized singular sources.

Through utilizing the backbone of Peano and by supporting the flexible definition of
problem specifics through ExaHyPE, it is possible to build a simulation for a hyperbolic
PDE with relatively low effort while still maintaining high computational efficiency
and scalability.

3.1.3 Python API

As mentioned earlier, ExaHyPE provides a flexible interface to define problem specifics.
This is realized by a high-level Python API that acts as the front-end interface for
defining simulation configurations. The problem specifics, such as solvers, fluxes, initial
conditions, and boundary conditions, are parsed by a function in the Python script to
define a dictionary that maps a variable to the individual parameters. To illustrate this
process, an example of parsing the flux is shown in Figure 3.1. Later, these variables
can be used to dynamically populate a set of templated C++ source files with the
problem-specific data.

7



3 Implementation Details

(a) Function definition and call

def set_implementation(self, flux):
self._flux_implementation = flux

aderdg_solver.set_implementation(
flux="""

double ih = 1.0 / Q[0];

F[0] = Q[1 + normal];
F[1] = Q[1 + normal] * Q[1] * ih;
F[2] = Q[1 + normal] * Q[2] * ih;
F[3] = 0.0;

"""
)

(b) Dictionary entry

def _init_dictionary_with_default_parameters(self, d):
d["FLUX_IMPLEMENTATION"] = self._flux_implementation

Figure 3.1: Example: parsing the flux for the ADER-DG solver

3.1.4 C++ Templates

The computational core of the simulations is implemented using C++ templates, en-
abling the injection of problem-specific components and configuration parameters at
compile time. Templates allow static polymorphism, eliminating runtime overhead and
enabling compiler optimizations such as inlining and loop unrolling. This is done by
utilizing the Jinja2 engine [Ron08], which injects the symbolic expressions (e.g., fluxes,
boundary conditions) and configuration parameters (e.g., precision) according to the
dictionary defined in the Python layer. Figure 3.2 shows how the flux is being injected
into the C++ code through the dictionary.

8



3 Implementation Details

(a) Jinja2 template

"""
static inline GPUCallableMethod

void flux(
...

) InlineMethod {
{% if FLUX_IMPLEMENTATION!="<empty>" %}
{{FLUX_IMPLEMENTATION}}
{% endif %}

}
"""

(b) Resulting C++ function

static inline GPUCallableMethod
void flux(
...

) InlineMethod {
double ih = 1.0 / Q[0];

F[0] = Q[1 + normal];
F[1] = Q[1 + normal] * Q[1] * ih;
F[2] = Q[1 + normal] * Q[2] * ih;
F[3] = 0.0;

}

Figure 3.2: Example: injecting the flux into C++ code

3.1.5 Code Generation

The core non-problem-specific components of Peano and ExaHyPE are precompiled.
Once the problem-specific C++ code is populated, it is compiled and linked with
the Peano and ExaHyPE backends to produce a standalone simulation executable.
This closes the loop between user-level problem specification and high-performance
numerical execution.
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3 Implementation Details

3.2 The Limiting Kernel

The ADER-DG solver and the finite volume solver are already able to support different
precision types for their kernels. For this work, only the implementation of the limiting
kernel had to be adjusted. The limiting kernel handles identifying troubled cells and
mapping the solution between the DG space and the finite volume space. When a cell is
marked as troubled, the solution is recomputed based on the solutions of the previous
step with the finite volume solver. For this, a mapping between the DG space and the
finite volume space is necessary, as they use fundamentally different representations
of the solution inside the cell. The DG method represents the solution inside each cell
as a Lagrange polynomial, which is stored implicitly as a matrix containing the value
of the polynomial at each nodal support point. The finite volume method in contrast,
stores the solution as cell averages of a finer subcell.

3.2.1 Adjusting the Python API

As introduced in chapter 2.2.1 and 2.2.2, the limiter has two different implementations.
For both implementations, a very similar Python API exists. Both of them were
extended by a function and a dictionary entry as seen in figure 3.3. Notice that the
precision of the regular solver and the limiting solver, in our case the ADER-DG and
finite volume solver are also being parsed as they will be needed to map the solutions.

