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ABSTRACT 
The construction of buildings and infrastructure often involves the excavation and 
transportation of large volumes of soils, which contributes significantly to project 
costs and environmental impacts. A major challenge in planning the management of 
excavated materials is the significant uncertainty in quantifying soil volumes before 
excavation. This uncertainty arises from the limited availability of data, such as 
borehole soundings and cone penetration tests, as well as the reliance on 
deterministic modelling approaches. Recent advancements in probabilistic machine 
learning have enabled the training of models to create probabilistic 3D subsoil 
models, which explicitly account for uncertainties. In this study we investigate the 
impact of model selection, such as choice of kernel and hyperparameters, on the 
resulting 3D geological models. Additionally, we explore how these probabilistic 
models can improve the management of excavation materials. In a study based on 
the design of an excavation pit for a metro station in Munich, Germany we show first 
results on how probabilistic models can inform early decisions regarding machine 
fleet composition and time estimations. 
KEYWORDS 
Probabilistic digital twin, machine learning, geological modelling, management of 
excavated materials 

 
 

1. INTRODUCTION 
Construction projects often require management 

of significant volumes of excavated materials and 
can represent a significant portion of overall project 
costs. For example, in infrastructure projects, 
managing excavated materials and soil can account 
for up to 30% of total project costs while substantial 
CO₂ emissions are generated (Magnusson et al. 

2015). Consequently, optimizing the management 
of excavated materials offers substantial potential 
for reducing costs and environmental impacts 
(Kenley and Harfield, 2011). 

Material reuse is the main strategy to minimize 
the transportation of excavated soils to distant 
landfills and to reduce CO₂ emissions. Reuse can 

occur either on-site or in other projects, potentially 
after pretreatment (Magnusson et al., 2015). 
Decisions regarding material reuse require detailed 
planning and depend on the geotechnical properties 
(e.g., particle size, density, and deformation 
characteristics) and the chemical composition (e.g., 
contamination) of the excavated materials. 

A major challenge in managing excavated 
materials is the significant uncertainty in quantifying 
soil volumes before excavation. This uncertainty 
results from the limited availability of subsurface 
data, such as borehole soundings and cone 
penetration tests, as well as the reliance on 
deterministic modeling approaches. These 
traditional methods fail to capture the inherent 
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variability in subsurface conditions, potentially 
leading to inefficiencies in excavation planning. 

Recent advancements in probabilistic machine 
learning (ML) have enabled the development of 
probabilistic 3D subsoil models, which explicitly 
account for uncertainties (e.g., Ching et al., 2020, 
2023; Shuku and and Phoon, 2023; Qian and Shi, 
2024; Zinas et al., 2025). These models are 
particularly valuable within the framework of 
probabilistic digital twins, where traditional digital 
twin approaches are extended to incorporate 
uncertainty quantification (Cotoarbă et al., 2024). 

Despite these advancements, implementations 
of probabilistic modeling in geotechnical design and 
construction remain limited. Additionally, research is 
required to investigate how such models can be 
used to improve excavation material management. 
For instance, quantifying uncertainty can support 
risk-based optimization strategies, leading to more 
informed decision-making in excavation planning.  

The objective of this study is to explore how 3D 
probabilistic geological models can enhance 
excavation material management by improving 
volume estimation and supporting data-driven 
planning decisions. Additionally, we investigate the 
impact of ML model parameters on prediction 
outcomes. 

The study is based on the design of an 
excavation pit for a metro station in Munich, 
Germany (see sketch in Figure 1). Site-specific soil 
information is available in the form of borehole 
soundings. 

