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Abstract 
Automated design compliance checking has traditionally 
focused on interpreting natural language clauses, often 
neglecting accompanying graphical representations of 
requirements. These visual elements are crucial for 
accurately understanding requirements but remain 
underutilized in automated rule derivation. This study 
explores the potential of multimodal large language 
models (MLLMs) to generate machine-readable rules 
from textual and graphical representations. Focusing on 
accessibility regulations, 23 clause-graphic pairs were 
collected, and corresponding ground truth rules were 
manually generated in Prolog. The MLLM’s outputs 
under three input conditions - text-only, graphic-only, and 
combined - were evaluated against this ground truth. 
Results show that the combined input case yields the 
highest F1 score of 0.96, while the text-only and graphic-
only cases yield 0.74 and 0.43, respectively. The study 
demonstrates the potential of MLLMs to interpret 
multimodal regulatory inputs for automated rule 
derivation for design compliance checking. 

Introduction 
Automated derivation of machine-readable rules has been 
a key component of design compliance checking 
(Eastman et al., 2009). Most research in this field has 
focused on natural language processing (NLP) techniques 
to extract and interpret regulations or guidelines in textual 
format (Fuchs and Amor, 2021). However, many design 
guidelines and requirements involve textual descriptions 
along with tabular and graphic representations (Fuchs and 
Amor, 2021). Those visual elements often accompany 
textual clauses to clarify spatial constraints and assist 
expert understanding, as shown in Figure 1. 

 
Figure 1: An example of graphical representations with a 
corresponding clause (U.S. Department of Justice, 2010) 

Even recent rule derivation approaches remain primarily 
text-centric, with limited use of visual elements (Yang 
and Zhang, 2024; Zhang, 2023). With the advancement of 
multimodal large language models (MLLMs) that can 
process both textual and visual data, new opportunities 
have emerged. While some studies have explored the 
integration of figures and tables through MLLMs 
(Zentgraf and König, 2025) and multimodal retrieval-
augmented generation (Ying and Sacks, 2024), the direct 
use of graphical representations for generating machine-
readable rules has not been quantitatively evaluated.  
To address this gap, this study presents a preliminary 
study on MLLM-based rule derivation that incorporates 
graphical representations. A dataset of 23 regulatory 
clauses and their associated visual elements, including 
dimensional, annotated drawings, and implementation 
examples, was collected from accessibility design 
regulations. Three clause-graphic pairs were used for in-
context learning, and the remaining 20 were used for 
testing. Three different input modalities were compared: 
text-only, graphic-only, and a combination of both. The 
MLLM outputs were formalized in Prolog, a logic 
programming language, and compared against manually 
constructed ground truth to assess rule derivation 
performance.  
The remainder of this paper is structured as follows: 
Section 2 reviews related work on LLM-based automated 
rule derivation and MLLM applications using image 
input. Section 3 details the research methodology and 
experimental framework. Section 4 presents the 
experimental results, followed by Section 5, which 
provides a detailed discussion of the findings, limitations, 
and potential improvements. Finally, Section 6 concludes 
with key insights and future research directions.  

Related works  
Automated rule derivation is considered as a promising 
approach to reduce the labor and error-prone nature of 
manual rule interpretation. The emergence of large 
language models (LLMs) has recently introduced a new 
paradigm for automated rule derivation and compliance 
checking, offering improved scalability and adaptability. 
However, despite significant advancements, existing rule 
derivation approaches remain predominantly text-centric, 
overlooking the role of graphical representations in 
regulatory standards or design requirements. 



LLM-based automated rule derivation 
Recent research has explored LLM-based approaches for 
extracting, transforming, and applying regulatory rules. 
Zhang investigated using LLMs to extract and transform 
textual regulations into Python code, highlighting several 
limitations, including inefficiencies in processing time 
compared to NLP-based methods and the need for domain 
knowledge to refine the generated code for practical use 
(Zhang, 2023). Zheng et al. proposed a framework 
leveraging LLMs to map predefined compliance 
functions, utilizing LLM-extracted information to 
mitigate the challenge of domain expertise dependency in 
compliance checking. (Zheng et al., n.d.). Yang et al. 
proposed a prompt-based framework for transforming 
building codes into Prolog format (Yang and Zhang, 
2024). Fuchs et al. evaluate the performance of LLMs in 
translating regulation to LegalRuleML format using in-
context learning (Fuchs et al., 2024). However, their study 
focused solely on textual rules, neglecting graphical 
representations integral to regulatory interpretation.  

