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ABSTRACT

As a basis for environmental assessments like Life Cycle Assessment (LCA) of large
building portfolios, extensive image data of building envelopes must be evaluated as
automatically as possible. This paper addresses the automated detection of both
elements — e.g., windows, walls, doors — and materials in building facades with uni-
fied machine learning workflows using 2D RGB images. Following a systematic re-
view of existing methods and datasets, two unified segmentation workflows are de-
veloped: Hierarchical Segmentation (HS) and Multi-Task Learning (MTL). HS ex-
ploits the hierarchical relationships between facade elements and materials and de-
ploys a post-prediction clustering approach with Hierarchical Density-Based Spatial
Clustering of Applications with Noise (HDBSCAN), while MTL leverages shared fea-
ture learning for simultaneous detection. To mitigate limited training data, this work
introduces the high-resolution segmentation and classification dataset Facades Ma-
terial Munich (FaMatMuc). For the first time, element and material detection for fa-

cade images were combined in one workflow and validated successfully.
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1. INTRODUCTION

The construction sector contributes significantly
to greenhouse gas (GHG) emissions, and therefore
offers considerable potential for effecting meaning-
ful change, especially given the aging building stock.
Evaluating the energy performance of existing build-
ings and developing effective retrofitting strategies
are imperative to achieve substantial reductions in
emissions and energy costs. Life Cycle Assessment
(LCA) is the standard methodology for the assess-
ment of environmental impacts and is gaining prom-
inence due to the EU's sustainability reporting
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requirements for larger companies. However, the
prevailing practice of manual extraction of building
geometry and characteristics from architectural
plans and on-site inspections remains a time-con-
suming process, impeding scalability for the assess-
ment of larger building stocks (Dai et al., 2021). Pre-
vious research reveals a significant gap: the ab-
sence of element-material segmentation workflows,
alongside the lack of high-resolution, diverse da-
tasets for material detection. This paper aims to ad-
dress this research gap by introducing an auto-
mated approach, leveraging a unified workflow for



detecting elements — e.g., windows, walls, doors —
and materials in building facades, thereby enhanc-
ing efficiency and scalability. Automated extraction
of data on facade elements and materials enables
downstream processes by enriching simple building
representations, thereby facilitating the population
of the inventory analysis phase for LCAs and provid-
ing essential inputs for energy simulation tools that
model diverse retrofit interventions. Additionally, we
provide an openly available dataset that enables fu-
ture research in the field and is used to demonstrate
the efficacy of the developed methods.

2. RELATED WORKS

Automating the analysis of building facades has
become a major area of research, driven by the in-
creasing demand for efficient and scalable methods
to support sustainability efforts. Recent advance-
ments in deep learning and the integration of diverse
data sources have enabled more comprehensive
methods for automated assessment of existing
buildings. For example, Forth, Noichl and Borrmann
(2024) proposed a multimodal approach that inte-
grates point clouds and RGB data with a component
database to create an enriched surface model with
data relevant for LCA. Such semantic enrichment of
raw input data requires the identification of building
elements like windows, doors, roofs, and others, as
well as the materials to obtain the necessary infor-
mation for environmental assessments.

2.1 Computer vision for facade analysis

Detecting building elements, in conjunction with
facade parsing (semantic segmentation of facade
images) has shown notable advancements.

Modern deep learning techniques, such as Con-
volutional Neural Networks (CNNs) and, more re-
cently, Vision Transformers (ViTs), have surpassed
traditional rule-based approaches for facade pars-
ing. In this, it has been shown that ViTs for semantic
segmentation of building elements achieve superior
performance on established benchmarks in compar-
ison to all previous methods. (Wang et al., 2024)

Despite these advancements, research address-
ing the semantic segmentation of materials in build-
ing facades remains limited. In a previous study, Ha-
bili et al. (2022) introduced a dataset comprising
close-up images and hyperspectral data of facades
from an industrial area in Australia; however, there
is currently no publicly available semantic segmen-
tation dataset for facade materials that encom-
passes a diverse range of architectural styles and is
suitable for full-facade analysis.

