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ABSTRACT:  
The established practice in construction planning is based on design activities of 
the different disciplines being conducted in parallel, leading to potential conflicts 
that need to be resolved in coordination sessions. In BIM projects, this principle is 
termed federated modeling approach when referring to the process of combining 
multiple individual discipline-specific models into a single, coordinated model for 
reference, clash detection, and decision-making. Although BIM coordination tools 
can detect conflicts automatically, resolving them remains a time-consuming 
manual process requiring iterative design coordination. To address this challenge, 
this paper proposes a Reinforcement Learning (RL)-based method for automated 
geometric conflict resolution. We implement a Proximal Policy Optimization (PPO) 
algorithm in a BIM environment, training the RL agent to resolve conflicts using 
real-time feedback from a rule-based model checker. The method's feasibility is 
evaluated across scenarios of varying complexity. The results demonstrate that the 
agent learns effective conflict resolution strategies, offering a valuable step beyond 
model checking towards automatic conflict resolution. The code is available at 
https://github.com/YuyeJ48/Towards-Automated-BIM-Conflict-Resolution-Using-
Reinforcement-Learning. 
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1. INTRODUCTION 
Building Information Modeling (BIM) offers a 

holistic approach to design, construction, and 
facility management, in which a digital 
representation of the building product and process 
is used to facilitate the exchange and 
interoperability of information (Borrmann et al., 
2018). The BIM-based building design process 
relies on collaboration across different disciplines, 
including architectural engineering, structural 
engineering, and mechanical, electrical, plumbing 
(MEP) engineering. Designers from different 
disciplines create their own model and conduct 

their design process independently, often using 
different BIM authoring software. The BIM 
coordinator of each discipline communicates and 
exchanges information at frequent intervals and 
merges sub-models into a single federated model. 
Design components of different disciplines are 
particularly prone to conflict during this process 
given the high complexity of building models (Chen 
and Hou, 2014). These conflicts are recognized as 
a critical cause of deficiencies and poor 
collaboration performance in building projects 
(Charehzehi et al., 2017). While conflicts can be 
identified by model-checking software, they are 

https://github.com/YuyeJ48/Towards-Automated-BIM-Conflict-Resolution-Using-Reinforcement-Learning
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typically resolved manually, which is a 
cumbersome process. An automated conflict 
resolution is hence desirable; however, it is 
currently underexplored. 

A number of previous studies investigated 
utilizing various Artificial Intelligence (AI) 
technologies to automate conflict resolution. For 
instance, Supervised Learning (SL) techniques 
have been employed to collect existing clash-
resolution data and experts' opinions to train a 
model to resolve clashes automatically (Hsu et al., 
2020). However, these methods learned from a set 
of provided labeled examples, which presents a 
major disadvantage considering the lack of 
sufficient data within the Architectural, Engineering, 
and Construction (AEC) sector. Compared to SL 
approaches, Reinforcement Learning (RL) is 
advantageous when examples of desired behavior 
are sparse or unavailable, but it is possible to 
evaluate examples of behavior according to some 
performance criterion (Si et al., 2009).  

In response to this challenge, our research 
consequently explores the application of using RL 
techniques to automate the BIM geometric conflict 
resolution process. We propose a framework for 
training an RL agent by employing the Proximal 
Policy Optimization (PPO) (Schulman et al., 2017) 
algorithm in a BIM environment integrated with a 
rule-based model checker. The RL model is trained 
in three use cases, each representing a typical 
geometric conflict within or between disciplines. 
The experiments are conducted in a single-family 
house BIM model to investigate the proposed 
framework's feasibility across increasingly complex 
scenarios.  
 
2. BACKGROUND AND RELATED WORKS 
2.1 Preliminaries 

The Industry Foundation Classes (IFC) serves 
as a vendor-neutral and industry-specific data 
model schema for multidisciplinary BIM workflow 
by facilitating information exchange throughout the 
project lifecycle (Kubicki et al., 2019). It allows the 
representation of geometrical and semantic 
structures of a building model using an object-
oriented approach (Borrmann et al., 2018). Each 
object type is part of a class hierarchy that defines 
its specialization and generalization relationships. 

