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 A B S T R A C T

Urban Air Mobility (UAM) has emerged as a promising solution to enhance metropolitan urban mobility. 
A critical determinant of UAM’s success is vertiport siting, which directly influences accessibility and travel 
time benefits. However, existing research lacks a evaluation of different data-driven clustering approaches 
for vertiport placement. This study systematically compares six clustering-based vertiport allocation strategies 
against an expert-defined benchmark (OBUAM) in the Munich Metropolitan Region (Ploetner et al., 2020). 
More specifically, the travel time efficiency improvements, accessibility enhancements, and transport equity 
impacts are assessed across different allocation scenarios. Results indicate that clustering-based siting sig-
nificantly outperforms expert-defined siting in all the three perspectives. Notably, the K-means++ approach 
achieves the highest travel time saving (10.05%), accessibility gains (7.16%) and the lowest Gini coefficient 
(0.512), demonstrating its advantages in planing vertiport locations. The inferiority of DBSCAN, OBUAM and 
MS scenarios reveals that neither concentrating vertiports excessively in urban centers nor distributing them 
too evenly across the region optimizes transport efficiency. All clustering-based methods offer a practical, 
data-driven alternative that does not rely on domain expertise or excessive computational resources, making 
them easily adaptable for real-world UAM planning. Sensitivity analyses further explore the influence of key 
parameters on the indicators. Findings highlight that reducing pre-flight time has a more significant impact on 
travel time saving, accessibility and equity than increasing UAM cruise speed, while higher fares significantly 
disproportionately reduce accessibility benefits and equality. 
1. Introduction

As cities continue to face unprecedented growth and mobility chal-
lenges, traditional transportation systems are struggling to meet in-
creasing demand and efficiency requirements. In densely developed ur-
ban areas, the physical and economic limitations of expanding ground-
based transport infrastructure have prompted researchers to explore 
alternative mobility solutions in low-altitude airspace (Adamidis et al., 
2024; Ploetner et al., 2020; Pukhova et al., 2021; Rothfeld et al., 
2021). Urban Air Mobility (UAM) has emerged as a promising solu-
tion to complement existing transportation networks, offering potential 
relief to congested urban corridors and introducing new dimensions 
to urban mobility (Straubinger et al., 2020). Existing research has 
underscored a number of socioeconomic benefits and opportunities 
achievable through the integration of UAM into prevailing transporta-
tion systems. Tuchen et al. (2022) qualitatively asserted that UAM 
development could stimulate job creation through the manufacture of 
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aircraft-related materials and vertiport construction. Moreover, both 
business and community development could be amplified, especially in 
the vicinity of manufacturing centers and vertiports. Numerous studies 
have also explored the potential of UAM as a solution for freight 
transportation  (Gunady et al., 2022; Rifan et al., 2023). These studies 
collectively suggest that UAM could revolutionize the logistics industry, 
primarily due to its rapid and efficient transport capabilities. UAM 
could potentially ease the transportation of goods to remote areas, 
which are often inaccessible via conventional transportation modes. 
Additionally, UAM has the potential to provide high-performance ser-
vices for emergency traffic or commuting trips between rural, suburban, 
and urban areas to improve the citizen’s accessibility (Pukhova et al., 
2021).

However, it is important to note that fully commercialized UAM ser-
vices do not yet exist, and as a result, most research on their economic 
benefits remains conceptual and qualitative. The direct quantification 
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of UAM’s economic advantages in monetary terms is challenging, pri-
marily due to the lack of definitive benchmarks for costs, pricing, 
and other financial factors. Consequently, mainstream UAM studies 
typically rely on indirect indicators to assess potential economic impli-
cations. One such indicator is the potential reduction in travel times 
and in-vehicle durations (Rothfeld et al., 2021). Naser et al. (2021) 
conducted a case study in Hamburg, Germany, comparing trips by 
taxicabs and air taxis (UAM). Their analysis suggested that air taxis 
could reduce travel times by up to 50% and cover distances up to 16% 
shorter than taxicabs. Another widely used indirect economic indicator 
is accessibility to job opportunities. As highlighted by Rothfeld (2021), 
in a baseline scenario featuring 14 stations, a UAM cruise speed of 
180 km/h, and a 15 min processing time, 97% of the regions in the 
Munich metropolitan area experienced improved accessibility. Based 
on this information, the study continues to rely on indirect indicators, 
specifically ‘‘travel time efficiency’’, ‘‘accessibility to job opportunities’’ 
and ‘‘transport equity’’, to assess UAM’s socioeconomic benefits.

The performance of UAM service is influenced by various param-
eters, including the number and location of vertiports, speed, number 
of seats, passenger processing time, etc. Central to the successful im-
plementation of UAM systems is the strategic siting of vertiports - the 
ground-based infrastructure that enables take-off, landing, and passen-
ger processing (European Union Aviation Safety Agency (EASA), 2021; 
Holden & Goel, 2016). The location of these facilities directly impacts 
the effectiveness of UAM in enhancing urban mobility (Mendonca et al., 
2022; Ploetner et al., 2020). Lim and Hwang (2019) emphasized that 
the feasibility of UAM is more determined by the location of vertiports 
than their number, especially when integrated with public transport. To 
date, no research has quantified the extent to which the allocation of 
vertiports could influence the performance of UAM services when the 
number of vertiports is fixed. Accordingly, this study aims to investigate 
the impact of the UAM vertiport locations on the performance of travel 
time saving and accessibility improvement.

The case study of this paper located in Munich Metropolitan 
Area (Europäische Metropolregion München e.V. association, EMM 
for short), which has an approximate population of 4.5 million and 
encompasses 444 municipalities (Ploetner et al., 2020). The core cities 
include Munich, Augsburg, Ingolstadt, Landshut and Rosenheim. The 
geographical scope of the study area coincides with that of previous 
UAM studies conducted in the same region (Arellano, 2020; Ploetner 
et al., 2020; Rothfeld, 2021; Rothfeld et al., 2021). In order to conduct 
spatial analysis like accessibility assessments of UAM performance in 
the study area, Traffic Analysis Zones (TAZs) are necessary. In the field 
of transportation analysis and planning, TAZs are frequently utilized 
to model and analyze transportation demand and travel patterns and 
to generate the resolution at a more detailed level compared to larger 
regions. The delineation of TAZs is typically determined by land use 
patterns and population density. For this study, the zoning system 
aligns with the postal code zones for Germany, resulting in the division 
of the study area into 618 zones.

2. Literature review

Since vertiport siting is a complex urban planning challenge, the 
first step is to identify the key factors that should be considered. 
Through a comprehensive literature review, this study synthesizes the 
primary siting criteria identified in recent research (Antcliff et al., 2016; 
Arellano, 2020; Fadhil, 2018; Kim & Park, 2022; Otte et al., 2018; 
Ploetner et al., 2020; Rajendran & Srinivas, 2020). Fig.  1 presents these 
factors in a weighted visual representation, where font size corresponds 
to citation frequency in the literature. Analysis of recent studies reveals 
several recurring factors that are critical for vertiport siting. Density 
emerges as a key consideration, encompassing multiple dimensions: 
demand density (Rajendran & Srinivas, 2020), population density (Fad-
hil, 2018), and job density (Fadhil, 2018). The importance of demand 
is consistently emphasized across different aspects, including travel 
2 
Fig. 1. Word cloud of UAM vertiport siting influential factors.

demand Arellano (2020), commute demand Fadhil (2018), and de-
mand induction (Rajendran & Srinivas, 2020). Accessibility also plays 
a crucial role, with studies highlighting service accessibility (Holden & 
Goel, 2016) and employment accessibility (Arellano, 2020). Addition-
ally, integration with existing infrastructure, particularly helipads and 
transportation systems (Fadhil, 2018), is consistently identified as vital. 
These key factors highlight three essential considerations for vertiport 
placement in urban mobility systems: alignment with travel demand 
patterns, seamless integration with existing transportation networks, 
and enhancement of metropolitan-wide accessibility.

