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ABSTRACT:

The established practice in construction planning is based on design activities of
the different disciplines being conducted in parallel, leading to potential conflicts
that need to be resolved in coordination sessions. In BIM projects, this principle is
termed federated modeling approach when referring to the process of combining
multiple individual discipline-specific models into a single, coordinated model for
reference, clash detection, and decision-making. Although BIM coordination tools
can detect conflicts automatically, resolving them remains a time-consuming
manual process requiring iterative design coordination. To address this challenge,
this paper proposes a Reinforcement Learning (RL)-based method for automated
geometric conflict resolution. We implement a Proximal Policy Optimization (PPO)
algorithm in a BIM environment, training the RL agent to resolve conflicts using
real-time feedback from a rule-based model checker. The method's feasibility is
evaluated across scenarios of varying complexity. The results demonstrate that the
agent learns effective conflict resolution strategies, offering a valuable step beyond
model checking towards automatic conflict resolution. The code is available at
https://github.com/YuyeJ48/Towards-Automated-BIM-Conflict-Resolution-Using-
Reinforcement-Learning.
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1. INTRODUCTION

Building Information Modeling (BIM) offers a
holistic approach to design, construction, and
facility = management, in which a digital
representation of the building product and process
is used to facilitate the exchange and
interoperability of information (Borrmann et al.,
2018). The BIM-based building design process
relies on collaboration across different disciplines,
including architectural engineering, structural
engineering, and mechanical, electrical, plumbing
(MEP) engineering. Designers from different
disciplines create their own model and conduct
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their design process independently, often using
different BIM authoring software. The BIM
coordinator of each discipline communicates and
exchanges information at frequent intervals and
merges sub-models into a single federated model.
Design components of different disciplines are
particularly prone to conflict during this process
given the high complexity of building models (Chen
and Hou, 2014). These conflicts are recognized as
a critical cause of deficiencies and poor
collaboration performance in building projects
(Charehzehi et al., 2017). While conflicts can be
identified by model-checking software, they are
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typically resolved manually, which is a
cumbersome process. An automated conflict
resolution is hence desirable; however, it is
currently underexplored.

A number of previous studies investigated
utilizing  various  Atrtificial Intelligence (Al)
technologies to automate conflict resolution. For
instance, Supervised Learning (SL) techniques
have been employed to collect existing clash-
resolution data and experts' opinions to train a
model to resolve clashes automatically (Hsu et al.,
2020). However, these methods learned from a set
of provided labeled examples, which presents a
major disadvantage considering the lack of
sufficient data within the Architectural, Engineering,
and Construction (AEC) sector. Compared to SL
approaches, Reinforcement Learning (RL) is
advantageous when examples of desired behavior
are sparse or unavailable, but it is possible to
evaluate examples of behavior according to some
performance criterion (Si et al., 2009).

In response to this challenge, our research
consequently explores the application of using RL
techniques to automate the BIM geometric conflict
resolution process. We propose a framework for
training an RL agent by employing the Proximal
Policy Optimization (PPO) (Schulman et al., 2017)
algorithm in a BIM environment integrated with a
rule-based model checker. The RL model is trained
in three use cases, each representing a typical
geometric conflict within or between disciplines.
The experiments are conducted in a single-family
house BIM model to investigate the proposed
framework's feasibility across increasingly complex
scenarios.

2. BACKGROUND AND RELATED WORKS
2.1 Preliminaries

The Industry Foundation Classes (IFC) serves
as a vendor-neutral and industry-specific data
model schema for multidisciplinary BIM workflow
by facilitating information exchange throughout the
project lifecycle (Kubicki et al., 2019). It allows the
representation of geometrical and semantic
structures of a building model using an object-
oriented approach (Borrmann et al., 2018). Each
object type is part of a class hierarchy that defines
its specialization and generalization relationships.

RL is the problem faced by an intelligent agent
that learns behavior through trial-and-error
interactions with a dynamic environment (Kaelbling,
Littman, and Moore, 1996). In BIM-based conflict
resolution workflows, computing the optimal design
directly is often infeasible. However, alternative
designs can be evaluated and scored based on
domain knowledge or specialized software, aligning
with RL's ability to learn optimal strategy through

iterative feedback. Even more importantly, unlike
SL approach, RL does not require pre-existing
training data.

