
Accessible Ratio-Specific Mixing:
Single-Pressure-Driven Multi-Reagent Mixer Design

and Synthesis for 3D-Printed Microfluidics
Yushen Zhang1∗, Debraj Kundu1∗, Tsun-Ming Tseng1, Sudip Roy2, Shigeru Yamashita3, Ulf Schlichtmann1

1Technical University of Munich, 2Indian Institute of Technology Roorkee, 3Ritsumeikan University
1{yushen.zhang, debraj.kundu, tsun-ming.tseng, ulf.schlichtmann}@tum.de, 2sudip.roy@cs.iitr.ac.in,

3ger@fc.ritsumei.ac.jp
∗These authors contributed equally.

Abstract—Precise reagent mixing in user-defined ratios is
a fundamental requirement in many microfluidic applications,
including diagnostics, chemical synthesis, and biological assays.
However, existing solutions for ratio-specific mixing often rely on
complex active components, such as multiple pressure sources,
flow controllers, or on-chip valves, making them costly, bulky,
and unsuitable for portable or low-resource settings. In this
work, we present a mixer design and a synthesis method for
generating 3D-printable microfluidic devices that achieve ratio-
specific mixing using only a single constant pressure source.
Our method decomposes the desired mixing ratio into additive
subcomponents, each represented by a dedicated inlet channel
with a tailored length to enforce the correct hydraulic resistance.
The method outputs a complete microfluidic layout, ready for
direct fabrication via 3D printers. We validate our approach
through numerical simulations and physical prototyping across
eight diverse mixing scenarios. Results show that the achieved
mixing ratios closely resemble the target, demonstrating the
method’s accuracy and robustness. This work enables low-cost,
portable, and accessible microfluidic devices for ratio-specific
solution delivery, broadening the scope of microfluidics in settings
where simplicity, reproducibility, and affordability are critical.

I. INTRODUCTION

Microfluidics has emerged as a transformative technology
across various scientific and industrial domains, enabling
precise control and manipulation of fluids at the microscale.
Precise reagent mixing in microfluidic systems is a critical
requirement across various applications in diagnostics [1],
chemical synthesis [2], and biological assays [3]. In these
contexts, the ability to accurately combine multiple reagents in
arbitrary, user-defined ratios is often essential for ensuring ex-
perimental validity and reproducibility. Traditionally, achiev-
ing such ratio-specific mixing has required either complex
external instrumentation, such as multiple pressure sources,
flow sensors, or on-chip valves. These systems, while effective,
tend to increase cost, size, and operational complexity, which
can hinder deployment in portable or point-of-care settings.
Furthermore, scaling up such solutions for high-throughput
or parallelized operations becomes cumbersome due to the
increasing demand on external control hardware. Moreover,
most conventional microfluidic chips are fabricated using

cleanroom-dependent processes like soft lithography. These
methods are not only labor-intensive and expensive but also
present a high barrier to entry for rapid prototyping or broad
deployment outside well-equipped labs. In contrast, the rise
of low-cost, high-resolution 3D printing technologies offers
a promising alternative: fully digital, maskless fabrication of
microfluidic devices with customized internal geometries [4].

Despite this opportunity, existing design approaches for
passive microfluidic mixing are either limited to fixed, pre-
determined ratios or require manual trial-and-error to adjust
channel lengths and resistances to match a desired output ratio.
This process can be time-consuming and error-prone, particu-
larly as the number of reagents or the complexity of the target
ratio increases. Moreover, most available passive designs, like
those depicted in Fig. 1, mostly focus on the homogeneity
of the mixture and have only symmetric (e.g., 1:1) mixing
ratios, inherently constraining the flexibility of the achievable
ratios [5], [6]. Some recent efforts have explored randomized
channel layouts to enhance mixing through chaotic advection.
Wang et al. and Agrawal et al. explore the use of randomized
spatial layouts to enhance mixing efficiency in passive systems

Outlet 

Pressure Source 

𝑎: 𝑏: 𝑐

𝑎ଵ 𝑏 𝑎ଶ 𝑐

Serpentine 

Staggered Curved 

P-ASAR 

Random Design 

Proposed μ-MM 

Rib-Roughened 

Splitter 

Reagent 
Reservoir 

Single-Pressure-Driven Input Existing 

Fig. 1. Comparison of existing passive micromixer designs (left) and our
proposed ratio-specific mixing layout (right). While traditional designs focus
on homogeneity of the mixture, our method synthesizes a microfluidic network
tailored for ratio-specific mixing for multiple reagents by decomposing each
reagent’s contribution (e.g., a = a1 + a2) into smaller subflows.



