GeMTest: A General Metamorphic Testing Framework

Simon Speth
School of Computation, Information and Technology
Technical University of Munich
Munich, Germany
simon.speth@tum.de

Abstract—Metamorphic testing (MT) is an established software
testing methodology suitable for testing various types of systems
under test (SUTs), but identifying and implementing metamorphic
relations (MRs) remains a challenge. This paper presents GeMTest,
a general-purpose metamorphic testing framework that is domain-
independent, enabling software testers to implement MRs in
Python and execute them with pytest. In GeMTest, MRs are im-
plemented using custom decorators to annotate Python functions,
which specify the follow-up generation function, the metamorphic
oracle, and the SUT. GeMTest then automatically creates and
executes a pytest test suite containing multiple metamorphic test
cases derived from the user-defined MRs. We evaluate GeMTest
on 16 program domains, ranging from trigonometric functions
to deep learning image classifiers, implementing in total over 200
MRs. To enable the adoption and encourage further extension, the
open-source implementation of GeMTest is available on GitHub.
Our demo video is available at https://youtu.be/Ec5SSK-meu90.

Index Terms—metamorphic testing, testing framework, python,
pytest, tool.

I. INTRODUCTION

Metamorphic testing (MT) [2, 3] is a widely acknowledged
technique in software testing research, showing an increasing
amount of publications and software domains it is applied to [3}
16]. In MT, multiple metamorphic relations (MRs) are usually
created manually, against which the system under test (SUT)
is then tested. In essence, a MR provides an automated pseudo-
oracle, a function that indicates whether the outputs of the
SUT are potentially correct or not [18]]. A basic MR provides
a pseudo-oracle as follows: (1) By selecting a source input,
a concrete metamorphic test case (MTC) is instantiated from
a MR. (2) When executing this MTC, a follow-up input is
computed from the source input, such that the SUT is executed
twice, once with each input. Finally, (3) the two SUT outputs
are compared with a relation, also called metamorphic oracle.

Even though MT is widespread in research [[16], there is
a lack of solid tooling solutions to assist software testing
practitioners and researchers in specifying and formulating
MRs using a language in a way that MT can be automated and
seamlessly integrated into their existing testing frameworks.

Although the concept of MT is relatively simple and its
implementation straightforward [3]l, current testing frameworks
like pytest [15] and JUnit [[7] lack support for a structured
and simple implementation of MRs. In those frameworks,
MTCs cannot be automatically derived, executed, and analyzed.
Multiple approaches attempt to bridge this gap for a specific

Alexander Pretschner
School of Computation, Information and Technology
Technical University of Munich
Munich, Germany
alexander.pretschner @tum.de

test_sin metamorphic.py

1 import gemtest as gmt

2 import math

3

dmr_1 =
— name='periodicity',

gmt .create_metamorphic_relation (
data=range (100)

5

6 @gmt .transformation (mr_1)

7 def plus_two_pi (source_input) :

8 return source_input + 2 * math.pi
9
10 @gmt .relation (mr_1)

11 def equals (source_output, followup_output) :
12 return gmt.approximately (
— source_output, followup_output)

13
14 @gmt .system_under_test ()

15 def test_sin(input) :

16 return math.sin (input)

Listing 1: Python code to specify one MR in GeMTest for the
sin(z) function. Source inputs for creating 100 MTCs are the
numbers from 0 to 99. The execution is shown in

user@host:~$ pytest test_sin_metamorphic.py
test session starts

platform linux -- Python 3.10.12, pytest-8.3.4,
pluggy-1.5.0
rootdir: /home/user/gemtest

plugins: gemtest-1.0.0, hypothesis-6.124.1,
html-3.2.0, metadata-3.1.1, xdist-3.6.1
collected 100 items

Listing 2: Output when executing the metamorphic test suite
definition test_sin_metamorphic.py with pytest.

