

The University of Strathclyde 1

Towards Compact AI Models For Efficient Machining
Feature Recognition

KONSTANTINOS GKRISPANIS,1,2 STAVROS NOUSIAS,1,2 ANDRÉ BORRMANN,1,2

1Chair of Computing in Civil and Building Engineering, Technical University of Munich, Munich, Germany

2TUM Georg Nemetschek Institute – AI for the Built World, Munich, Germany

ABSTRACT:
Machining feature recognition is the first step in the automation of the design and
production pipeline. Currently, this process relies on manual annotation by human
experts, which is time-consuming and prone to errors. Computer Numerical Control
(CNC) machines are automated tools that use pre-programmed computer software
to control machining processes with high precision and efficiency. Enhancing CNC
machines with an AI-based approach for the recognition of machining features in the
CAD (Computer Aided Design) input models eliminates the need for manual
annotation and enables seamless integration of design and production workflows for
optimized machining strategies. CNC controllers often operate in resource-
constrained environments with limited computational capabilities. Therefore, there is
a pressing demand for machining feature recognition models that can operate
efficiently across these devices. In recent years, network pruning algorithms have
gained significant attention from researchers due to the growing size and complexity
of deep learning models, which often require considerable computational resources
for training and development. Network pruning is a technique that reduces the size
of deep learning models by removing unnecessary weights or entire structures (e.g.,
filters, channels). Despite their growing adoption in other domains, pruning strategies
have not been explored in machining-specific AI models. In this paper, we evaluate
four different scoring criteria combined with the Soft Pruning iterative procedure on
BRepNet, a machining feature recognition model. Our experiments demonstrate that
pruning not only preserves performance but can also lead to slight accuracy
improvements for small pruning rates. Remarkably, when removing 90% of the
model’s parameters, one pruning criterion results in only 2% loss in accuracy. These
findings highlight the potential of pruning as a practical approach to developing
efficient and compact AI models for deployment in manufacturing and robotized
construction environments.

KEYWORDS:
Machining Feature Recognition, Network Pruning, Deep Learning Optimization

1. INTRODUCTION
The first step towards the automation of the

production pipeline involves identifying machining-

relevant features within CAD models, which
subsequently enables the generation of operations
required to manufacture the desired object. Until

The University of Strathclyde 2

recent years, human expertise was essential for this
step. This process has been completely transformed
by the development of AI algorithms, which allow
intelligent systems to be directly integrated with
CNC machines. Despite these technological
breakthroughs, a significant challenge persists;
CNC machines and similar industrial computing
environments that are used in production, are
inherently resource-constrained and they were not
originally designed to efficiently execute deep
learning models (Manikanta et al., 2024). These
computational limitations create a bottleneck in the
integration of AI technologies in manufacturing
settings. With the continuous growth of machine
learning models in depth and complexity, there is an
increased need for sophisticated optimization
techniques to ensure practical, sustainable and
cost-effective optimization.

Network pruning is a field that has emerged in
the recent years to tackle the problem of deep neural
networks, aiming at reducing their size without a
significant drop in their performance. Various
pruning algorithms have been proposed, mainly in
Computer Vision tasks (Li et al., 2017; Luo, Wu and
Lin, 2017; He et al., 2019). Yet, their application and
potential benefits in the domain of manufacturing
domain remain unexplored.

Considering the above, we aim to examine the
application of network pruning to a novel machining
feature recognition model, named BRepNet
(Lambourne et al., 2021). BRepNet can be
configured in multiple ways, depending on the
usage of UV-grids (Jayaraman et al., 2021) and the
selection of input features. In this work, we evaluate
two configurations. One with the use of UV-grids
(surface encoder) and another that represents the
most compact version of the network architecture
while still yielding competitive performance.

We evaluate four different scoring criteria
combined with the Soft Pruning (He et al., 2018)
iterative procedure on BRepNet (Lambourne et al.,
2021). The scoring criteria are namely: the
Geometric Median (He et al., 2019), the L2-Norm,
the Activation Importance (Ardakani, Condo and
Gross, 2017) and the Group Taylor importance
criterion (Fang et al., 2023). Experimental results on
the 360Fusion dataset show that the proposed
approach has the potential to generate even more
compact networks with state-of-the-art
performance, especially when small pruning rates
are used. Overall, we provide a comprehensive
analysis of the above criteria and determine which
of them -if any- offers a notable advantage in
manufacturing domain. The paper contributions can
be summarized as follows:
▪ To the best of our knowledge, this is the first

study to investigate the effects of network

pruning in the domain of machining feature
recognition.

