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ABSTRACT

The construction of buildings and infrastructure often involves the excavation and
transportation of large volumes of soils, which contributes significantly to project
costs and environmental impacts. A major challenge in planning the management of
excavated materials is the significant uncertainty in quantifying soil volumes before
excavation. This uncertainty arises from the limited availability of data, such as
borehole soundings and cone penetration tests, as well as the reliance on
deterministic modelling approaches. Recent advancements in probabilistic machine
learning have enabled the training of models to create probabilistic 3D subsoil
models, which explicitly account for uncertainties. In this study we investigate the
impact of model selection, such as choice of kernel and hyperparameters, on the
resulting 3D geological models. Additionally, we explore how these probabilistic
models can improve the management of excavation materials. In a study based on
the design of an excavation pit for a metro station in Munich, Germany we show first
results on how probabilistic models can inform early decisions regarding machine
fleet composition and time estimations.
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Construction projects often require management
of significant volumes of excavated materials and
can represent a significant portion of overall project
costs. For example, in infrastructure projects,
managing excavated materials and soil can account
for up to 30% of total project costs while substantial
CO, emissions are generated (Magnusson et al.
2015). Consequently, optimizing the management
of excavated materials offers substantial potential
for reducing costs and environmental impacts
(Kenley and Harfield, 2011).

Material reuse is the main strategy to minimize
the transportation of excavated soils to distant
landfills and to reduce CO, emissions. Reuse can
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occur either on-site or in other projects, potentially
after pretreatment (Magnusson et al.,, 2015).
Decisions regarding material reuse require detailed
planning and depend on the geotechnical properties
(e.g., particle size, density, and deformation
characteristics) and the chemical composition (e.g.,
contamination) of the excavated materials.

A major challenge in managing excavated
materials is the significant uncertainty in quantifying
soil volumes before excavation. This uncertainty
results from the limited availability of subsurface
data, such as borehole soundings and cone
penetration tests, as well as the reliance on
deterministic  modeling  approaches. These
traditional methods fail to capture the inherent



variability in subsurface conditions, potentially
leading to inefficiencies in excavation planning.

Recent advancements in probabilistic machine
learning (ML) have enabled the development of
probabilistic 3D subsoil models, which explicitly
account for uncertainties (e.g., Ching et al., 2020,
2023; Shuku and and Phoon, 2023; Qian and Shi,
2024; Zinas et al., 2025). These models are
particularly valuable within the framework of
probabilistic digital twins, where traditional digital
twin approaches are extended to incorporate
uncertainty quantification (Cotoarba et al., 2024).

Despite these advancements, implementations
of probabilistic modeling in geotechnical design and
construction remain limited. Additionally, research is
required to investigate how such models can be
used to improve excavation material management.
For instance, quantifying uncertainty can support
risk-based optimization strategies, leading to more
informed decision-making in excavation planning.

The objective of this study is to explore how 3D
probabilistic geological models can enhance
excavation material management by improving
volume estimation and supporting data-driven
planning decisions. Additionally, we investigate the
impact of ML model parameters on prediction
outcomes.

The study is based on the design of an
excavation pit for a metro station in Munich,
Germany (see sketch in Figure 1). Site-specific soil
information is available in the form of borehole
soundings.

Fillings
Gravel
Clay and Silts
Sands

Figure 1. A probabilistic soil model for a case
study in Munich, illustrating the uncertainty in
boundary locations and highlighting the
dimensions of the excavation pit.

2. MACHINE LEARNING METHODS FOR
3D GEOLOGICAL MODELING
For planning the excavation of an excavation pit, an
investigation is required to estimate the expected
soil types and volumes for a given area of interest.
Investigations are performed through sparse
measurements from, e.g., borehole soundings or
cone penetration tests. ML methods for 3D
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geological modeling take such data as input to train
a model to predict soil types at unknown locations.