A promising approach for material facade parsing
was proposed by Xu et al. (2023). Since distinguish-
ing features between materials relies more on tex-
tures and patterns than on shapes and colors, the
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authors addressed this using a Multi-Scale Contex-
tual Attention Network, which incorporated trans-
former attention mechanisms to exploit details from
different scales. However, the approach has several
limitations. First, the reliance on the simplified as-
sumption that each building consists of only two pri-
mary materials and the challenges of annotating hy-
brid facades led to classification inconsistencies.
Second, the low image resolution of 2046 x 2046
pixels and the depiction of multiple buildings in a sin-
gle frame is inadequate for the extraction of fine tex-
tures and patterns, a main objective of the authors’
methodology. As a result, the generated segmenta-
tion masks lack sufficient granularity, which makes
this approach unsuitable for applications such as
LCA that require finer detail.

Raghu, Bucher and De Wolf (2023) investigated
material classification of entire facades by conduct-
ing a comparative analysis of three state-of-the-art
neural network architectures: a transformer-based
model, a hybrid CNN-transformer architecture, and
a purely CNN-based model. These models were
evaluated on a newly created classification dataset
with images from five cities. The dataset consists of
non-rectified images sourced from Google Street
View, which were annotated image-wise with one or
more classes. None of the applied models consist-
ently outperformed the others on all data sets. Fur-
thermore, the study was limited to image-level clas-
sification and did not include any form of segmenta-
tion.

This overview of related works on facade ele-
ment and material recognition reveals that no previ-
ous approach has combined these dual challenges
using a unified workflow or facilitated shared infor-
mation across tasks.

2.2 Datasets

The stated approaches employ supervised learn-
ing methods. To enable such applications, there is a
need for annotated datasets for the training and
evaluation of segmentation methods. It is important
to note that the content and labeling approach in
such a dataset must match the task at hand.

Table 1 offers a comprehensive overview of the
main characteristics of available datasets for detect-
ing elements or materials in building facades. It in-
cludes annotated datasets that are publicly accessi-
ble or made accessible for this research. Several an-
notated datasets for building elements have been
published, whereas the two material datasets indi-
cate that material detection in building facades has
received comparatively little attention. All datasets
vary significantly in terms of observed class types,
annotation quality, resolution, and the way facades
are captured (single buildings vs. multiple buildings,
rectified vs. oblique picture frame).



Table 1: Overview of publicly available facade element and material datasets with key characteristics.

Refs.: [1] Teboul et al. (2010), [2] Kor€ and Foérstner (2009), [3] Tylecek and Sara (2013), [4] Frohlich, Rodner and
Denzler (2010), [5] Sun et al. (2022), [6] Kong and Fan (2021), [7] Wang et al. (2024), [8] Gadde, Marlet and Paragios
(2016), [9] Habili et al. (2022), [10] Raghu, Bucher and De Wolf (2023). SeSe = semantic segmentation, InSe= instance
segmentation, OA = object annotation. Common class types abbreviated as s: sky, w: window, d: door

Annotation R?.s olu- Image Properties
. ion )
Dataset Size Single Details
Type Class types Building Rectified
ECP [1] 104 SeSe 7: {s, chimney, roof, w, 404 x 640 v v Haussmannian architecture
balcony, wall, d, shop}
eTRIMS [2] 60 SeSe, 8: {w, wall, d, s, pavement, 768 x 512 v v Diverse architecture, mainly
InSe vegetation, car, road} 512 x 768 residential in Germany, Swit-
zerland
CMP [3] 606 SeSe, OA 11: {facade, molding, cornice, pil- variable x x Diverse architecture,
lar, w, d, sill, blind, low mostly stone and plaster/
balcony, shop, deco} mortar facades
LabelMe- 945 SeSe 8: {building, car, d, pavement, 683 x 512 x x Diverse architecture, poor an-
Facade [4] road, s, vegetation, w} notation quality
Deep-Windows 1200 SeSe 1: {w} variable x x Concatenated dataset
[5]
FacadeWHU 900 SeSe, OA 6: {w, d, wall, balcony, variable x x Diverse architecture, strong
[6] road, shop} fisheye distortion
CFP [7] 602 InSe 9: {building, w, d, roof, tree, variable x x Diverse architecture
s, people, car, sign} high
Paris Art Deco 79 SeSe 7: {d, shop, balcony, variable v v Art-deco buildings in Paris
Facades [8] w, wall, s, roof} low
LIBHSI[9] 513 SeSe 9: {miscellaneous, vegetation, 512 x 512 x x Light industrial bldgs., close-
glass, w, brick, concrete, up, good annotation quality;
blocks, metal, d, timber} addn. hyperspectral data
Urban Re- 972 Multi-Label  8: {brick, stucco, rustication, siding, 640 x 400 x x Diverse architecture from
source Cadas- Classif. wood, metal, null, other} NYC, Tokyo, Zurich

