
Chair of Computational Modeling and Simulation
TUM School of Engineering and Design
Technical University of Munich

Framework for Robotic Fabrication and
Automation in Timber Construction using
COMPAS FAB

Scientific work to obtain the degree

Master of Science (M.Sc.)

at the TUM School of Engineering and Design
of the Technical University of Munich.

Supervised by Mohammad Reza Kolani
Dr. Stavros Nousias

Submitted by Alicia Knauer

Fraunhoferstr. 15
D-80469 München
e-Mail: alicia.knauer@tum.de

Submitted on 17. February 2025

mailto:alicia.knauer@tum.de

II

Acknowledgment

I would like to express my gratitude to my supervisors, Mohammad Reza Kolani and Dr.
Stavros Nousias, for their invaluable guidance, support, and encouragement throughout
this research journey. Their insights and expertise have been instrumental in shaping this
thesis. I also extend my appreciation to my professors and colleagues at TUM for their
constructive feedback and thought-provoking discussions. A heartfelt thank you to my
partner, my family and friends for their belief in me, offering support and motivation.

III

Abstract

The adoption of robotic fabrication and automation in timber construction offers significant
potential for improving efficiency, precision, and sustainability in the construction industry.
This thesis investigates the role of simulation in advancing automated construction work-
flows, utilizing COMPAS FAB as a computational tool for parametric design and robotic
path planning. The study examines key challenges in automation, such as labor shortages,
safety concerns, and material waste, and explores how robotic processes can address
these issues through enhanced precision and adaptability. Through computational mod-
eling and robotic simulations, this research evaluates the feasibility of automated timber
assembly. The findings highlight the benefits of robotic fabrication in optimizing material
use, improving accuracy, and increasing scalability within timber construction. This work
contributes to the ongoing development of digital fabrication techniques and reinforces the
importance of simulation in advancing automation in architecture and manufacturing.

IV

Zusammenfassung

Die Einführung von Roboterfertigung und Automatisierung im Holzbau bietet ein erhe-
bliches Potenzial zur Verbesserung von Effizienz, Präzision und Nachhaltigkeit in der
Bauindustrie. In dieser Arbeit wird die Rolle der digitalen Simulation bei der Förderung
automatisierter Bauabläufe untersucht, wobei COMPAS FAB als Berechnungswerkzeug
für parametrisches Design und robotergestützte Bahnplanung eingesetzt wird. Die Studie
untersucht die wichtigsten Herausforderungen bei der Automatisierung, wie z. B. Arbeit-
skräftemangel, Sicherheitsbedenken und Materialverschwendung, und untersucht, wie
Roboterprozesse diese Probleme durch verbesserte Präzision und Anpassungsfähigkeit
lösen können. Anhand von Computermodellen und Robotersimulationen wird in dieser
Studie die Machbarkeit der automatisierten Holzmontage untersucht. Die Ergebnisse
zeigen die Vorteile der Roboterfertigung bei der Optimierung des Materialeinsatzes, der
Verbesserung der Genauigkeit und der Erhöhung der Skalierbarkeit im Holzbau. Diese
Arbeit trägt zur laufenden Entwicklung digitaler Fertigungstechniken bei und unterstreicht
die Bedeutung der Simulation bei der Förderung der Automatisierung in Architektur und
Fertigung.

V

VI

Contents

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Outline . 2

2 State of the Art 5
2.1 Robotic Fabrication and Automation in Construction 5
2.2 Construction Automation and Robotics . 5

2.2.1 Collaborative Robots in Construction 6
2.2.2 BIM-based Approaches for Automation in Construction 8

2.3 Timber as a Sustainable Construction Material 9
2.3.1 Physical and Mechanical Properties of Timber 9
2.3.2 Timber Construction Methods . 10
2.3.3 Mortise and Tenon Joints in Timber Construction 11
2.3.4 Environmental Benefits of Timber . 12

2.4 Modular Construction . 14
2.5 Challenges and Limitations of Robotic Fabrication in Construction 16

3 Methodology 19
3.1 Method Overview . 19
3.2 Software and Tools . 20

3.2.1 Rhino and Grasshopper . 20
3.2.2 ROS, MoveIt! and RViz . 21
3.2.3 Universal Robots and Robotiq . 21
3.2.4 COMPAS FAB - Python Package for Robotic Fabrication 22

3.3 Robotics Fundamentals for Motion Planning 24
3.3.1 Robotic Manipulators and Kinematic Models 24
3.3.2 Coordinate Frames and Transformations 25
3.3.3 Forward and Inverse Kinematics . 27
3.3.4 Motion Planning . 28
3.3.5 Planning Scene and Collision . 29
3.3.6 URDF - Unified Robotic Description Format 30

4 Implementation 33
4.1 Modular Timber Joinery System . 34

4.1.1 Design Intent and Functional Requirements 34
4.1.2 Assembly Steps . 35
4.1.3 Design and Parameters of the Timber Components 37

4.2 Setup and Configuration of UR10 Robot with Hand-E Gripper 39
4.2.1 Docker Integration for Custom Configuration 39
4.2.2 Backend GUI - XMing . 41

VII

4.2.3 Custom URDF for UR10 with end-effector 41
4.2.4 MoveIt! Configuration . 48
4.2.5 Custom Docker Image . 51

4.3 STEP to JSON Conversion for Structural Data Import 53
4.4 Grasshopper Playground as an Interactive Control Interface for Robotic

Simulation with COMPAS FAB . 54
4.4.1 Playground Overview for Assembly Tasks 54
4.4.2 Robot Workflow for a Single Pick-and-Place Cycle 56
4.4.3 Grasshopper Component Blocks for Simulated Robotic Assembly . 57

5 Experimental Evaluation 71
5.1 Robotic Motion Behavior: Position, Velocity, and Acceleration 71
5.2 Precision Issues in the Simulation . 71
5.3 Simulation Time and Scalability . 72
5.4 Structural Analysis of Timber Structure . 74

6 Conclusion and Future Work 77

A Appendix 1 79
A.1 hand_e.xacro . 79
A.2 extract_coordinates_from_step.py . 81
A.3 Grasshopper Playground for Robotic Timber Assembly 84
A.4 class PlanCustomMotion(component) . 85
A.5 def runner(config_dict, start, stop, pick_frame, place_frame, add_cm) . . . 90
A.6 2D Drawings of Timber Components . 91
A.7 Acceleration, Velocity and Position Data for one Iteration 93

Bibliography 97

VIII

List of Figures

3.1 UR10 Simulation in Rhino . 20
3.2 Visualization with Rviz . 20
3.3 Universal Robot UR10e (UNIVERSAL ROBOTS, 2025) 22
3.4 Relation between COMPAS FAB and software 24
3.5 Coordinate Frames . 26
3.6 Relations Between Planning and Visualizing Robotic Motion 29
3.7 Link and Joint relation . 31

4.1 Horizontal Components . 35
4.2 Vertical and diagonal Components . 35
4.3 Horizontal Components . 36
4.4 Vertical and diagonal Components . 36
4.5 Horizontal Components . 36
4.6 Perspective View of Horizontal Component in Millimeters 37
4.7 Perspective View of Vertical Component in Millimeters 38
4.8 Perspective View of Diagonal Component in Millimeters 38
4.9 Workflow for Customized Robotic Simulation Environment 40
4.10 Robotiq Hand E . 41
4.11 hand_e_base.stl . 41
4.12 hand_e_finger_1.stl . 41
4.13 hand_e_finger_2.stl . 41
4.14 URDF Hierarchical Structure of UR10 with Hand E adaptive Gripper attached 47
4.15 Grasshopper Playground Concept . 56
4.16 Connecting to ROS Client and Loading the Robot 58
4.17 Importing Frame Data and Connecting Component 62
4.18 Motion Planning and Trajectory . 67
4.19 Robot Simulation accroding to Computed Motion Plan 67

5.1 Inaccuracy Diagonal . 72
5.2 Inaccuracy Horizontal . 72
5.3 Real-Time Structure Assembly Simulation 73
5.4 Deformations . 75

A.1 Top and Side View of Horizontal Component in Millimeters 91
A.2 Top and Side View of Vertical Component in Millimeters 92
A.3 Top and Side View of Diagonal Component in Millimeters 92
A.4 Picking Motion Trajectory Data . 93
A.5 Placing Cartesian Motion Trajectory Data 93
A.6 Placing Free Motion Trajectory Data . 94
A.7 Placing Target Cartesian Motion Trajectory Data 94

IX

A.8 Return Cartesian Motion Trajectory Data . 95
A.9 Return Free Motion Trajectory Data . 95

X

Chapter 1

Introduction

1.1 Background and Motivation

The construction industry is a critical sector of the global economy, employing approxi-
mately 7% of the workforce and generating annual expenditures of nearly 10 trillion Dollars.
Despite its vast scale, the industry faces persistent challenges, including low productivity,
labor shortages, and high accident rates, with construction-related fatalities accounting for
21% of workplace deaths (CAI and ZOU, 2022). Traditional construction methods often
rely on intensive manual labor, leading to inefficiencies and safety risks. In response, the
adoption of robotic fabrication and automation is emerging as a transformative approach
to improve precision, reduce physical strain on workers, and enhance overall efficiency.

Timber construction, in particular, stands to benefit from robotic automation due to its
modular nature and sustainability advantages. By integrating robotic fabrication with digital
design tools, such as Building Information Modeling (BIM), the construction process can
be streamlined, reducing material waste and enhancing structural accuracy (LIU et al.,
2021).

Recent advancements in robotic technologies have spurred research into their applications
in large-scale construction. However, challenges persist in simulating robotic workflows,
integrating automation with existing industry practices, and developing standardized tools
for seamless human-robot collaboration (XIAO et al., 2023). The COMPAS FAB framework
addresses these gaps by providing a Python-based computational framework for robotic
path planning and simulation (RUST et al., 2018).

Additionally, robotic fabrication offers the potential to significantly improve modular con-
struction methods by enabling precise prefabrication, reducing human error, and ensuring
greater consistency across structural components. Modular construction, which has
gained popularity due to its efficiency and sustainability benefits, aligns well with robotic
assembly processes. By pre-assembling timber components in controlled environments,
waste is minimized, and quality control is improved (ZADEH et al., 2018). Furthermore,
integrating robotic systems with parametric design tools allows for more adaptable and
customized architectural solutions, facilitating innovative structural forms that would be
difficult to achieve using traditional methods (ALFIERI et al., 2020).

Despite the promise of robotic fabrication in timber construction, several barriers remain.
The initial investment in robotic systems, including hardware, software, and training,
poses a significant challenge for widespread adoption. Moreover, there is a need for
enhanced interoperability between robotic simulation platforms, BIM models, and physical

1

manufacturing workflows (SAIDI et al., 2016). Addressing these challenges will be crucial
in realizing the full potential of robotics in timber construction and ensuring the scalability
of automated fabrication techniques.

This thesis investigates the potential of COMPAS FAB in automating timber construction,
offering insights into its capabilities, limitations, and future prospects. By analyzing case
studies, conducting experimental simulations, and exploring industry applications, the
research aims to provide a comprehensive understanding of how robotics can revolutionize
the timber construction industry.

1.2 Outline

This thesis explores the integration of robotic fabrication and automation in timber con-
struction using the COMPAS FAB framework. It is structured to provide a comprehensive
understanding of the subject through several key chapters. Chapter 2 provides an in-depth
review of the existing literature and theoretical foundations relevant to robotic fabrication
and automation in construction. It begins with an overview of construction automation and
robotics (CAR), discussing technological advancements in prefabrication, on-site robotics,
3D printing, and AI-driven systems. The benefits of CAR, including enhanced efficiency,
sustainability impacts, and safety improvements, are highlighted.

The chapter then delves into the role of collaborative robots (cobots) in construction,
emphasizing their differences from traditional industrial robots and their benefits in terms
of efficiency, precision, flexibility, and reduced physical strain on workers. The integration
of cobots with augmented reality (AR) interfaces, mobile robotic systems, and coopera-
tive assembly techniques is discussed, with examples from recent advancements and
research.

Next, the chapter covers BIM-based approaches for automation in construction, highlight-
ing the advantages of off-site construction (OSC) in terms of productivity, quality, and
waste reduction. The challenges in the design process for building cladding in OSC are
addressed, and a BIM-based generative framework is introduced, including a building
information extraction module, a generative design algorithm, and a simulation-based
performance evaluation model, with a case study by LIU et al., 2021.

The chapter concludes with a discussion on timber as a sustainable construction material,
covering its structural behavior, durability, environmental benefits, and the role of modular
construction in enhancing design and drawing processes. The challenges and limitations
of robotic fabrication in construction are also examined.

Chapter 3 outlines the research methodology employed in the study. It begins with an
overview of the method, describing the integration of parametric design tools with robotic
control systems to enable precise planning and execution of timber assemblies. The
software and tools used in the research, including Rhino, Grasshopper, ROS, MoveIt!,
and COMPAS FAB, are detailed. The chapter also covers the fundamentals of robotics

2

necessary for motion planning, such as coordinate frames, transformations, forward and
inverse kinematics, robotic manipulators, kinematic models, motion planning, planning
scenes, collision detection, and the Unified Robot Description Format (URDF).

Chapter 4 describes the practical implementation of the research. It begins with the design
intent and functional requirements of the modular timber joinery system, followed by the
design and parameters of the timber components and the manufacturing process. The
chapter then covers the setup and customization of a robotic simulation framework using
COMPAS FAB in Grasshopper. This includes the creation of custom URDF files for the
UR10 robot model with the Robotiq Hand-E adaptive gripper, generating a MoveIt! config-
uration package, and the creation of a new Docker image with the custom configuration.
The conversion of structural data from STEP to JSON format for import into Grasshopper
is also detailed. The chapter concludes with an overview of the Grasshopper Playground
as an interactive control interface for robotic simulation, describing the robot workflow for a
single pick-and-place cycle and the Grasshopper component blocks used for simulated
robotic assembly.

Chapter 5 presents the experimental evaluation of the robotic fabrication process. It
includes a detailed analysis of the results obtained from the implementation phase, high-
lighting the effectiveness and efficiency of the proposed methods. The chapter discusses
the performance of the robotic system in executing the assembly tasks, evaluating the
overall feasibility of the approach, and identifying areas for improvement.

Chapter 6 summarizes the key findings of the research and provides conclusions based
on the experimental results. It outlines the contributions of the study to the field of robotic
fabrication and automation in timber construction and suggests potential areas for future
research and development. The chapter discusses possible improvements and extensions
to the current work, emphasizing the importance of continued innovation and exploration
in this area.

3

4

Chapter 2

State of the Art

2.1 Robotic Fabrication and Automation in Construction

The integration of robotic fabrication and automation is transforming construction by
enhancing precision, reducing material waste, and addressing labor shortages (PAN et
al., 2018; SAIDI et al., 2016). As construction projects grow in complexity, automation
technologies, including prefabrication systems, on-site robotics, and AI-driven tools, are
being increasingly adopted to improve efficiency and sustainability (EVERSMANN et al.,
2017).

This section examines key developments in this field. Construction Automation and
Robotics discusses advancements such as prefabrication, robotic on-site factories, large-
scale 3D printing, and AI-driven project management, along with their implications for
sustainability and industry adoption (PAN et al., 2018; SAIDI et al., 2016; TANNE and
INDRAYANI, 2023).

By analyzing these advancements, this section provides a framework for understanding
how robotic fabrication and automation contribute to the transformation of construction
methodologies while addressing challenges related to cost, regulation, and workforce
adaptation (PAN et al., 2018; SAIDI et al., 2016).

2.2 Construction Automation and Robotics

The construction industry is undergoing a paradigm shift with the integration of automation
and robotics, leading to enhanced efficiency, sustainability, and safety. Construction Au-
tomation and Robotics (CAR) encompasses various technologies, including prefabrication,
on-site robotics, 3D printing, and artificial intelligence (AI)-driven systems. These innova-
tions are transforming traditional construction methods, reducing labor dependency, and
improving project sustainability. CAR examines technological advancements, sustainability
impacts, and adoption challenges, drawing from the frameworks of PAN et al., 2018, SAIDI

et al., 2016, TANNE and INDRAYANI, 2023, and EVERSMANN et al., 2017.

The evolution of CAR from mechanization to AI-driven autonomous systems has led
to significant breakthroughs. The use of robotics in prefabrication facilitates mass cus-
tomization and reduces construction waste (PAN et al., 2018), while automated production
lines in modular construction enhance productivity and quality control (SAIDI et al., 2016).
On-site robotics, such as single-task robots performing repetitive tasks like bricklaying and
excavation, minimize human intervention (PAN et al., 2018), and autonomous robotic on-

5

site factories (AROFs) streamline construction through integrated robotic systems (SAIDI

et al., 2016). Additionally, large-scale 3D printing accelerates housing and infrastructure
development by reducing material costs and environmental impact (PAN et al., 2018),
and robotic concrete printing enhances precision and structural integrity (SAIDI et al.,
2016). The integration of AI-driven project management tools further optimizes scheduling,
risk assessment, and resource allocation (PAN et al., 2018), while digital twin technology
enables real-time monitoring and predictive analytics for construction sites (SAIDI et al.,
2016). Furthermore, robotic prefabrication methods are advancing in timber structures,
promoting efficient and precise large-scale spatial assembly (EVERSMANN et al., 2017).

The sustainability assessment framework (CARSAM) proposed by PAN et al., 2018 eval-
uates CAR’s contributions across environmental, economic, and social dimensions. Au-
tomation reduces material waste through precision engineering (PAN et al., 2018), and
AI-driven energy optimization lowers carbon emissions and enhances resource efficiency
(SAIDI et al., 2016). Increased automation leads to lower labor costs and improved
project timelines (PAN et al., 2018), and CAR enhances return on investment by reducing
construction delays (SAIDI et al., 2016). Robotics improve worker safety by minimizing
exposure to hazardous environments (PAN et al., 2018), while high-tech job creation
offsets concerns over traditional labor displacement (SAIDI et al., 2016). Additionally, an
assessment of automation in Indonesian state-owned construction enterprises highlights
gaps in best practices and potential applications in different project life cycle stages (TANNE

and INDRAYANI, 2023).

Despite its benefits, CAR faces several significant challenges. The adoption of robotic
construction systems requires substantial capital investment, which may deter small and
medium enterprises (PAN et al., 2018). Specialized training and expertise are necessary
for operating and maintaining CAR technologies (SAIDI et al., 2016), while the absence
of standardized regulations for construction robotics hinders large-scale implementation
(PAN et al., 2018). Furthermore, the construction sector’s reliance on traditional methods
slows technological adoption (SAIDI et al., 2016).

The future of CAR lies in increased AI integration, cost-effective solutions, and regula-
tory advancements. Emerging trends such as collaborative robots (cobots), AI-driven
automation, and smart building technologies are expected to drive industry transformation.
Addressing financial and regulatory challenges will be crucial to ensuring widespread CAR
adoption and maximizing its potential benefits. By aligning with sustainability goals and
improving efficiency, CAR represents a fundamental shift towards a more resilient and
productive construction sector.

2.2.1 Collaborative Robots in Construction

Collaborative robots (cobots) are increasingly transforming the construction industry by
enabling human-robot cooperation in complex fabrication and assembly tasks. Unlike tradi-
tional industrial robots, which are typically confined to controlled environments and require
strict safety measures, cobots are designed to interact with human workers dynamically.

6

They enhance efficiency, precision, and flexibility while reducing physical strain on human
workers and minimizing errors in construction processes. Recent advancements focus
on the integration of cobots with augmented reality interfaces, mobile robotic systems,
and cooperative assembly workflows, demonstrating the potential of robotic assistance in
various construction applications (ALEXI et al., 2024).

A significant development in collaborative robotics is the integration of augmented reality
(AR) interfaces to facilitate more intuitive interactions between humans and robots. AMTS-
BERG et al., 2021 present the interactive human-robot collaboration (iHRC) system, which
leverages AR for real-time coordination and task-sharing in construction settings. This
system allows human workers to visualize robotic tasks in advance, make adjustments
as needed, and interact seamlessly with robots, thereby reducing errors and improving
workflow efficiency. Similarly, KYJANEK et al., 2019 demonstrate how AR-assisted robotic
prefabrication in timber construction enables human workers to monitor, guide, and adjust
robotic actions during fabrication. These AR-enhanced collaborations make construction
processes more adaptable and precise, ensuring that human expertise is fully utilized
while robots handle repetitive and physically demanding tasks.

Another critical advancement in collaborative robotics is the development of mobile robotic
systems that assist with construction tasks in real-world, unstructured environments. DÖR-
FLER et al., 2016 introduce a mobile robotic bricklaying system that autonomously places
bricks while working alongside human operators. The system combines robotic precision
in material placement with human expertise in adapting to site-specific challenges, leading
to increased efficiency and reduced material waste. Similarly, interactive robotic plastering,
as explored by MITTERBERGER, ERCAN JENNY, et al., 2022, utilizes mobile robots to assist
in on-site plaster application. This system integrates real-time feedback and human input,
allowing for adaptive surface finishing and improved material consistency. By leveraging
mobile robotic solutions, construction projects can reduce manual labor intensity, minimize
inconsistencies, and improve overall project timelines.

Beyond AR interfaces and mobile robots, researchers are exploring cooperative assembly
techniques, where humans and robots work together to construct intricate architectural
elements. MITTERBERGER, ATANASOVA, et al., 2022 investigate human-robot collaboration
in assembling wooden structures using rope joints, demonstrating how robotic precision
can enhance structural integrity while allowing human workers to focus on complex
decision-making and creative adjustments. The research highlights the benefits of robotic
assistance in handling flexible materials, where human dexterity is complemented by
robotic accuracy.

These cooperative workflows extend beyond traditional construction methods, allowing for
new design possibilities that would be challenging to achieve with human labor alone. For
instance, robots can manipulate materials in ways that improve structural performance,
while humans oversee and guide the assembly process. This symbiosis fosters an
innovative approach to architectural design and fabrication, where robotic capabilities are
fully integrated into construction methodologies.

7

As collaborative robotic systems become more advanced, their role in construction is
expected to grow, particularly in areas such as automated assembly, adaptive fabrication,
and site automation. The integration of real-time data analysis, machine learning, and
digital design tools will further enhance human-robot collaboration, allowing for more
efficient, safe, and scalable construction processes. Future developments may include
robotic systems that learn from human workers, automated quality control through AI-
driven inspections, and greater autonomy in material handling and assembly.

Overall, the research by AMTSBERG et al., 2021, DÖRFLER et al., 2016, KYJANEK et al.,
2019, and MITTERBERGER, ATANASOVA, et al., 2022 highlights the potential of collaborative
robots in shaping the future of construction. These systems are not merely tools for
automation but rather active partners in the construction process, enabling new forms of
craftsmanship, efficiency, and safety. By integrating AR, mobile robotics, and cooperative
workflows, the construction industry is moving toward a future where humans and robots
seamlessly collaborate to achieve higher levels of precision and innovation.

2.2.2 BIM-based Approaches for Automation in Construction

The integration of Building Information Modeling (BIM) with Design for Manufacturing and
Assembly (DfMA) principles has gained significant attention as a means of enhancing
automation in construction. This approach is particularly relevant in the context of panelized
building design, where the automation of both the design and manufacturing processes
can result in increased efficiency and precision. Liu et al. LIU et al., 2021 propose a
BIM-enabled generative framework for building panelization design, which utilizes BIM
data to automate the design of production components. This framework not only facilitates
more accurate design but also optimizes the selection and organization of materials for
prefabrication, thereby reducing errors and inefficiencies in the manufacturing process.