To address this gap, we present GeMTest, a general-purpose
metamorphic testing framework that enables test engineers
to implement MRs in Python and automatically derive and
execute MTCs as pytest test cases. Our framework is domain-
independent and can be used to test any program or function
that can be called within Python. Additionally, already existing
test infrastructure can be used as GeMTest creates and executes
a pytest test suite, enabling tool support and reusability. Tests
implemented in GeMTest are designed to be short, readable,
and free of unnecessary syntactic overhead, as demonstrated in

domain but fail to allow test engineers to specify MRs in a When implementing the MR sin(x) = sin(x + 27),

general and domain-independent way [4, |6, 9l 13 |20].

which verifies the periodicity property of the SUT sin(z), a

https://youtu.be/Ec5SK-meu90

GeMTest @

- database for
o — GeMTest @ framework m detailed analysis
3= ' |
e —Eses
o— H Test Cases | | pytest

test suite execution

oy
=
— Y | pytest test report
—a

Figure 1: Workflow of a test engineer using GeMTest.

MR catalog MR specification pytest-based MTC creation

test engineer needs only 16 lines of code (LOC). The MTCs
are then executed by running pytest, which also visualizes and
summarizes the individual test results, as shown in

With GeMTest, we make the following contributions:

« We introduce a domain-specific language for specifying
MRs, implemented in Python, which instantiates MTCs as
pytest test cases, maximizing reusability and tool support.

« To demonstrate the domain-independent applicability of
our GeMTest framework, we implement 218 MRs for 16
program domains, ranging from trigonometric functions
to deep learning (DL) LiDAR object detectors [17].

o To foster further improvement and the addition of new
features, we make the implementation of GeMTest avail-
able on GitHub https://github.com/tum-i4/gemtest and
permanently archive GeMTest on Figshare [3].

II. RELATED WORK

JFuzz, introduced by Zhu [20] in 2015, is a Java unit testing
framework based on the principles of fuzz testing [[14] and MT.
Compared to GeMTest, JFuzz also enables MRs similar to the
definition in [3]] but does not restrict the implementation of the
tests, which might lead to test cases implemented that are not
necessarily MTCs. MRs in JFuzz are implemented in one single
method, giving the user little structure but high flexibility. In
our framework, the MR definition is split up into three methods,
providing more structure without compensating flexibility.

SMRL, introduced by Mai et al. [13] in 2020, is a domain-
specific framework for MT of web systems, built on top of the
Java testing framework JUnit [7]]. It allows users to specify MRs
in Xbase, which are then translated into Java-based JUnit MTCs.
Similarly, GeMTest is built on the established testing framework
pytest [15], but avoids using additional languages, allowing
MRs to be specified directly in Python, making GeMTest
domain-independent and more accessible to testers.

GOTTEN [1} |6] is a domain-specific MT tool based on a
textual domain-specific language (DSL), called mrDSL, for
specifying MRs. The Java tool uses search-based techniques to
generate follow-up inputs. GOTTEN requires users to create a
meta-model of the domain and understand mrDSL that utilizes
object constraint language. In contrast, GeMTest does not
require a meta-model, making it more straightforward to apply.

Similar to GeMTest, plugins for enhancing the functionality
of pytest exist, such as pytest-inline [10, |11] or hypothesis [12].
We follow this design approach to increase user adoption and
ease integration into existing testing frameworks and workflows.

III. THE GEMTEST FRAMEWORK

Our metamorphic testing (MT) framework GeMTest is a tool
for software testers that automatically generates and executes
MTCs based on user-implemented MRs in Python. GeMTest

is designed as an extension to pytest by providing a Python-
based language for specifying MRs, which correspond to the
definition of MT as given by Chen et al. [3].

Following the basic example from we use three
decorators provided by GeMTest for implementing a meta-
morphic test suite in pytest: (1) a function annotated with the
@transformation decorator is registered as a metamorphic
transformation taking the source input as a function input and
returning the follow-up input. (2) The @relation decorator
registers a function as the metamorphic oracle, returning a
boolean value indicating whether the MTC passed or failed.
(3) The @system_under_test decorator specifies the dec-
orated function as the system under test (SUT). This function
will be executed multiple times with different inputs to generate
the source and follow-up outputs.