ter [10]

3. METHODOLOGY

This paper addresses the research gaps in de-

tecting elements and materials in building facades
with limited training data, by establishing two unified
workflows handling both tasks and introducing a
novel dataset. The contributions of this research are
as follows, reflecting the order in which they were
developed and implemented:

Creation of a unified building element dataset:
Three popular building element datasets ECP,
CFP, eTRIMS were merged using a unified tax-
onomy, minimizing the need for additional anno-
tations and allowing simple integration of hetero-
genous element datasets for training.

Introduction of the FaMatMuc Dataset (Facades
Materials Munich): A new dataset was created,
comprising 100 annotated high-resolution im-
ages of building facades in Munich, Germany for
material semantic segmentation and 541 ex-
tracted patches for material classification. The
dataset and documentation are available at
https://github.com/fnoi/famatmuc.
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e Development of unified semantic segmentation
approaches for element and material detection:
Two semantic segmentation methodologies,
namely the Hierarchical Segmentation and a
Multi-Task Learning method, were developed, al-
lowing for sequential and simultaneous predic-
tion of elements and materials in building fa-
cades.

3.1 Hierarchical Segmentation

The proposed Hierarchical Segmentation (HS)
method is a sequential method that builds upon the
hierarchical relationships between the various ele-
ments and materials that comprise a building fa-
cade. Unlike conventional approaches that rely
heavily on color and shape, this method employs
patch-based textural and pattern analysis for detec-
tion, thereby fully exploiting the high detail of the de-
veloped FaMatMuc dataset.

The methodology is visualized in Fig. 1. In the
first step, instance segmentation for element detec-
tion is performed with Mask2Former (Cheng et al.,


https://github.com/fnoi/famatmuc

2022) and the identified facade mask is isolated, re-
moving openings and surroundings that do not con-
tain any information about the facade material. Next,
an optimization algorithm extracts patches by mini-
mizing non-informative (black) pixels, ensuring that
each patch captures unique and relevant facade re-
gions with a maximum threshold of 10% black pix-
els. In the case of FaMatMuc, these patches have a
size of 256 x 256 pixels to generally fit within the
spaces between windows, as these wall sections
are usually the narrowest ones in a facade.

Extracted patches are processed in Swin Trans-
former V2 (Liu et al., 2022) for the initial material
classification. Each patch is stored with its corre-
sponding predicted label and top-left corner coordi-
nates. This mixed type data, containing numerical
coordinates and categorical predictions, is com-
bined and clustered using Hierarchical Density-
Based Spatial Clustering of Applications with Noise
(HDBSCAN) (Campello, Moulavi and Sander, 2013)
to determine arbitrary-shaped clusters while consid-
ering the hierarchical structure and different densi-
ties within each cluster.

The Gower distance metric is used to homoge-
nize the mixed data (Gower, 1971). This metric
measures the dissimilarity between data points with
mixed numerical and categorical variables. For this,
input data is pre-processed including ordinal encod-
ing of categorical labels and the normalization of
spatial coordinates. The Gower metric is defined as:

m

1
Doower67) = 1= 5xy), (1)

j=1

where m represents the total number of varia-
bles, and s;(x,y) is a similarity function for the j-th
variable, which is defined based on the type of vari-
able:

1, if j is categorical and x; = y;,
0, if j is categorical and x; # y;,
5j = I, — v @)
i T Yj s .
1-—, if j is numerical.