MLLM-based graphic interpretation 
With the advancement of MLLMs, which can process text 
and images, there is growing interest in applying these 
models to visual reasoning tasks and logically coherent 
source code. MLLMs have shown strong image 
comprehension capabilities in fields such as document 
processing, visual question answering, and interpretation 
of engineering drawings (Doris et al., 2024). For 
generating source code from the image input, Mu et al. 
utilized visual observation to make MLLMs generate 
codes that control robotic behavior (Mu et al., 2024). Wu 
et al. show that MLLMs can generate matplotlib code 
from scientific visual figures with proper prompt 
engineering (Wu et al., 2024). Generating compilable user 
interface code with MLLM from screenshots also 
proposed offering an alternative solution for design-to-
code (Wan et al., 2024).  
These studies indicate that MLLMs can extract properties 
and logical structures from graphical representations to 
create machine-interpretable representations.  

Integration of graphical representations in 
compliance checking  
A recent study has attempted to incorporate graphical 
representations into information extraction and 
compliance checking. Ying and Sacks integrated figures 
and tables by embedding their textual descriptions and 
retrieving relevant regulations based on user queries 
(Ying and Sacks, 2024). Zentgraf and König 
demonstrated the feasibility of using MLLMs to extract 
structured information from regulatory figures and 
associated texts (Zentgraf and König, 2025). However, 
lacked quantitative evaluation, and the direct 
transformation of graphical representations into a 
machine-readable rule format remains unexplored. 
Therefore, this study aims to bridge this gap by 
investigating the utilization of graphical representations in 
MLLM-based rule derivation. With the integrated inputs, 
the authors hypothesize that graphical representations 
improve the accuracy and completeness of automated rule 
derivation, similar to how graphical representations assist 
human experts in interpreting regulations and design 
guides. 

Research method 
The research framework consists of dataset creation, 
ground truth generation, followed by rule creation using 
MLLM, and evaluation, as illustrated in Figure 2. 

Dataset creation 
To assess the feasibility of MLLM-based rule derivation, 
a dataset was created using the universal design 
guidelines, with a specific focus on accessibility 
regulations. This domain was chosen due to the 
significant presence of graphical representations, such as 
dimensional drawings, annotated drawings, and 
implementation examples, which are used to clarify 
requirements. The dataset was compiled from three 
different guideline documents, resulting in 23 clause-
graphical guideline pairs. The clauses are selectively 
extracted, containing quantifiable regulations without any 
exemptions. The graphical representations consist of 11 
dimensional drawings, 6 annotated drawings, and 6 
implementation examples, each serving a specific 
function in regulatory interpretation. Dimensional 

Figure 2: Research Framework 



drawings provide precise measurements and spatial 
relationships necessary for compliance verification, such 
as minimum clearance spaces, turning radius, and door 
width requirements. Annotated drawings include not only 
dimensional information but also text descriptions. 
Implementation examples illustrate real-world 
applications of regulatory requirements, demonstrating 
compliant cases to clarify best practices. The examples of 
each graphic requirement are shown in Figure 3.  

   
(a) Dimensional 

drawing  
(b) Annotated 

drawing 
(c) Photographic 

example 

Figure 3: Three cases of graphical representations (U.S. 
Department of Justice, 2010; City of London, 2007; Federal 
Ministry for the Environment, Nature Conservation, Building 

and Nuclear Safety, 2015) 

Ground truth generation 
For the output format for machine-readable rules, we have 
chosen the Prolog language, following the approach used 
in Yang and Zhang’s research (Yang and Zhang, 2024). 
Since the primary goal of this study is to evaluate the rule 
derivation capability of MLLMs, it was assumed that all 
necessary compliance checking functions and attribute 
information for compliance checking were available. 
Figure 4 illustrates the process of generating ground truth 
Prolog code.  

Figure 4: Process of generating ground truth Prolog code from 
textual and graphic design requirements  

Manual Prolog rule and query creation were conducted, 
considering textual clauses and graphical representations 
to generate the ground truth. The rules were structured 
according to Prolog-based compliance reasoning 
principles to ensure compatibility with logic-based 
compliance checking. Key attribute information 
necessary for compliance verification was manually input 
to support this process. However, we assumed such 
information would automatically be extracted from a BIM 
model in full-scale text. This included spatial dimensions, 

door clearances, and other relevant parameters extracted 
from the regulations. The manually entered data was then 
used to generate Prolog facts, as shown in Figure 5, 
forming the basis for logical reasoning and compliance 
evaluation. 

