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ABSTRACT 
As a basis for environmental assessments like Life Cycle Assessment (LCA) of large 
building portfolios, extensive image data of building envelopes must be evaluated as 
automatically as possible. This paper addresses the automated detection of both 
elements – e.g., windows, walls, doors – and materials in building facades with uni-
fied machine learning workflows using 2D RGB images. Following a systematic re-
view of existing methods and datasets, two unified segmentation workflows are de-
veloped: Hierarchical Segmentation (HS) and Multi-Task Learning (MTL). HS ex-
ploits the hierarchical relationships between facade elements and materials and de-
ploys a post-prediction clustering approach with Hierarchical Density-Based Spatial 
Clustering of Applications with Noise (HDBSCAN), while MTL leverages shared fea-
ture learning for simultaneous detection. To mitigate limited training data, this work 
introduces the high-resolution segmentation and classification dataset Facades Ma-
terial Munich (FaMatMuc). For the first time, element and material detection for fa-
cade images were combined in one workflow and validated successfully. 
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1. INTRODUCTION  
The construction sector contributes significantly 

to greenhouse gas (GHG) emissions, and therefore 
offers considerable potential for effecting meaning-
ful change, especially given the aging building stock. 
Evaluating the energy performance of existing build-
ings and developing effective retrofitting strategies 
are imperative to achieve substantial reductions in 
emissions and energy costs. Life Cycle Assessment 
(LCA) is the standard methodology for the assess-
ment of environmental impacts and is gaining prom-
inence due to the EU's sustainability reporting 

requirements for larger companies. However, the 
prevailing practice of manual extraction of building 
geometry and characteristics from architectural 
plans and on-site inspections remains a time-con-
suming process, impeding scalability for the assess-
ment of larger building stocks (Dai et al., 2021). Pre-
vious research reveals a significant gap: the ab-
sence of element-material segmentation workflows, 
alongside the lack of high-resolution, diverse da-
tasets for material detection. This paper aims to ad-
dress this research gap by introducing an auto-
mated approach, leveraging a unified workflow for 
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detecting elements – e.g., windows, walls, doors – 
and materials in building facades, thereby enhanc-
ing efficiency and scalability. Automated extraction 
of data on facade elements and materials enables 
downstream processes by enriching simple building 
representations, thereby facilitating the population 
of the inventory analysis phase for LCAs and provid-
ing essential inputs for energy simulation tools that 
model diverse retrofit interventions. Additionally, we 
provide an openly available dataset that enables fu-
ture research in the field and is used to demonstrate 
the efficacy of the developed methods. 

 
2. RELATED WORKS 

Automating the analysis of building facades has 
become a major area of research, driven by the in-
creasing demand for efficient and scalable methods 
to support sustainability efforts. Recent advance-
ments in deep learning and the integration of diverse 
data sources have enabled more comprehensive 
methods for automated assessment of existing 
buildings. For example, Forth, Noichl and Borrmann 
(2024) proposed a multimodal approach that inte-
grates point clouds and RGB data with a component 
database to create an enriched surface model with 
data relevant for LCA. Such semantic enrichment of 
raw input data requires the identification of building 
elements like windows, doors, roofs, and others, as 
well as the materials to obtain the necessary infor-
mation for environmental assessments. 

 

2.1 Computer vision for facade analysis 
Detecting building elements, in conjunction with 

facade parsing (semantic segmentation of facade 
images) has shown notable advancements.  

Modern deep learning techniques, such as Con-
volutional Neural Networks (CNNs) and, more re-
cently, Vision Transformers (ViTs), have surpassed 
traditional rule-based approaches for facade pars-
ing. In this, it has been shown that ViTs for semantic 
segmentation of building elements achieve superior 
performance on established benchmarks in compar-
ison to all previous methods. (Wang et al., 2024) 

Despite these advancements, research address-
ing the semantic segmentation of materials in build-
ing facades remains limited. In a previous study, Ha-
bili et al. (2022) introduced a dataset comprising 
close-up images and hyperspectral data of facades 
from an industrial area in Australia; however, there 
is currently no publicly available semantic segmen-
tation dataset for facade materials that encom-
passes a diverse range of architectural styles and is 
suitable for full-facade analysis. 

