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Abstract

Ray tracing is a versatile technique used across various fields, most notably in image
rendering, but it also plays a critical role in scientific computation. Although ray tracing in
its basic form requires extensive computational power, several strategies exist to improve
efficiency. One approach is leveraging specialized hardware like GPUs, while optimized data
structures, such as BSP-trees, KD-trees, and Octrees, also offer performance improvements.
In this thesis, we will improve the ray tracing-based mesh check algorithm deployed in an
implementation of a polyhedral gravity model by Schuhmacher et al. The best-suited data
structure for this application is the KD-tree because it focuses on optimal space subdivision
and guarantees fast build times in O(n - log(n)) by adhering to the descriptions of Wald
et al. Currently, there is no easy-to-use, high-quality implementation promising fast build
times. Thus, we create a new KD-tree library written in modern C++17, employing the
“lazy loading” pattern. It follows best software practices and is optimized to reduce runtime.
We deploy multithreading techniques, achieving full CPU core utilization for 80% of total
runtime. The mesh-check for the Eros asteroid mesh comprising 70150 vertices and 140296
faces takes 4.7 seconds using the highest optimization level of the library. Execution without
the integrated KD-tree takes 54.4 seconds. We validate our implementation through extensive
input fuzzing and regression testing, comparing differently optimized implementations of
KD-tree construction algorithms.
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Zusammenfassung

Raytracing ist eine vielseitige Technik, die in verschiedenen Bereichen eingesetzt wird.
Sie kommt vor allem bei der Bildsynthese zum Einsatz, aber auch in wissenschaftlichen
Anwendungen spielt sie eine wichtige Rolle. Obwohl Raytracing in seiner Grundform eine hohe
Rechenleistung erfordert, gibt es zahlreiche Strategien zur Verbesserung der Effizienz. Ein
Ansatz ist die Nutzung von Spezialhardware wie GPUs, wiahrend optimierte Datenstrukturen
wie BSP-Baume, KD-Baume und Octrees ebenfalls Leistungsverbesserungen bieten. In dieser
Arbeit wird der auf Raytracing basierende Mesh-Check-Algorithmus verbessert, der in einer
Implementierung eines polyedrischen Gravitationsmodells von Schuhmacher et al. eingesetzt
wird. Die am besten geeignete Datenstruktur fiir diese Anwendung ist der KD-Baum,
da er sich auf eine optimale Unterteilung konzentriert und schnelle Erstellungszeiten in
O(n-log(n)) garantiert, wie Wald et al. zeigen. Derzeit gibt es keine einfach zu verwendende,
qualitativ hochwertige Implementierung, die schnelle Bauzeiten verspricht. Daher erstellen
wir eine neue KD-Baum Software Library, geschrieben in modernem C++17, die das “Lazy
Loading” Software Pattern verwendet. Sie folgt etablierten Software-Praktiken und ist
auf Laufzeitreduzierung optimiert. Wir setzen Multithreading-Techniken ein und erreichen
so eine volle Auslastung der CPU-Kerne fiir 80% der Gesamtlaufzeit. Der Mesh-Check
fiir das Eros-Asteroidenmesh mit 70150 Knoten und 140296 Fldchen dauert 4,7 Sekunden
bei Verwendung der hochsten Optimierungsstufe der Bibliothek. Die Ausfithrung ohne
den integrierten KD-Baum dauert 54,4 Sekunden. Wir validieren unsere Implementierung
durch umfangreiches Input-Fuzzing und Regressionstests, die unterschiedlich optimierte
Implementierungen von KD-Baum-Konstruktionsalgorithmen vergleichen.
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Part |I.

Introduction and Background




1. Introduction

In 2018, NVIDIA revolutionized the gaming industry by introducing a new series of graphics
processors designed specifically for real-time ray tracing [1]. This groundbreaking technology
enabled the rendering of photo-realistic lighting effects, such as accurate reflections and
shadows, in real time, significantly enhancing visual immersion. Although ray tracing has
existed for decades, it has traditionally been associated with high computational costs and
slow processing times, limiting its widespread adoption in interactive applications.

One approach to mitigate these computational challenges, as demonstrated by NVIDIA,
involves leveraging specialized hardware to accelerate ray tracing computations. Another
complementary strategy is incorporating optimized data structures, which aim to reduce the
overall number of computations required during rendering.

This thesis aims to enhance the ray tracing runtime performance of the mesh-check
algorithm in the polyhedral gravity model application by Schuhmacher et al. [2]. We do
so by integrating an efficient implementation of a KD-tree data structure. The proposed
solution will be developed using modern C++4, focusing on optimizing construction and
traversal processes. The resulting implementation will be evaluated through performance
testing to demonstrate its effectiveness in achieving a measurable speedup.




2. Theoretical Background

This section depicts algorithms and mathematical concepts to understand the inner workings
of a KD-tree. For this purpose, we will dive into intersection algorithms first and then apply
them to build the tree efficiently.

2.1. Ray Tracing

Besides rasterization, ray tracing is one of two prominent traditional approaches to rendering
3D scenes [3]. It uses rays shot from an origin point, most often the camera position,
to determine intersection points with objects in the scene. The results are then used to
determine the pixel colors shown to the user. For intersection tests with arbitrarily shaped
objects to work, objects need to be represented as a mesh. The mesh is a collection of
multiple smaller interconnected 2D shapes that roughly approximate the surface of the
original object. With large quantities of smaller shapes, the approximation of the object
becomes better, which can be seen in Figure 2.1. In theory, arbitrary shapes can be used in
a mesh. However, triangles are often used due to their simplicity [4, p.19].

Mesh with 100 vertices, 196 faces Mesh with 1000 vertices, 1996 faces
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5 0.0
2.0

Figure 2.1.: Example sphere triangle meshes with different amount of detail

To perform an intersection test for objects represented by meshes, one only needs to
perform tests for each face of the mesh. By using this divide-and-conquer approach, we
reduce the complexity of the intersection algorithm because only ray-triangle intersections
are performed.




2. Theoretical Background

2.2. Ray-Triangle Intersection Test

In this thesis, the algorithm used for performing intersection tests of rays with triangles is
the Moller-Trumbore algorithm [5]. In order to be able to explain the algorithm in detail, a
few key mathematical concepts have to be elaborated on.

2.2.1. Barycentric Coordinates

When encoding the position of a fixed point in space, the norm is to use a linear combination
of the unit vectors of the space we operate in [6, pp.14-16]. Let’s assume we place the point

P = (1,1,2)7 in R3. The linear combination would then be:

0 1
P=1.|o|+1-[1]+2 (o] =1 (2.1)
0 0 1 2

The scalars multiplied by the linear combination’s unit vectors are called coordinates.
When we look at barycentric coordinates, we do not use the unit vectors as the base of the
vector space in the linear combination. Instead, we utilize the position vectors of a triangle’s
vertices, assuming that the triangle’s area is nonzero. This was first introduced by Mobius
[7, p. 26]. We extend example Equation 2.1 by calculating the barycentric coordinates of

1 1 1
based on the triangle AABC :=([{0]|,{0],[3])
0 3 0
1 9 1 1 1 1
0- o) +3-(o)+5-[3] =1 (2.2)
0 3 0 2

From Equation 2.2 we can infer the barycentric coordinates (0, %, %) of ? If a point is
located on the triangle, then the barycentric coordinates sum up to one [7, p. 35][8]. In that
case, we can express the third barycentric coordinate w by using the complement 1 — u — v,
with u,v being the first and second barycentric coordinates. For the Moller-Trumbore
algorithm, it is not important how to calculate barycentric coordinates in detail. Thus, we

will not explore this topic any further. The interested reader is advised to Skala [8].

2.2.2. Moller-Trumbore Algorithm

A ray can be defined by a point of origin 8 and a direction vector 7 The points lying on
a fixed ray can be expressed by inserting arbitrary ray argument ¢ € R into:

P)=0+t-d (2:3)

Finding an intersection point of a ray (8, 7) and triangle AABC' is equivalent to solving
the following equation for ¢.