R;
R; denotes the range of the numerical variable ;.
Gower’s distance is bounded within the interval
[0,1], where 0 indicates that two data points are
identical, and 1 indicates maximum dissimilarity.
The hyperparameters for the patch clustering algo-
rithm were selected based on the recommenda-
tions of the developers of HDBSCAN. The mini-
mum cluster size is set to be at least three patches
or 5% of the total number of patches. The minimum
samples parameter, which defines the number of
neighboring points required for a data point to be
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Fig. 1: HS workflow; from RGB input to material clusters
via segmentation, patch extraction, clustering and major-
ity-voting classification

considered a core point, is set to the maximum of 1
point or 5% of the total number of patches.

The HDBSCAN algorithm is applied to determine
coherent patch clusters. Within each cluster, a ma-
jority voting mechanism is applied on the patches to
assign the most frequently predicted label to the en-
tire cluster. The result is a detailed map of the pre-
sent facade materials, minimizing classification
noise stemming from individual patches.

However, it is important to note that since the ex-
tracted patches do not cover the entire facade and
are passed through a classifier, this method does
not aim to perform pixel-wise material segmentation.
Instead, it offers a practical approach to estimate the
present materials, their location and coverage
based on close-up facade patches, providing valua-
ble information for further analysis.

3.2 Multi-Task Learning

The second presented approach particularly ad-
dresses the challenges of material detection and
limited data availability by facilitating shared infor-
mation across prediction tasks and offering simulta-
neous prediction of elements and materials in build-
ing facades. For implementing the Multi-Task



Learning (MTL) method, DeepLabv3+ (Chen et al.,
2018) was selected due to its competitive perfor-
mance on urban street scene datasets and its adapt-
ability to MTL approaches that allowed changes in
the network’s architecture. To address the dual-
task, a task-specific decoder is designed with a cor-
responding head — the element head and the mate-
rial head — to generate predictions for their respec-
tive tasks. Figure 2 illustrates the structure of the
MTL framework. During the forward pass, the input
image is processed through the shared ResNet-101
backbone and the Atrous Spatial Pyramid Pooling
(ASPP) module, extracting rich multi-scale features.
These features are passed to the corresponding de-
coder, element head, and material head, which pro-
duce outputs specific to each task.

The training process integrates both element and
material segmentation tasks in a mixed-batch ap-
proach. Each batch contains samples from both
tasks, which are distinguished by a task index. That
allows the model to learn simultaneously while ele-
ment and material segmentation losses are com-
puted independently. The model is further improved
with auxiliary loss heads, which provide additional
supervision at intermediate layers. According to
Zhao et al. (2017) the auxiliary loss helps deep net-
works to stabilize and optimize the training process.
The auxiliary outputs are weighted by an auxiliary
loss factor of 1, = 0.4 and integrated into the loss
function, which is optimized by minimizing the cross-
entropy loss. The choice for the auxiliary loss factor
follows the practice of Zhao et al. (2017). Yang et al.
(2024) states that while auxiliary losses slightly in-
crease training time, inference time is not increased.

Cross-entropy losses are defined for the element
and material task and are combined into one final
objective function to optimize both tasks, see Eq. 3.

Liotar = Lmar + Letem
+ laux (Lmat,aux+Lelem,aux): (3)

where L4t gux @Nd Lojem qux are the auxiliary loss
components for material and element segmentation
at intermediate layers, respectively.