RL is the problem faced by an intelligent agent 
that learns behavior through trial-and-error 
interactions with a dynamic environment (Kaelbling, 
Littman, and Moore, 1996). In BIM-based conflict 
resolution workflows, computing the optimal design 
directly is often infeasible. However, alternative 
designs can be evaluated and scored based on 
domain knowledge or specialized software, aligning 
with RL's ability to learn optimal strategy through 

iterative feedback. Even more importantly, unlike 
SL approach, RL does not require pre-existing 
training data. 

The RL agent explores its environment 
autonomously, observes the current state (𝑠𝑡) of the 
environment at a given time 𝑡 and takes an action 

(𝑎𝑡) that is determined by the policy (𝜋). The policy 
is a mapping that represents the probability of 
taking a specific action given the state (𝑠𝑡), denoted 
as 𝜋(𝑎∣𝑠𝑡). As a consequence of the action, the 

state of the environment transitions from 𝑠𝑡 to 𝑠t+1. 
The agent also receives a numerical feedback 
signal, namely the reward (𝑟𝑡) based on the 
success or failure of the action. The self-collected 
knowledge is applied to adjust its policy, thereby 
enhancing its accuracy in prediction and interaction 
with its environment. This one iteration of the 
agent-environment interaction is defined as a step 
and the sequence of steps that starts with the initial 
state and ends with the end state is defined as an 
episode. During the training phase, the agent 
refines the policy and learns how to respond to 
states with appropriate actions that maximize the 
total reward.  

The PPO algorithm has become one of the 
most widely applied algorithms in RL. PPO is a 
policy gradient-based algorithm designed to offer a 
more stable and efficient approach to policy 
optimization. The central innovation of the PPO 
algorithm is its approach to making the learning 
process more stable by constraining the extent of 
policy updates.  
 
2.2 Automated conflict resolution 

Several noteworthy studies have been 
conducted to develop automated solutions for BIM-
based clash resolution. Hsu et al. (2020) proposed 
an AI solution incorporating knowledge-based ML 
and heuristic optimizing techniques was developed 
to address BIM design clashes. In the paper, five 
experienced constructors completed 
questionnaires, and their responses were collected 
to train a neural network to identify underlying 
knowledge patterns. These patterns subsequently 
served as the basis for optimization. Liu et al. 
(2024) considered the clash resolution as a multi-
objective optimization problem and proposed a 
genetic algorithm approach to balance the 
optimization of multiple objectives. The Design 
Healing framework was proposed to automatically 
address design issues identified in code 
compliance checking (Wu, Nousias and Borrmann, 
2025). By integrating the design information with 
compliance-checking outputs, it employs a graph-
based topological algorithm and sensitivity analysis 
to identify non-compliant components and generate 
similar code-compliant design alternatives. Du et 
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al. (2024) proposed a Large Language Model 
(LLM)-based agentic framework for generating BIM 
models, in which two agents write imperative code 
to address issues identified in the generated BIM 
model by interpreting the BIM Collaboration Format 
(BCF) files exported from a rule-based model 
checker.  

Harode et al. (2021; 2022) investigated the 
general application of SL for clash resolution, 
identifying its limitations and introducing a 
combined SL and RL methodology, in which the 
authors hypothesize that RL will help mitigate the 
dependency of SL on the dataset, while SL acts as 
a pre-training to the RL model and reduce the 
number of training steps. The follow-up study 
explored the common strategy by adopting a neural 
network that could predict possible clash resolution 
options (Harode, Thabet and Gao, 2024). 