Due to data sparsity, this task is challenging,
resulting in many locations where confident
classification is impossible. In such cases, it is
recommended to use models that output a
probability distribution over possible classes rather
than a single prediction (Murphy, 2022).
Probabilistic approaches to machine learning
include Bayesian neural networks, Gaussian
Processes, and Bayesian deep learning (Phoon et
al., 2019). Subsoil modeling can be categorized into
two main approaches, each leveraging machine
learning techniques differently:

a) Voxel-based approach in which the area of
interest is discretized into a grid of voxels, and
probabilistic machine learning techniques for
classification are used to predict soil types at
unknown locations. Approaches include Markov
Random Fields (Shuku and and Phoon, 2023; Qian
and Shi, 2024) or Gaussian Process Regression
(Zinas et al., 2025).

b) Layer-based approach where probabilistic
machine learning for regression is used to infer the
parameters that describe the boundaries between
soil layers. This approach to subsoil modeling is
intuitive and computationally efficient as it uses a
volume representation of layers. However, it may
deliver lower accuracy for complex soil conditions,
as the simplifying assumptions about layer
boundaries may fail to capture the true variability of
the subsurface. Approaches differ in their degree of
of automation and types of functions used to
describe surfaces (e.g., Liu et al., 2023, 2021; Lyu
et al., 2023, 2021).

In this study, we use the surface-based approach
for geological modeling. The input data are borehole
soundings, which provide categorical data by
observing soil types over depth (see Figure 2b). The
goal is to learn a set of functions that describe the
boundaries of each layer from the data (see Figure
2a). To obtain a probabilistic prediction of the
surface functions, we use Gaussian process
regression (GPR).
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Figure 2.a) sketch of the surface-based approach; b)
Example snippet from a borehole-sounding report



Gaussian Process Regression

Gaussian Process Regression (GPR) is a non-
parametric probabilistic modeling approach, which
is also known as Kriging and is widely used for
spatial interpolation tasks. A GP is fully described by
its mean function m(x) and covariance function (or
kernel function) k(x,x") (Rasmussen and Williams,
2005):

m(x) = E[f(®)],

k(x,x') = E[(f(x) = m(0)(f(x") — m(x"))]
k(x,x") determines the smoothness and variability
of the function. The joint distribution of the function
value is multinormal.

For the proposed problem of geological modeling
from borehole soundings, we define x = (x, y) and
f(x) = z for each layer boundary.

Posterior
The training dataset is defined as {x;, z;}I',. For the
measurement error it is common to assume a zero-
mean Gaussian mean with unknown variance.
Thus, the covariance of the observation is given as
kZ(Z,:,Zj) = k(xi, x]) + 0-1%81']'

Where §;; is the Kronecker delta for which §;; = 1 if
z; = z; and O else.
The joint Gaussian distribution over observed
outputs z at locations X and predicted values f* at
discrete locations X, can be written as:

[z*] N (0 K(X,X)+ o2l K(X,X,) )

f | KX, X)  K(X.X)
where K(X.,X) is the covariance matrix between
locations X, and X, K(X,,X,) is the covariance
matrix of X,, and o2 is the measurement noise
variance.
Applying Bayesian inference, the conditional
posterior Gaussian distribution at locations X, has
the following mean and convariance matrix:

=KX, X[KX,X) + 021"z,
I, =KX, X.) - KX, X)[KX,X)+ 2] 'K(X, X.)

Covariance Function and Hyperparameters
The choice of the covariance function can influence
model performance. One commonly used option is
the Matérn covariance function describes the
correlation between two points x and x’ as follows
k(x,x")
v

1 V2 V2
= [ e | K[
rv)2v-1\ 1 l

d(x,x") ).

Where T'(v) is the gamma function, K, is the
modified Bessel function of second kind, d(x,x") is
the Euclidean distance between points. v is a a
parameter controlling the smoothness of the kernel
and is fixed beforehand, and [ is the length-scale
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and is a hyperparameter. The smoothness of the
function decreseases as v becomes smaller.
Special cases of the matern include:

o V= %: the Matérn becomes the equivalent of

to the absolute exponentation kernel
e v — oo: the kernel converges to the Radial

Basis Function (RBF) kernel.
The kernel hyperparameters were learned by
maximizing the log-likelihood using the Limited-
Memory BFGS  optimization algorithm, as
implemented in the python GPy library (GPy, 2012).
In this process, the hyperparameters are adjusted to
maximize the likelihood of the observed data given
the model. For each identified geological layer in the
borehole data, a separate Gaussian Process model
is trained. Each layer is defined by a set of (x,y, 2)-
coordinates. The training data consist of known z-
values at borehole locations, and the model is
trained to predict z at previously unobserved
locations (see Figure 2a). An example 3D subsail
model from three boreholes and using an RBF
kernel is shown in Figure 3.