▪ The proposed approach yields a family of
compact models suitable for deployment on
resource-constrained environments.

▪ We present a comprehensive comparison of
multiple pruning criteria, offering insights into
the effectiveness of them and giving the
opportunity for applications in other domains.

▪ We observe performance improvement for the
baseline BRepNet segmentation model.

 The paper is organized as follows: Section 2
presents the related work on Segmentation of CAD-
Derived representations and Network Pruning.
Section 3 explains the methodology used in this
paper. Section 4 presents the experimental settings
used, Section 5 the results of the experiments and
finally, Section 6 concludes our work.

2. RELATED WORK

2.1 Segmentation of CAD-Derived
Representations

In the literature, many models have been
proposed for segmenting representations derived
from CAD models, such as point clouds and
meshes. Prior approaches like PointNet++ (Qi et al.,
2017), DGCNN (Wang et al., 2019) and MeshCNN
(Hanocka et al., 2019) have demonstrated strong
performance, but these methods require
transformations that may lead to information loss.
Moreover, these models tend to have a large
number of parameters, making them less suitable
for resource-constrained environments such as
CNC machines.

To address these challenges, CADNet (Colligan
et al., 2022) and BRepNet (Lambourne et al., 2021)
were specifically designed for machining feature
recognition. CADNet represents CAD models as
hierarchical graph structures, capturing surface
geometry and face topology. BRepNet, on the other
hand, operates on BRep structures and is already a
relative compact model compared to other
approaches.

While BRepNet is more lightweight than the other
models, further optimization is needed for real-time
deployment. This motivates the use of pruning
algorithms to further reduce the size while
preserving -or even enhancing- performance.

2.2 BRepNet

BRepNet (Lambourne et al., 2021) is a neural
network specifically designed for machining feature
recognition in CAD models. It operates directly on
boundary representation (BRep) data structures,
aiming to improve the segmentation of BRep

The University of Strathclyde 3

models. The core innovation of BRepNet lies in its
convolutional kernels, which are defined with
respect to oriented edges within the BRep structure.

To extract meaningful features, BRepNet
identifies localized neighborhoods of faces, edges
and coedges around each coedge, utilizing
learnable parameters to detect patterns in these
feature vectors. A key concept introduced by
BRepNet is topological walks, which enable the
model to navigate the BRep structure. These walks
are guided by adjacency relationships - such as
next, previous and mating connections - allowing the
network to traverse coedges, edges and faces
effectively.

BRepNet supports different kernel
configurations, which determine how geometric and
topological information is captured and processed.
Each configuration defines a distinct set of
topological walks, aggregating information from
adjacent elements.

In this work, we evaluate two versions of the
BRepNet architecture. The first is a larger
configuration with a surface encoder, which includes
UV-grid embeddings to enhance face
representations. It contains a total of 603,532
trainable parameters. The second configuration is
the most compact version of BRepNet. It excludes
the surface encoder entirely and does not use the
topological convolution kernel. Instead, it relies
solely on a lightweight MLP. This version contains
only 181,196 parameters, making it a robust
foundation for assessing the effectiveness of
pruning strategies. Tables 1 and 2 provide the
architectural breakdown of both model variants.

Table 1: BRepNet with Surface Encoder

Module Parameters

Surface Encoder 390K

Module List 211.9K

Classification layer 680

Table 2: MLP-only BRepNet

Module Parameters

Module List 180.5K

Classification layer 680

2.3 Network Pruning

Network Pruning can be roughly categorized into
unstructured and structured pruning. Unstructured
pruning removes individual weights inside a weight
matrix and structured pruning removes whole

network structures like filters or channels (He et al.,
2019). Unstructured pruning creates a model with
irregular sparsities, while structured pruning yields
models that can be easily deployed. For the rest of
the paper, we will focus on structured pruning.

There are various criteria for determining which
filters or channels to prune, ranging from simple
approaches, like removing components based on
their magnitude (e.g., L2-norm of weights), to more
advanced techniques that consider the impact of
each component on the network’s output, such as
Group Taylor importance criterion (Fang et al.,
2023).