The RL agent explores its environment
autonomously, observes the current state (s:) of the
environment at a given time t and takes an action
(at) that is determined by the policy (m). The policy
is a mapping that represents the probability of
taking a specific action given the state (s:), denoted
as m(als:). As a consequence of the action, the
state of the environment transitions from s; to st+1.
The agent also receives a numerical feedback
signal, namely the reward (r;) based on the
success or failure of the action. The self-collected
knowledge is applied to adjust its policy, thereby
enhancing its accuracy in prediction and interaction
with its environment. This one iteration of the
agent-environment interaction is defined as a step
and the sequence of steps that starts with the initial
state and ends with the end state is defined as an
episode. During the training phase, the agent
refines the policy and learns how to respond to
states with appropriate actions that maximize the
total reward.

The PPO algorithm has become one of the
most widely applied algorithms in RL. PPO is a
policy gradient-based algorithm designed to offer a
more stable and efficient approach to policy
optimization. The central innovation of the PPO
algorithm is its approach to making the learning
process more stable by constraining the extent of
policy updates.

2.2 Automated conflict resolution

Several noteworthy studies have been
conducted to develop automated solutions for BIM-
based clash resolution. Hsu et al. (2020) proposed
an Al solution incorporating knowledge-based ML
and heuristic optimizing techniques was developed
to address BIM design clashes. In the paper, five
experienced constructors completed
questionnaires, and their responses were collected
to train a neural network to identify underlying
knowledge patterns. These patterns subsequently
served as the basis for optimization. Liu et al.
(2024) considered the clash resolution as a multi-
objective optimization problem and proposed a
genetic algorithm approach to balance the
optimization of multiple objectives. The Design
Healing framework was proposed to automatically
address design issues identified in code
compliance checking (Wu, Nousias and Borrmann,
2025). By integrating the design information with
compliance-checking outputs, it employs a graph-
based topological algorithm and sensitivity analysis
to identify non-compliant components and generate
similar code-compliant design alternatives. Du et



al. (2024) proposed a Large Language Model
(LLM)-based agentic framework for generating BIM
models, in which two agents write imperative code
to address issues identified in the generated BIM
model by interpreting the BIM Collaboration Format
(BCF) files exported from a rule-based model
checker.

Harode et al. (2021; 2022) investigated the
general application of SL for clash resolution,
identifying its limitations and introducing a
combined SL and RL methodology, in which the
authors hypothesize that RL will help mitigate the
dependency of SL on the dataset, while SL acts as
a pre-training to the RL model and reduce the
number of training steps. The follow-up study
explored the common strategy by adopting a neural
network that could predict possible clash resolution
options (Harode, Thabet and Gao, 2024).

Most of these approaches involved SL and
optimization rely on existing examples or manually
labeled data that require input from experienced
experts, which poses challenges in the data-sparse
AEC domain. This also restricts their applicability in
different scenarios, as the inputs are typically
constrained to a single discipline or type. Harode et
al. (2021) have pointed out the limitations of SL
and put forth the concept of integrating SL and RL,
developing a framework to facilitate the integration.
Nevertheless, in subsequent and more in-depth
research, they devoted a significant portion of their
efforts to SL, while the research on the RL aspect
has remained conceptual and relatively stagnant.

2.2 Application of RL for BIM-Based Design

The rapid advancement of RL has
demonstrated its potential for solving complex
problems across related domains. Sharbaf et al.
(2022) presented an RL approach to automatically
resolve model merging conflicts based on quality
characteristics, as introduced by language
modeling engineers as preferences. Yang et al.
(2023) proposed a Deep Reinforcement Learning
(DRL) method for generating three-dimensional
pipeline layouts.

The task of rebar design in BIM has been
studied extensively using RL. Liu et al. (2019)
presented a framework employing a targeted Multi-
Agent Reinforcement Learning (MARL) system for
the automated reinforcement concrete (RC) joints
design in BIM, where each rebar is regarded as an
intelligent RL agent, allowing the rebar design
problem to be formulated as a three-dimensional
path-planning problem. This work was further
extended, and a typical RL algorithm Q-learning
was implemented for a more realistic real-world
design (Liu et al., 2020). The same framework was
also extended to automatically generate clash-free

rebar designs in prefabricated concrete wall
panels, integrating a Generative Adversarial
Network (GAN) to learn from designers'
experiences with existing design drawings and
generate 2D preliminary rebar designs (Liu et al.,
2023). Notably, the utilization of RL has achieved
remarkable outcomes in related fields, implying the
potential for the practical application of RL in the
context of automated BIM conflict resolution.