(a) Python function

def set_limiter_precisions(self, precision):
self._precision = PrecisionType[precision]
self.create_data_structures()
self.create_action_sets()

(b) Dictionary entries

d["REGULAR_SOLVER_STORAGE_PRECISION"] = self._regular_solver._precision
d["LIMITER_SOLVER_STORAGE_PRECISION"] = self._limiter_solver._precision
d["LIMITER_PRECISION"] = self._precision

Figure 3.3: Parsing the dictionary of the limiter
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3.2.2 Adjusting the C++ Templates

To adjust the C++ templates, we now replace the hardcoded precision types with
the corresponding variable of the dictionary. An example function for the use case of
identifying troubled cells and mapping the solution between the DG space and the finite
volume space can be seen in figure 3.4. Here, it is important that the function parameters
related to the solution spaces of the different solvers use the correct corresponding
precision types.

(a) Function mapping solutions

void projectOnDGSpaceFromFVWithoutHalo(
const {{LIMITER_SOLVER_STORAGE_PRECISION}}* const lim,
{{REGULAR_SOLVER_STORAGE_PRECISION}}* const luh

) {
... //maps from finite volume space onto DG space

}
(b) Function identifying troubled cells

bool discreteMaximumPrincipleAndMinAndMaxSearch(
{{FULL_QUALIFIED_SOLVER_NAME}}& solver,
const {{REGULAR_SOLVER_STORAGE_PRECISION}}* const luh,
const {{LIMITER_PRECISION}} relaxationParameter,
const {{LIMITER_PRECISION}} differenceScaling,
{{LIMITER_PRECISION}}* boundaryMinPerObservable,
{{LIMITER_PRECISION}}* boundaryMaxPerObservable

) {
... //marks cells as troubled with the discrete maximum principle

}

Figure 3.4: Example functions for solution mapping and identifying troubled cells
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4 Results

This chapter discusses the impact of mixed-precision on the finite volume limiter.

4.1 Scenarios

To evaluate the different mixed-precision implementations, we apply them to four
different simulations. This section first introduces these simulations and gives a point
of reference to the mixed-precision implementations. All simulations are conducted in
two dimensions, though similar behavior is expected to occur in three dimensions as
well.

4.1.1 Shock Tube

This problem represents a two-dimensional extension of the classical Sod shock tube
problem. These problems simulate the change of density of a fluid using the com-
pressible Euler equations. Initially, the domain is split into two parts. The lower left
quadrant is initialized with low density and pressure, and the rest of the domain is
initialized with high density and pressure. This sets up a shock that evolves into a
complex wave structure, including further shocks and discontinuities, over time. The
vector of conserved variables is defined as:

Q =


ρ

ρu1

ρu2

Et

 (4.1)

where

• ρ is the fluid density,

• ρu1 and ρu2 are the momenta in the x- and y-directions respectively,

• Et is the total energy.

12



4 Results

To define the described initial state, the initial values for the conserved variables are
set as:

ρ =

{
0.125, if x < −xs and y < −xs,

1.0, otherwise,
ρu1 = 0.0, ρu2 = 0.0, E =

p
γ − 1

,

with

p =

{
0.1, if x < −xs and y < −xs,

1.0, otherwise,

Here p is the pressure, γ is the adiabatic index (e.g., 1.4 for air), and xs is the variable
defining the border. The resulting PDE is of the form:

∂

∂t


ρ

ρu1

ρu2

Et

+∇ ·


ρu1

ρu2
1 + p

ρu2u1

(Et + p)u1

+


ρu2

ρu1u2

ρu2
2 + p

(Et + p)u2

 = 0 (4.2)

Notice that the right-hand side of the equation is zero, because the source terms
S(Q)are defined as 0. This means that there are no additional external influences or
forces. The eigenvalues, which represent the speeds at which different types of waves
propagate through the compressible fluid, are given by:λ1

λ2

λ3

 =

u − c
u

u + c

 , (4.3)

where u is the fluid velocity in the direction of wave propagation, and c is the wave
propagation speed, defined by c =

√
γp
ρ . The problem uses a posteriori limiting as

the troubled cells are expected to follow the "shock front" that moves outward across
the domain. A polynomial order of 5 is used in the ADER-DG solver. The cell size
is consistent between the ADER-DG solver and the finite volume limiter, with each
cell measuring approximately 0.0815 in both length and width. A visualization of this
problem can be seen in figure 4.1.
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(a) Start (b) Mid (c) End

Figure 4.1: Simulation stages of the Shock Tube Simulation: start, mid, and end.

4.1.2 Naca Airfoil

This simulation models the flow around a symmetric NACA airfoil using the same
compressible Euler equations in two dimensions as the Shock Tube simulation (see
4.1.1). This NACA airfoil is defined by the equation for a symmetrical NACA airfoil,
which specifies the thickness distribution as:

yt(x) = 5tc
(

0.2969
√

x
c
− 0.1260

x
c
− 0.3516

( x
c

)2
+ 0.2843

( x
c

)3
− 0.1015

( x
c

)4
)

,

(4.4)
where

• c is the chord length of the airfoil, i.e., the distance from the leading edge to the
trailing edge,

• x is the position along the chord from 0 to 1 (0 to 100%),

• t is the maximum thickness as a fraction of the chord length,

• yt(x) is the half-thickness of the airfoil at a given value of x.