A promising approach for material facade parsing 
was proposed by Xu et al. (2023). Since distinguish-
ing features between materials relies more on tex-
tures and patterns than on shapes and colors, the 

authors addressed this using a Multi-Scale Contex-
tual Attention Network, which incorporated trans-
former attention mechanisms to exploit details from 
different scales. However, the approach has several 
limitations. First, the reliance on the simplified as-
sumption that each building consists of only two pri-
mary materials and the challenges of annotating hy-
brid facades led to classification inconsistencies. 
Second, the low image resolution of 2046 x 2046 
pixels and the depiction of multiple buildings in a sin-
gle frame is inadequate for the extraction of fine tex-
tures and patterns, a main objective of the authors’ 
methodology. As a result, the generated segmenta-
tion masks lack sufficient granularity, which makes 
this approach unsuitable for applications such as 
LCA that require finer detail. 

Raghu, Bucher and De Wolf (2023) investigated 
material classification of entire facades by conduct-
ing a comparative analysis of three state-of-the-art 
neural network architectures: a transformer-based 
model, a hybrid CNN-transformer architecture, and 
a purely CNN-based model. These models were 
evaluated on a newly created classification dataset 
with images from five cities. The dataset consists of 
non-rectified images sourced from Google Street 
View, which were annotated image-wise with one or 
more classes. None of the applied models consist-
ently outperformed the others on all data sets. Fur-
thermore, the study was limited to image-level clas-
sification and did not include any form of segmenta-
tion. 

This overview of related works on facade ele-
ment and material recognition reveals that no previ-
ous approach has combined these dual challenges 
using a unified workflow or facilitated shared infor-
mation across tasks. 
 

2.2 Datasets 
The stated approaches employ supervised learn-

ing methods. To enable such applications, there is a 
need for annotated datasets for the training and 
evaluation of segmentation methods. It is important 
to note that the content and labeling approach in 
such a dataset must match the task at hand.  

Table 1 offers a comprehensive overview of the 
main characteristics of available datasets for detect-
ing elements or materials in building facades. It in-
cludes annotated datasets that are publicly accessi-
ble or made accessible for this research. Several an-
notated datasets for building elements have been 
published, whereas the two material datasets indi-
cate that material detection in building facades has 
received comparatively little attention. All datasets 
vary significantly in terms of observed class types, 
annotation quality, resolution, and the way facades 
are captured (single buildings vs. multiple buildings, 
rectified vs. oblique picture frame).
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Table 1: Overview of publicly available facade element and material datasets with key characteristics.  
Refs.: [1] Teboul et al. (2010), [2] Korč and Förstner (2009), [3] Tylecek and Sára (2013), [4] Frohlich, Rodner and 
Denzler (2010), [5] Sun et al. (2022), [6] Kong and Fan (2021), [7] Wang et al. (2024), [8] Gadde, Marlet and Paragios 
(2016),  [9] Habili et al. (2022), [10] Raghu, Bucher and De Wolf (2023). SeSe = semantic segmentation, InSe= instance 
segmentation, OA = object annotation. Common class types abbreviated as s: sky, w: window, d: door 

Dataset Size 

Annotation 
Resolu-

tion 
Image Properties 

Details 

Type Class types  
Single 

Building 
Rectified 

ECP [1] 104 SeSe 7: {s, chimney, roof, w,  
balcony, wall, d, shop} 

404 x 640 ✓ ✓ Haussmannian architecture  

eTRIMS [2] 60 SeSe, 
InSe 

8: {w, wall, d, s, pavement, 
vegetation, car, road} 

768 x 512 
512 x 768 

✓ ✓ Diverse architecture, mainly 
residential in Germany, Swit-
zerland 

CMP [3] 
 

606 SeSe, OA 11: {facade, molding, cornice, pil-
lar, w, d, sill, blind, 

balcony, shop, deco} 

variable 
low 

  Diverse architecture, 
mostly stone and plaster/ 
mortar facades 

LabelMe- 
Facade [4] 

945 SeSe 8: {building, car, d, pavement, 
road, s, vegetation, w} 

683 x 512   Diverse architecture, poor an-
notation quality 

Deep-Windows 
[5] 

1200 SeSe 1: {w} variable   Concatenated dataset 

FacadeWHU 
[6] 

900 SeSe, OA  6: {w, d, wall, balcony, 
road, shop} 

variable   Diverse architecture, strong 
fisheye distortion 

CFP [7] 602 InSe 9: {building, w, d, roof, tree, 
s, people, car, sign} 

variable 
high 

  Diverse architecture 

Paris Art Deco 
Facades [8] 

