
SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Designing Quantum Optimization
Algorithms using Random Key

Optimization

Alexander Treml

SCHOOL OF COMPUTATION,
INFORMATION AND TECHNOLOGY —

INFORMATICS
TECHNICAL UNIVERSITY OF MUNICH

Master’s Thesis in Informatics

Designing Quantum Optimization
Algorithms using Random Key

Optimization

Entwurf von
Quantenoptimierungsalgorithmen mithilfe

von Random Key Optimization

Author: Alexander Treml
Examiner: Prof. Dr. Christian Mendl
Supervisor: Jernej Rudi Finzgar
Submission Date: 30.03.2025

I confirm that this master’s thesis is my own work and I have documented all sources
and material used.

Munich, 30.03.2025 Alexander Treml

Acknowledgments

I thank Martin Schütz for helpful discussion, and Felix Huber for providing technical
support, while he himself was in the middle of writing his thesis.

Abstract

We investigate the efficacy of the random key optimization (RKO) framework presented
by Chaves et al. [14] and the applicability of the RKO paradigm in general in areas
related to quantum optimization algorithms. We show that the RKO framework is
applicable to the task of optimizing the parameters of the Quantum Approximate
Optimization Algorithm (QAOA). We also propose a method for using RKO to learn
new ansatz structures. We find that the algorithm learns to prefer some ansatz structures
over others, but do not observe any performance improvements. We also propose an
RKO inspired method for approximately solving the traveling salesman problem (TSP)
using a variational quantum algorithm, which only uses linearly many qubits or less
but does not produce competitive results.

iv

Contents

Acknowledgments iii

Abstract iv

1. Introduction 1

2. Background 3
2.1. Combinatorial Optimization and Metaheuristics 3
2.2. MaxCut and Ising Models . 3
2.3. The Traveling Salesman Problem . 5
2.4. Random Key Optimization . 6
2.5. Variational Quantum Algorithms . 9
2.6. The Quantum Approximate Optimization Algorithm 11

3. RKO for QAOA-Training 13
3.1. Choice of Optimizers and Configuration 13
3.2. Cost Function and Performance Metrics 14
3.3. Hyperparameter Optimization . 14
3.4. Statistical Tests . 15
3.5. Problem Instances . 16
3.6. Parameter Decoder . 16
3.7. Results . 16
3.8. Discussion . 23

4. RKO for Operator Selection 25
4.1. Structure Decoder . 25
4.2. Counterdiabatic Driving . 25
4.3. Phantom Edges . 26
4.4. Results . 27
4.5. Discussion . 31

5. RKO for Non-Native Poblems 33
5.1. Polynomial Compression . 33

v

Contents

5.2. Permutation Decoder . 34
5.3. Variational Ansatz . 35
5.4. Experimental Setup . 36
5.5. Results . 36
5.6. Discussion . 40

6. Conclusions 41

A. Hyperparameters 42

B. TSP instances 46

Abbreviations 47

List of Figures 49

List of Tables 51

Bibliography 52

vi

1. Introduction

Combinatorial optimization problems (COPs) are ubiquitous in science and industry.
Among others, they have applications in finance [55], robot motion planning [58], and
molecular biology [40]. Since many COPs are NP-complete, a large variety of practically
relevant problems can be reduced to general and well-studied problems. However, this
also means that under the assumption P ̸= NP, no efficient classical solvers exist for
such problems. Consequently, there are ongoing efforts to find new ways to tackle
specific types of COPs.

The random key optimization (RKO) paradigm is a paradigm for the design and
application of metaheuristics for solving COPs [58]. It is inspired by the Random
Key Genetic Algorithm (RKGA) introduced by Bean in 1994 [5]. Its basic premise is
to run the optimization process over positions of an n-dimensional unit hypercube,
using a decoder to map these positions to solutions to a given optimization problem.
Restricting the search space to this hypercube simplifies the implementation of general
metaheuristics, as well as the introduction of problem-specific strategies in the decoder.
The common solution space also allows different metaheuristics to cooperate during the
optimization process [14]. In this thesis, we apply the RKO paradigm, and in particular
the RKO framework developed by Chaves et al. [14], to problems related to variational
quantum algorithms (VQAs).

VQAs are a class of flexible hybrid classical-quantum algorithms. VQAs are re-
silient against hardware noise [43, 44], which means they can perform well on noisy
intermediate-scale quantum (NISQ) devices [53]. This makes them a promising class of
algorithms for near-term practical applications of quantum computing. VQAs utilize
a classical optimization routine to optimize the parameters of a quantum circuit in
order to create a quantum state with certain properties, depending on the task at hand
[11]. For example, a VQA can be used to find the ground state of a given Hamiltonian
[53], which is an important problem in quantum chemistry. This technique can also be
applied to combinatorial optimization. By encoding the cost function of the COP in
a Hamiltonian, the problem of finding the ground state of said Hamiltonian becomes
equivalent to solving the COP. This is the approach taken by Farhi et al. [19] when
they introduced the Quantum Approximate Optimization Algorithm (QAOA). Since

1

1. Introduction

its introduction, much research has been published on QAOA, covering its theoretical
properties, performance in practical scenarios, and issues that limit its current real-
izations. In this thesis, we want to add to this body of research by investigating the
application of the RKO paradigm in the context of QAOA and related areas.

The remainder of the thesis is structured as follows: In Section 2, we provide the
necessary background on the topics of combinatorial optimization, RKO, and VQAs. In
Section 3, we apply the RKO framework to the task of QAOA parameter optimization
for solving the MaxCut problem. In Section 4, we propose a modification of the QAOA
that optimizes the ansatz structure in addition to the variational parameters. In Section
5, we then apply the RKO paradigm to solve the traveling salesman problem (TSP)
using a VQA before concluding with Section 6.

2

2. Background

2.1. Combinatorial Optimization and Metaheuristics

A COP (S, C) is a mathematical problem characterized by a cost function C : S → R

over a finite set S, also referred to as the solution space. The goal is to find the optimal
solution smin ∈ S

smin = arg min
s∈S

C(s) (2.1)

Note here that we always formulate optimization problems in terms of minimization.
A maximization problem can be converted to a minimization problem by inverting
the sign of C. This problem class contains many NP-complete problems, such as the
TSP (Section 2.3) or MaxCut (Section 2.2) [25], which are of practical and academic
interest [58, 15]. Since all problems in NP can be reduced to any NP-complete problem
in polynomial time, a solver for any NP-complete problem represents a universal solver
for all problems in NP. However, no polynomial runtime solver is known for any
NP-complete problem.

Despite this, state-of-the-art optimization suites like Gurobi [28], or CPLEX [32]
employ heuristics to allow solving industry scale problems within acceptable runtimes
[14]. Alternatively, one can use problem-specific approximation algorithms, which offer
faster results but do not guarantee that the optimal solution is found. The strategies
most relevant to this thesis are so-called metaheuristics. The definition of the term
metaheuristic has shifted over time, but it generally describes a problem-independent
search strategy, which balances global and local search to efficiently explore complex
solution spaces [46]. Examples of metaheuristics are genetic algorithms [31], where
good solutions "evolve" using mechanisms akin to biological evolution, or Particle
Swarm Optimization (PSO) [33], which models the self-organizing behavior of swarms
to navigate the solution space.

2.2. MaxCut and Ising Models

The MaxCut problem is a common COP in research on quantum optimization [68, 4],
and is also used for the experiments in Section 3 and Section 4. Given a weighted

3

2. Background

undirected graph G = (V, E) with n vertices with edge weights wij, the solution space
SMC is the set of all partitions of the vertices V into two subsets. The goal is to maximize
the sum of edges between the two subsets. These partitions can be represented by
assigning a number si ∈ {−1, 1} to each vertex i. The cost function can then be
formulated as a function over assignments s = (s1, . . . , sn) [2].

CMC(s) = − ∑
(i,j)∈E

wij

2
(1 − sisj) (2.2)

Note the sign of the sum, which is used to translate MaxCut into a minimization
problem. If si = sj, the corresponding term does not contribute to the sum. If si ̸= sj,
the term contributes exactly wij. This way of expressing the cost function constitutes a
classical Ising model.

Ising models are a key concept in solving COPs on quantum devices. A classical
Ising model is a quadratic function defined over vectors of n spins s ∈ {−1, 1}n, with
couplings Jij and local fields hi [42]

H(s) = −∑
i<j

Jijsisj −
n

∑
i=1

hisi (2.3)

With hi = 0 and Jij = wij/2, we see that Equation 2.2 is indeed an example of an Ising
model. The optimization problem associated with an Ising model asks us to minimize
H. This problem is NP-hard [3]. In fact, since MaxCut is NP-complete, the polynomial
reduction presented by Equation 2.2 already proves this. This means that Ising models
can be used to represent any problem in NP, with only polynomial overhead in the
number of variables.