8+t-7:(1—u—v)-z+u-§+v-8 (2.4)




2.3. Axis Aligned Bounding Box

This means to find a point represented by ray argument ¢ that lies on the ray and inside the
triangle by finding its barycentric coordinates u,v. Rearranging Equation 2.4 yields

AB-u+AC-v—d -t=A40 (2.5)

This is effectively a linear system of equations. Solving the system can result in three cases:

Case 1: There is no solution for the system
— The ray is parallel to the triangle, so the plane the triangle defines is not hit.

Case 2: There exists a solution, but u,v ¢ [0,1] or u 4+ v > 1
— The ray hits the plane defined by the triangle, but the intersection point lies
outside the triangle.

Case 3: There exists an intersection point inside the triangle (u,v € [0,1] and u+v < 1)
that can be calculated by inserting the solved value for ¢ in Equation 2.3.

2.3. Axis Aligned Bounding Box

In the following chapters, we need a concept called axis aligned bounding box (hereafter
referred to as AABB) elaborated by Ericson [9, p.78]. It describes a box whose edges are
each constrained to be parallel to one of the coordinate axes of the space R™ it is located
in. It is generally used to encapsulate other objects of arbitrary shape, providing a more

Figure 2.2.: Example of an AABB in three-dimensional space

straightforward box shape of the object through this approximation. Overlap or intersection
tests benefit significantly from this practice. For the best approximation, an AABB needs
to have minimal volume while still containing the object entirely, meaning the object is
not allowed to have non-zero volume outside the AABB. An AABB can be defined by
specifying two diagonally opposite corner points, minPoint = (¢min.0,- - - Cmin,n—1) and
maxPoint = (Cmaz,0, - - - » Cmazn—1), of the AABB. We further demand that

Cming < Cmax,i ’ (S [O,?’L - 1] (26)




2. Theoretical Background

holds. This assures that equal AABBs are not defined ambiguously and facilitates construct-
ing them around objects. We iterate over all object vertices and store minimal and maximal
values coordinate-wise. By constructing points out of the minimal and maximal coordinate
values each, we receive minPoint and maxPoint.

2.3.1. Ray-AABB Intersection Test

In order to intersect a ray with an AABB, it is possible to naively intersect each face of the
bounding box with the ray. There are certainly more efficient ways to accomplish this task.
In our implementation, we use Smits’ algorithm [10] modified by Wiliams et al. [11]. As
this algorithm utilizes the intersection of rays and axis-aligned planes, we will depict this
topic first.

Ray and Axis Aligned Plane Intersection Test

Intersecting an axis-aligned plane with a ray is more straightforward than doing a typical
ray-plane intersection. When operating in coordinate systems of arbitrary amounts of
dimensions, we only need to solve an equation for the single dimension D with index d for
which the plane’s normal vector has a nonzero coordinate. Let origing be the origin point
coordinate in D, rayy # 0 the intersection ray in D, and anchory the plane anchor point in
D. Then we can calculate a parameter ¢ by solving:

anchorg — origing
rayq

t=

(2.7)

If ¢ is negative, then there is no intersection point. Otherwise, plugging ¢ into Equation 2.3
calculates the intersection point. Special attention is needed for the case rayy = 0, previously
excluded. This means that the ray and the plane are parallel. If origing # rayg holds, no
intersection points are present then. Otherwise, infinitely many intersection points exist as
the ray lies in the plane, and so does every point on it.

Smits’ Algorithm

Smits’ algorithm [10] adapted by Wiliams et al. [11] relies on defining the AABB as the
volume enclosed by a set of intersecting planes called slabs. They can be calculated using
the minimal (minPoint) and maximal corner (maxPoint) vertices as anchor points for the
slab. As for the slabs’ normal vectors, we use each unit vector of the tree’s vector space
R™ n € N once for each anchor point. This results in six planes or slabs if the KD-tree is
built in R3.

The intersection algorithm iterates over all n unit vectors of R” and intersects the ray
with the two slabs defined by minPoint and maxPoint, using the unit vector as the normal
vector. Ray-plane intersection, as defined by Subsubsection 2.3.1, is utilized for calculating
intersections. We will also use the naming scheme defined there in the following.

Intersection results in two values, one per slab, ¢,,in ¢ and t,,4,,4 for the normal vector
with nonzero coordinate at index d. Now, we need to discern which value describes the point
on the slab that is hit first (¢epter,¢) and which slab is hit afterward (fezit,q). This can easily




2.3. Axis Aligned Bounding Box

Slabs parallel to x1x, plane Slabs parallel to xgx> plane

1
2
Ao

Slabs parallel to xox; plane

Figure 2.3.: Slabs visualized for an AABB in R3

be done by evaluating sign(rayg):

rayq 2 0 = tenter = tmin,d N Tegit = tmaw,d
rayq < 0 = tenter = tmax,d N Tegit = tmin,d

tenter,d and tegir ¢ act as interval limits that ¢p, t-value for a point P, may take in order
for P to lie in the AABB when both AABB and P are projected onto the same coordinate
axis. P is only inside of the AABB if the constraints for all axes are fulfilled:

P € AABB <= topterd < tp < tegita ,Vd € [dim(R3)] (2.8)
— max tenter,d <itp< min texit,d
deldim(R3)] deldim(R3)]
The entry point can be calculated by inserting the smallest ¢t-value still inside the box
and inserting it into the ray equation Equation 2.3. The smallest ¢t-value is specified by
Equation 2.9, by calculating the max-expression. The same can be done for the exit point
analog with the min-expression.
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2.4. KD-Trees

As stated by Havran et al. [12, p. 3], the naive ray intersection algorithm by simply brute
forcing is not efficient for scenes with many objects. The cost of intersecting a single ray
amounts to O(N), with N being the amount of objects to test against in the scene. This is
problematic since most problems often require multiple ray intersections to be computed.
For larger, more complex meshes, this becomes computationally infeasible relatively fast.
To resolve this issue, they describe hierarchical data structures to spatially divide the scene
into smaller subspaces called cells. They then test against these cells first to reduce the
amount of total intersections. The most efficient of the reviewed structures is the KD-Tree
[12, pp. 11-14]. The KD-tree is a multidimensional binary tree structure that divides a
K-dimensional space into cells. Each inner node n is assigned an axis-aligned bounding
box (AABB), here called v. The nodes of the tree correspond to the cells mentioned above.
Along with v, an inner node also defines a split plane p. The split plane splits v into two
subspaces, assigned to the left and right children of n. They can again be inner nodes and
further split each assigned space. In the tree’s leaf nodes, no further splitting is performed.
Instead, they reference the objects contained in the AABB for which they are responsible.
Should no objects exist in the AABB, then the leaf is called empty and does not contain
any object references.

One special characteristic of the KD-tree is that each splitting plane needs to be parallel
to one of the axes of the space the tree is built in. This is analogous to the orientation of
an AABB’s edges. This is the main difference to the BSP-Tree, mentioned in Section 3.2,
where arbitrarily oriented bounding box edges and splitting planes are allowed. According
to Wald et al. [13], there exist two main approaches to determining the split plane position:

e Spatial median splitting: This approach places the splitting plane at the mid-point
of the AABB. The orientation is then determined by iterating over the k dimensions
increasing with tree node depth. The iteration starts over at the beginning when the
kth dimension has been used. Formally expressed, the plane orientation of a node at
depth ¢ of dimensions Xj...Xj_1 is:

X(t) == Xt mod k
This approach is easy to compute, but it builds suboptimal KD-trees as it heavily

simplifies the underlying scene geometry.

e Evaluating the splitting plane using a cost function: The other group of
approaches tries to evaluate the plane’s effectiveness by using cost functions and then
choosing the optimal plane. The most sophisticated variants use the surface area
heuristic.

2.4.1. Surface Area Heuristic

The SAH estimates the probability of an arbitrary ray with arbitrary origin hitting a convex
object A contained in another convex object R under the following assumptions [14]:

e The ray origin is sufficiently far away from objects A and R.

e Every ray origin and direction is equally likely to appear during intersection testing.