The MT workflow with GeMTest is shown in A
test engineer elicits MRs for the SUT’s domain and imple-
ments those MRs in Python using the decorators and methods
provided by GeMTest (see as an example of a MR
specification). By running pytest, this specification is translated
into concrete pytest MTCs which are executed in the pytest
framework. Finally, the tester can see the summarized results
of all tests in the command line or IDE. For a detailed analysis,
test results and the artifacts of each single MTC are stored in
a database and can be visualized by the gemtest-webapp.

A. GeMTest Features

This section briefly summarizes the key features of GeMTest,
our general-purpose metamorphic testing framework.

Support for General MRs: GeMTest supports all types of
MRs as specified by Chen et al. [3] in the most recent and
revised definition of MT. For example, in GeMTest testers
can specify MRs with multiple source and follow-up inputs,
past-execution dependent MRs [19] where the follow-up input
depends on the source output, and MRs where the metamorphic
oracle compares both inputs and outputs of the MTC.

Python-Based MR Definition: To lower the entry barrier
and simplify MR implementation, GeMTest allows MRs to be
written in pure Python. MRs are structured into three Python
functions — transformation, relation, and system under test —
each function annotated with a GeMTest decorator.

Domain Independence: Since MRs are implemented in
Python, any function or class callable from within Python
can be tested with GeMTest. This includes Python functions,
Python packages, command line programs, and DL models.

Pytest Compatibility: GeMTest is built on top of pytest
and generates pytest test cases during execution. This ensures
seamlessly integration into existing workflows for test engineers
already using the pytest framework for software testing.

Test Reporting and Summary: Software testers have three
options for evaluating the test results: First, using the classical
pytest output to get information at the level of individual MTCs
(see [Listing 7). Second, a string-report giving insights into the
execution of a MTC, especially why a MTC failed. Third, a
html-report for showing metrics, such as failure rate grouped
by MR and SUT, filtering of MTCs by test verdict such as

https://github.com/tum-i4/gemtest

Individual Metamorphic Test Cases

Filter by Metamorphic Relation:

Al Al Al
rotation test_image_classifier passed
black_and_white_specific failed

bend_image_vertically skipped

Filter by System under Test: Filter by Outcome:

Filter by Substring:

‘ l
Apply Filter

MTC name

mtc_6 skipped

Outcome MR name SUT name Parameters

test_image_classifier {"angle_in_degrees": 25)
rotation_90deg_counterclockwise test_image_classifier 0

mtc_8 skipped rotation_90deg_counterclockwise

Figure 2: gemtest-webapp based html-report.

test_image_classifier 0
test_image_classifier 0
test_image_classifier {"angle_in_degrees": -89)

test_image_classifier {"angle_in_degrees": -93)

Output

- test_image_classifier — CONSTRUCTION_SITE

<1 flip_sign_horizontal_simple: failed

1 album_horizonflip & it

Al

Figure 3: gemtest-webapp enabled MTC detail view.

- test_image_classifier PEDESTRIAN

Decorators <<dataclass>>
- MetamorphicRelation
+transformation() - 1 mitc tempalies>
+relation() +mr_id: Hashable p

+data: Sequence
+testing_strategy: str

+system_under_test()
+valid_input()
T

' +system_under_test: Dict *
.- creates> _ _ _ | +transform: Callable <<dataclass>>
.) .| *relation: Callable Metamorphic
metamorphic_relations>*| |\ a4 input: List[Callable] TestCase

1 +generate_test_cases()
<<singleton>> +check_valid_input()
Metamorphic +create_source_outputs()

TestSuite +create_followup_outputs()

+source_inputs
+source_outputs
+followup_inputs
+followup_outputs

+add_metamorphic_relation() | | +apply_transformation() +parameters
+fixed_generator() +apply_relation() +relation_result
+randomized_generator() +execute_test_case() +report

Figure 4: UML metamodel of the GeMTest architecture.

passed, failed, or skipped (see [Figure 2)), and detailed analysis
of a single MTCs with custom visualizations (see [Figure 3).

