

A variable-precision implementation of the ADER-DG algorithm

IEEE High Performance Extreme Computing Virtual Conference

Marc Marot-Lassauzaie & Michael Bader Technical University of Munich

19th September 2025

ExaHyPE – an "Exascale PDE Engine"

Goal: a PDE "engine" (as in "game engine") → Reinarz et al.1

- Fixed numerics and mesh infrastructure, but stay flexible w.r.t. PDE (focus on hyperbolic conservation laws and high-order DG)
- Load balancing and adaptive mesh refinement via Peano4

atmospheric flows

relativistic astrophysics (Durham University)

earthquake dynamic rupture

¹Reinarz et. al., ExaHyPE: An engine for parallel dynamically adaptive simulations of wave problems. Comp. Phys. Comm. 254, 2020. https://doi.org/10.1016/j.cpc.2020.107251

ADER-DG

- High-order hyperbolic PDE solver
- Discontinuous Galerkin with ADER time stepping
- Piecewise polynomials within cells
- One data exchange per timestep
- Predictor-Corrector scheme

$$\int \partial_t U * \phi \, dx = \int F * \nabla \cdot \phi \, dx - \oint (F * \phi) \cdot \overrightarrow{n} \, ds \tag{1}$$

Why Reduced Precision?

Speedup may result from:

- higher effective vectorization
- reduced bandwidth
- holding data in lower caches

Precision	Significand bits	Exponents bits	Max. exponent	Decimal digits
bf16	7	8	127	≈ 2.5
fp16	10	5	15	≈ 3.3
fp32	23	8	127	≈ 7.2
fp64	52	11	1023	≈ 16
fp128	112	15	16383	≈ 34

The respective distribution of bits in different signed floating-point formats

Cost of Reduced Precision

Variable precision

- Different precisions in different parts of domain
- Analogous to adaptive refinement
- Capture complicated but local phenomena with higher accuracy, and use lower precision for the rest of the domain

Variable precision simulation of the Tohoku, model see e.g. ³

³Rannabauer et. al., ADER-DG with a-posteriori finite-volume limiting to simulate tsunamis in a parallel adaptive mesh refinement framework. Computers & Fluids 173, DOI: 10.1016/j.compfluid.2018.01.031

How to implement variable precision

- ExaHyPE 2 generates C++ code using Python
- Code generation relies on Jinja2 templates
- Conditionally deactivate each solver on parts of the domain
- At the interface send projections to other solver.
- Synchronize timesteps

Architecture of the Peano 4 project 4

 $^{^{4} \}verb|https://hpcsoftware.pages.gitlab.lrz.de/Peano/db/d3f/page_architecture_home.html|$

SWE

- Movement of a shallow fluid
- Constant water height over circular bathymetry
- Should lead to symmetric waves moving outward

The circular dam break initial condition used for verification of the shallow water equations.

SWE

- Clear difference in quality between both halves of the domain
- fp16 produces spurious oscillations, particularly along wave fronts
- Oscillations propagate back into the left half
- about half of the domain each in fp16 and fp64

Elastic Planar Waves

- Propagation of waves through heterogeneous media
- Sinusoidal starting conditions propagate through the domain without deformation
- We simulate two full grid traversals
- about half of the domain each in bf16 and fp32

The planar-wave initial condition used for verification of the elastic equations. $\cos(-\pi * x)$

Elastic Planar Waves

Elastic Planar Waves perpendicular to the split

The LOH1 Benchmark

- Elastic wave propagation
- Single point source in an infinite domain
- · Free surface at the top
- One layer with different material properties

Geometry of the LOH1 problem as defined in the SISMOWINE collection (http://www.sismowine.org/)

Curvilinear models

- Perfectly matched layers (PML) as boundary conditions
- Curvilinear meshes approximated by coordinate transformation
- Requires e.g. fluxes to take into account the projection
- In particular the Riemann solver is more numerically complicated

Curvilinear meshes and coordinate transformation ⁶

⁶Duru et al. A stable discontinuous Galerkin method for the perfectly matched layer for elastodynamics in first order form. Numer. Math. 146, 2020. DOI: 10.1007/s00211-020-01160-w

LOH₁

- ^{9×8×11}/_{27³} or ^{14×20×19}/_{81³} fp32 cells around point source and receiver
- about respectively 4% or 1% of domain in fp32
- All else computed in bf16

Impact on Performance

- CPU time of the three most time-intensive ADER-DG kernels, measured using Intel VTune
- 27³ cells, with about 4% of domain in fp32, rest in fp64
- Variable-precision about 25% faster than fp64, as opposed to about 37% reduction for pure fp32

Conclusion

- By coupling two separate solvers in ExaHyPE 2, we can create a variable precision implementation of ADER-DG.
- This method works, and has no negative impacts on the solution
- However, artificial waves caused by the low-precision propagate into the high-precision region, affecting the solution there
- Variable precision is therefore most beneficial when a specific area of interest can be defined, and local features of the solution are the main sources of error.

Thank you for your attention