ALFIERI et al., 2020 investigate the integration of BIM and DfMA within an off-site construc-
tion framework, focusing on the Italian context. Their study demonstrates the potential of
BIM to support automated workflows for panelized construction by providing a structured
approach to design and manufacturing processes. BIM’s role in improving the coordination
between design and manufacturing is particularly crucial in DfMA-based systems, where
precision and minimal material waste are essential.

YUAN et al., 2018 further explore the role of parametric design in the automation of
prefabricated buildings, highlighting the benefits of a DfMA-oriented parametric approach.
By using parametric modeling, this study demonstrates how automation can address
fabrication constraints while enhancing design flexibility. The parametric design tools are
capable of generating efficient designs that consider both structural requirements and
manufacturing constraints, aligning closely with the generative framework proposed by
LIU et al., 2021.

The work of ALWISY et al., 2019 also contributes to the discussion by focusing on BIM-
based automation for the design and drafting of wood panels for modular residential

8

buildings. Their research underscores the utility of BIM in automating the creation of
detailed manufacturing designs, which helps to reduce manual drafting errors and im-
prove the overall speed of production. This BIM-driven approach aligns with the growing
emphasis on improving design-to-manufacturing workflows through automation.

In the context of mass timber construction, ZADEH et al., 2018 explore the integration
of BIM with DfMA principles, highlighting how BIM can be used to optimize the design
and fabrication of timber components. The authors discuss how BIM’s ability to man-
age complex geometries and material specifications facilitates the automation of timber
panelization, ensuring both accuracy and efficiency in the construction process.

In addition, ZADEH et al., 2018 identify both the challenges and opportunities of applying
BIM-based design and fabrication methods to timber construction. Their work emphasizes
the need for integrated design and manufacturing systems that enhance efficiency and
address the unique challenges of timber as a building material.

In conclusion, the integration of BIM with DfMA and parametric design principles plays a
pivotal role in advancing automation in construction, particularly in the context of panelized
building systems. By automating design, manufacturing, and assembly processes, BIM-
based approaches contribute to the reduction of material waste, improved design precision,
and enhanced efficiency in off-site construction processes (LIU et al., 2021; ALFIERI et al.,
2020; YUAN et al., 2018; ALWISY et al., 2019; ZADEH et al., 2018).

2.3 Timber as a Sustainable Construction Material

2.3.1 Physical and Mechanical Properties of Timber

Timber is widely used in construction due to its favorable physical and mechanical proper-
ties. One of its most significant advantages is its high strength-to-weight ratio, which makes
it much lighter than concrete and steel while still providing substantial load-bearing capac-
ity (BREYER et al., 2019). This characteristic allows for easier handling, transportation,
and installation, which is particularly beneficial for prefabricated and modular construction
methods (KEEPING and SHIERS, 2017).

Another key property of timber is its elasticity and structural flexibility, allowing it to absorb
stresses from wind loads, earthquakes, and other environmental factors. Moreover, the
natural thermal and acoustic insulation properties of timber contribute to improved indoor
comfort. Its low thermal conductivity reduces energy demands for heating and cooling,
while its porous structure effectively absorbs sound, making it ideal for residential and
commercial buildings (HERZOG et al., 2012).

Despite these advantages, timber is susceptible to environmental factors such as moisture,
biological decay, and insect damage. The development of engineered wood products, such
as cross-laminated timber (CLT) and glue-laminated timber (Glulam), further improves

9

timber’s structural performance, reducing issues related to natural defects like knots and
warping (KEEPING and SHIERS, 2017).

2.3.2 Timber Construction Methods

Timber construction methods have evolved significantly, ranging from traditional framing
techniques to modern prefabricated systems. Traditional timber framing, which relies
on interlocking beams and joints, has been used for centuries and is still valued for its
aesthetic appeal and durability (BREYER et al., 2019). Post-and-beam construction, often
seen in historical buildings, employs heavy timber elements to form a stable structure
without the need for metal fasteners.

Platform framing, where each floor is constructed separately and stacked on the one below,
provides a highly efficient and modular approach. Balloon framing, an older technique,
features long vertical studs running continuously from foundation to roof, though it is less
commonly used today due to challenges in material waste.

Advancements in prefabricated and modular timber construction have revolutionized the
industry by improving precision and reducing on-site labor costs. Off-site manufacturing
allows for higher quality control, minimized material waste, and faster assembly times
(KEEPING and SHIERS, 2017; HERZOG et al., 2012). Mass timber construction, which
utilizes large prefabricated wood elements, is becoming increasingly popular due to its
strength, stability, and speed of installation.

Half-Timbered Houses

Half-timbered houses represent one of the oldest and most recognizable timber construc-
tion methods, particularly prevalent in medieval European architecture. These structures
consist of a wooden framework with spaces infilled with materials such as wattle and daub,
brick, or plaster (CAMPBELL, 2019; HARRIS, 1993). The exposed timber elements form a
distinct aesthetic while providing essential structural support.

A key advantage of half-timbered construction is its flexibility and ease of repair. The
modular nature of the framework allows for individual timber beams to be replaced without
dismantling the entire structure (HARRIS, 1993). Additionally, the wooden framework
distributes loads efficiently, making these buildings highly durable despite their historical
origins. The use of diagonal bracing further enhances stability, particularly in regions
prone to high winds or seismic activity (CAMPBELL, 2019).

While half-timbered houses are not as common in contemporary construction, they remain
significant in historical preservation and restoration projects. Advances in timber treatments
and protective coatings have enabled modern adaptations of this technique, blending
traditional craftsmanship with improved durability and fire resistance (HARRIS, 1993).

10

Timber remains an essential material in construction due to its favorable strength-to-
weight ratio, thermal performance, and adaptability to various construction methods.
Traditional timber framing techniques persist in certain applications, while modern platform
framing, prefabrication, and mass timber construction are driving innovation in the industry.
Half-timbered houses continue to hold cultural and architectural significance, offering
insights into historical construction methods. As research and technology continue to
evolve, timber’s role in construction is expected to expand, offering a balance of efficiency,
performance, and design versatility (BREYER et al., 2019; KEEPING and SHIERS, 2017).

2.3.3 Mortise and Tenon Joints in Timber Construction

Mortise and tenon joints have long been a critical component in timber construction due to
their mechanical strength and reliability in joining structural elements. This joint consists
of a mortise, a cavity or hole, and a tenon, a protruding section that fits into the mortise,
creating a robust connection between two pieces of timber. The application of mortise and
tenon joints spans various fields, including furniture making, traditional timber framing, and
modular systems. Common variations of this joint include through tenons, which extend
through the full thickness of the timber; blind mortises, which do not penetrate the timber
entirely; and pegged tenons, which incorporate dowels or pegs for additional reinforcement
(HASSAN et al., 2023;FEIO et al., 2014).

Historically, mortise and tenon joints were crafted manually, relying on skilled labor and
tools. However, technological advancements, particularly the use of CNC routers and
milling machines, have transformed this process. These modern techniques allow for
greater precision, repeatability, and efficiency in the production of joints, particularly in
prefabricated modular systems where uniformity is essential. CNC milling, for example,
facilitates the consistent creation of complex joints, reducing errors and material waste
(SCHMIDT and DANIELS, 1999). Furthermore, specialized drilling techniques, such as
hollow chisel mortising and CNC mortisers, enhance the accuracy of square mortises, an
essential feature for achieving strong, well-fitted joints in timber construction (FEIO et al.,
2014). Mortises can also be manufactured with mortisers, which are specifically designed
tools for cutting precise square or rectangular holes, making them highly effective for
creating mortises in timber joinery (FEIO et al., 2014). These advancements in machine-
assisted joinery complement traditional craftsmanship, maintaining the structural integrity
and aesthetic qualities of mortise and tenon joints in both contemporary and historic timber
applications.

CNC-milled joinery systems have significantly advanced woodworking by automating the
cutting of joinery with enhanced precision and efficiency. CNC routers and milling machines
are programmed to perform complex cutting tasks, ensuring high accuracy and reducing
human error. This automation allows for increased customization, enabling tailored designs
for specific applications, such as modular construction and custom furniture. Additionally,
the repeatability of CNC systems ensures consistent quality across multiple units, making
them ideal for mass production and large-scale projects. As a result, CNC technology

11

has become essential in modern woodworking, offering both precision and efficiency
(QUESADA, 2005; OVERBY, 2010).

Understanding Mortise and Tenon joints is essential, as this technique will be pivotal in
the custom-designed timber components discussed in the implementation chapter.

2.3.4 Environmental Benefits of Timber

Timber is increasingly regarded as a sustainable construction material due to its renewable
nature and potential to reduce the environmental impact of buildings. Its use in construction
has garnered considerable attention, driven by growing concerns about climate change
and the need for more sustainable building materials. Compared to conventional materials
like concrete and steel, timber offers several environmental advantages, such as carbon
sequestration, lower embodied energy, and potential for reuse.

One of the key environmental benefits of timber is its ability to sequester carbon dioxide.
Trees absorb carbon dioxide from the atmosphere during photosynthesis, storing it in their
biomass. When used in construction, timber effectively locks away this carbon for the
duration of the building’s life. This characteristic significantly reduces the overall carbon
footprint of buildings constructed with timber. Studies have shown that timber buildings
have a reduced net carbon footprint compared to conventional alternatives, such as those
built with steel and concrete, as they not only store carbon but also require less energy-
intensive processing (CHEN et al., 2020). Thus, timber acts as a long-term carbon sink,
contributing to the mitigation of climate change by decreasing atmospheric carbon dioxide
levels.

Life cycle assessment (LCA) is an essential tool for evaluating the environmental impacts
of construction materials over their entire life cycle. Several studies comparing the LCA
of timber to more conventional building materials have revealed that timber generally
has a lower environmental impact. Specifically, timber is more energy-efficient during
its production phase and is renewable, which reduces its overall environmental footprint.
Hart and Pomponi HART and POMPONI, 2020 highlight that timber buildings tend to have
lower embodied energy and a reduced global warming potential compared to concrete
and steel structures. These benefits arise from timber’s renewability and lower processing
energy requirements. In particular, timber structures, such as cross-laminated timber (CLT)
and glue-laminated timber (glulam), perform better across most environmental impact
categories in LCA studies, making them an attractive alternative in sustainable building
design.

Modern timber construction methods, such as cross-laminated timber (CLT) and glue-
laminated timber (glulam), represent significant innovations that enhance timber’s perfor-
mance as a construction material. CLT, for example, is manufactured by layering wooden
planks in alternating directions, creating a strong, durable material suitable for multi-story
buildings. This innovation allows timber to be used in a broader range of construction
projects, offering a sustainable alternative to concrete and steel YOUNIS and DODOO, 2022.

12

Similarly, glulam is a form of engineered wood that provides high strength and versatility,
enabling the creation of large-scale structures with minimal material use. D’Amico et al.
D’AMICO et al., 2021 emphasize that mass timber systems, such as CLT and glulam,
can replace higher-carbon materials, such as reinforced concrete, resulting in significant
reductions in embodied carbon. These innovations make timber not only a sustainable
choice but also a competitive one for modern construction projects.

Timber is inherently well-suited to the principles of the circular economy due to its re-
newability and ability to be reused and recycled. Unlike concrete or steel, which require
significant energy to recycle and have limited reuse potential, timber can be repurposed
multiple times, extending its life cycle. Padilla-Rivera et al. PADILLA-RIVERA et al., 2018
explore how wood-frame construction, through its capacity for carbon reduction and waste
minimization, contributes to a more circular approach in the built environment. Timber
can be reused in various forms, such as in the construction of new buildings, or recycled
into products like paper or composite materials. This reduces the overall demand for raw
materials and minimizes waste, aligning with the goals of sustainable and circular building
practices.

Despite its benefits, timber does face several challenges in construction, including issues
related to durability, fire resistance, and sustainable sourcing. These challenges can limit
its widespread adoption in some building applications. However, recent advancements
in timber treatment and construction techniques have made it possible to address these
concerns. For instance, modern fire-retardant treatments can significantly improve the
fire resistance of timber structures, making them suitable for use in more fire-sensitive
contexts. Additionally, ensuring that timber is sourced sustainably is a critical consideration.
Certification schemes, such as the Forest Stewardship Council (FSC), help guarantee that
timber is harvested responsibly, ensuring that forest ecosystems are maintained HART and
POMPONI, 2020. Ongoing research into improving the durability and fire safety of timber,
alongside sustainable sourcing practices, is essential for mitigating these challenges.

Looking forward, the role of timber in construction is expected to expand as the demand for
sustainable building materials grows. Timber’s carbon sequestration potential, combined
with innovations in construction techniques, positions it as a key material in the transition
toward eco-friendly and energy-efficient buildings. As building codes and regulations
become increasingly focused on sustainability, the use of timber is likely to increase,
particularly in mid- to high-rise buildings where mass timber systems such as CLT and
glulam provide an alternative to concrete and steel HART and POMPONI, 2020. The contin-
ued development of timber-based solutions, coupled with technological advancements
in timber treatment, will enable timber to play a pivotal role in shaping the future of the
construction industry.

Timber offers several significant environmental benefits, including carbon sequestration,
reduced life cycle environmental impacts, and a key role in the circular economy. With
advancements in innovative construction techniques, such as CLT and glulam, timber is
becoming an increasingly viable option for sustainable construction. While challenges

13

related to durability, fire resistance, and sourcing persist, ongoing research and technolog-
ical development are making these issues more manageable. As the construction industry
continues to prioritize sustainability, timber’s role as an eco-friendly material is expected to
grow, making it a cornerstone of future low-carbon buildings.

2.4 Modular Construction

Modular construction has garnered considerable attention in recent years due to its poten-
tial to enhance efficiency, reduce costs, and improve sustainability in the building sector.
This method involves the prefabrication of building components in a controlled factory
setting, followed by on-site assembly. This approach contrasts with traditional construction
techniques and offers unique benefits and challenges. Numerous studies have focused
on the design, sustainability, and life cycle performance of modular construction, with an
emphasis on integrating advanced technologies such as Building Information Modeling
(BIM) to optimize these processes.

One of the key advantages of modular construction is its ability to streamline the design
and manufacturing processes. The use of modular components allows for greater stan-
dardization, enabling faster construction times and reducing material wastage. SMITH,
2011 notes that modular construction’s adaptability to diverse design requirements, while
maintaining standardization, significantly enhances efficiency in building projects. Further-
more, technological advances, such as Building Information Modeling (BIM), have further
optimized the design and drafting processes for modular buildings. ALWISY et al., 2019
explore the role of BIM in automating the design and drafting of wood panels for modular
residential buildings. Their research demonstrates that BIM can improve design accuracy,
reduce manual errors, and enhance the efficiency of manufacturing processes, making
modular construction more scalable and precise. BIM also facilitates the customization of
modular units, enabling tailored solutions to meet specific project requirements while still
benefiting from standardization (ALWISY et al., 2019).

The environmental advantages of modular construction are significant. KAMALI and
HEWAGE, 2015 emphasize that modular buildings typically have a lower environmental
impact compared to traditional buildings, particularly in terms of energy use, material
waste, and carbon emissions. The controlled factory setting in which modular components
are produced ensures minimal material wastage, precise manufacturing, and optimized
energy use. Additionally, modular buildings are well-suited to incorporate renewable energy
systems, further enhancing their sustainability. LAWSON and OGDEN, 2010 underscore that
the prefabrication process, when combined with energy-efficient materials and processes,
can substantially reduce carbon emissions throughout the construction and operational
phases of a building.

The long-term performance of modular buildings, including maintenance and energy
consumption, is another critical aspect of their sustainability. KAMALI and HEWAGE,
2015 provide a detailed comparison of the life cycle performance of modular versus

14

conventional buildings, showing that while modular buildings may incur higher initial
costs due to the advanced manufacturing process, they tend to offer lower long-term
costs, particularly regarding energy consumption, maintenance, and operational expenses.
Modular buildings are often better insulated and more energy-efficient, which helps reduce
ongoing operational costs. Furthermore, modular construction allows for easier adaptation
and renovation, thus minimizing the need for complete demolition and supporting the
principles of a circular economy.

In addition, LAWSON and OGDEN, 2010 suggest that the modular construction method’s
ability to facilitate disassembly and reuse of components at the end of the building’s life
contributes to its long-term sustainability. The ease with which modular buildings can be
modified or repurposed extends their functional life and minimizes waste. This flexibility,
combined with lower operational costs, makes modular buildings an attractive option for
developers and occupants who prioritize both financial and environmental considerations.

Despite the numerous advantages, modular construction does face certain challenges.
One of the key issues is the limitation in design flexibility due to the reliance on stan-
dardized modules. While modular construction offers high efficiency, the constraints
imposed by pre-fabricated components may not be suitable for projects that require highly
customized solutions. SMITH, 2011 acknowledges that although modular construction is
highly adaptable in many instances, it may not be ideal for projects demanding significant
design variation.

Logistical challenges, such as the transportation of large modular units to construction sites,
can also result in increased costs and delays if not properly managed. The integration of
advanced technologies such as BIM can mitigate some of these challenges by optimizing
the planning and execution of the construction process. ALWISY et al., 2019 emphasize
that BIM not only aids in the design process but also contributes to optimizing the entire
construction workflow, including transportation logistics, which reduces inefficiencies and
helps manage the practical aspects of modular construction more effectively.

In conclusion, modular construction presents significant potential for enhancing the effi-
ciency, sustainability, and overall life cycle performance of buildings. The integration of
advanced technologies such as BIM has further optimized modular design and manufac-
turing processes, making them more adaptable and precise. Research has shown that
modular buildings generally have a lower environmental impact—especially in terms of
energy use, material waste, and carbon emissions—compared to traditional construction
methods. Additionally, their long-term life cycle costs are often lower, particularly when
considering energy efficiency and ease of modification. However, challenges related to
design flexibility and logistics persist, and continued innovation is required to overcome
these limitations. Future research should focus on overcoming these challenges and
further improving the environmental and economic performance of modular construction.

15

2.5 Challenges and Limitations of Robotic Fabrication in Con-
struction

Robotic fabrication in construction offers numerous benefits, including increased effi-
ciency, precision, and sustainability. However, several challenges and limitations hinder
its widespread adoption and optimal performance. These challenges span technological,
economic, environmental, and social dimensions, as highlighted by key studies in the field.

One of the primary challenges in robotic fabrication is the integration of automation within
traditional construction workflows. SAIDI et al., 2016 emphasize that while robotic systems
enhance efficiency and safety, they require advanced technological infrastructure and
seamless coordination between various automated systems. Additionally, EVERSMANN

et al., 2017 highlight the complexity of large-scale spatial assembly, particularly in timber
construction, where material variability and adaptability present significant obstacles to au-
tomation. LIU et al., 2021 further discuss the integration of BIM-enabled generative design
frameworks to support automated fabrication, yet challenges remain in interoperability and
data consistency between digital and physical construction processes.

The high initial investment costs for robotic systems and the required digital infrastructure
pose significant economic barriers. PAN et al., 2018 discuss the financial implications
of construction automation, noting that while long-term cost savings are achievable, the
upfront capital expenditure and operational costs can be prohibitive, especially for small
and medium-sized enterprises (SMEs). Furthermore, the economic viability of robotic
fabrication depends on the scale of production and project-specific factors, which can limit
its broader application.

While robotic fabrication has the potential to enhance sustainability, challenges persist in
material waste management and energy consumption. ALFIERI et al., 2020 examine how
BIM and Design for Manufacture and Assembly (DfMA) can optimize automated workflows,
yet inefficiencies in material handling and recycling processes remain. CHEN et al., 2020
and HART and POMPONI, 2020 explore the environmental benefits of timber construction,
noting that while automation can support sustainable practices, the embodied carbon
of robotic systems and their energy demands must be carefully assessed. Additionally,
YOUNIS and DODOO, 2022 argue that life-cycle assessment methodologies need to be
further developed to accurately quantify the sustainability benefits of robotic fabrication.

The adoption of robotic fabrication requires a workforce skilled in robotics, programming,
and digital construction technologies. PAN et al., 2018 highlight the social implications
of automation, including the need for reskilling and potential job displacement concerns.
D’AMICO et al., 2021 emphasize the necessity for education and training programs to
bridge the skill gap, ensuring that construction professionals can effectively collaborate
with robotic systems. The transition from manual labor to automation also raises concerns
about industry-wide acceptance and adaptation to new workflows.

16

The lack of standardized protocols and regulatory frameworks for robotic construction is
another major limitation. PADILLA-RIVERA et al., 2018 point out that while sustainable
construction methods, including timber fabrication, are gaining traction, regulatory barriers
often slow down the adoption of automated techniques. The industry requires standardized
guidelines for integrating robotics within construction processes, ensuring compliance with
safety, quality, and environmental regulations.

In conclusion, while robotic fabrication in construction holds great promise, overcoming
these challenges requires a multi-faceted approach involving technological advancements,
economic strategies, sustainability considerations, workforce development, and regulatory
support. Addressing these limitations will pave the way for a more efficient, sustainable,
and automated construction industry.

17

18

Chapter 3

Methodology

Robotic fabrication in timber construction offers enhanced precision, efficiency, and au-
tomation. This method utilizes the COMPAS FAB framework (RUST et al., 2018) to integrate
parametric design with robotic control, enabling seamless digital-to-physical workflows.
The process involves computational design for structural feasibility, path planning, and
simulation within a CAD environment. Key setup components include Docker-based ROS
environments, URDF modeling for robot compatibility, and Grasshopper for real-time
control. By combining these elements, the approach establishes a robust pipeline for
automated timber assembly, improving accuracy and adaptability in robotic fabrication.

3.1 Method Overview

The proposed method aims to implement robotic fabrication for timber structures by
utilizing the COMPAS FAB framework, a versatile computational platform for robotic and
digital fabrication workflows. The approach integrates parametric design tools with robotic
control systems, enabling precise planning and execution of timber assemblies. Initially,
the timber structure’s geometry is designed computationally, ensuring structural integrity
and fabrication feasibility. The workflow incorporates path planning and simulation with
the COMPAS FAB (RUST et al., 2018) environment in a CAD-Software to define robotic
tasks. The method prepares for later use with physical robots to execute the fabrication
process, achieving a seamless transition from digital design to physical construction. This
approach enhances efficiency, precision, and flexibility in timber structure fabrication.

A critical component of the method is the intricate setup process, which encompasses
configuring Docker, creating the URDF (Unified Robot Description Format) model, and
integrating the system with Grasshopper. The setup begins with the installation and config-
uration of Docker to manage containerized ROS environments, including the definition of a
custom Docker Compose file to orchestrate the required services. The next step involves
generating the URDF model, which accurately describes the robot’s physical structure,
kinematics, and dynamics, ensuring compatibility with the ROS ecosystem. Finally, the
workflow incorporates the use of Grasshopper, a visual programming environment, to
connect the digital design process with robotic control. This stage involves establishing
communication between Grasshopper and ROS with the help of COMPAS FAB, ensuring
that the robotic system can execute fabrication tasks as planned. The integration of these
components is essential for achieving a robust and functional robotic fabrication pipeline
for working with timber structures and COMPAS FAB.