79 SeSe 7: {d, shop, balcony, 
w, wall, s, roof} 

variable 
low 

✓ ✓ Art-deco buildings in Paris 

LIB HSI [9] 513 SeSe 9: {miscellaneous, vegetation, 
glass, w, brick, concrete, 
blocks, metal, d, timber} 

512 x 512   Light industrial bldgs., close-
up, good annotation quality; 
addn. hyperspectral data 

Urban Re-
source Cadas-

ter [10] 

972 Multi-Label 
Classif. 

8: {brick, stucco, rustication, siding, 
wood, metal, null, other} 

640 x 400   Diverse architecture from 
NYC, Tokyo, Zurich 

 

3. METHODOLOGY 
This paper addresses the research gaps in de-

tecting elements and materials in building facades 
with limited training data, by establishing two unified 
workflows handling both tasks and introducing a 
novel dataset. The contributions of this research are 
as follows, reflecting the order in which they were 
developed and implemented: 

 

• Creation of a unified building element dataset: 
Three popular building element datasets ECP, 
CFP, eTRIMS were merged using a unified tax-
onomy, minimizing the need for additional anno-
tations and allowing simple integration of hetero-
genous element datasets for training. 
 

• Introduction of the FaMatMuc Dataset (Facades 
Materials Munich): A new dataset was created, 
comprising 100 annotated high-resolution im-
ages of building facades in Munich, Germany for 
material semantic segmentation and 541 ex-
tracted patches for material classification. The 
dataset and documentation are available at 
https://github.com/fnoi/famatmuc. 

 

• Development of unified semantic segmentation 
approaches for element and material detection: 
Two semantic segmentation methodologies, 
namely the Hierarchical Segmentation and a 
Multi-Task Learning method, were developed, al-
lowing for sequential and simultaneous predic-
tion of elements and materials in building fa-
cades. 

 
3.1 Hierarchical Segmentation 

The proposed Hierarchical Segmentation (HS) 
method is a sequential method that builds upon the 
hierarchical relationships between the various ele-
ments and materials that comprise a building fa-
cade. Unlike conventional approaches that rely 
heavily on color and shape, this method employs 
patch-based textural and pattern analysis for detec-
tion, thereby fully exploiting the high detail of the de-
veloped FaMatMuc dataset. 

The methodology is visualized in Fig. 1. In the 
first step, instance segmentation for element detec-
tion is performed with Mask2Former (Cheng et al., 

https://github.com/fnoi/famatmuc
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2022) and the identified facade mask is isolated, re-
moving openings and surroundings that do not con-
tain any information about the facade material. Next, 
an optimization algorithm extracts patches by mini-
mizing non-informative (black) pixels, ensuring that 
each patch captures unique and relevant facade re-
gions with a maximum threshold of 10% black pix-
els. In the case of FaMatMuc, these patches have a 
size of 256 x 256 pixels to generally fit within the 
spaces between windows, as these wall sections 
are usually the narrowest ones in a facade. 

Extracted patches are processed in Swin Trans-
former V2 (Liu et al., 2022) for the initial material 
classification. Each patch is stored with its corre-
sponding predicted label and top-left corner coordi-
nates. This mixed type data, containing numerical 
coordinates and categorical predictions, is com-
bined and clustered using Hierarchical Density-
Based Spatial Clustering of Applications with Noise 
(HDBSCAN) (Campello, Moulavi and Sander, 2013) 
to determine arbitrary-shaped clusters while consid-
ering the hierarchical structure and different densi-
ties within each cluster. 

The Gower distance metric is used to homoge-
nize the mixed data (Gower, 1971). This metric 
measures the dissimilarity between data points with 
mixed numerical and categorical variables. For this, 
input data is pre-processed including ordinal encod-
ing of categorical labels and the normalization of 
spatial coordinates. The Gower metric is defined as: 

𝐷Gower(𝑥, 𝑦) = 1 −
1

𝑚
∑𝑠𝑗(𝑥, 𝑦)

𝑚

𝑗=1

,        (1) 

 
where 𝑚  represents the total number of varia-

bles, and 𝑠𝑗(𝑥, 𝑦) is a similarity function for the 𝑗-th 

variable, which is defined based on the type of vari-
able:  

 

𝑠𝑗 =

{
 
 

 
 
1,             if 𝑗 is categorical and 𝑥𝑗 = 𝑦𝑗 ,

0,             if 𝑗 is categorical and 𝑥𝑗 ≠ 𝑦𝑗 ,

1 −
|𝑥𝑗 − 𝑦𝑗|

𝑅𝑗
,              if 𝑗 is 𝑛𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙.

