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Abstract

Automated design compliance checking has traditionally
focused on interpreting natural language clauses, often
neglecting accompanying graphical representations of
requirements. These visual elements are crucial for
accurately understanding requirements but remain
underutilized in automated rule derivation. This study
explores the potential of multimodal large language
models (MLLMs) to generate machine-readable rules
from textual and graphical representations. Focusing on
accessibility regulations, 23 clause-graphic pairs were
collected, and corresponding ground truth rules were
manually generated in Prolog. The MLLM’s outputs
under three input conditions - text-only, graphic-only, and
combined - were evaluated against this ground truth.
Results show that the combined input case yields the
highest F1 score of 0.96, while the text-only and graphic-
only cases yield 0.74 and 0.43, respectively. The study
demonstrates the potential of MLLMs to interpret
multimodal regulatory inputs for automated rule
derivation for design compliance checking.

Introduction

Automated derivation of machine-readable rules has been
a key component of design compliance checking
(Eastman et al., 2009). Most research in this field has
focused on natural language processing (NLP) techniques
to extract and interpret regulations or guidelines in textual
format (Fuchs and Amor, 2021). However, many design
guidelines and requirements involve textual descriptions
along with tabular and graphic representations (Fuchs and
Amor, 2021). Those visual elements often accompany
textual clauses to clarify spatial constraints and assist
expert understanding, as shown in Figure 1.
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Figure 1: An example of graphical representations with a
corresponding clause (U.S. Department of Justice, 2010)

Even recent rule derivation approaches remain primarily
text-centric, with limited use of visual elements (Yang
and Zhang, 2024; Zhang, 2023). With the advancement of
multimodal large language models (MLLMs) that can
process both textual and visual data, new opportunities
have emerged. While some studies have explored the
integration of figures and tables through MLLMs
(Zentgraf and Konig, 2025) and multimodal retrieval-
augmented generation (Ying and Sacks, 2024), the direct
use of graphical representations for generating machine-
readable rules has not been quantitatively evaluated.

To address this gap, this study presents a preliminary
study on MLLM-based rule derivation that incorporates
graphical representations. A dataset of 23 regulatory
clauses and their associated visual elements, including
dimensional, annotated drawings, and implementation
examples, was collected from accessibility design
regulations. Three clause-graphic pairs were used for in-
context learning, and the remaining 20 were used for
testing. Three different input modalities were compared:
text-only, graphic-only, and a combination of both. The
MLLM outputs were formalized in Prolog, a logic
programming language, and compared against manually
constructed ground truth to assess rule derivation
performance.

The remainder of this paper is structured as follows:
Section 2 reviews related work on LLM-based automated
rule derivation and MLLM applications using image
input. Section 3 details the research methodology and
experimental framework. Section 4 presents the
experimental results, followed by Section 5, which
provides a detailed discussion of the findings, limitations,
and potential improvements. Finally, Section 6 concludes
with key insights and future research directions.

Related works

Automated rule derivation is considered as a promising
approach to reduce the labor and error-prone nature of
manual rule interpretation. The emergence of large
language models (LLMs) has recently introduced a new
paradigm for automated rule derivation and compliance
checking, offering improved scalability and adaptability.
However, despite significant advancements, existing rule
derivation approaches remain predominantly text-centric,
overlooking the role of graphical representations in
regulatory standards or design requirements.
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Figure 2: Research Framework

LLM-based automated rule derivation

Recent research has explored LLM-based approaches for
extracting, transforming, and applying regulatory rules.
Zhang investigated using LLMs to extract and transform
textual regulations into Python code, highlighting several
limitations, including inefficiencies in processing time
compared to NLP-based methods and the need for domain
knowledge to refine the generated code for practical use
(Zhang, 2023). Zheng et al. proposed a framework
leveraging LLMs to map predefined compliance
functions, utilizing LLM-extracted information to
mitigate the challenge of domain expertise dependency in
compliance checking. (Zheng et al., n.d.). Yang et al.
proposed a prompt-based framework for transforming
building codes into Prolog format (Yang and Zhang,
2024). Fuchs et al. evaluate the performance of LLMs in
translating regulation to LegalRuleML format using in-
context learning (Fuchs et al., 2024). However, their study
focused solely on textual rules, neglecting graphical
representations integral to regulatory interpretation.