The developed MTL network facilitates simulta-
neous training and inference, which allows for pre-
dicting both the semantic segmentation masks of
building elements and materials. By making use of
shared features across tasks, the MTL approach
simplifies training and inference. The method does
not aim to surpass the latest mean Intersection over
Union (mloU) and accuracy metrics achieved by
transformer networks on building element datasets
but offers a unified framework with competitive re-
sults to demonstrate the potential of MTL in the con-
text of facade parsing.
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Fig. 2: Multi-task learning (MTL) semantic segmentation
approach for building elements and materials using a
modified DeeplLabv3+ (Chen et al., 2018) architecture:
ResNet 101 encoder, task-specific prediction heads, and
a combined loss function to optimize for both segmenta-
tion tasks

3.3 Development of FaMatMuc

The lack of annotated datasets for semantic seg-
mentation and material detection in building facades
is addressed through the development of a high-res-
olution dataset. To support the proposed ap-
proaches, a dedicated material dataset was created
with two types of annotations, semantic segmenta-
tion masks and classification labels. The semantic
segmentation dataset comprises 100 high-resolu-
tion images of building facades; the classification
dataset includes 541 patches extracted from the
captured images. This dataset primarily features
single residential and office buildings taken from a
frontal perspective in Munich, Germany. Efforts
were made to ensure adequate representation of all
targeted material classes (stucco, brick, stone, con-
crete, glass and timber). However, some class im-
balance was observed due to the frequency of these
materials in the city of Munich. An additional bias ex-
ists in the dataset, as the buildings captured for this
dataset were selected based on accessibility and
visual distinctiveness. The data was collected in
January 2025 under clear, sunny weather conditions
with mostly no leaves on trees and bushes.
The photos were taken using a Sony a7r lll camera
equipped with a Sony FE 16-35mm F/2.8 GM lens,
enabling the capture of entire facades even from rel-
atively short distances. Each image has a resolution
of 5304 x 7952 pixels, which provides fine details for
facade element segmentation and material classifi-
cation. High-resolution images allow for the extrac-
tion of close-up areas of the captured photos while
keeping a high level of detail, which supports the HS
approach.



Fig. 3: apie ffon; the FaMatMuc data: The image
has a resolution of 5304 x 7952 pixels and shows the front

view perspective of a five-story residential building with a
concrete base and a timber main facade

Due to the narrow streets and high buildings,
most photos exhibit noticeable perspective distor-
tion. Figure 3 shows a sample facade image from
the collected dataset, Fig. 4 presents samples of the
extracted patches. The images were used as-is for
semantic segmentation labeling without prior un-
distortion. To maintain consistency in close-up
patches for the hierarchical approach, 541 patches
of size 256 x 256 were extracted from the high-res-
olution images prior to classification annotation. This
patch size was chosen to align with the HS frame-
work.

The proposed material classes were selected
considering their prevalence in Central European ar-
chitecture. Metal and plastic were excluded because
they are less frequently observed and exhibit vari-
ous appearances. These materials and any others
not explicitly defined are included within the "other"
class to ensure coverage of materials not repre-
sented in the predefined labels. Furthermore, a
"background" class was introduced for semantic
segmentation to segment parts of the image that do
not provide material information about the facade.
Table 2 presents a detailed description of the pro-
posed classes.

To support the HS approach, 541 patches were
annotated for the classification task; for the MTL ap-
proach, semantic masks were created to enable
pixel-wise segmentation tasks. The annotation pro-
cess was conducted by the first author and is vali-
dated by an additional expert.

The annotation strategy was designed to support
LCA and energy performance analyses by allowing
the identification and quantification of building mate-
rials significantly influencing environmental and en-
ergy-related outcomes. A special focus is laid on the
necessary granularity, ensuring annotations are
suitable for such applications.
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stucco stone stucco stucco brick

stone stucco V concrete ] timber glass
Fig. 4: Samples of 10 representative patches (out of 541
extracted), each with a size of 256 x 256 pixels, anno-
tated with their identified material labels

Thus, the primary goal is to facilitate the accurate
processing of material areas in subsequent analysis
steps while keeping the annotation process man-
ageable in terms of time and effort. However, the
calculation of the material area falls outside this re-
search’s scope. To achieve the necessary detail
while being time-efficient, several key decisions
were made to define the level of detail and stream-
line the workflow.