[7]–[9], but these approaches focus on homogenizing mixtures
of sample and buffer only rather than achieving precise ratio
control, particularly when multiple reagents must be combined
in exact proportions.

In this work, we introduce µ-MM—a tree-shaped mixer de-
sign and a deterministic, algorithmic design synthesis method
for generating 3D-printable microfluidic chips that produce
multi-reagent target ratio mixing using only a single constant
pressure source. Utilizing just a single pressure source along
with 3D-printed chips makes this method highly appealing for
portable, disposable, or low-cost diagnostic platforms, as well
as for applications where power and equipment limitations
prevent the use of active components. Our key idea is to de-
compose the given volumetric contribution of each reagent into
smaller additive units. We will treat these units as inlet flow
rates, which will serve as the basis for designing a microfluidic
chip employing the electronic-hydraulic analogy. For example,
a target ratio of 32:10:5 might be restructured as 16:8:8:4:6:5.
These subcomponents are then treated as individual inlet flows,
each routed through a channel with a precisely computed
length to enforce the correct hydraulic resistance. Under a sin-
gle shared pressure source, the system naturally balances flow
rates such that the final mixture matches the desired ratios. To
further enhance mixing performance without requiring active
components, our algorithm strategically shuffles and reorders
the subcomponents spatially across the device. This promotes
greater interleaving of reagent flows, increasing the “spectrum
width” of the laminar flow and improving homogeneity at
the output. Our synthesis generates a complete chip design
including inlet assignments, channel geometries, and exact
3D dimensions. The resulting file can be directly exported
for additive manufacturing using 3D printers, removing the
need for cleanroom facilities or manual tuning. We validate
our approach by synthesizing and testing eight different chip
designs, targeting both real-world and synthetic mixing ratio
requirements. Simulation results show that the final output
closely matches the intended mixing ratios, with minimal
deviation. We also fabricate prototypes using hobby-grade 3D
printers, demonstrating the manufacturability of our proposed
synthesis results.

In summary, our work addresses a key gap in microfluidic
design by enabling automatic generation of single-pressure,
ratio-specific microfluidic mixers that are readily manufac-
turable via 3D printing. By shifting complexity from external
hardware into algorithmic design, we lower barriers to adop-
tion while expanding the practical capabilities of 3D-printed
microfluidics for real-world applications. Our contributions are
multi-fold:

• First, we propose a tree-shaped mixer design that enables
multi-reagent mixing in specific ratios using a single
pressure source, thereby reducing the need for complex
external equipment and enabling low-cost microfluidics.

• Second, we propose a novel algorithm that decomposes
the ratio proportions into smaller values based on a
division approach to increase the homogeneity of the
mixed solution.

• Third, we propose a method that considers each decom-
posed ratio-proportion as a flow rate for each inlet and
defines the corresponding mix-flow tree.

• Fourth, we introduce a placement and routing method that
synthesizes the chip layout based on an electrical circuit
analogy and outputs 3D-printable design files.

The remainder of this paper is as follows: Section II in-
troduces the background and related works; Section III details
the proposed single-pressure-driven ratio-specific mixer design
synthesis; Section IV presents the experimental results, with
the conclusion provided in Section V.