Previous studies have employed a range of quantitative and qual-
itative methods to determine appropriate locations for UAM stations. 
Qualitative methods were commonly used in early UAM studies for 
vertiport allocation. For example, Antcliff et al. (2016) proposed uti-
lizing existing water barges, highway overpasses, and private tech 
business campuses as potential vertiports in their case study of Silicon 
Valley, Northern California, USA. Similarly, in North Rhine-Westphalia, 
Germany, Otte et al. (2018) suggested repurposing existing airfields 
as UAM stations. However, such qualitative approaches heavily rely 
on short-term constraints, such as existing infrastructure and land-
use patterns, making it difficult to integrate them with the long-term 
travel demand potential of UAM. To address these limitations, Ploetner 
et al. (2020) developed a more comprehensive approach as part of 
the OBUAM project, specifically focusing on the EMM region. In this 
project, UAM vertiport locations were manually determined by experts 
in a workshop, resulting in low-, medium-, and high-density UAM 
networks with 24, 74, and 130 stations, respectively. The OBUAM 
project serves as a critical reference framework for subsequent studies, 
and this paper also uses the medium-density scenario from that project 
as a comparison group. However, due to its manual nature, this method 
is challenging to apply directly to other regions with different land-use 
characteristics and traffic demand patterns. To overcome these chal-
lenges, Arellano (2020) introduced a demand-based, semi-automatic 
vertiport siting approach for the same study area. Their methodology 
utilized a GIS-based multi-criteria decision analysis framework, incor-
porating key factors influencing vertiport placement, ranking them, 
and establishing a systematic siting framework. However, their findings 
indicated that this method resulted in lower trip time savings compared 
to the manually designed networks in the OBUAM project (Ploetner 
et al., 2020).

A widely used quantitative method for vertiport allocation is clus-
tering, which involves dividing demand points into clusters to identify 
potential vertiport locations. Lim and Hwang (2019) extracted com-
muter origins from existing data in the Seoul Metropolitan Area, Korea, 
and applied K-means clustering to determine suitable vertiport loca-
tions by identifying cluster centroids. Jeong et al. (2021) expanded 
on this approach, integrating population and commuter demand data 
for the same study area. In another study conducted in Los Angeles, 
USA, and London, UK, Holden and Goel (2016) employed a combined 
approach using the K-means clustering algorithm and network opti-
mization to maximize trip coverage. Their results indicated that with 
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25 stations, UAM could accommodate 60% of long-distance trips in 
Los Angeles and 35% in London. Another category of quantitative 
UAM vertiport siting methods is optimization-based siting. Most pre-
vious studies aim to minimize travel time (Rothfeld, 2021; Willey & 
Salmon, 2021), minimize travel cost (Guo, 2024; Wu & Zhang, 2021), 
maximize profitability (Rath & Chow, 2022; Wang et al., 2022), or 
maximize UAM ridership (Rath & Chow, 2022). Optimization-based 
methods guarantee optimal or near-optimal solutions with respect to 
the objective function. However, they require substantial computa-
tional resources to solve large-scale NP-hard problems, particularly 
when integrated with existing transportation systems (Wu et al., 2025). 
Conversely, clustering-based methods are computationally efficient, 
easy to implement, and require minimal expertise. Additionally, they 
are inherently demand-oriented and, according to Guo (2024), out-
perform optimization-based methods in terms of demand coverage. 
Therefore, this study adopts clustering-based methods to explore their 
potential and effectiveness in the vertiport siting problems.

The literature review highlights existing applications of clustering 
for vertiport allocation in South Korea, the USA, and the UK. Each 
study follows a common approach: extracting demand data points 
and applying clustering algorithms to determine vertiport locations. 
Previous studies have predominantly utilized K-means clustering for 
UAM siting, with limited exploration of alternative clustering methods. 
Additionally, little attention has been given to the critical relationship 
between vertiport locations and urban accessibility as well as equality. 
Most prior research has focused on travel time, modal share, and oper-
ator profitability, leaving a gap in understanding how vertiport siting 
decisions affect transportation accessibility and equality across differ-
ent urban population segments. To address these research gaps, this 
paper aims to explore the feasibility of various clustering techniques for 
vertiport location selection and analyze their impact on urban mobility 
enhancement, specifically in terms of travel time savings, accessibility 
improvements and transport equity. Identifying the optimal solution 
falls within the domain of optimization problems, which is beyond the 
scope of this study.

3. Methodology

3.1. Data sources

For EMM region, an agent-based travel demand simulation 
model Microscopic Transportation Orchestrator (MITO) was developed 
by Moeckel et al. (2020), which is based on the OpenStreetMap data 
and the Simple Integrated Land Use Orchestrator (SILO) (Ziemke et al., 
2016) generated synthetic population. The SILO model is calibrated to 
closely match observed land use changes from 2000 to 2010 through 
backcasting (Moeckel et al., 2020). When generating travel demand, 
the number of trips for each household is determined using Monte 
Carlo sampling, while household travel time budgets are estimated 
based on trip purpose, household size, income, and other relevant 
household variables. Commuting trip destinations are predefined in 
synthetic populations, whereas other destinations are selected using 
a logit-based choice model that adheres to the available travel time 
budget. Travel modes are assigned through a nested mode choice 
model. The preferred arrival times for commuting trips are determined 
based on an arrival time distribution derived from survey data. Finally, 
all modules are calibrated, and the MITO model is validated using the 
German national household survey (Lenz et al., 2010) and observed 
traffic count data (BASt, 2022) in the EMM area. Since MITO generates 
travel demand on a microscopic level, the attributes of each individual, 
such as car ownership, income, age, and education, are all considered 
when making travel decisions (e.g., mode choice). 

Similar to preceding studies (Lim & Hwang, 2019; Ploetner et al., 
2020), UAM demand in this study is conjectured from demographic 
data using the home locations of individuals. Additionally, from the 
travel demand generated by MITO, it is evident that home-based trips 
3 
Fig. 2. Residents density in EMM region.

account for the majority of all trips. Therefore, the home locations of 
the synthetic population were used as the raw demand data point to 
reflect travel demand and for clustering analysis later. The distribution 
of home location is visualized as a residents density map and is shown 
in Fig.  2.

3.2. Vertiports allocation methods

As highlighted in the literature review, K-means clustering is a 
widely used method for UAM vertiport placement in South Korea, 
the USA, and the UK. However, limited studies have applied cluster-
ing techniques to address vertiport placement challenges in European 
countries. This study employs five clustering algorithms: DBSCAN, K-
means, agglomerative hierarchical clustering, Gaussian mixture model 
(GMM), and mean shift clustering. To ensure comparability with prior 
studies (Arellano, 2020; Ploetner et al., 2020), the number of clusters 
in all algorithms is either predefined or adjusted to 74, resulting in 
74 centroids representing vertiport locations. The expert-placed ver-
tiport scenario from the OBUAM project is used for comparison. The 
OBUAM project consortium conducted four workshops with stakehold-
ers, including representatives from Munich Airport, the Chamber of 
Industry and Commerce of Upper Bavaria, and the cities of Munich 
and Ingolstadt. During these workshops, various trip purposes—such 
as commuting, business, tourism, etc. are considered to inform verti-
port placement. The experts were asked to identify relevant locations 
for each trip purpose, considering coverage of major agglomerations, 
employment centers, transportation hubs, and densely populated areas 
with a high share of high-income residents.