Most of these approaches involved SL and 
optimization rely on existing examples or manually 
labeled data that require input from experienced 
experts, which poses challenges in the data-sparse 
AEC domain. This also restricts their applicability in 
different scenarios, as the inputs are typically 
constrained to a single discipline or type. Harode et 
al. (2021) have pointed out the limitations of SL 
and put forth the concept of integrating SL and RL, 
developing a framework to facilitate the integration. 
Nevertheless, in subsequent and more in-depth 
research, they devoted a significant portion of their 
efforts to SL, while the research on the RL aspect 
has remained conceptual and relatively stagnant. 
 
2.2 Application of RL for BIM-Based Design 

The rapid advancement of RL has 
demonstrated its potential for solving complex 
problems across related domains. Sharbaf et al. 
(2022) presented an RL approach to automatically 
resolve model merging conflicts based on quality 
characteristics, as introduced by language 
modeling engineers as preferences. Yang et al. 
(2023) proposed a Deep Reinforcement Learning 
(DRL) method for generating three-dimensional 
pipeline layouts.  

The task of rebar design in BIM has been 
studied extensively using RL. Liu et al. (2019) 
presented a framework employing a targeted Multi-
Agent Reinforcement Learning (MARL) system for 
the automated reinforcement concrete (RC) joints 
design in BIM, where each rebar is regarded as an 
intelligent RL agent, allowing the rebar design 
problem to be formulated as a three-dimensional 
path-planning problem. This work was further 
extended, and a typical RL algorithm Q-learning 
was implemented for a more realistic real-world 
design (Liu et al., 2020). The same framework was 
also extended to automatically generate clash-free 

rebar designs in prefabricated concrete wall 
panels, integrating a Generative Adversarial 
Network (GAN) to learn from designers' 
experiences with existing design drawings and 
generate 2D preliminary rebar designs (Liu et al., 
2023). Notably, the utilization of RL has achieved 
remarkable outcomes in related fields, implying the 
potential for the practical application of RL in the 
context of automated BIM conflict resolution. 
 
2.3 Research gaps 

In summary, we identify the existing research 
gaps in literature as follows: 
▪ Limited application of RL: The use of RL for 

general BIM conflict resolution has been 
scarcely studied. Existing research has 
predominantly focused on automatic design 
within BIM, particularly in RC design. 

▪ High data demand for SL: Numerous studies 
have proposed a range of SL algorithms to 
resolve conflicts, which require a large 
quantity of training data to achieve satisfactory 
results (Sutton and Barto, 1998). However, the 
dearth of adequate datasets presents a 
significant barrier for implementing SL in this 
field. While the input from several experts may 
be sufficient for specific use cases, this 
approach is evidently limited by the number 
and expertise of the experts involved and is 
difficult to generalize to other scenarios. 

▪ Oversimplification of BIM environments: Due 
to the complexity of real BIM model, most 
research studies employed significant 
simplifications, extracting only the essential 
information to create a simulated 3D non-BIM 
model and environment for RL training. 
However, a BIM model is an integrated whole, 
with complex interrelations among its objects, 
making simplifications less than ideal. 

 
3. METHODOLOGY 

The proposed methodology integrates the 
federated BIM model (merging architectural, 
structural, and MEP disciplines) and the rule-based 
model checker into an RL environment, enabling 
training within a real BIM context to automatically 
resolve geometric conflicts. 

Fig. 1 illustrates the overall pipeline of our 
approach. The process begins with a BIM model 
containing multiple geometric conflicts, imported 
into the model checker as a vendor-neutral IFC file. 
The model checker contains a wide range of 
comprehensive checking rules and is integrated 
into the established RL environment where the 
agent operates. The RL training loop proceeds as 
follows: The model checker first checks the model 
and outputs the results. Employing the PPO 
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algorithm, the agent receives rewards or penalties 
based on the checking results, updates its policy 
accordingly, and performs appropriate actions to 
reposition the conflicted building components within 
the IFC. The updated IFC model is re-checked by 
the model checker, and the loop continues until a 
terminated state is reached, so that all conflicts are 
resolved. Finally, the conflict-free BIM model is 
exported as the resolution. The RL agent learns the 
optimal conflict resolution strategy through this 
training progress, with the objective of minimizing 
both the number and the severity of conflicts 
reported by the model checker. The trained RL 
model is saved for further evaluation and testing. In 
the following subsections, we describe several key 
modules of the proposed framework in detail. 