II. MICROFLUIDIC MIXING

Mixing accuracy during multi-reagent mixing directly im-
pacts result reliability and resolution, particularly when reagent
concentrations or reaction kinetics are critical for specific bio-
chemical applications. In biochemical assays and diagnostics,
controlled mixing of enzymes, buffers, and samples is essential
for detecting biomarkers via enzyme reactions, immunoassays,
or nucleic acid amplification (e.g., PCR) [10]. Creating precise
concentration gradients of candidate drugs in microchannels,
vital for dose-response studies, relies on accurate mixing of
stock solutions [11]. A particular challenge in mixing arises
when the task is not simply to mix two fluids uniformly, but
to mix multiple reagents in precise, user-defined ratios. This
requirement is common in gradient generation [12], parallel
assays [10], and combinatorial synthesis [13]. Achieving such
targeted mixing ratios in a robust and programmable manner
adds another layer of complexity to the design process, as
it requires both accurate fluid handling and control over the
spatiotemporal distribution of the flow.

Microfluidic mixers are broadly categorized into passive and
active designs. Passive mixers, favored for their simplicity,
ease of integration, and lack of external power, rely on chan-
nel geometry and flow (e.g., serpentine channels, staggered
herringbone mixers, T-/Y-junctions) to stretch and fold fluid
interfaces, accelerating diffusion [6], [14]. Active mixers, con-
versely, use external forces like acoustic waves [15], electric
fields [16], or magnetic stirrers [17] to dynamically perturb
flow and promote mixing, though this adds complexity and
integration challenges. Designing mixers for specific, multi-
input mixing ratios is less explored and often done ad hoc or
manually. To address this, several computational and algorith-
mic design synthesis methods have been proposed. Tree-like
dilution networks are a common approach [18], that generate
a sequence of mixing steps to approximate desired concentra-
tions. Some leverage analytical models of flow and mixing,
optimizing channel geometries or flow splits to approximate
desired outputs [14]. Others use graph-based methods [18]–
[20], and aim to reduce reagent usage and minimize mixing
steps. However, to generate the actual target ratios from those
mixing sequences, we need additional scheduling, placement
and routing operations for respective fluids. More recent work
applies artificial intelligence or machine learning to automate
design exploration [21], [22]. However, these methods merely
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Fig. 2. Overview of proposed synthesis method.

focus on homogeneity and scalability, and less on the accuracy
of multi-reagent ratio control.

Despite these advances, there remains a need for a sys-
tematic and scalable synthesis method that can automatically
generate microfluidic mixer designs capable of producing pre-
cise and arbitrary mixing ratios across multiple inputs, while
being compatible with affordable 3D printing microfluidic
fabrication.

III. DESIGN SYNTHESIS METHOD

To enable passive, ratio-specific mixing of multiple reagents
using a single pressure source, we propose a two-stage design
synthesis method, as depicted in Fig. 2. Given a target ratio,
in the first stage, our approach deterministically partitions and
decomposes the ratios into sub-ratios and constructs a tree-
shaped flow graph that ensures exact volumetric contributions.
In the second stage, based on the electronic-hydraulic analogy,
we determine the exact lengths of the channels corresponding
to edges of the flow graph and generate an optimized layout
placement of the channels utilizing constraint optimization
programming to minimize the layout area.

A. Ratio Decomposition and Mix-Flow Tree Generation

Passive micro-mixers offer the advantage of eliminating
external actuation systems, relying instead on channel geom-
etry and internal fluid dynamics to achieve mixing. However,
this simplification in actuation often comes at the cost of
complex internal geometries designed to promote diffusion
and mixing. To reduce this geometric complexity while still
ensuring homogeneous mixing, we propose a deterministic
synthesis method that generates a tree-shaped passive mixer
optimized for a given target mixing ratio.

Given a target ratio T = r1 : r2 : · · · : rn, where
ri ∈ N denotes the volumetric contribution of the ith reagent,
our method constructs a flow graph referred to as mix-flow
tree G, where (1) each leaf node corresponds to an inlet, (2)
internal nodes represent channel junctions, (3) the root node
corresponds to the final outlet of the mixer, and (4) edges
represent channels and the edge weights denote the assigned
flow rates. The G implies a sequence of flow mixing, where
each internal node has exactly two in-edges and one out-edge.
The goal is to construct a layout corresponding to a G, where

all inlets can be driven by a single pressure source, and the
resulting solution at the outlet accurately reflects the target
ratio.