MT of DL Models: GeMTest implements several optimiza-
tions and features improving performance when testing DL
models. For example, GeMTest supports input batching, which
groups multiple source and follow-up inputs into a batch for
faster execution and better hardware utilization. Additionally,
SUTs can be specified via the command line, allowing testers to
evaluate different DL models that share the same architecture.

Extensively Tested: GeMTest contains an extensive test suite
implementing 489 pytest tests in 2,800 LOC. The test suite
extensively tests our framework as it achieves 96% statement
coverage, 95% branch coverage, and a 91% mutation score.

B. GeMTest Implementation

The GeMTest framework is implemented in Python as a
pytest plugin, using a modular architecture designed for further

test_sort_metamorphic.py

1 import gemtest as gmt
2
3mrl = gmt.create_metamorphic_relation (
— "add_element", data=generated_lists,
— number_of_sources=2)
4
5 @gmt .general_transformation (mrl)
6 @gmt . randomized ("s", gmt.RandInt (1, 10))
7 def add_element (mtc: gmt.MetamorphicTestCase,

< s: int):
8 a, b = mtc.source_inputs
9 e = max(a + b) + s
10 return a + b, [e] + a + b

11
12 @gmt .general_relation (mrl)
13 def sorted(mtc: gmt.MetamorphicTestCase) :

14 a, b = mtc.source_inputs
15 c, d = mtc.followup_outputs
16 e = max(a + b) + mtc.parameters['s']
17 return all (

— x ==y for x, y in zip(c + [e], d))
18

19 @gmt .system_under_test ()

20 def test_insertionSort (list) :
21 return insertionSort (list)
22

23 @gmt .system_under_test ()

24 def test_mergeSort (list):

25 return mergeSort (list)

Listing 3: MR specification in GeMTest for testing two sort
functions. The MR has multiple source and follow-up inputs
and accesses multiple MTC artifacts in the oracle.

extension. An overview of the core software architecture is de-
picted in [Figure 4] It consists of Decorators to register user-
defined Python functions for a MetamorphicRelation,
specifically transformation, relation, and system under test.
A MetamorphicRelation object is considered to be a
blueprint for a concrete MetamorphicTestCase object
such that a MetamorphicRelation in GeMTest contains
information such as the input data, or the test strategy specifying
how to collect source inputs from the input data. Currently,
GeMTest supports a sampling strategy which limits the num-
ber of MTCs to a specific value and an exhaustive strategy
where all possible MTCs are generated and run. All regis-
tered MRs and generated MTCs are contained in a singleton
MetamorphicTestSuite object.

IV. METAMORPHIC RELATION EXAMPLE

showcases a MR with two source inputs/outputs
and two follow-up inputs/outputs. The relation accesses source
inputs (Line 14), follow-up outputs (Line 15), and a randomly
sampled parameter s (Line 16) to compute the boolean test
verdict. This MR tests two integer list sorting SUTs (Line 21
and Line 25) the following: the MR receives two randomly
generated source input lists (Line 8), and computes an element
e that is at least one greater than the maximum of both lists
(Line 9). Follow-up input one is the concatenation of both
source input lists (a + b), and follow-up input two is the same
list, but with the large additional element e prepended to the
beginning of this list ([e] +a+b) (Line 10). The relation checks

whether this large element now correctly moved from the
beginning of the list to the end of the list by checking if follow-
up output one +[e] equals follow-up output two (Line 17). This
MT tests whether the sorting algorithms handle edge cases
where an element must be moved completely through the list.

V. TEST RESULT ANALYSIS

For analyzing metamorphic test results, testers can use
standard pytest outputs, such as command-line results or IDE-
integrated reports. For example, executing produces
the output shown in Additionally, GeMTest provides
custom test result analysis via a database export, which can be
visualized using the gemtest-webapp. This detailed logging is
enabled by running pytest with the --html-report flag. As shown
in the gemtest-webapp displays all MTCs from a test
run, allowing test engineers to filter results and open the MTC
detail view for further analysis. For example, shows
the MTC detail view for a MTC that mirrors a traffic sign. This
web-based technology is especially useful if data cannot be
easily visualized on a command line, as it is the case for images.