19

The components are generated in a CAD-environment and incorporated as meshes for
the robot to assemble.

Figure 3.1: UR10 Simulation in Rhino Figure 3.2: Visualization with Rviz

3.2 Software and Tools

3.2.1 Rhino and Grasshopper

Rhinoceros (Rhino) is a versatile computer-aided design (CAD) software widely utilized
in various fields such as architecture, industrial design, and engineering. Renowned for
its precise 3D modeling capabilities, Rhino supports the creation of complex geometries,
allowing users to handle freeform surfaces, solid modeling, and polygon meshes with
accuracy (MCNEEL, n.d.). Grasshopper, a visual programming environment that oper-
ates within Rhino, enhances this functionality by enabling parametric design. Through
a node-based interface, Grasshopper allows users to manipulate design parameters
algorithmically, offering a flexible and dynamic way to generate and modify geometries
based on input variables. The Rhino and Grasshopper synergy is particularly beneficial
in fields requiring custom geometries, iterative design processes, and optimization, as
users can rapidly explore various design iterations and workflows, significantly improving
efficiency (TEDESCHI, 2014, MCNEEL, n.d., WOODBURY, 2010). Within a Grasshopper
Playground, an interactive environment within Grasshopper, users can explore "play" by
connecting components without a specific end goal, often to test various design ideas or to
familiarize themselves with how components work together. Grasshopper provides a wide
range of pre-built components for mathematical operations, geometric transformations,
data management, and input/output handling, which can be dragged onto the canvas
and connected visually. As users change parameters or adjust connections, the output
updates in real-time, allowing immediate feedback and exploration (R. MCNEEL, n.d.).

20

3.2.2 ROS, MoveIt! and RViz

ROS (ROS.ORG, n.d.-a), or the Robot Operating System, is an open-source framework
that provides tools, libraries, and standards to streamline the creation of complex robot
applications. As a middleware, it facilitates inter-process communication, allowing various
independent components of a robot, such as perception, planning, and control, to interact
seamlessly. This design enables easier management and integration of complex robotic
systems by supporting distributed computing and communication through topics, services,
and actions. ROS is widely used in both research and industry due to its robust ecosystem,
which includes tools for simulation, visualization, testing, and debugging, all organized into
modular packages that promote code sharing and reuse (QUIGLEY et al., 2009, ROS.ORG,
n.d.-a).

MoveIt (PICKNIKINC., n.d.) is a ROS-based framework designed for motion planning, ma-
nipulation, 3D perception, kinematics, and control, making it particularly suited for robotic
arms and manipulators. It streamlines the development of complex robotic behaviors
by offering high-level interfaces for various motion-planning tasks, such as generating
collision-free paths and optimizing trajectories. MoveIt also provides kinematic tools that
calculate the joint positions needed for a robotic arm to reach specific positions in space.
With integration for 3D perception, MoveIt can adjust a robot’s path based on sensor input
from cameras or LiDAR, and it supports both real-world control and simulation through
ROS-compatible controllers (CHITTA et al., 2012, PICKNIKINC., n.d.).

RViz (ROS.ORG, n.d.-b) is a 3D visualization tool in ROS that enables real-time visualiza-
tion of robot states and sensor data. It is particularly useful for debugging and monitoring
robotic systems, as it allows developers to view data streams from various sources, such
as LiDAR scans, camera images, and planned trajectories. RViz’s interactive interface
allows users to visualize robot models, adjust parameters like positions and orientations,
and monitor changes in real time. This flexibility helps developers better understand and
refine a robot’s behavior within a complex environment. Additionally, RViz supports inter-
active markers, which provide a hands-on way to manipulate objects and test behaviors
directly within the visualization (ROS.ORG, n.d.-b, COUSINS, 2012).

3.2.3 Universal Robots and Robotiq

Universal Robots (UR) is a company in the field of collaborative robotics, known for
industrial robots that are versatile and safe for human-robot interaction. The company’s
robotic arms are designed to assist with a range of applications, including assembly,
packaging, and quality inspection, across diverse industries such as manufacturing,
healthcare, and electronics. Universal Robots’ models—ranging from the lightweight
UR3 to the larger UR16—are built for ease of programming, flexible deployment, and
enhanced safety features, allowing for fast integration into various workflows (ROBOTS,
n.d.).

21

Figure 3.3: Universal Robot UR10e (UNIVER-
SAL ROBOTS, 2025)

The UR10, exemplifies these features with a payload capacity of 10 kg and a reach of 1300
mm, making it ideal for tasks requiring extended reach and moderate load capacity, such
as palletizing and heavy-duty assembly. Its design emphasizes user-friendly operation
and minimal setup time, encouraging efficient collaboration in environments traditionally
dominated by manual labor (UNIVERSAL ROBOTS, 2025). These capabilities make the
UR10 a suitable candidate for research in timber construction workflows by enabling
detailed planning, reducing errors, and enhancing precision in assembling custom or
complex timber elements.

Robotiq develops adaptive grippers that enable versatile robotic manipulation across
various applications. Among its models, the Hand-E Adaptive Gripper is designed for
precision tasks and adaptability in collaborative robotic systems. The gripper features a 50
mm parallel stroke, allowing it to handle a range of part sizes and shapes, with adjustable
force settings for precision. Its design complies with ISO/TS 15066, incorporating safety
measures such as rounded edges and self-locking mechanisms, which make it suitable
for collaborative environments. Additionally, the Hand-E’s sealed structure supports its
operation in environments like CNC machining. These features make it a robust choice for
research applications requiring precise and adaptive manipulation (ROBOTIQ, 2023).

3.2.4 COMPAS FAB - Python Package for Robotic Fabrication

COMPAS (MELE and many OTHERS, 2017-2021) is an open-source framework designed
for computational design and digital fabrication, primarily targeting the architecture, engi-
neering, and construction industries. It provides a rich set of tools for geometric computa-
tion, data manipulation, and visualization, empowering users to create complex geometries
and design systems. The framework is built on Python and facilitates collaborative work-
flows through its modular architecture, allowing users to extend its capabilities with plugins
tailored to specific applications (MELE and many OTHERS, 2017-2021).

22

COMPAS FAB is an extension of the COMPAS framework that focuses on the integration
of robotic systems and digital fabrication processes. It offers a comprehensive set of
tools for robotic motion planning, trajectory generation, and simulation, enabling users to
develop automated workflows for various fabrication tasks, including milling, 3D printing,
and assembly. By bridging the gap between computational design and robotic execution,
COMPAS FAB enhances the potential for innovative fabrication strategies in architectural
design and construction (RUST et al., 2018).

The implementation of this research was performed using the COMPAS version 1.17.10
and COMPAS FAB version 0.28.0.

Backends and ROS

A central feature of COMPAS FAB is its backend system, which includes integration with
the Robot Operating System (ROS), a widely used middleware for robot control. Through
its ROS backend, COMPAS FAB enables seamless interaction with ROS-compatible
robots, facilitating real-time operations such as motion planning, collision detection, and
robot control. This integration allows designers and engineers to bridge the gap between
computational design and robotic execution, supporting automated workflows for advanced
fabrication tasks such as milling, 3D printing, and assembly. By leveraging ROS’s robust
capabilities, COMPAS FAB empowers users to implement complex, collaborative, and
adaptive robotic applications, streamlining the transition from design concepts to physical
fabrication (RUST et al., 2018).

To make Integration and Set up easier, it is possible to leverage Docker for containerizing
specific configurations. Docker is an open-source platform designed to simplify the
development, deployment, and management of applications by using containerization.
Containers are lightweight, standalone packages that include everything needed to run
an application: the code, runtime, libraries, and dependencies. Unlike virtual machines,
which require their own operating system, Docker containers share the host system’s
OS kernel, making them faster and more efficient (DOCKER, n.d.). ROS systems require
multiple interconnected nodes, which can complicate deployment. Docker simplifies
this by allowing users to create virtualized ROS networks, which manage the setup
and connection of all nodes using a single configuration file. Running ROS nodes as
containers ensures consistent performance across different systems, easing deployment
and enhancing repeatability. Pre-built ROS images provide convenient starting points
for these containerized setups (RUST et al., 2018). In this case, four different containers
are used: ros-fileserver, ros-bridge, ros-core and moveit-demo which can all be found on
Docker Hub.

Connecting COMPAS FAB with Grasshopper and Rhino

Through its robust API, COMPAS FAB enables seamless interoperability, allowing users to
leverage Rhino and Grasshopper’s geometric modeling capabilities within the COMPAS

23

ecosystem. This connection, as shown in figure 3.4, enables the user to develop and
simulate robotic fabrication processes in a single integrated environment. In Rhino,
COMPAS FAB extends traditional modeling capabilities by enabling real-time interactions
with robotic systems, facilitating path planning and toolpath generation within a familiar
CAD interface. Within Grasshopper, COMPAS FAB provides dedicated components that
allow users to script, simulate, and test robotic tasks visually, making it accessible for both
advanced users and those new to programming. The documentation provided by COMPAS
FAB includes detailed guidance on connecting to various robotics systems, utilizing built-in
kinematics solvers, and implementing modular workflows, thereby making it a versatile
tool for robotic automation in architectural and industrial design applications (RUST et al.,
2018). For this research purpose, a grasshopper playground is developed to control and
modularize the robotic fabrication process for simple tasks in timber construction.

ROS Client
(Linux/Docker) GrasshopperCOMPAS FAB

Rhino

Figure 3.4: Relation between COMPAS FAB and software

3.3 Robotics Fundamentals for Motion Planning

3.3.1 Robotic Manipulators and Kinematic Models

A robotic manipulator consists of rigid links connected by joints — either revolute, which
allow rotational motion, prismatic, which enable translational motion or fixed, which allow
no motion. These joints and links form a kinematic chain, which can be open or closed.
Open chains, commonly used in robotic manipulators, feature a sequential connection
of links and joints that provide the degrees of freedom (DOF) required for mobility and
flexibility in performing tasks. To achieve full control of an object in 3D space, a manipulator
typically needs six DOF, which allow it to position and orient its end-effector (SICILIANO

et al., 2008).

Kinematic models serve as a mathematical representation of the manipulator’s structure
and motion capabilities. As highlighted in the COMPAS framework documentation (RUST

et al., 2018), these models are often described using the Unified Robot Description Format
(URDF). The URDF defines the connections between links and joints, their geometric
relationships, and additional elements like external axes, offering a tree-like structure

24

that mirrors the manipulator’s physical design. The kinematic model not only facilitates
accurate motion planning and simulation but also ensures that the manipulator operates
within its defined workspace accessible by its end-effector. The interplay between the
physical structure of a manipulator and its kinematic model underscores the importance of
well-designed models in translating mechanical configurations into precise and reliable
robotic actions.

In the domain of robotic manipulators, kinematic models serve as the foundation for
understanding and controlling the relationship between a manipulator’s physical structure
and its motion capabilities. The COMPAS FAB framework provides a comprehensive set of
classes and tools to define and manipulate these kinematic models, facilitating the design,
simulation, and control of robotic systems with scientific rigor.

At the core of the COMPAS FAB framework is the RobotModel class, which encapsulates
the structural and kinematic configuration of a robotic manipulator. This model is composed
of Link objects, representing the rigid bodies that provide the manipulator’s structural
integrity, and Joint objects, which define the articulations between links. The Joint class
supports various joint types, including revolute, prismatic, and fixed, reflecting the degrees
of freedom (DOFs) necessary to achieve motion within the kinematic chain. This structure
is consistent with the Unified Robot Description Format (URDF), ensuring interoperability
and standardization across robotic software systems RUST et al., 2018.

3.3.2 Coordinate Frames and Transformations

In robotic systems, the definition and consistent use of coordinate frames are essential for
ensuring seamless integration and reuse of robot drivers, models, and libraries. These
frames establish shared conventions for spatial relationships and orientations, forming the
foundation for planning and executing robotic fabrication processes. The World Coordinate
Frame (WCF) serves as a global reference, with its origin fixed in space and its Z-axis
oriented upwards, aligning with the ROS "map" convention. This frame is crucial for
processes involving multiple robots operating in a shared workspace, robots with external
axes, or mobile robots. By default, the WCF coincides with the Robot Coordinate Frame
(RCF). The Robot Coordinate Frame (RCF), referred to as "base_link" in ROS, originates
at the base of the robot and serves as the primary reference system for its mechanical
structure. It is defined relative to the WCF, ensuring consistency in positioning and
orientation. The Tool0 Coordinate Frame (T0CF) is anchored at the tip of the robot’s last
link, inheriting its relationship from the RCF. This frame represents the unmodified tool
mount point and serves as the basis for defining the Tool Coordinate Frame (TCF). The
TCF, often referred to as the Tool Center Point (TCP), represents the active working point
of the tool, such as the tip of a gripper or welding nozzle. It is defined in relation to the
T0CF, accounting for the specific tool geometry. Finally, the Object Coordinate Frame
(OCF) describes the position and orientation of the work object or built structure in relation
to the WCF. This frame is critical for defining the spatial relationship between the robot and
its task environment, enabling precise manipulation and fabrication processes. Together,

25

these coordinate frames create a structured hierarchy, ensuring accurate transformations
and efficient planning across diverse robotic applications (MELE and many OTHERS,
2017-2021).

Figure 3.5: Coordinate Frames

In the COMPAS framework, the concepts of frames and transformations are fundamental
tools for describing positions, orientations, and coordinate systems in 3D space. Frames
are fundamental tools in robotics for describing one coordinate system relative to another,
encompassing both position and orientation. A frame generalizes these concepts by
combining a position vector and a rotation matrix. The position vector locates the point in
space being described, while the rotation matrix defines the orientation of the coordinate
system (CRAIG, 2021. The class compas.geometry.Frame is employed to describe and
manage these coordinate systems, ensuring compatibility with standard robotics conven-
tions. Frames can be used to define both local and global coordinate systems and provide
methods to transform points and vectors between these systems. They also allow for
describing and converting between said different conventions for pose orientation, such
as Euler angles, axis-angle representation, and quaternions, commonly used in industrial
robotics. The COMPAS framework supports conversions between these formats, ensuring
compatibility and consistency in pose descriptions across diverse applications (MELE and
many OTHERS, 2017-2021).

Transformations, on the other hand, are mathematical operations that modify geometric
entities like frames, points, and vectors. The Transformation class serves as a base for
various transformation types, including rotation, translation, scaling, reflection, projection,
and shear. Transformations can represent complex operations, such as changing a frame’s
orientation to align with a desired pose (MELE and many OTHERS, 2017-2021).

26

3.3.3 Forward and Inverse Kinematics

Forward Kinematics

Forward kinematics is the process of determining the position and orientation of a robot’s
end-effector in Cartesian space, given the joint parameters such as angles or displace-
ments. Using a series of transformations, typically modeled using the Denavit-Hartenberg
(D-H) convention, forward kinematics maps the robot’s joint space configuration to the
global coordinate system. Each transformation describes the rotation and translation
between adjacent links, and the overall position of the end-effector is obtained by mul-
tiplying these transformations sequentially along the robot’s kinematic chain. Forward
kinematics is foundational in robotics and serves as a prerequisite for motion planning and
control, as described by CRAIG, 2021. In practice, frameworks like ROS compute forward
kinematics using pre-defined kinematic models of robotic manipulators, enabling real-time
calculations for tasks like path visualization in simulation tools such as RViz (ROS.ORG,
n.d.-a). In COMPAS FAB, this process is facilitated by the forward_kinematics() func-
tion, which uses the compas_fab.robots.Configuration class to define the state of each
joint in the robot’s articulated body. A straightforward approach to computing forward
kinematics leverages the robot model’s properties without requiring a running ROS in-
stance. For example, using the COMPAS FAB library, a RobotLibrary instance can
calculate the world coordinate frame (WCF) of the end-effector given a specified joint
configuration. The resulting pose specifies the end-effector’s position and orientation in
the world coordinate system. Additionally, if a robot is connected to a ROS client, the
forward_kinematics() function can resolve the pose using ROS’s kinematic solver. By
utilizing the compas_fab.backends.RosClient, users can load the robot model, validate its
identity, and compute the same results within a ROS environment. This dual functionality
ensures flexibility, enabling forward kinematics calculations both in standalone setups and
within integrated ROS-based workflows RUST et al., 2018.

Inverse Kinematics

Inverse kinematics, by contrast, solves the problem of determining the necessary joint
configurations required to position the robot’s end-effector at a desired location and
orientation in Cartesian space. Unlike forward kinematics, which always yields a single
deterministic solution, inverse kinematics is more complex due to the possibility of multiple
solutions or even no solution for certain positions outside the robot’s workspace. Analytical
or numerical methods are used to solve the inverse kinematics equations, often relying
on iterative approaches when closed-form solutions are not feasible. In "Introduction
to Robotics: Mechanics and Control," CRAIG, 2021 highlights the challenges of inverse
kinematics, including singularities and redundancy. ROS integrates these principles
into motion planning algorithms within MoveIt!, allowing robotic systems to determine
joint trajectories for user-defined end-effector goals in real or simulated environments
(ROS.ORG, n.d.-a).

27

The inverse_kinematics() function in COMPAS FAB facilitates this computation by uti-
lizing a predefined robot model and an initial guess for the joint states, such as the zero
configuration. For example, given a target pose defined in the world coordinate frame
(WCF), the function computes a valid joint configuration that enables the robot to achieve
this pose within its kinematic constraints. Moreover, the functionality is extended functional-
ity by allowing users to request multiple solutions through the iter_inverse_kinematics()

function, which iteratively computes alternative joint configurations that satisfy the target
pose. By specifying parameters such as the maximum number of results, this iterative
approach provides greater flexibility in selecting configurations that optimize for criteria
such as joint limits or collision avoidance. These computations rely on the integration of
ROS, which provides access to advanced kinematic solvers, ensuring robustness and
precision in addressing the inverse kinematics problem. Such capabilities are essential in
applications involving robotic manipulation, where accurate and feasible motion planning
is critical (RUST et al., 2018).

3.3.4 Motion Planning

Motion planning and trajectory planning are fundamental tasks in robotic control, essential
for enabling robots to perform complex tasks autonomously. Motion planning involves
determining a path that a robot must follow from its initial position to a target position
while avoiding obstacles and ensuring safe navigation through the environment (SICILIANO

et al., 2008). On the other hand, trajectory planning goes a step further by incorporat-
ing time-dependent considerations, such as velocity, acceleration, and deceleration, to
ensure smooth and feasible movement (LAVALLE, 2006). These two aspects are often
interconnected, as trajectory planning typically builds upon the solution obtained from
motion planning, adding temporal elements to the path. In practice, motion planning can
be achieved using algorithms like Rapidly-exploring Random Trees (RRT) or Probabilistic
Roadmaps (PRM), which are designed to explore complex and high-dimensional spaces
(LAVALLE, 2006). The integration of both motion and trajectory planning is crucial for effec-
tive robotic operation, particularly when performing tasks that require precise positioning
and smooth, efficient movements (SICILIANO et al., 2008).

Motion Planning in COMPAS FAB

Motion planning in the COMPAS FAB framework enables the computation of feasible
paths and trajectories for robotic manipulators while avoiding collisions and satisfying
task constraints. The process integrates with ROS and MoveIt to leverage their planning
capabilities. Central to motion planning are the Robot class, which represents the robotic
system, and the PlanningScene class, which models the environment and obstacles.
Using the plan_motion() function, users can compute paths to move the robot from an
initial to a target configuration. This function generates a joint-space trajectory that ensures
the robot’s kinematic feasibility.

28

Load Robot

RosClient

Robot

Planning Scene

Collision Objects

Add Collision
Objects

Add Attached
Collision Objects

Planning Motion

Plan Cartesian
Motion

Plan Motion

Visualization

Figure 3.6: Relations Between Planning and Visualizing Robotic Motion

Cartesian motion planning is supported through the plan_cartesian_motion() function,
which allows precise path planning for the robot’s end-effector in Cartesian space. The
user specifies waypoints as Frame objects, and the function calculates a trajectory that
respects constraints such as obstacle avoidance and joint limits.

Once planned, trajectories can be visualized and validated using COMPAS FAB’s simu-
lation capabilities. The Trajectory class encapsulates the planned motion, and tools like
AttachedCollisionMesh and CollisionMesh support integrating objects into the planning
scene for enhanced collision checking. COMPAS FAB’s API ensures flexibility in configur-
ing and executing both joint-space and Cartesian-space motions, enabling solutions for
complex robotic tasks (RUST et al., 2018).

3.3.5 Planning Scene and Collision

In robotic systems, scene planning and collision avoidance are fundamental components
of motion planning, ensuring that a robot can operate safely and efficiently within its
environment. According to SICILIANO et al., 2008, the planning scene encapsulates the
geometric and spatial relationships between the robot and its workspace, including static
and dynamic obstacles. This representation is essential for calculating valid configurations
and trajectories that respect environmental constraints. Scene planning involves integrating
obstacle information into the motion planning framework, ensuring that the robot’s path
avoids collisions and adheres to task-specific constraints, such as avoiding fragile objects
or maintaining clearance from walls.

The concept of collision detection is rooted in kinematic and dynamic modeling, where the
workspace and robot geometry are analyzed to identify potential intersections. As CRAIG,
2021 explained, collision-free planning requires precise modeling of the robot’s links and
joints in relation to the environment. This is achieved by defining bounding volumes or

29

meshes for obstacles and robot parts and performing collision checks during trajectory
generation. Additionally, redundant degrees of freedom in manipulators can be leveraged
to avoid obstacles while maintaining task accuracy. Together, scene planning and col-
lision avoidance are indispensable for enabling robots to perform tasks in unstructured
environments with both precision and safety.

Planning Scene and Collision in COMPAS FAB

In the COMPAS FAB framework, the PlanningScene class plays a pivotal role in rep-
resenting the robot’s environment, including static and dynamic obstacles, to facilitate
collision-aware motion planning. The planning scene integrates the robot model with a
detailed description of the surrounding workspace, enabling robust collision detection
and avoidance during motion planning. Objects in the scene can be represented using
CollisionMesh or AttachedCollisionMesh. A CollisionMesh defines a static obstacle
with a mesh geometry, while an AttachedCollisionMesh allows users to model objects
attached to the robot, such as tools or payloads, which move along with the manipulator.

Collision checking in COMPAS FAB is integral to the planning process and is han-
dled during both configuration validation and trajectory computation. Functions like
add_collision_mesh and add_attached_collision_mesh allow users to dynamically up-
date the planning scene by adding or removing objects. The is_configuration_valid

function checks whether a specific robot configuration avoids collisions, adheres to joint
limits, and satisfies custom constraints.

The planning scene is critical for tasks requiring precise interaction with objects or environ-
ments, such as pick-and-place operations or constrained manipulations. By combining
robust collision modeling and real-time updates, COMPAS FAB ensures that motion plans
are feasible, safe, and optimized for the intended task (RUST et al., 2018).

3.3.6 URDF - Unified Robotic Description Format

URDF files are an XML-based format in robotics that describe a robot’s structure, kinemat-
ics, and properties. They define links and joints, specify collision and visual geometries,
and may include sensors and actuators, providing the data necessary for simulation,
visualization, and motion planning within frameworks like ROS. Tools like Gazebo use
URDF files to simulate robot-environment interactions, while motion planning libraries
compute feasible trajectories, ensuring compatibility across components.