2.3 Research gaps
In summary, we identify the existing research
gaps in literature as follows:
= Limited application of RL: The use of RL for
general BIM conflict resolution has been
scarcely studied. Existing research has
predominantly focused on automatic design
within BIM, particularly in RC design.
= High data demand for SL: Numerous studies
have proposed a range of SL algorithms to
resolve conflicts, which require a large
quantity of training data to achieve satisfactory
results (Sutton and Barto, 1998). However, the
dearth of adequate datasets presents a
significant barrier for implementing SL in this
field. While the input from several experts may
be sufficient for specific use cases, this
approach is evidently limited by the number
and expertise of the experts involved and is
difficult to generalize to other scenarios.
= Oversimplification of BIM environments: Due
to the complexity of real BIM model, most
research  studies employed significant
simplifications, extracting only the essential
information to create a simulated 3D non-BIM
model and environment for RL training.
However, a BIM model is an integrated whole,
with complex interrelations among its objects,
making simplifications less than ideal.

3. METHODOLOGY

The proposed methodology integrates the
federated BIM model (merging architectural,
structural, and MEP disciplines) and the rule-based
model checker into an RL environment, enabling
training within a real BIM context to automatically
resolve geometric conflicts.

Fig. 1 illustrates the overall pipeline of our
approach. The process begins with a BIM model
containing multiple geometric conflicts, imported
into the model checker as a vendor-neutral IFC file.
The model checker contains a wide range of
comprehensive checking rules and is integrated
into the established RL environment where the
agent operates. The RL training loop proceeds as
follows: The model checker first checks the model
and outputs the results. Employing the PPO



algorithm, the agent receives rewards or penalties
based on the checking results, updates its policy
accordingly, and performs appropriate actions to
reposition the conflicted building components within
the IFC. The updated IFC model is re-checked by
the model checker, and the loop continues until a
terminated state is reached, so that all conflicts are
resolved. Finally, the conflict-free BIM model is
exported as the resolution. The RL agent learns the
optimal conflict resolution strategy through this
training progress, with the objective of minimizing
both the number and the severity of conflicts
reported by the model checker. The trained RL
model is saved for further evaluation and testing. In
the following subsections, we describe several key
modules of the proposed framework in detail.

Federated BIM Model
. with Geometric Conflicts
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Figure 1: The proposed framework of the RL system
based on IFC model and a rule-based model checker.

3.1 Observation space

In contrast to other studies that construct an
abstracted and highly simplified building model, our
research integrates a complete IFC model into the
RL environment. In real-world design, relocating a
single element may affect numerous adjacent
components. By employing the whole IFC model,
our approach incorporates a degree of the
intricacies and interdependencies intrinsic to actual
building designs.

The IFC component properties and checking
feedback from the model checker are encoded as
RL observations, i.e., the information the agent
receives from the environment at each time step to
guide its decision-making. The parameters of the

observation space design are summarized in Table
1.
Table 1: Summary of the observation space

Parameters Definition
Number of The total number of conflicts that we
conflicts aim to resolve in the BIM model.
Severity of The accumulative severity indicator
conflicts for conflicts that we aim to resolve.
The total number of conflicts that we
Number of do not intend to cause but arise

created conflicts during the iteration due to

inappropriate action.

Severity of The accumulative severity indicator
created conflicts for created conflicts.
Element 1
type The IFC class of the element.
Element 2
type
Element 1
rotation The indicator for the current direction
Element 2 of the element.
rotation
EIem_e nt 1 The calculated world-coordinates of
vertices . - .
Element 2 eight vertices of the bounding box of
. the element.
vertices

A conflict in the BIM model may involve one or
more elements. When a conflict involves only a
single element, it typically results from the
elements’ properties not meeting relevant
requirements, which is outside the scope of this
research. For most other cases, geometric conflicts
typically involve two elements. While some conflicts
may include multiple elements simultaneously,
these can usually be broken down into a series of
pairwise geometric conflicts. Therefore, this study
focuses on analyzing geometric conflicts at the
element-pair level.