MLLM-based graphic interpretation

With the advancement of MLLMs, which can process text
and images, there is growing interest in applying these
models to visual reasoning tasks and logically coherent
source code. MLLMs have shown strong image
comprehension capabilities in fields such as document
processing, visual question answering, and interpretation
of engineering drawings (Doris et al., 2024). For
generating source code from the image input, Mu et al.
utilized visual observation to make MLLMs generate
codes that control robotic behavior (Mu et al., 2024). Wu
et al. show that MLLMs can generate matplotlib code
from scientific visual figures with proper prompt
engineering (Wu et al., 2024). Generating compilable user
interface code with MLLM from screenshots also
proposed offering an alternative solution for design-to-
code (Wan et al., 2024).

These studies indicate that MLLLMs can extract properties
and logical structures from graphical representations to
create machine-interpretable representations.

Integration of graphical representations in
compliance checking

A recent study has attempted to incorporate graphical
representations  into  information extraction and
compliance checking. Ying and Sacks integrated figures
and tables by embedding their textual descriptions and
retrieving relevant regulations based on user queries
(Ying and Sacks, 2024). Zentgraf and Konig
demonstrated the feasibility of using MLLMs to extract
structured information from regulatory figures and
associated texts (Zentgraf and Konig, 2025). However,
lacked quantitative evaluation, and the direct
transformation of graphical representations into a
machine-readable rule format remains unexplored.

Therefore, this study aims to bridge this gap by
investigating the utilization of graphical representations in
MLLM-based rule derivation. With the integrated inputs,
the authors hypothesize that graphical representations
improve the accuracy and completeness of automated rule
derivation, similar to how graphical representations assist
human experts in interpreting regulations and design
guides.

Research method

The research framework consists of dataset creation,
ground truth generation, followed by rule creation using
MLLM, and evaluation, as illustrated in Figure 2.

Dataset creation

To assess the feasibility of MLLM-based rule derivation,
a dataset was created using the universal design
guidelines, with a specific focus on accessibility
regulations. This domain was chosen due to the
significant presence of graphical representations, such as
dimensional drawings, annotated drawings, and
implementation examples, which are used to clarify
requirements. The dataset was compiled from three
different guideline documents, resulting in 23 clause-
graphical guideline pairs. The clauses are selectively
extracted, containing quantifiable regulations without any
exemptions. The graphical representations consist of 11
dimensional drawings, 6 annotated drawings, and 6
implementation examples, each serving a specific
function in regulatory interpretation. Dimensional



drawings provide precise measurements and spatial
relationships necessary for compliance verification, such
as minimum clearance spaces, turning radius, and door
width requirements. Annotated drawings include not only
dimensional information but also text descriptions.
Implementation  examples  illustrate  real-world
applications of regulatory requirements, demonstrating
compliant cases to clarify best practices. The examples of
each graphic requirement are shown in Figure 3.
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Figure 3: Three cases of graphical representations (U.S.
Department of Justice, 2010; City of London, 2007, Federal
Ministry for the Environment, Nature Conservation, Building

and Nuclear Safety, 2015)

Ground truth generation

For the output format for machine-readable rules, we have
chosen the Prolog language, following the approach used
in Yang and Zhang’s research (Yang and Zhang, 2024).
Since the primary goal of this study is to evaluate the rule
derivation capability of MLLMs, it was assumed that all
necessary compliance checking functions and attribute
information for compliance checking were available.
Figure 4 illustrates the process of generating ground truth
Prolog code.
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Figure 4: Process of generating ground truth Prolog code from
textual and graphic design requirements

Manual Prolog rule and query creation were conducted,
considering textual clauses and graphical representations
to generate the ground truth. The rules were structured
according to Prolog-based compliance reasoning
principles to ensure compatibility with logic-based
compliance checking. Key attribute information
necessary for compliance verification was manually input
to support this process. However, we assumed such
information would automatically be extracted from a BIM
model in full-scale text. This included spatial dimensions,

door clearances, and other relevant parameters extracted
from the regulations. The manually entered data was then
used to generate Prolog facts, as shown in Figure 5,
forming the basis for logical reasoning and compliance
evaluation.

