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ABSTRACT:  
Machining feature recognition is the first step in the automation of the design and 
production pipeline. Currently, this process relies on manual annotation by human 
experts, which is time-consuming and prone to errors. Computer Numerical Control 
(CNC) machines are automated tools that use pre-programmed computer software 
to control machining processes with high precision and efficiency. Enhancing CNC 
machines with an AI-based approach for the recognition of machining features in the 
CAD (Computer Aided Design) input models eliminates the need for manual 
annotation and enables seamless integration of design and production workflows for 
optimized machining strategies. CNC controllers often operate in resource-
constrained environments with limited computational capabilities. Therefore, there is 
a pressing demand for machining feature recognition models that can operate 
efficiently across these devices. In recent years, network pruning algorithms have 
gained significant attention from researchers due to the growing size and complexity 
of deep learning models, which often require considerable computational resources 
for training and development. Network pruning is a technique that reduces the size 
of deep learning models by removing unnecessary weights or entire structures (e.g., 
filters, channels). Despite their growing adoption in other domains, pruning strategies 
have not been explored in machining-specific AI models. In this paper, we evaluate 
four different scoring criteria combined with the Soft Pruning iterative procedure on 
BRepNet, a machining feature recognition model. Our experiments demonstrate that 
pruning not only preserves performance but can also lead to slight accuracy 
improvements for small pruning rates. Remarkably, when removing 90% of the 
model’s parameters, one pruning criterion results in only 2% loss in accuracy. These 
findings highlight the potential of pruning as a practical approach to developing 
efficient and compact AI models for deployment in manufacturing and robotized 
construction environments. 
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1. INTRODUCTION  
The first step towards the automation of the 

production pipeline involves identifying machining-

relevant features within CAD models, which 
subsequently enables the generation of operations 
required to manufacture the desired object. Until 
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recent years, human expertise was essential for this 
step. This process has been completely transformed 
by the development of AI algorithms, which allow 
intelligent systems to be directly integrated with 
CNC machines. Despite these technological 
breakthroughs, a significant challenge persists; 
CNC machines and similar industrial computing 
environments that are used in production, are 
inherently resource-constrained and they were not 
originally designed to efficiently execute deep 
learning models (Manikanta et al., 2024). These 
computational limitations create a bottleneck in the 
integration of AI technologies in manufacturing 
settings. With the continuous growth of machine 
learning models in depth and complexity, there is an 
increased need for sophisticated optimization 
techniques to ensure practical, sustainable and 
cost-effective optimization. 

Network pruning is a field that has emerged in 
the recent years to tackle the problem of deep neural 
networks, aiming at reducing their size without a 
significant drop in their performance. Various 
pruning algorithms have been proposed, mainly in 
Computer Vision tasks (Li et al., 2017; Luo, Wu and 
Lin, 2017; He et al., 2019). Yet, their application and 
potential benefits in the domain of manufacturing 
domain remain unexplored. 

Considering the above, we aim to examine the 
application of network pruning to a novel machining 
feature recognition model, named BRepNet 
(Lambourne et al., 2021). BRepNet can be 
configured in multiple ways, depending on the 
usage of UV-grids (Jayaraman et al., 2021) and the 
selection of input features. In this work, we evaluate 
two configurations. One with the use of UV-grids 
(surface encoder) and another that represents the 
most compact version of the network architecture 
while still yielding competitive performance. 

We evaluate four different scoring criteria 
combined with the Soft Pruning (He et al., 2018) 
iterative procedure on BRepNet (Lambourne et al., 
2021). The scoring criteria are namely: the 
Geometric Median (He et al., 2019), the L2-Norm, 
the Activation Importance (Ardakani, Condo and 
Gross, 2017) and the Group Taylor importance 
criterion (Fang et al., 2023). Experimental results on 
the 360Fusion dataset show that the proposed 
approach has the potential to generate even more 
compact networks with state-of-the-art 
performance, especially when small pruning rates 
are used. Overall, we provide a comprehensive 
analysis of the above criteria and determine which 
of them -if any- offers a notable advantage in 
manufacturing domain. The paper contributions can 
be summarized as follows: 
▪ To the best of our knowledge, this is the first 

study to investigate the effects of network 

pruning in the domain of machining feature 
recognition. 

