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Raytracing
courtesy of a
ParaView tutorial
from Louis
Gombert
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=> Fastest algorithm can change during a simulation
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Motivation

e Historically, we are a High Performance Computing for Molecular Dynamics group.

e But it was found that the fastest algorithm varies between scenarios or during a
simulation.

e => S0 we developed a black-box particle container, AutoPas, that implements many
algorithms and aims to automatically choose the best.

e AutoPas was designed for use with any kind of short-range particle simulation.
But we still mostly only work with Molecular Dynamics.

e \We want to change this!

Gratl et al., 2022, Comp. Phy. Comm.
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Outline

In this talk, | will

e Introduce AutoPas, some of its algorithms, and our algorithm selection.
e Show our preliminary work on using it with DEM.

e Show our preliminary performance results from our integration of DEM
algorithms within AutoPas.

The goal of this talk is so that you can help guide our work in a way that is
meaningful and beneficial to the DEM community.
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Introducing AutoPas
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AutoPas

User Simulator
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AutoPas

User Simulator

Black box particle i T

container
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AutoPas

User Simulator

' 1

Written in C++ 20
Fully open source

Node-level

CPU-based, with
GPU support WIP
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User Simulator (\

Users build a
Black box particle short-range-interactions
container particle simulator on top
of it
E.g
Molecular Dynamics,
DEM, SPH

AutoPas
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AutoPas

User Simulator

The container is
templated with the
user’s particle class
and interaction model
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AutoPas

The user simulator can User Simulator
then
e Add particles
e lterate over all
particles (access /
modification)
e lterate over particles
in a region
e Tell AutoPas to
compute all particle
interactions

This results in e.g.
forces on particles.
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AutoPas

The user simulator can User Simulator
then
e Add particles
e lterate over all
particles (access /
modification)
e lterate over particles
in a region
e Tell AutoPas to
compute all particl
interactions

This results in e.
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AutoPas o

/" Shared Memory \ [ Other )

Parallelisation

AutoPas

e Data Layout &
Vectorisation

How we stc;re particles e Cell Size

Neighbour Identification
\ / \_
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AutoPas o

AutoPas

Particle Container / Shared Memory \ / Other \
Pkl TR Parallelisation

e Data Layout &
Vectorisation

How we stc;re particles e Cell Size

Neighbour Identification \
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Particle Containers
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Linked Cells Verlet Lists Verlet Cluster Lists
+  Vectorises Well + Very Few Redundant + Few Redundant
+ Low Memory Overhead Calculations Calculations
- Many Redundant - High Rebuild Cost + Good Vectorisability
Calculations - Meh Vectorisability - High Rebuild Cost
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/" Shared Memory \ [ Other )

Parallelisation

AutoPas

e Data Layout &
Vectorisation

How we stc;re particles e Cell Size

Neighbour Identification
\ / \_
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e Performance Pros & Cons for all Algorithms

e Different Particle Distributions, Interaction Models, & Hardware result in
different optimal algorithms

e =>\We want to select the best (fastest, most energy efficient)

e (Same Accuracy for all Algorithms)

&
k Neighbour Identification j k j k
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/ Particle Container \

How we store particles
&

AutoPas

/ Shared Memory \
Parallelisation

\ Neighbour Identification /
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Other

Data Layout &
Vectorisation

Cell Size

T
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Random Forest Tuning Strategy

e Train a Random Forest that predicts the optimal algorithm depending on

cheap-to-calculate features.

o Mean #particles per cell
o Std. Dev. #particles per cell

(@)

e How to generate the data?

o Need a large, representative dataset on performance data for different scenarios.
Real data requires running lots of real experiments.
=> “Fake” it
Trial algorithms on “fake” particle distributions (e.g. randomly distributed)
Scenarios are physically nonsense, but computationally representative

O O O O
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Algorithm Selection Results

Heating Sphere Exploding Liquid “‘Rayleigh-Taylor Instability”-Inspired /
Particle Mixing
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Sub-1.0 (but close to 1.0) speedup is therefore a good result.
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AutoPas & DEM
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AutoPas & DEM

e Example DEM Simulator Created
o Linear Spring Contact Model with Dampening
Sliding Frictional Forces + Torques
Rolling Resistance Torque
Torision Resistance Torque
Background Friction
o  Multi-spherical Particles

o => We still find optimal algorithm varies
between experiments
e Still missing:

o Tangential Spring
o Vectorisation

(a) Iteration 0 (b) Iteration 100 k

o O O O
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AutoPas & Hierarchical Grids
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AutoPas & Hierarchical Grids

e Can have different sized particles in DEM
e All existing particle containers assume a
same size

e => Alot of redundant calculations involved
with the smaller particles

Algorithm Selection in Discrete Element Method | Samuel J. Newcome | PARTICLES | October 2025



Aute:Pas Ei

of Munich

AutoPas & Hierarchical Grids

e Can have different sized particles in DEM

e All existing particle containers assume
same size

e => Alot of redundant calculations involved
with the smaller particles

e \We implemented the Hierarchical Grid
method of V. Ogarko & S. Luding (&
OpenMP parallelisation)
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AutoPas & Hierarchical Grids: Preliminary Results

We performed some initial MD experiments with LJ potential and a scalable cutoff
(=> recreates different sized particles)

Mixing different ratios of full-sized and half-sized = Keeping ratio of at 2x but changing size of small

particles particle
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AutoPas & Hierarchical Grids: Preliminary Results

We performed some initial MD experiments with LJ potential and a scalable cutoff
(=> recreates different sized particles)

Mixing different ratios of full-sized and half-sized = Keeping ratio of at 2x but changing size of small
particles particle
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Hierarchical Grids outperform other AutoPas methods in the scenarios it was
designed for.
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Summary & Outlook

e Introduced the algorithm selection particle
simulation library, AutoPas, now with a basic DEM

testbed.
e Showed preliminary results of Hierarchical Grid

container in AutoPas

Outlook:

Further experimentation with Hierarchical Grids.

Let AutoPas tune HGrid metrics (cell sizes), Get the slides

parallelisation schemes on different levels.
e Expand data-driven algorithm selection with

particle size statistics. samuel.newcome@tum.de
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Improving Performance of Rigid Body Models

SoA data layouts for rigid
bodies need to handle diffeV
molecule types with: i “'v

e different numbers of sites

e different types of site; \
b ““-~<~‘§7 ' ‘ a—‘

The cutoff is based on Centre-of-Mass
distances and is applied to all site-pairs.

Current Approach A Potential Solution?

The original AutoPas SoA works with a fixed sMolecules
amount of data per molecule.

=> Site data is not kept in the main SoA.
=> Site-SoAs must be constructed every time
they are needed.

Keep a vector of SoAs for each
site type.

The vector's size is the
maximum number of sites any
molecule has of that type.

#Sites Type A

3

1o 2ad
W adA) sause

- D e~ If a molecule doesn't need all
#Molecules Sites ’VPE B SoA entries, mask them. '

It is hard to single out site-data belonging to = sort the molecules within the
some molecule in a vectorised manner. SoAs by their types, to avoid

E.g. Centre-of-Mass mask applied to all sites  lots of masked calculations.
of a molecule or all sites belonging to one
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