

Network Performance in an Urban Context

Martin Margreiter: Leveraging Wireless Technology for Travel Time Estimation and Traffic Management on Freeways

Leveraging Wireless Technology for Travel Time Estimation and Traffic Management on Freeways

Martin Margreiter

- Department Head Mobility Innovation Campus, IABG, Germany
- German Delegate at PIARC TC 2.4 "Road Network Operation -ITS"
- Partner at MobilityPartners, Germany <u>www.mobility-partners.com</u>
- Lecturer and PhD supervisor at TUM and TUM Asia

Wireless Detection Principle

- Bluetooth or WiFi detectors alongside the road segment.
- Detection of wireless devices on board of vehicles.
- Detection range of several 100 meters.

	Date	Unix time		MAC address		Detector
	26.04.2010 127229 7470		7470	00: 02 :60:0D:AA:EB		А
	26.04.2010	04.2010 127230 106		00: 05 :99:65:40:9A		А
	26.04.2010	127230 1360		00: 07 :00:E8:1A:0F		А
	26.04.2010	127230 1850		00: 06 :30:D4:BA:95		А
	26.04.2010	127230	1860	00: 08	:20:51:B5:6B	А
	26.04.2010	127230	1910	00: 01	:10:FC:B0:EA	А
MAC address	Travel time A->B s		spe	ed :12:9F:44:C6		А
00: 01 :10:FC:B0:EA	100 s		180	km/h	:01:57:52:E7	А
00: 02 :60:0D:AA:EB	4550 s		4 km/h		:10:FC:B0:EA	В
00.02.12.05.44.06	120 c		150	km /h	:60:0D:AA:EB	В
00: 03 :12:9F:44:C6	120 \$		150 KIII/II		:12:9F:44:C6	В
00: 04 :01:57:52:E7	110 s		164 km/h		:01:57:52:E7	В
00: 05 :00:E8:1A:0F	990 s		18 km/h		:00:E8:1A:0F	В
00: 06 :30:D4:BA:95		86 km/h		:30:D4:BA:95	В	
00: 07 :99:65:40:9A		25 km/h		:99:65:40:9A	В	
00: 08 :20:51:B5:6B		220 s	82	km/h	:20:51:B5:6B	В
			02	,		

Example: Bluetooth Detections in Bavaria

- Large Bluetooth detection testbed in Bavaria, Germany.
- Joint testbed of TUM with the Free State of Bavaria, Germany.
- Covering several 100 km in the Southern German freeway network.
- Almost 1 billion individual detections analyzed since 2010.
- Integration of Bluetooth detection in traffic management:
 - Determination of travel times and OD-matrices for the whole freeway network.
 - Automatic incident detection and large-scale re-routing advices to drivers.

Detection Rate Definition

Evaluation of Detection Rates

- Continuous detection rate of 25.6 % over several years.
 - Ranging between 11.7 % and 35.3 % depending on:
 - Truck share.
 - Daily traffic pattern.
 - Sensor location.
 - Sensor installation height.
- International comparison (examples):
 - US: 0.7 46 %
 - China: 5.9 7.4 %
 - Australia: 5 40 %
 - Netherlands: 25 70 %
 - Thailand: 20 90 %
 - Denmark: 4.5 20 %
 - Croatia: 10 12.2 %

- Strong variation between working days and weekend.
- Impact of days with truck driving ban (e.g bank holidays).

Detection Rate: Influence of the Time of Day

• Strong variation depending on the time of the day.

Detection Rate: Influence of Trucks

- Truck share at the testbed:
 - Slight increase over the years.
 - Depending on the road segment in the freeway network ranging between 7.5 % and 25 %.
 - Average throughout the network: 18.1 %.
- Trucks show a higher equipment rate with Bluetooth devices than passenger cars.
 - Significant impact on traffic state detection (truck speed limit in Germany: 80 km/h).
 - Therefore: Truck equipment rate must be included in the traffic state detection.
 - No impact at traffic states with low average speeds (<80 km/h) and in congested situations.
- Determining the Bluetooth equipment rate:
 - Assumption of a similar equipment rate on all segments of the freeway network.
 - Determined Bluetooth equipment rate of passenger cars: 12 17 %.
 - Determined Bluetooth equipment rate of trucks: 65 70 %.

Conclusions

- Constant Bluetooth detection rate of ~25 %:
 - Proven sufficient for traffic state determination.
 - Proven sufficient for OD-matrix calculation.
 - Proven sufficient for automatic incident detection (AID).
 - Truck share has to be taken into account due to higher equipment rate.
- WiFi detection has the same detection principle:
 - Can complement the data collection and provide an even higher detection rate.
 - Detection of multiple devices on board (with WiFi and Bluetooth) is crucial.

References

- Margreiter, Martin (2020). The Impact of Trucks on the Bluetooth Equipment Rate on Freeways. 23rd EURO Working Group on Transportation Meeting.
- Margreiter, Martin; Busch, Fritz; Carstensen, Christian (2019). The Evolution of Bluetooth Detection Rates. Transportation Research Board, 2019.
- Margreiter, Martin; Busch, Fritz (2018). Bluetooth Detection as a Low Cost Data Source for Freeway Management. PIARC International Seminar on Integrated Road Transport and Mobility, Cape Town, South Africa.
- Margreiter, Martin (2018). Bluetooth Technology for Motorway Management and Motorway Technology. PIARC International Seminar on Integrated Road Transport and Mobility, Cape Town, South Africa.
- Margreiter, Martin (2016). Fast and Reliable Determination of the Traffic State using Bluetooth Detection on German Freeways. World Conference on Transport Research, Shanghai China.
- Margreiter, Martin (2016). Automatic Incident Detection Based on Bluetooth Detection in Northern Bavaria. Transportation Research Procedia.
- Margreiter, Martin; Spangler, Matthias; Zeh, Tobias; Carstensen, Christian (2015). Bluetooth-Measured Travel Times for Dynamic Re-Routing. 3rd Annual International Conference on ACE 2015, Singapore.

THANK YOU!

Martin Margreiter, IABG, Germany margreiter@iabg.de

Host – Symposium Sponsor **International Partners National Supporters** NATIONAL ACADEMIES Medicine IRF PIARC SENSE ITSNATI NALS austriatech HELLENIC REPUBLIC **HELLENIC REPUBLIC** MINISTRY OF INFRASTRUCTURE Ministry of Digital Governance AND TRANSPORT HELLASTRON **T**SECAP ASCE *».5 mT