▪ The proposed approach yields a family of 
compact models suitable for deployment on 
resource-constrained environments. 

▪ We present a comprehensive comparison of 
multiple pruning criteria, offering insights into 
the effectiveness of them and giving the 
opportunity for applications in other domains. 

▪ We observe performance improvement for the 
baseline BRepNet segmentation model. 
 

     The paper is organized as follows: Section 2 
presents the related work on Segmentation of CAD-
Derived representations and Network Pruning. 
Section 3 explains the methodology used in this 
paper. Section 4 presents the experimental settings 
used, Section 5 the results of the experiments and 
finally, Section 6 concludes our work. 
 
2. RELATED WORK 
 

2.1 Segmentation of CAD-Derived 
Representations  

In the literature, many models have been 
proposed for segmenting representations derived 
from CAD models, such as point clouds and 
meshes. Prior approaches like PointNet++ (Qi et al., 
2017), DGCNN (Wang et al., 2019) and MeshCNN 
(Hanocka et al., 2019) have demonstrated strong 
performance, but these methods require 
transformations that may lead to information loss. 
Moreover, these models tend to have a large 
number of parameters, making them less suitable 
for resource-constrained environments such as 
CNC machines.  

To address these challenges, CADNet (Colligan 
et al., 2022) and BRepNet (Lambourne et al., 2021) 
were specifically designed for machining feature 
recognition. CADNet represents CAD models as 
hierarchical graph structures, capturing surface 
geometry and face topology. BRepNet, on the other 
hand, operates on BRep structures and is already a 
relative compact model compared to other 
approaches. 

While BRepNet is more lightweight than the other 
models, further optimization is needed for real-time 
deployment. This motivates the use of pruning 
algorithms to further reduce the size while 
preserving -or even enhancing- performance. 
 
2.2 BRepNet 

BRepNet (Lambourne et al., 2021) is a neural 
network specifically designed for machining feature 
recognition in CAD models. It operates directly on 
boundary representation (BRep) data structures, 
aiming to improve the segmentation of BRep 
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models. The core innovation of BRepNet lies in its 
convolutional kernels, which are defined with 
respect to oriented edges within the BRep structure. 

To extract meaningful features, BRepNet 
identifies localized neighborhoods of faces, edges 
and coedges around each coedge, utilizing 
learnable parameters to detect patterns in these 
feature vectors. A key concept introduced by 
BRepNet is topological walks, which enable the 
model to navigate the BRep structure. These walks 
are guided by adjacency relationships - such as 
next, previous and mating connections - allowing the 
network to traverse coedges, edges and faces 
effectively. 

BRepNet supports different kernel 
configurations, which determine how geometric and 
topological information is captured and processed. 
Each configuration defines a distinct set of 
topological walks, aggregating information from 
adjacent elements. 

In this work, we evaluate two versions of the 
BRepNet architecture. The first is a larger 
configuration with a surface encoder, which includes 
UV-grid embeddings to enhance face 
representations. It contains a total of 603,532 
trainable parameters. The second configuration is 
the most compact version of BRepNet. It excludes 
the surface encoder entirely and does not use the 
topological convolution kernel. Instead, it relies 
solely on a lightweight MLP. This version contains 
only 181,196 parameters, making it a robust 
foundation for assessing the effectiveness of 
pruning strategies. Tables 1 and 2 provide the 
architectural breakdown of both model variants. 