0.0 2.0 0
Figure 3. One sample from the model generated from
three borehole soundings and the RBF kernel

3. EXCAVATION SIMULATION MODEL
Traditionally, machine fleet requirements have been
estimated using deterministic models and
approaches. However, due to significant
uncertainties, the accuracy of these methods is
limited, often leading to differences between initial
estimates and actual excavation duration and costs
(Zhou et al., 2019; Heravi et al., 2021). Typically,
parameters for excavation-related calculations are
derived from empirical data and include factors such
as machine fuel consumption, available equipment,
haul distance, road quality, and operator
experience. The interdependencies among these
factors and their effects on key quantities of interest



(duration, cost, and emissions) are conceptually
illustrated in Figure 5. We classify input parameters
into three main categories:

1) Site Parameters

Key site parameters that influence excavation
productivity include soil type and excavation
volume. The soil type dictates excavation difficulty,
material weight, and the required attachments for
the excavator (e.g., rock breaker required to break
rocks).

Additionally, the location of the construction site
affects transportation distance, haul time, and road
conditions and directly impacts soil transport
efficiency. Lastly, the experience level of available
machine operators will affect the overall efficiency
related to machine operations.

2) Excavators

Parameters influencing excavator performance
include the number of available machines, bucket
size, and the time required to complete a full
operational cycle. The operational cycle consists of
moving the bucket from its starting position to
excavation, unloading into the truck, and returning
to the starting position.

The excavation productivity for a given soil type and
operator is calculated as

Excavation Productivity
= Cycles per Hour X Bucket Capacity
X Cycle Ef ficiency
X Operator Ef ficiency

3
]

m
X Availability[hour

Additionally, factors such as hourly costs, fuel type,
and consumption directly impact overall costs and
emissions.

3) Trucks

For trucks, relevant parameters also include fleet
size and individual truck performance. Key time
metrics include the duration required for loading and
unloading operations, as well as the truck loading
capacity, which is constrained either by weight or
volume capacity. Truck productivity is determined
as:

Truck Productivity
= Cycles per Hour X Actual Capacity
X Operator Ef ficiency

3
1

m
X Availability[hour

Costs and emissions are additionally influenced by
fuel consumption and hourly usage costs.

Time

The total excavation hours required per machine
can be determined by allocating a portion of the
excavation volume to each machine and dividing it
by its productivity. Machine productivity is influenced
by the soil type present on-site, and the required
excavation hours can be calculated as follows:

Volume

Hours Needed (Machine) = Machine Productivity

Site Parameters

. Excavation Operator Road
Soil Type Volume Experience Haul Time Conditions
Excavators Trucks
Number of N . | Number of
Excavators Trucks |
(Un)Load
Cycle Time Time
Bucket | Truck
Capacity Capacity
Hourly Cost { Hourly Cost
Fuel Type & ‘ . J . . . | Fuel Type &
Consumption Lot il . Consumption |

Figure 5. Dependencies of the key quantities of interest, time, cost and emissions,
on parameters for an excavation project.
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Cost Estimation

The cost associated with one machine for either
excavation or hauling operations is calculated as
follows:

CoStachines = time * machine hourly cost

where the hourly cost includes direct usage time,
operational costs, and fuel consumption. The total
cost is given by sum of individual costs.

Emissions Estimation
Environmental impact assessments can be
performed by estimating CO2 emissions based on
fuel consumption:
EmissionsMachine
= hoursyeegea
* hourly fuel consumption
* c02 emissions per liter

4. METHODOLOGY
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Figure 6. Example output from the Monte Carlo simulation,

showing borehole data as vertical bars and the corresponding

inferred soil layers within the area of interest.

Using the GPR approach for geological modeling
introduced in Section 2, a distribution of expected
soil types within the excavation area can be
obtained.

A straightforward method for conducting a
probabilistic analysis of excavation parameters is to
perform Monte Carlo simulations, generating ng

samples of 3D subsoil models and calculating
excavation time, costs, and emissions for each
sample, as described in Section 3. An example of
one such sample is illustrated in Figure 6. By
repeating this process for n, samples, a probability
distribution of the quantities of interest can be
obtained, capturing the inherent uncertainty within
the geological model.