3. METHODOLOGY

3.1 Scoring Criteria
Consider an individual layer in a neural network

with weight parameters,

𝐹 = [𝐹1, … , 𝐹𝑛], (1)

where 𝐹𝑗 ∈ 𝑅𝑘×𝑘×𝑐 is the 𝑗-th filter with spatial size

𝑘 × 𝑘 and depth 𝑐 , and 𝑛 is the total number of
filters in the layer. Based on this formulation, the
goal of the proposed approach is: given a pruning
rate 𝜃 , prune the 𝑛𝜃 filters in each layer of the
model.

Redundancy-based pruning algorithms, i.e.
algorithms that identify and remove filters in a layer
with the most similar characteristics, have been
shown to outperform other criteria in various
contexts (He et al., 2019; Gkrispanis, Gkalelis and
Mezaris, 2024). To this end, we adapt the Geometric
Median (He et al., 2019) algorithm, a method that
has demonstrated strong performance across
different architectures and application domains by
removing filters closest to the geometric centre of
the layer.

For comparison purposes, we additionally
evaluate three alternative importance criteria: the
GroupTaylor (Molchanov et al., 2017), which
estimates the impact of each group of weights on
the loss function using the first-order Talyor
expansion; gradient-based importance (Fang et al.,
2023), which ranks parameter sensitivity based on
backpropagation gradients; and the well-known L2
Norm, which evaluates parameters based on their
Euclidean magnitude. All four pruning criteria are
described briefly in the following:

▪ L2 Norm: The L2 Norm pruning algorithm

evaluates the significance of groups of weights
(such as filters or channels) in model’s layers
based on their L2 Norm. It is based on the same
assumption as the L1 Norm algorithm, which
has been tested in various works (Li et al., 2017;

The University of Strathclyde 4

Kumar et al., 2021). It is based on the traditional
“smaller-norm-less-important” criterion. Given

filter 𝐹𝑗, its L2 norm is computed as:

𝑛𝑜𝑟𝑚(𝐹𝑗 , 2) = ∑|𝑓𝑖,𝑗|

𝑐𝑘2

𝑖=1

 (2),

where 𝑓𝑖,𝑗 is the 𝑖-th element of 𝐹𝑗 . Filters with

smaller L2 norm values, which indicate lower
overall importance, are pruned. This
methodology is inspired by the intuition that
smaller-norm weight filters contribute less to
model’s final prediction.

▪ Geometric Median: This algorithm was

proposed by (He et al., 2019). It is based on
Geometric Median (GM), the classic robust
estimator of centrality for data in Euclidean
spaces, to prune redundant filters in a layer.
Unlike magnitude-based methods such as the
L2 Norm, GM focuses on minimizing information
redundancy by pruning filters that are closer to
the geometric center of the filter set. As defined
in (He et al., 2019), the GM of a set of filters,

denoted as 𝑥GM , is mathematically expressed
as:

𝑥GM = arg min
𝑥∈𝑅𝑘×𝑘×𝑐

∑ ||𝑥

𝑗′∈[1,𝑛]

− 𝐹𝑗′||2, (3)

where 𝑥 represents a filter in a layer and is used
as a placeholder to denote any filter from the set
of filters in that layer. Subsequently, the filter in
the layer closest to this geometric median is
identified by:

𝐹𝑗∗ = arg min
𝐹𝑗′

| 𝐹𝑗′ − 𝑥GM|2, s.t. 𝑗′ ∈ [1, 𝑛]. (4)

To avoid the high computational cost of solving
for the geometric median, an efficient
approximation in employed. Specifically, the
algorithm directly selects the filter that
minimizes the sum of pairwise distances to all
other filters:

𝐹𝑥∗ = arg min
𝑥

𝑔 (𝑥), s.t. 𝑥 ∈ {𝐹1, … , 𝐹𝑛} (5)

where the function 𝑔(𝑥) is defined as:

𝑔(𝑥) = ∑ |

𝑛

𝑗′=1

𝑥 − 𝐹𝑗′|2. (6)

The filter 𝐹𝑥∗ that minimizes the aggregate

distance 𝑔(𝑥) is considered the most redundant
and can be pruned, resulting in minimal impact
on the network’s representational capacity.