3.2.1. K-means clustering
The fundamental concept of this algorithm is to assign data points to 

K clusters through an iterative procedure, maximizing the similarity of 
data points within each cluster and minimizing the similarity between 
different clusters (Hartigan & Wong, 1979). The algorithm follows a 
process that involves initializing K centroids, calculating the distance 
between each data point and the centroid, assigning data points to the 
cluster with the nearest centroid, updating the centroid positions, and 
repeating this process until convergence. However, clustering results 
are highly sensitive to the initial location of centroids. The effect of this 
feature has not been accounted for in all previous studies using K-means 
clustering in vertiports allocation. In this study, two distinct initializa-
tion methods result in two scenarios: one where the initial centroids 
are set as the OBUAM vertiport locations, referred to as the KM𝑂𝐵𝑈𝐴𝑀
scenario, and another where the K-means++ technique is employed 
for initialization, referred to as the KM++ scenario. The K-means++ 
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algorithm offers an improved initialization approach by selecting initial 
centroids that are more widely distributed. This smarter initialization 
leads to enhanced clustering outcomes and reduces sensitivity to initial 
conditions. Both scenarios employ a total of 74 vertiports, with the 
number of clusters (K) set to 74.

3.2.2. Gaussian mixture method clustering
The Gaussian mixture model (GMM) is a clustering algorithm that 

employs a probabilistic model, enabling the inclusion of uncertainty 
and noise while representing the data distribution. Unlike K-means 
clustering, GMM does not necessitate spherical-shaped clusters and is 
better suited for accommodating various cluster shapes. The basic idea 
of GMM is to consider the data set as a mixture of several Gaussian 
distributions; each Gaussian distribution corresponds to a cluster. Con-
sequently, the GMM algorithm requires the estimation of the mean, 
covariance matrix, and cluster weights for each Gaussian distribution. 
In this specific case, the initialization of GMM clustering utilizes the 
widely adopted K-means++ method, which is readily available as a 
built-in parameter in the Python scikit-learn library (Pedregosa et al., 
2011), for the same reason to alleviate its high sensitivity to initial-
ization. Alongside initial parameter configurations, the covariance type 
significantly influences the cluster shape. Experimentation reveals high 
similarity in centroid (vertiport) distributions with ‘full’, ‘diag’, and 
‘spherical’ covariance types. This similarity is further corroborated by 
the analogous shapes produced by Ripley’s K-function for the three 
sets of centroids, which is a common measure to characterize spatial 
patterns of points (Haase, 1995). Conversely, a ‘tied’ covariance type 
leads to the coalescence of all cluster centers at virtually the same 
location, an outcome patently unfavorable in practice. Hence, for the 
construction of the scenario, the ‘full’ covariance type was selected as 
a representative model. As a hyperparameter, the number of clusters is 
also set to 74. This scenario is denoted as the GMM scenario.

3.2.3. DBSCAN clustering
DBSCAN (Density-Based Spatial Clustering of Applications with 

Noise) dynamically discovers clusters based on the density of data 
points in the feature space. The algorithm identifies core points, which 
have a sufficient number of neighbors within a specified distance (𝜀), 
and non-core points, which are close to core points but have fewer 
neighbors. By connecting core points and their nearby non-core points, 
DBSCAN forms dense regions, which represent clusters. Points that do 
not belong to any cluster are considered noise. DBSCAN is particularly 
useful for datasets with irregularly shaped clusters, varying cluster den-
sities, and noisy data. The number of clusters can be regulated to 74 by 
appropriately adjusting the 𝜀 and the minimum number of points in the 
neighborhood for density (MinPts). The vertiports allocation scenario 
generated by this clustering is denoted as the DBSCAN scenario.

3.2.4. Agglomerative hierarchical clustering
Agglomerative hierarchical clustering treats each data point in the 

dataset as a separate cluster and gradually merges the most similar 
clusters until all data points are in the same cluster. The similarity 
between clusters, in this case, is defined as the Euclidean distance and 
calculated by the ward linkage method. The ward linkage method aims 
to minimize the error sum of squares (ESS) by merging two clusters into 
a single cluster at each step. At the end of clustering, a dendrogram will 
be generated and could be cut from any level to get different numbers 
of clusters. This scenario is referred to as the HC scenario.

3.2.5. Mean shift clustering
Mean shift clustering is a non-parametric density-based clustering 

algorithm. Its objective is to identify clusters in data by iteratively 
shifting points towards regions of higher density with the utilization of 
a mean shift vector. The mean shift vector is typically computed using 
a Gaussian kernel function. The shifting process continues until con-
vergence, where points settle around local maxima. In this algorithm, 
4 
the number of clusters is not specified in advance but is obtained by 
adjusting the bandwidth. Increasing the bandwidth leads to a decrease 
in the number of clusters. After multiple attempts, with the bandwidth 
set to around 5600, the algorithm yields a total of 74 clusters for the 
demand points in this case. This scenario is denoted as the MS scenario.

To facilitate a clear comparison of these six clustering algorithms, 
their core principles, advantages, and shortcomings in vertiport siting 
problems are summarized in Table  1.

Fig.  3 visualizes the clustering results, displaying the vertiport lo-
cations on the map, including those proposed in the OBUAM project 
(referred to as the OBUAM scenario). In both the OBUAM and DBSCAN 
scenarios, a high concentration of vertiports is observed in urban areas 
of major cities and peri-urban regions, with Munich being a notable 
example. In particular, the DBSCAN scenario exhibits few vertiport 
sites in rural areas. Since DBSCAN identifies clusters based on data 
point density, areas with sparse data may not meet the algorithm’s 
clustering criteria and are labeled as noise. Among the remaining five 
scenarios, the KM𝑂𝐵𝑈𝐴𝑀  scenario stands out with a denser distribution 
of stations in and around Munich, highlighting the substantial impact 
of initialization settings in K-means clustering. The HC, KM++, and 
GMM scenarios exhibit similar spatial distribution patterns, featuring 
higher vertiport concentrations near Munich and a relatively more even 
distribution in other regions. Conversely, the MS scenario presents a 
sparser placement of vertiports near major cities and a more evenly 
distributed pattern in rural areas, as it requires a larger bandwidth 
setting to achieve 74 clusters.

3.3. UAM scenario configurations

In this study, all parameters that could influence the travel time of 
UAM would be determined by the review of previous studies, as shown 
in Table  2.

3.4. Travel efficiency improvement assessment

For both travel time efficiency and accessibility improvements as-
sessment, travel time is an essential input.  The MATSim-UAM exten-
sion provides a framework for simulating UAM trips and integrating 
them into multimodal transport networks. To measure travel time 
with UAM, we employ the Travel Time Calculator, a component of 
the MATSim-UAM framework developed by Rothfeld (2021). This tool 
estimates trip durations based on predefined routing parameters and 
scenario-specific network constraints. The Travel Time Calculator op-
erates by computing expected UAM travel times based on the following 
key factors:

• Scenario Network Configuration: The MATSim scenario includes 
an normal ground network integrated with airspace network com-
posed of predefined vertiport locations, inter-vertiport connec-
tions, and associated flight parameters. UAM routes are generated 
based on network topology and available vertiport infrastructure.

• Trip Segmentation and Routing: UAM travel time is divided into 
three major phases. Ground access/egress time is modeled using 
the existing ground transport network for first-mile and last-mile 
connections. Airborne time is determined based on the direct 
aerial distance between origin and destination vertiports and 
aircraft cruise speed. Pre-flight and processing time is predefined 
and includes check-in, security screening, and potential waiting 
at vertiports.