2. MACHINE LEARNING METHODS FOR 
3D GEOLOGICAL MODELING 

For planning the excavation of an excavation pit, an 
investigation is required to estimate the expected 
soil types and volumes for a given area of interest. 
Investigations are performed through sparse 
measurements from, e.g., borehole soundings or 
cone penetration tests. ML methods for 3D 

geological modeling take such data as input to train 
a model to predict soil types at unknown locations. 
Due to data sparsity, this task is challenging, 
resulting in many locations where confident 
classification is impossible. In such cases, it is 
recommended to use models that output a 
probability distribution over possible classes rather 
than a single prediction (Murphy, 2022). 
Probabilistic approaches to machine learning 
include Bayesian neural networks, Gaussian 
Processes, and Bayesian deep learning (Phoon et 
al., 2019). Subsoil modeling can be categorized into 
two main approaches, each leveraging machine 
learning techniques differently:  
a) Voxel-based approach in which the area of 
interest is discretized into a grid of voxels, and 
probabilistic machine learning techniques for 
classification are used to predict soil types at 
unknown locations. Approaches include Markov 
Random Fields (Shuku and and Phoon, 2023; Qian 
and Shi, 2024) or Gaussian Process Regression 
(Zinas et al., 2025). 
b) Layer-based approach where probabilistic 
machine learning for regression is used to infer the 
parameters that describe the boundaries between 
soil layers. This approach to subsoil modeling is 
intuitive and computationally efficient as it uses a 
volume representation of layers. However, it may 
deliver lower accuracy for complex soil conditions, 
as the simplifying assumptions about layer 
boundaries may fail to capture the true variability of 
the subsurface. Approaches differ in their degree of 
of automation and types of functions used to 
describe surfaces (e.g., Liu et al., 2023, 2021; Lyu 
et al., 2023, 2021). 

In this study, we use the surface-based approach 
for geological modeling. The input data are borehole 
soundings, which provide categorical data by 
observing soil types over depth (see Figure 2b). The 
goal is to learn a set of functions that describe the 
boundaries of each layer from the data (see Figure 
2a). To obtain a probabilistic prediction of the 
surface functions, we use Gaussian process 
regression (GPR). 

BH1 BH2 BH3

boundary 1

boundary 2

Figure 2.a) sketch of the surface-based approach; b) 
Example snippet from a borehole-sounding report 

Figure 1. A probabilistic soil model for a case 
study in Munich, illustrating the uncertainty in 

boundary locations and highlighting the 
dimensions of the excavation pit. 
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Gaussian Process Regression 
Gaussian Process Regression (GPR) is a non-
parametric probabilistic modeling approach, which 
is also known as Kriging and is widely used for 
spatial interpolation tasks. A GP is fully described by 
its mean function 𝑚(𝒙) and covariance function (or 

kernel function) 𝑘(𝒙, 𝒙′) (Rasmussen and Williams, 

2005): 
𝑚(𝒙) = 𝐸[𝑓(𝒙)], 

𝑘(𝒙, 𝒙′) = 𝐸[(𝑓(𝒙) − 𝑚(𝒙))(𝑓(𝒙′) − 𝑚(𝒙′))] 

𝑘(𝒙, 𝒙′) determines the smoothness and variability 

of the function. The joint distribution of the function 
value is multinormal.  
For the proposed problem of geological modeling 
from borehole soundings, we define 𝒙 ≡ (𝑥, 𝑦) and 

𝑓(𝒙) ≡ 𝑧 for each layer boundary. 

Posterior 

The training dataset is defined as {𝒙𝒊, 𝑧𝑖}𝑖=1
𝑁 . For the 

measurement error it is common to assume a zero-
mean Gaussian mean with unknown variance. 
Thus, the covariance of the observation is given as 

𝑘𝑧(𝑧𝑖 , 𝑧𝑗) = 𝑘(𝒙𝒊, 𝒙𝒋) + 𝜎𝑛
2𝛿𝑖𝑗 

Where 𝛿𝑖𝑗 is the Kronecker delta for which 𝛿𝑖𝑗 = 1 if 

𝑧𝑖 = 𝑧𝑗 and 0 else. 