3.2 Action space

To effectively resolve geometric conflicts in BIM
models, actions must be designed to enable the
agent to directly and practically manipulate model
elements, thereby addressing the identified
conflicts. Based on the literature research and
practical experience, the primary actions involved
in resolving geometric conflicts include moving and
rotating. In practice, there might be other feasible
actions. However, due to implementation
constraints and the need for adaptability across
different use cases, the available actions in this
method are focused on movement and rotation. In
addition, the voids or niches that may be created
by the actions are out of the scope of this study.

Eight available actions are designed in the RL
environment to construct a discrete action space,
including forward and reverse movement (10 mm)
in the x, y, z axis, and rotate 90 degrees clockwise
or anticlockwise. The value of 10 mm was
determined by the fact that it is the typical tolerance



for clash detection. Each possible action is indexed
and encoded as part of the discrete action space.

It is worth noting that the RL terminology action
here only includes the movement or rotation of the
main conflicted elements. Because the BIM model
integrates  both geometric and semantic
information, relocating certain elements,
particularly those in the MEP system, often
requires corresponding adjustments to connected
neighboring components. For example, the
movement of an air terminal can result in length
changes of ducts and movement of duct fittings.
These consequential changes are also considered
and designed in the RL environment to guarantee
the integrity of the BIM model, but they do not
belong to the agent action module.

3.3 Rewards and checking rules

The reward system functions as the primary
feedback mechanism, indicating to the agent
whether its actions are leading to improvements or
deteriorations in the state of the environment. To
better guide the agent in learning to make
decisions that lead to better states, the reward is
designed with three primary considerations based
on the state of the current BIM model, mainly
related to the output of the model checker, as
summarized in Table 2.

Table 2: Summary of the reward module
Key parameters Reward or penalty

The change in the number of

X 1
conflicts
The change of created 41
conflicts -
The change in conflicts’ +02
severity -

To conduct comprehensive checking of the
model and to better reflect the state of the model
within the reward system, the rulesets in the model
checker are defined to align with the reward
module. The configuration of the rulesets takes
three aspects into account:

= The primary rule to check specific types of
conflicts that the agent aims to resolve.

® The auxiliary rules to detect the specific
conflicts that may arise during the relocation of
the element according to its type and
properties.

= The general BIM validation rules ensure that
the complete model is comprehensively
checked for semantic, structural, and
topological rationality.

4. IMPLEMENTATION DETAILS

The developed RL system is illustrated in Figure
2. The RL environment is built on the OpenAl Gym
framework (Brockman et al., 2016), using the PPO
implementation from Stable Baselines3 (Raffin et
al.,, 2021). IfcOpenShell ' is used to extract
geometric and semantic information and to perform
movement and rotation of building components in
the IFC model.
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Figure 2: Implementation of the RL system

v il Rulesets Open in Solibri
v {¥ BIM Validation - Architectural
» & Model Structure Check
» {8 Component Check
v (@ Clearance

§ Clearance in Front of Windows 50L/226/3.1
8 Clearance in Front of Doors SOL/226/3.1
§ Clearance Above Suspended Ceilings S0L/222/4.2
8 Free Area in Front of Fixed Furnishing SOL/226/3.1
v {4 Deficiency Detection
§ Required Components SOU11/4.2
§ Unallocated Areas 50L/202/1.4
v {8 Components Below and Above
§ Components Above Columns SOL/23/5.2
§ Components Below Columns S0L23/5.2
§ Components Above Beams S0L/23/5.2
§ Components Below Beams SOL/23/5.2
§ Components Above Walls S0w23/5.2
§ Components Below Walls SOL/23/5.2
§ Revolving Doors Must Have Swinging Door Next to It S0L/222/4.2
§ Slabs must be Guarded against Falling S0L/236/1.2

» {g] General Space Check
v {8 Intersections Between Architectural Components
» (g Intersections - Same Kind of Components

v {38 Intersections - Different Kind of Components

§ Door Intersections. SOL/1/5.0
§ Window Intersections SOU1/5.0
§ Column Intersections SOu/1/5.0

Figure 3: An example of the selected rules in Solibri for
column-window confiict following the principles defined in
Section 3.3 (primary and auxiliary rules highlighted)
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We use Solibri Office? as the rule-based model
checker. Compared to design check functionalities
in a self-formulated environment, Solibri offers a
high degree of comprehensiveness and
adaptability in incorporating domain knowledge into
its rule-based checking system. This helps identify
unintended conflicts from element relocation during
training, preserving BIM model integrity. The
completed and accurate rule selections and setup
can maximize the benefits of applying the model
checker and ensure the optimal functioning of the
RL reward system. Conversely, the rules should
not be excessively repetitive and should be tailored
to the specific objective, in alignment with the
principles in Section 3.3. Figure 3 provides an
example of selected rulesets in Solibri for the
column-window conflict in Section 5.2. We utilized
Solibri's REST and JAVA APIs to update and
check the modified IFC model continuously, as well
as extract checking results for subsequent
interpretation.