 
Figure 1: The proposed framework of the RL system 

based on IFC model and a rule-based model checker. 

 
3.1 Observation space 

In contrast to other studies that construct an 
abstracted and highly simplified building model, our 
research integrates a complete IFC model into the 
RL environment. In real-world design, relocating a 
single element may affect numerous adjacent 
components. By employing the whole IFC model, 
our approach incorporates a degree of the 
intricacies and interdependencies intrinsic to actual 
building designs. 

The IFC component properties and checking 
feedback from the model checker are encoded as 
RL observations, i.e., the information the agent 
receives from the environment at each time step to 
guide its decision-making. The parameters of the 

observation space design are summarized in Table 
1. 

Table 1: Summary of the observation space 

Parameters Definition 

Number of 
conflicts 

The total number of conflicts that we 
aim to resolve in the BIM model. 

Severity of 
conflicts 

The accumulative severity indicator 
for conflicts that we aim to resolve. 

Number of 
created conflicts 

The total number of conflicts that we 
do not intend to cause but arise 

during the iteration due to 
inappropriate action. 

Severity of 
created conflicts 

The accumulative severity indicator 
for created conflicts. 

Element 1 
type 

The IFC class of the element.  
Element 2 

type 

Element 1 
rotation The indicator for the current direction 

of the element.  Element 2 
rotation 

Element 1 
vertices 

The calculated world-coordinates of 
eight vertices of the bounding box of 

the element. 
Element 2 
vertices 

 
A conflict in the BIM model may involve one or 

more elements. When a conflict involves only a 
single element, it typically results from the 
elements’ properties not meeting relevant 
requirements, which is outside the scope of this 
research. For most other cases, geometric conflicts 
typically involve two elements. While some conflicts 
may include multiple elements simultaneously, 
these can usually be broken down into a series of 
pairwise geometric conflicts. Therefore, this study 
focuses on analyzing geometric conflicts at the 
element-pair level. 
 
3.2 Action space  

To effectively resolve geometric conflicts in BIM 
models, actions must be designed to enable the 
agent to directly and practically manipulate model 
elements, thereby addressing the identified 
conflicts. Based on the literature research and 
practical experience, the primary actions involved 
in resolving geometric conflicts include moving and 
rotating. In practice, there might be other feasible 
actions. However, due to implementation 
constraints and the need for adaptability across 
different use cases, the available actions in this 
method are focused on movement and rotation. In 
addition, the voids or niches that may be created 
by the actions are out of the scope of this study. 

Eight available actions are designed in the RL 
environment to construct a discrete action space, 
including forward and reverse movement (10 mm) 
in the x, y, z axis, and rotate 90 degrees clockwise 
or anticlockwise. The value of 10 mm was 
determined by the fact that it is the typical tolerance 
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for clash detection. Each possible action is indexed 
and encoded as part of the discrete action space. 

It is worth noting that the RL terminology action 
here only includes the movement or rotation of the 
main conflicted elements. Because the BIM model 
integrates both geometric and semantic 
information, relocating certain elements, 
particularly those in the MEP system, often 
requires corresponding adjustments to connected 
neighboring components. For example, the 
movement of an air terminal can result in length 
changes of ducts and movement of duct fittings. 
These consequential changes are also considered 
and designed in the RL environment to guarantee 
the integrity of the BIM model, but they do not 
belong to the agent action module. 

 
3.3 Rewards and checking rules 

The reward system functions as the primary 
feedback mechanism, indicating to the agent 
whether its actions are leading to improvements or 
deteriorations in the state of the environment. To 
better guide the agent in learning to make 
decisions that lead to better states, the reward is 
designed with three primary considerations based 
on the state of the current BIM model, mainly 
related to the output of the model checker, as 
summarized in Table 2. 