5. ILLUSTRATIVE CASE STUDY
The case study is inspired by the construction of a
subway station in Munich, Germany, introduced in
the work of Pelz (2010). The station was built using
the cut-and-cover method and features a total length
of 202 meters, an excavation depth of 15.9 meters,
and an embedment depth of 7.6 meters
We limit the excavation width to 90 meters for
lllustration purposes. The spatial dimensions of the
modeled area and the excavation pit are
summarized in Table 1 and illustrated in Figure 7.

Table 1. Dimensions of the modeled soil area and
excavation pit

X[m]  Y[m]  Z[m]

Model 100 50 30
Excavation 90 20 20
Pit
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Figure 7. Visualization of the excavation pit and the
available boreholes

Geotechnical Data

Soil Type USCS Class Excavation Weights Required Attachment
Factor v/Y'[kN/m3]
Filling SM 1.0 20/11
Gravel GW 1.2 23/14
Clays and Silts CL 1.0 20/11 Bucket
Sands SwW 0.9 21/12

Table 2. Geotechnical parameters for the four soil types encountered in the Munich case study.
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Figure 8. Comparison of 3D subsoil layer models generated using Gaussian process regression with different kernel
functions: (a) Radial Basis Function kernel and (b) Matérn kernel withv = 3/2 and (c) Matérn Kernel with v= 5/2.

The geological model of the site is obtained based
on five borehole soundings from locations near the
construction site (see Figure 7). They are extracted
through the Bavarian State Office for the
Environment and is publicly available in the
UmweltAtlas database (Bayerisches Landesamt fiir
Umwelt, Augsburg, Germany).

From these borehole soundings, four primary soil
types were identified, which are characteristic of the
subsurface conditions of Munich: fillings, quaternary
gravel, tertiary clays and silts, and tertiary sands.
The relevant geotechnical parameters, including
excavation factors, weights, and required
attachments, are summarized in Table 2.

3D Subsoil Model

As described in Section 2, a 3D geological model is
generated using the surface-based approach and
Gaussian process regression. To compare how
different kernels apply, we apply three different
kernel functions for geological modeling: Radial
Basis Function (RBF), Matérn Kernel with (v =
3/2), and Matérn Kernel (v = 5/2). For each, we
generate n, = 1000 samples of soil profiles. One
example for each can be seen in Figure 8.

Table 1. Excavator parameters are taken to resemble a
Liebherr R920 Compact excavator

Fleet Scenario

A hypothetical fleet scenario is defined to analyze
excavation and hauling efficiency. In this study, we
consider the following configuration of available
excavators (N € {2,3,4}) and trucks (M € {1«
Neruckss 2 * Nerucksr 3 * Nerucks })- A scenario analysis
is conducted for the different fleet configurations,
resulting in a total of 9 scenarios.

The characteristics of the excavators used in the
scenario analysis are detailed in Table 3. The
specifications of the truck are outlined in Table 4.
The operator efficiency and cost are modeled using
skill-based cycle factors and hourly wage rates, as
shown in Table 5. A more complex model could
include a factor connected to the vyears of

experience.
Table 2. Operator parameters to calculate productivity
and costs.
Experience Efficiency Ho‘;é'&’;;ate
Beginner 0.6 50
Intermediate 0.8 60
Expert 0.95 70

Table 3. Truck parameters to calculate productivity, costs
and emissions

Parameter Unit Value
Bucket Capacity [m3] 0.95 Parameter Unit Value
H 3
Hourly Cost [EUR/R] 125 Truck Capacity [m-] 13
Hourly Cost [EUR/R] 100
Fuel Consumption [L/h] 15
Fuel Consumption [L/km] 34
CO2 Emissions [kg/L] 2.54
Attachments . Bucket COz2 Emissions [kg/L] 2.54
Max. Payload [tonnes] 25
Max. Speed
Empty/Loaded kem/h] 40/50
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Although real-world excavation operations involve
additional complexities, such as variations in
machine productivity, mechanical failures, and
operator efficiency, each scenario in this study
assumes an equal distribution of the total excavation
volume among the available excavators and trucks.