Simple one-step or sequential mixers are limited in their
ability to control interfacial diffusion between reagents, which
affects mixing quality. To enhance diffusion and homogeneity,
we decompose each reagent’s volumetric contribution into
multiple sub-volumes, treating them as unique flow rates at
different inlets of the µ-MM. This results in more junctions and
more interleaving of reagent fronts, thereby increasing mixing
efficiency. To perform this decomposition in a structured and
controllable manner, we represent each ri in a chosen base d
as ri(base d) = ri,1 ri,2 · · · ri,k−1 ri,k, allowing us to express
each quantity as a sum of scaled powers of the base:

ri = ri,1 · dk−1 + · · ·+ ri,k−1 · d1 + ri,k · d0,

where ri,t ∈ N0 for t ∈ {1, 2, ..., k} are the coefficients in
the base d representation. For each term ri,t · dk−t, we define
vi,t = ri,t · dk−t, and treating it as the tth decomposed value
of ri. For instance, if ri = 111, k = 3 and d = 8, then
111 = 1 · 82 + 5 · 81 + 7 · 80, i.e., 111(base 8) = 157, where
ri,1 = 1, ri,2 = 5, ri,3 = 7, and similarly vi,1 = 1 · 82 =
64, vi,2 = 5 · 81 = 40, vi,3 = 7 · 80 = 7.

Moreover, the number of decomposed values (here k) is
considered as the decomposition size. The positive decom-
posed values vi,t are used to construct the mix-flow tree,
where they are considered as flow rates at different inlets
of µ-MM to collectively preserve the total reagent volumetric
ratio at the outlet. To have a balanced layout with proportional
channel lengths and an improved mixing quality, we need to
choose a suitable decomposition size. For n reagents and a
decomposition size of k, the number of leaf nodes (inlets)
will be in the range of [n + k − 1, n · k], while internal
nodes (junctions) in the resulting tree (layout) lie between
[n + k − 2, (n · k) − 1]. Since the design complexity of the
layout is proportional to the number of inlets and channel
junctions, for simplicity, in this work, we consider k to be in
the range of [3, 5]. In general, n ranges between [2, 10], so for
the most complex layout we will have 49 channel junctions,
where n = 10 and k = 5.

Once k is chosen, we need to select the base d for each
reagent ri. To get a suitable decomposition of the reagents,
we first determine the valid range of base values d ∈ N. Let
r̄ = max(r1, r2, . . . , rn). Then, a valid d ∈ N must satisfy:

dk−1 ≤ r̄ ≤ dk and 2 ≤ d ≤
⌊
r̄1/(k−1)

⌋
.

For instance, T = 41:11:111:13:4 and k = 3, then d must
satisfy d2 ≤ 111 ≤ d3 and 2 ≤ d ≤ 111

1
2 . From these two

constraints, we can derive the list L = {5, 6, 7, 8, 9, 10} of
valid bases d. Now, for an ri, we can compute vji,t = ri,t ·dk−t

j

for each dj ∈ L to compose a decomposition list:

Di,j =
[
vji,k, v

j
i,k−1, . . . , v

j
i,1

]
dj

,

Accordingly, for each ri, we compute all the corresponding
decomposition lists Di,1, Di,2, · · · , Di,|L|, from which we will



choose the “best” base. Specifically, we select the dj (where
j = [1, |L|]) as the “best” for which the smallest decomposed
component (vji,k = ri,k · d0j ) is maximized and the largest
(vji,1 = ri,1 · dk−1

j ) is minimized. Simultaneously, we also
prioritize those lists Di,j which have the most number of zeros
(vji,t = 0), promoting balance and minimizing unproportional
channel lengths in the layout. After selecting the “best” dj for
each ri, we store them in a list D and construct the matrix V
of size n× k, consisting of decomposed values vji,t:

V =


vji,1 vji,2 · · · vji,k

... · · · · · ·
...

vj
′

i′,1 vj
′

i′,2 · · · vj
′

i′,k

 .