▪ Group Taylor: Group Taylor importance
criterion estimates the contribution of each
convolutional filter to the network’s loss using a
first-order Taylor expansion. It evaluates how
the removal of a filter is expected to affect the
loss function by leveraging both the filter’s

weight and its gradient. Let 𝑊 ∈ 𝑅𝐶out×𝐶in𝐾ℎ×𝐾𝑤,
denote the 4D convolutional weight tensor,
where 𝐶𝑜𝑢𝑡 , is the number of output channels
(i.e., filters). The importance of the 𝑖 -th filter

𝑊𝑖 ∈ 𝑅𝐶in×𝐾ℎ×𝐾𝑤 is:

𝐼(𝑊𝑖) = |𝑊𝑖 ⋅
∂ℒ

∂𝑊𝑖

| , ∀𝑖 ∈ [1, 𝐶out], (9)

where ℒ is the loss function, 𝑤𝑖 is the 𝑖-th filter

(i.e., output channel), and
∂ℒ

∂𝑊𝑖
 is its gradient.

The dot product is element-wise and summed
over all dimensions. If the layer includes biases

𝑏 ∈ ℝ𝐶𝑜𝑢𝑡 , their importance is similarly computed
as:

𝐼(𝑏𝑖) = |𝑏𝑖 ⋅
∂ℒ

∂𝑏𝑖

| , ∀𝑖 ∈ [1, 𝐶out]. (10)

Filters and biases with the lowest Taylor
importance values are considered the least
critical and are pruned accordingly.

▪ Gradient based: Gradient based pruning
computes the importance of each convolutional
filter based on the norm of its gradient with
respect to the loss function, assuming that filters
with larger gradients contribute more
significantly to loss minimization. For a
convolutional weight tensor 𝑊𝑖 ∈ 𝑅𝐶out×𝐶in𝐾ℎ×𝐾𝑤,

the importance of the 𝑖-th output filter is:

𝐼(𝑊𝑖) = |
∂ℒ

∂𝑊𝑖

|𝑝, ∀𝑖 ∈ [1, 𝐶out], (11)

where
∂ℒ

∂𝑊𝑖
 is the gradient of the loss with respect

to the 𝑖 -th filter, and | ⋅ |𝑝 denotes the 𝑝-norm

(e.g., 𝑝 = 2 for the Euclidean norm). Filters with
smaller gradient norms are considered less
important and are pruned.

 When pruning is applied to linear layers, it
corresponds to removing entire neurons, either from
the input or output of the layer. In this context, the

The University of Strathclyde 5

pruning process removes columns or rows of the
weight matrix depending on whether the goal is to
reduce input or output dimensionality. For a linear
layer with weight matrix 𝑊 ∈ 𝑅𝑚×𝑛, where 𝑚 is the

number of output features and 𝑛 is the number of
input features. Pruning input neurons corresponds

to removing columns 𝑤𝑗 ∈ 𝑅𝑚, for 𝑗 = 1, … , 𝑛 and

pruning output neurons corresponds to removing
rows. Similar to convolutional filters, various criteria
(e.g., L2 norm, Geometric Median) can be applied to
these column or row vectors to evaluate their
importance and determine which ones to prune. In
our experiments, we apply the same scoring criteria
used in convolutional layers on the corresponding
dimensions of linear layers, allowing a unified
pruning strategy across all model components.

3.2 Soft Pruning

Table 3: Soft Pruning Algorithm

Input: Pre-trained model M, example

input X, labels Y, pruning ratio r,

pruning steps N, criterion (e.g.,

FPGM), loss and forward functions

1. Train BRepNet to 360Fusion

2. Initialize pruner P with M, X, Y,

r, criterion

3. Define ignored layers (e.g., final

classification layer)

4. Repeat N times:

5. Compute outputs and gradients

on M(X)

6. Apply soft pruning (zero

weights)

7. Fine-tune model

8. Print sparsity

9. Apply hard pruning to M

10. Adjust model architecture post-

pruning

11. Final fine-tuning with lower LR

12. Test pruned model

Output: Pruned model

We combine all the algorithms with the Soft

Pruning (He et al., 2018) procedure to prune
BRepNet in an iterative manner. Soft pruning is an
iterative method to prune deep networks and is
designed to address limitations in traditional pruning
techniques, which permanently prune filters or
channels and thereby reduce the model’s
representational capacity. Soft Pruning allows
pruned filters to be updated during subsequent

model training. One main advantage offered by this
approach is that it preserves a larger model capacity
since updating previously pruned filters provides a
broader optimization space compared to
permanently setting filters to zero. This larger
optimization space allows the network to better learn
from training data (He et al., 2019). The soft pruning
algorithm used in our experiments is summarized in
Table 3.