 
Table 2: Summary of the reward module 

Key parameters Reward or penalty 

The change in the number of 
conflicts  

± 1 

The change of created 
conflicts  

± 1 

The change in conflicts' 
severity 

± 0.2 

 
To conduct comprehensive checking of the 

model and to better reflect the state of the model 
within the reward system, the rulesets in the model 
checker are defined to align with the reward 
module. The configuration of the rulesets takes 
three aspects into account: 

▪ The primary rule to check specific types of 
conflicts that the agent aims to resolve. 

▪ The auxiliary rules to detect the specific 
conflicts that may arise during the relocation of 
the element according to its type and 
properties. 

▪ The general BIM validation rules ensure that 
the complete model is comprehensively 
checked for semantic, structural, and 
topological rationality. 

 

4. IMPLEMENTATION DETAILS 
The developed RL system is illustrated in Figure 

2. The RL environment is built on the OpenAI Gym 
framework (Brockman et al., 2016), using the PPO 
implementation from Stable Baselines3 (Raffin et 
al., 2021). IfcOpenShell 1  is used to extract 
geometric and semantic information and to perform 
movement and rotation of building components in 
the IFC model. 

 
Figure 2: Implementation of the RL system 

 

 
Figure 3: An example of the selected rules in Solibri for 

column-window conflict following the principles defined in 
Section 3.3 (primary and auxiliary rules highlighted) 

 

 
1 https://ifcopenshell.org/ 
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We use Solibri Office2 as the rule-based model 
checker. Compared to design check functionalities 
in a self-formulated environment, Solibri offers a 
high degree of comprehensiveness and 
adaptability in incorporating domain knowledge into 
its rule-based checking system. This helps identify 
unintended conflicts from element relocation during 
training, preserving BIM model integrity. The 
completed and accurate rule selections and setup 
can maximize the benefits of applying the model 
checker and ensure the optimal functioning of the 
RL reward system. Conversely, the rules should 
not be excessively repetitive and should be tailored 
to the specific objective, in alignment with the 
principles in Section 3.3. Figure 3 provides an 
example of selected rulesets in Solibri for the 
column-window conflict in Section 5.2. We utilized 
Solibri's REST and JAVA APIs to update and 
check the modified IFC model continuously, as well 
as extract checking results for subsequent 
interpretation. 

 
5. EXPERIMENTS AND EVALUATION 

Three distinct experiments were conducted 
within an IFC model of a representative single-
family house (Figure 4). Each experiment 
represents a characteristic conflict scenario with 
increasing complexity within or across different 
disciplines (Table 3). The training outcomes were 
collected and analyzed separately.  
 

 
Figure 4: The IFC model used in experiments 

 
Table 3: Three conducted experiments 

Conflict Description Type 
Illustration in 

model 

Air 
Terminal 
vs. Door 

MEP terminals 
intrude into 
spaces for 

architectural 
doors. 

Architectural 
vs. MEP 

 

 

Column-
Window 
Conflicts 

Structural 
columns are 

positioned too 
close to where 
architectural 

Structural 
vs. 

Architectural 

 

 
2 https://www.solibri.com/ 

design specifies 
windows. 

Space 
for Toilet 

Seat  

Inadequate room 
layout for toilet 

seat placement or 
accessibility. 

Architectural 
Sub-Aspects  

 