 
Table 1: BRepNet with Surface Encoder 

 

Module Parameters  

Surface Encoder 390K  

Module List 211.9K  

Classification layer 680  

 
 

Table 2: MLP-only BRepNet 

 

Module Parameters  

Module List 180.5K  

Classification layer 680  

 
 
2.3 Network Pruning 

Network Pruning can be roughly categorized into 
unstructured and structured pruning. Unstructured 
pruning removes individual weights inside a weight 
matrix and structured pruning removes whole 

network structures like filters or channels (He et al., 
2019). Unstructured pruning creates a model with 
irregular sparsities, while structured pruning yields 
models that can be easily deployed. For the rest of 
the paper, we will focus on structured pruning. 

There are various criteria for determining which 
filters or channels to prune, ranging from simple 
approaches, like removing components based on 
their magnitude (e.g., L2-norm of weights), to more 
advanced techniques that consider the impact of 
each component on the network’s output, such as 
Group Taylor importance criterion (Fang et al., 
2023). 
 

3. METHODOLOGY 
 

3.1 Scoring Criteria 
Consider an individual layer in a neural network 

with weight parameters, 
 

𝐹 = [𝐹1, … , 𝐹𝑛], (1) 
 

where 𝐹𝑗 ∈ 𝑅𝑘×𝑘×𝑐  is the 𝑗-th filter with spatial size 

𝑘 × 𝑘  and depth 𝑐 , and 𝑛  is the total number of 
filters in the layer. Based on this formulation, the 
goal of the proposed approach is: given a pruning 
rate 𝜃 , prune the 𝑛𝜃  filters in each layer of the 
model.  

Redundancy-based pruning algorithms, i.e. 
algorithms that identify and remove filters in a layer 
with the most similar characteristics, have been 
shown to outperform other criteria in various 
contexts (He et al., 2019; Gkrispanis, Gkalelis and 
Mezaris, 2024). To this end, we adapt the Geometric 
Median (He et al., 2019) algorithm, a method that 
has demonstrated strong performance across 
different architectures and application domains by 
removing filters closest to the geometric centre of 
the layer.  

For comparison purposes, we additionally 
evaluate three alternative importance criteria: the 
GroupTaylor (Molchanov et al., 2017), which 
estimates the impact of each group of weights on 
the loss function using the first-order Talyor 
expansion; gradient-based importance (Fang et al., 
2023), which ranks parameter sensitivity based on 
backpropagation gradients; and the well-known L2 
Norm, which evaluates parameters based on their 
Euclidean magnitude. All four pruning criteria are 
described briefly in the following: 

 
▪ L2 Norm: The L2 Norm pruning algorithm 

evaluates the significance of groups of weights 
(such as filters or channels) in model’s layers 
based on their L2 Norm. It is based on the same 
assumption as the L1 Norm algorithm, which 
has been tested in various works (Li et al., 2017; 



 

The University of Strathclyde   4 

 

Kumar et al., 2021). It is based on the traditional 
“smaller-norm-less-important” criterion. Given 

filter 𝐹𝑗, its L2 norm is computed as: 

 

𝑛𝑜𝑟𝑚(𝐹𝑗 , 2) = ∑|𝑓𝑖,𝑗|

𝑐𝑘2

𝑖=1

 (2), 

 

where 𝑓𝑖,𝑗  is the 𝑖-th element of 𝐹𝑗 . Filters with 

smaller L2 norm values, which indicate lower 
overall importance, are pruned. This 
methodology is inspired by the intuition that 
smaller-norm weight filters contribute less to 
model’s final prediction. 