Finally, the proposed mix-flow tree G is generated using V ,
where the number of positive vji,t (> 0) denotes the number
of leaf nodes in G, and vji,t is the leaf-edge weight. We go
through each column of V from left to right, pick pairs of
positive values, and use them as leaf edge weights to build
the G. After merging the selected pairs of edges, we get a
new set of internal nodes. Considering the edge weights of
these internal nodes as the sum of their in-edge weights, we
recursively choose two nodes at a time and merge them till
we get the root node of the mix-flow tree. For the previous
example T = 41:11:111:13:4 and k = 3, the list D, the matrix
V and the corresponding mix-flow tree are shown in Fig. 3.
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Fig. 3. Overview of ratio decomposition strategy. For T = 41:11:111:13:4
(a) the chosen list of the base values D and the matrix V are determined.
Then (b) pairs of values from V are selected to construct (c) the respective
mix-flow tree G.

B. Layout Generation and Hydraulic Resistance Modeling

The mix-flow tree G encodes the hierarchical mixing struc-
ture and flow ratios of the target mixture. To minimize total
channel lengths and enhance layout compactness, our method
allows some lower-level nodes in G to be elevated to higher
levels, as illustrated in Fig. 4. This transformation helps reduce
path lengths and results in an ordered tree G′ that informs
the physical layout. Our layout generation algorithm translates

this abstract tree into a planar, block-based design, where the
edge weight of the ith edge corresponds to the flow rate Qi.
Since the flow rate is based on the hydraulic resistance, and the
resistance is proportional to the length li of each microfluidic
channel, we achieve the desired mixing ratios by carefully
adjusting the lengths of channels from the inlets to the outlet.
In this way, the abstract contribution values computed in
the tree are faithfully realized as physical flow paths with
proportional resistances.

To systematically construct the layout, we adopt a multi-
level block placement strategy, as illustrated in Fig. 5, where
each edge in G′ corresponds to a physical building block.
Specifically: (1) each leaf edge ei of G′ is assigned an
inlet block αi, (2) each internal sibling edge pair (ej , ej+1)
corresponds to a merging block βk.

Each inlet block is characterized by three parameters: height
(h), width (w), and channel length (l). To simplify alignment
and fabrication, the values of h and w are fixed for all inlet
blocks. An inlet block αi is composed of a serpentine channel
si and a short connecting channel ci, where li = |si|+|ci|. This
length determines the hydraulic resistance of the inlet channel
and thus controls the flow rate for a given input pressure.

Inlet blocks are arranged horizontally following the order
of the leaf nodes in G′. Each merging block receives two
inputs inleft and inright, merges the underlying outputs, and
produces one output out. Its width (w) is the sum of the widths
of the merged underlying blocks. To maintain uniform vertical
alignment, all outlets at the same level share a common Y-
coordinate (yout), ensuring uniform block height (h), which is
calculated as h = yout − yinright

, as shown in Fig. 6.
The merging block composes two straight connecting chan-

nels cleft and cright, merging the output from the left and right
underlying blocks. The length of cleft and cright is calculated
by the Euclidean distance between the corresponding input
and the output of this block.

To ensure correct flow distribution across all branches,
we model the fluid dynamics using the electronic–hydraulic
analogy under laminar flow. In this analogy: (1) flow rate
Q corresponds to electric current, (2) pressure drop ∆P
corresponds to voltage drop, and (3) hydraulic resistance,
proportional to the channel length l, corresponds to electrical
resistance.

Fig. 4. Transformation of the hierarchical mix-flow tree into an ordered
tree representing the layout for µ-MM. The initial tree (left) encodes the
target mixing hierarchy and flow contributions. To reduce the total channel
length in the physical realization, some nodes are elevated to higher levels,
resulting in the ordered tree (right). It serves as an intermediate, layout-aware
representation that informs the final planar physical design.
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In order to maintain the correct flow rate ratio at each
junction, we will use the previously mentioned analogy to
consider the length of the connecting channels. By applying
the analogy, Hagen-Poiseuille’s law can be simplified as:
∆P = QRH , where Q and RH define the volumetric flow
rate and the hydraulic resistance, respectively.