6. RESULTS
For this analysis, the key metrics evaluated are
excavation time, costs, and emissions, computed
using the methodology outlined in Section 3.
Calculations are conducted for ng = 1000 samples
per kernel function.

Comparison of Kernels

To provide first insights into how model selection
influences excavation planning, we assess the
impact of different kernel functions on estimated
costs. In Figure 9, the distribution of soil types for
each kernel function is illustrated. Although the RBF
and Matérn kernels yield different shape
approximations (Figure 8), it can be seen that the
overall volume distribution of soil types remains
largely consistent.

70000/ + 1. ¥ % Em RBF
% % B Matern32
60000 I Matern52
__ 50000
‘E’4OGDO
]
§
= 30000
S
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10000 % {' *
£+
0 :s
CL GW SM SW
Soil Type

Figure 9. Distribution of volume of soil types for different
kernels

Figures 10, 11, and 12 illustrate the estimated
excavation and transportation time, costs, and
emissions for a fleet configuration of three
excavators, six ftrucks, and intermediate-level
operators. As expected, given the similarity in soil
volume distributions, no significant differences in the
expected duration, costs, or emissions are
observed. The results also indicate low uncertainty
in the final estimates, which can be attributed to two
factors: 1) the low variability in soil type volumes,
and 2) the similarity of excavation properties of the
encountered soil layers.
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Figure 10. Expected duration of excavation works
for various kernels and 1000 samples each
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Figure 11. Expected costs of the excavation
works for various kernels and 1000 sample each
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Figure 12. Expected COZ2 emissions for various
kernels and 1000 samples each
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Figure 13. Results for the scenario analysis for different types of operators, number of excavators and number of trucks.

Comparison of Fleet Scenarios

Figure 13 shows the results of a fleet scenario
analysis using samples obtained for the RBF kernel.
This analysis examines how variations in the
number of excavators and trucks (bottom bar plots)
and differences in operator experience levels (color-
coded) affect excavation performance metrics. The
analysis investigates the effect of varying the
number of trucks assigned per excavator. We
consider three configurations: a) one truck per
excavator, b) two trucks per excavator and c) three
trucks per excavator.

Increasing the number of excavators from two to
three leads to a notable reduction in excavation
time. However, this effect becomes less pronounced
when the number increases from three to four.
Similarly, assigning two trucks per excavator
significantly improves excavation times, but the
addition of a third truck offers minimal further benefit.
While excavation time decreases slightly, expected
costs also continue to increase. This indicates that
excavator productivity, rather than truck availability,
becomes the limiting factor for this case.
Additionally, the value of operator experience is
positive, as the productivity gains for higher-skilled
operators lead to cost savings that exceed their
higher hourly wages. However, the above
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conclusions are limited to the current configuration,
as a lower productivity gain and higher wage could
lead to different results. Despite these limitations,
the results demonstrate the potential of such
methods to enhance fleet planning and decision-
making processes.

7. CONCLUSION & OUTLOOK

In this work, we introduced a novel approach for
integrating 3D probabilistic geological models into
the planning of excavation works. To this end, we
developed a simulation framework to predict
excavation times, costs, and emissions under
specific site conditions, using samples generated
from probabilistic subsoil models.

A preliminary investigation into model selection was
performed by varying the configurations for the
surface-based probabilistic machine learning
method used to generate geological models. This
initial analysis did not reveal substantial differences
in model volume outcomes for different kernels.
Howevern, further research involving additional
case studies and more complex kernel functions is
needed to draw definitive conclusions.

Future work should also explore alternative
geological modeling methods to improve the
understanding of the relationship between



systematic uncertainties of such methods and
expected excavation durations. Enhancing this
understanding is essential for building trust in the
reliability of digital planning tools.

The developed simulation model serves as a first
step toward improving planning tools for excavation
management. While more complex simulation
models could increase the predictive accuracy, they
would also involve larger computational costs for
optimization. Validation with real-data is required to
identify an appropriate balance between both
aspects.

Overall, this study demonstrates the potential of
integrating probabilistic machine learning models
with a simulation framework to enhance the
management of excavation projects. By enabling
more accurate volume estimation and supporting
data-driven  decision-making, this integrated
approach aims to enable more efficient, cost-
effective, and environmentally conscious
construction practices.
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