URDF also supports geometric information, such as collision meshes, and physical
properties like inertia and joint limits. Although effective for constructing kinematic chains
and complex robot configurations, URDF has limitations in encoding semantic information
or advanced constraints, which are managed using formats like the Semantic Robot
Description Format (SRDF). By integrating URDF models with tools like Gazebo for

30

simulation or RViz for visualization, developers can efficiently model robots and streamline
application development (ROS.ORG, n.d.-a).

Link 1 Joint 1 Link 2 Joint 2

Figure 3.7: Link and Joint relation

The COMPAS Fab library integrates URDF files to facilitate the modeling, simulation, and
control of robotic systems, particularly in the context of robotic fabrication. URDF files,
being a standardized format for representing robot structure and kinematics, serve as an
input for defining the robot’s configuration within COMPAS Fab. Specifically, the library
uses URDF files to establish the robot’s link and joint structures, as well as to determine
the kinematic chain necessary for motion planning and trajectory execution.

In COMPAS Fab, URDF files enable the import of detailed robotic models, which can be
used to perform tasks such as motion planning, inverse kinematics, and collision detection.
By converting the URDF model into a format compatible with the COMPAS framework,
users can simulate the robot’s behavior in a virtual environment, leveraging tools for path
planning and visualization. Additionally, the URDF data structure ensures compatibility with
various external tools, such as ROS-based simulators (e.g., Gazebo). As an alternative to
Gazebo, Grasshopper, in conjunction with COMPAS Fab, provides a flexible parametric
simulation environment for robotic systems, enabling users to visualize and interact with
robotic models in a design-oriented context. This allows for real-time simulation, path
optimization, and task execution within Grasshopper’s parametric workflow.

Furthermore, COMPAS Fab extends the utility of URDF files by incorporating robot-specific
details such as joint limits, sensor data, and end-effector specifications, which are critical
for robotic fabrication tasks. The integration of URDF files allows for a seamless connection
between the robot’s digital model and real-world operations, facilitating efficient control
and optimization of robotic systems in fabrication processes.

In summary, the COMPAS Fab library effectively utilizes URDF files to bridge the gap
between robot design, simulation, and execution, ensuring accurate representation and
control of robotic systems in the context of robotic fabrication and related applications.
Grasshopper, as an alternative to Gazebo, serves as an integrated simulation environment
within this ecosystem, enabling users to explore and optimize robotic workflows.

31

32

Chapter 4

Implementation

This chapter outlines the detailed process of implementing a modular timber joinery
system and the integration of robotic simulation for the assembly tasks. It begins with
an exploration of the modular timber joinery system, detailing the design intent and the
functional requirements necessary for creating efficient timber components. Following that,
the timber structure’s design is presented, alongside the analysis of its assembly steps
and structural integrity.

The chapter further progresses by discussing the setup and customization of a robotic
simulation framework using COMPAS FAB within Grasshopper. This includes a compre-
hensive guide on configuring the Docker image for COMPAS FAB, setting up the backend
GUI with XMing, and customizing the robot’s URDF model. Moreover, a detailed expla-
nation of the MoveIt! Configuration Package for the UR10 robot and adaptive gripper is
provided, along with instructions on building a custom Docker image for the simulation
environment.

Additionally, the chapter covers the technical process of converting STEP files to JSON
format for seamless structural data import, enhancing the integration between the timber
design and robotic simulation. To facilitate user interaction with the robotic system,
an interactive control interface using Grasshopper is introduced, allowing for real-time
simulation of the robotic assembly tasks. Specific examples of robot workflows for pick-
and-place cycles are given, followed by a discussion on the Grasshopper component
blocks used for simulated robotic assembly operations.

Each section of this chapter contributes to the comprehensive development of a robotic
system capable of efficiently handling modular timber joinery tasks, offering a step-by-step
breakdown of both the design and implementation phases.

33

4.1 Modular Timber Joinery System

4.1.1 Design Intent and Functional Requirements

The parametric timber joinery system designed for robotic fabrication employs a plug-in
connection mechanism to facilitate precise and tool-less assembly. The system consists of
rectilinear timber components with customized interlocking joints, allowing for efficient and
repeatable connections. The plug-in mechanism ensures initial alignment and stability, en-
abling components to hold together without the immediate need for fasteners or adhesives.
This temporary stability provides a critical window for subsequent fixation using screws,
either by a human operator or a secondary robotic system.

A key aspect of the design is the angled beam integration, which enhances its applicability
in load-bearing structures such as trusses or frame assemblies. The precise geometric
adaptation of the joint system ensures compatibility with automated fabrication workflows,
allowing robotic arms to assemble components with high accuracy and minimal material
waste (GRAMAZIO and KOHLER, 2008). This approach is particularly advantageous in
mass customization, enabling the scalable production of complex timber structures while
maintaining structural integrity and material efficiency.

This method aligns with current advancements in digital fabrication and computational
design, offering an optimized workflow for sustainable construction. The modular nature of
the system enhances its adaptability in reconfigurable architectural frameworks, where
disassemblable and reusable components contribute to a circular material economy
(GEISSDOERFER et al., 2017). Additionally, by integrating robotic assembly with temporary
self-stabilization, the system reduces reliance on immediate fastening, further optimizing
construction time and labor efficiency.

34

4.1.2 Assembly Steps

The robotic assembly of modular timber structures requires a well-defined sequence to en-
sure structural stability and fabrication efficiency. In this study, a parametric approach was
employed to model the stepwise construction process, facilitating precise path planning for
robotic execution. The assembly sequence was developed using computational design
tools in Rhino and Grasshopper, enabling a systematic integration of horizontal, vertical,
and diagonal timber components.

To achieve an optimized construction order, the structure was divided into discrete assem-
bly steps, considering both mechanical constraints and robotic feasibility. Each step follows
a logical progression, starting with foundational horizontal elements, followed by vertical
and diagonal reinforcements, and concluding with upper-level horizontal components. This
sequential strategy ensures proper load distribution and minimizes potential collisions
during robotic handling.

The following sequence illustrates the stepwise assembly process of the timber structure,
employing the modular joinery system.

1. Step: Initial Horizontal Component Placement (Figure 4.1)

The assembly process begins with the placement of primary horizontal timber mem-
bers. These elements serve as the base framework, ensuring alignment and providing
foundational support for subsequent structural elements.

2. Step: Integration of Vertical and Diagonal Components (Figure 4.2)

The second stage introduces vertical and diagonal members, which contribute to the
structural integrity by forming triangulated load-bearing elements. These components are
strategically positioned to enhance stability and resistance to lateral forces.

Figure 4.1: Horizontal Components
Figure 4.2: Vertical and diagonal
Components

35

3. Step: Additional Horizontal Reinforcement (Figure 4.3)

Further horizontal elements are added, interlocking with existing components to reinforce
the structure. This step increases the rigidity of the assembly and facilitates the seamless
connection of upper structural elements.

4. Step: Final Vertical and Diagonal Member Placement (Figure 4.4)

A secondary set of vertical and diagonal components is incorporated, completing the
primary framework. These elements optimize load distribution and enhance overall
mechanical performance.

Figure 4.3: Horizontal Components
Figure 4.4: Vertical and diagonal
Components

5. Step: Final Horizontal Component Integration (Figure 4.5)
The final step involves the placement of the uppermost horizontal members, ensuring
full structural continuity. This stage finalizes the modular system, demonstrating the
effectiveness of the interlocking joinery approach in constructing prefabricated timber
structures.

Figure 4.5: Horizontal Components

36

This sequential process emphasizes the efficiency and adaptability of modular timber
construction. The integration of computational design and digital fabrication enables
precise assembly and improving structural performance.

4.1.3 Design and Parameters of the Timber Components

Horizontal Timber Component

Figure 4.6: Perspective View of Horizontal Component
in Millimeters

The horizontal timber component measures 400 mm in length and is designed with defined
interlocking joints. The component features a symmetrical profile with detailed geometric
specifications for accurate assembly.

At one end, the component incorporates a double tenon slot, the smaller tenon slot
measuring 10 mm in width and 10 mm in depth, facilitating interlocking with horizontal
elements and the bigger tenon slot measuring 20mm by 20mm for its interlocking with
vertical elements. The opposite end features a rectangular tenon measuring 10 mm × 10
mm, accompanied by a 20mm x 20mm longitudinal slot for interlocking diagonal elements

37

Vertical Component

Figure 4.7: Perspective View of Vertical Component in
Millimeters

The vertical timber component has a cubic tenon measuring 20 mm per side at both
ends. The tenons are designed for precise alignment and insertion into a corresponding
recess. The component is inserted vertically at an angle of 90 degrees into the horizontal
counterpart of the structure.

Diagonal Component

The diagonal timber element features a cubic tenon, each side measuring 20 mm, at both
ends. This element is angled at 55 degrees as it is fitted into the horizontal part of the
structure.

Figure 4.8: Perspective View of Diagonal Component
in Millimeters

This component plays a crucial role in load distribution by transferring vertical loads into
axial forces, reducing bending moments on vertical and horizontal members. It enhances
structural stability by resisting lateral forces, preventing deformation under external loads

38

such as wind or seismic activity. Additionally, the diagonal beam optimizes compression
and tension forces, ensuring efficient weight distribution while minimizing material usage.
This improves overall rigidity and strength, making the structure more resilient and efficient.

The structured joinery details ensure compatibility with other components and therefore a
stable connection within a predefined architectural or structural configuration.

Manufacturing of the Timber Components

To manufacture the custom timber components, various machining techniques could
be employed, combining traditional methods with modern technologies to achieve high
precision and customization. CNC routers and milling machines would be key to creating
the complex joints required for the components. These systems allow for repeatable,
accurate cuts, enabling the production of tailored components while minimizing material
waste. The use of CNC machines would facilitate the efficient creation of joints that are
precise and consistent across all units.

For the fabrication of mortise and tenon joints, CNC milling machines could be used to
shape the components, while specialized mortisers would be employed to cut square
or rectangular holes. Mortisers, designed specifically for such tasks, would ensure the
mortises are accurately formed, allowing for proper fitting of the tenons. This combination
of tools would provide a means to achieve strong, precise connections in the timber
components, contributing to the overall structural integrity.

By employing these techniques, it would be possible to manufacture custom timber
components with a high degree of precision and repeatability, making them suitable
for large-scale production as well as bespoke applications. The 2D drawings of the
components can be found in the appendix for further reference (A.6).

4.2 Setup and Configuration of UR10 Robot with Hand-E Grip-
per

4.2.1 Docker Integration for Custom Configuration

To use COMPAS Fab with a UR10 robotic arm equipped with a Robotiq Hand-E adaptive
gripper as its end-effector, several preparatory steps are required. Specifically, a Docker
image must be created with a MoveIt configuration tailored to this setup. Since a pre-
fabricated URDF file for this combination does not exist, it is necessary to create a
custom URDF file. The tools needed for this, are Docker Desktop and an IDE (Integrated
Development Environment), e.g. Visual Studio Code. The following steps, which are also
visualized in figure (4.9), outline the process of creating a custom Docker image with all
necessary configurations:

39

1. Create a Custom URDF:
A URDF file is developed, that defines the kinematic structure of the UR10 robot
model and includes the Robotiq Hand-E gripper as its end-effector. This involves
specifying all links, joints, and the end-effector’s attachment to the robot arm and
ensures, that the URDF file accurately reflects the physical configuration and param-
eters of the system.

2. Generate a MoveIt! Configuration:
The custom URDF file can now be used to create a MoveIt configuration package.
This step involves setting up the robot’s planning groups, collision geometries, joint
limits, and motion planning settings to enable COMPAS Fab to simulate and control
the UR10 with the attached gripper.

3. Create a copy of docker image to safe for further use:
Now, a new copy of the docker image with the new MoveIt! Configuration package
can be created and run.

These steps ensure that the custom Docker image includes all the necessary components
and configurations for effective integration and operation of the UR10 and the Hand-E
gripper within the COMPAS Fab framework.

Creation of custom
URDF

MoveIt!
Configuration New Docker Image

Figure 4.9: Workflow for Customized Robotic Simulation Environment

The setup for the Docker image with the custom MoveIt configuration is closely aligned
with the guidelines provided in the COMPAS FAB documentation. COMPAS FAB offers a
robust foundation for configuring robotic systems by integrating MoveIt for motion planning
and simulation. However, in the case of the UR10 robotic arm equipped with the Robotiq
Hand-E adaptive gripper, additional adjustments are necessary to enable control of the
gripper fingers.

Specifically, while the standard COMPAS FAB documentation outlines the configuration of
a robotic manipulator for motion planning, it does not inherently account for the actuation
of end-effector components, such as gripper fingers. To address this, the custom MoveIt
configuration package must include additional joint definitions and control interfaces for
the gripper. This involves extending the URDF file to include the gripper’s kinematics and
integrating these changes into the MoveIt configuration to enable finger-specific motion
planning. Furthermore, the Docker image must incorporate these modifications to ensure
that the simulation and control environment accurately reflects the full range of robotic
capabilities, including coordinated movements of both the arm and the gripper.

40

4.2.2 Backend GUI - XMing

Visualization forwarding display enables the direct forwarding of graphical interfaces from
remote systems to a local operating system. This is achieved by forwarding the X11
display protocol. However, full platform compatibility is not always guaranteed. To use this
feature, the X11 server XMing is installed for Windows. Next, X11 security is configured
by adding the machine’s IP address to the file "%ProgramFiles(x86)%\XMing\X0.hosts" on
Windows (with administrative privileges). Finally, the DISPLAY environment variable is set
to point to the X11 server and for Docker environments, DISPLAY=host.docker.internal:0.0
is added to the Docker configuration inside the docker-compose.yml file, which will be
explained further later on (RUST et al., 2018).

4.2.3 Custom URDF for UR10 with end-effector

Adaptive Gripper Hand E Meshes

Figure 4.10: Robotiq Hand E Figure 4.11: hand_e_base.stl

Figure 4.12: hand_e_finger_1.stl Figure 4.13: hand_e_finger_2.stl

Before initiating the creation process, the mesh files for the gripper components must be
generated in the .stl format. The required .step files for the gripper can be obtained from
the Robotiq website (ROBOTIQ, 2023). These files should be opened in a CAD program

41

capable of handling .step files, where the meshes can be reduced and converted to the
.stl format. It is essential to save each mesh component of the gripper—specifically the
base, finger one, and finger two—as separate .stl files. This separation is necessary to
ensure the independent movement of the gripper fingers, enabling them to open and close
during operation. The base mesh, and the fingers accrodingly to the base position, should
be exported centered at the origin of the world coordinate system.

New Dummy Docker Image

To configure the Docker environment for the UR10 robot using COMPAS FAB, the provided
Docker image must first be downloaded from the COMPAS FAB documentation (RUST

et al., 2018). The image, configured for the UR10 robot, requires a minor modification to
enable the use of a Linux command prompt within the container. The configuration file
docker-compose.yml should be opened in a text editor, such as Visual Studio Code, and
the following lines added under the command section within the ros-core configuration:

stdin_open: true

tty: true

This adjustment ensures interactive command-line functionality within the Docker container.
After making this change, Docker Desktop must be started, and the following command
executed to launch the container:

docker-compose up -d

Once the container is running, the file system of the ros-core container can be accessed
via Docker Desktop, revealing the typical structure of a Linux environment. Within the file
system, the directory /root/catkin_ws/src serves as the workspace for further configura-
tions.

To open a Linux command prompt inside the Docker container, the following command is
executed in the terminal or Visual Studio Code:

docker-compose exec ros-core bash

Within the newly opened command prompt, the next step involves creating a new Catkin
package.

Catkin Workspace

In the opened command-line interface, a new Catkin package is created. Catkin is the
build system utilized in ROS to manage dependencies, organize packages, and build

42

projects (ROS.ORG, n.d.-a). It establishes a structured workspace and maintains the
necessary files for compiling and executing ROS packages.

The following command is used to create a new package named ur10_hand_e:

catkin_create_pkg ur10_hand_e

This command generates a folder named ur10_hand_e within the /catkin_ws/src directory.
Verification of the creation can be performed by examining the directory. The newly created
folder includes a file named package.xml, which contains metadata and dependencies for
the package. The package.xml file must be edited, and the following line added after the
existing <buildtool_depend>catkin</buildtool_depend>:

1 <buildtool_depend>catkin</buildtool_depend>
2 <test_depend>roslaunch</test_depend>
3 <build_export_depend>joint_state_publisher</build_export_depend>
4 <build_export_depend>robot_state_publisher</build_export_depend>
5 <build_export_depend>rviz</build_export_depend>
6 <build_export_depend>xacro</build_export_depend>
7 <exec_depend>joint_state_publisher</exec_depend>
8 <exec_depend>robot_state_publisher</exec_depend>
9 <exec_depend>rviz</exec_depend>

10 <exec_depend>xacro</exec_depend>

To proceed with the configuration, additional folders must be created within the
ur10_hand_e directory. Specifically, a folder named meshes is required, which should
contain two subfolders: collision and visual. The three .stl CAD files corresponding to the
gripper must be copied into both the collision and visual subfolders. Up to this step, the
process closely aligns with the guidelines provided in the COMPAS FAB documentation.

Furthermore, three additional folders named launch, rviz, and urdf must be created within
the ur10_hand_e directory. These folders will serve as repositories for the necessary
configuration and launch files required for integrating the UR10 robot and the Hand-E
gripper into the simulation and visualization environment.

Creating Xacro and URDF files

To create the configuration for the Robotiq Hand-E gripper, a new text file is generated
using a text editor such as Notepad and renamed with the extension .xacro, resulting
in a file named hand_e.xacro. The .xacro format stands for XML Macros, which is an
extension of the URDF (Unified Robot Description Format) that allows for modularity and
reuse of robot model components. Xacro files provide a mechanism to include parameters,
conditional statements, and macros, simplifying the creation and maintenance of complex
robotic models. They are particularly useful for robots with modular configurations or when
multiple similar components are required (ROS.ORG, n.d.-a).

43

In this case, the hand_e.xacro, A.1, file will contain the specific description of the Robotiq
Hand-E gripper, including its kinematic properties, visual and collision meshes, and joint
configurations. The file accepts two parameters: prefix, which allows for unique naming
of components, and connected_to, which specifies the parent link to which the gripper is
attached. The gripper’s kinematic structure begins with a fixed joint (hand_e_base_joint),
attaching the gripper base (hand_e_base) rigidly to the parent link. The <origin> tag
specifies the joint’s position and orientation relative to the parent.

The gripper base is defined as a <link> element with associated visual and collision meshes
stored in the meshes folder. These meshes describe the physical appearance and collision
geometry of the base. The gripper includes two prismatic joints, hand_e_finger_1_joint
and hand_e_finger_2_joint, allowing linear motion for the gripper fingers along specified
axes. These joints are configured with motion limits, including effort, velocity, and range
constraints. The second finger joint mimics the movement of the first using the <mimic>
tag, ensuring synchronized motion.

Finally, a tcp_joint connects the gripper to a tool center point (TCP) link, providing a
reference frame for task planning. By encapsulating the gripper’s kinematic and geometric
definitions in a macro, the file enables efficient integration and reuse in robotic models,
particularly for applications involving the UR10 robotic arm.

The second Xacro file is needed to connect the Robotiq Hand E gripper to the UR10
robotic arm. The root <robot> tag specifies the model’s name, ur10_hand_e, and includes
references to the two additional Xacro files: the UR10 robot description (ur10.urdf.xacro)
and the Hand E gripper description (hand_e.xacro).

The UR10 robot model is included using the <xacro:ur10_robot> tag. Parameters such
as prefix (set as an empty string) and joint_limited (set to true) configure the robot’s
namespace and enable joint limits to constrain its motion during simulation. Similarly,
the hand E gripper is included via <xacro:hand_e> with the connected_to parameter set
to tool0, indicating its attachment point on the robot. This modular inclusion facilitates
reusability and adaptability for different configurations.

A fixed joint named world_joint connects the robot’s base link (base_link) to the world
coordinate frame (world). The <origin> tag specifies the position and orientation of the
robot’s base in the global coordinate system, here set to the origin with no rotation. This
joint ensures that the robot’s position is anchored in the simulation environment.

44

1 <?xml version="1.0"?>
2 <robot xmlns:xacro="https://ros.org/wiki/xacro" name="ur10_hand_e">
3

4 <!-- ur10 -->
5 <xacro:include filename="$(find ur_description)/urdf/ur10.urdf.xacro" />
6 <!-- end-effector -->
7 <xacro:include filename="hand_e.xacro" />
8

9 <!-- ur10 -->
10 <!-- The ur10 xacro must be included with passing parameters -->
11 <xacro:ur10_robot prefix="" />
12 <!-- end-effector -->
13 <!-- Here we include the end-effector by setting the parameters -->
14 <xacro:hand_e prefix="" connected_to="tool0"/>
15

16 <!-- define the ur10’s position and orientation in the world coordinate system -->
17 <link name="world" />
18 <joint name="world_joint" type="fixed">
19 <parent link="world" />
20 <child link="base_link" /> <!-- TODO: check base_link name of robot -->
21 <origin xyz="0.0 0.0 0.0" rpy="0.0 0.0 0.0" />
22 </joint>
23 </robot>

Ensure that both Xacro files (ur10_hand_e.xacro and hand_e.xacro) are uploaded into the
catkin_ws/src/ur10_hand_e/urdf folder within the Docker environment. The Xacro file must
now be processed to generate a corresponding URDF file. To achieve this, navigate to
the urdf folder within the workspace and execute the following command. This command
utilizes the Xacro package in ROS to expand and evaluate the macros defined in the input
Xacro file (ur10_hand_e.xacro) and produce the output URDF file (ur10_hand_e.urdf):

rosrun xacro xacro --inorder -o ur10_hand_e.urdf ur10_hand_e.xacro

The newly created urdf file can be checked with the following command:

check_urdf ur10_hand_e.urdf

45

The output looks as follows:

1 robot name is: ur10_hand_e
2 ---------- Successfully Parsed XML ---------------
3 root Link: world has 1 child(ren)
4 child(1): base_link
5 child(1): base
6 child(2): shoulder_link
7 child(1): upper_arm_link
8 child(1): forearm_link
9 child(1): wrist_1_link

10 child(1): wrist_2_link
11 child(1): wrist_3_link
12 child(1): ee_link
13 child(2): tool0
14 child(1): hand_e_base
15 child(1): hand_e_finger_1
16 child(2): hand_e_finger_2
17 child(3): tcp

The output shows the structured kinematic chain of the ur10 robotic manipulator with an
attached robotiq hand e gripper, starting from the base and extending through the shoulder,
arm, and wrist joints to the end-effector. The end-effector includes a gripper mechanism
with two fingers and a Tool Center Point (TCP) for precise measurement. Additionally,
tool0 serves as the mounting point for external tools. This hierarchy defines the robot’s
movement and functionality, enabling both object manipulation and measurement tasks.
For a detailed breakdown of the structure, refer to Figure (4.14).

The Custom URDF

The URDF file, shown as a hierarchical diagram in figure 4.14, represents a robotic
system comprising a Universal Robots UR10 robotic arm equipped with a Robotiq Hand-E
adaptive gripper as its end-effector. The kinematic chain starts with the base_link, which
is fixed to the world coordinate frame via the world_joint and base_fixed_joint. This serves
as the foundation for the articulated structure of the robot.