4. EXPERIMENTS

4.1 Experimental Settings
Experiments were conducted using the following

pruning rates θ = {0.1, 0.2, 0.4, 0.8} . The pruning
rate refers to sparsity pre pruned layer. All network
layers, except for the last one that is used to output
the predictions for the faces, are pruned. For the
employment of the algorithms, torch-pruning (Fang
et al., 2023) library was utilized.

4.2 Dataset and Metrics
The dataset in which the BRepNet was originally

trained and evaluated is the 360Fusion Dataset. It is
a big dataset containing around 36k 3D CAD models
in BRep format. The CAD models are segmented to
8 classes related to machining operations. The
classes are namely: ExtrudeSide, ExtrudeEnd,
Chamfer, Fillet, RevolveEnd, RevolveSide, CutEnd
and CutSide.

The metrics used to evaluate model’s
performance are the typical metrics used for
evaluating segmentation models. In the following
equations, let K represent the total number of
classes, 𝑝𝑖𝑖 denote the correct predictions for class

𝑖, 𝑝𝑖𝑗 represent the misclassifications from class 𝑖 to

class 𝑗 , and so on. The equations for the most
important metrics are as follows:

▪ Accurary: computes the ratio between the

number of truly classified samples and the total
number of samples.

Acc = 𝐾 ∑
𝑝𝑖𝑖

∑ 𝑝𝑖𝑗
𝐾
𝑗=0

𝑝

𝑖=0

 (12)

▪ Mean Intersection over Union: computes the

intersection ration between ground truth and
predicted value averaged over the total number
of classes K.

𝑚𝐼𝑜𝑈 =
1

𝐾 + 1
∑

𝑝𝑖𝑖

∑ 𝑝𝑖𝑗
𝐾
𝑗=0 + ∑ 𝑝𝑗𝑖

𝐾
𝑗=0 − 𝑝𝑖𝑖

 (13)

𝐾

𝑖=0

The University of Strathclyde 6

5. RESULTS

 As mentioned in Section 2.2, we evaluate the
pruning performance on two setups of BRepNet: (1)
the version with the surface encoder, and (2) a
minimal version consisting only of linear layers
(MLPs). The models are tested under various
pruning rates ranging from 10% to 90% and we
report Accuracy and Mean IoU to assess
performance. Our goal is to determine which
pruning criteria preserve – or even improve -
performance while significantly reducing model size.

5.1 BRepNet with Surface encoder

We first apply pruning to the BRepNet with the
surface encoder at a modest pruning rate of 10%.
This will give us insights into how each pruning
criterion performs under light compression, where
model capacity is still largely retained.

Table 4: Results for 10% Pruning Rate – BRepNet with
Surface Encoder

Criterion Parameters
Model
Size

Accuracy
Mean
IoU

Original 603.532 2.414MB 0.9534 0.8318
L2-Norm 587.711 2.351MB 0.9545 0.8390
FPGM 587.711 2.351MB 0.9571 0.8405
Taylor 587.711 2.351MB 0.9579 0.8461

Gradient 587.711 2.351MB 0.9578 0.8447

At 10% pruning rate, all criteria retain and even

slightly improve performance. This complies with
findings from Computer Vision experiments which
have shown that pruning may act as a form of
regularization, allowing the model to generalize
better. All methods maintain model size reductions
while preserving high accuracy.

Table 5: Results for 20% Pruning Rate – BRepNet with
Surface Encoder

Criterion Parameters
Model
Size

Accuracy
Mean
IoU

Original 603.532 2.414MB 0.9534 0.8318
L2-Norm 549.668 2.199MB 0.9504 0.8135
FPGM 549.668 2.199MB 0.9540 0.8237
Taylor 549.668 2.199MB 0.9483 0.8036

Gradient 549.668 2.199MB 0.9540 0.8274

While we increase the pruning rate, FPGM and

Group Taylor criteria show a small increase in
accuracy but not in mean IoU, as it can be seen in
Table 5.

We then test an extreme pruning scenario,
reducing 90% of the parameters from the BRepNet.
This setup helps evaluate the pruning criteria in an
aggressive compression scenario.