• MATSim-based Iterative Simulation: To optimize computational 
efficiency, the Travel Time Calculator runs as a post-processing 
module within MATSim, rather than requiring a full simulation 
for each calculation. A full MATSim simulation is executed in 
prior to travel time calculations, and the NetworkChangeEvent 
file—recording congestion states for each link at each time step—
is used. This allows expected travel times for each trip to be 
computed offline while accounting for network congestion.
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Table 1
Comparison among clustering algorithms.
 Algorithm Core Principle Advantages for Vertiport 

Allocation
Limitations for Vertiport 
Allocation

 

 K-means ++ Iteratively assigns points to 
clusters by minimizing 
intra-cluster variance.

∙ Ensures well-distributed 
vertiports with balanced demand 
coverage.
∙ Computationally efficient and 
scalable for large-scale UAM 
planning.
∙ Allows control over the number 
of vertiports, aligning with 
planning constraints.

∙ Assumes clusters are spherical, 
which may not fully capture 
irregular demand patterns.

 

 DBSCAN Density-based clustering; forms 
clusters based on point density.

∙ Adapts to real-world demand 
distributions by detecting 
high-density regions.

∙ Hard to control the number of 
vertiports, making planning 
difficult when a fixed number of 
sites is required.
∙ Some regions may be classified 
as noise and excluded from 
vertiport allocation.

 

 GMM Probabilistic model assuming data 
points belong to multiple 
Gaussian distributions.

∙ Assigns probability-based 
memberships, allowing flexible 
vertiport placements.
∙ Can model overlapping demand 
areas better than K-means, useful 
for multi-purpose vertiports.
∙ Allows control over the number 
of vertiports, aligning with 
planning constraints.

∙ Computationally more expensive 
than K-means.

 

 HC Builds a tree-based cluster 
structure by recursively merging 
or splitting clusters.

∙ Supports multi-scale planning, 
making it useful for both regional 
and local vertiport allocation.

∙ Can be used to evaluate 
different cluster numbers before 
final selection.

∙ High computational cost for 
large datasets.

∙ Results depend on the chosen 
linkage method, requiring careful 
selection.

 

 MS Identifies dense areas by shifting 
data points toward local density 
peaks.

∙ Suitable for detecting natural 
demand centers.

∙ Hard to control the number of 
clusters, which may lead to too 
many or too few vertiports for 
operational feasibility.

∙ High computational cost, 
limiting scalability in large 
regions.

 

Table 2
Overview of key parameter setups.
 Parameter Existing Value Definition(s) Baseline Value Values for Sensitivity Analysis  
 Processing Time Existing literature defines it as a variable with a wide 

range, shown below in minutes: 0, 10, 20 (Ploetner et al., 
2020); 0, 15, 30 (Rothfeld, 2021); 0, 4, 8, 12 (Balac 
et al., 2019).

15 min 0, 5, 10, 15, 20, 25, 30 min  

 Cruise Speed Ploetner et al. (2020) studied 8 scenarios between 
50–350 km/h.

350 km/h 200, 250, 300, 350, 400 km/h  

 UAM Pricing Holden and Goel (2016): 1.5 €/pkm (short term), 0.2 
€/pkm (long term); Balac et al. (2019): 6.1 €+ 0.6–4.2 
€/pkm; Wu and Zhang (2021): 9.2–27.6 €+ 0.5–1.0 
€/pkm; Ploetner et al. (2020): 4.94 €/km.

1.0 €/pkm 0.8, 1.0, 1.2, 1.4, 1.6 €/pkm  

 VTOL Altitude When flying over cities and dense areas, aircraft should 
operate 300 m above the highest obstacle; in other cases, 
150 m above ground level (Justiz, 2015). For the study 
area, the height of Olympic Tower defines it to be 591.28 
m (muenchen.de, 2023).

600 m /  

 Vertical Speed Experts consulted the performance benchmark of UAM 
vehicles in Shamiyeh et al. (2018) as 10 m/s.

10 m/s /  
In order to evaluate the time efficiencies in UAM scenarios with 
various vertiport locations, all trips with motorized transport mode 
(i.e. car as a driver, car as a passenger, public transport including re-
gional trains) are extracted from the MITO generated trips’ data. These 
5 
trips contain information on origin and destination location, departure 
time, travel time, mode, and travel distance. By using the Travel Time 
Calculator mentioned above, the travel times with UAM (if available) 
for those trips are calculated and compared with their original travel 
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Fig. 3. Vertiports allocation scenarios.
times with ground-based modes. To quantify the improvement of time 
efficiency, with the same definition in Rothfeld et al. (2021), a time-
saving ratio 𝑟𝑡𝑡𝑠 for each trip is defined in Eq.  (1). Since this study aims 
to explore the potential benefits of UAM, only actual improvements 
brought by UAM are considered. If UAM results in longer travel times 
than ground transport for a particular trip, the calculated 𝑟𝑡𝑡𝑠 value 
would be negative. However, in this context, negative values do not 
represent meaningful ‘‘negative improvement’’—they simply indicate 
that UAM does not provide a benefit for that trip. Therefore, the 
negative values are rounded up to zero, ensuring that 𝑟𝑡𝑡𝑠 exclusively 
captures actual time savings. 

𝑟𝑡𝑡𝑠 = 𝑚𝑖𝑛{1 −
𝑡𝑢𝑎𝑚
𝑡𝑔𝑏

, 0} (1)

3.5. Accessibility improvements assessment

The success of transportation projects in enhancing urban mobility 
is fundamentally tied to their accessibility impact—the ease with which 
residents can reach desired destinations and opportunities (Silva et al., 
2023). These measures serve as crucial indicators for assessing how 
transport infrastructure investments influence inhabitants’ participa-
tion in socioeconomic activities at the metropolitan scale. Building 
upon prior research on infrastructure proximity (Büttner et al., 2024; 
Silva et al., 2023) and service coverage area (Beyazit et al., 2023; Jehle 
et al., 2022), this study employs a cumulative opportunities measure, as 
defined by Geurs and Van Wee (2004) and applied in Rothfeld (2021). 
This integrative approach accounts for both the spatial distribution of 
opportunities and travel cost impedance, providing deeper insights into 
accessibility patterns. The applied metric is mathematically expressed 
in Eq.  (2). 

𝐴𝑖 =
𝑛
∑

𝑗=1
𝐷𝑗𝑒

−𝛽𝑐𝑖𝑗 (2)

Where, 𝐴𝑖 is the quantified measure of accessibility in zone 𝑖, 𝑛 is the 
number of zones, and 𝐷𝑗 is the number of job opportunities in zone j. 
Given the relatively small size of the TAZs used in this study, synthetic 
trips between zone centroids are used to approximate commuting travel 
6 
between zones. The notation 𝑐𝑖𝑗 represents the generalized travel cost 
for synthetic trips from the centroid of zone 𝑖 to zone 𝑗, calculated 
as the sum of monetary travel costs and non-monetary travel time. 
Travel time is converted into monetary values by multiplying it by 
the VOT. In the case study, VOT is set according to Axhausen et al. 
(2015) at 4.54 €/h for trips below 50 km and 12.58 €/h for trips 
exceeding 50 km. The parameter 𝛽 represents cost sensitivity and 
plays a crucial role in calculating location-based accessibility using the 
gravity model. It acts as a trade-off between travel cost and the number 
of available opportunities when assessing accessibility. A higher 𝛽 value 
indicates that as travel costs increase, the weight assigned to distant 
opportunities declines more sharply. Conversely, a lower 𝛽 value results 
in a slower decay, allowing opportunities farther away to retain greater 
influence. As stated by Geurs and Van Wee (2004), the plausible range 
of 𝛽 varies from 0.01 to 1. In this study, we selected 𝛽 = 0.05 as the 
baseline and conducted a sensitivity analysis to evaluate its impact. The 
accessibility of each zone with ground-based transportation modes and 
UAM is calculated and compared. The accessibility improvements ratio 
𝑟𝑎𝑖 is calculated accordingly. Unlike the time savings ratio, which is trip-
based, the accessibility in this context is zone-based. A mathematical 
expression is shown in Eq.  (3). Similar to the definition of 𝑟𝑡𝑡𝑠, only 
actual improvements in accessibility are considered. A higher gener-
alized cost for UAM compared to ground transport of synthetic trips 
between zone centroids does not indicate a reduction in accessibility 
for the zone pairs but rather the absence of improvement. Therefore, 
all negative values of 𝑟𝑎𝑖 are set to zero. 