By replacing every spin si of the classical Ising model with the Pauli-Z operator
acting on the i-th qubit σz

i , we can construct a quantum Hamiltonian HC, which encodes
the cost function of the original problem in its eigendecomposition. The eigenvalues
are the possible values of the cost function, and the associated eigenvectors are the
corresponding solutions. Due to the physical interpretations of the eigenvalues, they
are also referred to as the energy levels of HC. The solution is then the lowest energy
eigenstate, the ground state of HC. For our MaxCut example, HC would be defined as
follows [68]

HC = − ∑
(i,j)∈E

wij

2
(1 − σz

i σz
j) (2.4)

Consequently, Ising models allow us to translate classical problems to quantum systems.
Solving the original COP becomes equivalent to finding the ground state smin of the

4

2. Background

Hamiltonian HC. Because of this, we will also refer to HC as the problem Hamiltonian.

Ising models are closely related to quadratic unconstrained binary optimization
(QUBO) [42], sometimes also called unconstrained binary quadratic programming
(UQBP) [36]. QUBO problems are defined over binary strings x ∈ {0, 1}n instead of
spins. However, by substituting every binary variable xi with a spin si = 2xi − 1, the
two definitions can be shown to be equivalent [42, 22].

2.3. The Traveling Salesman Problem

The traveling salesman problem (TSP) is another important NP-complete COP, which
we will use in Section 5 to showcase an alternative method for solving COPs on
quantum hardware, that does not involve Ising models. Informally, the goal of the TSP
is to find the shortest route between a set of cities that visits every city exactly once and
returns to the starting point. Formally, given a weighted complete graph G = (V, E)
with n vertices and positive edge weights wij, the goal is to find the Hamiltonian cycle
with the lowest sum of edge weights. Therefore, the set of feasible solutions is the set
of all permutations of V, and the cost function is the sum of all edge weights along the
cycle described by the permutation. As noted above, every NP-complete problem can
be formulated as an Ising model. Lucas [42] proposes the following reduction, starting
with the QUBO formulation of the Hamiltonian cycle problem HA

HA(x) = A
n

∑
v=1

(1 −
n

∑
j=1

xv,j)
2 + A

n

∑
j=1

(1 −
n

∑
v=1

xv,j)
2 (2.5)

where the vertices V are numbered 1, . . . , N, and A > 0 is a constant. If xv,j = 1, this
indicates that vertex v is visited at position j in the route. The first term of HA is zero
if and only if every vertex is visited exactly once, and positive otherwise. The second
term is zero if and only if exactly one vertex is visited for each position j. Consequently,
HA is zero if the assignment x represents a valid Hamiltonian cycle. Otherwise, it
represents a penalty term scaled by A. By adding a term HB, which represents the
length of the route, we obtain a QUBO formulation of the TSP [42].

HB = B ∑
(u,v)∈E

wuv

n

∑
j=1

xu,jxv,j+1 (2.6)

HC = HA + HB (2.7)

Here, the constant B must be chosen so that 0 < B · max(wuv) < A, which ensures
that the optimal solution does not violate any constraints [42]. The QUBO problem

5

2. Background

can then be transformed into an Ising model with the substitution given above. This
formulation uses n2 spins, which can be reduced to (n − 1)2 by fixing the starting
point [42]. However, even for moderately sized instances, this surpasses the limits of
NISQ-devices. For example, the IBM Heron processor with 133 qubits [45] could only
handle instances with up to twelve vertices. In Section 5, we propose a method for
approximately solving the TSP using n qubits or less, inspired by the RKO paradigm.

2.4. Random Key Optimization

The RKO paradigm is a paradigm for the design of metaheuristics. It prescribes that
the metaheuristic operates on an n-dimensional unit hypercube as a search space. The
user needs to supply a problem-specific decoder that maps the unit hypercube to the
solution space of the problem. Formally, for a COP (S, C), a decoder is a function
fD : H → S with

H = {(χ1, . . . , χn) ∈ Rn|∀i ∈ [n] : χi ∈ [0, 1)} (2.8)

We refer to χ ∈ H as a key vector and to an element χi as a random key, or simply key.
Figure 2.1 illustrates this idea. The paradigm was initially introduced by Bean [5] as a
mechanism to ensure solution feasibility in the context of genetic algorithms. Especially
when the solution space of a COP involves permutations of elements, e.g. in the case
of the TSP, it is difficult to define crossover operators that preserve solution feasibility.
In contrast, it is trivial to define operators that recombine random key vectors into
other valid random key vectors. Hence, Bean proposes to perform all evolutionary
operations on the random key vectors and employ a decoder to recover a valid permu-
tation. In the case of the TSP, the decoder returns the permutation induced by sorting
the random keys inside a given vector. Since every vector can be sorted, and sorting
provides a valid permutation, all elements of H correspond to feasible solutions. This
use of the vector elements as sorting keys is the origin of the terminology "random keys".

The RKO framework developed by Chaves et al.[14] is a hybrid metaheuristic. It lever-
ages the common search space of the RKO paradigm to allow multiple metaheuristics to
cooperate on a given problem. We will provide an overview of its core functionality and
the features that are relevant to our use case. A more in-depth description is provided
in the original report [14], which also links to the code repository. Note that we describe
the framework as it was modified for the purposes of this thesis. These modifications
are discussed in Section 3.1. The framework conducts a search by running multiple
metaheuristics in parallel. The best solutions at each point in time are aggregated in
a global solution pool that is shared between metaheuristics. The metaheuristics are

6

2. Background

H fD S

Figure 2.1.: Illustration of the RKO paradigm, adapted from Schütz et al. [58]. The
decoder fD maps a simple point inside the hypercube to a possibly complex
solution space.

supplemented by local search algorithms that are used to refine promising solutions
in the solution pool or are invoked by the metaheuristics internally. The framework
implements the following metaheuristics:

BRKGA The Biased Random Key Genetic Algorithm (BRKGA) [26] is a variant of the
RKGA. In each generation, the best pe individuals are preserved as the "elite". The
non-elite individuals are discarded. The now open positions in the population
are filled in part with pm mutants, which are fully random key vectors. The
remaining positions are filled by performing parameterized uniform crossover
[17] between parents randomly chosen from the previous generation with the
inheritance bias ρ. The BRKGA only deviates from the RKGA in the selection of
parents for crossover. Here, the first parent is always an elite individual, while
the second parent is a non-elite individual.

BRKGA-CS A variant of BRKGA that uses clustering search (CS) to intensify the
exploration of promising regions [51].

Simulated Annealing During Simulated Annealing (SA) [35], an initial solution is
repeatedly perturbed. If the perturbed solution is better than the previous
solution, it is accepted and serves as a new starting point. If it is worse, it may still
be accepted depending on the current "temperature". The algorithm starts at a
high temperature T0, where worse solutions are often accepted. After every SAmax

iterations, the temperature decreases over time with a cooling rate α, reducing the
likelihood of accepting worse solutions. In the RKO framework, the perturbations
consist of a series of swapping, mirroring, and randomization operations on the
random keys, referred to as "shaking". The intensity of the shaking is controlled
by the parameters βmin and βmax.

GRASP The framework implements a Greedy Randomized Adaptive Search Procedure
(GRASP) [21] adapted for RKO. First, a list of candidates is generated using line

7

2. Background

searches centered on an initial solution. The grid density for these line searches
is determined by an internal value h. Then a random candidate is selected to
contribute a key for updating the initial solution, which is then fixed. A value α

controls the cost range in which candidates are considered, similar to SA. This is
repeated until all keys are fixed. The algorithm then tries to improve the solution
using local search strategies. The procedure is repeated with decreasing values of
h, starting at hs, until it reaches he.

ILS Iterated Local Search (ILS) [41] iteratively perturbs a solution using the shaking
method, and then applies local search. The idea is to converge to a local minimum
and subsequently escape it in order to find a better solution. The intensity of the
shaking is again controlled by the parameters βmin and βmax.

VNS Variable Neighborhood Search (VNS) [47] also alternates perturbation and local
search. In contrast to ILS, it increases the strength of the perturbation with
each iteration without improvement. In other words, it increases the size of the
neighborhood that is considered during the perturbation step. The intensity of
the shaking, meaning the size of the neighborhoods is determined by βmin.

PSO PSO [33] is a metaheuristic inspired by swarms of animals. A population of p
particles is placed in the search space. In each step, all particles update their
velocity based on their individual best known solution, and the globally best
known solution of all particles. They then move according to their new velocity.
The velocity update is controlled by the particle weight w, and the coefficients c1

and c2 which control the contribution of local and global information respectively.