% Fact: Maximum gradient based on length constraints
max_gradient(Length, 4) :- Length =< 18. % If length < 1@m, max gradient is 4%
max_gradient(Length, 3) :- Length > 18. % If length > 1@m, max gradient is 3%

% Fact: Entrance circulation area dimensions (Example)
circulation_area(entrancel, 150, 158, 9, 3.5).
circulation_area(entrance2?, 150, 150, 12, 3).
circulation_area(entrance3, 150, 158, 12, 3.5).

Figure 5: Example of generated Prolog facts

The extracted facts were tested within the SWI-Prolog
interpreter (Wielemaker et al., 2012) to secure the
executability of generated rules. If errors occurred, such
as syntax issues or logical inconsistencies, the rules and
queries were iteratively refined using LLM until they
were executed correctly. Once a rule was successfully
processed without errors, it was stored as ground truth for
further evaluation. The examples of rules derived from
graphical representations are presented in Figure 6.

% Rule: Checking if entrance circulation area meets compliance requirements
compliant_entrance(Entrance) :-
circulation_area(Entrance, Width, Height, Length, Gradient),
Width »= 158, Height »>= 158, % Ensure minimum movement area of 150x15@ cm
max_gradient(Length, MaxGrad),
Gradient =< MaxGrad.

(a) Prolog rule

Circulation area at entrance =< 4% at
a maximum length of 10 m; if length
>10 m maximum gradient 3%

(b) Text requirement

movement area in
_front of entrance

150 x 150cm
gradient: max. 4%
length: max. 10m

(c) Graphic requirement
Figure 6: Example of Prolog rules derived from text and
graphical representations (Ministry for the Environment,
Nature Conservation, Building and Nuclear Safety, 2015)

Rule derivation using MLLM

To evaluate the MLLM's ability to interpret regulatory
rules and generate machine-readable rules, three input
conditions were tested: text-only, graphic-only, and text +
graphic. In the text-only condition, the model was
provided with regulatory clauses in textual requirements
without any accompanying graphical representations. In
the graphic-only condition, the model received only
graphical representations with no textual descriptions,
simulating cases where regulatory information is
conveyed exclusively through visual elements. In the text



+ graphic condition, the MLLM was given both textual
and graphical representations, such as dimensional
drawings, annotated drawings, and implementation
examples, to determine whether visual support enhanced
the model’s ability to interpret compliance rules more
accurately compared to text alone.

System prompts were designed to ensure consistent
MLLM behavior across input types using structured
prompting strategies such as role assignment, in-context
learning, task definition, input specification, chain-of-
thought (Wei et al., 2022), output format, and heuristic
prompting, as shown in Table 1.

Table 1: Prompt design for each input case

Text + Graphic-
Component Text-only Graphic only
“You are an expert in Prolog-based rule
Role .
. generation for automated code
Assignment . A
compliance checking.
“Here are the examples of generation:
In Context #1 {Clause}
Learning #1 {Graphic guideline}

(3 examples) #1 {Ground truth Prolog rules}

“Analyze

“Analyze a both the “Analyze a
given clause and graphic
Task clause, graphic guideline,
Definition generate a  guideline, generate a
Prolog generate Prolog
rule.” Prolog rule.”
rule.”
“Input:
Tnput “Input: Regulatory “Inpu"tz
Specification Regulatory ~ Clause + Graphic
Clause” Graphic guideline”
guideline”
Chains of “Provide a step-by-step explanation of
Thought how the rule is derived.”
Output “Generate a finalized rule in a single
Format cell.”
“If multiple rules exist in
the graphic guideline,
Heuristic focus on the dominant or
Prompt ) relevant single rule and

generate a single set of
rules.”

The MLLM was assigned the role of an expert in Prolog-
based rule generation for automated compliance checking
and provided three examples as in-context learning
references. Among 23 pairs, a pair from each of 3
different graphic guideline types with ground truth was
selected. The model was then instructed to analyze the
regulatory input and generate machine-readable rules
accordingly. In the text-only case, the model was expected
to interpret compliance rules solely from regulatory
clauses. In the text + graphic case, both textual and visual
descriptions were prompted to be integrated to improve
accuracy. In the graphic-only case, the model had to infer

logical rule representations directly from graphical
representations, testing its ability to process information
when textual descriptions were unavailable. To enhance
logical consistency, the model was instructed to provide a
step-by-step explanation of how the Prolog rule was
derived before generating the final output. The response
format was structured to produce a finalized Prolog rule
in a single output cell, ensuring uniformity across
different input conditions. Additionally, in scenarios
where multiple rules could be inferred, the additional
prompt from the heuristic lessons guides MLLM to focus
on the dominant rule and generate a single structured set
of Prolog rules. This was particularly relevant in the
graphic-only case, where multiple compliance constraints
might exist within a single graphic requirement.