 
▪ Geometric Median: This algorithm was 

proposed by (He et al., 2019). It is based on 
Geometric Median (GM), the classic robust 
estimator of centrality for data in Euclidean 
spaces, to prune redundant filters in a layer. 
Unlike magnitude-based methods such as the 
L2 Norm, GM focuses on minimizing information 
redundancy by pruning filters that are closer to 
the geometric center of the filter set. As defined 
in (He et al., 2019), the GM of a set of filters, 

denoted as 𝑥GM , is mathematically expressed 
as: 
 

𝑥GM = arg min
𝑥∈𝑅𝑘×𝑘×𝑐

∑ ||𝑥

𝑗′∈[1,𝑛]

− 𝐹𝑗′||2, (3) 

 
where 𝑥 represents a filter in a layer and is used 
as a placeholder to denote any filter from the set 
of filters in that layer. Subsequently, the filter in 
the layer closest to this geometric median is 
identified by: 

 

𝐹𝑗∗ = arg min
𝐹𝑗′

| 𝐹𝑗′ − 𝑥GM|2, s.t. 𝑗′ ∈ [1, 𝑛].   (4) 

 
To avoid the high computational cost of solving 
for the geometric median, an efficient 
approximation in employed. Specifically, the 
algorithm directly selects the filter that 
minimizes the sum of pairwise distances to all 
other filters: 
 

𝐹𝑥∗ = arg min
𝑥

𝑔 (𝑥),  s.t. 𝑥 ∈ {𝐹1, … , 𝐹𝑛} (5) 

 
where the function 𝑔(𝑥) is defined as: 
 

𝑔(𝑥) = ∑ |

𝑛

𝑗′=1

𝑥 − 𝐹𝑗′|2. (6) 

 

The filter 𝐹𝑥∗  that minimizes the aggregate 

distance 𝑔(𝑥) is considered the most redundant 
and can be pruned, resulting in minimal impact 
on the network’s representational capacity. 
 

▪ Group Taylor: Group Taylor importance 
criterion estimates the contribution of each 
convolutional filter to the network’s loss using a 
first-order Taylor expansion. It evaluates how 
the removal of a filter is expected to affect the 
loss function by leveraging both the filter’s 

weight and its gradient. Let 𝑊 ∈ 𝑅𝐶out×𝐶in𝐾ℎ×𝐾𝑤, 
denote the 4D convolutional weight tensor, 
where 𝐶𝑜𝑢𝑡 , is the number of output channels 
(i.e., filters). The importance of the 𝑖 -th filter 

𝑊𝑖 ∈ 𝑅𝐶in×𝐾ℎ×𝐾𝑤 is: 
 

𝐼(𝑊𝑖) = |𝑊𝑖 ⋅
∂ℒ

∂𝑊𝑖

| ,  ∀𝑖 ∈ [1, 𝐶out], (9) 

 
where ℒ is the loss function, 𝑤𝑖 is the 𝑖-th filter 

(i.e., output channel), and 
∂ℒ

∂𝑊𝑖
 is its gradient. 

The dot product is element-wise and summed 
over all dimensions. If the layer includes biases 

𝑏 ∈ ℝ𝐶𝑜𝑢𝑡 , their importance is similarly computed 
as: 
 

𝐼(𝑏𝑖) = |𝑏𝑖 ⋅
∂ℒ

∂𝑏𝑖

| ,  ∀𝑖 ∈ [1, 𝐶out]. (10) 

 
Filters and biases with the lowest Taylor 
importance values are considered the least 
critical and are pruned accordingly. 
 

▪ Gradient based: Gradient based pruning 
computes the importance of each convolutional 
filter based on the norm of its gradient with 
respect to the loss function, assuming that filters 
with larger gradients contribute more 
significantly to loss minimization. For a 
convolutional weight tensor 𝑊𝑖 ∈ 𝑅𝐶out×𝐶in𝐾ℎ×𝐾𝑤, 

the importance of the 𝑖-th output filter is: 
 

𝐼(𝑊𝑖) = |
∂ℒ

∂𝑊𝑖

|𝑝,  ∀𝑖 ∈ [1, 𝐶out], (11) 

 

where 
∂ℒ

∂𝑊𝑖
 is the gradient of the loss with respect 

to the 𝑖 -th filter, and | ⋅ |𝑝  denotes the 𝑝-norm 

(e.g., 𝑝 = 2 for the Euclidean norm). Filters with 
smaller gradient norms are considered less 
important and are pruned. 