Table 6: Results for 90% Pruning Rate – BRepNet with
Surface Encoder

Criterion Parameters
Model
Size

Accuracy
Mean
IoU

Original 603.532 2.414MB 0.9534 0.8318
L2-Norm 29.883 0.120MB 0.8435 0.5983
FPGM 29.883 0.120MB 0.9398 0.7887
Taylor 29.883 0.120MB 0.9084 0.6876

Gradient 29.883 0.120MB 0.8988 0.6479

As expected, L2 Norm degrades significantly,

with a drop in both accuracy and mean IoU.
However, the remaining algorithms maintain high
accuracy despite the extreme compression. FPGM
achieves 0.9398 accuracy – corresponding to less
than 2% loss compared to the original model – while
also retaining a strong mean IoU. Group Taylor and
Gradient criteria also preserve performance,
reaching 0.9084 and 0.8988 accuracy, respectively.
The results in Table 6, indicate that redundancy still
exists even in high-capacity models like BRepNet,
and careful pruning can exploit it.

5.2 MLP – only Compact BRepNet

For the second setup of experiments, we test the
algorithms to the most compact version of the
BRepNet, the model with only MLP layers was used.
We decided to evaluate the pruning ratios 𝜃 =
 {0.2, 0.4}. Pruning ratios bigger than 0.4 removed
critical parts and the network was not able to
recover, so we only tested these 2 pruning ratios.

Table 7: Results for 20% Pruning Rate – BRepNet only
with MLP layers

Criterion Parameters
Model
Size

Accuracy
Mean
IoU

Original 181.196 0.725MB 0.9390 0.8076
L2-Norm 148.573 0.594MB 0.9338 0.8052

GM 148.573 0.594MB 0.9407 0.8079
Taylor 148.573 0.594MB 0.9341 0.7806

Gradient 148.573 0.594MB 0.9373 0.8015

Table 8: Results for 40% Pruning Rate – BRepNet only
with MLP layers

Criterion Parameters
Model
Size

Accuracy
Mean
IoU

Original 181.196 0.725MB 0.9390 0.8076
L2-Norm 107.875 0.431MB 0.9335 0.7903

GM 107.875 0.431MB 0.9320 0.7837
Taylor 107.875 0.431MB 0.9335 0.7855

Gradient 107.875 0.431MB 0.9330 0.7859

From Table 8, we notice that the Geometric

Median criterion is the only one to yield a minor
accuracy improvement at 20% pruning rate. This

The University of Strathclyde 7

observation highlights GM’s ability to capture
redundancy even in models that are already
compact.

Figure 1: BRepNet with Surface Encoder

Figure 2: MPL BRepNet

Figure 1 shows the accuracy trends for all

pruning methods applied to BRepNet with the
surface encoder, while Figure 2 presents the results
of the experiments for the compact version of the
model.

6. LIMITATIONS AND FUTURE WORK

The scope of our study was limited to structured
pruning on a specific architecture (BRepNet) and
dataset (360Fusion). While this setup provided a
controlled environment for evaluating pruning
effectiveness, it does not yet account for the

performance of such approaches across different
datasets, industrial conditions, or other CAD model
representations.

Future work could extend this approach to other
models designed for CAD-based reasoning, such as
CADNet and UV-Net, or explore combinations with
quantization and knowledge distillation for even
greater efficiency. Evaluating generalization under
real-world deployment scenarios and developing
adaptive pruning schedules may further support
robust deployment on embedded industrial systems.

7. CONCLUSION

In this work, we explored the application of
structured pruning on BRepNet, a model designed
for machining feature recognition in CAD models.
We evaluated four pruning strategies across two
configurations – a high-capacity version with a
surface encoder and an extremely compact MLP-
only version of the model. Our results demonstrated
that pruning can act as a form of regularization,
maintaining or even improving accuracy at low
pruning rates. Notably, we achieved less than 2%
accuracy loss after removing over 90% of the model
parameters, with the Geometric Median. These
findings showcased the potential of structured
pruning to enable efficient deployment of AI models
in resource-constrained manufacturing
environments. To the best of our knowledge, this
was the first work to explore such techniques in the
context of BRepNet and machining-specific AI
systems.

REFERENCES

Ardakani, A., Condo, C. and Gross, W.J. (2017)
‘Activation pruning of deep convolutional neural
networks’, in 2017 IEEE Global Conference on
Signal and Information Processing (GlobalSIP).
2017 IEEE Global Conference on Signal and
Information Processing (GlobalSIP), Montreal, QC:
IEEE, pp. 1325–1329. Available at:
https://doi.org/10.1109/GlobalSIP.2017.8309176.