Evaluation metrics

To evaluate the accuracy and effectiveness of MLLM-
generated rule derivations, this study employed Jaro-
Winkler similarity and Fl-score metrics, specifically
assessing performance at both the predicate and the
predicate-element levels. These evaluation methods were
adapted from Yang and Zhang’s research (Yang and
Zhang, 2024) and were chosen to measure how well the
generated Prolog rules align with the manually curated
ground truth data, both in terms of structural similarity
and logical correctness.

Jaro-Winkler similarity was used to assess the string-
based similarity between the generated Prolog and ground
truth rules. Since Prolog rules can have multiple correct
representations that may differ slightly in wording or
formatting, Jaro-Winkler similarity helps determine
whether the generated rules are semantically close to the
expected output, even if minor variations exist. A
similarity score closer to 1 indicates a higher match
between the generated and reference rule, while a score
closer to 0 suggests significant differences.

In addition, this study employed the F1-score to evaluate
the correctness of the generated logical components in the
Prolog rules. The evaluation was conducted at the
predicate level and the predicate-element level. The
predicate-level Fl-score assesses whether the model
correctly identifies key rule components, such as logical
conditions and constraints. The predicate-element-level
F1-score, on the other hand, evaluates how accurately the
model extracts detailed elements within predicates, such
as numerical values, dimensions, and compliance
parameters. The Fl-score is derived from precision and
recall.



Experimental results

To evaluate the performance of the MLLM-based rule
derivation, experiments were conducted across three
different input conditions: text-only, text + graphic, and
graphic-only. The overall experimental results are shown
in Table 2.

Table 2: Overall experimental results

Metrics Text- Graphic Text +
only -only Graphic
Jaro-Winkler 0.78 0.53 0.82
Similarity
F1-score (predicate) 0.85 0.65 0.79
F1-score (element) 0.74 0.43 0.96

The text + graphic case consistently outperformed both
the text-only and graphic-only cases in the Jaro-Winkler
similarity and predicate-element-level F1 score,
demonstrating that combining textual and graphic
information significantly improves rule derivation
accuracy. The graphic-only case performed the worst
across all metrics, indicating that the MLLM struggles to
infer compliance rules accurately when only graphic
information is provided, without textual context.

For Jaro-Winkler similarity, which measures lexical and
structural similarity between the generated rules and the
ground truth, the text + graphic case achieved the highest
score of 0.82, surpassing the text-only case at 0.78 by
+0.04. The graphic-only (0.48) was significantly lower,
suggesting that textual descriptions ensure structural
consistency in rule generation. While graphical
representations enhance interpretation, they are not
sufficient on their own for accurately structuring
compliance rules.

For the predicate-level Fl-score, which evaluates the
correct identification of key rule components, the text-
only case achieved the highest score at 0.85, slightly
outperforming the text + graphic case (0.79) by +0.06.
The graphic-only case (0.65) lagged, indicating that
graphic information alone is less effective in capturing
overall rule structures. The text-only case performed
slightly better than the text + graphic case at the predicate
level, which suggests that introducing graphical
representations may slightly affect the model’s ability to
generalize rule structures, possibly due to inconsistencies
in how graphic data is interpreted in combination with
text.

However, the predicate-element-level Fl-score, which
evaluates how well the model captures specific rule
details such as numerical values, dimensions, and
compliance attributes, demonstrated a clear advantage for
the text + graphic case, achieving the highest score of
0.96. This was a significant +0.22 improvement over the
text-only case at 0.74 and a significant +0.53 increase
over the graphic-only case at 0.43. These results indicate
that graphical representations provide supplementary
information, particularly for capturing detailed numerical

constraints and spatial relationships that are often difficult
to extract from text alone.