 
     When pruning is applied to linear layers, it 
corresponds to removing entire neurons, either from 
the input or output of the layer. In this context, the 
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pruning process removes columns or rows of the 
weight matrix depending on whether the goal is to 
reduce input or output dimensionality. For a linear 
layer with weight matrix 𝑊 ∈ 𝑅𝑚×𝑛, where 𝑚 is the 

number of output features and 𝑛 is the number of 
input features. Pruning input neurons corresponds 

to removing columns 𝑤𝑗 ∈ 𝑅𝑚,  for 𝑗 =  1, … , 𝑛  and 

pruning output neurons corresponds to removing 
rows. Similar to convolutional filters, various criteria 
(e.g., L2 norm, Geometric Median) can be applied to 
these column or row vectors to evaluate their 
importance and determine which ones to prune. In 
our experiments, we apply the same scoring criteria 
used in convolutional layers on the corresponding 
dimensions of linear layers, allowing a unified 
pruning strategy across all model components.  
 
3.2 Soft Pruning 
 
Table 3: Soft Pruning Algorithm 

Input: Pre-trained model M, example 

input X, labels Y, pruning ratio r, 

pruning steps N, criterion (e.g., 

FPGM), loss and forward functions 

 

1. Train BRepNet to 360Fusion 

2. Initialize pruner P with M, X, Y, 

r, criterion 

3. Define ignored layers (e.g., final 

classification layer) 

------------------------------------ 

4.  Repeat N times: 

5.      Compute outputs and gradients 

on M(X) 

6.      Apply soft pruning (zero 

weights) 

7.      Fine-tune model 

8.      Print sparsity 

------------------------------------ 

9. Apply hard pruning to M 

10. Adjust model architecture post-

pruning 

11. Final fine-tuning with lower LR 

12. Test pruned model 

Output: Pruned model 

 
We combine all the algorithms with the Soft 

Pruning (He et al., 2018) procedure to prune 
BRepNet in an iterative manner. Soft pruning is an 
iterative method to prune deep networks and is 
designed to address limitations in traditional pruning 
techniques, which permanently prune filters or 
channels and thereby reduce the model’s 
representational capacity. Soft Pruning allows 
pruned filters to be updated during subsequent 

model training. One main advantage offered by this 
approach is that it preserves a larger model capacity 
since updating previously pruned filters provides a 
broader optimization space compared to 
permanently setting filters to zero. This larger 
optimization space allows the network to better learn 
from training data (He et al., 2019). The soft pruning 
algorithm used in our experiments is summarized in 
Table 3. 

 
4. EXPERIMENTS 
 

4.1 Experimental Settings 
Experiments were conducted using the following 

pruning rates θ =  {0.1, 0.2, 0.4, 0.8} . The pruning 
rate refers to sparsity pre pruned layer. All network 
layers, except for the last one that is used to output 
the predictions for the faces, are pruned. For the 
employment of the algorithms, torch-pruning (Fang 
et al., 2023) library was utilized. 
 

4.2 Dataset and Metrics 
The dataset in which the BRepNet was originally 

trained and evaluated is the 360Fusion Dataset. It is 
a big dataset containing around 36k 3D CAD models 
in BRep format. The CAD models are segmented to 
8 classes related to machining operations. The 
classes are namely: ExtrudeSide, ExtrudeEnd, 
Chamfer, Fillet, RevolveEnd, RevolveSide, CutEnd 
and CutSide. 

The metrics used to evaluate model’s 
performance are the typical metrics used for 
evaluating segmentation models. In the following 
equations, let K represent the total number of 
classes, 𝑝𝑖𝑖 denote the correct predictions for class 

𝑖, 𝑝𝑖𝑗 represent the misclassifications from class 𝑖 to 

class 𝑗 , and so on. The equations for the most 
important metrics are as follows: 

 
▪ Accurary: computes the ratio between the 

number of truly classified samples and the total 
number of samples. 