The joint Gaussian distribution over observed 
outputs 𝑧 at locations 𝑋 and predicted values 𝑓∗  at 
discrete locations 𝑋∗ can be written as: 

[
𝑧

𝑓∗] ~𝑁 (0, [
𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼
𝐾(𝑋∗ , 𝑋)

 
𝐾(𝑋, 𝑋∗)
𝐾(𝑋∗ , 𝑋∗)

]) 

where 𝐾(𝑋∗ , 𝑋)  is the covariance matrix between 

locations 𝑋∗  and 𝑋 , 𝐾(𝑋∗ , 𝑋∗)  is the covariance 

matrix of 𝑋∗ , and 𝜎𝑛
2 is the measurement noise 

variance. 
Applying Bayesian inference, the conditional 
posterior Gaussian distribution at locations 𝑋∗  has 

the following mean and convariance matrix: 
 

𝑓∗ = 𝐾(𝑋∗ , 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛
2𝐼]−1𝑧, 

 
Σ∗ = 𝐾(𝑋∗, 𝑋∗) − 𝐾(𝑋∗ , 𝑋)[𝐾(𝑋, 𝑋) + 𝜎𝑛

2𝐼]−1𝐾(𝑋, 𝑋∗) 
 
Covariance Function and Hyperparameters 
The choice of the covariance function can influence 
model performance. One commonly used option is 
the Matérn covariance function describes the 
correlation between two points 𝑥 and 𝑥′ as follows 

𝑘(𝑥, 𝑥′)

=
1

Γ(𝜈)2𝜈−1 (
√2𝜈

𝑙
𝑑(𝑥, 𝑥′))

𝜈

𝐾𝜈 (
√2𝜈

𝑙
𝑑(𝑥, 𝑥′)). 

Where Γ(ν)  is the gamma function, 𝐾𝜈  is the 

modified Bessel function of second kind, 𝑑(𝑥, 𝑥′) is 

the Euclidean distance between points. 𝜈  is a a 

parameter controlling the smoothness of the kernel 
and is fixed beforehand, and 𝑙  is the length-scale 

and is a hyperparameter. The smoothness of the 
function decreseases as 𝜈  becomes smaller. 

Special cases of the matern include:  

• 𝜈 =
1

2
: the Matérn becomes the equivalent of 

to the absolute exponentation kernel 

• 𝜈 → ∞: the kernel converges to the Radial 

Basis Function (RBF) kernel. 
The kernel hyperparameters were learned by 
maximizing the log-likelihood using the Limited-
Memory BFGS optimization algorithm, as 
implemented in the python GPy library (GPy, 2012). 
In this process, the hyperparameters are adjusted to 
maximize the likelihood of the observed data given 
the model. For each identified geological layer in the 
borehole data, a separate Gaussian Process model 
is trained. Each layer is defined by a set of (𝑥, 𝑦, 𝑧)-

coordinates. The training data consist of known z-
values at borehole locations, and the model is 
trained to predict 𝑧  at previously unobserved 

locations (see Figure 2a). An example 3D subsoil 
model from three boreholes and using an RBF 
kernel is shown in Figure 3. 

3. EXCAVATION SIMULATION MODEL  
Traditionally, machine fleet requirements have been 
estimated using deterministic models and 
approaches. However, due to significant 
uncertainties, the accuracy of these methods is 
limited, often leading to differences between initial 
estimates and actual excavation duration and costs 
(Zhou et al., 2019; Heravi et al., 2021). Typically, 
parameters for excavation-related calculations are 
derived from empirical data and include factors such 
as machine fuel consumption, available equipment, 
haul distance, road quality, and operator 
experience. The interdependencies among these 
factors and their effects on key quantities of interest 

Figure 3. One sample from the model generated from 
three borehole soundings and the RBF kernel 
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(duration, cost, and emissions) are conceptually 
illustrated in Figure 5. We classify input parameters 
into three main categories: 

1) Site Parameters 
Key site parameters that influence excavation 
productivity include soil type and excavation 
volume. The soil type dictates excavation difficulty, 
material weight, and the required attachments for 
the excavator (e.g., rock breaker required to break 
rocks). 
Additionally, the location of the construction site 
affects transportation distance, haul time, and road 
conditions and directly impacts soil transport 
efficiency. Lastly, the experience level of available 
machine operators will affect the overall efficiency 
related to machine operations. 