         (2) 

 

𝑅𝑗  denotes the range of the numerical variable 𝑗 . 

Gower’s distance is bounded within the interval 
[0,1] , where 0  indicates that two data points are 

identical, and 1 indicates maximum dissimilarity. 
The hyperparameters for the patch clustering algo-
rithm were selected based on the recommenda-
tions of the developers of HDBSCAN. The mini-
mum cluster size is set to be at least three patches 
or 5% of the total number of patches. The minimum 
samples parameter, which defines the number of 
neighboring points required for a data point to be 

Fig. 1: HS workflow; from RGB input to material clusters 
via segmentation, patch extraction, clustering and major-
ity-voting classification 
 

considered a core point, is set to the maximum of 1 
point or 5% of the total number of patches. 

The HDBSCAN algorithm is applied to determine 
coherent patch clusters. Within each cluster, a ma-
jority voting mechanism is applied on the patches to 
assign the most frequently predicted label to the en-
tire cluster. The result is a detailed map of the pre-
sent facade materials, minimizing classification 
noise stemming from individual patches. 

However, it is important to note that since the ex-
tracted patches do not cover the entire facade and 
are passed through a classifier, this method does 
not aim to perform pixel-wise material segmentation. 
Instead, it offers a practical approach to estimate the 
present materials, their location and coverage 
based on close-up facade patches, providing valua-
ble information for further analysis. 

 
3.2 Multi-Task Learning 

The second presented approach particularly ad-
dresses the challenges of material detection and 
limited data availability by facilitating shared infor-
mation across prediction tasks and offering simulta-
neous prediction of elements and materials in build-
ing facades. For implementing the Multi-Task 
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Learning (MTL) method, DeepLabv3+ (Chen et al., 
2018) was selected due to its competitive perfor-
mance on urban street scene datasets and its adapt-
ability to MTL approaches that allowed changes in 
the network’s architecture. To address the dual-
task, a task-specific decoder is designed with a cor-
responding head – the element head and the mate-
rial head – to generate predictions for their respec-
tive tasks. Figure 2 illustrates the structure of the 
MTL framework. During the forward pass, the input 
image is processed through the shared ResNet-101 
backbone and the Atrous Spatial Pyramid Pooling 
(ASPP) module, extracting rich multi-scale features. 
These features are passed to the corresponding de-
coder, element head, and material head, which pro-
duce outputs specific to each task. 

The training process integrates both element and 
material segmentation tasks in a mixed-batch ap-
proach. Each batch contains samples from both 
tasks, which are distinguished by a task index. That 
allows the model to learn simultaneously while ele-
ment and material segmentation losses are com-
puted independently. The model is further improved 
with auxiliary loss heads, which provide additional 
supervision at intermediate layers. According to 
Zhao et al. (2017) the auxiliary loss helps deep net-
works to stabilize and optimize the training process. 
The auxiliary outputs are weighted by an auxiliary 
loss factor of 𝜆𝑎𝑢𝑥 = 0.4 and integrated into the loss 
function, which is optimized by minimizing the cross-
entropy loss. The choice for the auxiliary loss factor 
follows the practice of Zhao et al. (2017). Yang et al. 
(2024) states that while auxiliary losses slightly in-
crease training time, inference time is not increased. 

Cross-entropy losses are defined for the element 
and material task and are combined into one final 
objective function to optimize both tasks, see Eq. 3. 

 
ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝑚𝑎𝑡 + ℒ𝑒𝑙𝑒𝑚

+ 𝜆𝑎𝑢𝑥(ℒ𝑚𝑎𝑡,𝑎𝑢𝑥+ℒ𝑒𝑙𝑒𝑚,𝑎𝑢𝑥), (3) 

where ℒ𝑚𝑎𝑡,𝑎𝑢𝑥  and ℒ𝑒𝑙𝑒𝑚,𝑎𝑢𝑥 are the auxiliary loss 

components for material and element segmentation 
at intermediate layers, respectively. 