 
Figure 5: Example of generated Prolog facts 

The extracted facts were tested within the SWI-Prolog 
interpreter (Wielemaker et al., 2012) to secure the 
executability of generated rules. If errors occurred, such 
as syntax issues or logical inconsistencies, the rules and 
queries were iteratively refined using LLM until they 
were executed correctly. Once a rule was successfully 
processed without errors, it was stored as ground truth for 
further evaluation. The examples of rules derived from 
graphical representations are presented in Figure 6. 

 
(a) Prolog rule 

 
(b) Text requirement 

 
(c) Graphic requirement 

Figure 6: Example of Prolog rules derived from text and 
graphical representations (Ministry for the Environment, 
Nature Conservation, Building and Nuclear Safety, 2015) 

Rule derivation using MLLM 
To evaluate the MLLM's ability to interpret regulatory 
rules and generate machine-readable rules, three input 
conditions were tested: text-only, graphic-only, and text + 
graphic. In the text-only condition, the model was 
provided with regulatory clauses in textual requirements 
without any accompanying graphical representations. In 
the graphic-only condition, the model received only 
graphical representations with no textual descriptions, 
simulating cases where regulatory information is 
conveyed exclusively through visual elements. In the text 



+ graphic condition, the MLLM was given both textual 
and graphical representations, such as dimensional 
drawings, annotated drawings, and implementation 
examples, to determine whether visual support enhanced 
the model’s ability to interpret compliance rules more 
accurately compared to text alone.  
System prompts were designed to ensure consistent 
MLLM behavior across input types using structured 
prompting strategies such as role assignment, in-context 
learning, task definition, input specification, chain-of-
thought (Wei et al., 2022), output format, and heuristic 
prompting, as shown in Table 1.  

 

Table 1: Prompt design for each input case 

Component Text-only Text + 
Graphic 

Graphic-
only 

Role 
Assignment 

“You are an expert in Prolog-based rule 
generation for automated code 

compliance checking.” 

In Context 
Learning 

(3 examples) 

“Here are the examples of generation:  
#1 {Clause} 

#1 {Graphic guideline} 
#1 {Ground truth Prolog rules} 

…” 

Task 
Definition 

“Analyze a 
given 

clause, 
generate a 

Prolog 
rule.” 

“Analyze 
both the 

clause and 
graphic 

guideline, 
generate 
Prolog 
rule.” 

“Analyze a 
graphic 

guideline, 
generate a 

Prolog 
rule.” 

Input 
Specification 

“Input: 
Regulatory 

Clause” 

“Input: 
Regulatory 
Clause + 
Graphic 

guideline” 

“Input: 
Graphic 

guideline” 

Chains of 
Thought 

“Provide a step-by-step explanation of 
how the rule is derived.” 

Output 
Format 

“Generate a finalized rule in a single 
cell.” 

Heuristic 
Prompt - 

“If multiple rules exist in 
the graphic guideline, 

focus on the dominant or 
relevant single rule and 
generate a single set of 

rules.” 
The MLLM was assigned the role of an expert in Prolog-
based rule generation for automated compliance checking 
and provided three examples as in-context learning 
references. Among 23 pairs, a pair from each of 3 
different graphic guideline types with ground truth was 
selected. The model was then instructed to analyze the 
regulatory input and generate machine-readable rules 
accordingly. In the text-only case, the model was expected 
to interpret compliance rules solely from regulatory 
clauses. In the text + graphic case, both textual and visual 
descriptions were prompted to be integrated to improve 
accuracy. In the graphic-only case, the model had to infer 

logical rule representations directly from graphical 
representations, testing its ability to process information 
when textual descriptions were unavailable. To enhance 
logical consistency, the model was instructed to provide a 
step-by-step explanation of how the Prolog rule was 
derived before generating the final output. The response 
format was structured to produce a finalized Prolog rule 
in a single output cell, ensuring uniformity across 
different input conditions. Additionally, in scenarios 
where multiple rules could be inferred, the additional 
prompt from the heuristic lessons guides MLLM to focus 
on the dominant rule and generate a single structured set 
of Prolog rules. This was particularly relevant in the 
graphic-only case, where multiple compliance constraints 
might exist within a single graphic requirement. 