SGA A standard genetic algorithm [31] adapted to RKO using tournament selection
with population size p. During crossover, parents exchange individual keys with
a probability pc. Random mutations are also applied to the keys during crossover
with probability µ.

LNS Large Neighborhood Search (LNS) [57] works by destroying an existing solution
and subsequently repairing it. In the case of the RKO framework, this means
removing a number of keys and replacing them with keys found through greedy
iterated line searches. The algorithm takes the parameters βmin and βmax, which
control how many keys are removed, and T0 and α which determine the chance
of a solution being accepted, similar to SA

8

2. Background

The local search procedure implemented in the RKO framework is Random Variable
Neighborhood Descent (RVND) [52]. The procedure explores multiple predefined
neighborhood structures in random order. The available structures are "swap", where
keys are swapped inside a vector, "invert", where a key χi is replaced by 1 − χi, and
Nelder-Mead, which generates candidates based on a modified version of the Nelder-
Mead minimization algorithm [49]. It is noteworthy that none of these neighborhoods
is defined using the Euclidean or any other geometric distance of key vectors. In fact,
apart from PSO, no metaheuristic applies continuous changes to the key vectors. No-
tions of distance in the framework rather resemble edit distances, with "swap", "replace"
and "mirror" as possible edits. This highlights that the framework was developed with
combinatorial optimization in mind, which is discrete in nature.

A full run of the RKO framework runs all nine metaheuristics in parallel. In our
experiments, we will refer to this setup simply as "RKO". Alternatively, one can run
nine instances of the same method in parallel. This can be used to determine, whether
the diversity of heuristics contributes to the performance of the framework, or if a
single method dominates for a given problem. We will refer to these setups as "RKO-X",
where "X" is the respective metaheuristic.

2.5. Variational Quantum Algorithms

We will now give a general overview of VQAs. A more extensive review of VQAs
and related research is provided by Cerezo et al. [11]. A VQA mainly consists of
three components, namely a circuit ansatz, a classical optimization routine, and a cost
function. The goal of the algorithm is to prepare a quantum state that is related to the
solution of a given problem. For example, in the context of combinatorial optimization,
a standard basis measurement on the output state would ideally yield a binary string
that solves the COP.

The circuit ansatz describes the quantum operations that are used to prepare the
output state. More precisely, it provides a unitary U(θ), parameterized by the vector θ

of angle parameters θ1, · · · , θn. We define the output state |ψ(θ)⟩ for some input state
|ψ0⟩:

|ψ(θ)⟩ = U(θ) |ψ0⟩ (2.9)

The cost function fC(θ) provides a metric for the quality of |ψ(θ)⟩. For example, a
natural choice for combinatorial optimization is the expectation value of the problem

9

2. Background

Hamiltonian HC introduced in Section 2.1. The value of fC(θ) then corresponds to the
expectation value of the cost function E(C(s)), if s is the result of a standard basis
measurement on |ψ(θ)⟩. It follows that measurements will tend to yield better solutions
s if fC(θ) is low.

fC(θ) = ⟨ψ(θ)| HC |ψ(θ)⟩ = E(C(s)) (2.10)

Other choices for fC are possible. Barkoutsos et al. [4] argue that the expectation
value does not accurately reflect the quality of a solution in a practical setting. When
applying a VQA to optimization, only the best result out of multiple measurements
is relevant. Suppose there are two sets of parameters θA and θB that produce equal
expectation values

⟨ψ(θA)| HC |ψ(θA)⟩ = ⟨ψ(θB)| HC |ψ(θB)⟩ = 0.5 (2.11)

Measurements on |ψ(θA)⟩ always yield a solution with cost 0.5, while measurements on
|ψ(θB)⟩ yield solutions with cost 0 or 1 with equal probability. Clearly, θB is preferred
in practice, since with only a few repeated measurements, it will yield a better solution
than θA. To account for this, they recommend the conditional value-at-risk (CVaR) cost
function defined as

CVaRα(X) =
1

⌈αk⌉

⌈αk⌉

∑
i=0

Xi (2.12)

where X = (X0, . . . , Xk) is a vector of samples sorted in ascending order. Essentially,
CVaRα(X) is the average over the best ⌈αk⌉ samples. This would cause the optimizer
to prefer θB over θA. Because of this advantage, we will use the CVaR cost function for
the experiments in Sections 3 and 4.

Finally, the goal of the classical optimization routine is to select the optimal parame-
ters θmin

θmin = arg min
θ

fC(θ) (2.13)

A good choice of classical optimizer is an active area of research. For many common
cost functions, the gradient can be accessed using so-called parameter-shift rules [59],
or estimated using finite difference methods. This enables the use of gradient-based
optimizers such as Adam [34, 27] or Simultaneous Perturbation Stochastic Approxima-
tion (SPSA) [61, 62]. However, the cost landscapes of VQAs typically contain many local
minima, which can trap gradient-based methods. Barren plateaus are also a common
feature of these landscapes [39, 65], where the gradient vanishes exponentially with the
size of the system. This reduces the trainability of the ansatz when using gradient-based
methods [39]. For these reasons, derivative-free methods like Constrained Optimization
By Linear Approximation (COBYLA) [54, 4] or metaheuristics like PSO [37] have also

10

2. Background

seen application in VQAs. In Section 3 we evaluate the efficacy of the RKO framework
for this task.

2.6. The Quantum Approximate Optimization Algorithm

The QAOA is a concrete instance of a VQA designed for approximately solving COPs
[19]. For the QAOA, the initial state is set to equal-superposition state |+⟩⊗n where
n is the number of qubits. The circuit ansatz of the QAOA then alternately applies
the problem Hamiltonian HC and a mixer Hamiltonian HB across p layers. The
corresponding operators are the unitary time evolution operators UH(t) = e−itH for a
time t and a Hamiltonian H. For QAOA, these operators are parameterized with the
angle parameters γ and β respectively. The final state |ψ(θ)⟩ is then given by

|ψ(θ)⟩ = UHB(βp)UHC(γp) · · ·UHB(β1)UHC(γ1) |+⟩⊗n (2.14)

where θ = (γ1, β1, · · · , γp, βp) and the mixer Hamiltonian defined as

HB =
n

∑
j=1

σx
j (2.15)

where σx
j is the Pauli-X gate acting on the j-th qubit. The cost function is simply

the expectation value of HC, as described above. For fixed p, Farhi et al. provide an
analytical method for determining the optimal θmin, which has polynomial runtime
for problems defined over graphs of bounded degree [19]. This method leans on the
fact that for fixed p, the state of each qubit in the output state can only depend on a
certain subset of qubits [19]. Taking the MaxCut example, in each layer, information
can only be exchanged between qubits that share an edge in the underlying graph, via
their connection through a quadratic term in HC. Consequently, after p layers, each
qubit can only "see" qubits that are within p edges. This property is referred to as
"locality" and while it enables efficient parameter selection for low p, it can be shown
to limit the performance of the QAOA [9, 18]. In practice, one typically uses numerical
optimization techniques as for other VQAs, since the complexity of this method grows
exponentially with p [68].

Finally, it is worth noting that the QAOA is closely connected to the Quantum
Adiabatic Algorithm (QAA), introduced by Farhi et al. [20]. The adiabatic theorem
[8] states that a quantum system in an instantaneous eigenstate of a time-dependent
Hamiltonian H(t) will stay in that eigenstate if the Hamiltonian changes sufficiently
slowly, and the energy gap between the current state and any other state never closes.

11

2. Background

|+⟩

|+⟩

...

|+⟩

· · ·

· · ·

...

· · ·

...

θ = (γ1, β1, . . . , γp, βp)

UHC (γ1) UHB(β1) UHC (γp) UHB(βp)

O
ptim

izer

Figure 2.2.: QAOA schematic adapted from Zhou et al.[68]

In particular, if the system starts in the ground state of a Hamiltonian HB, which is
slowly transformed into a different Hamiltonian HC while maintaining a sufficient
energy gap to the first excited state, then the system will end in the ground state of HC.
This is the principle employed by the QAA to solve COPs. HB is chosen such that its
ground state is easily determined, e.g., as for the QAOA with the ground state |+⟩⊗n.
HC is used to encode the solution as above, e.g., using an Ising model. The QAA can
then obtain the solution by applying the time-dependent Hamiltonian H(t)

H(t) = (1 − t
T
)HB +

t
T

HC (2.16)

where T is the overall evolution time. Note that at H(0) = HB and H(T) = HC. To
ensure that the adiabatic theorem is applicable, T must be large enough. Otherwise, the
system might transition into a higher energy state. In general, T ∝ 1

∆2 , where ∆ is the
minimum energy gap [20], i.e., the energy difference between the first excited state and
the ground state. For a fixed point in time t′ and τ = t′

T , the unitary UH(t′) = e−1H(t′)

can be expressed using the Suzuki-Trotter decomposition [63] as

UH(t′) = e−1H(t′) = lim
n→∞

(e−i(1−τ)/nHB e−iτ/nHC) (2.17)

For n = 1, this corresponds to one layer of the QAOA ansatz with the angle parameters
β = (1− τ) and γ = τ. Therefore, the QAOA can be seen as a trotterized approximation
of the QAA [19].