In this specific case we use c = 100 and t = 0.12. The domain is a square region
centered at the airfoil, with flow conditions initialized to represent uniform upstream
flow from left to right. The vector of conserved variables is the same as defined in
equation 4.1. The initial conditions specify a uniform flow with:

ρ = 1.0, ρu1 = 0.1, ρu2 = 0.0, Et = 1.0,

To model the airfoil as a solid obstacle within the domain, it is implicitly represented
via an auxiliary variable, which indicates the proportion of the cell that is not part

14



4 Results

of the airfoil. To handle fluxes at the airfoil boundary, the Riemann solver employed
reflects the ingoing flux proportionally to the unavailable volume fraction in a cell.
Because this approach is not physically consistent for ADER-DG, cells with a volume
fraction less than 1 are statically limited by the finite volume limiter. The definition of
the PDE as well as the eigenvalues are also the same as seen in equation 4.2 and 4.3
respectively. The ADER-DG solver operates with a polynomial order of 5, and both
it and the finite volume limiter use cells that are about 1.63 units long and wide. A
visualization of the simulation is provided in figure 4.2.

(a) Start (b) Mid (c) End

Figure 4.2: Simulation stages of the NACA airfoil simulation: start, mid, and end.

4.1.3 Shallow Water

This problem models the evolution of a circular "dam break" using the two-dimensional
shallow water equations. The domain is initialized with a radially symmetric, smoothly
varying water surface that is highest at the center and decreases gradually outward.
This setup mimics the sudden collapse of a raised water column, generating radial
waves that propagate outward. The water is shallow as the initial vertical difference
between the highest and lowest point of the water is proportionally small in comparison
to its horizontal extent. The boundary is defined to copy the value inside the boundary
to the outside, which allows waves to "leave" the domain. Therefore, the simulation is
expected to evolve toward an equilibrium state. In this case, the vector of conserved
variables can be defined as:

Q =


h

hu1

hu2

b

 , (4.5)

where

• h is the water height,
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4 Results

• hu1 and hu2 are the momenta in the x- and y-directions respectively,

• b is the bathymetry or bottom topography.

To define the initial state, the initial values for these variables are set as:

h = 4.0, hu1 = 0.0, hu2 = 0.0, b(x) = 2.0 − ∥x∥2,

Here x is the distance to the domain center. Following this, the PDE can be written as:

∂

∂t


h

hu1

hu2

b

+∇ ·


hu1 hu2

hu2
1 hu1u2

hu1u2 hu2
2

0 0

+


0

hg ∂
∂x (b + h)

hg ∂
∂y (b + h)

0

 = 0. (4.6)

where g = 9.81 m/s2 is the gravitational acceleration constant. Same as in the 2D
Shock Tube scenario 4.1.1, there are no additional external influences resulting in the
right-hand side of the equation being zero. The eigenvalues of the system, which
characterize its wave speeds, are given by:λ1

λ2

λ3

 =

u +
√

g(h + b)
u

u −
√

g(h + b)

 , (4.7)

where u represents the velocity component normal to the wave propagation direction.

Due to the radial symmetry and smooth initial condition, this problem also tests
the scheme’s ability to preserve symmetry and resolve smooth wave propagation
without introducing oscillations. A static limiter is used at the boundaries of the
domain, as using solely ADER-DG would create oscillations near them. This is caused
by the implementation of the boundary condition. The ADER-DG solver employs a
polynomial order of 5. Both the ADER-DG solver and the finite volume limiter use
cells that are approximately 0.0815 units in length and width. A visualization of this
simulation is provided in figure 4.3.
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(a) Start (b) Mid (c) End

Figure 4.3: Simulation stages of the Shallow Water Simulation: start, mid, and end.