2.4. KD-Trees

If the conditions are met, then the probability of a ray r intersecting A, given that R is
intersected, can be roughly calculated as follows:

hit(X,r) = true, if ray r‘ hits object X (2.10)
false, otherwise
P(A|R) : = P(hit(A,r) = true | hit(R,r) = true) = SA(4) (2.11)

SA(R)

SA(A) and SA(R) are the surface area of A and R, respectively. Combine the probability
of intersection with the amount of work that has to be performed should a hit occur, and
construction of a cost function for split evaluation becomes possible [13]. For that, we
introduce constants k7 and k7. kr is the cost of traversing one node in the tree, and kj
describes the cost of a ray-triangle intersection. The original work by Wald et al. [13] uses
variables V; and V. for the halfspaces left and right of the plane. However, we find that this
naming scheme does not scale well to higher dimensions. Thus, we call the halfspace “lesser’
if it is closer to the origin and “greater” if it is further away. Using «r, the cost-effectiveness
of a splitting plane p dividing a voxel V' into V; and V} is then expressed by:

9

Cp) = ke + PWI|V) - C(Vi) + P(Vy|V) - C (V) (2.12)
Expanding Equation 2.12 using Equation 2.10 results in:

SA(VY) SA(Vy)
SA(V) (V) SA(V)

C(p) = kr + -C(Vy) (2.13)
One could recursively apply this equation to calculate the globally optimal split planes for
the perfect KD tree. This becomes expensive and impractical for non-trivial scenes due to
the number of possible plane position combinations exploding. We assume that only leaves
follow after the current tree node to solve this issue. With |T| being the number of triangles
contained in the leaf node, its cost can be expressed by:

kr-|T)| (2.14)
We end up with a locally greedy variant of Equation 2.13:

SAMV)
SA(V)

SA(V,)
SAV)

C(p) = kr + k| Th| + 1| Ty (2.15)

Even though Equation 2.15 overestimates the actual cost by ruling out any cost reductions
that further node splits could achieve, this variant remains the best approximation.

Modifications

Wald et al. [13] propose an additional weighting to the cost function. If a split results in one
of the halfspaces containing no triangles, the split’s cost is further reduced by 20%. They
intend to cut off empty space early and avoid passing it to child nodes.
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Termination Criterion

Using the SAH, an elegant way to check whether subdividing space is still profitable presents
itself. When the optimal split plane is found, we record its cost, costsp;;. Then, we treat
the current node as a leaf node and compute costjc.s using Equation 2.14. Afterward, we
compare costsp;; With costje,p and, based on that, decide whether to continue splitting the
node or terminate the recursion.

2.4.2. Split Plane Candidates

We have discussed how to evaluate a split plane for constructing an inner node in the KD-tree.
This still leaves the question of which plane candidates should be considered for evaluation
in the first place. Wald et al. [13] construct “split candidates” for that purpose. In theory,
there are infinitely many plane positions due to operating in a field of R”, n € N. Thus, the
filtering of split planes is in order before moving on to evaluation. The locally greedy surface
area heuristic cost function, defined in Equation 2.15, is linear for fixed amounts of 7; and
T,. This also means that the function’s local minimum in between intervals, where the
amount of triangles on each side does not change, can only lie at the borders of the interval.
Because of that, the only relevant candidates are planes that count a specific triangle as
part of 7} and then as part of T;. Expressed differently, the triangle has to lie after the
plane once and once before it when the plane’s orientation is fixed. The slabs defined by the
triangle’s AABB show this exact behavior (Figure 2.4). To summarize, the split planes that

—— AABB
—— Triangle
---- Split candidate

0.0 0.5 1.0
Xo

Figure 2.4.: Split candidates in z( direction visualized for a triangle in 2D by calculating

the AABB

need to be evaluated are called split candidates. They are defined by the AABBs of the
triangles of the mesh object we want to build the KD-tree for.

10



2.4. KD-Trees

A triangle may not be fully contained in the inner node’s AABB when traversing deeper
down the tree. A case of this happening is depicted in Figure 2.5. A naive algorithm would

---- AABB of left node
TR — ---- AABB of right node
—— triangle in conflict

split plane of
parent node

---- naive split candidate

.

0.0{ =-------

Figure 2.5.: A triangle’s AABB not fully enclosed by inner node’s AABB

then evaluate possible split planes, including those that lie outside the node to be split. This
can result in faulty splits. So before we assess the split planes introduced by a triangle T',
we clip the triangle to the AABB of the tree node we are trying to split. By clipping 7" and
creating a new polyhedron T, we ensure that every split proposed by T™* is valid.

Clipping Triangles to AABBs

For clipping triangles to the AABBs, the Sutherland-Hodgman algorithm is used [15]. By
clipping, the resulting object may not be a triangle anymore but a polyhedron of arbitrary
shape. The clipping process iterates through the slabs of the AABB and subsequently clips
to them instead. The result of the previous iteration is passed to the next iteration of
clipping as input.

Clipping Triangles to Planes

Clipping an object O to a plane/slab is done by determining the object’s vertex positions
with respect to the plane. For that we define a distance measure for a vertex v € V and a
plane P with anchor point p, and normal vector o

distance(v) := (v —pg) o T (2.16)

v lies inside the plane, if and only if distance(v) > 0. Constructing n to point to the inside of
the AABB is important. Equation 2.16 can calculate distances between points and planes of

11
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Unclipped triangle Clipped triangle
1 . 1
0 0
1 1
0 0
+ +
*o 1 0 *o 1 0

Figure 2.6.: Example of a triangle clipped to an AABB

arbitrary orientation. Nevertheless, since we enforce all split planes to be axis aligned inside
the KD-tree, its normal vector only consists of one instance of +1 and zeroes otherwise.
Because of that, the program can replace the dot product with an index access and a sign
adjustment, making it faster. For the algorithm to work, we demand that the ordering of V'
is that so v; € V and v;1 mod|v| € V (abbreviated with v;,, in the following) are connected
by an edge in O. We then iterate over V and determine the distance measures for each
(vi, vi) pair. A total of four cases can occur:

Case 1: Both v; and v;, lie inside the plane:
— Add v;,, to the list of new vertices.

Case 2: v; is inside but v, is outside the plane:
— Add the intersection point of the edge defined by [v;,v;,] and the plane to
the list of new vertices.

Case 3: v; is outside and v, is inside the plane:
— Add the intersection point of the edge defined by [v;, vi,| and the plane, and
V;n to the list of new vertices.

Case 4: Both v; and v, lie outside the plane:
— Do nothing and continue the iteration.

Calculating intersection points of edges and planes the way Subsubsection 2.3.1 describes
is possible. However, since we calculated the distance measures of v; and v;,, we can reuse
that information to linearly interpolate the intersection point directly instead [15]. We first
calculate a parameter a:

12



2.4. KD-Trees

|distance(v;)] L distance(v;)
o= — - = - - (2.17)
|distance(v;)| + |distance(viy)| distance(v;) — distance(viy,)

Afterwards, we can calculate the intersection point I with:

I=vit+a (vip—v)=(1—a) v+ a- vy (2.18)
distance(v;) —— Slab
Vi
0.4 1 Vin
/
Vin
0.0 A
|
distance(vin)
0 1

Figure 2.7.: Calculate intersection point using distance measures

2.4.3. Evaluating Split Plane Candidates

To be able to evaluate split planes, |7;| and |T}|, introduced by the SAH in Equation 2.15,
need to be calculated [13]. Depending on how these values are calculated, different runtime
complexities are achieved. It is important to note that should a triangle straddle the split
plane, effectively lying on both sides, it counts to both halfspace’s triangle counters. Triangles
that are planar and inside the plane are included in a separate set T),. After all triangles
have been classified, the cost determined by SAH is calculated once with T, added to T;
and once to Ty. The minimal cost will be used to compare the split plane with other planes.
Additionally, the combination that produced this cost will be recorded for later use.

O(n?) Algorithm

This is the simplest method to find the optimal split plane. We iterate over all possible split
planes, calculate their cost, and track the plane with minimal cost. Each triangle generates

!This equivalence holds because we assume that this equation is only evaluated if and only if there exists
an intersection point. Thus, we can infer that distance(v;) and distance(vi,) have different signs.
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2. Theoretical Background

a linear number of split plane candidates, resulting in the number of iterations k; being in
O(N) (N corresponds to the number of triangle faces). We again iterate over all triangles
for each cost calculation and classify their position relative to the plane. This amounts to
another ko € O(N) iterations. Thus, the total complexity of this approach is quadratic.