The robotic arm itself is modeled as a series of rigid links connected by revolute joints,
enabling its six degrees of freedom. The shoulder_link is attached to the base_link via
the shoulder_pan_joint, followed by the upper_arm_link, which is connected through the
shoulder_lift_joint. The chain continues with the forearm_link, linked via the elbow_joint,
and concludes with the wrist assembly: wrist_1_link, wrist_2_link, and wrist_3_link, con-
nected by the wrist_1_joint, wrist_2_joint, and wrist_3_joint, respectively. Together, these
links and joints form the standard configuration of the UR10 arm, providing its full range of
motion and flexibility.

46

worldworld_joint

base_link base_link-base_fixed_joint

shoulder_link

shoulder_lift_joint

upper_arm_link

elbow_joint

forearm_link

wrist_1_joint

wrist_1_link wrist_2_joint

shoulder_pan_joint

wrist_2_link

wrist_3_joint

wrist_3_link

ee_fixed_joint

tool0

wrist_3_link-tool0_fixed_joint

hand_e_base

hand_e_base_joint

ee_link

hand_e_finger_1 hand_e_finger_2

hand_e_finger_2_joint

tcp

tcp_jointhand_e_finger_1_joint

Figure 4.14: URDF Hierarchical Structure of UR10 with Hand E adaptive Gripper attached

At the end of the robotic arm, the Robotiq Hand-E adaptive gripper is attached. The gripper
base (hand_e_base) is fixed to the wrist_3_link via the wrist_3_link-tool0_fixed_joint.
The gripper’s two fingers, represented as hand_e_finger_1 and hand_e_finger_2, are
articulated through hand_e_finger_1_joint and hand_e_finger_2_joint, enabling adaptive
gripping capabilities for objects of various shapes and sizes. The end-effector reference
frame, or tool center point (tcp), is attached via the tcp_joint, providing a consistent
coordinate system for task planning and execution.

This URDF structure captures the physical and kinematic details of the UR10 robotic arm
and the Robotiq Hand-E gripper, enabling their use in simulation, motion planning, and
real-world applications requiring precise manipulation and control.

47

Visualizing the URDF in RViz

After cloning the needed repository urdf_tutorial with the following command,

git clone https://github.com/ros/urdf_tutorial.git

the files located within the ’launch’ and ’rviz’ directories, display.launch and urdf.rviz,
are copied into the corresponding ’launch’ and ’rviz’ directories in the urdf folder of the
ur10_hand_e folder that had been established in a prior step, with these commands:

roscd urdf_tutorial

cp rviz/urdf.rviz ~/catkin_ws/src/ur10_hand_e/rviz/

cp launch/display.launch ~/catkin_ws/src/ur10_hand_e/launch/

cd ~/catkin_ws

Next, the ’display.launch’ file must be opened inside Docker Desktop and modified to
match the following configuration:

1 <launch>
2

3 <arg name="model" default="$(find ur10_hand_e)/urdf/ur10_hand_e.urdf"/>
4 <arg name="gui" default="true" />
5 <arg name="rvizconfig" default="$(find ur10_hand_e)/rviz/urdf.rviz" />
6

7 <param name="robot_description" command="$(find xacro)/xacro --inorder $(arg model)" />
8 <param name="use_gui" value="$(arg gui)"/>
9

10 <node name="joint_state_publisher" pkg="joint_state_publisher" type="
joint_state_publisher" />

11 <node name="robot_state_publisher" pkg="robot_state_publisher" type="state_publisher" />
12 <node name="rviz" pkg="rviz" type="rviz" args="-d $(arg rvizconfig)" required="true" />
13

14 </launch>

The last step is to build the ROS (Robot Operating System) workspace by compiling
the necessary packages and finally, the source devel/setup.bash command is run to
configure the environment by sourcing the setup script, thereby setting up the necessary
environment variables for the ROS workspace.

cd ~/catkin_ws

catkin_make

source devel/setup.bash

4.2.4 MoveIt! Configuration

A MoveIt configuration package is essential for integrating a robotic system into the MoveIt
motion planning framework. This package comprises a set of configuration files that define

48

the robot’s kinematic structure, planning groups, end effectors, and parameters crucial for
motion planning, collision detection, and trajectory execution. Central to the configuration
package is the Semantic Robot Description Format (SRDF) file, which extends the robot’s
Universal Robot Description Format (URDF) by incorporating semantic information such as
joint groupings, default states, and self-collision matrices. Collectively, these files provide
the necessary data for MoveIt’s motion planning pipeline to function effectively (ROS.ORG,
n.d.-a).

The MoveIt! Setup Assistant

The MoveIt Setup Assistant is a graphical tool designed to facilitate the creation of a MoveIt
configuration package. By loading a robot’s URDF file into the Setup Assistant, users can
interactively define the robot’s kinematic parameters, specify planning groups, assign end
effectors, and generate a self-collision matrix. The tool also aids in defining joint limits and
virtual joints, ensuring the robot’s compatibility with the MoveIt motion planning framework.
Upon completion of the configuration process, the Setup Assistant generates the SRDF
file and other essential files, which are then organized into a configuration package ready
for deployment in motion planning and simulation tasks. The following steps closely align
with the MoveIt! documentation (PICKNIKINC., n.d.).

This method streamlines the integration of complex robotic systems into the MoveIt
ecosystem, enabling precise and efficient motion planning for a wide range of robotic
applications. Additional details and tutorials on using the MoveIt Setup Assistant can be
found in the official ROS documentation (ROS.ORG, n.d.-a).

The MoveIt! Setup Assistant is initiated by executing the following command in the Linux
terminal:

roslaunch moveit_setup_assistant setup_assistant.launch

This command launches the application, enabling the creation of a new MoveIt! configura-
tion package. After selecting the "Create New MoveIt Configuration Package" option, the
robot’s URDF file, ur10_hand_e.urdf, is loaded to initialize the configuration process. This
step establishes the robot’s model as the basis for subsequent parameterization.

The self-collision matrix is a key component that identifies potential self-collisions within
the robot’s kinematic structure. In the "Self-Collisions" pane, the "Generate Collision
Matrix" function performs a systematic check of possible collisions within the defined range
of motion. Using a default sampling density of 10,000 checks, the matrix ensures that
self-collisions are accounted for during motion planning, thus enhancing the safety and
reliability of the robot’s operation.

Virtual joints connect the robot’s base link to the world coordinate frame, anchoring the
robot within the simulation environment. These joints are defined in the "Virtual Joints"
pane by specifying the joint name as ‘virtual_joint‘, setting the child link as ‘base_link‘,

49

and the parent frame as ‘world‘. A fixed joint type is typically used to represent a rigid
connection. This setup ensures that the robot’s position and orientation are correctly
established in the global reference frame.

Planning groups represent logical divisions of the robot, such as manipulators or end-
effectors, used for motion planning. These groups are defined in the "Planning Groups"
pane by specifying their names, kinematic solvers, and associated links or chains. The
manipulator group uses ‘ur_kinematics/UR10KinematicsPlugin‘ as its kinematics solver
and also has a kinematic chain. This needs to be added with ‘base_link‘ as the base link
and ‘tcp‘ as the tip link. An Additional group, the end-effector group called ’gripper’, is
defined by including links specific to the end-effector,‘hand_e‘, based on its corresponding
Xacro file. These links need to be added, by choosing the following links in this order:
hand_e_base, hand_e_finger_1, hand_e_finger_2, tcp. Also, a joint has to be added, by
selecting the hand_e_finger_2_joint.

Robot poses are predefined joint configurations used as reference points during motion
planning. These poses are defined in the "Robot Poses" pane by naming the pose (e.g.,
‘home_pose‘) and specifying the corresponding joint values. The predefined poses serve
as initial or target configurations for motion planning tasks, facilitating consistent and
efficient operation. For this research purpose, no robot poses are defined at this point.

End-effectors are defined within the "End Effectors" pane by associating a planning group
with its functional role. The gripper group can be designated as an end-effector by
assigning it to the parent link ‘tool0‘. This designation establishes the role of the end-
effector within the motion planning pipeline. The name of the end-effector of group ’gripper’
is called ’hand_e’.

The Controllers Pane in the MoveIt! Setup Assistant is used to configure a robot’s
hardware controllers, allowing it to execute planned trajectories. Controllers are defined
by their type, the joints or planning groups they manage, and other parameters. This
ensures compatibility between the motion planning framework and the robot’s actuators
(PICKNIKINC., n.d.). The button ’Auto Add FollowJointsTrajctory Controllers For Each
Planning Group’ can be used to generate the needed controllers.

The Author Information pane allows the inclusion of metadata about the creator of the
configuration package. This information is stored in the package metadata and is useful
for documentation and future reference.

The process of generating a MoveIt! configuration package involves creating the nec-
essary files and configurations to integrate a robotic system into the MoveIt! motion
planning framework. The generation process begins with selecting a directory to store the
configuration package. A dedicated folder is created to contain the package files, named
according to the robot or project: ur10_hand_e_moveit_config. Within this directory, the
Setup Assistant generates a series of files, including the Semantic Robot Description
Format (SRDF) file, kinematics configurations, collision matrix data, and ROS launch files.
These components are critical for motion planning, visualization, and execution in MoveIt!.

50

Once the package is generated, it is compiled within a ROS workspace using catkin_make.
This step prepares the workspace for execution by building the configuration files and
linking them with the required ROS dependencies. After compilation, the workspace is
sourced to ensure that the generated package is accessible for further use.

The configuration can be tested by launching a demonstration file, typically included in
the package, which initializes RViz and allows for the visualization and testing of the robot
model within the MoveIt! framework. This structured process provides a robust foundation
for integrating robotic systems into motion planning and simulation workflows.

cd ~/catkin_ws

catkin_make

source devel/setup.bash

roslaunch ur10_hand_e_moveit_config demo.launch rviz_tutorial:=true

4.2.5 Custom Docker Image

To utilize the previously created configuration, it is necessary to copy the Docker image
and rerun it with the updated settings. Access the ros-core container in Docker Desktop
and retrieve the container ID. This ID is required to create a new Docker image based on
the current state of the container.

The creation of the new image, named ur10_hand_e_image, is performed using the
following command. Note that this command is executed in the local command prompt
rather than the Linux environment within the Docker container. Replace "container_id" in
the command with the actual container ID copied earlier:

docker commit container_id ur10_hand_e_image

Once this command is executed, the new image should appear in the "Images" tab of
Docker Desktop, ready for further use. This process ensures that the updated configuration
is preserved and can be rerun as needed.

The docker-compose.yml file should be edited to look like the following:

1 version: ’2’
2 services:
3

4 moveit-demo:
5 image: ur10_hand_e_image
6 container_name: moveit
7 environment:
8 - ROS_HOSTNAME=moveit-demo
9 - ROS_MASTER_URI=http://ros-core:11311

10 - DISPLAY=host.docker.internal:0.0
11 depends_on:
12 - ros-core

51

13 command:
14 - roslaunch
15 - --wait
16 - ur10_hand_e_moveit_config
17 - demo.launch
18 - use_rviz:=true
19

20 ros-core:
21 image: ur10_hand_e_image
22 container_name: ros-core
23 ports:
24 - "11311:11311"
25 command:
26 - roscore
27 stdin_open: true
28 tty: true
29

30 ros-bridge:
31 image: ur10_hand_e_image
32 container_name: ros-bridge
33 environment:
34 - "ROS_HOSTNAME=ros-bridge"
35 - "ROS_MASTER_URI=http://ros-core:11311"
36 ports:
37 - "9090:9090"
38 depends_on:
39 - ros-core
40 command:
41 - roslaunch
42 - --wait
43 - rosbridge_server
44 - rosbridge_websocket.launch
45

46 ros-fileserver:
47 image: ur10_hand_e_image
48 container_name: ros-fileserver
49 environment:
50 - ROS_HOSTNAME=ros-fileserver
51 - ROS_MASTER_URI=http://ros-core:11311
52 depends_on:
53 - ros-core
54 command:
55 - roslaunch
56 - --wait
57 - file_server
58 - file_server.launch

Once the docker-compose.yml file is configured, the environment can be deployed using
again the docker-compose up command. This establishes a connection to the ROS system,
allowing the robot to be integrated and loaded inside the Grasshopper environment.

52

4.3 STEP to JSON Conversion for Structural Data Import

To facilitate the robotic assembly of a modular timber structure, it is essential to extract
geometric and spatial data from the digital model and format it for computational processing.
The timber structure is initially designed in Rhinoceros 3D (Rhino) using custom parametric
components and then exported as a STEP (.step) file, a standardized format for exchanging
3D geometry data. Since Grasshopper, requires structured data to manipulate and
simulate the robotic assembly task, the STEP file must be processed and converted
into a JSON format. This transformation extracts essential spatial properties, specifically
the center of mass and orientation of each timber component, enabling precise robotic
handling.

To achieve this, the conversion process is implemented using pythonocc, a Python wrapper
for the Open Cascade Technology (OCC) geometric modeling kernel, which provides
advanced tools for handling STEP files, solid geometry, and computational properties
(CASCADE, 2023). The extract_coordinates_from_step function, A.2, first loads the STEP
file using the STEPControl_Reader module and extracts its root shape representation.
It then iterates through all solid elements in the file using TopExp_Explorer, identifying
individual timber components. For each component, the script calculates the center of
mass using the GProp_GProps class, normalizing and storing the computed coordinates.
Additionally, the inertia matrix is obtained using MatrixOfInertia, from which the principal
axes (x, y, z) are extracted to define the orientation of the component in space (pythonOCC
COMMUNITY, 2023). The extracted component properties are then sorted by height to
maintain the correct assembly sequence and stored in a structured JSON file. Each entry
in the JSON output contains the center of mass coordinates and principal orientation axes,
which can be directly imported into Grasshopper.

This JSON format allows the structured data to be used for robotic pick-and-place path
planning and collision-free assembly sequencing within the Grasshopper environment.
By leveraging pythonocc for computational geometry processing, the workflow enables
seamless data exchange between CAD modeling and robotic simulation, ensuring that
the assembly process is both precise and efficient. The integration of this data into
Grasshopper allows for direct interaction with parametric design workflows and robotic
simulation tools, supporting an automated and flexible fabrication process (R. MCNEEL,
n.d.).

A key advantage of this approach is that any structure composed of the custom modular
timber components within range of the robotic arm can be imported and processed in
the same way. This means that designers are not limited to a fixed set of predefined
assemblies but can freely experiment with different structural configurations in Rhino.
Once the digital model is exported and converted, the robotic system can autonomously
interpret and execute the assembly, allowing complete flexibility in fabrication. Whether
constructing a simple frame or a complex spatial structure, the robot can use the same

53

automated workflow to assemble virtually any configuration designed within the modular
system.

4.4 Grasshopper Playground as an Interactive Control Inter-
face for Robotic Simulation with COMPAS FAB

The Grasshopper Playground, A.3, serves as an interactive interface for remotely con-
trolling a simulated robotic system, with the potential for future integration into real-world
robotic applications. While the ultimate objective is to achieve full automation—where the
robot autonomously executes all necessary steps without direct user intervention—the
development of a remote control framework provides a crucial intermediary stage for
research, validation, and process planning.

A key objective of this research is to assess the capabilities and limitations of the COMPAS
FAB library in the context of robotic fabrication. COMPAS FAB provides a set of precon-
figured Grasshopper components that encapsulate functional Python code, simplifying
key robotic operations such as loading the robot model, establishing a connection to a
ROS client, and visualizing planned trajectories (RUST et al., 2018). These ready-made
blocks allow users to interact with robotic systems without having to manually implement
low-level communication protocols or motion planning algorithms, making Grasshopper a
powerful interface for exploring robotic workflows.

Furthermore, the interactive nature of the Grasshopper Playground allows researchers
and engineers to explore the feasibility of different robotic processes before full automation
is implemented. In early-stage process planning, where task objectives may not yet be
well defined, this approach enables iterative refinement, helping to determine whether a
given robotic system can successfully execute the intended operations. By incrementally
testing trajectories, optimizing grasping techniques, and analyzing execution efficiency, we
gain a deeper understanding of how far COMPAS FAB can be pushed in the context of
robotic fabrication.

Ultimately, the insights gained from this semi-interactive approach contribute not only to
process optimization but also to the broader evaluation of COMPAS FAB as a tool for
robotic motion planning and digital fabrication workflows.

4.4.1 Playground Overview for Assembly Tasks

The proposed workflow integrates robot initialization, collision object definition, motion
planning, and trajectory execution to enable a structured approach to robotic motion
simulation. By leveraging parametric design tools in Grasshopper, robotic trajectories
can be defined for complex assembly processes. The following details the step-by-step
implementation of this framework, highlighting its capabilities for robotic path planning and
environment interaction.

54

The first step, as shown in figure (4.15), involves establishing a connection with the ROS
client, which facilitates communication between Grasshopper and the robotic system.
Once the connection is established, the robot model is loaded from a custom URDF file,
incorporating the attached gripper to enable object manipulation. This initialization step
ensures that the robotic system is accurately represented in the simulation environment.

To enable motion planning, the workspace must be defined with appropriate collision
objects. A collision mesh representing a table is introduced to the environment, serving
as a reference surface for the pick-and-place task. Additionally, objects can be integrated
into the scene, including components placed at the initial position, the target location, or
directly attached to the robotic gripper. These objects allow for the simulation of grasping
and placing interactions within a constrained environment.

The object positions of the start and target planes are converted to frames to be compatible
with the Compas fab frameworks motion planning functions. They guide the robotic arm’s
end-effector. These target locations are further categorized based on orientation, including
horizontal, diagonal, and vertical components, depending on the required placement
strategy.

The Start Configuration is the starting position, in which the robot is configured at the very
beginning.

Once the robotic model and its environment are defined, the motion planning process
is initiated. The Motion Plan component facilitates the computation of collision-free
trajectories by utilizing the underlying COMPAS FAB motion planning pipeline. Two
primary types of motion planning are employed: General Motion Planning determines
an optimized path for the robot to transition from the start configuration to the target
location while avoiding obstacles. While Cartesian Motion Planning ensures smooth, linear
trajectories between targets, maintaining precise control over end-effector positioning.
These planned trajectories define the movement strategy for the robot to execute the
pick-and-place sequence accurately. The Motion Plan Componentś output is a list of
configurations for every robot position required to move from the start to the target plane.

The final stage involves the visualization of the computed trajectories. The Visualization
component provides a graphical representation of the planned motion, allowing for assess-
ment and refinement before execution. Once validated, the motion plan is executed within
the simulated environment, ensuring accurate replication of the pick-and-place sequence.

55

Collision Objects

Load Robot

Connect to
RosClient

Robot

Planning
Scene

Motion Plan

Add
Component at

Start

Add Attached
Component

Plan Cartesian
Motion

Plan Motion
Visualization

Group

Add Table

Start Plane Target Planes

Horizontal
Components

Diagonal
Components

Vertical
Components

Convert to
Frames

Convert to
Frames

Add
Component at

Target

Start Configuration

Configurations

JSON file

Figure 4.15: Grasshopper Playground Concept

4.4.2 Robot Workflow for a Single Pick-and-Place Cycle

Robotic pick-and-place operations are fundamental in automated assembly, requiring
precise motion planning to ensure efficient and collision-free execution.

To illustrate the functionality of the Grasshopper Playground for assembly tasks, this
subsection details the step-by-step execution of a single pick-and-place operation. The

56

workflow is structured to reflect the sequential actions the robot performs, from initialization
to placing the component at its target location.

The process begins with loading the robot model into the scene and establishing a
connection to the ROS client. The motion trajectory for the pick-and-place operation
is then computed using the motion planning functionalities of COMPAS FAB. Once the
trajectory is successfully generated, the robot moves into its start configuration, ensuring
it begins from a predefined and repeatable initial position.

To accurately simulate the interaction between the robot and its environment, the table,
where the robot is mounted on, is first added to the scene as a collision object. Following
this, the first timber component, which will be manipulated by the robot, is introduced
into the simulation as an additional collision mesh. These elements define the spatial
constraints within which the robot must operate, allowing for precise collision-aware motion
planning.

With the environment set up, the picking trajectory is initiated. The robot moves from its
start configuration toward the predefined grasping position, ensuring optimal alignment
with the component. Once the robot reaches the grasping position, the timber component
is attached to the robot’s gripper as a attached collision mesh. This step updates the
robot’s collision model, allowing the subsequent motion planning to account for the object
being carried.

After successfully attaching the timber component, the placing trajectory is executed. The
robot follows the computed motion path to transport the component from its initial position
to the designated target location. Upon reaching the placing position, the component is
added to the scene at the target plane, effectively detaching it from the robot’s gripper.
This transition completes the pick-and-place cycle, ensuring that the component is placed
precisely while maintaining collision integrity within the environment.

This structured workflow provides an interactive yet systematic approach to robotic pick-
and-place operations.

4.4.3 Grasshopper Component Blocks for Simulated Robotic Assembly

The image A.3 depicts the computational workflow developed in Grasshopper for Rhino,
utilizing the COMPAS FAB framework to facilitate robotic fabrication and automation. The
structured node-based setup enables seamless integration between digital design and
robotic control. The ROS and Robot section establishes communication with the Robot
Operating System (ROS), allowing users to load and control the robotic model. The
Planning Scene and Group modules define the workspace and primary motion planning
parameters, while the Attach Component and Add Components sections manage object
manipulation, including attaching workpieces to the robot’s end-effector. The Compute
Paths module handles motion planning, enabling precise control of robotic movement
and gripper operations. Additionally, the Component to Orientation node ensures proper
alignment of components before execution, while the Table section provides an interactive

57

environment for adding or removing elements within the scene. The Visualization module
enhances real-time monitoring by displaying the robot, collision objects, and reference
frames. This Grasshopper-based workflow streamlines robotic assembly, enabling precise,
automated execution and bridging the gap between computational design and physical
fabrication.

Connecting to ROS Client, Loading the Robot and Setting up the Planning Scene

To connect to ROS and load the robot, the prebuilt COMPAS FAB Grasshopper compo-
nents can be used. The ROS Connect Component links to the ROS Robot component,
which is activated by toggling the load button.

Figure 4.16: Connecting to ROS Client and Loading the Robot

To integrate the table onto which the robot arm is mounted, the prebuilt COMPAS FAB
component Collision Mesh can be employed with a slight modification. Specifically, this
line is to be deleted:

mesh = RhinoMesh.from_geometry(M).to_compas()

In its place the following line should be copied:

mesh = Mesh.from_stl(compas_fab.get(’planning_scene/table.stl’))

In this case, the Mesh.from_stl() method is used to directly load a 3D mesh from an STL
file located at planning_scene/table.stl. The compas_fab.get() function is responsible for
retrieving the specified STL file from the given path. This method imports the mesh data in
the STL format and converts it into a COMPAS-compatible mesh format, represented by the
Mesh object in COMPAS. This approach is suitable for directly incorporating pre-existing
geometric models, such as the floor or table

The Planning Scene component in Grasshopper can then be used to link the robot to
the scene. It creates a virtual model of the robot’s environment, encompassing objects,
obstacles, and other relevant elements that interact with the robot during both planning
and execution (RUST et al., 2018).

58

To extract the robot planning group, the COMPAS FAB function info() is used and
implemented in a python component. The group is needed for motion planning as well as
visualizing the simulation.