The developed MTL network facilitates simulta-
neous training and inference, which allows for pre-
dicting both the semantic segmentation masks of 
building elements and materials. By making use of 
shared features across tasks, the MTL approach 
simplifies training and inference. The method does 
not aim to surpass the latest mean Intersection over 
Union (mIoU) and accuracy metrics achieved by 
transformer networks on building element datasets 
but offers a unified framework with competitive re-
sults to demonstrate the potential of MTL in the con-
text of facade parsing. 

 

Fig. 2: Multi-task learning (MTL) semantic segmentation 
approach for building elements and materials using a 
modified DeepLabv3+ (Chen et al., 2018) architecture: 
ResNet 101 encoder, task-specific prediction heads, and 
a combined loss function to optimize for both segmenta-
tion tasks 
 

3.3 Development of FaMatMuc 
The lack of annotated datasets for semantic seg-

mentation and material detection in building facades 
is addressed through the development of a high-res-
olution dataset. To support the proposed ap-
proaches, a dedicated material dataset was created 
with two types of annotations, semantic segmenta-
tion masks and classification labels. The semantic 
segmentation dataset comprises 100 high-resolu-
tion images of building facades; the classification 
dataset includes 541 patches extracted from the 
captured images. This dataset primarily features 
single residential and office buildings taken from a 
frontal perspective in Munich, Germany. Efforts 
were made to ensure adequate representation of all 
targeted material classes (stucco, brick, stone, con-
crete, glass and timber). However, some class im-
balance was observed due to the frequency of these 
materials in the city of Munich. An additional bias ex-
ists in the dataset, as the buildings captured for this 
dataset were selected based on accessibility and 
visual distinctiveness. The data was collected in 
January 2025 under clear, sunny weather conditions 
with mostly no leaves on trees and bushes. 
The photos were taken using a Sony a7r III camera 
equipped with a Sony FE 16-35mm F/2.8 GM lens, 
enabling the capture of entire facades even from rel-
atively short distances. Each image has a resolution 
of 5304 x 7952 pixels, which provides fine details for 
facade element segmentation and material classifi-
cation. High-resolution images allow for the extrac-
tion of close-up areas of the captured photos while 
keeping a high level of detail, which supports the HS 
approach. 
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Fig. 3: Sample from the FaMatMuc dataset: The image 
has a resolution of 5304 x 7952 pixels and shows the front 
view perspective of a five-story residential building with a 
concrete base and a timber main facade 
 

Due to the narrow streets and high buildings, 
most photos exhibit noticeable perspective distor-
tion. Figure 3 shows a sample facade image from 
the collected dataset, Fig. 4 presents samples of the 
extracted patches. The images were used as-is for 
semantic segmentation labeling without prior un-
distortion. To maintain consistency in close-up 
patches for the hierarchical approach, 541 patches 
of size 256 x 256 were extracted from the high-res-
olution images prior to classification annotation. This 
patch size was chosen to align with the HS frame-
work. 

The proposed material classes were selected 
considering their prevalence in Central European ar-
chitecture. Metal and plastic were excluded because 
they are less frequently observed and exhibit vari-
ous appearances. These materials and any others 
not explicitly defined are included within the "other" 
class to ensure coverage of materials not repre-
sented in the predefined labels. Furthermore, a 
"background" class was introduced for semantic 
segmentation to segment parts of the image that do 
not provide material information about the facade. 
Table 2 presents a detailed description of the pro-
posed classes. 

To support the HS approach, 541 patches were 
annotated for the classification task; for the MTL ap-
proach, semantic masks were created to enable 
pixel-wise segmentation tasks. The annotation pro-
cess was conducted by the first author and is vali-
dated by an additional expert.  

The annotation strategy was designed to support 
LCA and energy performance analyses by allowing 
the identification and quantification of building mate-
rials significantly influencing environmental and en-
ergy-related outcomes. A special focus is laid on the 
necessary granularity, ensuring annotations are 
suitable for such applications.  

Fig. 4: Samples of 10 representative patches (out of 541 
extracted), each with a size of 256 x 256 pixels, anno-
tated with their identified material labels  
 

Thus, the primary goal is to facilitate the accurate 
processing of material areas in subsequent analysis 
steps while keeping the annotation process man-
ageable in terms of time and effort. However, the 
calculation of the material area falls outside this re-
search’s scope. To achieve the necessary detail 
while being time-efficient, several key decisions 
were made to define the level of detail and stream-
line the workflow.  