O(n -log(n)?) Algorithm

In order to avoid classifying triangles multiple times, the next best variant calculates the
relative triangle positions in an iterative scheme [13]. We printed the pseudocode of the
procedure in Algorithm 1 for better understanding. Every dimension is evaluated separately.
All split plane candidates are initially generated by iterating over all faces T' bound by the
current voxel V. We differentiate between split planes that lie “before” or “after” the face
that generated it and record this information along with the plane. Formally, let 7 be the
normal vector of the split plane P, whose anchor point is ?, and Ta € T a triangle in V.
TA’s locality relative to P is then determined by the function:

“before”, if Vi e SurfacePointsOf(Tx ), Vn; € Win £0 = ¢ <p,
“after”,  if V? € SurfacePointsOf(Tx ), Vn; € 7 20 = t; > p;

(2.19)
We call the tuple of a split plane, the triangle face that generated the plane, and the locality
of the plane to the face a plane event. There exist three different types of plane events
depending on the locality they encode:

lOC(TA) = {

e Starting Plane Event: The triangle lies after the plane. Thus, the triangle “starts” in
the plane.

e Planar Plane Event: The triangle lies on the plane, meaning it is before and after the
plane. Analogously, the triangle also “starts” and “ends” in the plane.

e Ending Plane Event: The triangle lies before the plane, so it “ends” in the plane.

For the algorithm to work, the plane events must be sorted once before execution. The
primary sorting criterion is the plane position in ascending order. Should equality occur,
then the plane event type is used as a secondary measure with sorting order Ending <
Planar < Starting. After sorting, Algorithm 1 sets the triangle counters required by the
SAH.

Let A be a split plane that lies directly before a split plane B. Then, all triangles that lie
before A also lie before B. To get the whole number of triangles before B, one needs to add
the planar triangles in B itself and those that start at A. A similar approach can be made
for triangles that lie after the planes: Subtract the ones planar and ending in B and from
the triangles that lie after A. By iteratively updating 7; and Tj accordingly, we do not need
to start anew every time we evaluate a new split plane.

After the optimal split plane has been found, all that is left to do is build the triangle
sets for each halfspace and pass them to the respective child nodes. We can achieve that by
iterating over the plane event list again and comparing the suggested split planes to the
optimal plane we found earlier. If a triangle ends in a plane before the optimal plane, it is
in 7. The same works analogously for T, and 7},. If none of these axioms hold, the triangle
straddles the optimal plane and lies in both 7} and Tj,.

14



2.4. KD-Trees

Algorithm 1: O(n - log?(n)) plane event parsing algorithm

Input: AABB: the axis-aligned bounding box of the current node to be split
triangles: triangles in the current AABB
1 planeEvents < generatePlaneEvents(triangles).sort() ¢ < 0
// there are no triangles before the first split plane candidate
Tl T, <0
// all triangles lie after the first split plane candidate
|Ty| < |triangles]|

N

w

4 for i =0; i < |planeEvents| do
5 tstart < tplanar —tena <0
6 plane < planeEvents|i]

7 while i < |planeEvents| A planePosition Equal(plane, plane Events[i]) A
eventType(plane Events[i]) = ENDING do

tend ¢ tena + 1

14 1+1
10 end

11 while i < |planeEvents| A planePosition Equal(plane, plane Events[i]) A
eventType(plane Events[i]) = PLANAR do

12 tplanar <~ tplanar +1
13 141+ 1
14 end

15 while i < |planeEvents| A planePosition Equal(plane, plane Events[i]) A
eventType(planeEvents[i]) = STARTING do

tstart — tstart +1

14 1+1
18 end

16
17

// faces that end in the current plane lie only before the plane. As
planar faces have their own counter, they are removed from |T|

w0 | |Ty] < [Ty = tptanar — tena

20 ‘Tp| A\ tplanar

// tracking the plane with minimal cost is omitted for readability
reasons here

21 cost = evaluateSAH (T, |T,|, |T,|, AABB, plane)

// triangles that start at the current plane will lie before the next
plane to be parsed, update for next iteration

22 ‘Tl| A |Tl‘ + tstart + tplanar

23 end

24 return split plane with minimal cost found by evaluateSAH

15



2. Theoretical Background

O(n -log(n)) Algorithm

The O(n -log(n)?) implementation [13] still requires generating the plane events and sorting
them every time splits for a new AABB are evaluated. To omit this step, we can adapt
Algorithm 1 to only generate the sorted plane event list once and then pass it down to
child nodes to perform future splits with it. For that to work, we must incorporate plane
events with arbitrary orientation into a single list. The modified algorithm is depicted in
Algorithm 2.

Generating the triangle sets for each halfspace is no longer necessary because we reuse
the plane event list in both child nodes. However, we must split the list to include only
relevant events for each node. We first classify the triangles as we did in the O(n - log(n)?)
implementation. We build two plane event lists events; and events, with plane events of
faces that lie only in 7; and T, respectively. Their order must be maintained throughout
this process. Events that stem from faces that lie in both halfspaces must be voided since
their faces would require clipping first, as explained in Subsection 2.4.2. The affected faces
are clipped to the child node’s AABBSs, generating new plane events. This results in two
more plane event lists events;. and eventsg.. These lists are sorted first and then merged
into events; and eventsy via one mergesort iteration. The resulting plane event lists can
now safely be passed to the child nodes.
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2.4. KD-Trees

Algorithm 2: O(n -log(n)) plane event parsing algorithm

Input : AABB: the axis-aligned bounding box of the current node to be split
triangle Amount: the number of triangles in the current AABB
planeEvents: sorted plane event list of planes with all dimensions
dimensions: dimensions of the current space
// initialize counters for every dimension since non-parallel planes cannot
be compared
1 forall d € dimensions do
// there are no triangles before the first split plane candidate

2 ﬂesse’r',d — Tplunar,d «—0
// all triangles lie after the first split plane candidate

3 Tyreater,a < |triangles|

a4 end

5 for i = 0; i < |planeFEvents| do

tstart — tplanar — tend 0

7 plane < plane Eventsi]

8 while i < |planeEvents| A planeDimensionEqual(plane, plane Eventsli]) A
planePosition Equal(plane, plane Eventsli]) A eventType(plane Eventsli]) = ENDING
do

9 tend < tend + 1

10 1+ 1+1

11 end

12 while i < |planeEvents| A planeDimensionEqual(plane, plane Events[i]) A
planePosition Equal(plane, plane Eventsli]) A eventType(plane Events[i]) = PLANAR
do

13 tplana'r’ <~ tplanar +1

14 11+ 1

15 end

16 while i < |planeEvents| A planeDimensionEqual(plane, plane Events[i]) A
planePosition Equal(plane, plane Events[i]) A eventType(plane Events[i]) =
STARTING do

17 tstart < tstare + 1

18 141+ 1

19 end

// faces that end in the current plane lie only before the plane. As
planar faces have their own counter, they are removed from Tgream«’d
20 Tgreater,d <~ Tgreater,d - tplanar — tend

21 Tplanand <~ tplcmar
// tracking the plane with minimal cost is omitted for readability

reasons here

22 cost = evaluate SAH (Tiesser,d, Tplanar,d, Tgreater,d, AABB, plane)

// triangles that start at the current plane will lie before the next
plane to be parsed, update for next iteration

23 ﬂesser,d — ﬂesser,d + tstart + tplanar

24 end

25 return split plane with minimal cost found by evaluateSAH
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3. Related Work

In this chapter, we explore alternative approaches instead of using KD-trees and elaborate
on the core functionality of the software we try to improve. Additionally, we review existing
KD-tree libraries and justify writing our own.