Evaluation metrics 
To evaluate the accuracy and effectiveness of MLLM-
generated rule derivations, this study employed Jaro-
Winkler similarity and F1-score metrics, specifically 
assessing performance at both the predicate and the 
predicate-element levels. These evaluation methods were 
adapted from Yang and Zhang’s research (Yang and 
Zhang, 2024) and were chosen to measure how well the 
generated Prolog rules align with the manually curated 
ground truth data, both in terms of structural similarity 
and logical correctness. 
Jaro-Winkler similarity was used to assess the string-
based similarity between the generated Prolog and ground 
truth rules. Since Prolog rules can have multiple correct 
representations that may differ slightly in wording or 
formatting, Jaro-Winkler similarity helps determine 
whether the generated rules are semantically close to the 
expected output, even if minor variations exist. A 
similarity score closer to 1 indicates a higher match 
between the generated and reference rule, while a score 
closer to 0 suggests significant differences. 
In addition, this study employed the F1-score to evaluate 
the correctness of the generated logical components in the 
Prolog rules. The evaluation was conducted at the 
predicate level and the predicate-element level. The 
predicate-level F1-score assesses whether the model 
correctly identifies key rule components, such as logical 
conditions and constraints. The predicate-element-level 
F1-score, on the other hand, evaluates how accurately the 
model extracts detailed elements within predicates, such 
as numerical values, dimensions, and compliance 
parameters. The F1-score is derived from precision and 
recall.



 

Experimental results 
To evaluate the performance of the MLLM-based rule 
derivation, experiments were conducted across three 
different input conditions: text-only, text + graphic, and 
graphic-only. The overall experimental results are shown 
in Table 2.  

 

Table 2: Overall experimental results 

Metrics Text-
only 

Graphic
-only  

Text + 
Graphic 

Jaro-Winkler 
Similarity 

0.78 0.53 0.82 

F1-score (predicate) 0.85 0.65 0.79 

F1-score (element) 0.74 0.43 0.96 

The text + graphic case consistently outperformed both 
the text-only and graphic-only cases in the Jaro-Winkler 
similarity and predicate-element-level F1 score, 
demonstrating that combining textual and graphic 
information significantly improves rule derivation 
accuracy. The graphic-only case performed the worst 
across all metrics, indicating that the MLLM struggles to 
infer compliance rules accurately when only graphic 
information is provided, without textual context. 
For Jaro-Winkler similarity, which measures lexical and 
structural similarity between the generated rules and the 
ground truth, the text + graphic case achieved the highest 
score of 0.82, surpassing the text-only case at 0.78 by 
+0.04. The graphic-only (0.48) was significantly lower, 
suggesting that textual descriptions ensure structural 
consistency in rule generation. While graphical 
representations enhance interpretation, they are not 
sufficient on their own for accurately structuring 
compliance rules. 
For the predicate-level F1-score, which evaluates the 
correct identification of key rule components, the text-
only case achieved the highest score at 0.85, slightly 
outperforming the text + graphic case (0.79) by +0.06. 
The graphic-only case (0.65) lagged, indicating that 
graphic information alone is less effective in capturing 
overall rule structures. The text-only case performed 
slightly better than the text + graphic case at the predicate 
level, which suggests that introducing graphical 
representations may slightly affect the model’s ability to 
generalize rule structures, possibly due to inconsistencies 
in how graphic data is interpreted in combination with 
text. 
However, the predicate-element-level F1-score, which 
evaluates how well the model captures specific rule 
details such as numerical values, dimensions, and 
compliance attributes, demonstrated a clear advantage for 
the text + graphic case, achieving the highest score of 
0.96. This was a significant +0.22 improvement over the 
text-only case at 0.74 and a significant +0.53 increase 
over the graphic-only case at 0.43. These results indicate 
that graphical representations provide supplementary 
information, particularly for capturing detailed numerical 

constraints and spatial relationships that are often difficult 
to extract from text alone. 
To further investigate the influence of graphical 
representations, performance was analyzed separately 
based on three types of graphical representations: 
dimensional drawings, annotated drawings, and 
implementation examples. The results are shown in Table 
3. 