12

3. RKO for QAOA-Training

In this section, we assess the performance of the RKO framework as a classical optimizer
for training QAOA parameters. Additionally, these results will serve as a baseline to see
if the modifications in Section 4 can improve performance. The task is to optimize the
QAOA parameters for 100 problem instances for p = 3 and p = 6. Before presenting our
results, we outline the general methodology that serves as the basis for this experiment,
and the followup experiment in Section 4.

3.1. Choice of Optimizers and Configuration

The focus of these experiments is the performance of the RKO framework as a whole.
Additionally, we compare the performance of the individual metaheuristics employed
by the RKO framework, similar to the analysis by Chaves et al. [14]. To establish a
baseline, we use COBYLA and SPSA, which are other popular optimizers for VQA
tasks [4, 12, 23, 62]. We use the COBYLA implementation provided by the SciPy library
[64] and the SPSA implementation provided by the Pennylane library. Finally, we
also compare the results to pure random sampling, which we refer to as "RAND".
This should establish whether the optimizers are principally able to navigate the cost
landscape.

We adjusted the RKO framework to be better suited for our experiments. Firstly,
since our analysis focuses on the number of cost function evaluations instead of wall
clock time as a performance measure, we replaced the time-based stopping criterion
of the framework with a budget of decoder calls. To minimize the impact of thread
scheduling, we distribute the budget equally over all metaheuristics running in parallel.
The budget is set to 9000 decoder calls for all experiments, 1000 calls for each thread.
Because this number of decoder calls is relatively low, we also disabled the "FareyLS"
local search procedure of the framework. This method was used to conduct an extensive
search to improve the pool of initial solutions but would use up a large part of the
evaluation budget in the process.

Since the RKO framework, as a metaheuristic, is fundamentally different from
COBYLA and SPSA, setting up a meaningful comparison is non-trivial. By running

13

3. RKO for QAOA-Training

multiple routines in parallel, the RKO framework has an inherent mechanism for
diversifying starting conditions. In contrast, the performance of a single COBYLA or
SPSA run could be impacted by an unfavorable starting point. A solution would be to
also distribute the budget of 9000 calls over nine restarts of the optimizer. However, in
our initial experiments, both COBYLA and SPSA would converge well before using 1000
calls. This would then cause these methods to underutilize their resources and skew
the results towards the RKO framework. Instead, we opted to implement restarting
mechanisms that allow both optimizers to use the full budget effectively. For COBYLA,
a restart is triggered when the trust region shrinks below the size specified by the
hyperparameter tol. SPSA restarts when no improvement has been achieved for a
number of iterations, controlled by the patience hyperparameter.

3.2. Cost Function and Performance Metrics

We use the CVaR cost function for our experiments, as described in Section 2.5. We
set α = 0.25 as recommended by Barkoutsos et al. [4]. We compute the cost function
from the samples produced by k = 10000 shots of the circuit. This also introduces a
stochastic element, which is inherent to quantum measurements. Accounting for this is
important for the comparison of optimizers for VQAs in a realistic setting [62].

To assess the final quality of the optimization results, CVaR is unsuitable because it is
only indirectly related to quantities of interest. Since all our experiments are conducted
using simulated devices provided by the Pennylane Python library [6], we have direct
access to the probability of measuring the optimum popt, which we can use as a metric
of solution quality. This is also in line with the approach by Barkoutsos et al. [4],
offering some comparability. We also compare the number of solved instances for each
method. In a practical setting, a problem instance is solved if the optimal solution is
measured at any point. However, since our test instances are small and the shot counts
large, even uniform random sampling could reliably produce the optimal solution at
least once. Therefore, for the purposes of this experiment, we consider an instance
"solved" if popt exceeds 0.1.

3.3. Hyperparameter Optimization

All optimizers in our experiments have hyperparameters that can heavily impact their
performance. For a fair comparison, it is therefore crucial to select the right sets of
hyperparameters [62]. We choose the best set of parameters out of 40 trials. A trial
consists of multiple optimization runs on different problem instances, with a budget

14

3. RKO for QAOA-Training

of 1000 decoder calls. The average probability of measuring the optimum over all
instances is returned. Instances used for hyperparameter optimization are not used
for subsequent evaluation. The sets of parameters are sampled using the TPE sampler
provided by the Optuna framework [1] with default settings. For the RKO framework,
hyperparameter optimization is performed separately for each metaheuristic without
running multiple instances in parallel. The hyperparameters chosen for each individual
metaheuristic are then combined to obtain the full parameterization of the framework.
Hyperparameter optimization was performed on five instances of size n = 8 for each
value of p separately. Table A.1 in Appendix A contains the chosen parameters.

3.4. Statistical Tests

For comparing the set of methods, we use a Friedman test [24] followed by a Nemenyi
test [50] for post-hoc analysis, analogous to the analysis in the original publication
on the RKO framework [14]. These tests are available in the SciPy library [64]. The
Friedman test is a non-parametric test for comparing multiple sets of dependent
samples. As such, it does not depend on normally distributed samples. It rejects the
null hypothesis H0 if there are statistically significant performance differences within
the set of tested methods. In the context of comparing k algorithmic methods on n
problem instances, the test involves the following steps [24]:

1. Arrange the test results in a table, with the columns corresponding to the tested
methods and rows corresponding to the problem instances.

2. In each row, rank the results from 1 to k.

3. Compute the mean rank rj of all columns j. Under the assumption of H0, the
mean rank should be similar between the columns. A significant deviation would
indicate that one method performs better/worse than the others.

4. Compute χ2
r according to Equation 3.1. If H0 holds, and k and n are sufficiently

large, this value would be sampled from the χ2
k distribution. Thus the correspond-

ing percentile provides a measure of significance.

χ2
r =

12n
p(p + 1)

p

∑
j=1

(rj −
1
2
(p + 1))2 (3.1)

We then use the Nemenyi test for pairwise analysis of the methods, which tests if the
difference between the mean ranks of two methods falls outside a confidence interval,
depending on the significance level α [50]. We set α = 0.05 for both tests.

15

3. RKO for QAOA-Training

3.5. Problem Instances

As problem instances, we generate random weighted three-regular graphs (w3Rs) with
edge-weights chosen uniformly from the interval [0, 1). Only connected instances are
considered. This type of graph is commonly used for benchmarking QAOA [4, 68],
and thus provides some comparability. We use graphs with 8, 10, 12, and 14 nodes, for
which the optimal solutions were calculated using the SCIP optimization suite [7]. The
test set consists of 25 instances of each size, 100 instances in total.

3.6. Parameter Decoder

Finally, the decoder for this problem simply multiplies the key vector by 2π to retrieve
the angle parameters θ. This restricts each θi to the range [0, 1). However, according
to Zhou et al. [68], the optimal QAOA parameters for w3Rs of our specification tend
to lie roughly between 0.05π and 0.75π. Therefore, the restricted parameter space
should not limit the optimizers. For p = 3 and p = 6, the ansatz has six and twelve
free parameters, respectively, requiring key vectors of length nk = 6 and nk = 12.

3.7. Results

We begin with the results for p = 3. The Friedman test rejects the null hypothesis with
p = 1.47e − 188. Figure 3.1 shows the result of the Nemenyi test. The significance plot
shows that most pairs of methods are distinguishable from each other. Some RKO
methods show no significant differences between each other, but no clear pattern is
visible. Surprisingly RKO-SA and SPSA can not be distinguished from RAND. To
qualitatively assess the differences, the probability of measuring the optimum solution
popt aggregated over instances of size n = 14 for each algorithm is plotted in Figure 3.2.
Here, two groups emerge. RAND, RKO-SA, and SPSA perform similarly, and clearly
worse than all other methods. The remaining methods perform roughly equally well,
with COBYLA performing worse on average, but reaching the same maximum value as
most RKO methods.