5.1 The air terminal-door conflict 
A common conflict that arises in the integration 

of MEP systems with architectural design is the 
discouraged placement of air terminals intruding 
into spaces for door swings. In practical BIM design 
workflows, architectural models are typically 
provided prior to MEP design, and modifications to 
architectural elements are generally avoided unless 
no feasible HVAC adjustments can be made, 
making repositioning the air terminal a more 
realistic first approach. As mentioned in Section 
3.2, the movement of MEP objects is generally 
more challenging than that of other disciplines 
since they are typically situated in specific systems 
and interconnected. The movement of a single 
element often necessitates the coordinated 
movement of numerous other related elements. In 
this case study, four air terminals with different 
directions were purposely positioned in front of 
different doors, creating four specific conflicts for 
the agent to resolve. The air terminal and the door 
are considered as conflicting elements 1 and 2, 
respectively, with only the air terminal subject to be 
moved during training. The hierarchical 
relationships of the IFC file enable the retrieval of 
all air terminal-related elements’ GUID. In addition 
to the air terminal itself, the connected short duct 
and duct fitting should also be relocated, and the 
long duct should be shortened or lengthened 
accordingly. The primary rule for this use case is 
the Distance Between Doors and MEP 
components. As illustrated in Figure 5, the agent 
needs around 3000 training steps to learn to 
resolve all four fixed conflicts and converge on the 
maximum possible reward. The plotted curve 
shows the rollout mean episode reward against the 
training steps, which represents the average total 
reward obtained over several episodes during each 
evaluation phase. 
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Figure 5: Rollout mean episode reward plotted against 
steps for air terminal-door case 

 
5.2 The column-window conflict 

In architectural and structural design workflows, 
conflicts may arise when structural elements such 
as a column is placed too close to key architectural 
features like a window which is crucial for natural 
lighting and ventilation. In practice, the resolution of 
this type of conflict requires collaboration between 
architects and structural engineers, taking into 
account a number of factors, such as whether the 
column is load-bearing. For training, the conflict 
resolution process was simplified to entail the 
relocation of the column. In this use case, the reset 
of the training environment varies for each training 
episode. The column is randomly assigned to one 
of the nine regions distributed in front of each 
window in the house, with its exact position within 
the chosen region determined by a continuous 
spatial distribution, as illustrated in Figure 6. The 
environment is guaranteed to be different for each 
initialization, but at the same time, a desired 
conflict is present. 

 
Figure 6: The reset placement area of the column 

 
In order to better emulate the real-world 

scenario, additional architectural furniture (e.g., 
tables) was placed in the IFC model This 
augmentation increases the complexity of the 
environment and requires the agent to avoid 
conflicts with other architectural elements while 
resolving the main conflict. Three distinct types of 
rules are selected and adjusted for this particular 
instance accordingly. The Clearness in Front of 
Windows rule is the primary means of detecting the 
focused conflict the agent aims to resolve. 
Subsequently, the general rule Column 
Intersections is employed to detect whether the 
relocated column creates new conflicts with other 
elements in the entire building. The Components 
Above Columns rule ensures that when the column 
is relocated outside of the building, the model 

checker can indicate that a conflict exists, even 
when the clearness of the window is guaranteed 
and there is no collision between the column and 
other components. 

The algorithm initiates its operation without 
knowing the environment. In the early stage of 
training, the algorithm randomly attempts the 
available operations and gradually improves. After 
about 10000 training steps, the reward received by 
the agent stabilized, and the loss curve also 
converged, as illustrated in Figure 7. 

 
Figure 7: Rollout mean episode reward and training loss 

plotted against steps for column-window case 
 
5.3 The toilet-wall conflict 

A common architectural sub-aspect conflict in 
bathrooms arises when the placement of a toilet 
seat in close proximity to the wall, as the minimum 
lateral distance of 30 cm is necessary to ensure 
accessibility and comfort. Additionally, the toilet 
needs to be installed on the rear wall and the 
misplacement could lead to alignment issues with 
sanitary pipes of the plumbing system. This issue 
can be extended to many of the conflicts of 
insufficient distance between furniture, and 
inadequate accessibility of spaces, which are very 
common interdisciplinary building design. Similar to 
the previous cases, the reset of the training 
environment for this case varies for each training 
episode. The toilet seat in the bathroom is 
randomly assigned, with its exact position within 
two corner areas determined by a continuous 
spatial distribution, but always too close to one of 
the walls. The solution to resolve the conflict is to 
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reposition the toilet so that its free space on both 
sides is more than 500 mm, and its distance from 
the rear wall does not exceed 10 mm. Given these 
considerations, four distinct rules were especially 
selected from the Solibri rulesets and adapted to 
align with the training requirements: (1) Shower 
and Bathrooms rule was adjusted to check the free 
space on both sides of the toilet seat. (2) 
Component Distance rule is created to ascertain 
the proximity of any wall elements to the toilet seat, 
ensuring that the toilet is not positioned in the 
center of the room. (3) Object Intersections are 
used to check if the toilet clashes with other 
components in the bathroom. (4) Space 
Intersections to ensure the toilet is placed in the 
bathroom space, not outside.  