𝑟𝑎𝑖 = 𝑚𝑖𝑛{
𝐴𝑢𝑎𝑚
𝐴𝑔𝑏

− 1, 0} (3)

3.6. Transport equity assessment

Ensuring equitable access to activity opportunities is a fundamental 
aspect of sustainable urban mobility planning. Transport equity assesses 
whether different population segments receive fair benefits from acces-
sibility improvements. It is commonly evaluated using distributional 
measures that quantify how accessibility gains are allocated among 
various population groups. A widely used approach in transport equity 
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studies is the Lorenz curve, which graphically represents the cumulative 
share of accessibility improvements against the cumulative share of the 
population, ordered from least to most advantaged (Qin & Liao, 2022). 
To quantify equity, the Gini coefficient is derived from the Lorenz curve 
and measures the degree of inequality in accessibility benefits. A Gini 
coefficient of 0 indicates perfect equity (equal distribution of benefits 
across all groups), while a coefficient of 1 denotes maximum inequality 
(one group receives all the benefits). The Gini coefficient is calculated 
using Eq.  (4): 

𝐺 = 1 − 2
𝑚
∑

𝑘=1
𝑃𝑘𝐴𝑘 (4)

 where 𝑃𝑘 is the cumulative share of population group 𝑘, ordered by 
accessibility improvement; 𝐴𝑘 is the cumulative share of received acces-
sibility improvement (𝑟𝑎𝑖) for that population group; and 𝑚 represents 
the number of income groups. The Lorenz curve plots 𝑃𝑘 against 𝐴𝑘, 
providing a visual assessment of equity in accessibility improvements. 
Since 𝑟𝑎𝑖 in this study is calculated on a zone-based level (Eq.  (3)), the 
accessibility improvement received by each income group is estimated 
as the weighted average of 𝑟𝑎𝑖 across all zones, with the ratio of 
population size in the respective income group in each zone and the 
total population serving as the weight.

4. Results

4.1. Travel efficiency improvement

Fig.  4 illustrates the average travel time savings ratio (𝑟𝑡𝑡𝑠) for trips 
over Euclidean distances in 10 km bins across all scenarios. None of 
the scenarios exhibit significant travel time savings for short trips. The 
overall trend indicates that the average 𝑟𝑡𝑡𝑠 increases as travel distance 
grows. The curves display an elbow point at 35 km, suggesting that 
UAM begins to demonstrate significant time-saving advantages over 
ground transportation when travel distances exceed this range. How-
ever, in the OBUAM and DBSCAN scenarios, the 𝑟𝑡𝑡𝑠 curves reach an 
inflection point beyond 75 km, meaning that UAM under both vertiport 
siting strategies fails to deliver greater time-saving benefits as travel 
distances continue to increase. This seemingly counterintuitive result 
arises because both solutions overconcentrate vertiports in Munich’s 
urban area while providing fewer vertiports in rural areas and near 
other cities. Most trips exceeding 75 km occur between Munich and 
the countryside or between Munich and other cities. Consequently, for 
these trips, one trip end (either the origin or destination) may have 
easy access to a vertiport, while the other end may not, limiting overall 
travel time savings. Interestingly, for extremely long trips (> 145 km), 
some scenarios—such as HC and MS—also show a declining trend.  This 
occurs due to the limited number of such trips, resulting in a highly 
fortuitous outcome.

All scenarios could gain a tangible travel time saving when the 
distance is beyond 25–30 km, which is more optimistic than in Rothfeld 
et al. (2021) (35–60 km). Moreover, for trips above 40–50 km, an 
average time saving of over 10% could be achieved by introducing 
UAM. According to the value of time (VOT) theory (DeSerpa, 1971), 
this level of time savings can have substantial implications for var-
ious stakeholders, including individuals, businesses, and the overall 
economy. At approximately 45 km, the gap between the DBSCAN and 
OBUAM curves and the other curves gradually widens, indicating the 
superiority of other clustering scenarios in travel time saving effects 
among long distance trips.

Among all clustering scenarios, the DBSCAN scenario performs the 
worst in terms of time savings for trips longer than 35 km, even 
underperforming the OBUAM scenario. This is primarily due to its 
lack of rural vertiports and overconcentration of urban sites. The MS 
scenario also exhibits slightly inferior performance compared to other 
methods for trips shorter than 70 km, which can be attributed to its 
7 
Fig. 4. Average 𝑟𝑡𝑡𝑠 of trips with different distance.

Fig. 5. Number of trips above 25 km in each 𝑟𝑡𝑡𝑠 range.

Table 3
Average 𝑟𝑡𝑡𝑠 of trips above 25 km.
 Solution Average 𝑟𝑡𝑡𝑠 (%) Number of trips 

with 𝑟𝑡𝑡𝑠 > 0
Number of trips 
with 𝑟𝑡𝑡𝑠 > 0.5

 

 OBUAM 7.26 171425 46042  
 DBSCAN 6.29 153439 39279  
 KM++ 10.05 241403 61684  
 KM𝑂𝐵𝑈𝐴𝑀 9.62 232631 60042  
 GMM 9.71 229545 60575  
 HC 9.74 230566 60575  
 MS 8.65 202548 52523  

lower number of urban vertiports. As a result, it provides limited time-
saving benefits for shorter trips. Conversely, the KM𝑂𝐵𝑈𝐴𝑀  scenario 
demonstrates weaker performance for long trips (> 70 km), which, sim-
ilar to the OBUAM and DBSCAN scenarios, can be linked to its higher 
concentration of urban vertiports. This finding further underscores the 
sensitivity of K-means clustering to initial search points. Since long-
distance trips primarily occur between urban and rural areas, a lack of 
rural vertiports can significantly reduce UAM’s time-saving potential. In 
short, the relationship between the vertiports layout and the travel time 
saving benefits of UAM could be summarized as follows: sparse rural 
vertiports (e.g., OBUAM, DBSCAN, KM𝑂𝐵𝑈𝐴𝑀  scenarios) limit UAM’s 
time-saving effect for long trips, while a scarcity of urban vertiports 
(e.g., MS scenario) hinders time savings for short trips.