On the left-hand side of Figure 3.3, the difficulty of the instances in the test set is
visualized, by plotting the average popt achieved by all algorithms, with error bars
marking the minimum and maximum values observed. The instances are separated
by problem size, and sorted by decreasing popt, indicating increasing difficulty. This
shows that the difficulty distribution of the test set is not strictly clustered around the
problem sizes but instead is spread evenly. Significant overlap exists between different

16

3. RKO for QAOA-Training

CO
BY

LA
RA

ND RK
O

RK
O-

BR
KG

A
RK

O-
BR

KG
A-

CS
RK

O-
GR

AS
P

RK
O-

IL
S

RK
O-

LN
S

RK
O-

PS
O

RK
O-

SA
RK

O-
SG

A
RK

O-
VN

S
SP

SA

COBYLA
RAND

RKO
RKO-BRKGA

RKO-BRKGA-CS
RKO-GRASP

RKO-ILS
RKO-LNS
RKO-PSO

RKO-SA
RKO-SGA
RKO-VNS

SPSA

p < 0.001

p < 0.01

p < 0.05

NS

p = 3

Figure 3.1.: The results of the Nemenyi test for QAOA parameter optimization (p = 3).
Most pairs of methods can be distinguished. RAND, RKO-SA, and SPSA
show no significant differences between each other.

17

3. RKO for QAOA-Training

CO
BY

LA

RA
ND RK

O

RK
O-

BR
KG

A

RK
O-

BR
KG

A-
CS

RK
O-

GR
AS

P

RK
O-

IL
S

RK
O-

LN
S

RK
O-

PS
O

RK
O-

SA

RK
O-

SG
A

RK
O-

VN
S

SP
SA

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

p o
pt

p = 3; n = 14

Figure 3.2.: Probability of measuring the optimum solution popt for each method, ag-
gregated over problem instances of size n = 14 (p = 3). The boxes indicate
the interquartile range. The whiskers cover the whole range of observed
values. The orange line indicates the median.

18

3. RKO for QAOA-Training

instances (ascending difficulty)

10 2

10 1

100

m
ea

n
p o

pt

n = 8
n = 10
n = 12
n = 14
0.05

102 103 104

#decoder evaluations

0

20

40

60

80

100

#s
ol

ve
d

in
st

an
ce

s

COBYLA
RAND
RKO
RKO-BRKGA
RKO-BRKGA-CS
RKO-GRASP
RKO-ILS

RKO-LNS
RKO-PSO
RKO-SA
RKO-SGA
RKO-VNS
SPSA

Figure 3.3.: On the left, mean value of popt per test instance. Instances are sorted by
ascending difficulty (decreasing popt) within each problem size. Error bars
indicate maximum and minimum values. Horizontal positions are offset
for readability and have no further meaning. On the right, the number
of solved instances (popt > 0.1) for p = 3 plotted against the number of
decoder evaluations on a logarithmic scale.

problem sizes, e.g. the hardest instance of size n = 8 is harder than the easiest instance
of size n = 12. We make use of this fact to investigate the convergence behavior of the
algorithms, by plotting the number of solved instances against the number of decoder
evaluations (See Figure 3.3 on the right). Since the difficulties are distributed evenly,
the curves do not contain any sudden jumps. Just as the algorithms exhibit no major
differences in final outcomes, all algorithms except for RAND, RKO-SA, and SPSA
converge at similar rates. Only RKO-BRKGA-CS is continuously ahead up until 3000
function evaluations. Overall, the maximum number of instances solved by any method
is 74. RKO, RKO-PSO, and RKO-BRKGA-CS tie under this metric.

We now move to the results for p = 6. The Friedman test again rejects the null hy-
pothesis with p = 1.85e − 124. The significant differences found by the Nemenyi test in
Figure 3.4 are more sparse in this setting. Many methods are no longer distinguishable.
This is likely due to the fact, that most methods achieve values popt > 0.25 for the
easier instances, at which point the CVaR with α = 0.25 does not reward any further
improvement. However, SPSA is now distinguishable from RAND. Figure 3.5 again
depicts the distribution of popt for each method on instances of size n = 14. The orange
dots now mark the previous median for p = 3. COBYLA, RAND, RKO-SA, and SPSA
perform worse than for p = 3, while all other methods have improved. RKO-SGA and

19

3. RKO for QAOA-Training

CO
BY

LA
RA

ND RK
O

RK
O-

BR
KG

A
RK

O-
BR

KG
A-

CS
RK

O-
GR

AS
P

RK
O-

IL
S

RK
O-

LN
S

RK
O-

PS
O

RK
O-

SA
RK

O-
SG

A
RK

O-
VN

S
SP

SA

COBYLA
RAND

RKO
RKO-BRKGA

RKO-BRKGA-CS
RKO-GRASP

RKO-ILS
RKO-LNS
RKO-PSO

RKO-SA
RKO-SGA
RKO-VNS

SPSA

p < 0.001

p < 0.01

p < 0.05

NS

p = 6

Figure 3.4.: The results of the Nemenyi test for QAOA parameter optimization (p = 6).

RKO-LNS improve the most, and are the best-performing methods overall, in terms of
the median popt.

In terms of solved instances, the best methods are RKO and RKO-BRKGA. They
now solve 84 instances, ten more than for p = 3. Figure 3.6 again depicts the solved
instances for p = 6 against the number of decoder evaluations. SPSA now is clearly
separated from RAND and RKO-SA. COBYLA and RKO-GRASP lag behind the larger
group of methods on top. However, in contrast to p = 3, the curves do not flatten out
near the end, indicating that most methods could still have improved with a higher
evaluation budget. RKO-BRKGA-CS no longer stands out as it did for p = 3, which
could be explained by the large difference in the hyperparameters selected for both
settings (See Table A.1 in Appendix A).

Figure 3.7 shows the scaling behavior of RKO for this task for growing problem sizes

20

3. RKO for QAOA-Training

CO
BY

LA

RA
ND RK

O

RK
O-

BR
KG

A

RK
O-

BR
KG

A-
CS

RK
O-

GR
AS

P

RK
O-

IL
S

RK
O-

LN
S

RK
O-

PS
O

RK
O-

SA

RK
O-

SG
A

RK
O-

VN
S

SP
SA

0.00

0.05

0.10

0.15

0.20

0.25

p o
pt

p = 6; n = 14

Figure 3.5.: Probability of measuring the optimum solution popt for each method, ag-
gregated over problem instances of size n = 14 (p = 6). The boxes indicate
the interquartile range. The whiskers cover the whole range of observed
values. The orange line indicates the median. The orange dot indicates the
median for (p = 3)

21

3. RKO for QAOA-Training

102 103 104

#decoder evaluations

0

20

40

60

80

100

#s
ol

ve
d

in
st

an
ce

s

COBYLA
RAND
RKO
RKO-BRKGA
RKO-BRKGA-CS
RKO-GRASP
RKO-ILS

RKO-LNS
RKO-PSO
RKO-SA
RKO-SGA
RKO-VNS
SPSA

Figure 3.6.: The number of "solved" instances (popt > 0.1) for p = 6 plotted against the
number of decoder evaluations on a logarithmic scale.

22

3. RKO for QAOA-Training

8 10 12 14
n

0.00

0.05

0.10

0.15

0.20

0.25

0.30

m
ea

n
p o

pt

RKO p = 3
RKO p = 6
RAND p = 3
RAND p = 6

8 10 12 14
n

1

2

3

4

5

6

7

r

p = 3
p = 6

Figure 3.7.: Scaling of RKO compared to RAND with increasing problem size for
p = 3 and p = 6. Absolute values (left) and relative difference ∆r =

(RKO − RAND)/RAND (right)

for both p = 3 and p = 6. As expected, the average popt achieved by RKO decreases
with increasing problem sizes. At the same time, the effectiveness of random sampling
decreases as well. The graph on the right displays the relative difference between the
performance of RKO and RAND, showing that the advantage of RKO increases for
growing problem sizes. The effect is stronger for p = 6, since RKO benefits from the
additional free parameters, while the performance of RAND decreases. This, together
with the previous results, indicates that the metaheuristics implemented in the RKO
framework are able to effectively navigate the cost landscapes associated with the
QAOA.

3.8. Discussion

Contrary to the results by Chaves. et al. [14], the full RKO optimizer does not converge
significantly quicker than the individual metaheuristics. In the QAOA setting, the
diversity provided by multiple different metaheuristics seems to be less beneficial than
in the combinatorial optimization setting. Since the RKO framework utilizes a variety of
different mechanisms, it is difficult to determine which components contribute the most
to its performance on this task. However, the fact that RKO-SA is ineffective, while the
remaining metaheuristics perform similarly, could hint at the importance of the local
search methods. The RVND local search is frequently invoked by all metaheuristics,
except RKO-SA. For RKO-SA, RVND is only invoked after SAmax iterations, which was

23

3. RKO for QAOA-Training

set to SAmax = 465 and SAmax = 496 for p = 3 and p = 6 respectively. In addition, since
the evaluation budget for each individual thread of the metaheuristic is 1000, this choice
of SAmax also causes the algorithm to rarely reduce the temperature. This is counter to
the idea behind SA to model a continuous cooling process of a physical system [35].
Under these conditions, the RKO-SA heuristic seems to revert to random sampling.
While this provides some insight into the performance of the RKO framework, that such
a high value for SAmax was chosen for both settings could indicate that the number of
trials for hyperparameter optimization was insufficient. Systematically testing different
hyperparameter sets for RKO-SA could provide insight into whether this interpretation
is correct, or whether the implementation of RKO-SA is inherently ill-suited for this task.