4.1.4 Landslide

This simulation models a granular landslide using a variation of the two-dimensional
shallow water equations, which approximate granular flow with a free surface under
the influence of gravity. The setup involves an inclined terrain where a circular column
of dense material is released, propagating from high (left) to low (right) and spreading
over time. The conserved variables are the same as in equation 4.5. The initial state
defines a circular column of height h0 = 0.008 centered at (x0, y0) = (0.15, 0.79) with
radius r0 = 0.10, and zero initial momentum. The terrain is sloped at an angle ζ = 35◦,
decreasing linearly in the x-direction. This initial state is given by these initial values:

h(x, 0) =

{
0.008, if ∥x − x0∥2 < 0.10,

0, otherwise,
hu1 = 0.0, hu2 = 0.0, b(x) = (Lx − x) tan(ζ),

with x0 = (0.15, 0.79) being the center of the circular column and Lx = 1.58 being the
length of the domain in the x-direction. The PDE for this problem can be written as:

∂

∂t

 h
hu1

hu2

+∇·

 hu1 hu2

hu2
1 +

1
2 gh2 cos ζ hu1u2

hu1u2 hu2
2 +

1
2 gh2 cos ζ

 =

 0
ghSx

ghSy

+∇·

 0 0
D1,x D1,y

D2,x D2,y


(4.8)

where the source terms Sx and Sy account for gravitational and frictional effects,
given by:

Sx = cos ζ

(
tan ζ − µ

u1

|ū|

)
, Sy = −µ cos ζ

u2

|ū| (4.9)

and the diffusive terms are:
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D1,x = νh3/2 ∂u1

∂x
, (4.10)

D1,y = D2,x =
1
2

νh3/2
(

∂u1

∂y
+

∂u2

∂x

)
, (4.11)

D2,y = νh3/2 ∂u2

∂y
(4.12)

Here,

1. |ū| = (u1, u2) is the depth-averaged velocity,

2. g = 9.81 m/s2 is the gravitational acceleration,

3. µ is the basal friction coefficient,

4. ν is a viscosity-like parameter.

The diffusive terms represent the internal friction and viscous-like effects within
the flowing material. They act to smooth velocity gradients by modeling momentum
diffusion, which helps stabilize the numerical solution and captures physical processes
such as shear stresses and turbulence effects. In particular, these terms introduce a
form of viscosity parameterized by ν, which controls the intensity of the momentum
diffusion based on the flow thickness h and velocity gradients. Without these terms,
the model would only describe idealized inviscid flow and could also lead to numerical
instabilities. The bathymetry modelled by b(x) is implicitly included by the source
terms. For this scenario, a posteriori limiting is used as the moving granular material
causes the shocks. The ADER-DG solver uses a polynomial order of 4. Both the ADER-
DG solver and the finite volume limiter use the same cell size, which is approximately
0.215 long and wide. A visualization of this simulation can be seen in 4.4.

(a) Start (b) Mid (c) End

Figure 4.4: Simulation stages of the Landslide Simulation: start, mid, and end.
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4.2 Mixed-Precision Implementations

The mixed-precision implementations discussed here use uniform double precision
for the ADER-DG component and uniform double, single, and half precision for the
finite volume limiter. For a broader discussion on various mixed-precision strategies
and their applicability to the ADER-DG component, we refer the reader to the work of
Marot-Lassauzaie et al. [MB25].

4.2.1 Shock Tube

When using uniform double precision for ADER-DG and uniform single precision for
the finite volume limiter, no visual difference can be seen. When changing the finite
volume limiter component to half-precision, a visual difference can be noticed. While
only minor differences can be noticed for float16, major differences become apparent
when using bfloat16. This is likely due to wrong updates caused by rounding errors.
As bfloat16 causes larger rounding errors due to its lower precision, the error grows
larger over time. At the end of the simulation, float16 is still able to reach a physically
acceptable state, whereas bfloat16 does not. Due to its rounding errors, bfloat16 is
unable to achieve any form of equilibrium. A visualization of the final states can be
seen in figure 4.5.
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(a) float64 (b) float32

(c) float16 (d) bfloat16

Figure 4.5: Final states of Shock Tube Simulation (see 4.1.1) with ADER-DG solver in double precision and finite volume solver and limiting kernel in uniform
precision as specified under each subfigure

4.2.2 NACA Airfoil

For the NACA Airfoil simulation, no visible difference can be seen between double
and single precision. In the case of half-precision, similar behavior can be noticed at
first. As expected, float16 is able to compute the solutions with a few minor differences,
while larger differences become visible with bfloat16. But the implementation using
float16 crashes at some point, due to NaN (not a number) values. The problem here
stems from the limited range of numbers float16 can store. The computation of the flux
requires the density to appear in the denominator. Therefore, low densities can cause
large numbers that the float16 can not store. This results in NaN values, causing the
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simulation to crash. The final states of the simulations can be seen in figure 4.6. The
yellow bit in figure 4.6c corresponds to NaN values.