2) Excavators 
Parameters influencing excavator performance 
include the number of available machines, bucket 
size, and the time required to complete a full 
operational cycle. The operational cycle consists of 
moving the bucket from its starting position to 
excavation, unloading into the truck, and returning 
to the starting position. 
The excavation productivity for a given soil type and 
operator is calculated as 

𝐸𝑥𝑐𝑎𝑣𝑎𝑡𝑖𝑜𝑛 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
= 𝐶𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝐻𝑜𝑢𝑟 × 𝐵𝑢𝑐𝑘𝑒𝑡 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
× 𝐶𝑦𝑐𝑙𝑒 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦
× 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

× 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦[
𝑚3

ℎ𝑜𝑢𝑟
] 

Additionally, factors such as hourly costs, fuel type, 
and consumption directly impact overall costs and 
emissions. 

3) Trucks 
For trucks, relevant parameters also include fleet 
size and individual truck performance. Key time 
metrics include the duration required for loading and 
unloading operations, as well as the truck loading 
capacity, which is constrained either by weight or 
volume capacity. Truck productivity is determined 
as: 

𝑇𝑟𝑢𝑐𝑘 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
= 𝐶𝑦𝑐𝑙𝑒𝑠 𝑝𝑒𝑟 𝐻𝑜𝑢𝑟 × 𝐴𝑐𝑡𝑢𝑎𝑙 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
× 𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦

× 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦[
𝑚3

ℎ𝑜𝑢𝑟
] 

Costs and emissions are additionally influenced by 
fuel consumption and hourly usage costs. 

Time  
The total excavation hours required per machine 
can be determined by allocating a portion of the 
excavation volume to each machine and dividing it 
by its productivity. Machine productivity is influenced 
by the soil type present on-site, and the required 
excavation hours can be calculated as follows: 

𝐻𝑜𝑢𝑟𝑠 𝑁𝑒𝑒𝑑𝑒𝑑 (𝑀𝑎𝑐ℎ𝑖𝑛𝑒) =
𝑉𝑜𝑙𝑢𝑚𝑒

𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦
 

 

Figure 5. Dependencies of the key quantities of interest, time, cost and emissions, 
on parameters for an excavation project. 
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Cost Estimation 
The cost associated with one machine for either 
excavation or hauling operations is calculated as 
follows: 

𝐶𝑜𝑠𝑡𝑚𝑎𝑐ℎ𝑖𝑛𝑒𝑠 = 𝑡𝑖𝑚𝑒 ∗ 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ℎ𝑜𝑢𝑟𝑙𝑦 𝑐𝑜𝑠𝑡  

where the hourly cost includes direct usage time, 
operational costs, and fuel consumption. The total 
cost is given by sum of individual costs. 

Emissions Estimation 
Environmental impact assessments can be 
performed by estimating CO2 emissions based on 
fuel consumption: 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠𝑀𝑎𝑐ℎ𝑖𝑛𝑒
= ℎ𝑜𝑢𝑟𝑠𝑛𝑒𝑒𝑑𝑒𝑑

∗ ℎ𝑜𝑢𝑟𝑙𝑦 𝑓𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛
∗ 𝑐𝑜2 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑒𝑟 𝑙𝑖𝑡𝑒𝑟 

 

4. METHODOLOGY 

 
Using the GPR approach for geological modeling 
introduced in Section 2, a distribution of expected 
soil types within the excavation area can be 
obtained. 
A straightforward method for conducting a 
probabilistic analysis of excavation parameters is to 
perform Monte Carlo simulations, generating 𝑛𝑠 

samples of 3D subsoil models and calculating 
excavation time, costs, and emissions for each 
sample, as described in Section 3. An example of 
one such sample is illustrated in Figure 6. By 
repeating this process for 𝑛𝑠 samples, a probability 

distribution of the quantities of interest can be 
obtained, capturing the inherent uncertainty within 
the geological model. 
 