Acc = 𝐾 ∑
𝑝𝑖𝑖

∑ 𝑝𝑖𝑗
𝐾
𝑗=0

𝑝

𝑖=0

 (12) 

 
▪ Mean Intersection over Union: computes the 

intersection ration between ground truth and 
predicted value averaged over the total number 
of classes K. 

 

𝑚𝐼𝑜𝑈 =
1

𝐾 + 1
∑

𝑝𝑖𝑖

∑ 𝑝𝑖𝑗
𝐾
𝑗=0 + ∑ 𝑝𝑗𝑖

𝐾
𝑗=0 − 𝑝𝑖𝑖

  (13)

𝐾

𝑖=0
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5. RESULTS 
 

      As mentioned in Section 2.2, we evaluate the 
pruning performance on two setups of BRepNet: (1) 
the version with the surface encoder, and (2) a 
minimal version consisting only of linear layers 
(MLPs). The models are tested under various 
pruning rates ranging from 10% to 90% and we 
report Accuracy and Mean IoU to assess 
performance. Our goal is to determine which 
pruning criteria preserve – or even improve -
performance while significantly reducing model size. 
 
5.1 BRepNet with Surface encoder 

We first apply pruning to the BRepNet with the 
surface encoder at a modest pruning rate of 10%. 
This will give us insights into how each pruning 
criterion performs under light compression, where 
model capacity is still largely retained. 

 
Table 4: Results for 10% Pruning Rate – BRepNet with 
Surface Encoder 

 

Criterion Parameters 
Model 
Size 

Accuracy 
Mean 
IoU 

 

Original 603.532 2.414MB 0.9534 0.8318  
L2-Norm 587.711 2.351MB 0.9545 0.8390  
FPGM 587.711 2.351MB 0.9571 0.8405  
Taylor 587.711 2.351MB 0.9579 0.8461  

Gradient 587.711 2.351MB 0.9578 0.8447  

 
At 10% pruning rate, all criteria retain and even 

slightly improve performance. This complies with 
findings from Computer Vision experiments which 
have shown that pruning may act as a form of 
regularization, allowing the model to generalize 
better. All methods maintain model size reductions 
while preserving high accuracy. 

 
 
Table 5: Results for 20% Pruning Rate – BRepNet with 
Surface Encoder 

 

Criterion Parameters 
Model 
Size 

Accuracy 
Mean 
IoU 

 

Original 603.532 2.414MB 0.9534 0.8318  
L2-Norm 549.668 2.199MB 0.9504 0.8135  
FPGM 549.668 2.199MB 0.9540 0.8237  
Taylor 549.668 2.199MB 0.9483 0.8036  

Gradient 549.668 2.199MB 0.9540 0.8274  

 
While we increase the pruning rate, FPGM and 

Group Taylor criteria show a small increase in 
accuracy but not in mean IoU, as it can be seen in 
Table 5. 

We then test an extreme pruning scenario, 
reducing 90% of the parameters from the BRepNet. 
This setup helps evaluate the pruning criteria in an 
aggressive compression scenario. 

 
Table 6: Results for 90% Pruning Rate – BRepNet with 
Surface Encoder 

 

Criterion Parameters 
Model 
Size 

Accuracy 
Mean 
IoU 

 

Original 603.532 2.414MB 0.9534 0.8318  
L2-Norm 29.883 0.120MB 0.8435 0.5983  
FPGM 29.883 0.120MB 0.9398 0.7887  
Taylor 29.883 0.120MB 0.9084 0.6876  

Gradient 29.883 0.120MB 0.8988 0.6479  

 
As expected, L2 Norm degrades significantly, 

with a drop in both accuracy and mean IoU. 
However, the remaining algorithms maintain high 
accuracy despite the extreme compression. FPGM 
achieves 0.9398 accuracy – corresponding to less 
than 2% loss compared to the original model – while 
also retaining a strong mean IoU. Group Taylor and 
Gradient criteria also preserve performance, 
reaching 0.9084 and 0.8988 accuracy, respectively. 
The results in Table 6, indicate that redundancy still 
exists even in high-capacity models like BRepNet, 
and careful pruning can exploit it. 