To further investigate the influence of graphical
representations, performance was analyzed separately
based on three types of graphical representations:
dimensional drawings, annotated drawings, and
implementation examples. The results are shown in Table
3.

Table 3: Similarity differences based on type of graphic

guideline
Case Dimensional ~Annotated Implementation
drawing drawing example
Text- 0.77 0.79 0.78
only
Graphic- 0.78 0.72 0.12
only (+0.03) (-0.07) (-0.66)
Text+ 0.90 0.92 0.70
Graphic (+0.13) (+0.13) (-0.08)

Among the three graphic guideline types, dimensional
and annotated drawings contributed most significantly to
performance improvements, whereas implementation
examples had limited impact.

Dimensional drawings improved similarity (+0.13 in the
text + graphic case compared to the text-only case). This
suggests that precise numerical annotations in drawings
enhance the MLLM’s ability to extract compliance-
related attributes and improve structural accuracy.

Annotated drawings also improved performance
significantly (+0.13 in the text + graphic case compared
to the text-only case). Text descriptions and directional
cues in annotated drawings likely helped the model better
associate graphical representations with compliance
requirements.

Implementation examples, however, did not provide a
noticeable advantage and even led to a slight decrease in
similarity (-0.08 in the text + graphic case compared to
the text-only case). This suggests that real-world images
or implementation examples may be more ambiguous and
more complex for the MLLM to interpret in the context of
regulatory rule generation.

In the graphic-only case, the dimensional drawings
achieved the highest similarity score (0.78), while
implementation examples performed the worst (0.12, a -
0.66 compared to case 1). This further highlights that
annotated graphics contribute meaningfully to regulatory
rule derivation, whereas real-world implementation
images are more challenging for the model to process.

Discussions

This section presents qualitative observations and specific
examples to analyze the role of graphical representations
in MLLM-based automated rule derivation. While
graphical representations can enhance compliance
checking by providing spatial and semantic clarity, they
can also introduce challenges, such as ambiguity,
verbosity, and unintended rule expansion when multiple
objects are represented within a single drawing.



Effectiveness of graphical representations in
clarifying rule derivation

In some cases, graphical representations contribute to
extracting more precise and desirable parameters for rule
derivation. For instance, consider the clause: “The side
wall grab bar shall be 42 inches (1065 mm) long
minimum, located 12 inches (305 mm) maximum from
the rear wall and extending 54 inches (1370 mm)
minimum from the rear wall.” and its corresponding
graphic guideline as shown in Figure 6. The drawing
graphically represents the grab bar placement
requirements, providing a clear spatial understanding of
dimensions.

54 min
12 max 1370
305 N
42 min
1065
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Figure 6: Corresponding dimensional drawing (U.S.
Department of Justice, 2010)

As shown in Figure 7, when interpreting the clause using
text alone, while this correctly captures the fundamental
constraints of the regulation, it lacks the explicit
distinction between the grab bar's starting position and
ending position relative to the rear wall. This could lead
to ambiguity when implementing compliance checks.

% Rule to check compliance of side wall grab bar placement
side_wall_grab_bar(Length, DistanceRearWall, Extension) :-
Length »= 42,
DistanceRearWall =< 12,
Extension »= 54.

Figure 7: Interpretation results with clause only

By incorporating the dimensional drawing into the rule
derivation, a more refined representation emerges, as
shown in Figure 8.

% Compliance check for side wall grab bar placement

compliant_grab_bar(GrabBarLength, StartDistanceFromRearWall, EndDistanceFromRearWall) :
GrabBarlLength >= 42,
StartDistanceFromRearWall =< 12,
EndDistanceFromRearWall >= 54.

Figure 8: Interpretation results integrating clause and graphic
guideline

Here, integrating the graphic guideline helps clarify the
semantic-rich properties for compliance checking. The
StartDistanceFromRearWall (< 12 inches) represents
where the grab bar begins. The
EndDistanceFromRearWall (> 54 inches) specifies the
total extension of the bar. The GrabBarLength (> 42
inches) ensures compliance with the minimum required
length.

Challenge of graphical representations in rule
derivation

While graphics can be beneficial, they do not always
contribute effectively to automated rule derivation. In
cases where multiple objects and annotations are present
in a single drawing, the model may generate verbose or

overly complex Prolog rules that exceed the scope of the
regulatory clause.