5. EXPERIMENTS AND EVALUATION

Three distinct experiments were conducted
within an IFC model of a representative single-
family house (Figure 4). Each experiment
represents a characteristic conflict scenario with
increasing complexity within or across different
disciplines (Table 3). The training outcomes were
collected and analyzed separately.

Figure 4: The IFC model used in experiments

Table 3: Three conducted experiments

design specifies
windows.

Inadequate room

Spac_e layout for toilet Architectural
for Toilet
Seat seat placement or  Sub-Aspects

accessibility.

. . lllustration in
Conflict Description Type model
MEP terminals =

Air intrude into Architectural
Terminal spaces for vs. MEP
vs. Door architectural

doors.
Structural
Column- columns are Structural
Window positioned too VvS.
Conflicts close to where Architectural
architectural

2 https://www.solibri.com/

5.1 The air terminal-door conflict

A common conflict that arises in the integration
of MEP systems with architectural design is the
discouraged placement of air terminals intruding
into spaces for door swings. In practical BIM design
workflows, architectural models are typically
provided prior to MEP design, and modifications to
architectural elements are generally avoided unless
no feasible HVAC adjustments can be made,
making repositioning the air terminal a more
realistic first approach. As mentioned in Section
3.2, the movement of MEP objects is generally
more challenging than that of other disciplines
since they are typically situated in specific systems
and interconnected. The movement of a single
element often necessitates the coordinated
movement of numerous other related elements. In
this case study, four air terminals with different
directions were purposely positioned in front of
different doors, creating four specific conflicts for
the agent to resolve. The air terminal and the door
are considered as conflicting elements 1 and 2,
respectively, with only the air terminal subject to be
moved during training. The hierarchical
relationships of the IFC file enable the retrieval of
all air terminal-related elements’ GUID. In addition
to the air terminal itself, the connected short duct
and duct fitting should also be relocated, and the
long duct should be shortened or lengthened
accordingly. The primary rule for this use case is
the Distance Between Doors and MEP
components. As illustrated in Figure 5, the agent
needs around 3000 training steps to learn to
resolve all four fixed conflicts and converge on the
maximum possible reward. The plotted curve
shows the rollout mean episode reward against the
training steps, which represents the average total
reward obtained over several episodes during each
evaluation phase.
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Figure 5: Rollout mean episode reward plotted against
steps for air terminal-door case

5.2 The column-window conflict

In architectural and structural design workflows,
conflicts may arise when structural elements such
as a column is placed too close to key architectural
features like a window which is crucial for natural
lighting and ventilation. In practice, the resolution of
this type of conflict requires collaboration between
architects and structural engineers, taking into
account a number of factors, such as whether the
column is load-bearing. For training, the conflict
resolution process was simplified to entail the
relocation of the column. In this use case, the reset
of the training environment varies for each training
episode. The column is randomly assigned to one
of the nine regions distributed in front of each
window in the house, with its exact position within
the chosen region determined by a continuous
spatial distribution, as illustrated in Figure 6. The
environment is guaranteed to be different for each
initialization, but at the same time, a desired
conflict is present.
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Figure 6: The reset placement area of the column

In order to better emulate the real-world
scenario, additional architectural furniture (e.g.,
tables) was placed in the IFC model This
augmentation increases the complexity of the
environment and requires the agent to avoid
conflicts with other architectural elements while
resolving the main conflict. Three distinct types of
rules are selected and adjusted for this particular
instance accordingly. The Clearness in Front of
Windows rule is the primary means of detecting the
focused conflict the agent aims to resolve.
Subsequently, the general rule Column
Intersections is employed to detect whether the
relocated column creates new conflicts with other
elements in the entire building. The Components
Above Columns rule ensures that when the column
is relocated outside of the building, the model

checker can indicate that a conflict exists, even
when the clearness of the window is guaranteed
and there is no collision between the column and
other components.