5. ILLUSTRATIVE CASE STUDY 
The case study is inspired by the construction of a 
subway station in Munich, Germany, introduced in 
the work of Pelz (2010). The station was built using 
the cut-and-cover method and features a total length 
of 202 meters, an excavation depth of 15.9 meters, 
and an embedment depth of 7.6 meters 
We limit the excavation width to 90 meters for 
Illustration purposes. The spatial dimensions of the 
modeled area and the excavation pit are 
summarized in Table 1 and illustrated in Figure 7. 

Table 1. Dimensions of the modeled soil area and 
excavation pit 

 
Geotechnical Data 

Soil Type USCS Class Excavation 
Factor 

Weights 

𝜸/𝜸′[𝒌𝑵/𝒎𝟑] 
Required Attachment 

Filling SM 1.0 20/11 

Bucket 
Gravel GW 1.2 23/14 

Clays and Silts CL 1.0 20/11 

Sands SW 0.9 21/12 

Table 2. Geotechnical parameters for the four soil types encountered in the Munich case study. 

 X [m] Y [m] Z [m] 

Model 100 50 30 

Excavation 
Pit 

90 20 20 

Figure 7. Visualization of the excavation pit and the 
available boreholes  

Figure 6. Example output from the Monte Carlo simulation, 
showing borehole data as vertical bars and the corresponding 

inferred soil layers within the area of interest. 
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The geological model of the site is obtained based 
on five borehole soundings from locations near the 
construction site (see Figure 7). They are extracted 
through the Bavarian State Office for the 
Environment and is publicly available in the 
UmweltAtlas database (Bayerisches Landesamt für 
Umwelt, Augsburg, Germany).  
From these borehole soundings, four primary soil 
types were identified, which are characteristic of the 
subsurface conditions of Munich: fillings, quaternary 
gravel, tertiary clays and silts, and tertiary sands. 
The relevant geotechnical parameters, including 
excavation factors, weights, and required 
attachments, are summarized in Table 2. 
3D Subsoil Model 
As described in Section 2, a 3D geological model is 
generated using the surface-based approach and 
Gaussian process regression. To compare how 
different kernels apply, we apply three different 
kernel functions for geological modeling: Radial 
Basis Function (RBF), Matérn Kernel with ( 𝜈 =
 3/2), and Matérn Kernel (𝜈 =  5/2). For each, we 
generate 𝑛𝑠 = 1000  samples of soil profiles. One 

example for each can be seen in Figure 8. 

Table 1. Excavator parameters are taken to resemble a 

Liebherr R920 Compact excavator 

Parameter Unit Value 

Bucket Capacity [𝑚3] 0.95 

Hourly Cost [𝐸𝑈𝑅/ℎ] 125 

Fuel Consumption [𝐿/ℎ] 15 

CO2 Emissions [𝑘𝑔/𝐿] 2.54 

Attachments - Bucket 
 

 

Fleet Scenario  
A hypothetical fleet scenario is defined to analyze 
excavation and hauling efficiency. In this study, we 
consider the following configuration of available 
excavators (N ∈ {2,3,4}) and trucks ( 𝑀 ∈  {1 ∗
𝑛𝑡𝑟𝑢𝑐𝑘𝑠 , 2 ∗ 𝑛𝑡𝑟𝑢𝑐𝑘𝑠 , 3 ∗ 𝑛𝑡𝑟𝑢𝑐𝑘𝑠}). A scenario analysis 

is conducted for the different fleet configurations, 
resulting in a total of 9 scenarios. 
The characteristics of the excavators used in the 
scenario analysis are detailed in Table 3. The 
specifications of the truck are outlined in Table 4. 
The operator efficiency and cost are modeled using 
skill-based cycle factors and hourly wage rates, as 
shown in Table 5. A more complex model could 
include a factor connected to the years of 
experience. 