The poor performance of SPSA is further evidence of suboptimal hyperparameter
choices. Our observations are in line with other results found in literature, which could
indicate that SPSA is not well suited for the QAOA [10, 30, 48] in general. However,
Sung et al. [62] report more positive results and argue that SPSA often performs poorly
due to lacking hyperparameter optimization. Given our observation for RKO-SA above,
this is likely also the case here.

Finally, the results for p = 6 show that not all metaheuristics scale equally well
with increasing size of the key vectors. However, there is no clear advantage of one
paradigm over another. For example, RKO-SGA and RKO-BRKGA-CS are both genetic
algorithms, but the former scales significantly better than the latter. Similarly, RKO-LNS
and RKO-ILS are similar in approach, but perform very differently for p = 6. Again,
the variety of mechanisms implemented in the framework makes it difficult to pinpoint
any causal relationships.

In summary, the results of this section show, that the RKO framework is applicable
to the QAOA, surpassing the commonly chosen COBYLA optimizer in both our test
settings. This is despite the fact that the search methods are not implemented with
continuous optimization in mind, as noted in Section 2.4. This highlights the flexibility
of metaheuristics in general and the RKO paradigm in particular. In the next section, we
will make use of this flexibility to modify the standard QAOA ansatz with additional
operators.

24

4. RKO for Operator Selection

There exist variations of the basic QAOA that utilize a different or extended set of
operators in the ansatz. For example, Hadfield et al. [29] suggest using problem-
specific mixing operators that restrict the evolution to a feasible subspace. Zhu et al.
[69] propose a method where the ansatz is built layer by layer, each time selecting an
operator with favorable gradient properties. In this section, we propose and evaluate a
method for encoding the structure of the ansatz in a random key vector, in addition to
the angle parameters. Ideally, the classical optimizer could then discover an effective
ansatz at runtime. We first present a decoder design that allows a selection of operators
in each layer. Then, we describe two additional operators and motivate their selection
before comparing the performance of this design to the results of Section 3.

4.1. Structure Decoder

We replace the QAOA ansatz with a more general layered ansatz.

|ψ(θ)⟩ = Ud(θd)Ud−1(θd−1) · · ·U2(θ2)U1(θ1) |+⟩⊗n (4.1)

Here, the operations Ui are not fixed but can be chosen from an operator pool P =

(P0, . . . , Pm−1) of m operators. For simplicity, we require each operator to use one
variational parameter θi. We can then define a decoder that decodes a variational ansatz
and corresponding parameters θ from a random key vector χ = (χ1, . . . , χd) with

j = ⌊mχi⌋ Ui = Pj θi = 2π(χi −
j

m
) (4.2)

Note that a single key χi encodes the operator together with the corresponding param-
eter. This results in intuitive semantics for the random key optimization. For example,
a swap operation of two keys simply translates to swapping two operators.

4.2. Counterdiabatic Driving

In Section 2.6, we noted that the QAA requires sufficient evolution times T to avoid
transitions to higher energy states. In principle, it is possible to suppress these transi-
tions by adding an additional term A, the so-called adiabatic gauge potential, to the

25

4. RKO for Operator Selection

time-dependent Hamiltonian [16].

H′(t) = H(t) +A (4.3)

This process is referred to as counterdiabatic driving. In general, computing the
adiabatic gauge potential is as difficult as solving the problem itself, because it requires
diagonalizing H [16]. However, it can be approximated using a nested commutator
expansion. Let [A, B] = AB − BA denote the commutator of two square matrices of
matching dimension. Then

A = lim
l→∞

i
l

∑
k=1

αk [H, [H, [H⏞ ⏟⏟ ⏞
2k−1

, ∂tH]]] (4.4)

for some coefficients α1, . . . , αk. Chandarana et al. [13] show that by inserting terms from
low order approximations (l = 2) of A into the standard QAOA ansatz, the algorithm
can achieve faster convergence and higher approximation ratios. The α coefficients are
set as variational parameters. In a similar vein, Wurtz and Love [66] show that the
standard QAOA can already leverage counterdiabatic driving, since for appropriate
angle parameters θ, the error of the lowest order Suzuki-Trotter decomposition matches
low order approximations of A. In particular, the error contains a component of the
form iα[HC, HB]. Therefore, we extend the operator pool of the algorithm by an operator
UCD, which should allow it to explicitly make use of counterdiabatic driving.

UCD(α) = eα[HC ,HB] (4.5)

4.3. Phantom Edges

As discussed in Section 2.6, locality can limit the performance of QAOA. Langfitt et
al. [38] propose introducing additional edges into the problem graph to decrease the
average distance between nodes. The contribution of these "phantom edges" to the
problem Hamiltonian is controlled by a variational parameter α. Their approach is
most successful if the phantom edges are chosen to introduce triangles into the graph.
Formally, for a graph G = (V, E), E′ are the phantom edges with

E′ = (u, v) /∈ E|∃w ∈ V.(u, w) ∈ E ∧ (v, w) ∈ E (4.6)

We mimic this approach by introducing the operator U∆ into the operator pool with

H∆ = ∑
(u,v)∈E′

σz
uσz

v U∆(α) = e−iαH∆ (4.7)

26

4. RKO for Operator Selection

4.4. Results

The experiment is conducted identically to Section 3, with only the decoder exchanged
for the structure decoder. The operator pool P consists of the two standard QAOA
operators defined over HC and HB, the counterdiabatic operator UCD, and the triangle
operator U∆. We set d = 6, which results in the same amount of layers as p = 3 in the
previous experiment. The hyperparameters used are presented in Table A.2.

The Friedman test rejects the null hypothesis with p = 6.25e − 188. Figure 4.1 shows
the results of the Nemenyi test. A large block of methods between RKO and RKO-LNS
can not be distinguished. In addition, RKO-PSO is no longer distinguishable from
RAND, meaning it fails to effectively navigate the cost landscape. The same is true
for RKO-SA, providing further evidence that it does not work well in this setting. In
contrast to the p = 3 setting in the previous experiment, SPSA can be distinguished
from RAND, but as Figure 4.2 shows, this is because SPSA performs significantly worse
than RAND, instead of better. No clear pattern is visible for the remaining methods. In
general, we observe a large drop in the median popt for all methods.

The same loss in quality can be observed in the number of solved instances in Figure
4.3. COBYLA and RKO-BRKGA now solve the most instances, but the number has
reduced from 74 in the previous p = 3 case to only 50. However, the slope has also
decreased significantly, and the curves for most methods do not flatten out, so further
improvements might be possible using additional iterations.

Since RKO-BRKGA is the most successful metaheuristic, we also investigate whether
it exhibits a learning behavior where a trend towards a particular selection of op-
erators is visible. For this purpose, we plot the operator prevalence for one run of
RKO-BRKGA in Figure 4.4. The left column corresponds to the hardest instance of size
n = 8, and the right column to the easiest instance of size n = 14, as determined in
Section 3. To reduce visual noise, the graphs are moving averages of the respective
values. The first row shows the number of occurrences for a given operator overall.
The remaining rows show the operator prevalence at the positions of U1, U2, and U3,
respectively. Firstly, all plots show a strongly periodic behavior. During phases where
the population of the genetic algorithm is refilled with mutants, the curves overlap
since all operators are equally likely. During phases of local search and crossover,
the operator selection strongly tends towards a certain distribution. For the first row
on the left, HB and UCD are most prevalent during these phases. On the right, for
n = 14, the distribution is less clear, but U∆ rises above the other operators for extended
intervals. The second row provides a good sanity check for the algorithm. Since the

27

4. RKO for Operator Selection

CO
BY

LA
RA

ND RK
O

RK
O-

BR
KG

A
RK

O-
BR

KG
A-

CS
RK

O-
GR

AS
P

RK
O-

IL
S

RK
O-

LN
S

RK
O-

PS
O

RK
O-

SA
RK

O-
SG

A
RK

O-
VN

S
SP

SA

COBYLA
RAND

RKO
RKO-BRKGA

RKO-BRKGA-CS
RKO-GRASP

RKO-ILS
RKO-LNS
RKO-PSO

RKO-SA
RKO-SGA
RKO-VNS

SPSA

p < 0.001

p < 0.01

p < 0.05

NS

Figure 4.1.: The results of the Nemenyi test for the structure decoder.