1 if robot:
2 robot.info()
3 main_group_name = robot.main_group_name

Importing Plane Data from JSON and Structuring in Orientation

This component processes and categorizes three-dimensional frames extracted from a
JSON dataset using compas_fab, compas.geometry, and Rhino’s geometry libraries. The
JSON data, containing frame properties, is parsed into a structured dictionary, from which
key geometric attributes such as position and axis vectors are extracted. For each frame,
the script constructs Rhino geometry objects, including Point3d for position and Vector3d

for orientation. A classification mechanism is implemented based on axis alignments:
frames with a nonzero Z component in their Y-axis are identified as diagonal, those with a
greater sum of the X component of the X-axis and the Z component of the Z-axis compared
to the Z-axis and Y-axis components are categorized as horizontal, and frames where the
X-axis component equals the Y-axis component are classified as vertical. Corresponding
rg.Plane objects are generated, converted into compas.geometry.Frame instances, and
stored in respective dictionaries. The categorized frames are then aggregated into a
structured list, facilitating their use in robotic planning or computational design applications
within Rhino and Grasshopper environments.

1 import compas_fab
2 from compas.geometry import Frame
3 import rhinoscriptsyntax as rs
4 import Rhino.Geometry as rg
5

6 points_json = compas_fab.get(json)
7 data = compas.json_load(points_json)
8

9 frame_json = data["properties"]
10 frames_h = {}
11 frames_v = {}
12 frames_d = {}
13

14 for nr, i in enumerate(frame_json):
15 point_i = rg.Point3d(i["point"][0], i["point"][1], i["point"][2])
16 x_axis_i = rg.Vector3d(i["xaxis"][0], i["xaxis"][1], i["xaxis"][2])
17 y_axis_i = rg.Vector3d(i["yaxis"][0], i["yaxis"][1], i["yaxis"][2])
18 z_axis_i = rg.Vector3d(i["zaxis"][0], i["zaxis"][1], i["zaxis"][2])
19

20 if i["yaxis"][2] != 0.0:
21 pln_d = rg.Plane(point_i, y_axis_i)
22 frame_diagonal = Frame(pln_d[0], pln_d[1], pln_d[2])
23 frames_d[nr] = frame_diagonal
24 elif i["xaxis"][0]+i["zaxis"][2] > i["zaxis"][2] + i["yaxis"][1]:

59

25 pln_h = rg.Plane(point_i, -y_axis_i, -x_axis_i)
26 frame_horizontal = Frame(pln_h[0], pln_h[1], pln_h[2])
27 frames_h[nr] = frame_horizontal
28 elif i["xaxis"][0] == i["yaxis"][1]:
29 pln_v = rg.Plane(point_i, -z_axis_i, -y_axis_i)
30 frame_vertical = Frame(pln_v[0], pln_v[1], pln_v[2])
31 frames_v[nr] = frame_vertical
32

33 frames_lst = [frames_h, frames_v, frames_d]

Connecting Mesh Geometry of Timber Component to Frame and Orientation of
Current Assembly Step

This component establishes the connection between the mesh geometry of a timber
component and its corresponding frame and orientation within the current assembly
step. Utilizing compas_fab and compas.geometry, it categorizes frames into three orien-
tations—horizontal, vertical, and diagonal—based on a predefined frame list. A base
mesh_frame is initialized at the world XY plane and slightly elevated in the Z direction.
The script iterates through the categorized frames, identifying the current component’s
frame based on its assigned number. Depending on the orientation, the target frame is
either directly assigned or transformed using a translation vector to align properly with
the assembly structure. Mesh geometry for each orientation is loaded from STL files via
compas_fab.get(), ensuring that the correct timber component model is associated with
its designated frame. This structured approach enables precise placement and alignment
of timber elements within a computational design and robotic fabrication workflow.

1 import compas_fab
2 from compas.datastructures import Mesh
3 from compas.geometry import Translation
4 from compas.geometry import Frame
5 import rhinoscriptsyntax as rs
6

7 frames_dict = {’h’:frames_lst[0], ’v’:frames_lst[1], ’d’:frames_lst[2]}
8 mesh_frame = Frame.worldXY()
9 mesh_frame.point.z += 0.04/2

10

11 for orientation, frames in frames_dict.items():
12 if orientation == ’h’:
13 for nr, frame in frames.items():
14 if component_nr == nr:
15 element = Mesh.from_stl(compas_fab.get(’planning_scene/H_40.stl’))
16 target_frame_cm = frames_dict[orientation][nr]
17 target_frame_cm = target_frame_cm.transformed(Translation.from_vector([0,

↪→ 0.002, 0]))
18 target_frame = target_frame_cm.transformed(Translation.from_vector([0, 0,

↪→ 0.02]))
19

20 elif orientation == ’v’:
21 for nr, frame in frames.items():

60

22 if component_nr == nr:
23 target_frame_cm = frames_dict[orientation][nr]
24 target_frame = target_frame_cm.transformed(Translation.from_vector([0.02,

↪→ 0, 0]))
25 element = Mesh.from_stl(compas_fab.get(’planning_scene/V_40.stl’))
26

27 elif orientation == ’d’:
28 for nr, frame in frames.items():
29 if component_nr == nr:
30 target_frame_cm = frames_dict[orientation][nr]
31 target_frame = target_frame_cm.transformed(Translation.from_vector([0.0,

↪→ -0.0164, 0.0115]))
32 element = Mesh.from_stl(compas_fab.get(’planning_scene/D_40.stl’))

Computing Start and Target Frames

To ensure the robot consistently picks up and places the component at a perpendicular
angle, frames have to be added and transformed. Initially, the component placing frame is
defined using a set of three vectors, representing the coordinate system’s origin, x-axis,
and z-axis, respectively. This frame is then subjected to a translation transformation, which
is applied to define the approaching frame by translating the place_t0cf_frame further
along the Z-axis by an approach_offset. Finally, the two transformed frames are stored in
the list start_frames, which represents the different positions for the component handling.

1 import math
2 from compas.geometry import Frame
3 from compas.geometry import Transformation
4 from compas.geometry import Translation
5

6 place_t0cf_frame = Frame(place_t0cf_frame[0], place_t0cf_frame[1], place_t0cf_frame[2])
7 approach_t0cf_frame = place_t0cf_frame.transformed(Translation.from_vector([0, 0,

↪→ approach_offset]))
8

9 start_frames = [approach_t0cf_frame, place_t0cf_frame]

The pick_t0cf_frame and place_t0cf_frame frames are created using specified co-
ordinates and orientation vectors. These frames are then translated along the z-axis
by an approach_offset value, resulting in the modified pick_t0cf_frame and a new
approach_t0cf_frame. Finally, these frames are collected into a list called target_frames,
which can be utilized for further robotic path planning or manipulation tasks. This method
ensures precise control over the positioning and orientation of robotic end-effectors, en-
abling accurate and efficient task execution in automated systems.

1 from compas.geometry import Frame
2 from compas.geometry import Translation
3

4 pick_t0cf_frame = Frame(pick_t0cf_frame[0], pick_t0cf_frame[1], pick_t0cf_frame[2])
5 pick_t0cf_frame = pick_t0cf_frame.transformed(Translation.from_vector([0, 0,

↪→ approach_offset]))

61

6

7 place_t0cf_frame = Frame(place_t0cf_frame[0], place_t0cf_frame[1], place_t0cf_frame[2])
8 approach_t0cf_frame = place_t0cf_frame.transformed(Translation.from_vector([0, 0,

↪→ approach_offset]))
9

10 target_frames = [pick_t0cf_frame, approach_t0cf_frame, place_t0cf_frame]

Image 4.17 illustrates the relationship between planes and frames, as well as the connec-
tion of components to frame points and their corresponding orientations, as discussed
above.

Figure 4.17: Importing Frame Data and Connecting Component

Motion Plan, Trajectory Computing and Gripper Configurations

The PlanCustomMotion Grasshopper Python component, A.4, computes a motion plan
and trajectory for a robotic manipulator using COMPAS and COMPAS FAB. The component
generates pick, place, and return trajectories based on user-defined input parameters,
employing both Cartesian and free motion planning approaches.

The component is structured as a subclass of executingcomponent, ensuring its compati-
bility with the Grasshopper computational environment. The RunScript function defines
the execution logic, receiving various input parameters such as the robot model, start and
target frames, and configuration parameters:

1 class PlanCustomMotion(component):
2 def RunScript(
3 self, robot, attached_collision_mesh, start_planes, target_frames,

↪→ start_configuration, open_gripper, close_gripper
4 , group, max_step, compute
5):

62

A unique identifier pick_key is generated to store the computed trajectory. The motion
is planned in Cartesian space using the plan_cartesian_motion function. The start
plane is converted into a COMPAS frame using RhinoPlane.from_geometry. If the robot
is connected and computation is enabled, the motion is executed with constraints and
optional collision checks:

1 pick_key = create_id(self, "pick_trajectory")
2 pick_path_constraints = None
3 if robot and robot.client and robot.client.is_connected and compute:
4 frames = [RhinoPlane.from_geometry(plane).to_compas_frame() for plane in [start_planes

↪→ [1]]]
5 st[pick_key] = robot.plan_cartesian_motion(
6 frames,
7 start_configuration=start_configuration,
8 group=group,
9 options=dict(

10 max_step=max_step,
11 path_constraints=pick_path_constraints,
12 attached_collision_meshes=attached_collision_mesh,
13),
14)
15 pick_trajectory = st.get(pick_key, None)

The final configuration of the pick trajectory is used to close the robotic gripper. The closing
motion generates a series of intermediate configurations leading to a fully closed state:

1 config = pick_configurations[-1]
2 close_gripper_configurations = close_gripper(config)
3 close_gripper_configuration = close_gripper_configurations[-1]

The placement trajectory follows a similar approach to the pick trajectory. The target
frame for placement is converted into a COMPAS frame, and the plan_cartesian_motion

function generates the path:

1

2 place_key = create_id(self, "place_trajectory")
3 place_path_constraints = None
4 if robot and robot.client and robot.client.is_connected and compute:
5 frames = [RhinoPlane.from_geometry(plane).to_compas_frame() for plane in pplane]
6 st[place_key] = robot.plan_cartesian_motion(
7 frames,
8 start_configuration=close_gripper_configuration,
9 group=group,

10 options=dict(
11 max_step=max_step,
12 path_constraints=place_path_constraints
13),
14)
15 place_trajectory = st.get(place_key, None)

63

A second placement trajectory is computed using the plan_motion function, allowing for
non-Cartesian motion. A goal_constraint is derived from the target frame with predefined
tolerances, and the RRTConnect planner is used to find a feasible trajectory:

1 place2_key = create_id(self, "place2_trajectory")
2 planner_id = "RRTConnect"
3 place2_start_configuration = place_configurations[-1]
4 if robot and robot.client and robot.client.is_connected and compute:
5 st[place2_key] = robot.plan_motion(
6 goal_constraints,
7 start_configuration=place2_start_configuration,
8 group=group,
9 options=dict(

10 path_constraints=goal_constraints,
11 planner_id=planner_id,
12),
13)
14 place2_trajectory = st.get(place2_key, None)

After placement, the gripper opens by reversing the previous closing motion. The robot
then computes a return trajectory to its initial position, made of a free motion planned
trajectory and a cartesian motion planned trajectory:

1

2 open_config = place3_configurations[-1]
3 open_gripper_configurations = open_gripper(open_config)
4 open_gripper_configuration = open_gripper_configurations[-1]
5

6 return_key = create_id(self, "return_trajectory")
7 return_start_configuration = return1_configurations[-1]
8 if robot and robot.client and robot.client.is_connected and compute:
9 st[return_key] = robot.plan_motion(

10 return_goal_constraints,
11 start_configuration=return_start_configuration,
12 group=group,
13 options=dict(
14 path_constraints=return_goal_constraints,
15 planner_id="RRTConnect",
16),
17)
18 return_trajectory = st.get(return_key, None)

The computed configurations for all trajectories are aggregated into three sets:

1 final_pick_configurations = pick_configurations + close_gripper_configurations
2 final_place_configurations = place_configurations + place2_configurations +

↪→ place3_configurations + open_gripper_configurations
3 final_return_configuration = return1_configurations + return_configurations
4

5 all = [final_pick_configurations, final_place_configurations, final_return_configuration]
6

7 return all

64

The following component defines a function open_gripper to generate a series of robot
configurations that gradually open the robot’s gripper. The function takes the current robot
configuration as input and calculates the required joint values for each configuration. The
gripper’s opening is controlled by the variable steps, which defines the increment in joint
values for each iteration. The function iterates five times, adjusting the gripper joint values
and keeping other joint values unchanged. Each iteration creates a new configuration,
which is stored in the list configurations. Finally, the list is reversed before being returned,
providing the gripper opening sequence in the correct order.

1 from compas.robots import Configuration
2

3 def open_gripper(robot_config):
4 pick_tolerance = 0.005
5 width = 0.05
6 steps = 0.001
7 dis = (width - 0.04 - pick_tolerance)/2
8 configurations = []
9 joint_values = []

10

11 for j in range(5):
12 joint_values_i = []
13 for i,t in enumerate(robot_config.joint_types):
14 if t == 2:
15 gripper_value = steps*j
16 joint_values_i.append(gripper_value)
17 else:
18 joint_values_i.append(robot_config.joint_values[i])
19 gripper_configuration_i = Configuration(joint_values_i, robot_config.joint_types,

↪→ robot_config.joint_names)
20 joint_values.append(joint_values_i)
21 configurations.append(gripper_configuration_i)
22

23 return list(reversed(configurations))

A similar component is implemented to close tge gripper fingers.

1 from compas.robots import Configuration
2

3 # Gripper Configuration
4 def close_gripper(robot_config):
5 pick_tolerance = 0.005
6 width = 0.05
7 steps = 0.001
8 dis = (width - 0.04 - pick_tolerance)/2
9 configurations = []

10 joint_values = []
11

12 for j in range(5):
13 joint_values_i = []
14 for i,t in enumerate(robot_config.joint_types):
15 if t == 2:
16 gripper_value = steps*j
17 joint_values_i.append(gripper_value)

65

18 else:
19 joint_values_i.append(robot_config.joint_values[i])
20 gripper_configuration_i = Configuration(joint_values_i, robot_config.joint_types,

↪→ robot_config.joint_names)
21 joint_values.append(joint_values_i)
22 configurations.append(gripper_configuration_i)
23

24 return configurations

These two components are connected to the PlanCustomMotion component, so that the
two functions can be used during the configuration calculation.

The start_configuration parameter needed for the PlanCustomMotion component is
implemented in a componenet and then connected, which consists of the follwoing:

1 from compas.robots import Configuration
2

3 revolute = [1.366, -1.244, 1.856, -2.193, -1.578, 2.927]
4 prismatic = [0.0]
5 joint_names = [
6 "shoulder_pan_joint",
7 "shoulder_lift_joint",
8 "elbow_joint",
9 "wrist_1_joint",

10 "wrist_2_joint",
11 "wrist_3_joint",
12 "hand_e_finger_2_joint"
13]
14 joint_types = [0, 0, 0, 0, 0, 0, 2]
15 joint_values = revolute + prismatic
16

17 config = Configuration(joint_values, joint_types, joint_names)

The presented GhPython component PlanCustomMotion effectively integrates COMPAS
FAB functionalities to compute motion plans for an articulated robotic system. By utilizing
Cartesian and free-motion planning strategies, the component ensures flexibility and
precision in executing pick-and-place tasks within a Grasshopper environment. The
structured approach allows for modular and reusable motion planning, facilitating further
extensions and optimizations. For further understanding of its connections to other
components please refer to the image 4.18 below.

66

Figure 4.18: Motion Planning and Trajectory

Figure 4.19: Robot Simulation accroding to Computed Motion Plan

After toggeling the compute button and then the start button the simulation in rhino (4.19)
starts to assemble the component determined by the component number slider which can
be seen in image 4.17.

Adding Collision Mesh Component

The function, add_cm(frame), updates the collision environment in a robotic planning
scene using COMPAS FAB. It starts by generating a unique identifier, build_comp_id, for
the collision mesh based on component_nr. Any existing collision mesh with the same
identifier is removed from the scene to prevent conflicts. The function then ensures that
the input frame is properly formatted as a COMPAS Frame object, which defines a spatial
reference for the collision mesh. A new CollisionMesh instance is created using the
provided geometric element, unique identifier, and transformed frame. Before adding
the new collision mesh, any previously attached collision meshes associated with the
component are removed to avoid redundancy. The new collision mesh is then added
to the planning scene, ensuring that it is considered during motion planning. Finally,
robot.client.get_planning_scene() is called to synchronize the local planning scene

67

with the updated collision information, ensuring that the motion planner has an accurate
representation of obstacles in the environment.

1 def add_cm(frame):
2 build_comp_id = ’built_’ + str(component_nr)
3 scene.remove_collision_mesh(build_comp_id)
4 frame = Frame(frame[0], frame[1], frame[2])
5 cm = CollisionMesh(element, build_comp_id, frame)
6 scene.remove_attached_collision_mesh(’component_’ + str(component_nr))
7 scene.add_collision_mesh(cm)
8 robot.client.get_planning_scene()

Adding Attached Collision Mesh Component

The component defines a function, add_acm(config_jointvalues), which manages the
addition of an Attached Collision Mesh to the robotic planning scene using COMPAS
FAB. It begins by generating a unique identifier, attached_id, based on component_nr. If
config_jointvalues is greater than zero, which is the finger joint value when the gripper
is open, indicating that the component should be considered as attached to the robot,
the function first removes any existing collision mesh with the corresponding built_

identifier to prevent conflicts. A new CollisionMesh instance is then created using the
given element, the generated attached_id, and mesh_frame, which provides the spatial
reference. This collision mesh is subsequently wrapped into an AttachedCollisionMesh

instance, specifying ’tcp’ (tool center point) as the attachment reference, ensuring that
the component moves with the robot’s end effector. Finally, the attached collision mesh is
added to the planning scene, integrating it into the motion planning framework to account
for potential collisions during trajectory computation.

1 def add_acm(config_jointvalues):
2 attached_id = ’component_’ + str(component_nr)
3

4 if config_jointvalues > 0:
5 scene.remove_collision_mesh(’built_’ + str(component_nr))
6 collision_mesh = CollisionMesh(element, attached_id, mesh_frame)
7 attached_collision_mesh = AttachedCollisionMesh(collision_mesh, ’tcp’)
8 scene.add_attached_collision_mesh(attached_collision_mesh)

Counter for Configuration Iteration

The runner(config_dict, start, stop, pick_frame, place_frame, add_cm) function,
A.5, manages the execution of a sequential motion process for a robotic system within a
Grasshopper Python environment. It utilizes the scriptcontext.sticky dictionary to maintain
persistent state variables across component executions.

First, it generates unique keys based on the component’s unique identifier. These keys
store the current motion step, iteration count, execution status, and last processed config-
uration.

68

The function follows a predefined motion sequence: Pick, Place and Return. If stop is
True, the function halts execution and returns the last processed item. If start is True, the
process begins or resumes execution.

The function determines the current motion step using motion_key and retrieves
the corresponding configurations from config_dict. If the motion is "pick", it calls
add_cm(pick_frame)to add a collision mesh for the pick location. If the motion is "re-
turn", it calls add_cm(place_frame) to add a collision mesh at the placement location.

The function then updates the counter to iterate through the configurations for the current
motion. When a sequence is completed, it advances to the next motion type. Once all
motion steps are executed, the function resets and stops execution.

Finally, update_component(ghenv, 5) ensures that the Grasshopper component is up-
dated accordingly. The function returns the current configuration item, ensuring smooth
and controlled motion transitions.

At the end, config_dict_in initializes the motion sequences using predefined lists L[0],

L[1], L[2], corresponding to pick, place, and return configurations. The runner function
is then executed with these inputs to drive the motion process.

Visualizing the Robot Simulation

To visualize the robot, its movements, and all components, the COMPAS FAB component
Robot Visualize is employed. The robot configurations are included through the config-
uration variable by connecting it to the item variable of the counter component. Minor
adjustments are made to enable the use of the Attach Component Mesh function within
the visualization component. The following is added to the visualiztion component after
declaring the cached scene key and its identification.

cached_scene_key = create_id(self, "cached_scene")

Add atached collision mesh

add_acm(configuration.joint_values[1])

The implementation of robotic fabrication using the COMPAS FAB framework has suc-
cessfully demonstrated the feasibility of automating modular timber assembly. Through
the development of a parametric joinery system, integration with robotic simulation tools,
and execution of automated assembly workflows, this chapter has outlined key steps in
bridging digital design with robotic execution. However, challenges remain, particularly in
configuring robotic simulations, integrating adaptive end-effectors, and ensuring seamless
interaction between COMPAS FAB and external tools like MoveIt! and ROS. Despite
these hurdles, the results confirm the viability of robotic automation for timber construction,
highlighting both the efficiency and adaptability of digital fabrication methods. Future work
should focus on refining system configurations, improving documentation for robotic setup,

69

and expanding interoperability with broader automation workflows to enhance the adoption
of robotic fabrication in the construction industry.

70

Chapter 5

Experimental Evaluation

In this chapter, the experimental evaluation of the implementation is presented, focusing
on the performance of the robotic assembly process for a given timber structure in
the developed Grasshopper playground. The objective is to assess how well the robot
executes the task, examining key performance indicators such as velocity, acceleration,
and precision during assembly.

5.1 Robotic Motion Behavior: Position, Velocity, and Accelera-
tion

The generated plots, A.7, depict the robot’s motion characteristics during a single picking,
placing, and returning motion iteration in the assembly process, providing insights into its
position, velocity, and acceleration over time. Each subplot represents a different aspect
of the robot’s movement, with multiple lines corresponding to individual joints, allowing
for a comparative analysis of their respective behaviors. The position plot illustrates how
the robot’s joints change their spatial location over time, with smooth transitions indicating
stable and controlled motion, while any abrupt changes or oscillations could suggest
positioning inaccuracies or mechanical imprecisions. The velocity plot reflects the rate
of change of position, where consistent curves suggest an optimized and predictable
movement pattern, whereas sharp peaks or fluctuations might indicate jerky motion or
suboptimal trajectory execution. Lastly, the acceleration plot represents the rate of change
of velocity, with gradual acceleration and deceleration indicating smooth motion transitions,
minimizing mechanical stress, while sharp spikes may point to excessive force application,
which could lead to structural strain or reduced precision. Overall, the plots suggest a
well-controlled robotic motion, as evidenced by the smooth position transitions, moderate
velocity fluctuations, and balanced acceleration patterns. However, any irregularities in
the curves might indicate the need for trajectory refinements, such as optimizing speed
constraints or introducing additional smoothing techniques to enhance the robot’s overall
efficiency and accuracy in timber assembly.

5.2 Precision Issues in the Simulation

The images 5.1 and 5.2 illustrate a wireframe representation of the robotic assembly
process, highlighting the geometric structure of the components and the robotic end-
effector. One key precision issue observed in the simulation is the deviation between

71

the intended and actual positioning of components during assembly. These inaccuracies
stem from multiple factors, including numerical errors in the simulation, discretization of
collision detection algorithms, and floating-point arithmetic limitations. Additionally, as the
complexity of the assembly increases, small positioning errors can accumulate, leading to
misalignments in later stages. The image also demonstrates the interaction between the
robot and the assembled structure, where minor inaccuracies in positioning can propagate
through subsequent assembly steps. These deviations could require corrective actions
such as re-adjustments or re-computations, increasing the overall simulation time.