3.1. Polyhedral Gravity Model

3.1.1. Theory

While it is simple to calculate the gravitational force of a sphere, it becomes complicated
when looking at objects of arbitrary shape. For that very purpose, Schuhmacher [2] presents
a C++ 17 library implementing the polyhedral gravity model based on the line integral
approach by Tsoulis et al. [16]. The program only requires the object’s shape represented as
a triangle mesh and the constant density of the material it is made of as inputs. However, it
is imperative that the surface normal vectors, calculated using the cross product, point away
from the object [17]. The orientation of a face’s normal vector is dependent on the ordering
of the face’s vertices. Should all normal vectors point into the object instead, a simple sign
flip can automatically correct the error during calculation. Mixed normal orientations lead to
wrong results. Therefore, the application should be able to verify the mesh before the gravity
model is evaluated. Schuhmacher utilizes the Moller-Trumbore algorithm, introduced earlier
in Subsection 2.2.2. In order to determine the normal vector orientation of a surface part of
the object O, we need the midpoint P of the surface. P is calculated by converting surface
barycentric coordinates (1,1, 1) into Cartesian coordinates (Subsection 2.2.1). Afterward,
we shift P into the direction the normal is pointing by:

P*=P+e-n, 0<eeR (3.1)

We then use P* as ray origin and shoot the ray with direction n into the scene. Let k be
the number of intersections that occurred with O, then n is pointing away from O if k is
even. Otherwise, it is pointing into O. This is because the object’s volume is finite, and
the ray traverses an infinite distance throughout the scene. Thus, it can be inferred that
should the ray enter into the object, then it also has to exit at some point. Both of these
events are recorded as intersection points by performing Moller-Trumbore. Should the ray
originate inside the object, the first intersection point will be the first occurrence of the
ray exiting the object. We will not record an entry point since the ray has already been
inside O. Afterward, the ray may enter O again, but then we will always record another
intersection when the ray exits O, resulting in the total number of intersections remaining
uneven. Subsequently, we can determine the relative position of P* with respect to O and,
based on that, the orientation of n itself. The original work by Schuhmacher parallelizes
ray-triangle intersection but stays with the naive O(n?) approach. This thesis substitutes this
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3.1. Polyhedral Gravity Model

Normal vector points outside the pyramid
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Normal vector points inside the pyramid

Figure 3.1.: Ray Intersection to check the normal orientation of a face in a pyramid mesh
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3. Related Work

with a more sophisticated ray-intersection algorithm using KD-trees, intending to increase
performance.

3.1.2. Technology

The project uses a codebase written in C4++417 and is available as a library built with
CMake. It also includes CMake targets for testing and benchmarking using Google Test! and
Google Benchmark?. Internally, the program is parallelized with NVIDIA’s C++ Thrust?
framework. Thrust is built on top of existing parallelization frameworks. There exist
multiple implementations based on standard CPP serialized standard, OpenMP* or Intel
TBB®. Various 3D mesh files are supported by including the Tetgen® library.

3.2. BSP-Trees

The BSP-tree, the binary space partition tree, is a modified binary search tree to support
higher dimensional queries. Strictly speaking, the KD-tree, shown in Section 2.4, is a variant
of the BSP-tree, in which split planes are constrained to be axis aligned. In that regard,
BSP-trees can choose their split planes more freely. Ize et al. [18] present three runtime
optimizations that are no longer trivially applicable because of the arbitrarily oriented split
planes and bounding volumes: [18]

1. Measuring the distance between a point and a split plane as shown in Equation 2.16
can not be optimized to avoid the dot product.

2. Split plane positions aren’t limited to O(n) positions, but O(n?).

3. Surface area of bounding volumes, required by the SAH, defined in Subsection 2.4.1,
can not be calculated as trivially.

However, the authors also point out the advantages and possibilities the KD-tree lacks.
BSP-trees are highly adaptive to non-axis aligned scene objects and inhibit numerical
inaccuracies better. The BSP-tree can be built like a KD-tree using axis-aligned planes. The
construction algorithm only deviates should it be more beneficial to use non-axis aligned
planes for a particular split. This, in theory, constructs a similarly or more optimal tree than
a pure KD-tree. Ize et al. [18] showed that it is possible to construct BSP-trees that rival
conventional KD-trees in intersection times by limiting split plane positioning and providing
BSP-tree-specific optimizations. This comes at the cost of not building the most optimal
BSP-tree theoretically possible. Despite these modifications, the authors stated that the
KD-tree’s O(n - log(n)) build process remains faster, making BSP-trees unsuitable for this
project. The complexity of building BSP-trees stays beneath O(n?). [18]

"ttps://github.com/google/googletest, last accessed: 15.01.2025

“https://github.com/google/benchmark, last accessed: 15.01.2025

Shttps://github.com/NVIDIA/thrust, last accessed: 15.01.2025

“https://wuw.openmp.org/resources/refguides/, last accessed: 21.01.2025

Shttps://www.intel.com/content/www/us/en/developer/tools/oneapi/onetbb.
html, last accessed: 21.01.2025

®https://github.com/libigl/tetgen, last accessed: 15.01.2025
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3.3. Octrees

3.3. Octrees

The Octree is another variant of the BSP-tree. Each cell is an axis-aligned cube. Each
parent cell in the tree is subdivided into eight smaller equally sized cube cells. This can be
achieved by placing the split planes at the half points of the cube’s edges. By not evaluating
the underlying geometry, the construction process is faster than other approaches that aim
for optimal solutions. This makes them desirable when dynamic data has to be modeled
because reconstruction happens frequently then [19]. An optimal solution is ideal because
the data used by Schuhmacher et al. [2] consists exclusively of static polyhedrons represented
through triangle meshes. The advantages of an Octree do not come to fruition here. [12,
p.14][9]

3.4. iKD-trees and cKD-trees

The implicit KD-tree (iKD-tree) is a static KD-tree optimized for minimum memory con-
sumption [20]. The basic idea is to constrain each leaf node to have the same distance ¢ to
the root node. The tree is then called “balanced”. By doing so, the tree can be stored in
an array with the size of 2¢ 4+ 1. This eliminates the need to store pointers required by a
regular KD-tree. The compact KD-tree (cKD-tree) is built with a 2D iKD-tree as a base,
compressing it further. The cell a point lies in is encoded using spiral encoding. Spiral
encoding of a cell is the distance measured in cell sizes from the cell to a root cell in a spiral
arrangement. For clarification, refer to Figure 3.2. By storing the encoded distance of the

Spatial cell distance of Rto P = 22

2.5

| °v

2.0 1

1.5

1.0 1

0.5 4

0-0 T T T T
0.0 0.5 1.0 15 2.0 25

Figure 3.2.: Spiral encoding of a point P with root R

cell to its parent node, we can record the iKD-tree structure with less memory consumption
in an array as a sequence of integers. Another encoding concept called direct access codes
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(DAC) is deployed to enable direct readout of elements in the sequence. An array also
provides this functionality. However, DACs allow the storage of elements of variable length
without unnecessary memory overhead. While this improves the memory footprint, it takes
a toll on runtime by introducing the extra complexity. The standard KD-tree algorithms are
still viable but need to be adjusted. This thesis builds on top of the work by Schuhmacher et
al. [2] to improve ray tracing runtime. The nature of their work does not guarantee balanced
KD-trees, questioning whether memory improvements can be achieved through iKD-tress.
The objects they operate on are three-dimensional polyhedrons, ruling out the usage of
cKD-trees entirely. Even though the primary goal of this work is runtime improvements,
considering a hybrid solution of a regular and iKD-tree might provide a better trade-off. We
postpone this task to future work.

3.5. Existing KD-Tree Implementations

Many well-known KD-tree libraries are tailored to execute queries from nearest neighbors and
point ranges. They inherently do not support ray tracing. It is possible to adapt the libraries
accordingly. However, they will likely perform more poorly than a custom implementation.
This is because they are not optimized for ray tracing. This eliminates common choices
CGAL7, nanoflann® and FLANN®. Intel’s Embree! ray tracing suite supports building
KD-trees for raytracing. However, it is quite complex and provides many other features
leading to obfuscation. There are various implementations available on GitHub. However,
to our best knowledge, they do not follow coding best practices and are not made by
computer scientists. We decided to implement our custom KD-tree library because we
demand compatibility with ray tracing while retaining simplicity and quality.

"https://github.com/cgal/cgal, last accessed: 26.01.2025

Shttps://github.com/jlblancoc/nanoflann, last accessed: 26.01.2025

‘https://github.com/flann-1ib/flann, last accessed: 26.01.2025
https://wuw.embree.org/, last accessed: 29.01.2025
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Part II.