VI. VALIDATION STUDY

We validated GeMTest’s functionality by implementing 218
MRs across 16 program domains. These exemplary MRs are
publicly available in the gemtest-examples repository. To further
assess GeMTest, we plan to conduct experiments comparing
its performance overhead against a pure pytest-based MR
implementation. Additionally, we aim to study the adoption of
GeMTest by test engineers.

VII. LIMITATIONS AND FUTURE WORK

We identify two main limitations of GeMTest: (1) While
GeMTest can, in theory, test any program callable within Python
— such as Java code executed via the command line or through
tools like py4j — a native integration of MT into Java testing
frameworks like JUnit [7] would be preferable. (2) GeMTest
introduces performance overhead, particularly when testing DL
systems. Reducing this overhead will be a focus of future work.

For future work, we propose implementing an automated
composition of MRs, as suggested by Liu et al. [8]]. This would
increase the number of MRs and potentially uncover previously
unknown defects. Additionally, we plan to integrate existing
pytest-compatible tools, such as mutation testing frameworks,
to compute mutation scores for specific MRs. Finally, we aim to
explore the use of GeMTest as an advanced data augmentation
technique in semi-supervised learning schemes, leveraging MT
to fix defects in DL models.

VIII. CONCLUSION

GeMTest is a framework that automatically generates and
executes general MTCs, as described by Chen et al. [3],
from MRs implemented using Python decorators provided by
GeMTest. Being domain-independent, GeMTest can be used
to test classical as well as DL programs of any kind. Since
GeMTest produces pytest test cases, it integrates seamlessly into
existing pytest infrastructures and workflows. Our framework

helps practitioners formulate MRs by providing an intuitive
structure and implementing MT into their existing test suites.
GeMTest is open-source and can be easily installed via the
Python Package Index (PyPI) https://pypi.org/project/gemtest/.

ACKNOWLEDGMENT

We thank Paul Schwind, Martin Rau, Ting-Yu Lu, Danny
Benlin Oswan, Tathagata Bandyopadhyay, Fabian Schlachter,
Moritz Potzsch, Robin Brase, Alexander Hobmeier, and Mino
Estrella for their help in implementing GeMTest.

REFERENCES

[1] Pablo C. Caifiizares et al. “New ideas: Automated engineering of
metamorphic testing environments for domain-specific languages”. In:
International Conference on Software Language Engineering, SLE.
Chicaco, IL, USA, 2021, pp. 49-54. DOI: 10.1145/3486608.3486904.

[2] Tsong Yueh Chen et al. Metamorphic testing: A new approach for
generating next test cases. Tech. rep. The Hong Kong University of
Science and Technology, 1998, p. 11. DOI: 10.48550/arXiv.2002.12543.

[3] Tsong Yueh Chen et al. “Metamorphic testing: A review of challenges
and opportunities”. In: ACM Computing Surveys 51.1 (2018), pp. 1-27.
DOI: [10.1145/3143561.

[4] Yao Deng et al. “A declarative metamorphic testing framework for
autonomous driving”. In: IEEE Transactions on Software Engineering
14.8 (2022), pp. 1-20. DOI: |10.1109/tse.2022.3206427.

[S]1 GeMTest Archive. 2025. DOL: 10.6084/m9.figshare.28355363|

[6] Pablo Gémez-Abajo et al. “Automated engineering of domain-specific
metamorphic testing environments”. In: Information and Software Tech-
nology 157.107164 (2023), p. 17. poI: |10.1016/j.infsof.2023.107164.

[71 JUnit. [Online; accessed 09.09.2024]. 2024. URL: https://junit.org.

[8] Huai Liu et al. “A new method for constructing metamorphic relations”.
In: International Conference on Quality Software. Xi’an, China: IEEE,
2012, pp. 59-68. poI: |10.1109/QSIC.2012.10.

[9] Yelin Liu et al. “MTKeras: An automated metamorphic testing

platform”. In: International Journal of Software Engineering and

Knowledge Engineering 31.9 (2021), pp. 1235-1249. po1: |10.1142/

S021819402150039X.