 

 

 
Figure 8: Rollout mean episode reward and training loss 

plotted against steps for toilet-wall case 

 
Compared to the previous use cases, the 

terminated state of this training is more difficult to 
reach since it requires the toilet seat abutting to a 
wall rather than being placed anywhere in the 
room. Due to the increasing complexity, the total 
number of training steps was set to 32,768. The 
training process spanned more than five days. The 
rolling average of the episode mean reward 
received by the agent is depicted in Figure 8. As 
the training progresses, the reward exhibits a 
gradual upward trend, suggesting the agent has 
acquired a certain level of knowledge to resolve the 
conflict. However, it has not yet reached 
convergence. The loss curve exhibits an overall 

downward trend but has not yet converged, 
indicating that the model is still undergoing 
optimization. 

 
6. DISCUSSION AND FUTURE WORKS 

As pioneering research into the use of RL for 
BIM conflict resolution automation, the results of 
the experiments applying the proposed approach 
did achieve certain expectations. However, the 
study still has some limitations.  

 
6.1 Training efficiency 

Model-free RL algorithms, including PPO, are 
relatively sample-inefficient. They require a 
substantial number of samples, often millions of 
interactions to achieve some meaningful results, 
which is the key reason why most of the successes 
in RL were achieved on games or in simulation 
only (Stable Baselines3, 2024). The insufficient 
training step could be the primary factor 
contributing to the unsuccessful training outcomes 
in the toilet use case. The integration with Solibri 
limits the training speed by the speed at which the 
Solibri software executes. Although the training 
efficiency has been significantly improved by 
shutting down and restarting Solibri after several 
steps to clear the cache, the speed still decreases 
as the step increases as exemplified in Figure 9. 

 
Figure 9: Training time in hour per 2048 time steps over 

toilet-wall case training process. 

 
Future work will explore enhancing the 

integration of Solibri to accelerate the training 
process, forming a foundation for further 
improvements. For instance, a cloud-based 
solution potentially offers faster execution 
compared to the local checking. In addition, the 
PPO algorithm’s support for parallel environments 
offers the potential for more efficient training and 
CPU utilization. Since Solibri permits the inclusion 
of multiple models within a single checking file, it 
may be feasible to envision a scenario where 
multiple agents are simultaneously controlled 
across distinct models. 

 
6.2 Generalizability 

A further limitation of the current research lies in 
its generalizability, as the RL model was trained 
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independently across three scenarios. From a 
practical perspective, it would be advantageous to 
develop a unified model capable of resolving all 
conflicts simultaneously. This is theoretically 
feasible, as the three models share a common 
framework. Nevertheless, in current trainings, 
adjustments were made to movement distances, 
available actions, the number of IFC types, and the 
corresponding rules to improve the agent's learning 
efficiency and enable optimal policy development. 
Moreover, to solve more types of conflicts, action 
space should also be extended to include other 
design actions such as resizing the elements and 
creating a void for MEP pipes and ducts. 

However, training a single model across all use 
cases with more available actions would 
significantly increase the number of steps required 
for conflict resolution, making the training process 
more time-consuming. Therefore, unifying the 
separately trained RL would require meticulous 
calibration of the agent's learning parameters. For 
example, breaking different rules could be subject 
to disparate penalties, which would be determined 
according to the applicable building regulations. 
Future research could focus on refining the RL 
parameters to balance generalizability and training 
efficiency. Additionally, exploring alternative RL 
algorithms, such as DRL, may provide insights into 
potentially more suitable methods. 