As our proposed µ-MM is single-pressure-driven, the in-
coming pressure at each inlet is the same. Hence, two paths
starting from any two inlets and having a common junction
in G′ are analogous to a parallel connection in an electric
circuit. Which implies that the pressure drops along both paths
are equal: ∆Ppath1 = ∆Ppath2. For instance, in Fig. 4, the
pressure drop at the ath junction is Pin−Pa, while the channel
lengths li must satisfy l1 ·Q1 = l2 ·Q2. Similarly, for two paths
across multiple levels, such as (l3, l8, l9) : (l6, l10), merging
at the outlet node, the pressure drop is Pin − Pout, where we
have l3 ·Q3 + l8 ·Q8 + l9 ·Q9 = l6 ·Q6 + l10 ·Q10.

All layout constraints are defined in a constraint optimiza-
tion programming (COP) formulation that includes: (1) correct
flow distribution through recursive resistance matching, (2)
geometric alignment across block levels, (3) layout constraints
such as channel length, number of turnings of the serpentine,
and serpentine properties, and (4) block height and the output
coordinates, automatically computed based on feasible path
lengths. Here, the objective is to minimize the total channel
length, which implies the optimization of the layout area.
The optimization result ensures that the generated layout
meets all the constraints and is physically manufacturable and
hydraulically functional.

After constructing the full 2D layout, each channel and junc-
tion is annotated with its flow rate and geometric dimensions.
This annotated layout is then converted into a 3D model using
geometric meshing and faceting. The finalized model can be
exported in the standard .STL format for direct fabrication
using commercial 3D printing technologies.

IV. EXPERIMENTAL RESULTS

To validate our proposed µ-MM, we implemented the pro-
posed synthesis method in Java and evaluated its performance

on an Apple Silicon M1 MacBook Pro with 8 cores (4
performance and 4 efficiency) and 16 GB of memory. The
constrained optimization subproblems required for computing
channel lengths and ensuring hydraulic resistance alignment
were formulated as a quadratic mathematical model and solved
using the Gurobi Optimizer [23]. We conducted a series of
experiments and simulations involving both real-world and
synthetic reagent mixing scenarios.

A. Test Cases

We selected four reagent mixing scenarios from common
microfluidic workflows: (1) sample preparation for ChIP as-
say [24], (2) sample preparation for protein electrophore-
sis [25], (3) Taq DNA PCR test [26], and (4) ChIP lysis buffer
preparation [27]. For each case, the desired reagent mixing
ratios were extracted from established laboratory protocols.
Our synthesis method automatically generated customized
microfluidic layouts by decomposing the target ratios into finer
components to match flow volumes under a single pressure
source. The resulting designs include the necessary branching
structures, channel lengths, and inlets to enforce the correct
volumetric contributions via controlled hydraulic resistance.
The generated designs were fabricated using a hobby-grade
3D-printer—Elegoo Mars 5. We validated each design through
finite element simulation using COMSOL Multiphysics [28],
modeling the laminar mixing based on solute concentration.
Given the limitations within COMSOL Multiphysics regard-
ing the visual differentiation of reagents by color, disparate
reagents were modeled by assigning them unique inlet con-
centrations. This approach enabled us to visually distinguish
reagents through color variation. In each case, for contrast and
clarity, solute concentrations were set as follows: R1 = 0.4
mol/L (blue-green), R2 = 0.9 mol/L (red), R3 = 0.65 mol/L
(yellow), R4 = 0.2 mol/L (blue), R5 = 0.75 mol/L (orange), R6
= 0.55 mol/L (yellow-green), and R7 = 0.35 mol/L (cyan). The
simulation results were then compared to the theoretical target
concentrations for each case. Across all four experimental
cases, the simulated outlet concentrations deviated by less than
0.01 mol/L from the expected target values, confirming the
effectiveness and precision of our layout choice and synthesis
method. Figure 7 summarizes the full pipeline for each case:
from input ratio and synthesized layout to 3D CAD model,
printed chip, and final simulation results, while Table I (1)–
(4) summarize the corresponding performance metrics.

In addition to above mentioned four real-world scenarios,
we also evaluated our method on four synthetic mixing ratios.
While figures for these synthetic cases are not included in the
paper, their performance metrics are listed in Table I (5)–(8).