Figure 5.1: Inaccuracy Diagonal Figure 5.2: Inaccuracy Horizontal

5.3 Simulation Time and Scalability

The time required for assembling each component exhibits a significant increase through-
out the process. While the first iteration of the first component takes approximately 30
seconds, the 11th component requires about 6 minutes to be placed correctly. This
exponential growth in simulation time suggests a scaling issue, likely caused by increasing
computational complexity as more objects are introduced into the environment. The image
reveals a dense interaction between multiple assembled components, which may lead
to an increased number of collision checks, constraint resolutions, and dynamic updates.
Furthermore, as the assembly progresses, the system must account for a growing num-
ber of dependencies, which may lead to more frequent re-evaluations of the scene and
prolonged computational effort. These factors highlight the importance of optimizing simu-
lation algorithms, such as utilizing parallel processing, reducing precision where feasible,
or implementing hierarchical collision detection to improve efficiency.

The following figures 5.3 depict the actual assembly process of the input structure data.

72

Figure 5.3: Real-Time Structure Assembly Simulation

73

5.4 Structural Analysis of Timber Structure

Finite element analysis (FEA) is a powerful numerical method used to simulate the behavior
of structures under various loads. In the context of timber structures, FEA provides valuable
insights into deformation, stress distribution, and reaction forces, which are essential for
ensuring structural integrity and safety. For the purpose of calculation, the original timber
structure has been simplified and broken down into its key components, to focus on the
critical elements that influence its behavior. This simplification enables more efficient
analysis while maintaining the essential characteristics of the structure.

The analysis involves a square frame with diagonal reinforcement, where the material
properties and geometric characteristics of the beam are defined. Specifically, the elastic
modulus, the cross-sectional area, and the moment of inertia are specified for the material.
The nodal positions of the structure are defined for a simple square configuration with
four nodes and the diagonal reinforcement, leading to five elements in total. The stiffness
matrix for each element is computed using beam theory, which involves calculating the
local stiffness matrix by considering the beam’s elasticity, cross-sectional area, moment of
inertia, and the angle between the nodes. These local stiffness matrices are assembled
into a global stiffness matrix that represents the entire system. Boundary conditions
are applied by fixing specific degrees of freedom (DOFs) corresponding to the nodes at
positions 0, (x:0.0, y:0.0), and 1, (x: 0.4, y: 0.0), with the remaining DOFs being free. A
vertical force of 5000 Newton is applied at Node 2. The displacement, 5.4, of the free
nodes is computed by solving the reduced system of equations, and the reaction forces
are determined by calculating the force residuals. The following input parameters were
used:

E = 12× 109 Pa (5.1)

A = 0.016m2 (5.2)

I = 2.13× 10−7 m4 (5.3)

L = 0.4m (5.4)

F = −5000N (5.5)

The global stiffness matrix is assembled by summing the contributions of the local stiffness
matrices for each element.

The load vector is:

F =
[
0 0 0 0 0 −5000 0 0

]T
where a vertical force of 5000 N is applied at Node 2.

The reduced system of equations is:

KreducedUfree = Freduced

74

The computed nodal displacements are:

U =


0.00000000 0.00000000

0.00000000 0.00000000

1.04166667× 10−5 −1.04166667× 10−5

1.04166667× 10−5 6.37836875× 10−22


The reaction forces are calculated as:

R = KglobalU− F

The computed reaction forces are:

R =


−1.13686838× 10−12 −1.13686838× 10−12

3.06161700× 10−13 5000

0.00000000 0.00000000

2.97171302× 10−13 5.04870979× 10−29



0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
X Position (m)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Y
Po

sit
io

n
(m

)

Beam Structure with Deformations

Original
Deformed

Figure 5.4: Deformations

75

The results of the structural analysis indicate that the displacements and reaction forces are
very small, consistent with the high rigidity of the system. The nodal displacements are on
the order of micrometers, with Nodes 0 and 1 (the fixed supports) showing no displacement,
as expected. Node 2, where the vertical force is applied, exhibits a small displacement
in both the x and y directions, while Node 3 experiences a similar displacement in the
x direction but almost no displacement in the y direction, indicative of minimal vertical
movement. The reaction forces at the fixed supports are very small, with Node 1 having a
vertical reaction force of exactly 5000 N, which balances the applied load at Node 2. The
reaction forces at Nodes 0 and 3 are negligibly small, likely due to numerical precision
in the calculations, and do not significantly affect the overall equilibrium. These results
confirm that the structure is behaving as expected under the applied load, with minimal
deformation and reaction forces, which is typical for a highly rigid beam system.

76

Chapter 6

Conclusion and Future Work

This thesis has demonstrated the potential of robotic fabrication and automation in timber
construction through the integration of the COMPAS FAB framework. The research high-
lights how robotic systems enhance precision, reduce labor dependency, and contribute
to more sustainable building practices. Experimental evaluations confirm that automated
workflows improve efficiency and scalability, particularly in modular timber construction
(EVERSMANN et al., 2017).

Despite these advancements, challenges remain in the full-scale adoption of robotic
construction, including technological integration, cost considerations, and the need for
skilled professionals trained in robotics and digital fabrication. Future research should
focus on refining robotic path planning algorithms, expanding interoperability with BIM
systems, and exploring AI-driven automation to further optimize construction workflows.

The construction industry struggles to embrace innovative technologies, and the lag
in innovation contributes to reduced productivity and efficiency (CAI and ZOU, 2022).
However, timber construction, with its frequent use of prefabricated building components
and highly digitalized design processes, is particularly well-suited for robotic fabrication
(EVERSMANN et al., 2017). The key contributors to a more innovative and sustainable
construction industry include enhanced BIM development and widespread adoption within
the sector. These advancements will enable further technological integration, such as
robotic fabrication, to flourish, ultimately transforming how buildings are designed and
constructed.

Working with COMPAS FAB provided valuable insights into both the potential and the
limitations of the framework. While its documentation is comprehensive in some aspects,
certain critical processes, such as attaching a gripper to a robotic arm, were insufficiently
explained. The lack of guidance on configuring moving components, such as gripper
fingers, added significant complexity to the workflow. Additionally, setting up the software
environment was challenging for those unfamiliar with ROS and Linux. On a Windows
machine, configuring Docker and establishing a functioning development environment
required additional effort, especially when generating custom URDF files and MoveIt!
configurations. The process was not well-documented, particularly in regard to selecting
appropriate joints and links when configuring the MoveIt! package. These challenges
highlight areas for improvement in the COMPAS FAB documentation and suggest that
future iterations should provide more detailed tutorials and troubleshooting guidance for
users with varying levels of experience in robotic simulation.

Looking ahead, future work could focus on implementing the entire system in real-life
settings with actual robotic hardware to test the framework’s practical applicability and

77

robustness. This would involve integrating the simulated robotic systems with real-world
timber components, optimizing the design-to-fabrication workflow, and refining robotic
motion capabilities for improved precision and efficiency. Additionally, further investigation
into the use of CNC milling for timber component production could be explored, as it
would enhance the integration of digital fabrication and traditional woodworking methods,
potentially reducing waste and improving overall production speed.

Another exciting avenue for future work involves exploring the potential of incorporating
augmented reality (AR) or virtual reality (VR) to assist operators in real-time, offering
intuitive interfaces for assembly tasks or facilitating better communication between de-
sign teams and robotic systems. Finally, scaling the robotic systems to handle larger
construction projects or more complex geometries could provide valuable insights into
the viability of robotic automation in larger-scale timber construction, paving the way for
broader adoption across the construction industry.

Ultimately, the findings of this thesis underscore the transformative role of robotics in the
construction industry. By leveraging digital design tools and automation, the sector can
achieve greater productivity, enhanced safety, and reduced environmental impact, paving
the way for a new era of innovation in timber construction.

78

Appendix A

Appendix 1

A.1 hand_e.xacro

1 <!-- Here we define the 2 parameters of the macro -->
2 <xacro:macro name="hand_e" params="prefix connected_to">
3

4 <!-- Create a fixed joint with a parameterized name. -->
5 <joint name="${prefix}hand_e_base_joint" type="fixed">
6

7 <!-- The parent link must be read from the robot model it is attached to. -->
8 <parent link="${connected_to}"/>
9 <child link="${prefix}hand_e_base"/>

10

11 <!-- The tool is directly attached to the flange. -->
12 <origin rpy="0 0 0" xyz="0 0 0"/>
13 </joint>
14

15 <link name="${prefix}hand_e_base">
16 <visual>
17 <geometry>
18 <!-- The path to the visual meshes in the package. -->
19 <mesh filename="package://ur10_hand_e/meshes/visual/hand_e_base.stl"/>
20 </geometry>
21 </visual>
22 <collision>
23 <geometry>
24 <!-- The path to the collision meshes in the package. -->
25 <mesh filename="package://ur10_hand_e/meshes/collision/hand_e_base.stl"/>
26 </geometry>
27 </collision>
28 </link>
29

30 <joint name="${prefix}hand_e_finger_1_joint" type="prismatic">
31 <!-- The parent link must be read from the robot model it is attached to. -->
32 <parent link="${prefix}hand_e_base"/>
33 <child link="${prefix}hand_e_finger_1"/>
34 <origin rpy="0 0 0" xyz="0 0 0"/>
35 <axis xyz="0 1 0"/>
36 <limit effort="130" lower="0" upper="0.025" velocity="0.15"/>
37 </joint>
38

39 <link name="${prefix}hand_e_finger_1">
40 <visual>
41 <geometry>
42 <!-- The path to the visual meshes in the package. -->

79

43 <mesh filename="package://ur10_hand_e/meshes/visual/hand_e_finger_1.stl"/>
44 </geometry>
45 </visual>
46 <collision>
47 <geometry>
48 <!-- The path to the collision meshes in the package. -->
49 <mesh filename="package://ur10_hand_e/meshes/collision/hand_e_finger_1.stl"/>
50 </geometry>
51 </collision>
52 </link>
53

54 <joint name="${prefix}hand_e_finger_2_joint" type="prismatic">
55 <!-- The parent link must be read from the robot model it is attached to. -->
56 <parent link="${prefix}hand_e_base"/>
57 <child link="${prefix}hand_e_finger_2"/>
58 <origin rpy="0 0 0" xyz="0 0 0"/>
59 <axis xyz="0 -1 0"/>
60 <limit effort="130" lower="0" upper="0.025" velocity="0.15"/>
61 <mimic joint="${prefix}hand_e_finger_1_joint" multiplier="1" offset="0"/>
62 </joint>
63 <link name="${prefix}hand_e_finger_2">
64 <visual>
65 <geometry>
66 <!-- The path to the visual meshes in the package. -->
67 <mesh filename="package://ur10_hand_e/meshes/visual/hand_e_finger_2.stl"/>
68 </geometry>
69 </visual>
70 <collision>
71 <geometry>
72 <!-- The path to the collision meshes in the package. -->
73 <mesh filename="package://ur10_hand_e/meshes/collision/hand_e_finger_2.stl"/>
74 </geometry>
75 </collision>
76 </link>
77

78 <!-- TCP frame -->
79 <joint name="${prefix}tcp_joint" type="fixed">
80 <origin xyz="0 0 0.116" rpy="0 0 0"/>
81 <parent link="${prefix}hand_e"/>
82 <child link="${prefix}tcp"/>
83 </joint>
84 <link name="${prefix}tcp"/>
85

86 </xacro:macro>
87 </robot>

80

A.2 extract_coordinates_from_step.py

1 import OCC.Core.STEPControl as step
2 import OCC.Core.BRepGProp as brep_gprop
3 import OCC.Core.GProp as gprop
4 import OCC.Core.TopoDS as topo_ds
5 import OCC.Core.TopExp as top_exp
6 import OCC.Core.TopAbs as top_abs
7 import OCC.Core.IFSelect as ifselect
8 import json
9

10 def extract_coordinates_from_step(filepath):
11 ’’’
12 Function for extracting center of mass and orientation
13 of parametrized modular timber components from .step files
14 and creating a json file to be imported into
15 Grasshopper Playground for timber structure assembly tasks
16

17 parameters: filepath
18 filepath to the .step file
19 return: output_data
20 properties of timber components(center of mass and orientation)
21 ’’’
22

23 # Load the STEP file
24 step_reader = step.STEPControl_Reader()
25 status = step_reader.ReadFile(filepath)
26

27 solids_with_centers = []
28

29 if status == ifselect.IFSelect_RetDone:
30 step_reader.TransferRoots()
31 shape = step_reader.OneShape()
32 i = 0
33 coords = {}
34

35 # Iterate through solids in STEP file
36 exp = top_exp.TopExp_Explorer(shape, top_abs.TopAbs_SOLID)
37 while exp.More():
38 shape = exp.Current()
39

40 solid = topo_ds.topods_Solid(shape)
41

42 # Center of mass
43 props = gprop.GProp_GProps()
44 brep_gprop.brepgprop_VolumeProperties(solid, props)
45 center_mass = props.CentreOfMass()
46

47 center_x = round(center_mass.X() / 1000, 3)
48 center_y = round(center_mass.Y() / 1000, 3)
49 center_z = round(center_mass.Z() / 1000, 3)
50

51 # Inertia matrix and axis calculation

81

52 inertia_matrix = props.MatrixOfInertia()
53 axis_x = (round(inertia_matrix.Value(1, 1)/ 1000000.0, 3),
54 round(inertia_matrix.Value(1, 2)/ 1000000.0, 3),
55 round(inertia_matrix.Value(1, 3)/ 1000000.0, 3))
56 axis_y = (round(inertia_matrix.Value(2, 1)/ 1000000.0, 3),
57 round(inertia_matrix.Value(2, 2)/ 1000000.0, 3),
58 round(inertia_matrix.Value(2, 3)/ 1000000.0, 3))
59 axis_z = (round(inertia_matrix.Value(3, 1)/ 1000000.0, 3),
60 round(inertia_matrix.Value(3, 2)/ 1000000.0, 3),
61 round(inertia_matrix.Value(3, 3)/ 1000000.0, 3))
62

63 solids_with_centers.append({
64 "point": [center_x, center_y, center_z],
65 "xaxis": axis_x,
66 "yaxis": axis_y,
67 "zaxis": axis_z
68 })
69

70 exp.Next()
71

72 # Sort the solids
73 sorted_solids = sorted(solids_with_centers, key=lambda item: item["point"][2])
74

75 output_data = {
76 "properties": {},
77 "required": ["point", "xaxis", "yaxis"]
78 }
79

80 output_data["properties"] = sorted_solids
81

82 with open("points_axis.json", "w") as json_file:
83 json.dump(output_data, json_file, indent=4)
84

85 return output_data

82

83

A
.3

G
ra

ss
ho

pp
er

P
la

yg
ro

un
d

fo
r

R
ob

ot
ic

Ti
m

be
r

A
ss

em
bl

y

84

A.4 class PlanCustomMotion(component)

1 from compas_rhino.conversions import RhinoPlane
2 from ghpythonlib.componentbase import executingcomponent as component
3 from scriptcontext import sticky as st
4 from compas_fab.ghpython.components import create_id
5 import rhinoscriptsyntax as rs
6 import math
7

8 class PlanCustomMotion(component):
9 def RunScript(

10 self, robot, attached_collision_mesh, start_planes, target_frames,
↪→ start_configuration, open_gripper, close_gripper

11 , group, max_step, compute
12):
13 pick_key = create_id(self, "pick_trajectory")
14 pick_path_constraints = None
15 if robot and robot.client and robot.client.is_connected and compute:
16 frames = [RhinoPlane.from_geometry(plane).to_compas_frame() for plane in [

↪→ start_planes[1]]]
17 st[pick_key] = robot.plan_cartesian_motion(
18 frames,
19 start_configuration=start_configuration,
20 group=group,
21 options=dict(
22 max_step=max_step,
23 path_constraints=pick_path_constraints,
24 attached_collision_meshes=attached_collision_mesh,
25),
26)
27 pick_trajectory = st.get(pick_key, None)
28

29 # Visualize Pick Trajectory
30 pick_configurations = []
31 if robot and pick_trajectory:
32 group = group or robot.main_group_name
33 for c in pick_trajectory.points:
34 pick_configurations.append(
35 robot.merge_group_with_full_configuration(c, pick_trajectory.

↪→ start_configuration, group)
36)
37 pick_frame = robot.forward_kinematics(c, group, options=dict(solver="model

↪→ "))
38

39 pick_start_configuration = pick_trajectory.start_configuration
40

41 # Gripper Configuration
42 config = pick_configurations[-1]
43 close_gripper_configurations = close_gripper(config)
44

45 close_gripper_configuration = close_gripper_configurations[-1]
46

47 # Place Trajectory Motion Plan Cartesian

85

48 pplane = [target_frames[0]]
49 place_key = create_id(self, "place_trajectory")
50 place_path_constraints = None
51 if robot and robot.client and robot.client.is_connected and compute:
52 frames = [RhinoPlane.from_geometry(plane).to_compas_frame() for plane in

↪→ pplane]
53 st[place_key] = robot.plan_cartesian_motion(
54 frames,
55 start_configuration=close_gripper_configuration,
56 group=group,
57 options=dict(
58 max_step=max_step,
59 path_constraints=place_path_constraints
60),
61)
62 place_trajectory = st.get(place_key, None)
63

64 # Visualize Place Trajectory
65 place_start_configuration = None
66 place_configurations = []
67 if robot and place_trajectory:
68 group = group or robot.main_group_name
69

70 for c in place_trajectory.points:
71 place_configurations.append(
72 robot.merge_group_with_full_configuration(c, place_trajectory.

↪→ start_configuration, group)
73)
74 place_frame = robot.forward_kinematics(c, group, options=dict(solver="

↪→ model"))
75

76 place_start_configuration = place_trajectory.start_configuration
77

78 # Constraints
79 goal_constraints = None
80 if robot and target_frames:
81 tolerance_position = 0.001
82 tolerance_xaxis = 1.0
83 tolerance_yaxis = 1.0
84 tolerance_zaxis = 1.0
85

86 p2place = target_frames[1]
87 constraint_frame = RhinoPlane.from_geometry(p2place).to_compas_frame()
88 tolerances_axes = [
89 math.radians(tolerance_xaxis),
90 math.radians(tolerance_yaxis),
91 math.radians(tolerance_zaxis),
92]
93 goal_constraints = robot.constraints_from_frame(constraint_frame,

↪→ tolerance_position, tolerances_axes, group)
94

95 # Place 2 Trajectory Motion Plan Free
96 place2_key = create_id(self, "place2_trajectory")

86

97 planner_id = "RRTConnect"
98 place2_start_configuration = place_configurations[-1]
99 if robot and robot.client and robot.client.is_connected and compute:

100 st[place2_key] = robot.plan_motion(
101 goal_constraints,
102 start_configuration=place2_start_configuration,
103 group=group,
104 options=dict(
105 path_constraints=goal_constraints,
106 planner_id=planner_id,
107),
108)
109 place2_trajectory = st.get(place2_key, None)
110

111 # Visualize Place 2 Trajectory
112 place2_start_configuration = None
113 place2_configurations = []
114

115 if robot and place2_trajectory:
116 group = group or robot.main_group_name
117

118 for c in place2_trajectory.points:
119 place2_configurations.append(
120 robot.merge_group_with_full_configuration(c, place2_trajectory.

↪→ start_configuration, group)
121)
122 place2_frame = robot.forward_kinematics(c, group, options=dict(solver="

↪→ model"))
123

124 place2_start_configuration = place2_trajectory.start_configuration
125

126 # Place 3 Trajectory Motion Plan cartesian
127 pp3plane = [target_frames[2]]
128

129 place3_key = create_id(self, "place3_trajectory")
130 place3_start_configuration = place2_configurations[-1]
131 place3_path_constraints = None
132 if robot and robot.client and robot.client.is_connected and compute:
133 frames = [RhinoPlane.from_geometry(plane).to_compas_frame() for plane in

↪→ pp3plane]
134 st[place3_key] = robot.plan_cartesian_motion(
135 frames,
136 start_configuration=place3_start_configuration,
137 group=group,
138 options=dict(
139 max_step=max_step,
140 path_constraints=place3_path_constraints
141),
142)
143

144 place3_trajectory = st.get(place3_key, None)
145

146 # Visualize Place 3 Trajectory

87

147 place3_start_configuration = None
148 place3_configurations = []
149

150 if robot and place3_trajectory:
151 group = group or robot.main_group_name
152

153 for c in place3_trajectory.points:
154 place3_configurations.append(
155 robot.merge_group_with_full_configuration(c, place3_trajectory.

↪→ start_configuration, group)
156)
157 place3_frame = robot.forward_kinematics(c, group, options=dict(solver="

↪→ model"))
158

159 place3_start_configuration = place3_trajectory.start_configuration
160

161 # Open Gripper Configuration
162 open_config = place3_configurations[-1]
163 open_gripper_configurations = open_gripper(open_config)
164 open_gripper_configuration = open_gripper_configurations[-1]
165

166 # Return 1 Trajectory Motion Plan cartesian
167 return1_key = create_id(self, "return1_trajectory")
168 return1_start_configuration = open_gripper_configuration
169 if robot and robot.client and robot.client.is_connected and compute:
170 st[return1_key] = robot.plan_cartesian_motion(
171 [target_frames[1]],
172 start_configuration=return1_start_configuration,
173 group=group,
174 options=dict(
175 max_step=max_step,
176)
177)
178

179 return1_trajectory = st.get(return1_key, None)
180

181 # Visualize Return 1 Trajectory
182 return1_configurations = []
183

184 if robot and return1_trajectory:
185 group = group or robot.main_group_name
186

187 for c in return1_trajectory.points:
188 return1_configurations.append(
189 robot.merge_group_with_full_configuration(c, return1_trajectory.

↪→ start_configuration, group)
190)
191 return1_frame = robot.forward_kinematics(c, group, options=dict(solver="

↪→ model"))
192

193 # Return Constraints
194 return_tolerances_axes = [math.radians(1.0), math.radians(1.0), math.radians(1.0)]

88

195 return_goal_constraints = robot.constraints_from_frame(start_planes[0], 0.001,
↪→ tolerances_axes, group)

196

197 # Return 2 Motion Plan Free
198 return_key = create_id(self, "return_trajectory")
199 return_start_configuration = return1_configurations[-1]
200 if robot and robot.client and robot.client.is_connected and compute:
201 st[return_key] = robot.plan_motion(
202 return_goal_constraints,
203 start_configuration=return_start_configuration,
204 group=group,
205 options=dict(
206 path_constraints=return_goal_constraints,
207 planner_id="RRTConnect",
208),
209)
210 return_trajectory = st.get(return_key, None)
211

212 # Visualize Return 2 Trajectory
213 return_configurations = []
214

215 if robot and return_trajectory:
216 group = group or robot.main_group_name
217

218 for c in return_trajectory.points:
219 return_configurations.append(
220 robot.merge_group_with_full_configuration(c, return_trajectory.