To provide a more explicit comparison of travel time savings across 
scenarios, the distribution of trips over 25 km across different 𝑟𝑡𝑡𝑠 bins 
is plotted in Fig.  5. The 𝑥-axis represents 𝑟𝑡𝑡𝑠 values (ranging from 0 
to 1 with an interval of 0.1), while the 𝑦-axis indicates the number of 
trips for each 𝑟𝑡𝑡𝑠 interval. Additionally, Table  3 presents the average 
𝑟𝑡𝑡𝑠 for all trips exceeding 25 km, along with the number of trips 
achieving any travel time savings and those with 𝑟 > 0.5. From
𝑡𝑡𝑠
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Fig. 6. Spatial distribution of 𝑟𝑎𝑖.
Fig.  5, it is evident that the KM++, KM𝑂𝐵𝑈𝐴𝑀 , GMM, and HC scenarios 
include a greater number of trips at all 𝑟𝑡𝑡𝑠 intervals compared to other 
scenarios, reinforcing their superior performance in travel time savings. 
The concrete values in Table  3 provide further insights. For example, 
the KM++ vertiport siting solution resulted in 70,000 more trips with 
actual travel time savings and enabled over 15,000 trips to achieve 
more than 50% time savings compared to OBUAM. Conversely, for all 
trips exceeding 25 km, the time-saving effects of DBSCAN, OBUAM, and 
MS scenarios are comparatively weaker. These findings demonstrate 
that placing urban area vertiports either too sparsely or too densely 
is not conducive to achieving overall time savings. Among all the 
scenarios, the KM++ scenario demonstrates the most significant time 
efficiency improvement.

Moreover, given the similarity in shape among the 𝑟𝑡𝑡𝑠 cumulative 
frequency curves of the seven scenarios, an 2-by-2 Analysis of Variance 
(ANOVA) is conducted on the 𝑟𝑡𝑡𝑠 of all trips and proves that they are 
statistically different at a confidence level of 95%. The formal results 
of ANOVA tests are shown in Table  A.1 of Appendix.

4.2. Accessibility improvement

As job opportunity accessibility improvements are assessed using 
a zone-based approach, it is essential to examine both their spatial 
distribution and the underlying factors influencing these patterns. Fig.  6 
illustrates the spatial variation of 𝑟𝑎𝑖 across different vertiport allocation 
scenarios within EMM area, highlighting notable regional disparities. 
The second column of Table  4 presents the average 𝑟𝑎𝑖 across all 
zones, offering a clearer understanding of the extent of accessibility 
enhancement achieved under different scenarios. This section discusses 
the observed patterns and their underlying causes. 

Extent of accessibility improvement: The KM++ scenario 
achieves the highest 𝑟𝑎𝑖 (7.16%), which is 2.5 times that of the DBSCAN 
scenario, indicating that it provides the most significant accessibility 
enhancement across zones. DBSCAN and OBUAM scenarios exhibit the 
lowest average 𝑟𝑎𝑖, highlighting their limited effectiveness in improving 
accessibility. Other scenarios (GMM, HC, MS, and KM𝑂𝐵𝑈𝐴𝑀 ) achieve 
moderate improvements.
8 
Rural and suburban gains: Accessibility improvements across the 
EMM region reveal notable regional disparities. The KM++ scenario de-
livers the most substantial accessibility benefits in rural and peri-urban 
areas, particularly in counties surrounding Ingolstadt and Landshut, as 
well as in regions near Weilheim (southwest of the study area). Other 
clustering-based scenarios (KM𝑂𝐵𝑈𝐴𝑀 , GMM, HC, and MS) also consis-
tently demonstrate higher accessibility gains in these areas. In contrast, 
DBSCAN and OBUAM scenarios provide limited accessibility benefits, 
with only a few rural regions experiencing noticeable improvements. 

Limited impact in urban centers: No scenario significantly im-
proves accessibility within Munich and its surrounding areas, despite 
the presence of multiple vertiports in these locations under the OBUAM 
and DBSCAN scenarios. Two key factors may explain this: (1) the 
interaction between travel time savings and opportunity distribution 
and (2) the competitiveness of ground transportation for short trips. 
First, accessibility in this study is influenced by both travel time re-
ductions and the spatial distribution of employment opportunities. 
Munich and its suburban areas already have a high concentration 
of job opportunities, leading to elevated baseline accessibility levels. 
Consequently, the potential for additional improvements from UAM is 
less pronounced compared to rural areas, where employment oppor-
tunities are more dispersed. Second, Munich’s existing transportation 
infrastructure is highly developed, featuring an efficient public transit 
system and well-connected road networks. According to Arbeit (2023), 
87.9% of Munich’s residents commute within the city or to adjacent 
counties (e.g., Dachau, Freising, Starnberg), typically covering dis-
tances below 20 km. UAM struggles to compete with ground-based 
transport for these short trips due to additional access/egress times, 
waiting periods, and security processing. These findings align with 
previous studies (Pukhova et al., 2021) indicating that UAM is not well-
suited for short intra-urban commutes, particularly in cities with robust 
existing transportation networks. 

Similarly, a 2-by-2 ANOVA test is conducted for all zones’ 𝑟𝑎𝑖 of all 
7 scenarios. The results indicate that most scenarios are statistically 
different from others at the 95% confidence level. However, some 
scenario pairs—GMM and MS, GMM and KM++, GMM and HC, as 
well as HC and KM𝑂𝐵𝑈𝐴𝑀—show no statistically significant differences, 
even at the 85% confidence level. The formal results of the ANOVA tests 
are presented in Table  A.2 of Appendix.
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Table 4
Average 𝑟𝑎𝑖 of all zones and gini coefficient of all population income groups against 𝑟𝑎𝑖
 Solution Average 𝑟𝑎𝑖 (%) Gini coefficient 
 OBUAM 3.18 0.627  
 DBSCAN 2.71 0.626  
 KM++ 7.16 0.512  
 KM𝑂𝐵𝑈𝐴𝑀 5.98 0.516  
 GMM 6.67 0.515  
 HC 6.85 0.527  
 MS 6.45 0.598  

Fig. 7. Lorenz curve for cumulative share of 𝑟𝑎𝑖 against population income group.

4.3. Transport equity

The results of the accessibility improvement analysis reveal signif-
icant spatial disparities in accessibility benefits, particularly between 
urban and rural areas. This section visualizes and analyzes disparities 
among different sociodemographic groups. The evaluation of trans-
port equity using Lorenz curves (Fig.  7) and the Gini coefficient (last 
column in Table  4) provides valuable insights into accessibility dispar-
ities across different socioeconomic groups. The findings demonstrate 
substantial variations in equity among the tested vertiport allocation 
scenarios, highlighting the crucial role of spatial vertiport distribu-
tion in ensuring fair accessibility benefits. Among the siting scenarios, 
KM++, GMM, and KM𝑂𝐵𝑈𝐴𝑀  exhibit the lowest Gini coefficients, in-
dicating a more balanced distribution of accessibility benefits across 
income groups. The HC scenario shows moderate equity performance 
with slightly higher Gini values, suggesting that its vertiport placement 
strategy provides reasonable accessibility improvements for diverse 
socioeconomic groups. In contrast, the DBSCAN and OBUAM scenarios 
yield the highest Gini coefficients, indicating severe disparities, as ac-
cessibility benefits are highly concentrated in specific zones—primarily 
in the southwest of the study area, which is considered a typical affluent 
region. The MS scenario also yields relatively higher Gini coefficient, 
suggesting that this siting strategy tends to favor certain population 
groups over others regarding accessibility improvements.

These findings indicate that most clustering-based vertiport siting 
methods outperform the hand-placed approach used in the OBUAM 
scenario in terms of transport equity. However, certain clustering meth-
ods (e.g., DBSCAN and MS) aggravate existing accessibility inequalities. 
A key observation from the results is that scenarios prioritizing ver-
tiport placement in urban centers tend to exhibit higher inequity, 
as accessibility improvements are concentrated in high-income areas 
while economically disadvantaged zones are overlooked. Interestingly, 
the MS scenario, which distributes vertiports evenly across the region, 
9 
also yields relatively high Gini coefficients. This seemingly paradoxical 
result can be explained by variations in population density and UAM 
demand elasticity. In low-density suburban and rural areas, evenly 
placed vertiports may still fail to provide significant accessibility ben-
efits due to lower UAM travel demand, limited transit connections, 
and fewer job opportunities. Conversely, in urban zones with high 
population densities, even a small improvement in UAM services can 
generate substantial aggregate accessibility gains, disproportionately 
benefiting those regions. This imbalance contributes to a higher Gini 
coefficient, despite the spatially even distribution of infrastructure 
throughout the study area. Finally, scenarios demonstrating superior 
equity performance emphasize a more balanced vertiport distribution, 
ensuring that a larger proportion of the population benefits from UAM 
services. 