To remain practicable, minor functional compo-
nents and occlusions such as rain gutters, street fur-
niture, and vegetation were labeled according to the 
underlying material if identifiable. Assuming that 
omitting these elements would not significantly im-
pact overall material area calculations but would in-
stead improve surface area estimations. A stream-
lined approach was adopted for efficient annotation: 
if a facade wall consisted of a single material, the 
entire facade was selected as a single region, and 
inner elements, such as windows or doors, were 
"punched out" in a subsequent processing step. This 
was achieved by defining priority values for the ma-
terials when loading the data and drawing the se-
mantic segmentation masks.  
The following order is used: 1.) stucco 2.) brick 3.) 
stone 4.) concrete 5.) timber 6.) other 7.) glass. The 
time required to annotate a single image varied sig-
nificantly depending on the complexity of the build-
ing facade but is estimated to be, on average,  

Fig. 5: Pixel-wise class distribution of FaMatMuc, contain-
ing 100 annotated images  
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approximately 15 minutes per image. Figure 5 
shows the class distribution of the FaMatMuc 

dataset for semantic segmentation. The distribution 
shows a significant class imbalance. 

 
Table 2: Visual description, typical use and material properties of FaMatMuc material classes 

Material Visual Description Typical Use / Properties 

Stucco Mostly uniform color, smooth and flat surface, fine to me-
dium grain. Features include color uniformity and smooth 
texture. 

Commonly used as a finish for composite insu-
lation systems; durable but prone to cracking 
over time. 

Brick Regular pattern, usually reddish or brownish, with visible 
mortar lines. Features include color patterns and regular  
brick alignment. 

Widely used in both traditional and modern fa-
cades; durable, low-maintenance, and recycla-
ble. 

Stone Varied texture, rough or smooth; visible layers; usually 
larger than bricks. Features include texture variations, 
color differences, and block size. 

Often used for decorative or structural pur-
poses; highly durable and weather-resistant, re-
cyclable. 

Concrete Gray, smooth, or slightly rough with occasional imperfec-
tions. Features include general color uniformity and sur-
face imperfections. 

Common in construction for structural and aes-
thetic purposes; strong, durable, and versatile; 
limited recyclability. 

Glass Reflective surface, often smooth and uniform. Features in-
clude reflectivity and general smoothness. 

Common in buildings for windows and facades; 
provides transparency and aesthetic appeal; 
high recyclability. 

Timber Grainy patterns, often brownish or beige tones. Features 
include color variations and large-scale patterns. 

Used in wooden cladding or decorative facades; 
requires maintenance to prevent decay; high re-
cyclability. 

3.4. Merged Building Element Dataset 
To address the challenges of limited data availa-

bility and geographical restrictions, this work merges 
three existing element datasets using a unified tax-
onomy, creating the Merged Building Element Da-
taset (MBED), as shown in Tab. 3. Classes that are 
not relevant for facade segmentation are disre-
garded in this projection. Additionally, roof annota-
tions were incorporated into the eTRIMS dataset to 
ensure uniform labeling across all datasets. Each 
dataset is assigned to a unique identifier, which al-
lows the data loader to apply the corresponding tax-
onomy mapping during data loading. 

In this study, MBED is used for training of ele-
ment detection in the HS pipeline, as it substantially 
increases training data. For the MTL pipeline, MBED 
is not used, as it mainly consists of CFP images, 
which primarily feature Chinese architecture – in-
cluding materials beyond the scope of this research. 
Additionally, CFP images differ significantly from 
typical image frames, often depicting multiple fa-
cades in a single shot, whereas eTRIMS and ECP 
typically contain only one facade per image. 

 
 
 

 
 
 
 
 
 
 
 

 
Table 3: Unified taxonomy mapping for CFP (602 im-
ages), eTRIMS (60 images) and ECP (104 images); for 
references see Table 1 

Dataset Original Class  Projected 
Class 

CFP Building  Facade 
 Window  Window 
 Door  Door 
 Roof  Roof 
 Tree  Vegetation 
 Sky  Sky 
 People  - 
 Car  Car 
 Sign  - 

eTRIMS Window  Window 
 Wall  Facade 
 Door  Door 
 Sky  Sky 
 Pavement  - 
 Vegetation  Vegetation 
 Car  Car 
 Road   