28

4. RKO for Operator Selection

CO
BY

LA

RA
ND RK

O

RK
O-

BR
KG

A

RK
O-

BR
KG

A-
CS

RK
O-

GR
AS

P

RK
O-

IL
S

RK
O-

LN
S

RK
O-

PS
O

RK
O-

SA

RK
O-

SG
A

RK
O-

VN
S

SP
SA

0.00

0.02

0.04

0.06

0.08

0.10

p o
pt

n = 14

Figure 4.2.: Probability of measuring the optimum solution popt for each method for
the structure decoder, aggregated over problem instances of size n = 14.
The boxes indicate the interquartile range. The whiskers cover the whole
range of observed values. The orange line indicates the median.

29

4. RKO for Operator Selection

102 103 104

#decoder evaluations

0

20

40

60

80

100

#s
ol

ve
d

in
st

an
ce

s

COBYLA
RAND
RKO
RKO-BRKGA
RKO-BRKGA-CS
RKO-GRASP
RKO-ILS

RKO-LNS
RKO-PSO
RKO-SA
RKO-SGA
RKO-VNS
SPSA

Figure 4.3.: The number of "solved" instances (popt > 0.1) for the structure decoder
plotted against the number of decoder evaluations on a logarithmic scale.

30

4. RKO for Operator Selection

initial state |+⟩⊗n is an eigenstate of HB, the mixing operator has no effect in the
first position. Therefore, key vectors with this feature tend to perform poorly and are
subsequently suppressed by the selection mechanism. UCD is most prevalent in the first
position for both instances, replacing HC in the standard QAOA ansatz. HB dominates
the second position, highlighting the importance of the mixing operator. In the third
row, all four operators experience peaks at different times. No clear preference is visible.

4.5. Discussion

In summary, the analysis of operator prevalence shows that the RKO-BRKGA meta-
heuristic develops clear preferences for certain ansatz configurations, which differ
from the standard QAOA ansatz. Firstly, differences in the operator selection between
instances could indicate, that the algorithm can adapt the ansatz to different situations.
Secondly, these configurations could hint at ansatz structures that are indeed more
suited to the task than the standard ansatz, but the heuristics fail to fine-tune the ansatz
parameters. This might be related to the origin of the RKO framework in combinatorial
optimization instead of continuous optimization. One way to mitigate this would be
to fix the structure after a certain number of iterations. The task would then revert to
standard VQA parameter tuning.

Overall, the introduction of additional operators into the ansatz via the structure
decoder has not improved performance in any metric. On the contrary, all methods
achieve a lower mean popt and solve fewer instances. This is likely because the increased
complexity of the cost landscape negates any potential benefits the operators could
provide, at least in the setting of this particular experiment. We have not conducted
experiments with variations in the circuit depth or the overall evaluation budget. Chang-
ing these values could potentially produce a different picture, akin to the improvements
seen in Section 3. Further investigating the scaling behavior and potential refinements
of this approach is warranted.

In the next section, we will move away from the MaxCut problem and instead
attempt to use the RKO paradigm to address COPs that are more difficult to encode on
quantum hardware.

31

4. RKO for Operator Selection

0 2000 4000 6000 8000
0.0

0.5

1.0

1.5

2.0

2.5

3.0

#o
cc

ur
an

ce
s

n = 8

HC

HB

UCD

U

0 2000 4000 6000 8000

0.5

1.0

1.5

2.0

2.5

3.0
n = 14

0 2000 4000 6000 8000
0.0

0.2

0.4

0.6

0.8

1.0

U
1

0 2000 4000 6000 8000
0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000 8000
0.0

0.2

0.4

0.6

0.8

1.0

U
2

0 2000 4000 6000 8000
0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000 8000
#decoder evals

0.0

0.2

0.4

0.6

0.8

1.0

U
3

0 2000 4000 6000 8000
#decoder evals

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.4.: Operator prevalence against decoder evaluations for two exemplary in-
stances of size n = 8 (left) and n = 14 (right). For readability, all graphs are
moving averages with a window size of 100 points. The first row shows the
overall prevalence of an operator at any position. Rows two to four show
the prevalence of operators selected for U1, U2, and U3 respectively.

32

5. RKO for Non-Native Poblems

In Section 2.3, we noted that the reduction of the TSP to an Ising model incurs a
quadratic overhead in the number of variables, which limits the size of instances that
can be represented on NISQ devices. Wurtz et al. [67] refer to problems that suffer from
this issue as non-native problems and propose to use different classical post-processing
routines to address them. In this section, we present such a routine inspired by RKO,
which uses the expectation values of qubit correlations to efficiently decode candidate
solutions for TSP instances while only using a linear amount of qubits or less.

5.1. Polynomial Compression

In a typical application of a VQA for combinatorial optimization, each variable in the
original problem is represented by one qubit on the device. Sciorilli et al. [60] propose
to use Pauli correlations between qubits instead. Since the number of correlations that
can be constructed between n qubits rises polynomially in n, this reduces the number
of qubits necessary to represent a given problem. In addition, they show that this
approach can improve ansatz trainability by mitigating barren plateaus in the cost
landscape [60].

Formally, for a problem defined over spins s = (s1, . . . , sm), choose a set of observables
Π = {Πi|i ∈ [m]} with

Π ⊆ {F1 ⊗ · · · ⊗ Fk|F ∈ {1, σx, σy, σz}}/{1⊗k} (5.1)

where k is the order of the polynomial compression. The spins si are then determined
by the signs of the corresponding expectation value of Πi on the output state of a
variational ansatz |ψ(θ)⟩.

si := sgn(⟨ψ(θ)|Πi |ψ(θ)⟩) (5.2)

Note that, since only measurements of commuting observables can be performed in
parallel, multiple measurement settings are needed if Π contains observables that do
not mutually commute [60].

33

5. RKO for Non-Native Poblems

Z

Z Z

Y

Q1

Y

Q2

Y

Q3

X

X X

χ 1

χ2

χ
3χ 4

χ5

χ
6χ 7

χ8

χ
9

χ1

χ2

χ3

χ4

...

χ9

Figure 5.1.: The polynomial compression scheme. Figure adapted from Sciorilli et al.
[60]. Instead of only considering the signs, we use the full expectation
values to construct a random key vector χ

.

For this experiment, we choose Π to contain all σxσx, σyσy, and σzσz correlations for
all pairs of qubits. The compression scheme for this choice is illustrated in Figure 5.1.
For n qubits, this yields m correlations where

m =
3n(n − 1)

2
(5.3)

5.2. Permutation Decoder

For decoding solutions to the TSP, we modify this compression method. Instead
of using the signs of the expectation values, we interpret the expectation values as
elements of a random key vector (Figure 5.1). We then use the sorting decoder proposed
by Bean [5] to obtain a valid permutation p

p = argsort(⟨Π1⟩, . . . , ⟨Πm⟩) (5.4)

where ⟨Πi⟩ is shorthand for ⟨ψ(θ)|Πi |ψ(θ)⟩, and argsort returns the permutation in-
duced by sorting the values in ascending order. Technically, the expectation values
⟨Π1⟩ are in the interval [−1, 1] instead of [0, 1). For the purposes of the permutation

34

5. RKO for Non-Native Poblems

decoder, this is irrelevant. For general decoding strategies, this could be corrected with
a simple transformation.

Note that it is unclear whether every permutation can be represented by this encoding.
Sciorilli et al. provide a sufficient condition for a compression scheme to be able to
represent all possible bit strings [60]. However, this proof is not transferable to the
modified compression scheme, and we have not attempted to devise a similar proof.
Therefore, it is possible that for a given problem instance, no quantum state exists that
corresponds to the optimal solution.

5.3. Variational Ansatz

Due to the polynomial compression, the standard QAOA ansatz can not be used in
this setting. Sciorilli et al. instead use a brickwork ansatz as depicted in Figure 5.2 [60].
Here, every even layer consists of two-qubit Mølmer-Sørensen (MS) gates with three
variational parameters each, while every odd layer consists of single-qubit rotation
gates with one parameter each. The axis of the rotation gates cycles through X, Y, and
Z between layers, and the MS gates alternately connect even or odd neighbors. We also
chose this ansatz for our experiment, since it has been effective in the experiments by
Sciorilli et al. Generally, the choice of ansatz may be another limiting factor for the
performance of the algorithm. Even if a state exists that would decode into the optimal
solution, it might not be reachable with a given ansatz.

|0⟩ RX

MS

RY RZ

MS
|0⟩ RX RY

MS

RZ

|0⟩ RX

MS

RY RZ

MS
|0⟩ RX RY RZ

Figure 5.2.: Brickwork ansatz used by Sciorilli et al.[60] with four qubits and six layers.