5. Sensitivity analysis

The performance of UAM services is highly dependent on key 
operational and sensitivity parameters, such as cruise speed, pre-flight 
processing time, UAM fare and cost sensitivity parameter (Ploetner 
et al., 2020; Wu & Zhang, 2021). Understanding the impact of these 
parameters is crucial for assessing UAM’s effectiveness in enhancing 
travel time efficiency, accessibility and transport equality. This section 
presents a structured sensitivity analysis to evaluate how variations in 
these parameters influence the key socioeconomic benefits brought by 
UAM.

5.1. Impact on travel time savings

Fig.  8 illustrates the variation in average travel time savings ratio 
(𝑟𝑡𝑡𝑠) for long-distance trips (≥ 25 km) under different cruise speed and 
pre-flight processing time settings. The results indicate the following: 

• Cruise speed: Increasing cruise speed leads to higher travel time 
savings, but the effect is marginal for medium-distance trips. For 
instance, raising the cruise speed from 250 km/h to 350 km/h 
reduces travel time by only two minutes on a 30 km route.

• Pre-flight processing time: Reducing pre-flight processing time 
has a more significant impact on travel time savings, exhibiting 
a near-exponential relationship. This suggests that optimizing 
pre-flight procedures may be more effective than merely increas-
ing cruise speed, particularly for metropolitan UAM applications 
where trip distances are typically moderate.

• The superiority of clustering-based siting solutions (KM++, 
KM𝑂𝐵𝑈𝐴𝑀 , GMM, and HC) remains consistent across all sensitiv-
ity analysis scenarios, reinforcing their robustness in improving 
UAM travel efficiency.

5.2. Impact on accessibility improvements

Fig.  9 illustrates the sensitivity of accessibility improvement (𝑟𝑎𝑖) to 
variations in cruise speed, pre-flight processing time, UAM fare, and 
the cost sensitivity parameter (𝛽). The findings reveal the following 
insights: 

• Cruise speed & pre-flight time: Accessibility improvements (𝑟𝑎𝑖) 
exhibit an approximately linear relationship with these parame-
ters. Similar to travel time savings, reducing pre-flight processing 
time is more effective in enhancing accessibility than increasing 
cruise speed.

• UAM fare: The affordability of UAM services plays a critical role 
in accessibility enhancement. At lower fares (e.g., 0.8 €/pkm), 
UAM significantly improves accessibility across study zones. How-
ever, even a slight fare increase (e.g., from 0.8 €/pkm to 1.2 
€/pkm) substantially diminishes the accessibility benefits, with 
average 𝑟  approaching zero in most siting scenarios.
𝑎𝑖
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Fig. 8. Sensitivity analysis against travel time saving.

• Cost sensitivity parameter (𝛽): The relationship between 𝛽 and 
accessibility is complex and nonlinear. As 𝛽 increases from 0.01 
to 1, 𝑟𝑎𝑖 first rises, peaking at 𝛽 = 0.05, before declining. This 
suggests that moderately high cost sensitivity parameter leads to 
the greatest differentiation in accessibility improvements across 
siting scenarios. Interestingly, when 𝛽 is increased to 0.2, the 
OBUAM and DBSCAN scenarios surpass KM𝑂𝐵𝑈𝐴𝑀  and MS in 
accessibility improvement, indicating complex trade-offs between 
cost and number of job opportunities at different locations by 
calculating accessibility.

5.3. Impact on transport equity

The transport equity assessment is sensitive to variations in key 
operational and economic parameters. This section presents a sensi-
tivity analysis to examine how changes in pre-flight time, UAM fare, 
and cruise speed affect the equity of accessibility improvements across 
different vertiport allocation scenarios. The Gini coefficient is used as 
the primary metric to evaluate distributional effects, and the results are 
visualized in Fig.  10. 

• Cruise speed: The transport equity of accessibility improvements 
is relatively insensitive to changes in cruise speed. The Gini coef-
ficients for all scenarios decrease slightly as cruise speed increases 
and remain nearly stable when cruise speed exceeds 300 km/h.

• Pre-flight time: Pre-flight time represents the additional waiting 
and boarding time required before departure. As pre-flight time 
increases from 0 to 30 min, the Gini coefficient increases lin-
early across all scenarios, indicating growing inequity. Although 
the slopes vary across scenarios, all Gini coefficients show a 
significant correlation with pre-flight time.
10 
Fig. 9. Sensitivity analysis against accessibility improvements.

• UAM fare: Fare levels directly influence affordability and acces-
sibility, particularly for low-income populations. Among these 
operational parameters, fare exerts the strongest impact on trans-
port equity. As UAM fare increases from 0.8 to 1.6 €/pkm, the 
Gini coefficients for all scenarios rise sharply, approaching 1 at 
1.6 €/pkm, indicating extreme inequality in accessibility improve-
ments. This analysis underscores the necessity of fare subsidies or 
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tiered pricing models to mitigate equity disparities, particularly in 
high-fare scenarios.

6. Conclusion

This study evaluates six UAM vertiport allocation scenarios using 
various clustering algorithms, comparing their impacts on urban mo-
bility through travel time efficiency, accessibility improvements and 
transport equity. The findings demonstrate how different spatial al-
location patterns significantly influence UAM’s potential to enhance 
metropolitan transportation networks.

The spatial distribution analysis reveals distinct patterns in vertiport 
placement, from concentrated urban deployments to dispersed regional 
allocations. These patterns directly affect UAM’s ability to complement 
existing urban transportation systems. While OBUAM and DBSCAN sce-
narios focus heavily on Munich’s core, potentially reinforcing existing 
center-focused mobility patterns, other scenarios like KM++ and GMM 
achieve a more balanced distribution that better serves the broader 
metropolitan mobility needs, particularly for the rural areas where 
other transport networks are not as well developed.

The performance analysis reveals that appropriate vertiport place-
ment can significantly enhance regional mobility, particularly for trips 
exceeding 25–30 km. For longer journeys over 40–50 km, the average 
travel time-saving ratio exceeds 0.1, indicating UAM’s potential to sub-
stantially improve regional connectivity. However, the analysis reveals 
that both extremes of vertiport distribution - excessive urban concen-
tration (as seen in OBUAM, DBSCAN, and KM𝑂𝐵𝑈𝐴𝑀  scenarios) and 
overly sparse distribution (as demonstrated in the MS scenario) - fail to 
optimize metropolitan mobility in terms of travel time savings. Most 
clustering scenarios, except DBSCAN, outperform the expert-placed 
OBUAM scenario in reducing travel time.

The accessibility analysis further emphasizes how vertiport place-
ment influences the distribution of mobility benefits across the 
metropolitan region. While all scenarios except DBSCAN surpass 
OBUAM in improving regional accessibility, their limited impact 
on Munich’s core area suggests the need to carefully consider 
UAM’s role in complementing existing urban transport networks. 
The KM++ scenario emerges as particularly effective in enhancing 
metropolitan-wide job opportunities access. The significant perfor-
mance gap between KM++ and KM𝑂𝐵𝑈𝐴𝑀  scenarios highlights how 
initialization methods can substantially affect mobility outcomes.  The 
transport equity shows a similar patterns as the other two indicators. 
With the lowest Gini coefficient, KM++ scenario still yields the best 
equity performance across all scenarios. The expert-placed OBUAM 
scenario and DBSCAN scenario show inferiority regarding the equity 
due the excessive number of vertiports in Munich center and the lack 
of vertiport in rural areas. 