To remain practicable, minor functional compo-

nents and occlusions such as rain gutters, street fur-
niture, and vegetation were labeled according to the
underlying material if identifiable. Assuming that
omitting these elements would not significantly im-
pact overall material area calculations but would in-
stead improve surface area estimations. A stream-
lined approach was adopted for efficient annotation:
if a facade wall consisted of a single material, the
entire facade was selected as a single region, and
inner elements, such as windows or doors, were
"punched out" in a subsequent processing step. This
was achieved by defining priority values for the ma-
terials when loading the data and drawing the se-
mantic segmentation masks.
The following order is used: 1.) stucco 2.) brick 3.)
stone 4.) concrete 5.) timber 6.) other 7.) glass. The
time required to annotate a single image varied sig-
nificantly depending on the complexity of the build-
ing facade but is estimated to be, on average,

2%
4%

4% .

6% # Background

T

Stucco
Glass
14% u Brick
® Stone
u Timber
Concrete

OOther

24%

Fig. 5: Pixel-wise class distribution of FaMatMuc, contain-
ing 100 annotated images



approximately 15 minutes per image. Figure 5
shows the class distribution of the FaMatMuc

dataset for semantic segmentation. The distribution
shows a significant class imbalance.

Table 2: Visual description, typical use and material properties of FaMatMuc material classes

Material Visual Description Typical Use / Properties

Stucco Mostly uniform color, smooth and flat surface, fine to me- Commonly used as a finish for composite insu-
dium grain. Features include color uniformity and smooth lation systems; durable but prone to cracking
texture. over time.

Brick Regular pattern, usually reddish or brownish, with visible Widely used in both traditional and modern fa-

mortar lines. Features include color patterns and regular

brick alignment.

Stone Varied texture, rough or smooth; visible layers; usually
larger than bricks. Features include texture variations,

color differences, and block size.

Concrete  Gray, smooth, or slightly rough with occasional imperfec-
tions. Features include general color uniformity and sur-

face imperfections.

cades; durable, low-maintenance, and recycla-
ble.

Often used for decorative or structural pur-
poses; highly durable and weather-resistant, re-
cyclable.

Common in construction for structural and aes-
thetic purposes; strong, durable, and versatile;
limited recyclability.

Glass Reflective surface, often smooth and uniform. Features in- Common in buildings for windows and facades;

clude reflectivity and general smoothness.

Timber Grainy patterns, often brownish or beige tones. Features
include color variations and large-scale patterns.

provides transparency and aesthetic appeal;
high recyclability.

Used in wooden cladding or decorative facades;
requires maintenance to prevent decay; high re-
cyclability.

3.4. Merged Building Element Dataset

To address the challenges of limited data availa-
bility and geographical restrictions, this work merges
three existing element datasets using a unified tax-
onomy, creating the Merged Building Element Da-
taset (MBED), as shown in Tab. 3. Classes that are
not relevant for facade segmentation are disre-
garded in this projection. Additionally, roof annota-
tions were incorporated into the eTRIMS dataset to
ensure uniform labeling across all datasets. Each
dataset is assigned to a unique identifier, which al-
lows the data loader to apply the corresponding tax-
onomy mapping during data loading.

In this study, MBED is used for training of ele-
ment detection in the HS pipeline, as it substantially
increases training data. For the MTL pipeline, MBED
is not used, as it mainly consists of CFP images,
which primarily feature Chinese architecture — in-
cluding materials beyond the scope of this research.
Additionally, CFP images differ significantly from
typical image frames, often depicting multiple fa-
cades in a single shot, whereas eTRIMS and ECP
typically contain only one facade per image.
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Table 3: Unified taxonomy mapping for CFP (602 im-
ages), eTRIMS (60 images) and ECP (104 images); for
references see Table 1

Dataset  Original Class Projected
Class

CFP Building Facade
Window Window
Door Door
Roof Roof
Tree Vegetation
Sky Sky
People -
Car Car
Sign -

eTRIMS  Window Window
Wall Facade
Door Door
Sky Sky
Pavement -
Vegetation Vegetation
Car Car
Road

ECP Sky Sky
Chimney -
Roof Roof
Window Window
Balcony Balcony
Wall Facade
Door Door
Shop -

4. EXPERIMENTS & RESULTS

To validate the proposed methods, the models
were trained and tested on ECP, merged ECP &
eTRIMS, and further evaluated with a dedicated
Case Study dataset, which is recorded in the same
way as FaMatMuc. For this purpose, 12 additional
images were annotated with semantic segmentation
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masks for building elements and materials. The ele-
ment annotations adhere to the style of the ECP and
eTRIMS dataset. Although the limited number of 12
images does not allow for comprehensive statistical
conclusions, they serve as a first indicator for vali-
dating the methodology.