Implementation, Verification and
Results
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4. Architecture

This chapter showcases the software architecture using a UML class diagram (Figure 4.1).
We will also explore the contribution of each class to the program’s functionality and explain
design choices.

4.1. Polyhedron

This class represents the triangle mesh. It contains all vertices along with their coordinates
stored in a list. A vertex triplet defines the faces. Instead of entirely copying the vertices
from the vertex list, they are only referenced via list indexing. It is possible to supply the
mesh in different file formats by utilizing the Tetgen library. The library is called internally
by the Polyhedron constructor via an adapter. Additionally, the class contains the KD-tree
to delegate intersections.

4.2. KDTree

The KDTree class acts as a root class for the KD-tree data structure by providing a reference
to the root node. The program avoids unnecessary computations by building only necessary
tree nodes. Thus, we implement a lazy loading approach that constructs tree nodes as needed
during runtime. This results in the class storing an instance of SplitParam, described in
Section 4.3. It is later used during node construction and removed afterward. This class also
serves as the facade (refer to facade pattern [21, p.210]) for the underlying tree structure.

4.3. SplitParam

This class solely exists to enable lazy loading. It stores information about the current scene
cell needed to construct new tree nodes. Stored data involves the vertices and faces of the
polyhedron initially provided by the Polyhedron implementation, presented by Section 4.1.
It also includes which split plane selection algorithm to use and a list of plane events or
triangle faces bound in the current node’s bounding box. Whenever a child node is built,
the SplitParam object is copied and tailored for the node and then passed down. After all
direct child nodes have been built, the parent’s SplitParam instance is destroyed.

4.4. TreeNode

TreeNode is an abstract class and superclass to SplitNode (Section 4.5) and LeafNode
(Section 4.6). That way, the tree hierarchy can be built without discerning the stored node’s
type. This is especially useful since the type of node to be built depends on the results of
the split plane evaluation. Refer to Subsubsection 2.4.1 for more details.
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4.5. SplitNode

4.5. SplitNode

SplitNode implements the functionality of the inner nodes of the tree. They have child
nodes and are responsible for delegating intersection calls to them. When performing ray
intersection tests dictated by Section 2.1, the split node is responsible for detecting hits with
any of the two halfspaces it is responsible for. Detection is realized by a ray-box intersection
test with the split node’s AABB (Subsection 2.3.1) and a ray-plane intersection with the
split node’s split plane (Subsubsection 2.3.1). Comparison of the resulting three t-values
yields the desired information. Before a split node’s child is accessed, the parent node first
checks whether the node has been built already. If not, the split node calls a factory method
responsible for split plane building and constructing a new TreeNode. The necessary data is
generated by copying and adjusting the node’s SplitParam instance. Should the child node
have already been built prior, its reference should be used for delegation.

4.6. LeafNode

LeafNode instances represent, as their name states, the leaf nodes of the KD-tree. They do
not subdivide cells further but are directly responsible for a set of triangle faces. Intersection
calls are executed on the triangle faces according to Section 2.2. The bound triangles are
saved in a SplitParam object, which is persistent in contrast to the behavior in SplitNode.

4.7. Plane

The class defines an axis-aligned plane. The plane’s orientation is not represented by a normal
vector but by the coordinate axis into which the plane spans. Its internal representation is
an enum class. Additionally, the anchor point of the plane is sufficiently specified by only
providing the coordinate that is constant for all points lying on the plane. These space
optimizations can only be made because the plane is axis-aligned.

4.8. PlaneEvent

The abstract class encodes the plane event structure described in Subsubsection 2.4.3.
Theoretically, omitting the triangle identifier that generated the event is possible. However,
it provides a more elegant alternative to the naive approach of classifying triangle positions.

4.9. Box

This class provides the implementation of the AABB, elaborated on by Section 2.3. Two
triplets of floating point values define minPoint and maxPoint. The ray-box intersection
logic and convenience functions, like finding the AABB for a set of vertices, are also
encapsulated there.
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4.10. PlaneSelectionAlgorithm

This is an abstract superclass for a family of plane evaluation strategies required by the
strategy pattern [21, p.368]. By deploying this software pattern, we can test and benchmark
the approaches described in Subsection 2.4.3 and verify their theoretical runtime complexity.
Another advantage is the reduced code duplication, which warrants this approach’s use. The
plane selection strategy for the current KD-tree is passed along as a field in SplitParam,
depicted in Section 4.3.

4.11. NoTreePlane

Regardless of the scene, this evaluation strategy will always report infinite costs for the best
possible split plane and return an arbitrary plane. During the evaluation of the termination
criterion, refer to Subsubsection 2.4.1; the algorithm will then discard the returned plane
due to costjeqr being lower. This strategy builds a KD-tree consisting of a single LeafNode,
outlined by Section 4.6, and is used to check whether building the KD-tree improves runtime.

4.12. SquaredPlane

This subclass implements the naive plane evaluation strategy by simply nesting two for-
loops described by Subsubsection 2.4.3. As it is the simplest tree-building method without
optimizations, it is also less prone to code mistakes. This makes it ideal for verification of
more sophisticated strategies.

4.13. PlaneEventAlgorithm

This abstract class provides functions used by plane evaluation strategies that utilize plane
events. Those being LogNPlane and LogNSquaredPlane, defined later in Section 4.14 and
Section 4.15. The motivation for this abstraction is the reduction of code duplication.

4.14. LogNSquaredPlane

This plane evaluation strategy has a runtime complexity of O(n - log(n)?) by utilizing
PlaneEvent instances, described above in Section 4.8, to improve runtime. This algorithm
version is still unoptimized and requires the generation of new plane event lists and sorting
at every node.

4.15. LogNPlane

This implements the final and fastest plane evaluation strategy. It optimizes LogNSquaredPlane,
introduced by Section 4.14, to reuse generated plane events and maintain their order through-
out splicing, omitting unnecessary sorting.
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4.15. LogNPlane

Polyhedron Uses TetgenAdapter
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Figure 4.1.: UML Class Diagram (abstract classes are printed in italic font)
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5. Usage

In this chapter, we briefly explain how to use our KD-tree implementation.

// vector of vertices: A vertex is an array of three coordinates

const std::vector<std::array<double, 3>> vertices {...};

/] vector of faces: A face is defined by storing the indices of the vertices
const std::vector<std::array<unsigned long, 3>> faces{...};

const std::array<double, 3> origin{0,0,0};
const std::array<double, 3> rayDirection{0.5,0.5,1};

KDTree kdTree{vertices , faces};

std ::set<std ::array<double ,3>> intersectionPoints{};

// calculate intersection points and add them to intersectionPoints
kdTree.getFacelntersections (origin, rayDirection, intersectionPoints);

Listing 5.1: Usage of the KD-tree implementation in C++17

The KDTree is built on top of objects represented by triangle meshes in a scene. We
define a triangle vertex as an array of three double values stored in a std: :array. Triangle
faces are defined similarly, with the difference of the vertex indices being stored instead of
coordinates. The vertices and faces of the triangles are stored in instances of std: :vector.
The constructor of KDTree takes the two vectors as arguments. The KD-tree can now be
used to calculate intersection points. We call the KDTree’s getFaceIntersections function
to do that. It requires the origin point of the ray, the ray direction, and an instance of
std: :set to store the intersection points in, passed as parameters. Refer to the code in
Listing 5.1.
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6. Testing

Verification is done with testing via Google Test!. We mainly use three techniques, fuzzing
[22], regression testing [23] and integration testing:

Fuzzing

A random face F' on the polyhedron is chosen to be intersected. Then, we generate
two random barycentric coordinates u € [0, 1] and v € [0, 1 — u] relative to F'. Per the
definition of u and v, the point P they encode lies on the surface of F. We choose an
arbitrary point of origin O. It becomes possible to construct O? We then pass O
and OP to the KD-tree and let it calculate all intersection points with the polyhedron.
Per construction, should the tree work correctly, P must be included in the set of
intersection points returned. We repeat this procedure without rebuilding the tree. The
random generator must be seeded with a constant value to guarantee reproducibility.
This type of test aims to determine whether intersections are performed correctly with
the tree the algorithms build.