(a) float64 (b) float32

(c) float16 (d) bfloat16

Figure 4.6: Final states of NACA Airfoil Simulation (see 4.1.1) with ADER-DG solver in double precision and finite volume solver and limiting kernel in
uniform precision as specified under each subfigure

4.2.3 Shallow Water

For this simulation, there is also no visible difference between double and single
precision. Both have very similar behavior and also reach the same expected equilibrium
state. The implementation using float16 also shows similar behavior at first, but fails
to reach an equilibrium. Due to rounding errors, the boundary is not able to correctly
implement the outflow of the waves, leading to a state where the water never reaches
an equilibrium. The same is true of the implementation using bfloat16. But in contrast
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to float16, the problem at the boundary caused by rounding errors can be seen almost
immediately at the start of the simulation. Also, the bfloat16 implementation introduces
nonphysical influences. Over time, the water height grows slightly. Because bfloat16 has
larger rounding errors compared to float16, it introduces inaccuracies that significantly
affect the system’s physical behavior. In this specific case, bfloat16 seems to round up
certain values, causing more water to accumulate over time. A visualization of the
ending state of the simulation can be seen in figure 4.7.

(a) float64 (b) float32

(c) float16 (d) bfloat16

Figure 4.7: Final states of Shallow Water Simulation (see 4.1.3) with ADER-DG solver in double precision and finite volume solver and limiting kernel in
uniform precision as specified under each subfigure

4.2.4 Landslide

The Landslide simulation also shows no visible difference between double and single
precision. The behavior, as well as convergence over time, is almost identical. In
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contrast to the other simulations using float16, the Landslide simulation shows strong
non-physical behavior. Almost instantly, at the start of the simulation, the granular
material seems to disappear. This is likely caused by the fact that very small values
develop in this simulation that cannot be captured by float16. The implementation
using bfloat16 crashes immediately after the first step. This is probably because the
solution is not computed or transferred correctly. Either zero or a negative value is
used in a computation of the next step, producing NaN values. The ending states for
these mixed-precision implementations are visualized in figure 4.8.

(a) float64 (b) float32

(c) float16 (d) bfloat16

Figure 4.8: Final states of Landslide Simulation (see 4.1.4) with ADER-DG solver in double precision and finite volume solver and limiting kernel in uniform
precision as specified under each subfigure
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4.3 Error Evaluation and Insights

The error of the mixed precision implementations using single precision in comparison
to double precision stays fairly low and can be considered negligible. The behavior and
convergence of the simulations stayed the same across all 4 addressed scenarios. The
error margin stayed consistently in the scale of 10−5 with very few outliers. As a point
of reference, the scope of the error of the density for the Shock Tube simulation and the
Landslide simulation can be seen in figure 4.9. Notice that some outliers in the bottom
left part of the Shock Tube simulation can be seen, where the error grows to the scale
between 10−3 and 10−2.

(a) Shock Tube Simulation (b) Landslide Simulation

Figure 4.9: Plotted difference between finite volume limiter in uniform double and single precision with ADER-DG solver in double precision

All half-precision implementations, except the implementation of the Shock Tube
simulation in float16, lead to unphysical properties or complete failure. Even though the
Shock Tube simulation in half-precision float16 is visually close to the implementations
in double and single precision, the error is still rather large. Here, the difference in
density in some areas reaches a margin in the scale of 10−2. A visual representation of
the error is shown in figure 4.10.
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(a) Shock Tube Simulation

Figure 4.10: Plotted difference between finite volume limiter in uniform double and half-precision (float16) with ADER-DG solver in double precision

The mixed-precision implementations were also tested with the ADER-DG compo-
nent in single precision. For every case presented, the behavior is almost identical.
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5 Conclusion and Future Work

In this work, we implemented a mixed-precision finite volume limiter for the ADER-DG
algorithm. We evaluated the influence of using double, single, and half-precision on
the finite volume limiter by applying the implementation on four different scenarios.
The results show that using single precision has little difference in comparison to
double precision. Half-precision overall is not sufficient to accurately compute physical
properties modelled by the problems at hand. Both float16 and bfloat16 are also prone
to causing the program to crash, due to their range or precision.

In the future, the finite volume limiter should still be tested with a bigger variety
of problems and initial conditions. It could be interesting to examine the behavior
when changing the polynomial order of the ADER-DG component or increasing the
number of cells in the domain. Another option could be to combine the different
mixed-precision implementations with different mixed-precision implementations of
the ADER-DG component. Analyzing the runtime and memory usage is also left open
for future work.
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