The evaluation is based on common pixel-wise
metrics for semantic segmentation: Intersection
over Union (/oU), mean loU (mloU), accuracy, pre-
cision and recall (Everingham et al., 2010).

4.1. Implementation

The presented project was developed in Jupyter
Notebooks with an NGC container image of PyTorch
2.5.0 (Paszke et al., 2019) to optimize for NVIDIA
GPU acceleration. The training process was exe-
cuted on an NVIDIA Tesla V100 with a single GPU
(16 GB memory) as well as an NVIDIA Ampere
A100 with 20 GB multi-instance GPU.

The datasets were split into training, validation
and test sets to allow proper model development,
which includes hyperparameter optimization on the
validation set and performance evaluation on the
test set. For training Mask2Former on the building
element datasets, a random split (70%, 15%, 15%)
with a fixed random seed of 42 was applied to en-
sure reproducible behavior. The random split was
chosen due to the relatively balanced distribution of
these datasets (Wang et al., 2024). For the training
of the Swin Transformer V2, the FaMatMuc classifi-
cation dataset was split into training (90%) and test
(10%) set, as the implementation follows the ap-
proach of (Raghu, Bucher and De Wolf, 2023). The
building material dataset FaMatMuc, which exhibits
a significant class imbalance, is divided into training,
validation, and test sets using a structured, greedy
pixel-constrained optimization to balance the class
distribution across all subsets.

For this research, geometric transformations and
color space augmentation were applied to expand
the training dataset.

4.2. Results Hierarchical Segmentation

For evaluating HS, a method to evaluate clus-
tered patch predictions against the semantic seg-
mentation ground truth mask is defined, as the patch
covers a certain area of the original image. A patch
prediction is correct if the assigned material
matches at least 40% of the patch area in the ground
truth. This threshold balances strictness and toler-
ance for segmentation noise at material boundaries.

Following the HS approach, in the first step, im-
ages are processed through Mask2Former to get
their segmentation maps. The reported metrics on
the segmentation masks are limited to the classes
facade and window, which are given in Tab. 4.
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Table 4: loU and accuracy per element class (excluding
background) for the Case Study dataset, all metrics re-

ported in %
Class Label loU Accuracy
Facade 85.21 88.70
Window 68.00 83.06

For classification for materials, the Swin Trans-
former V2 was trained on the FaMatMuc classifica-
tion dataset (541 patches). The results in Tab. 5
show excellent performance in all metrics, suggest-
ing that the classification task on FaMatMuc is a ra-
ther easy task for the Swin Transformer V2.

Table 5: Metrics obtained from FaMatMuc’s classification
dataset trained on Swin Transformer V2

Metric Value [%]
Accuracy 99.08
Precision 99.10
Recall 97.96

Subsequently, the isolated facade masks are
processed through the developed post-prediction
clustering algorithm with HDBSCAN. As shown in
Tab. 6, the final patch classification after clustering
achieves strong performance metrics, with a partic-
ularly high precision score of 94.52%. This indicates
reliable material identification when the model
makes positive predictions.

Table 6: Classification metrics for the HS approach on
the Case Study dataset

Metric Value [%]
Accuracy 82.72
Precision 94.52
Recall 86.77

Figure 6 shows one sample with the visualization of
the finalized clusters after majority voting.

Fig. 6: Visualization of finalized clusters on a patch map
after applying majority voting within each cluster to deter-
mine dominant labels; here: decorative facade with
stucco (beige) and brick (red) parts



This sample demonstrates that the method suc-
cessfully identified primary material regions (brick,
stucco) in the complex decorative facade. However,
the method struggles to precisely delineate the ma-
terial borders, especially when materials are inter-
woven.