ECP Sky  Sky 
 Chimney  - 
 Roof  Roof 
 Window  Window 
 Balcony  Balcony 
 Wall  Facade 
 Door  Door 
 Shop  - 

 
4. EXPERIMENTS & RESULTS 

To validate the proposed methods, the models 
were trained and tested on ECP, merged ECP & 
eTRIMS, and further evaluated with a dedicated 
Case Study dataset, which is recorded in the same 
way as FaMatMuc. For this purpose, 12 additional 
images were annotated with semantic segmentation 
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masks for building elements and materials. The ele-
ment annotations adhere to the style of the ECP and 
eTRIMS dataset. Although the limited number of 12 
images does not allow for comprehensive statistical 
conclusions, they serve as a first indicator for vali-
dating the methodology. 

The evaluation is based on common pixel-wise 
metrics for semantic segmentation: Intersection 
over Union (IoU), mean IoU (mIoU), accuracy, pre-
cision and recall (Everingham et al., 2010). 
 
4.1. Implementation 

The presented project was developed in Jupyter 
Notebooks with an NGC container image of PyTorch 
2.5.0 (Paszke et al., 2019) to optimize for NVIDIA 
GPU acceleration. The training process was exe-
cuted on an NVIDIA Tesla V100 with a single GPU 
(16 GB memory) as well as an NVIDIA Ampere 
A100 with 20 GB multi-instance GPU. 

The datasets were split into training, validation 
and test sets to allow proper model development, 
which includes hyperparameter optimization on the 
validation set and performance evaluation on the 
test set. For training Mask2Former on the building 
element datasets, a random split (70%, 15%, 15%) 
with a fixed random seed of 42 was applied to en-
sure reproducible behavior. The random split was 
chosen due to the relatively balanced distribution of 
these datasets (Wang et al., 2024). For the training 
of the Swin Transformer V2, the FaMatMuc classifi-
cation dataset was split into training (90%) and test 
(10%) set, as the implementation follows the ap-
proach of (Raghu, Bucher and De Wolf, 2023). The 
building material dataset FaMatMuc, which exhibits 
a significant class imbalance, is divided into training, 
validation, and test sets using a structured, greedy 
pixel-constrained optimization to balance the class 
distribution across all subsets. 

For this research, geometric transformations and 
color space augmentation were applied to expand 
the training dataset. 
 
4.2. Results Hierarchical Segmentation 

For evaluating HS, a method to evaluate clus-
tered patch predictions against the semantic seg-
mentation ground truth mask is defined, as the patch 
covers a certain area of the original image. A patch 
prediction is correct if the assigned material 
matches at least 40% of the patch area in the ground 
truth. This threshold balances strictness and toler-
ance for segmentation noise at material boundaries. 

Following the HS approach, in the first step, im-
ages are processed through Mask2Former to get 
their segmentation maps. The reported metrics on 
the segmentation masks are limited to the classes 
facade and window, which are given in Tab. 4.  
 

Table 4: IoU and accuracy per element class (excluding 
background) for the Case Study dataset, all metrics re-
ported in % 

Class Label IoU Accuracy 

Facade 85.21 88.70 

Window 68.00 83.06 

 
For classification for materials, the Swin Trans-

former V2 was trained on the FaMatMuc classifica-
tion dataset (541 patches). The results in Tab. 5 
show excellent performance in all metrics, suggest-
ing that the classification task on FaMatMuc is a ra-
ther easy task for the Swin Transformer V2. 
 
Table 5: Metrics obtained from FaMatMuc’s classification 
dataset trained on Swin Transformer V2 

Metric Value [%] 

Accuracy 99.08 

Precision 99.10 

Recall 97.96 

 
Subsequently, the isolated facade masks are 

processed through the developed post-prediction 
clustering algorithm with HDBSCAN. As shown in 
Tab. 6, the final patch classification after clustering 
achieves strong performance metrics, with a partic-
ularly high precision score of 94.52%. This indicates 
reliable material identification when the model 
makes positive predictions. 
 
Table 6: Classification metrics for the HS approach on 
the Case Study dataset 

Metric Value [%] 

Accuracy 82.72 

Precision 94.52 

Recall 86.77 

 
Figure 6 shows one sample with the visualization of 
the finalized clusters after majority voting. 