For instance, consider the clause: “A turning radius of
1,800 mm by 1,800 mm should be available in at least one
accessible bathroom in the dwelling unit.” And its
corresponding annotated drawing, as shown in Figure 9.
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Figure 9: Corresponding annotated drawings (Nature
Conservation, Building and Nuclear Safety, 2015)

The corresponding graphic guideline includes an
annotated drawing specifying the required turning space
with multiple notations of objects.

When the MLLM interprets the rule solely on the clause,
this approach effectively captures the essential
compliance check, as shown in Figure 10.

% Rule to check if a dwelling unit has at least one accessible bathroom with the required turning radius
has_accessible_bathroom(DwellingUnit) :-

accessible_bathroom(DwellingUnit, _, RadiusX, RadiusY),

RadiusX >= 1800,

RadiusY >- 1800.

Figure 10: Interpretation results with clause only

When the annotated drawing is incorporated without
heuristic guidance, as shown in Table 1, the extracted
Prolog rules become more detailed but excessively
verbose, as shown in Figure 11. This approach introduces
additional conditions inferred from the drawing (e.g.,
clear space beside the toilet, fold-up seat), which may or
may not be relevant to the original clause. The lack of
specificity in rule prioritization results in an unnecessarily
complex interpretation, making compliance validation
cumbersome.

% Rule: A bathroom is accessible if it meets the turning radius requirement
accessible_bathroom(Bathroom) :-

turning_radius(Bathroom, Width, Length),

min_turning_radius(Minkidth, MinLength),

Width >= MinWidth,

Length >= MinlLength,

has_clear_space_beside_toilet(Bathroom),

has_fold_up_seat(Bathroom).

Figure 11: Interpretation result integrating clause and graphic
requirement without heuristic prompt

To refine rule extraction, a heuristic prompt is applied,
guiding the model to prioritize key compliance criteria
while avoiding excessive rule expansion. This ensures
that the primary requirement (turning radius) is correctly
extracted without introducing extraneous conditions, as
shown in Figure 12. This case highlights the importance
of structured prompting techniques when integrating
graphical representations to avoid unintended rule
expansion.

% Compliance Rule: The accessible bathroom must provide a turning radius of at least 180 mm.
compliant_turning_radius(BathroomID) :-

bathroom_turning_radius(BathroonID, Diameter),

Diameter >= 1800.

Figure 12: Interpretation result integrating clause and graphic
requirement with heuristic prompt



Impact of graphical representations without numeric
values

This study primarily focused on regulatory clauses that
define explicit, quantifiable variables for compliance
checking. However, when implementation examples lack
numerical information, automated rule derivation tends to
degrade in accuracy.

For instance, consider the clause: “Staircases shall be
provided with a minimum tread width of 300mm and
maximum riser height of 150mm.” and its corresponding
implementation example, as shown in Figure 13.

Figure 13: Corréponding implementation example (Nature
Conservation, Building and Nuclear Safety, 2015)

This requirement is illustrated in Figure 13, which depicts
an implemented staircase example. While this visual
representation aids human understanding, the information
extracted from the image may lead to unnecessary rule
generation due to including non-regulatory elements.

When the compliance rule is derived solely from the
clause, it is structured as shown in Figure 14. This rule
strictly follows the regulatory clause, ensuring only the
required parameters (tread width and riser height) are
considered.

% Rule to check compliance of staircases based on tread width and riser height
staircase_compliant(Treadiidth, RiserHeight) :-

Treaduidth >= 300,

RiserHeight =< 150.

Figure 14: Interpretation result with clause only

When incorporating the implementation example, the
automated system detects additional features in the
image, leading to a more complex but undesirable rule as
shown in Figure 15. Here, handrails, which were not
mentioned in the original regulation, have been
incorrectly inferred as a compliance requirement.

compliant_staircase(StairID, TreadWidth, RiserHeight, Handrails) :-
TreadWidth >= 3@e,
RiserHeight =< 150,
Handrails »>= 2.

Figure 15: Interpretation results integrating clause and
graphic requirement

Graphical representations representing multiple
rules

A significant portion of graphical representations in
regulations represent multiple rules simultaneously. Some
graphical representations stand alone as rules without
corresponding  text-based clauses. MLLMs have
demonstrated the ability to distinguish individual rules
within such graphical representations and interpret them
separately.