Colligan, A.R. et al. (2022) ‘Hierarchical CADNet:
Learning from B-Reps for Machining Feature
Recognition’, Computer-Aided Design, 147, p.
103226. Available at:
https://doi.org/10.1016/j.cad.2022.103226.

Fang, G. et al. (2023) ‘DepGraph: Towards Any
Structural Pruning’, in 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition
(CVPR). 2023 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), Vancouver,
BC, Canada: IEEE, pp. 16091–16101. Available at:
https://doi.org/10.1109/CVPR52729.2023.01544.

Gkrispanis, K., Gkalelis, N. and Mezaris, V.
(2024) ‘Filter-Pruning of Lightweight Face Detectors

The University of Strathclyde 8

Using a Geometric Median Criterion’, in 2024
IEEE/CVF Winter Conference on Applications of
Computer Vision Workshops (WACVW). 2024
IEEE/CVF Winter Conference on Applications of
Computer Vision Workshops (WACVW), Waikoloa,
HI, USA: IEEE, pp. 280–289. Available at:
https://doi.org/10.1109/WACVW60836.2024.00037.

Hanocka, R. et al. (2019) ‘MeshCNN: a network
with an edge’, ACM Transactions on Graphics,
38(4), pp. 1–12. Available at:
https://doi.org/10.1145/3306346.3322959.

He, Y. et al. (2018) ‘Soft Filter Pruning for
Accelerating Deep Convolutional Neural Networks’.
arXiv. Available at:
https://doi.org/10.48550/arXiv.1808.06866.

He, Y. et al. (2019) ‘Filter Pruning via Geometric
Median for Deep Convolutional Neural Networks
Acceleration’, in 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).
2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Long Beach, CA,
USA: IEEE, pp. 4335–4344. Available at:
https://doi.org/10.1109/CVPR.2019.00447.

Jayaraman, P.K. et al. (2021) ‘UV-Net: Learning
from Boundary Representations’, in 2021 IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR). 2021 IEEE/CVF Conference
on Computer Vision and Pattern Recognition
(CVPR), Nashville, TN, USA: IEEE, pp. 11698–
11707. Available at:
https://doi.org/10.1109/CVPR46437.2021.01153.

Kumar, A. et al. (2021) ‘Pruning filters with L1-
norm and capped L1-norm for CNN compression’,
Applied Intelligence, 51(2), pp. 1152–1160.
Available at: https://doi.org/10.1007/s10489-020-
01894-y.

Lambourne, J.G. et al. (2021) ‘BRepNet: A
topological message passing system for solid
models’. arXiv. Available at:
https://doi.org/10.48550/arXiv.2104.00706.

Li, H. et al. (2017) ‘Pruning Filters for Efficient
ConvNets’. arXiv. Available at:
https://doi.org/10.48550/arXiv.1608.08710.

Luo, J.-H., Wu, J. and Lin, W. (2017) ‘ThiNet: A
Filter Level Pruning Method for Deep Neural
Network Compression’, in 2017 IEEE International
Conference on Computer Vision (ICCV). 2017 IEEE
International Conference on Computer Vision
(ICCV), Venice: IEEE, pp. 5068–5076. Available at:
https://doi.org/10.1109/ICCV.2017.541.

Manikanta, J.E. et al. (2024) ‘Machine Learning
and Artificial Intelligence Supported Machining: A
Review and Insights for Future Research’, Journal
of The Institution of Engineers (India): Series C,
105(6), pp. 1653–1663. Available at:
https://doi.org/10.1007/s40032-024-01118-z.

Molchanov, P. et al. (2017) ‘PRUNING
CONVOLUTIONAL NEURAL NETWORKS FOR
RESOURCE EFFICIENT INFERENCE’.

Qi, C.R. et al. (2017) ‘PointNet++: Deep
Hierarchical Feature Learning on Point Sets in a
Metric Space’. arXiv. Available at:
https://doi.org/10.48550/arXiv.1706.02413.

Wang, Y. et al. (2019) ‘Dynamic Graph CNN for
Learning on Point Clouds’, ACM Transactions on
Graphics, 38(5), pp. 1–12. Available at:
https://doi.org/10.1145/3326362.