Table 2. Operator parameters to calculate productivity 
and costs. 

Table 3. Truck parameters to calculate productivity, costs 

and emissions 

 

Experience Efficiency 
Hourly Rate 

[EUR] 

Beginner 0.6 50 

Intermediate 0.8 60 

Expert 0.95 70 

Parameter Unit Value 

Truck Capacity [𝑚3] 13 

Hourly Cost [𝐸𝑈𝑅/ℎ] 100 

Fuel Consumption [𝐿/𝑘𝑚] 34 

CO2 Emissions [𝑘𝑔/𝐿] 2.54 

Max. Payload [𝑡𝑜𝑛𝑛𝑒𝑠] 25 

Max. Speed  
Empty/Loaded 

[𝑘𝑚/ℎ] 40/50 

Figure 8. Comparison of 3D subsoil layer models generated using Gaussian process regression with different kernel 
functions: (a) Radial Basis Function kernel and (b) Matérn kernel with 𝝂 =  𝟑/𝟐 and (c) Matérn Kernel with ν =  𝟓/𝟐. 
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Although real-world excavation operations involve 
additional complexities, such as variations in 
machine productivity, mechanical failures, and 
operator efficiency, each scenario in this study 
assumes an equal distribution of the total excavation 
volume among the available excavators and trucks. 

6. RESULTS 
For this analysis, the key metrics evaluated are 
excavation time, costs, and emissions, computed 
using the methodology outlined in Section 3. 
Calculations are conducted for 𝑛𝑠 = 1000 samples 

per kernel function. 

Comparison of Kernels 
To provide first insights into how model selection 
influences excavation planning, we assess the 
impact of different kernel functions on estimated 
costs. In Figure 9, the distribution of soil types for 
each kernel function is illustrated. Although the RBF 
and Matérn kernels yield different shape 
approximations (Figure 8), it can be seen that the 
overall volume distribution of soil types remains 
largely consistent. 

 
 
Figures 10, 11, and 12 illustrate the estimated 
excavation and transportation time, costs, and 
emissions for a fleet configuration of three 
excavators, six trucks, and intermediate-level 
operators. As expected, given the similarity in soil 
volume distributions, no significant differences in the 
expected duration, costs, or emissions are 
observed. The results also indicate low uncertainty 
in the final estimates, which can be attributed to two 
factors: 1) the low variability in soil type volumes, 
and 2) the similarity of excavation properties of the 
encountered soil layers. 

Figure 9. Distribution of volume of soil types for different 
kernels 

Figure 11. Expected costs of the excavation 
works for various kernels and 1000 sample each 

Figure 12. Expected CO2 emissions for various 
kernels and 1000 samples each 

Figure 10. Expected duration of excavation works 
for various kernels and 1000 samples each 
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Comparison of Fleet Scenarios 
Figure 13 shows the results of a fleet scenario 
analysis using samples obtained for the RBF kernel. 
This analysis examines how variations in the 
number of excavators and trucks (bottom bar plots) 
and differences in operator experience levels (color-
coded) affect excavation performance metrics. The 
analysis investigates the effect of varying the 
number of trucks assigned per excavator. We 
consider three configurations: a) one truck per 
excavator, b) two trucks per excavator and c) three 
trucks per excavator. 
Increasing the number of excavators from two to 
three leads to a notable reduction in excavation 
time. However, this effect becomes less pronounced 
when the number increases from three to four.  
Similarly, assigning two trucks per excavator 
significantly improves excavation times, but the 
addition of a third truck offers minimal further benefit. 
While excavation time decreases slightly, expected 
costs also continue to increase. This indicates that 
excavator productivity, rather than truck availability, 
becomes the limiting factor for this case. 
Additionally, the value of operator experience is 
positive, as the productivity gains for higher-skilled 
operators lead to cost savings that exceed their 
higher hourly wages. However, the above 

conclusions are limited to the current configuration, 
as a lower productivity gain and higher wage could 
lead to different results. Despite these limitations, 
the results demonstrate the potential of such 
methods to enhance fleet planning and decision-
making processes. 