4.3. Results Multi-Task Learning

Stucco I \Vindow
B Grick I Facade
B Stone I Door

Concrete Sky

Glass I Vegetation
I Timber Roof

Other
Fig. 7: Qualitative results of MTL-based semantic seg-
mentation. Top row: (left) input image depicting the four-
story main building of the Technical University Munich
with a facade composed of stone, stucco, and concrete
from bottom to top; (center) ground truth (GT) elements,
(right): GT materials; Bottom row: (left) legend, (center)
predicted element mask, (right) predicted material mask

Before evaluating MTL on the Case Study da-
taset, a Single-Task Learning (STL) approach is
compared to our proposed MTL approach, as shown
in Tab. 7. The STL network and its training setup are
identical to the MTL approach, with the only differ-
ence being that the STL network only has one de-
coder for material prediction.

Table 7: Comparison of mloU, mean accuracy, and over-
all accuracy for FaMatMuc: MTL vs. Single-Task Learn-
ing (STL), all metrics reported in %

Metric MTL STL A
mloU 64.51 63.28 +1.23
Mean Accuracy 76.86 72.49 +4.37
Overall Accuracy 89.36 88.97 +0.39

The MTL model achieves slightly better results on
FaMatMuc with an improvement of 1.23% in mloU
compared to the STL network. This indicates that
the material task benefits from the element task
through shared learning. The proposed method
shows the potential of shared feature learning in the
context of facade parsing. In addition to perfor-
mance improvements, the MTL model simplifies the
training and inference by leveraging simultaneous
learning and its adaptability to dual tasks.
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Tables 8 and 9 show the calculated metrics
achieved by the MTL-adapted DeeplLabv3+ network
for building elements and materials, respectively.

Table 8: loU and accuracy per element class (excluding
background) for the Case Study dataset, all metrics re-

ported in %
Class Label loU Accuracy
Facade 81.26 95.23
Window 70.87 78.80

Table 9: loU and accuracy per class for FaMatMuc
achieved with MTL, all metrics reported in %

Class Label loU Accuracy
Stucco 80.72 90.06
Brick 83.62 90.21
Stone 36.35 60.35
Concrete 61.74 66.84
Glass 74.46 80.22
Timber 56.50 96.14

Stucco, glass, and brick, which are the three pre-
dominant classes in the Case Study, achieve the
highest loU scores. The relatively low /oU values of
stone (36.35%), concrete (61.74%), and timber
(56.50%) are not only due to their lower representa-
tion in the dataset but also likely caused by the vis-
ual similarity between stone and concrete.

For qualitative inspection, one inference sample is
given in Fig. 7.

4. CONCLUSION

This work successfully developed and validated
two standalone semantic segmentation approaches
for the simultaneous and sequential detection of el-
ements and materials in building facades. To ad-
dress the limited data availability, we harmonized
three disparate building element datasets eTRIMS,
ECP, and CFP using a unified taxonomy. As no ma-
terial semantic segmentation dataset for the full fa-
cade analysis was available, this work developed
the Facades Material Munich (FaMatMuc) semantic
segmentation and classification dataset dedicated
to the material detection of intra-urban facades of
Central Europe. The high-resolution images offer a
significantly superior resolution (5-10x higher) than
the images in existing facade parsing datasets,
which allow to identify patterns and textures for ma-
terial detection.

A fundamental limitation of this work, common to
most visual detection pipelines, results from the in-
trinsic limitations of RGB-based material detection.
The absence of in-depth information due to the sur-
face sensitivity of visual data limits the information
that can be extracted. This underscores that visual
detection should be complemented with additional
contextual data to improve reliability and enhance



segmentation results. Despite the development of
the high-resolution material segmentation dataset
and the merge of three existing prominent element
segmentation datasets, data scarcity and inconsist-
encies between element datasets remain an issue.
However, its potential is limited by constraints for the
model’s input size imposed by the low-resolution na-
ture of available building element datasets, as they
cannot be drastically upscaled without quality loss.
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