Regression Testing
This type of test assumes that the O(n?) KD-tree building algorithm is correctly
implemented, returning optimal split planes. A full KD-tree is built using an arbitrary
building algorithm. Afterwards, the resulting split planes are recalculated using the
O(n?) algorithm. Since both algorithms are supposed to return the optimal KD-tree
for a scene, the split planes they produce should also be equal.

Integration Testing
Schuhmacher et al. [2] provide test cases for identifying faulty faces with wrong vertex
ordering in the polyhedron. The motivation behind these tests is elaborated on in
Subsection 3.1.1. The main principle behind the checks is ray tracing. We can reuse
these tests by integrating the KD-tree into the ray tracing algorithm of Schuhmacher’s
Polyhedron class.

"https://github.com/google/googletest, last accessed: 21.01.2025
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7. Runtime Measurements

This chapter measures the performance of the algorithms described by Subsection 2.4.3 and
Chapter 4. For the test data set, we take a triangle mesh of the Eros asteroid! with 14744
faces. We additionally scale the mesh up and down to achieve variant problem sizes while
retaining the overall geometry and shape. Upscaling works by splitting an existing triangle
face into multiple and incorporating it in the new mesh. On the contrary, downscaling
combines several faces into a single one.

For testing, a x86_64 Manjaro Linux (kernel version 6.11.10) machine with an AMD Ryzen
5 3600 4.2 GHz 6-Core processor, 16 GB RAM, and an AMD Radeon RX 570 Series graphics
card was used. The measurements were taken using Google Benchmark.

We adapt the problem to be measured closely from the workings behind the polyhedral
gravity model introduced in Subsection 3.1.1. Thus, every implementation is tasked with
shooting one ray through every face of the mesh one at a time. Then, the benchmark
calculates intersection points. By intersecting every face of the mesh instead of just a
fraction, we can guarantee that a full KD-tree is built. Otherwise, the implemented
construction algorithms using lazy loading may appear faster by performing less work.

1000 faces 1732 faces 3000 faces 5196 faces 9000 faces

15588 faces 27000 faces 46764 faces 81000 faces 140296 faces

Figure 7.1.: Scaled Eros meshes

https://github. com/darioizzo/geodesyNets/blob/master/3dmeshes/eros.
pk, last accessed: 21.01.2025
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7.1. Sequential Execution

7.1. Sequential Execution

Runtime of sequential algorithm execution on the Eros mesh
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Figure 7.2.: Sequential execution runtime measurements of different algorithm classes on
scaled Eros mesh

Figure 7.2 shows the measurement line graph taken when the algorithms were executed
on a single thread. Due to the poor distinction between runtimes for meshes with less than
10,000 faces, we also provide the same measurements on a logarithmic scale. Interpreting
the results, building a KD-tree is the better choice for meshes of arbitrary size when we
expect many intersections to be computed. It is worth noting that both intersection and tree-
building processes are incorporated into the measurements. By caching the built KD-tree, all
algorithms are expected to perform better in the long term than simply repeating intersections
without a tree every time. The prebuilt tree performs slightly better for our data set than
the optimal O(n - log(n)) algorithm. Thus, the expectation holds. All variants outperform
NoTree, with the fastest reducing runtime by more than half. Algorithm O(n - log(n)) is
faster than the O(n -log(n)?) counterpart. However, the difference in the total time spent is
barely noticeable. Hotspot analysis reveals that the O(n - log(n)) algorithm spends 37% of
the total runtime and 86% of all KD-tree operations calculating intersection points using
the Moller-Trumbore algorithm from Subsection 2.2.2. This algorithm is exclusively used
in LeafNodes and does not impact tree building. To verify, we ran separate measurements,
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7. Runtime Measurements

where the program only built the KD-tree without performing triangle intersection. The
results are plotted in Figure 7.3. Comparison with Figure 7.2 yields that the KD-tree build
time of the O(n - log(n)) construction algorithm stays consistently under 2 percent of the
whole intersection check runtime.

Runtime for prebuilding Eros mesh KD-tree sequentially
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Figure 7.3.: Building complete KD-tree sequentially without intersecting

Our observations are based on measurements performed on the Eros mesh. We execute
the same benchmarks on the sphere mesh from Figure 2.1 to show that they also apply to
other meshes. The findings are rendered in Figure 7.4
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Runtime of sequential algorithm execution on the Sphere mesh
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Figure 7.4.: Benchmarks executed on the Sphere mesh

7.2. Parallel Execution

Our implementation is thread-safe for queries and set up to use multithreading internally
during tree building. Testing showed that allocating threads for both processes simultaneously
leads to thread starvation. Usually, this is not a problem since the KD-tree is entirely
built before intersections are performed. Through lazy loading, this does not apply to
our application. We limit ourselves to deploying parallelization techniques only in tree-
building processes to resolve this problem. Figure 7.5 depicts runtime measurements with
multithreading enabled. We can immediately confirm a significant performance speedup
with roughly a factor of 10 to Figure 7.2. NoTree is now faster for larger meshes than
the naive KD-tree build algorithm. This is because the underlying algorithm is better
suited to be executed parallelly. Building the KD-tree is still the better choice, similar to
Figure 7.2. We plotted the data again on a logarithmic scale to showcase time discrepancies
for smaller meshes. The following results are recorded by benchmarking the O(n -log(n))
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7. Runtime Measurements

Runtime of parallel algorithm execution on the Eros mesh
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Figure 7.5.: TBB parallelized execution runtime measurements of different algorithm classes
on scaled Eros mesh

plane evaluation strategy. Analysis using AMDpuProf shows that CPU hardware thread
downtime is low, illustrated by Figure 7.7. All threads are concurrently active for roughly
80% of the total runtime. Measuring with Valgrind Massif shows that 14 MB worth of input
files from a polyhedron with 140,000 faces result in a KD-tree 350 MB large which is stored
in heap memory.

As we did in the previous section, we measure again using the Sphere mesh for a basis.
Refer to Figure 7.8.
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7.2. Parallel Execution

Runtime for prebuilding Eros mesh KD-tree in parallel
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Figure 7.6.: Building complete KD-tree in parallel without intersecting during Eros bench-
mark
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Figure 7.7.: Core utilization during Eros benchmark
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7. Runtime Measurements

Runtime of parallel algorithm execution on the Sphere mesh
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Figure 7.8.: TBB parallelized benchmarks executed on the Sphere mesh
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8. Summary

In this thesis, we have explored the shortcomings of ray tracing and the resulting motivation
for KD-trees. We began by introducing the mathematical concepts and algorithms deployed
by a KD-tree and discussed different approaches to construction. Afterward, we designed
the software architecture and measured its performance. We rely on fuzzing, regression- and
integration testing to guarantee the implementation’s correctness.

The primary objective of this thesis is to develop a modern C+417 KD-tree implementation
tailored for use in ray tracing algorithms. The implementation is designed to focus on
simplicity and usability, featuring a straightforward interface and prioritizing essential
functionalities. The codebase is modular and extensible, enabling integration into diverse
software solutions and facilitating adaptation by other researchers.

The library employs lazy loading techniques to optimize performance and leverages
CPU parallelization using the Thrust framework. The KD-tree construction algorithms
are based on the methods described by Wald et al. [13], ensuring a robust foundation.
The algorithms offer different runtime complexities, with the best performing reaching
O(n - log(n)) computation times.

Throughout the development process, best practices in software engineering were strictly
followed. Comprehensive documentation is provided through inline comments and Doxygen
annotations, ensuring clarity and ease of use for developers.
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9. Outlook

In this thesis, our primary focus is optimizing runtime without considering memory consump-
tion. However, as discussed in Section 3.4, less memory-intensive variants of KD-trees exist.
Implementing a hybrid approach that balances memory usage and runtime performance
may be feasible without significantly impacting overall efficiency.

Current parallelization is limited to either queries on the KD-tree or the tree construction
algorithms. We propose extending the program to enable switching to query parallelization
dynamically once the tree has been built entirely or to a certain degree.

Thrust offers multiple parallelization backends. The current implementation supports only
CPU parallelization, but further optimization might be achieved by adapting the algorithms
to utilize the CUDA! backend.

Currently, the KD-tree is designed to subdivide three-dimensional space. However, existing
code type definitions allow refactoring to generalize to arbitrary dimensions with moderate
effort.