7. CONCLUSION & OUTLOOK 
In this work, we introduced a novel approach for 
integrating 3D probabilistic geological models into 
the planning of excavation works. To this end, we 
developed a simulation framework to predict 
excavation times, costs, and emissions under 
specific site conditions, using samples generated 
from probabilistic subsoil models. 
A preliminary investigation into model selection was 
performed by varying the configurations for the 
surface-based probabilistic machine learning 
method used to generate geological models. This 
initial analysis did not reveal substantial differences 
in model volume outcomes for different kernels. 
Howevern, further research involving additional 
case studies and more complex kernel functions is 
needed to draw definitive conclusions. 
Future work should also explore alternative 
geological modeling methods to improve the 
understanding of the relationship between 

Figure 13. Results for the scenario analysis for different types of operators, number of excavators and number of trucks. 
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systematic uncertainties of such methods and 
expected excavation durations. Enhancing this 
understanding is essential for building trust in the 
reliability of digital planning tools. 
The developed simulation model serves as a first 
step toward improving planning tools for excavation 
management. While more complex simulation 
models could increase the predictive accuracy, they 
would also involve larger computational costs for 
optimization. Validation with real-data is required to 
identify an appropriate balance between both 
aspects. 
Overall, this study demonstrates the potential of 
integrating probabilistic machine learning models 
with a simulation framework to enhance the 
management of excavation projects. By enabling 
more accurate volume estimation and supporting 
data-driven decision-making, this integrated 
approach aims to enable more efficient, cost-
effective, and environmentally conscious 
construction practices. 

ACKNOWLEDGEMENT 
This research is supported by the TUM Georg 
Nemetschek Institute Artificial Intelligence for the Built 
World. 

REFERENCES  
Ching, J., Huang, W.-H., Phoon, K.-K., 2020. 3D Probabilistic Site 
Characterization by Sparse Bayesian Learning. J. Eng. Mech. 
146, 04020134. https://doi.org/10.1061/(ASCE)EM.1943-
7889.0001859 
Ching, J., Yoshida, I., Phoon, K.-K., 2023. Comparison of trend 
models for geotechnical spatial variability: Sparse Bayesian 
Learning vs. Gaussian Process Regression. Gondwana Res., 
Data driven models 123, 174–183. 
https://doi.org/10.1016/j.gr.2022.07.011 
Cotoarbă, D., Straub, D., Smith, I.F., 2024. Probabilistic digital 
twins for geotechnical design and construction. 
https://doi.org/10.48550/arXiv.2412.09432 
GPy, 2012. GPy: A Gaussian process framework in python. 
Heravi, G., Taherkhani, A.H., Sobhkhiz, S., Mashhadi, A.H., 
Zahiri-Hashemi, R., 2021. Integrating risk management’s best 
practices to estimate deep excavation projects’ time and cost. 
Built Environ. Proj. Asset Manag. 12, 180–204. 
https://doi.org/10.1108/BEPAM-11-2020-0180 
Kenley, R., Harfield, T., 2011. Greening procurement of 
infrastructure construction: optimising mass-haul operations to 
reduce greenhouse gas emissions. 
https://doi.org/10.25916/sut.26225807.v1 
Liu, H., Li, W., Gu, S., Cheng, L., Wang, Y., Xu, J., 2023. Three-
dimensional modeling of fault geological structure using 
generalized triangular prism element reconstruction. Bull. Eng. 
Geol. Environ. 82, 118. https://doi.org/10.1007/s10064-023-
03166-8 
Liu, Z., Zhang, Z., Zhou, C., Ming, W., Du, Z., 2021. An Adaptive 
Inverse-Distance Weighting Interpolation Method Considering 
Spatial Differentiation in 3D Geological Modeling. Geosciences 
11, 51. https://doi.org/10.3390/geosciences11020051 
Lyu, M., Ren, B., Wang, X., Wang, J., Yu, J., Han, S., 2023. 
Neural spline flow multi-constraint NURBS method for three-
dimensional automatic geological modeling with multiple 
constraints. Comput. Geosci. 27, 407–424. 
https://doi.org/10.1007/s10596-023-10202-9 