   

Table 3: Similarity differences based on type of graphic 
guideline 

Case Dimensional 
drawing 

Annotated 
drawing 

Implementation 
example  

Text- 
only 0.77 0.79 0.78 

Graphic-
only 

0.78  
(+0.03) 

0.72 
(-0.07) 

0.12 
(-0.66) 

Text+ 
Graphic 

0.90  
(+0.13) 

0.92 
(+0.13) 

0.70 
(-0.08) 

Among the three graphic guideline types, dimensional 
and annotated drawings contributed most significantly to 
performance improvements, whereas implementation 
examples had limited impact. 
Dimensional drawings improved similarity (+0.13 in the 
text + graphic case compared to the text-only case). This 
suggests that precise numerical annotations in drawings 
enhance the MLLM’s ability to extract compliance-
related attributes and improve structural accuracy. 
Annotated drawings also improved performance 
significantly (+0.13 in the text + graphic case compared 
to the text-only case). Text descriptions and directional 
cues in annotated drawings likely helped the model better 
associate graphical representations with compliance 
requirements. 
Implementation examples, however, did not provide a 
noticeable advantage and even led to a slight decrease in 
similarity (-0.08 in the text + graphic case compared to 
the text-only case). This suggests that real-world images 
or implementation examples may be more ambiguous and 
more complex for the MLLM to interpret in the context of 
regulatory rule generation. 
In the graphic-only case, the dimensional drawings 
achieved the highest similarity score (0.78), while 
implementation examples performed the worst (0.12, a -
0.66 compared to case 1). This further highlights that 
annotated graphics contribute meaningfully to regulatory 
rule derivation, whereas real-world implementation 
images are more challenging for the model to process.  

Discussions 
This section presents qualitative observations and specific 
examples to analyze the role of graphical representations 
in MLLM-based automated rule derivation. While 
graphical representations can enhance compliance 
checking by providing spatial and semantic clarity, they 
can also introduce challenges, such as ambiguity, 
verbosity, and unintended rule expansion when multiple 
objects are represented within a single drawing.  



Effectiveness of graphical representations in 
clarifying rule derivation 
In some cases, graphical representations contribute to 
extracting more precise and desirable parameters for rule 
derivation. For instance, consider the clause: “The side 
wall grab bar shall be 42 inches (1065 mm) long 
minimum, located 12 inches (305 mm) maximum from 
the rear wall and extending 54 inches (1370 mm) 
minimum from the rear wall.” and its corresponding 
graphic guideline as shown in Figure 6. The drawing 
graphically represents the grab bar placement 
requirements, providing a clear spatial understanding of 
dimensions. 

 
Figure 6: Corresponding dimensional drawing (U.S. 

Department of Justice, 2010) 

As shown in Figure 7, when interpreting the clause using 
text alone, while this correctly captures the fundamental 
constraints of the regulation, it lacks the explicit 
distinction between the grab bar's starting position and 
ending position relative to the rear wall. This could lead 
to ambiguity when implementing compliance checks. 

 
Figure 7: Interpretation results with clause only 

By incorporating the dimensional drawing into the rule 
derivation, a more refined representation emerges, as 
shown in Figure 8.  

 
Figure 8: Interpretation results integrating clause and graphic 

guideline 

Here, integrating the graphic guideline helps clarify the 
semantic-rich properties for compliance checking. The 
StartDistanceFromRearWall (≤ 12 inches) represents 
where the grab bar begins. The 
EndDistanceFromRearWall (≥ 54 inches) specifies the 
total extension of the bar. The GrabBarLength (≥ 42 
inches) ensures compliance with the minimum required 
length. 

Challenge of graphical representations in rule 
derivation 
While graphics can be beneficial, they do not always 
contribute effectively to automated rule derivation. In 
cases where multiple objects and annotations are present 
in a single drawing, the model may generate verbose or 

overly complex Prolog rules that exceed the scope of the 
regulatory clause. 
For instance, consider the clause: “A turning radius of 
1,800 mm by 1,800 mm should be available in at least one 
accessible bathroom in the dwelling unit.” And its 
corresponding annotated drawing, as shown in Figure 9.   

 
Figure 9: Corresponding annotated drawings (Nature 

Conservation, Building and Nuclear Safety, 2015) 

The corresponding graphic guideline includes an 
annotated drawing specifying the required turning space 
with multiple notations of objects.  
When the MLLM interprets the rule solely on the clause, 
this approach effectively captures the essential 
compliance check, as shown in Figure 10. 

 
Figure 10: Interpretation results with clause only 

When the annotated drawing is incorporated without 
heuristic guidance, as shown in Table 1, the extracted 
Prolog rules become more detailed but excessively 
verbose, as shown in Figure 11. This approach introduces 
additional conditions inferred from the drawing (e.g., 
clear space beside the toilet, fold-up seat), which may or 
may not be relevant to the original clause. The lack of 
specificity in rule prioritization results in an unnecessarily 
complex interpretation, making compliance validation 
cumbersome. 