The algorithm initiates its operation without
knowing the environment. In the early stage of
training, the algorithm randomly attempts the
available operations and gradually improves. After
about 10000 training steps, the reward received by
the agent stabilized, and the loss curve also
converged, as illustrated in Figure 7.

rollout/ep_rew_mean
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Figure 7: Rollout mean episode reward and training loss
plotted against steps for column-window case

5.3 The toilet-wall conflict

A common architectural sub-aspect conflict in
bathrooms arises when the placement of a toilet
seat in close proximity to the wall, as the minimum
lateral distance of 30 cm is necessary to ensure
accessibility and comfort. Additionally, the toilet
needs to be installed on the rear wall and the
misplacement could lead to alignment issues with
sanitary pipes of the plumbing system. This issue
can be extended to many of the conflicts of
insufficient distance between furniture, and
inadequate accessibility of spaces, which are very
common interdisciplinary building design. Similar to
the previous cases, the reset of the training
environment for this case varies for each training
episode. The toilet seat in the bathroom is
randomly assigned, with its exact position within
two corner areas determined by a continuous
spatial distribution, but always too close to one of
the walls. The solution to resolve the conflict is to
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reposition the toilet so that its free space on both
sides is more than 500 mm, and its distance from
the rear wall does not exceed 10 mm. Given these
considerations, four distinct rules were especially
selected from the Solibri rulesets and adapted to
align with the training requirements: (1) Shower
and Bathrooms rule was adjusted to check the free
space on both sides of the toilet seat. (2)
Component Distance rule is created to ascertain
the proximity of any wall elements to the toilet seat,
ensuring that the toilet is not positioned in the
center of the room. (3) Object Intersections are
used to check if the toilet clashes with other
components in the bathroom. (4) Space
Intersections to ensure the toilet is placed in the
bathroom space, not outside.

rollout/ep_rew_mean
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Figure 8: Rollout mean episode reward and training loss
plotted against steps for toilet-wall case

Compared to the previous use cases, the
terminated state of this training is more difficult to
reach since it requires the toilet seat abutting to a
wall rather than being placed anywhere in the
room. Due to the increasing complexity, the total
number of training steps was set to 32,768. The
training process spanned more than five days. The
roling average of the episode mean reward
received by the agent is depicted in Figure 8. As
the training progresses, the reward exhibits a
gradual upward trend, suggesting the agent has
acquired a certain level of knowledge to resolve the
conflict. However, it has not yet reached
convergence. The loss curve exhibits an overall

downward trend but has not yet converged,
indicating that the model is still undergoing
optimization.

6. DISCUSSION AND FUTURE WORKS

As pioneering research into the use of RL for
BIM conflict resolution automation, the results of
the experiments applying the proposed approach
did achieve certain expectations. However, the
study still has some limitations.

6.1 Training efficiency

Model-free RL algorithms, including PPO, are
relatively sample-inefficient. They require a
substantial number of samples, often millions of
interactions to achieve some meaningful results,
which is the key reason why most of the successes
in RL were achieved on games or in simulation
only (Stable Baselines3, 2024). The insufficient
training step could be the primary factor
contributing to the unsuccessful training outcomes
in the toilet use case. The integration with Solibri
limits the training speed by the speed at which the
Solibri software executes. Although the training
efficiency has been significantly improved by
shutting down and restarting Solibri after several
steps to clear the cache, the speed still decreases
as the step increases as exemplified in Figure 9.

Figure 9: Training time in hour per 2048 time steps over
toilet-wall case training process.

Future work will explore enhancing the
integration of Solibri to accelerate the training
process, forming a foundation for further
improvements. For instance, a cloud-based
solution  potentially offers faster execution
compared to the local checking. In addition, the
PPO algorithm’s support for parallel environments
offers the potential for more efficient training and
CPU utilization. Since Solibri permits the inclusion
of multiple models within a single checking file, it
may be feasible to envision a scenario where
multiple agents are simultaneously controlled
across distinct models.

6.2 Generalizability
A further limitation of the current research lies in
its generalizability, as the RL model was trained



independently across three scenarios. From a
practical perspective, it would be advantageous to
develop a unified model capable of resolving all
conflicts simultaneously. This is theoretically
feasible, as the three models share a common
framework. Nevertheless, in current ftrainings,
adjustments were made to movement distances,
available actions, the number of IFC types, and the
corresponding rules to improve the agent's learning
efficiency and enable optimal policy development.
Moreover, to solve more types of conflicts, action
space should also be extended to include other
design actions such as resizing the elements and
creating a void for MEP pipes and ducts.