Lyu, M., Ren, B., Wu, B., Tong, D., Ge, S., Han, S., 2021. A 
parametric 3D geological modeling method considering 
stratigraphic interface topology optimization and coding expert 
knowledge. Eng. Geol. 293, 106300. 
https://doi.org/10.1016/j.enggeo.2021.106300 
Magnusson, S., Lundberg, K., Svedberg, B., Knutsson, S., 2015. 
Sustainable management of excavated soil and rock in urban 
areas – A literature review. J. Clean. Prod. 93, 18–25. 
https://doi.org/10.1016/j.jclepro.2015.01.010 
Murphy, K.P., 2022. Probabilistic Machine Learning: An 
introduction. MIT Press. 
Phoon, K.-K., Ching, J., Wang, Y., 2019. Managing Risk in 
Geotechnical Engineering – From Data to Digitalization, in: 
Proceedings of the 7th International Symposium on Geotechnical 
Safety and Risk (ISGSR 2019). Presented at the Proceedings of 
the 7th International Symposium on Geotechnical Safety and 
Risk (ISGSR 2019), Research Publishing Services, pp. 13–34. 
https://doi.org/10.3850/978-981-11-2725-0-SL-cd 
Qian, Z., Shi, C., 2024. Prior geological knowledge enhanced 
Markov random field for development of geological cross-
sections from sparse data. Comput. Geotech. 173, 106587. 
https://doi.org/10.1016/j.compgeo.2024.106587 
Rasmussen, C.E., Williams, C.K.I., 2005. Gaussian Processes 
for Machine Learning. The MIT Press. 
https://doi.org/10.7551/mitpress/3206.001.0001 
Shuku, T., and Phoon, K.-K., 2023. Data-driven subsurface 
modelling using a Markov random field model. Georisk Assess. 
Manag. Risk Eng. Syst. Geohazards 17, 41–63. 
https://doi.org/10.1080/17499518.2023.2181973 
Zhou, Y., Li, S., Zhou, C., Luo, H., 2019. Intelligent Approach 
Based on Random Forest for Safety Risk Prediction of Deep 
Foundation Pit in Subway Stations. J. Comput. Civ. Eng. 33, 
05018004. https://doi.org/10.1061/(ASCE)CP.1943-
5487.0000796 
Zinas, O., Papaioannou, I., Schneider, R., Cuéllar, P., 2025. 
Multivariate Gaussian Process Regression for 3D site 
characterization from CPT and categorical borehole data. Eng. 
Geol. 352, 108052. 
https://doi.org/10.1016/j.enggeo.2025.108052 

 


	ABSTRACT
	The construction of buildings and infrastructure often involves the excavation and transportation of large volumes of soils, which contributes significantly to project costs and environmental impacts. A major challenge in planning the management of ex...
	KEYWORDS
	Probabilistic digital twin, machine learning, geological modelling, management of excavated materials
	1. INTRODUCTION
	2. MACHINE LEARNING METHODS FOR 3D GEOLOGICAL MODELING
	3. EXCAVATION SIMULATION MODEL
	4. METHODOLOGY
	5. ILLUSTRATIVE CASE STUDY
	6. RESULTS
	7. CONCLUSION & OUTLOOK
	ACKNOWLEDGEMENT
	REFERENCES