 
Figure 11: Interpretation result integrating clause and graphic 

requirement without heuristic prompt 

To refine rule extraction, a heuristic prompt is applied, 
guiding the model to prioritize key compliance criteria 
while avoiding excessive rule expansion. This ensures 
that the primary requirement (turning radius) is correctly 
extracted without introducing extraneous conditions, as 
shown in Figure 12. This case highlights the importance 
of structured prompting techniques when integrating 
graphical representations to avoid unintended rule 
expansion. 
 

 
Figure 12: Interpretation result integrating clause and graphic 

requirement with heuristic prompt  



Impact of graphical representations without numeric 
values 
This study primarily focused on regulatory clauses that 
define explicit, quantifiable variables for compliance 
checking. However, when implementation examples lack 
numerical information, automated rule derivation tends to 
degrade in accuracy.  
For instance, consider the clause: “Staircases shall be 
provided with a minimum tread width of 300mm and 
maximum riser height of 150mm.” and its corresponding 
implementation example, as shown in Figure 13.  

 
Figure 13: Corresponding implementation example (Nature 

Conservation, Building and Nuclear Safety, 2015) 

This requirement is illustrated in Figure 13, which depicts 
an implemented staircase example. While this visual 
representation aids human understanding, the information 
extracted from the image may lead to unnecessary rule 
generation due to including non-regulatory elements. 
When the compliance rule is derived solely from the 
clause, it is structured as shown in Figure 14. This rule 
strictly follows the regulatory clause, ensuring only the 
required parameters (tread width and riser height) are 
considered. 

 
Figure 14: Interpretation result with clause only 

When incorporating the implementation example, the 
automated system detects additional features in the 
image, leading to a more complex but undesirable rule as 
shown in Figure 15. Here, handrails, which were not 
mentioned in the original regulation, have been 
incorrectly inferred as a compliance requirement. 
 

 
Figure 15: Interpretation results integrating clause and 

graphic requirement 

Graphical representations representing multiple 
rules 
A significant portion of graphical representations in 
regulations represent multiple rules simultaneously. Some 
graphical representations stand alone as rules without 
corresponding text-based clauses. MLLMs have 
demonstrated the ability to distinguish individual rules 
within such graphical representations and interpret them 
separately.  
For instance, Figure 16 shows the graphical 
representations supporting the clause: “Accessible toilet 

stall doors shall provide a clear opening of at least 900 
mm (35 in.) with the door in the open position.   

 
Figure 16: Example of graphical representations containing 

multiple rules (City of London, 2007) 

This annotated drawing represents six rules at once, 
including: Door width compliance, Minimum stall 
dimensions, Grab bar placement, Toilet clearance space, 
Sink positioning, and Turning radius requirements. 
The presence of multiple rules affects the accuracy of 
interpretation in specific use cases, as the model must 
determine which parameters are relevant to the current 
query. When interpreting the graphic guideline alone, the 
model extracts all six rules, as shown in Figure 17, which 
may be unnecessary for a targeted compliance check.  

 
Figure 17: Interpretation result with visual only 

Conclusions 
This study conducted a preliminary exploration of 
integrating graphical representations into MLLM-based 
automated rule derivation for design compliance 
checking. Experimental results demonstrated that 
combining textual and visual inputs enhances rule 
derivation accuracy, particularly in extracting specific 
compliance parameters such as numerical constraints and 
spatial relationships. However, the graphic-only condition 
resulted in significantly lower performance. 
Despite these findings, several limitations remain. The 
dataset was relatively small and focused on accessibility 
regulations, limiting the generalizability of the findings. 



Expanding the dataset to include a broader range of 
regulatory domains and incorporating real-world BIM 
data will be essential for more robust validation. 
Additionally, while Prolog was chosen for its simplicity 
and suitability for early-stage experiments, adopting more 
interoperable rule representation formats like 
LegalRuleML could improve integration with existing 
compliance checking systems. Moreover, the limited 
performance of the graphic-only case also suggests that 
relying solely on MLLM-generated text descriptions may 
fail to capture the full spatial and contextual richness of 
graphical representations. Future research should explore 
advanced techniques such as scene-graph extraction, 
object detection, and structured semantic parsing to 
enhance visual interpretation. Lastly, validating the 
execution of generated rules within BIM-based 
compliance workflows will be critical to ensure their 
practical applicability in real-world settings. 
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