However, training a single model across all use
cases with more available actions would
significantly increase the number of steps required
for conflict resolution, making the training process
more time-consuming. Therefore, unifying the
separately trained RL would require meticulous
calibration of the agent's learning parameters. For
example, breaking different rules could be subject
to disparate penalties, which would be determined
according to the applicable building regulations.
Future research could focus on refining the RL
parameters to balance generalizability and training
efficiency. Additionally, exploring alternative RL
algorithms, such as DRL, may provide insights into
potentially more suitable methods.

Another limitation is associated with its
applicability across different BIM models. During
the training process, only a standard one-family
house with relatively simple geometry was utilized.
Although conflicting components are randomly
placed during the initialization of the RL
environment and additional elements are added to
ensure a certain degree of diversity and complexity
in the conflicts, further testing and evaluation are
necessary before applying the trained model to
larger and more complex systems. The complexity
of the IFC model should be incrementally
augmented, commencing with the successful
column-window conflict resolution of relatively
simple environments and subsequently progressing
to further training in more complex IFCs.

In addition, the conflicted components' type and
dimension are the same in the current experiments,
and only the placement and orientation are
randomly generated. Implementing generative
design techniques for the automated generation of
conflict scenarios could further enrich the diversity
of training data.

6.3 Hyperparameter tuning

The selection of hyperparameters in RL
significantly impacts the rate of convergence, the
stability of the learning process, and the overall

success of the learning task. However, tuning RL
hyperparameters does not have clear and sufficient
scientific principles to work with (Li, 2018), and the
process of tuning these hyperparameters is
notoriously challenging due to the high
dimensionality of the hyperparameter space of
PPO and the stochastic nature of RL environments.
Incorporating automated hyperparameter
optimization tools, such as the Bayesian
optimization strategy or the Optuna optimization
framework, for the systematic tuning of the
parameters of the PPO algorithm should be
beneficial.

6.4 Enhancing domain knowledge integration

By incorporating a rule-based model checker
into the RL environment, fundamental design
knowledge from the building domain has been
embedded into the checking mechanism. This
integration helps ensure that the RL model adheres
to clash-free design principles and essential design
criteria. However, achieving more comprehensive
knowledge integration remains a challenge.
Integrating more design logic has the potential to
improve training efficiency as it would reduce the
agent's exploration of the wrong actions. For
instance, spatial alignment grids can be integrated
to guide the RL agent, thereby constraining its
action to more plausible configurations by following
parametric dependencies (Wu et al., 2025). As a
concrete example, incorporating the parametric
constraint, a toilet must be adjacent to a wall could
potentially facilitate successful convergence within
the same training steps in the third use case
discussed. However, applying such parametric
dependencies and constraints would require
interaction with a BIM modeling tool capable of
handling parametric relationships, rather than
relying solely on a vendor-neutral IFC model.

While the resolved federated BIM model may be
clash-free, real-world design decisions must also
consider factors such as cost, material availability,
and alignment with design preferences. These
aspects, which are currently not captured by the
model checker, could be further encoded into the
RL reward system to guide the agent toward more
practical and holistic design solutions. It is
noteworthy that the rules in Solibri are highly
extensible and customizable. The Information
Take-off feature enables detailed extraction of
building component data, which could contribute to
quantifying the material and cost factors in the RL
environment. Future work can focus on
incorporating more complex knowledge into the RL
framework. Furthermore, leveraging LLMs presents
a potential avenue for extracting and integrating



semantic knowledge from design regulations into
the RL environment.

7. CONCLUSION

This paper presets a preliminary study on the
application of a PPO-based RL algorithm for
automated BIM geometric conflict resolution by
integrating a complete IFC model and a rule-based
model checker into a custom RL environment.

Our methodology does not require initial labeled
data but rather embeds the domain knowledge into
the RL environment to estimate the current model
state, thus addressing identified research gaps. To
evaluate the feasibility of the proposed framework,
the RL agent was trained separately in three
different use cases, demonstrating the adaptability
of the approach. The experiments have yielded
preliminary promising results, showing the potential
of utilizing RL for automated BIM conflict resolution.
However, further research is required to refine the
proposed method.
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