The sensitivity analysis for these three indicators against UAM 
operational parameters illustrated meaningful insights. All of these 
three perspectives of UAM performance are sensitive to UAM pre-
flight processing time. Travel time saving, accessibility enhancement 
and transport equity are all less sensitive to cruise speed due to its 
limited potential in reducing travel time for trips within metropolitan. 
UAM fare is an extremely important factor that significantly impact the 
performance of accessibility improvements and equity. These findings 
imply the necessity of reducing the extra waiting and boarding time in 
order to increase the social benefits and attractiveness of UAM services. 
While assessing the accessibility improvements, the cost sensitivity fac-
tor in the accessibility gravity-model also show significant and complex 
non-linear impact on accessibility improvements. 

This research demonstrates the value of clustering-based approaches 
for planing UAM infrastructure placement within metropolitan mobility 
11 
Fig. 10. Sensitivity analysis against Gini coefficient.

systems. As cities worldwide explore UAM integration, these methods 
offer an efficient, reproducible approach to infrastructure planning that 
can enhance metropolitan accessibility and connectivity. The superior 
performance of the systematic and data-driven clustering methods over 
expert placement suggests their potential as valuable tools for future 
urban mobility planning, particularly as UAM services expand to more 
metropolitan regions worldwide.

7. Limitations and future research directions

While this study provides valuable insights into strategic vertiport 
siting and the theoretical socioeconomic benefits of UAM, several lim-
itations must be acknowledged, stemming from both methodological 
and data constraints. Future research could extend this work in four 
key directions.
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Table A.1
Results of one-way ANOVA test for 𝑟𝑡𝑡𝑠.
 Solution 1 Solution 2 F-statistic 𝑝-value Significant

(p<0.05)
Significant
(p<0.10)

Significant
(p<0.15)

 

 DBSCAN OBUAM 56.8340094 4.74E−14 Yes Yes Yes  
 DBSCAN KM++ 4462.54997 0 Yes Yes Yes  
 DBSCAN KM𝑂𝐵𝑈𝐴𝑀 4259.07085 0 Yes Yes Yes  
 DBSCAN GMM 3254.73726 0 Yes Yes Yes  
 DBSCAN HC 3890.77272 0 Yes Yes Yes  
 DBSCAN MS 33937.9573 0 Yes Yes Yes  
 GMM MS 58271.1152 0 Yes Yes Yes  
 GMM OBUAM 2468.73748 0 Yes Yes Yes  
 GMM KM++ 94.663252 2.26E−22 Yes Yes Yes  
 GMM KM𝑂𝐵𝑈𝐴𝑀 66.9739422 2.75E−16 Yes Yes Yes  
 GMM HC 28.5148198 9.30E−08 Yes Yes Yes  
 HC KM𝑂𝐵𝑈𝐴𝑀 8.06249604 0.0045191 Yes Yes Yes  
 HC KM++ 19.2306652 1.16E−05 Yes Yes Yes  
 HC OBUAM 3028.24816 0 Yes Yes Yes  
 HC MS 60847.6593 0 Yes Yes Yes  
 KM𝑂𝐵𝑈𝐴𝑀 MS 62366.7269 0 Yes Yes Yes  
 KM𝑂𝐵𝑈𝐴𝑀 OBUAM 3354.48277 0 Yes Yes Yes  
 KM𝑂𝐵𝑈𝐴𝑀 KM++ 3.69359378 0.02183329 Yes Yes Yes  
 KM++ MS 63130.0573 0 Yes Yes Yes  
 KM++ OBUAM 3535.93871 0 Yes Yes Yes  
 MS OBUAM 37053.6325 0 Yes Yes Yes  
Table A.2
Results of one-way ANOVA test for 𝑟𝑎𝑖.
 Solution 1 Solution 2 F-statistic 𝑝-value Significant

(p<0.05)
Significant
(p<0.10)

Significant
(p<0.15)

 

 DBSCAN OBUAM 5.59979075 0.01811637 Yes Yes Yes  
 DBSCAN KM++ 263.840148 6.47E−54 Yes Yes Yes  
 DBSCAN KM𝑂𝐵𝑈𝐴𝑀 166.914413 6.62E−36 Yes Yes Yes  
 DBSCAN GMM 227.332041 2.82E−47 Yes Yes Yes  
 DBSCAN HC 247.97633 4.73E−51 Yes Yes Yes  
 DBSCAN MS 199.064948 5.11E−42 Yes Yes Yes  
 GMM MS 0.24979005 0.61731205 No No No  
 GMM OBUAM 155.614893 1.01E−33 Yes Yes Yes  
 GMM KM++ 1.42948529 0.23207816 No No No  
 GMM KM𝑂𝐵𝑈𝐴𝑀 4.1453506 0.04196222 Yes Yes Yes  
 GMM HC 0.43363441 0.51033381 No No No  
 HC KM𝑂𝐵𝑈𝐴𝑀 7.2456651 0.00720335 Yes Yes Yes  
 HC KM++ 0.29021694 0.59017871 No No No  
 HC OBUAM 172.513092 5.57E−37 Yes Yes Yes  
 HC MS 3.30728168 0.05310917 No Yes Yes  
 KM𝑂𝐵𝑈𝐴𝑀 MS 3.62217375 0.03629696 Yes Yes Yes  
 KM𝑂𝐵𝑈𝐴𝑀 OBUAM 107.520849 3.27E−24 Yes Yes Yes  
 KM𝑂𝐵𝑈𝐴𝑀 KM++ 10.3784123 0.00130826 Yes Yes Yes  
 KM++ MS 2.78028078 0.09568517 No Yes Yes  
 KM++ OBUAM 185.902226 1.56E−39 Yes Yes Yes  
 MS OBUAM 135.11235 1.03E−29 Yes Yes Yes  
First, the analyses are conducted under idealized conditions, ex-
cluding operational constraints such as vertiport capacity, UAM vehicle 
availability, and maintenance requirements. These factors are pivotal 
in real-world scenarios, as they directly impact the feasibility, effi-
ciency, and safety of UAM services. Incorporating these constraints 
requires detailed simulations and modeling efforts, as well as addi-
tional assumptions—which is inherently challenging given the current 
absence of real-world UAM operation data. Future research should 
aim to integrate these operational factors to bridge the gap between 
theoretical planning and practical implementation, ensuring a more 
robust and comprehensive evaluation of UAM systems.

Second, while this study focused on job accessibility, due to data 
limitations, future research should consider access to other key urban 
opportunities like healthcare, education, and leisure facilities. This 
broader accessibility analysis would better reflect UAM’s comprehen-
sive impacts on urban mobility and quality of life across different trip 
purposes and population groups.

Last, quantifying externalities like environmental impacts and in-
duced traffic congestion near vertiports will be crucial for understand-
ing the full impact of UAM on urban mobility systems (Wang et al., 
2023). This includes analyzing how vertiport locations affect local 
12 
traffic patterns, noise exposure, and emission pollution in surrounding 
neighborhoods, helping planners optimize UAM’s integration with ex-
isting transportation networks while minimizing externalities on local 
urban communities.
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Appendix. Results of ANOVA tests

This appendix presents the results of 2-by-2 one-way ANOVA test 
between each two scenarios regarding the 𝑟𝑡𝑡𝑠 and 𝑟𝑎𝑖 (see Tables  A.1
and A.2).
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