 
5.2 MLP – only Compact BRepNet 

For the second setup of experiments, we test the 
algorithms to the most compact version of the 
BRepNet, the model with only MLP layers was used. 
We decided to evaluate the pruning ratios 𝜃 =
 {0.2, 0.4}. Pruning ratios bigger than 0.4 removed 
critical parts and the network was not able to 
recover, so we only tested these 2 pruning ratios. 

 
Table 7: Results for 20% Pruning Rate – BRepNet only 
with MLP layers 

 

Criterion Parameters 
Model 
Size 

Accuracy 
Mean 
IoU 

 

Original 181.196 0.725MB 0.9390 0.8076  
L2-Norm 148.573 0.594MB 0.9338 0.8052  

GM 148.573 0.594MB 0.9407 0.8079  
Taylor 148.573 0.594MB 0.9341 0.7806  

Gradient 148.573 0.594MB 0.9373 0.8015  

 
 

Table 8: Results for 40% Pruning Rate – BRepNet only 
with MLP layers 

 

Criterion Parameters 
Model 
Size 

Accuracy 
Mean 
IoU 

 

Original 181.196 0.725MB 0.9390 0.8076  
L2-Norm 107.875 0.431MB 0.9335 0.7903  

GM 107.875 0.431MB 0.9320 0.7837  
Taylor 107.875 0.431MB 0.9335 0.7855  

Gradient 107.875 0.431MB 0.9330 0.7859  

 
From Table 8, we notice that the Geometric 

Median criterion is the only one to yield a minor 
accuracy improvement at 20% pruning rate. This 
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observation highlights GM’s ability to capture 
redundancy even in models that are already 
compact. 

 
Figure 1: BRepNet with Surface Encoder 

 
 

Figure 2: MPL BRepNet 

 
Figure 1 shows the accuracy trends for all 

pruning methods applied to BRepNet with the 
surface encoder, while Figure 2 presents the results 
of the experiments for the compact version of the 
model. 

 
6. LIMITATIONS AND FUTURE WORK 
 

The scope of our study was limited to structured 
pruning on a specific architecture (BRepNet) and 
dataset (360Fusion). While this setup provided a 
controlled environment for evaluating pruning 
effectiveness, it does not yet account for the 

performance of such approaches across different 
datasets, industrial conditions, or other CAD model 
representations.  

Future work could extend this approach to other 
models designed for CAD-based reasoning, such as 
CADNet and UV-Net, or explore combinations with 
quantization and knowledge distillation for even 
greater efficiency. Evaluating generalization under 
real-world deployment scenarios and developing 
adaptive pruning schedules may further support 
robust deployment on embedded industrial systems. 

 
7. CONCLUSION 
 

In this work, we explored the application of 
structured pruning on BRepNet, a model designed 
for machining feature recognition in CAD models. 
We evaluated four pruning strategies across two 
configurations – a high-capacity version with a 
surface encoder and an extremely compact MLP-
only version of the model. Our results demonstrated 
that pruning can act as a form of regularization, 
maintaining or even improving accuracy at low 
pruning rates. Notably, we achieved less than 2% 
accuracy loss after removing over 90% of the model 
parameters, with the Geometric Median. These 
findings showcased the potential of structured 
pruning to enable efficient deployment of AI models 
in resource-constrained manufacturing 
environments. To the best of our knowledge, this 
was the first work to explore such techniques in the 
context of BRepNet and machining-specific AI 
systems. 
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