The table reports performance metrics of the testcases as
follows: (i) the spectrum width (i.e., number of unique laminar
sub-flows generated at the outlet), which directly implies the
degree of homogeneity of the mixture at the output; (ii) the
chip footprint, which indicates the size of the synthesized
layout; (iii) the total channel length, which is proportional
to the total hydraulic resistance (RH ) of the chip; (iv) the
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TABLE I
SUMMARY OF CASE STUDIES

Proposed Method Baseline Method

Case Target Ratio Spectrum Width
Chip Footprint

(in µm2)
Total Channel Length

(in µm)
Runtime
(in ms)

Deviation
(in mol/L) Spectrum Width

Chip Footprint
(in µm2)

Total Channel Length
(in µm)

Runtime
(in ms)

(1) 10:15:1:4 7 24031×45000 265330 144 +0.009 30 60247×165000 1930851 194
(2) 67:38:3:67:14:67 12 27559×85000 583689 125 +0.005 88 — — —
(3) 5:6:5:25:4:5 12 49582×85000 433945 145 +0.002 16 19608×85000 549716 201
(4) 26:10:13:12:12:1 12 48073×101000 427578 139 +0.002 74 — — —
(5) 3:1:5:2:1:1:2 9 13126×55000 192293 142 -0.016 15 90194×85000 540345 236
(6) 3:1:2 4 11724×25000 83822 108 +0.006 6 27547×45000 224863 136
(7) 2:1:4:2:1:1:1 8 31265×45000 374986 113 -0.011 13 36732×75000 741057 158
(8) 23:15:11 7 27536×45000 243418 120 -0.012 6 21677×45000 263917 148

∗The dash (—) indicates that the synthesis result will not be available after 5 minutes of runtime.

synthesis runtime; (v) and the deviation between the target
ratio and the simulated result.

B. Baseline Comparison

Since the proposed µ-MM is the first synthesis method
targeting ratio-specific multi-reagent mixing under a single-
pressure input, we introduce a custom baseline for comparative
purposes. The baseline method decomposes all reagent ratios
to units of the smallest ratio value (e.g, 10:4 is decomposed
into 4:4:2:4) and shuffles them to maximize the spectrum
width. For the layout generation, we use the proposed block
placement strategy.

While this baseline generally achieves a broader mixing
spectrum—potentially leading to better homogeneity—the re-
sulting microfluidic layouts typically involve longer channels
and, in most cases, are significantly larger, with more junctions

and inlet branches. This increased complexity implies: (1)
higher material consumption, (2) longer fabrication time, (3)
increased potential for fabrication errors, (4) greater post-print
and post-use cleaning difficulty, and (5) higher flow resistance,
increasing pressure and energy demand. Table I also compares
our method and the baseline across the presented eight cases,
demonstrating the trade-off between mixing granularity and
physical layout complexity. In most cases, our method yields
significantly more compact and manufacturable designs, with
reduced chip footprint and total channel length. While the
baseline exhibits a wider spectrum—indicating improved mix-
ing homogeneity—this comes at the cost of a more complex
channel network and higher total hydraulic resistance RH .
These results highlight the effectiveness of the proposed ratio
decomposition heuristic in balancing homogeneity with layout
efficiency.



V. CONCLUSION

Mixing multiple reagents in precise ratios is a fundamental
requirement in microfluidic systems, with applications ranging
from biochemical assays to molecular diagnostics. However,
designing compact, 3D printing manufacturable chips that
achieve accurate mixing ratios, especially under a single
pressure input, remains a challenge. In this work, we proposed
a novel design synthesis method for ratio-specific mixing
in 3D-printed microfluidic chips. Our approach decomposes
complex reagent ratios into smaller sub-ratios and automat-
ically generates channel layouts with appropriate hydraulic
resistance to ensure accurate volumetric flow under uniform
pressure, with minimal hardware complexity. We validated
the method through a combination of real-world case studies,
synthetic scenarios, 3D printing fabrication, and COMSOL-
based simulations. Across all eight test cases, the synthesized
designs demonstrated excellent mixing ratio precision while
maintaining compact footprints and manageable fabrication
complexity. This synthesis approach offers a scalable, auto-
mated pathway for designing single-pressure, multi-reagent
mixers, potentially democratizing the deployment of custom
microfluidic devices in research and diagnostics.
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