Yu Liu et al. “Inline tests”. In: International Conference on Automated

Software Engineering, ASE. Rochester, MI, USA, 2022, p. 13. DOI:

10.1145/3551349.3556952.

Yu Liu et al. “pytest-inline: An inline testing tool for python”. In:

International Conference on Software Engineering, ICSE. Melbourne,

Australia, 2023, pp. 161-164. DoI: 10.1109/ICSE-Companion58688

2023.00046.

David Maclver and Zac Hatfield-Dodds. “Hypothesis: A new approach

to property-based testing”. In: Journal of Open Source Software 4.43

(2019), p. 1891. po1: 10.21105/joss.01891.

Phu X. Mai et al. “SMRL: A metamorphic security testing tool for

web systems”. In: International Conference on Software Engineering,

ICSE. Seoul, Korea, 2020, pp. 9-12. DOI: |10.1145/3377812.3382152.

Valentin J. M. Manes et al. “The art, science, and engineering of

fuzzing: A survey”. In: IEEE Transactions on Software Engineering

47.11 (2021), pp. 2312-2331. po1: |10.1109/TSE.2019.2946563.

pytest. [Online; accessed 10.09.2024]. 2024. URL: https://pytest.org/.

Sergio Segura et al. “A survey on metamorphic testing”. In: IEEE

Transactions on Software Engineering 42.9 (2016), pp. 805-824. DOI:

10.1109/TSE.2016.2532875.

Simon Speth et al. “Safety-critical oracles for metamorphic testing of

deep learning LiDAR point cloud object detectors”. In: IEEE Open

Journal of Intelligent Transportation Systems 6 (2025), pp. 95-108.

DOI: [10.1109/0JITS.2025.3532777.

Elaine J] Weyuker. “On testing non-testable programs”. In: The Com-

puter Journal 25.4 (1982), pp. 465-470. pot: |10.1093/comjnl/25.4.465,

Yingzhuo Yang et al. “Towards effective metamorphic testing by

algorithm stability for linear classification programs”. In: Journal of

Systems and Software 180.111012 (2021), pp. 1-17. DOI: [10.1016/j.Jss

2021.111012!

Hong Zhu. “JFuzz: A tool for automated java unit testing based on

data mutation and metamorphic testing methods”. In: International

Conference on Trustworthy Systems and Their Applications, TSA.

Hualien, Taiwan: IEEE, 2015, pp. 8-15. pot: [10.1109/TSA.2015.13,

[10]

(1]

[12]

[13]

[14]

[15]
[16]

[17]

(18]

[19]

[20]

https://pypi.org/project/gemtest/
https://doi.org/10.1145/3486608.3486904
https://doi.org/10.48550/arXiv.2002.12543
https://doi.org/10.1145/3143561
https://doi.org/10.1109/tse.2022.3206427
https://doi.org/10.6084/m9.figshare.28355363
https://doi.org/10.1016/j.infsof.2023.107164
https://junit.org
https://doi.org/10.1109/QSIC.2012.10
https://doi.org/10.1142/S021819402150039X
https://doi.org/10.1142/S021819402150039X
https://doi.org/10.1145/3551349.3556952
https://doi.org/10.1109/ICSE-Companion58688.2023.00046
https://doi.org/10.1109/ICSE-Companion58688.2023.00046
https://doi.org/10.21105/joss.01891
https://doi.org/10.1145/3377812.3382152
https://doi.org/10.1109/TSE.2019.2946563
https://pytest.org/
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1109/OJITS.2025.3532777
https://doi.org/10.1093/comjnl/25.4.465
https://doi.org/10.1016/j.jss.2021.111012
https://doi.org/10.1016/j.jss.2021.111012
https://doi.org/10.1109/TSA.2015.13

	Introduction
	Related Work
	The GeMTest Framework
	GeMTest Features
	GeMTest Implementation

	Metamorphic Relation Example
	Test Result Analysis
	Validation Study
	Limitations and Future Work
	Conclusion