For instance, Figure 16 shows the graphical
representations supporting the clause: “Accessible toilet

stall doors shall provide a clear opening of at least 900
mm (35 in.) with the door in the open position.

Figure 4.2.2.2
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Note: In a retrofit situation where it is
technically infeasibleto provide the required
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cleartransfer space may be reduced to
760 mm (30 in.).

Figure 16: Example of graphical representations containing
multiple rules (City of London, 2007)

This annotated drawing represents six rules at once,
including: Door width compliance, Minimum stall
dimensions, Grab bar placement, Toilet clearance space,
Sink positioning, and Turning radius requirements.
The presence of multiple rules affects the accuracy of
interpretation in specific use cases, as the model must
determine which parameters are relevant to the current
query. When interpreting the graphic guideline alone, the
model extracts all six rules, as shown in Figure 17, which
may be unnecessary for a targeted compliance check.

% Rule 1: Accessible Toilet Stall Door Clearance
% Ensures the stall door provides a minimum clear opening of 900 mm (35 in.)
toilet_stall_door_clearance(Width) :-

Width >= 900.

% Rule 2: Minimum Stall Depth Requirement
% The stall must have a minimum depth of 1830 mm (72 in.), but may be reduced to 1525 mm (6@ in.) in retrofit situations
toilet_stall_depth(Depth, retrofit(false)) :-

Depth >= 1830.

toilet_stall_depth(Depth, retrofit(true)) :-
Depth >= 1525.
% Rule 3: Minimum Stall Width Requirement
% The stall must have a minimum width of 920 mm (36 in.)
toilet_stall width(Width) :-
Width >= 920.

% Rule 4: Toilet Positioning
% The toilet must be placed 460-480 mm (18-1/8 in. to 18-7/8 in.) from the nearest side wall.
toilet_position(Distance) :-

Distance >= 460, Distance =< 480.
% Rule 5: Clear Transfer Space Requirement
% The transfer space must be at least 920 mm (36 in.), but may be reduced to 76@ mm (30 in.) in retrofit situations.
clear_transfer_space(Space, retrofit(false)) :-

Space >= 920.

clear_transfer_space(Space, retrofit(true)) :-
Space >= 760.

% Rule 6: Retrofit Exception Compliance
% Deternines whether a stall qualifies for a retrofit exception based on feasibility
retrofit_exception(Feasibility) :-

Feasibility = true.

% Compliance Check Aggregator
% Verifies if the toilet stall meets all accessibility requirements
toilet_stall_compliance(Width, Depth, DoorWidth, ToiletDist, TransferSpace, Retrofit) :-
toilet_stall_width(Width),
toilet_stall_depth(Depth, Retrofit),
toilet_stall_door_clearance(DoorWidth),
toilet_position(ToiletDist),
clear_transfer_space(TransferSpace, Retrofit).

Figure 17: Interpretation result with visual only

Conclusions

This study conducted a preliminary exploration of
integrating graphical representations into MLLM-based
automated rule derivation for design compliance
checking. Experimental results demonstrated that
combining textual and visual inputs enhances rule
derivation accuracy, particularly in extracting specific
compliance parameters such as numerical constraints and
spatial relationships. However, the graphic-only condition
resulted in significantly lower performance.

Despite these findings, several limitations remain. The

dataset was relatively small and focused on accessibility
regulations, limiting the generalizability of the findings.



Expanding the dataset to include a broader range of
regulatory domains and incorporating real-world BIM
data will be essential for more robust validation.
Additionally, while Prolog was chosen for its simplicity
and suitability for early-stage experiments, adopting more
interoperable  rule representation formats like
LegalRuleML could improve integration with existing
compliance checking systems. Moreover, the limited
performance of the graphic-only case also suggests that
relying solely on MLLM-generated text descriptions may
fail to capture the full spatial and contextual richness of
graphical representations. Future research should explore
advanced techniques such as scene-graph extraction,
object detection, and structured semantic parsing to
enhance visual interpretation. Lastly, validating the
execution of generated rules within BIM-based
compliance workflows will be critical to ensure their
practical applicability in real-world settings.
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