A primary design goal for this application is the ease of use. Thus, we also want to
implement a pybind11? interface for the library and publish it via PyPi? and conda-forge?.
To use our software, the developer does not need to know C++ anymore, targeting a broader
audience.

"https://developer.nvidia.com/cuda-toolkit, last accessed: 30.01.2025
*https://github.com/pybind/pybind11, last accessed: 28.01.2025
Shttps://pypi.org/, last accessed: 28.01.2025
“https://conda-forge.org/, last accessed: 28.01.2025

39


https://developer.nvidia.com/cuda-toolkit
https://github.com/pybind/pybind11
https://pypi.org/
https://conda-forge.org/

Part 1V.

Appendix

40



List of Figures

2.1.
2.2.
2.3.
2.4.

2.5.
2.6.
2.7.

3.1.
3.2.

4.1.

7.1.
7.2.

7.3.
7.4.
7.5.
7.6.

7.7.
7.8.

Example sphere triangle meshes with different amount of detail . . . . . . . 3
Example of an AABB in three-dimensional space . . . . . .. ... ... .. 5
Slabs visualized for an AABBin R® . . .. ... ... ... ... ... ... 7
Split candidates in xg direction visualized for a triangle in 2D by calculating

the AABB . . . . . . . 10
A triangle’s AABB not fully enclosed by inner node’s AABB . . ... ... 11
Example of a triangle clipped toan AABB . . ... ... ... ....... 12
Calculate intersection point using distance measures . . . . .. .. .. ... 13

Ray Intersection to check the normal orientation of a face in a pyramid mesh 19

Spiral encoding of a point P withroot R. . . . . . ... ... ... ..... 21
UML Class Diagram . . . . . . . . ... . v 27
Scaled Eros meshes . . . . . . . . . ... 30
Sequential execution runtime measurements of different algorithm classes on

scaled Erosmesh . . . . . . . . Lo 31
Building complete KD-tree sequentially without intersecting . . . . . . . . . 32
Benchmarks executed on the Sphere mesh . . . . . . ... ... ... .... 33
TBB parallelized execution runtime measurements of different algorithm

classes on scaled Erosmesh . . . . . .. ... o000 34
Building complete KD-tree in parallel without intersecting during Eros bench-

mark . ... 35
Core utilization during Eros benchmark . . . . ... ... ... .. ... .. 35
TBB parallelized benchmarks executed on the Sphere mesh . . . . . .. .. 36

41



Bibliography

1]

2]

B. Caulfield, “NVIDIA Unveils GeForce RTX, World’s First Real-Time Ray Tracing
GPUs,” Aug. 2018.

J. Schuhmacher, E. Blazquez, F. Gratl, D. Izzo, and P. Gémez, “Efficient polyhedral
gravity modeling in modern C++ and python,” Journal of Open Source Software, vol. 9,
no. 98, p. 6384, 2024.

H. Halmaoui and A. Haqiq, “Computer graphics rendering survey: From rasterization
and ray tracing to deep learning,” in Innovations in Bio-Inspired Computing and
Applications (A. Abraham, A. M. Madureira, A. Kaklauskas, N. Gandhi, A. Bajaj,
A. K. Muda, D. Kriksciuniene, and J. C. Ferreira, eds.), (Cham), pp. 537-548, Springer
International Publishing, 2022.

M. Botsch, M. Pauly, C. Rossl, S. Bischoff, and L. Kobbelt, “Geometric modeling based
on triangle meshes,” in ACM SIGGRAPH 2006 Courses, Siggraph ’06, (New York, NY,
USA), pp. 1-es, Association for Computing Machinery, 2006.

T. Moller and B. Trumbore, “Fast, minimum storage ray/triangle intersection,” in
ACM SIGGRAPH 2005 Courses on - SIGGRAPH 05, (Los Angeles, California), p. 7,
ACM Press, 2005.

S. Lang, Linear Algebra. Springer Science & Business Media, 1987.

A. F. Mobius, Der Barycentrische Calcul, Ein Hilfsmittel Zur Analytischen Behandlung
Der Geometrie (Etc.). Barth, 1827.

V. Skala, “Barycentric coordinates computation in homogeneous coordinates,” Comput-
ers & Graphics, vol. 32, pp. 120-127, Feb. 2008.

C. Ericson, Real-Time Collision Detection. CRC Press, Dec. 2004.
B. Smits, “Efficient bounding box intersection,” Ray tracing news, vol. 15, no. 1, 2002.

A. Williams, S. Barrus, R. K. Morley, and P. Shirley, “An efficient and robust ray-box
intersection algorithm,” in ACM SIGGRAPH 2005 Courses, Siggraph ’05, (New York,
NY, USA), pp. 9-es, Association for Computing Machinery, 2005.

V. Havran, Heuristic Ray Shooting Algorithms. PhD thesis, Ph. d. thesis, Department
of Computer Science and Engineering, Faculty of ..., 2000.

I. Wald and V. Havran, “On building fast kd-Trees for Ray Tracing, and on doing that
in O(N log N),” in 2006 IEEE Symposium on Interactive Ray Tracing, (Salt Lake City,
UT, USA), pp. 61-69, IEEE, Sept. 2006.

42



Bibliography

[14]

[15]

[16]

[20]

[21]

22]

J. D. MacDonald and K. S. Booth, “Heuristics for ray tracing using space subdivision,”
The Visual Computer, vol. 6, pp. 153-166, May 1990.

I. E. Sutherland and G. W. Hodgman, “Reentrant polygon clipping,” Communications
of The Acm, vol. 17, pp. 32-42, Jan. 1974.

D. Tsoulis, “Analytical computation of the full gravity tensor of a homogeneous
arbitrarily shaped polyhedral source using line integrals,” Geophysics, vol. 77, no. 2,
pp. F1-F11, 2012.

J. Schuhmacher, “Efficient polyhedral gravity modeling in modern C++,” Master’s
thesis, Technical University of Munich, Dec. 2022.

T. Ize, I. Wald, and S. G. Parker, “Ray tracing with the BSP tree,” in 2008 IEFEE
Symposium on Interactive Ray Tracing, pp. 159166, Aug. 2008.

D. Libes, “Modeling dynamic surfaces with octrees,” Computers & graphics, vol. 15,
no. 3, pp. 383-387, 1991.

G. Gutiérrez, R. Torres-Avilés, and M. Caniupéan, “cKd-tree: A compact kd-tree,”
IEFEE access : practical innovations, open solutions, vol. 12, pp. 28666—28676, 2024.

A. Shvets, Dive into Design Patterns. Refactoring. Guru, 2019.

X. Zhu, S. Wen, S. Camtepe, and Y. Xiang, “Fuzzing: A survey for roadmap,” Acm
Computing Surveys, vol. 54, Sept. 2022.

R. Kazmi, D. N. A. Jawawi, R. Mohamad, and 1. Ghani, “Effective regression test case
selection: A systematic literature review,” Acm Computing Surveys, vol. 50, May 2017.

43



	Acknowledgements
	Abstract
	Zusammenfassung
	Introduction and Background
	Introduction
	Theoretical Background
	Ray Tracing
	Ray-Triangle Intersection Test
	Barycentric Coordinates
	Möller-Trumbore Algorithm

	Axis Aligned Bounding Box
	Ray-AABB Intersection Test

	KD-Trees
	Surface Area Heuristic
	Split Plane Candidates
	Evaluating Split Plane Candidates


	Related Work
	Polyhedral Gravity Model
	Theory
	Technology

	BSP-Trees
	Octrees
	iKD-trees and cKD-trees
	Existing KD-Tree Implementations


	Implementation, Verification and Results
	Architecture
	Polyhedron
	KDTree
	SplitParam
	TreeNode
	SplitNode
	LeafNode
	Plane
	PlaneEvent
	Box
	PlaneSelectionAlgorithm
	NoTreePlane
	SquaredPlane
	PlaneEventAlgorithm
	LogNSquaredPlane
	LogNPlane

	Usage
	Testing
	Runtime Measurements
	Sequential Execution
	Parallel Execution


	Conclusion
	Summary
	Outlook

	Appendix
	Bibliography