Fig. 6: Visualization of finalized clusters on a patch map 
after applying majority voting within each cluster to deter-
mine dominant labels; here: decorative facade with 
stucco (beige) and brick (red) parts 
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This sample demonstrates that the method suc-
cessfully identified primary material regions (brick, 
stucco) in the complex decorative facade. However, 
the method struggles to precisely delineate the ma-
terial borders, especially when materials are inter-
woven. 

 
4.3. Results Multi-Task Learning 

Fig. 7: Qualitative results of MTL-based semantic seg-
mentation. Top row: (left) input image depicting the four-
story main building of the Technical University Munich 
with a facade composed of stone, stucco, and concrete 
from bottom to top; (center) ground truth (GT) elements, 
(right): GT materials; Bottom row: (left) legend, (center) 
predicted element mask, (right) predicted material mask 

 

Before evaluating MTL on the Case Study da-
taset, a Single-Task Learning (STL) approach is 
compared to our proposed MTL approach, as shown 
in Tab. 7. The STL network and its training setup are 
identical to the MTL approach, with the only differ-
ence being that the STL network only has one de-
coder for material prediction. 

 
Table 7: Comparison of mIoU, mean accuracy, and over-
all accuracy for FaMatMuc: MTL vs. Single-Task Learn-
ing (STL), all metrics reported in % 

Metric  MTL STL ∆ 

mIoU  64.51 63.28 +1.23 

Mean Accuracy  76.86 72.49 +4.37 

Overall Accuracy  89.36 88.97 +0.39 

 

The MTL model achieves slightly better results on 
FaMatMuc with an improvement of 1.23% in mIoU 
compared to the STL network. This indicates that 
the material task benefits from the element task 
through shared learning. The proposed method 
shows the potential of shared feature learning in the 
context of facade parsing. In addition to perfor-
mance improvements, the MTL model simplifies the 
training and inference by leveraging simultaneous 
learning and its adaptability to dual tasks. 

Tables 8 and 9 show the calculated metrics 
achieved by the MTL-adapted DeepLabv3+ network 
for building elements and materials, respectively. 
 
Table 8: IoU and accuracy per element class (excluding 
background) for the Case Study dataset, all metrics re-
ported in % 

Class Label IoU Accuracy 

Facade 81.26 95.23 

Window 70.87 78.80 

 
Table 9: IoU and accuracy per class for FaMatMuc 
achieved with MTL, all metrics reported in % 

Class Label IoU Accuracy 

Stucco 80.72 90.06 

Brick 83.62 90.21 

Stone 36.35 60.35 

Concrete 61.74 66.84 

Glass 74.46 80.22 

Timber 56.50 96.14 

 

Stucco, glass, and brick, which are the three pre-
dominant classes in the Case Study, achieve the 
highest IoU scores. The relatively low IoU values of 
stone (36.35%), concrete (61.74%), and timber 
(56.50%) are not only due to their lower representa-
tion in the dataset but also likely caused by the vis-
ual similarity between stone and concrete. 
For qualitative inspection, one inference sample is 
given in Fig. 7. 
 

4. CONCLUSION 
This work successfully developed and validated 

two standalone semantic segmentation approaches 
for the simultaneous and sequential detection of el-
ements and materials in building facades. To ad-
dress the limited data availability, we harmonized 
three disparate building element datasets eTRIMS, 
ECP, and CFP using a unified taxonomy. As no ma-
terial semantic segmentation dataset for the full fa-
cade analysis was available, this work developed 
the Facades Material Munich (FaMatMuc) semantic 
segmentation and classification dataset dedicated 
to the material detection of intra-urban facades of 
Central Europe. The high-resolution images offer a 
significantly superior resolution (5-10x higher) than 
the images in existing facade parsing datasets, 
which allow to identify patterns and textures for ma-
terial detection. 

A fundamental limitation of this work, common to 
most visual detection pipelines, results from the in-
trinsic limitations of RGB-based material detection. 
The absence of in-depth information due to the sur-
face sensitivity of visual data limits the information 
that can be extracted. This underscores that visual 
detection should be complemented with additional 
contextual data to improve reliability and enhance 
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segmentation results. Despite the development of 
the high-resolution material segmentation dataset 
and the merge of three existing prominent element 
segmentation datasets, data scarcity and inconsist-
encies between element datasets remain an issue. 
However, its potential is limited by constraints for the 
model’s input size imposed by the low-resolution na-
ture of available building element datasets, as they 
cannot be drastically upscaled without quality loss. 
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