↪→ start_configuration, group)
221)
222 return_frame = robot.forward_kinematics(c, group, options=dict(solver="

↪→ model"))
223

224 return_start_configuration = return_trajectory.start_configuration
225

226 final_pick_configurations = pick_configurations + close_gripper_configurations
227 final_place_configurations = place_configurations + place2_configurations +

↪→ place3_configurations + open_gripper_configurations
228 final_return_configuration = return1_configurations + return_configurations
229

230 all = [final_pick_configurations, final_place_configurations,
↪→ final_return_configuration]

231

232 return all

89

A.5 def runner(config_dict, start, stop, pick_frame, place_frame,
add_cm)

1 from scriptcontext import sticky as st
2 from compas_ghpython.utilities import update_component
3

4 def runner(config_dict, start, stop, pick_frame, place_frame, add_cm):
5

6 # Store data in component
7 guid = str(ghenv.Component.InstanceGuid)
8 motion_key = "motion_" + guid
9 counter_key = "counter_" + guid

10 running_key = "running_" + guid
11 last_item_key = "last_item_" + guid
12

13 motion_order = [’pick’, ’place’, ’return’]
14 if motion_key not in st:
15 st[motion_key] = 0
16

17 if counter_key not in st:
18 st[counter_key] = 0
19 if running_key not in st:
20 st[running_key] = False
21 if last_item_key not in st:
22 st[last_item_key] = config_dict[motion_order[0]][0]
23

24 # If stop is True, return last item and exit
25 if stop:
26 st[running_key] = False
27 return st[last_item_key]
28

29 if start:
30 st[running_key] = True
31

32 if not st[running_key]:
33 return st[last_item_key]
34

35 motion = motion_order[st[motion_key]]
36 configs = config_dict[motion]
37

38 # Perform motion-specific actions
39 if motion == ’pick’:
40 add_cm(pick_frame)
41 elif motion == ’return’:
42 add_cm(place_frame)
43

44 if 0 <= st[counter_key] < len(configs):
45 item = configs[st[counter_key]]
46 st[last_item_key] = item
47

48 # Update counter for next iteration
49 if st[counter_key] < len(configs) - 1:

90

50 st[counter_key] += 1
51 else:
52 st[counter_key] = 0
53 st[motion_key] += 1
54 if st[motion_key] >= len(motion_order):
55 st[motion_key] = 0
56 st[running_key] = False
57

58 update_component(ghenv, 5)
59

60 return item
61

62 config_dict_in = {’pick’: L[0], ’place’: L[1], ’return’: L[2]}
63 item = runner(config_dict_in, start, stop, pick_frame, place_frame, add_cm)

A.6 2D Drawings of Timber Components

32510 20

400

1020 25

15

10

10
15

20

20
10

10

2520

400

Figure A.1: Top and Side View of Horizontal Component in Millimeters

91

20

400

10
10

20
400

10
10

Figure A.2: Top and Side View of Vertical Component in Millimeters

488

40
20

Figure A.3: Top and Side View of Diagonal Component in Millimeters

92

A.7 Acceleration, Velocity and Position Data for one Iteration

2

1

0

1

2

3

Po
sit

io
n

Position vs Time

0.3

0.2

0.1

0.0

0.1

0.2

Ve
lo

cit
y

Velocity vs Time

0 1 2 3 4 5
Time Step

1.0

0.5

0.0

0.5

1.0

Ac
ce

le
ra

tio
n

Acceleration vs Time

Figure A.4: Picking Motion Trajectory Data

2

1

0

1

2

Po
sit

io
n

Position vs Time

1.0

0.5

0.0

0.5

1.0

Ve
lo

cit
y

Velocity vs Time

0 1 2 3 4 5
Time Step

1.0

0.5

0.0

0.5

1.0

Ac
ce

le
ra

tio
n

Acceleration vs Time

Figure A.5: Placing Cartesian Motion Trajectory Data

93

3

2

1

0

1

2

3

Po
sit

io
n

Position vs Time

2.0

1.5

1.0

0.5

0.0

0.5

Ve
lo

cit
y

Velocity vs Time

0 1 2 3 4 5
Time Step

1.5

1.0

0.5

0.0

Ac
ce

le
ra

tio
n

Acceleration vs Time

Figure A.6: Placing Free Motion Trajectory Data

3

2

1

0

1

2

Po
sit

io
n

Position vs Time

0.4

0.2

0.0

0.2

Ve
lo

cit
y

Velocity vs Time

0 1 2 3 4 5
Time Step

1.0

0.5

0.0

0.5

1.0

Ac
ce

le
ra

tio
n

Acceleration vs Time

Figure A.7: Placing Target Cartesian Motion Trajectory Data

94

3

2

1

0

1

2

Po
sit

io
n

Position vs Time

0.2

0.0

0.2

0.4

Ve
lo

cit
y

Velocity vs Time

0 1 2 3 4 5
Time Step

1.0

0.5

0.0

0.5

1.0

Ac
ce

le
ra

tio
n

Acceleration vs Time

Figure A.8: Return Cartesian Motion Trajectory Data

2

1

0

1

2

3

Po
sit

io
n

Position vs Time

0.5

0.0

0.5

1.0

1.5

2.0

Ve
lo

cit
y

Velocity vs Time

0 1 2 3 4 5
Time Step

1.0

0.5

0.0

0.5

1.0

Ac
ce

le
ra

tio
n

Acceleration vs Time

Figure A.9: Return Free Motion Trajectory Data

95

96

Bibliography

ALEXI, E., KENNY, J., ATANASOVA, L., CASAS, G., DÖRFLER, K., & MITTERBERGER, D.
(2024). Cooperative augmented assembly (caa): Augmented reality for on-site
cooperative robotic fabrication. Construction Robotics, 8. https://doi.org/10.1007/
s41693-024-00138-6

ALFIERI, E., E. SEGHEZZI, M. S., & G. M. DI GIUDA, G. M. (2020). A bim based approach
for dfma in building construction: Framework and first results on an italian case
study. Architectural Engineering and Design Management, 16(4), 247–269. https:
//doi.org/10.1080/17452007.2020.1726725

ALWISY, A., SAMER BU HAMDAN, B. B., & AHMED BOUFERGUENE, M. A.-H. (2019). A
bim-based automation of design and drafting for manufacturing of wood panels for
modular residential buildings. International Journal of Construction Management,
19(3), 187–205. https://doi.org/10.1080/15623599.2017.1411458

AMTSBERG, F., YANG, X., SKOURY, L., WAGNER, H., & MENGES, A. (2021). Ihrc: An
ar-based interface for intuitive, interactive and coordinated task sharing between
humans and robots in building construction. https://doi.org/10.22260/ISARC2021/
0006

BREYER, D. E., COBEEN, K., POLLOCK, K. J., & SCHRAMM, D. G. (2019). Design
of wood structures—asd/lrfd (8th). McGraw-Hill Education. https : / / www .
accessengineeringlibrary.com/content/book/9781260128673

CAI, W., & ZOU, Z. (2022). A reinforcement learning based approach for conducting
multiple tasks using robots in virtual construction environments. Automation in
Construction toward Resilience: Robotics, Smart Materials and Intelligent Systems.
https://doi.org/10.22260/ICRA2022/0014

CAMPBELL, J. (2019). Building with timber: Paths into the future. Laurence King Publishing.
CASCADE, O. (2023). Open cascade technology documentation [Accessed: 2024-02-06].

https://dev.opencascade.org/
CHEN, Z., GU, H., BERGMAN, R., & LIANG, S. (2020). Comparative life-cycle assessment of

a high-rise mass timber building with an equivalent reinforced concrete alternative
using the athena impact estimator for buildings. Sustainability, 12, 4708. https:
//doi.org/10.3390/su12114708

CHITTA, S., SUCAN, I., & COUSINS, S. (2012). Moveit![ros topics]. IEEE Robotics &
Automation Magazine - IEEE ROBOT AUTOMAT, 19, 18–19. https://doi.org/10.
1109/MRA.2011.2181749

COUSINS, S. (2012). Is ros good for robotics? IEEE Robotics & Automation Magazine -
IEEE ROBOT AUTOMAT, 19, 13–14. https://doi.org/10.1109/MRA.2012.2193935

CRAIG, J. (2021). Introduction to Robotics Mechanics and Control, Global Edition. Pearson
Deutschland. https://elibrary.pearson.de/book/99.150005/9781292164953

D’AMICO, B., POMPONI, F., & HART, J. (2021). Global potential for material substitution
in building construction: The case of cross laminated timber. Journal of Cleaner

97

https://doi.org/10.1007/s41693-024-00138-6
https://doi.org/10.1007/s41693-024-00138-6
https://doi.org/10.1080/17452007.2020.1726725
https://doi.org/10.1080/17452007.2020.1726725
https://doi.org/10.1080/15623599.2017.1411458
https://doi.org/10.22260/ISARC2021/0006
https://doi.org/10.22260/ISARC2021/0006
https://www.accessengineeringlibrary.com/content/book/9781260128673
https://www.accessengineeringlibrary.com/content/book/9781260128673
https://doi.org/10.22260/ICRA2022/0014
https://dev.opencascade.org/
https://doi.org/10.3390/su12114708
https://doi.org/10.3390/su12114708
https://doi.org/10.1109/MRA.2011.2181749
https://doi.org/10.1109/MRA.2011.2181749
https://doi.org/10.1109/MRA.2012.2193935
https://elibrary.pearson.de/book/99.150005/9781292164953

Production, 279, 123487. https://doi.org/https://doi.org/10.1016/j.jclepro.2020.
123487

DOCKER, I. (n.d.). Docker documentation [Accessed: 2024-11-03]. https://docs.docker.com
DÖRFLER, K., SANDY, T., GIFTTHALER, M., GRAMAZIO, F., KOHLER, M., & BUCHLI, J.

(2016). Mobile robotic brickwork. In D. REINHARDT, R. SAUNDERS, & J. BURRY

(Eds.), Robotic fabrication in architecture, art and design 2016 (pp. 204–217).
Springer International Publishing. https://doi.org/10.1007/978-3-319-26378-6_15

EVERSMANN, P., GRAMAZIO, F., & KOHLER, M. (2017). Robotic prefabrication of tim-
ber structures: Towards automated large-scale spatial assembly. Construction
Robotics, 1. https://doi.org/10.1007/s41693-017-0006-2

FEIO, A. O., LOURENÇO, P. B., & MACHADO, J. S. (2014). Testing and modeling of a
traditional timber mortise and tenon joint. Materials and Structures, 47 (1), 213–
225. https://doi.org/10.1617/s11527-013-0056-y

GEISSDOERFER, M., SAVAGET, P., BOCKEN, N. M., & HULTINK, E. J. (2017). The circular
economy – a new sustainability paradigm? Journal of Cleaner Production, 143,
757–768. https://doi.org/https://doi.org/10.1016/j.jclepro.2016.12.048

GRAMAZIO, F., & KOHLER, M. (2008). Digital materiality in architecture. Architectural
Design, 78(4), 14–21.

HARRIS, R. (1993). Discovering timber-framed buildings. Shire Publications.
HART, J., & POMPONI, F. (2020). More timber in construction: Unanswered questions and

future challenges. Sustainability, 12, 3473. https://doi.org/10.3390/su12083473
HASSAN, R., IBRAHIM, A., & AHMAD, Z. (2023). Timber connections: Mortise and tenon

structural design (1st ed.). Springer Singapore. https://doi.org/10.1007/978-981-
19-2697-6

HERZOG, T., NATTERER, J., SCHWEITZER, R., VOLZ, M., & WINTER, W. (2012). Timber
construction manual (6th). Birkhäuser.

KAMALI, M., & HEWAGE, K. (2015). A framework for comparative evaluation of the life
cycle sustainability of modular and conventional buildings. Proceedings of the 2015
Modular and Offsite Construction (MOC15) Summit & 1st International Conference
on the Industrialization of Construction (ICIC).

KEEPING, M., & SHIERS, D. (Eds.). (2017). Sustainable building design: Principles and
practice. Wiley-Blackwell. https://www.amazon.de/-/en/Miles-Keeping-ebook/dp/
B076JV6N6C

KYJANEK, O., AL BAHAR, B., VASEY, L., WANNEMACHER, B., & MENGES, A. (2019, May).
Implementation of an augmented reality ar workflow for human robot collaboration
in timber prefabrication. In M. AL-HUSSEIN (Ed.), Proceedings of the 36th interna-
tional symposium on automation and robotics in construction (isarc) (pp. 1223–
1230). International Association for Automation; Robotics in Construction (IAARC).
https://doi.org/10.22260/ISARC2019/0164

LAVALLE, S. M. (2006). Planning algorithms. Cambridge University Press.
LAWSON, R. M., & OGDEN, R. G. (2010). Sustainability and process benefits of modular

construction. Proceedings of the 18th CIB World Building Congress, TG57-Special
Track, 38–51.

98

https://doi.org/https://doi.org/10.1016/j.jclepro.2020.123487
https://doi.org/https://doi.org/10.1016/j.jclepro.2020.123487
https://docs.docker.com
https://doi.org/10.1007/978-3-319-26378-6_15
https://doi.org/10.1007/s41693-017-0006-2
https://doi.org/10.1617/s11527-013-0056-y
https://doi.org/https://doi.org/10.1016/j.jclepro.2016.12.048
https://doi.org/10.3390/su12083473
https://doi.org/10.1007/978-981-19-2697-6
https://doi.org/10.1007/978-981-19-2697-6
https://www.amazon.de/-/en/Miles-Keeping-ebook/dp/B076JV6N6C
https://www.amazon.de/-/en/Miles-Keeping-ebook/dp/B076JV6N6C
https://doi.org/10.22260/ISARC2019/0164

LIU, H., ZHANG, Y., LEI, Z., LI, H. X., & HAN, S. (2021). Design for manufacturing and
assembly: A bim-enabled generative framework for building panelization design.
Advances in Civil Engineering, 2021. https://doi.org/10.1155/2021/5554551

MCNEEL. (n.d.). Rhinoceros [Accessed:2025-01-24]. https://www.rhino3d.com/
MCNEEL, R. (n.d.). Grasshopper documentation [Accessed: 2024-11-05].
MELE, T. V., & many OTHERS. (2017-2021). COMPAS: A framework for computational

research in architecture and structures. [http://compas.dev]. https://doi.org/10.
5281/zenodo.2594510

MITTERBERGER, D., ERCAN JENNY, S., VASEY, L., LLORET-FRITSCHI, E., AEJMELAEUS-
LINDSTRÖM, P., GRAMAZIO, F., & KOHLER, M. (2022). Interactive robotic plastering:
Augmented interactive design and fabrication for onsite robotic plastering. CHI
Conference on Human Factors in Computing Systems (CHI ’22), 1–18. https :
//doi.org/10.1145/3491102.3501842

MITTERBERGER, D., ATANASOVA, L., DÖRFLER, K., GRAMAZIO, F., & KOHLER, M. (2022).
Tie a knot: Human–robot cooperative workflow for assembling wooden structures
using rope joints. Construction Robotics, 6. https://doi.org/10.1007/s41693-022-
00083-2

OVERBY, A. (2010). Cnc machining handbook: Building, programming, and implementation.
McGraw-Hill/TAB Electronics.

PADILLA-RIVERA, A., AMOR, B., & BLANCHET, P. (2018). Evaluating the link between
low carbon reductions strategies and its performance in the context of climate
change: A carbon footprint of a wood-frame residential building in quebec, canada.
Sustainability, 10(2715). https://doi.org/10.3390/su10082715

PAN, M., LINNER, T., PAN, W., CHENG, H., & BOCK, T. (2018). A framework of indicators
for assessing construction automation and robotics in the sustainability context.
Journal of Cleaner Production, 182, 82–95. https://doi.org/https://doi.org/10.1016/j.
jclepro.2018.02.053

PICKNIKINC. (n.d.). Moveit documentation [Accessed: 2024-11-03]. https://moveit.ros.org/
documentation/

pythonOCC COMMUNITY. (2023). Pythonocc – 3d cad/cae/plm development framework
for python [Accessed: 2024-02-06]. http://www.pythonocc.org/

QUESADA, R. (2005). Computer numerical control: Machining and turning centers. Prentice
Hall PTR. https://books.google.de/books?id=Lh5FNQAACAAJ

QUIGLEY, M., CONLEY, K., GERKEY, B., FAUST, J., FOOTE, T., LEIBS, J., WHEELER, R., &
NG, A. (2009). Ros: An open-source robot operating system. 3.

ROBOTIQ. (2023, August). Start Production faster | RobotIq. https://robotiq.com/
ROBOTS, U. (n.d.). Universal robots collaborative robots [Accessed: 2024-11-03]. https:

//www.universal-robots.com
ROS.ORG. (n.d.-a). Ros documentation [Accessed: 2024-11-03]. https://www.ros.org
ROS.ORG. (n.d.-b). Rviz documentation [Accessed: 2024-11-03]. https://wiki.ros.org/rviz
RUST, R., CASAS, G., PARASCHO, S., JENNY, D., DÖRFLER, K., HELMREICH, M., GANDIA,

A., MA, Z., ARIZA, I., PACHER, M., LYTLE, B., HUANG, Y., KASIRER, C., BRUUN, E.,
& LEUNG, P. (2018). COMPAS FAB: Robotic fabrication package for the compas

99

https://doi.org/10.1155/2021/5554551
https://www.rhino3d.com/
https://doi.org/10.5281/zenodo.2594510
https://doi.org/10.5281/zenodo.2594510
https://doi.org/10.1145/3491102.3501842
https://doi.org/10.1145/3491102.3501842
https://doi.org/10.1007/s41693-022-00083-2
https://doi.org/10.1007/s41693-022-00083-2
https://doi.org/10.3390/su10082715
https://doi.org/https://doi.org/10.1016/j.jclepro.2018.02.053
https://doi.org/https://doi.org/10.1016/j.jclepro.2018.02.053
https://moveit.ros.org/documentation/
https://moveit.ros.org/documentation/
http://www.pythonocc.org/
https://books.google.de/books?id=Lh5FNQAACAAJ
https://robotiq.com/
https://www.universal-robots.com
https://www.universal-robots.com
https://www.ros.org
https://wiki.ros.org/rviz

framework [Gramazio Kohler Research, ETH Zürich]. https://doi.org/10.5281/
zenodo.3469478

SAIDI, K. S., BOCK, T., & GEORGOULAS, C. (2016). Robotics in construction. In B. SICIL-
IANO & O. KHATIB (Eds.), Springer handbook of robotics (pp. 1493–1520). Springer
International Publishing. https://doi.org/10.1007/978-3-319-32552-1_57

SCHMIDT, R. J., & DANIELS, C. E. (1999, April). Design considerations for mortise and
tenon (tech. rep.). Department of Civil and Architectural Engineering, University of
Wyoming. Laramie, WY, USA.

SICILIANO, B., SCIAVICCO, L., VILLANI, L., & ORIOLO, G. (2008, November). Robotics -
Modelling, Planning and Control. Springer London. https://doi.org/10.1007/978-1-
84628-642-1

SMITH, R. E. (2011). Prefab architecture: A guide to modular design and construction.
John Wiley & Sons, Inc.

TANNE, Y., & INDRAYANI, N. (2023). Implementation of construction automation and robotics
(car) in indonesian construction state-owned enterprises: Position in project life
cycle, gap to best practice and potential uses. https://doi.org/10.21203/rs.3.rs-
2501558/v1

TEDESCHI, A. (2014). Aad algorithms-aided design: Parametric strategies using grasshop-
per. Le Penseur.

UNIVERSAL ROBOTS. (2025). Ur10e – collaborative industrial robot [Accessed: 2025-02-
16]. https://www.universal-robots.com/products/ur10e/

WOODBURY, R. (2010). Elements of parametric design. Routledge.
XIAO, Y., PAN, X., TAVASOLI, S., AZIMI, M., BAO, Y., FARSANGI, E., & YANG, T. (2023,

August). Autonomous inspection and construction of civil infrastructure using robots.
https://doi.org/10.1201/9781003325246-1

YOUNIS, A., & DODOO, A. (2022). Cross-laminated timber for building construction: A
life-cycle-assessment overview. J. Build. Eng., 52, 104482. https://doi.org/10.1016/
j.jobe.2022.104482

YUAN, Z., SUN, C., & WANG, Y. (2018). Design for manufacture and assembly-oriented
parametric design of prefabricated buildings. Automation in Construction, 88, 13–
22. https://doi.org/10.1016/j.autcon.2017.12.021

ZADEH, P., STAUB-FRENCH, S., CALDERON, F., CHIKHI, I., POIRIER, E., CHUDASMA, D., &
HUANG, S. (2018, November). Building information modeling (bim) and design for
manufacturing and assembly (dfma) for mass timber construction.

100

https://doi.org/10.5281/zenodo.3469478
https://doi.org/10.5281/zenodo.3469478
https://doi.org/10.1007/978-3-319-32552-1_57
https://doi.org/10.1007/978-1-84628-642-1
https://doi.org/10.1007/978-1-84628-642-1
https://doi.org/10.21203/rs.3.rs-2501558/v1
https://doi.org/10.21203/rs.3.rs-2501558/v1
https://www.universal-robots.com/products/ur10e/
https://doi.org/10.1201/9781003325246-1
https://doi.org/10.1016/j.jobe.2022.104482
https://doi.org/10.1016/j.jobe.2022.104482
https://doi.org/10.1016/j.autcon.2017.12.021

Declaration

I hereby affirm that I have independently written the thesis submitted by me and have not
used any sources or aids other than those indicated.

Location, Date, Signature

102

	Introduction
	Background and Motivation
	Outline

	State of the Art
	Robotic Fabrication and Automation in Construction
	Construction Automation and Robotics
	Collaborative Robots in Construction
	BIM-based Approaches for Automation in Construction

	Timber as a Sustainable Construction Material
	Physical and Mechanical Properties of Timber
	Timber Construction Methods
	Mortise and Tenon Joints in Timber Construction
	Environmental Benefits of Timber

	Modular Construction
	Challenges and Limitations of Robotic Fabrication in Construction

	Methodology
	Method Overview
	Software and Tools
	Rhino and Grasshopper
	ROS, MoveIt! and RViz
	Universal Robots and Robotiq
	COMPAS FAB - Python Package for Robotic Fabrication

	Robotics Fundamentals for Motion Planning
	Robotic Manipulators and Kinematic Models
	Coordinate Frames and Transformations
	Forward and Inverse Kinematics
	Motion Planning
	Planning Scene and Collision
	URDF - Unified Robotic Description Format

	Implementation
	Modular Timber Joinery System
	Design Intent and Functional Requirements
	Assembly Steps
	Design and Parameters of the Timber Components

	Setup and Configuration of UR10 Robot with Hand-E Gripper
	Docker Integration for Custom Configuration
	Backend GUI - XMing
	Custom URDF for UR10 with end-effector
	MoveIt! Configuration
	Custom Docker Image

	STEP to JSON Conversion for Structural Data Import
	Grasshopper Playground as an Interactive Control Interface for Robotic Simulation with COMPAS FAB
	Playground Overview for Assembly Tasks
	Robot Workflow for a Single Pick-and-Place Cycle
	Grasshopper Component Blocks for Simulated Robotic Assembly

	Experimental Evaluation
	Robotic Motion Behavior: Position, Velocity, and Acceleration
	Precision Issues in the Simulation
	Simulation Time and Scalability
	Structural Analysis of Timber Structure

	Conclusion and Future Work
	Appendix 1
	hand_e.xacro
	extract_coordinates_from_step.py
	Grasshopper Playground for Robotic Timber Assembly
	class PlanCustomMotion(component)
	def runner(config_dict, start, stop, pick_frame, place_frame, add_cm)
	2D Drawings of Timber Components
	Acceleration, Velocity and Position Data for one Iteration

	Bibliography