Another limitation is associated with its 
applicability across different BIM models. During 
the training process, only a standard one-family 
house with relatively simple geometry was utilized. 
Although conflicting components are randomly 
placed during the initialization of the RL 
environment and additional elements are added to 
ensure a certain degree of diversity and complexity 
in the conflicts, further testing and evaluation are 
necessary before applying the trained model to 
larger and more complex systems. The complexity 
of the IFC model should be incrementally 
augmented, commencing with the successful 
column-window conflict resolution of relatively 
simple environments and subsequently progressing 
to further training in more complex IFCs.  

In addition, the conflicted components' type and 
dimension are the same in the current experiments, 
and only the placement and orientation are 
randomly generated. Implementing generative 
design techniques for the automated generation of 
conflict scenarios could further enrich the diversity 
of training data. 

 
6.3 Hyperparameter tuning 

The selection of hyperparameters in RL 
significantly impacts the rate of convergence, the 
stability of the learning process, and the overall 

success of the learning task. However, tuning RL 
hyperparameters does not have clear and sufficient 
scientific principles to work with (Li, 2018), and the 
process of tuning these hyperparameters is 
notoriously challenging due to the high 
dimensionality of the hyperparameter space of 
PPO and the stochastic nature of RL environments. 
Incorporating automated hyperparameter 
optimization tools, such as the Bayesian 
optimization strategy or the Optuna optimization 
framework, for the systematic tuning of the 
parameters of the PPO algorithm should be 
beneficial.  

 
6.4 Enhancing domain knowledge integration 

By incorporating a rule-based model checker 
into the RL environment, fundamental design 
knowledge from the building domain has been 
embedded into the checking mechanism. This 
integration helps ensure that the RL model adheres 
to clash-free design principles and essential design 
criteria. However, achieving more comprehensive 
knowledge integration remains a challenge. 
Integrating more design logic has the potential to 
improve training efficiency as it would reduce the 
agent’s exploration of the wrong actions. For 
instance, spatial alignment grids can be integrated 
to guide the RL agent, thereby constraining its 
action to more plausible configurations by following 
parametric dependencies (Wu et al., 2025). As a 
concrete example, incorporating the parametric 
constraint, a toilet must be adjacent to a wall could 
potentially facilitate successful convergence within 
the same training steps in the third use case 
discussed. However, applying such parametric 
dependencies and constraints would require 
interaction with a BIM modeling tool capable of 
handling parametric relationships, rather than 
relying solely on a vendor-neutral IFC model. 

While the resolved federated BIM model may be 
clash-free, real-world design decisions must also 
consider factors such as cost, material availability, 
and alignment with design preferences. These 
aspects, which are currently not captured by the 
model checker, could be further encoded into the 
RL reward system to guide the agent toward more 
practical and holistic design solutions. It is 
noteworthy that the rules in Solibri are highly 
extensible and customizable. The Information 
Take-off feature enables detailed extraction of 
building component data, which could contribute to 
quantifying the material and cost factors in the RL 
environment. Future work can focus on 
incorporating more complex knowledge into the RL 
framework. Furthermore, leveraging LLMs presents 
a potential avenue for extracting and integrating 
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semantic knowledge from design regulations into 
the RL environment. 
 

7. CONCLUSION 
This paper presets a preliminary study on the 

application of a PPO-based RL algorithm for 
automated BIM geometric conflict resolution by 
integrating a complete IFC model and a rule-based 
model checker into a custom RL environment.  

Our methodology does not require initial labeled 
data but rather embeds the domain knowledge into 
the RL environment to estimate the current model 
state, thus addressing identified research gaps. To 
evaluate the feasibility of the proposed framework, 
the RL agent was trained separately in three 
different use cases, demonstrating the adaptability 
of the approach. The experiments have yielded 
preliminary promising results, showing the potential 
of utilizing RL for automated BIM conflict resolution. 
However, further research is required to refine the 
proposed method. 
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