35

5. RKO for Non-Native Poblems

5.4. Experimental Setup

Due to the computational complexity of the simulation, we limit experiments to at
most 14 qubits. According to Equation 5.3, 14 qubits provide 273 correlations in our
chosen encoding. By fixing the starting point of the route, the proposed decoder can
then decode solutions for TSP instances with up to 274 cities. As test instances, we use
the 18 TSP instances of the TSPLIB [56] problem library that fulfill this requirement
and contain a precomputed solution. We use an ansatz with six layers. For the smallest
test instance with 16 cities on four qubits, this corresponds to 27 free parameters. The
largest instance, with 225 cities on 13 qubits, uses an ansatz with 93 free parameters.
Table B.1 lists all problem instances and the corresponding ansatz specifications. We
perform hyperparameter optimization using three medium-sized instances with n = 76,
n = 96, and n = 100. The process is as described in Section 3.3. The remaining 15
instances form the test set. The chosen hyperparameters are listed in Table A.3.

We also need to deviate from the methodology of the previous sections with regard
to the cost function. The CVaR cost function is only applicable when dealing with a
distribution of solutions. Previously, a certain set of parameters for the ansatz would
produce multiple solution candidates by repeated measurements. Since we now require
sets of expectation values instead of bit strings, the distribution produced by the circuit
itself encodes a single solution candidate. Therefore, we use the approximation ratio
(AR) instead, computed using the solutions provided by the TSPLIB dataset. The AR
of a solution candidate s is defined as

AR =
C(s)

C(smin)
(5.5)

where C is the cost function of the optimization problem, and smin is the optimal
solution. An AR of 1 indicates that the problem was solved optimally. Since the TSP is
a minimization problem, AR >= 1, and lower values are better.

The methods used to train the ansatz parameters are the same as before. To addition-
ally capture the difference between directly sampling the solution space and sampling
mediated through the variational ansatz, we compare the results to the method DIR-
RAND, which simply produces uniformly distributed random permutations.

5.5. Results

The Friedman test rejects the null hypothesis with p = 1.53e − 33. Figure 5.3 shows the
results of the Nemenyi test. Only a few methods exhibit significant differences. There

36

5. RKO for Non-Native Poblems

CO
BY

LA
DI

R-
RA

ND
RA

ND RK
O

RK
O-

BR
KG

A
RK

O-
BR

KG
A-

CS
RK

O-
GR

AS
P

RK
O-

IL
S

RK
O-

LN
S

RK
O-

PS
O

RK
O-

SA
RK

O-
SG

A
RK

O-
VN

S
SP

SA

COBYLA
DIR-RAND

RAND
RKO

RKO-BRKGA
RKO-BRKGA-CS

RKO-GRASP
RKO-ILS

RKO-LNS
RKO-PSO

RKO-SA
RKO-SGA
RKO-VNS

SPSA

p < 0.001

p < 0.01

p < 0.05

NS

Figure 5.3.: The results of the Nemenyi test for the TSP using polynomial qubit com-
pression and RKO decoding.

are four clear lines, as DIR-RAND, RAND, RKO-SA, and SPSA are mostly distinguish-
able from the other methods. Figure 5.4 plots the AR achieved by each method for the
individual instances. The dashed line marks AR = 1, meaning that an instance would
be solved. No method achieves the optimal solution for any instance. For some pairs
of methods, a difference in performance on one instance correlates to a difference in
performance for other instances. However, this relationship does not hold for all pairs
of methods, explaining the results of the Nemenyi test. This is most visible for the
two instances with n > 200. Larger test sets could help to draw out more significant
differences between methods.

Figure 5.5 shows the convergence behavior of all methods by plotting the mean AR
against the number of decoder evaluations. Only COBYLA and DIR-RAND appear
to flatten out near the end. The remaining methods could likely have improved with

37

5. RKO for Non-Native Poblems

CO
BY

LA

DI
R-

RA
ND

RA
ND RK

O

RK
O-

BR
KG

A

RK
O-

BR
KG

A-
CS

RK
O-

GR
AS

P

RK
O-

IL
S

RK
O-

LN
S

RK
O-

PS
O

RK
O-

SA

RK
O-

SG
A

RK
O-

VN
S

SP
SA

2

4

6

8

AR

50

100

150

200

#c
iti

es

Figure 5.4.: AR achieved by all methods for individual TSP instances. The size of the
instance is indicated by the color map. The black dot marks the mean AR
achieved. The dashed line marks AR = 1. No method reaches this value
for any instance.

additional decoder evaluations. RKO-SA and SPSA are again closely grouped with
RAND. COBYLA is continuously ahead, but due to the results of the Nemenyi test, this
is not a significant result.

Finally, the histograms in Figure 5.6 show the sampling distribution of cost function
values between RAND, DIR-RAND, and COBYLA for problem instances 2 and 18. In
both cases, COBYLA is able to sample better values than both forms of random sam-
pling. This shows that it is principally able to navigate the cost landscape. For instance
18, we additionally observe that the sampling distribution of RAND is significantly
shifted against the distribution of DIR-RAND. Since the ansatz does not contain any
problem-specific information, the fact that it is shifted in the positive direction is a
coincidence. Rearranging the qubits could produce different results. In general, this
shows that the chosen ansatz biases the algorithm towards specific states, which could
prevent the overall optimization routine from reaching more desirable states.

38

5. RKO for Non-Native Poblems

100 101 102 103 104

#decoder evaluations

3.75

4.00

4.25

4.50

4.75

5.00

5.25

5.50

5.75

m
ea

n
AR

COBYLA
DIR-RAND
RAND
RKO
RKO-BRKGA
RKO-BRKGA-CS
RKO-GRASP

RKO-ILS
RKO-LNS
RKO-PSO
RKO-SA
RKO-SGA
RKO-VNS
SPSA

Figure 5.5.: The mean approximation ratios achieved by the methods against the num-
ber of decoder evaluations on a logarithmic scale.

39

5. RKO for Non-Native Poblems

1.50 1.75 2.00 2.25 2.50 2.75 3.00
AR

0

20

40

60

80

100

120

140

160
ID: 2; n = 22

RAND
DIR-RAND
COBYLA

7 8 9 10 11
AR

0

20

40

60

80

100

120

140

160

ID: 18; n = 225
RAND
DIR-RAND
COBYLA

Figure 5.6.: The sampling distribution of cost function values between RAND, DIR-
RAND, and COBYLA for problem instances 2 and 18, respectively. For
instance, 18, the sampling mediated by the variational circuit is clearly
distinguished from the direct sampling.

5.6. Discussion

We have shown that the proposed method introduces a bias compared to uniform
random sampling, potentially limiting performance. Analytically investigating the
properties of the solution encoding and the ansatz could provide insights into theo-
retical limits and avenues for improvement. Progress in solving the TSP using this
method could directly yield improvements for other non-native problems by adapting
the decoder accordingly.

Overall, the proposed method does not produce satisfactory results for any TSP
instance tested, but we have shown that the classical optimizers can significantly
shift the sampling distribution towards better results compared to random sampling.
However, this is only minor evidence for the viability of the approach, and further
numerical experiments are necessary. Apart from RKO-SA and SPSA, we could not
observe significant differences between the methods, indicating that no paradigm
handles the task particularly well. The poor performance of RKO-SA and SPSA is a
commonality between all experiments of this thesis. We will address this and other
conclusions in the next section.

40

6. Conclusions

In this thesis, we have conducted experiments on the performance of the RKO frame-
work by Chaves et al. [14] for tasks related to VQAs. We have also proposed two RKO
inspired modifications to standard VQA approaches. We could show that the RKO
framework is suitable for the basic task of QAOA parameter optimization, but we could
not produce similarly positive results for the modified approaches.

There are some commonalities between the results of all three experiments. Firstly,
RKO-SA and SPSA consistently struggle to produce competitive results compared to
the other methods. For SPSA, we noted that Sung et al. [62] attribute this to lacking
hyperparameter optimization. This could also be the case for RKO-SA, which would
mean that both methods are significantly more difficult to parameterize effectively. It
could also hint at more inherent issues of these methods when applied to the tasks in
this thesis. Secondly, we could not identify clear patterns in the performance of the
other metaheuristics. No metaheuristic consistently outperforms any other method,
and the RKO framework does not seem to reap the same benefit from metaheuristic
diversity as reported by Chaves et al. [14]. This, together with the suboptimal hyperpa-
rameter selection, bars us from drawing more significant conclusions.

In general, this thesis provides a broad overview of the intersection between RKO
and VQAs, at the expense of a more in depth analysis. Both experiments in Section
4 and Section 5 hint at potential issues of the respective approaches, which warrant
further investigation. Additional experiments into the scaling behavior of the tested
methods could also provide valuable insight. The code and data used in this thesis are
available at https://github.com/AlexanderTreml/QRKO-Thesis

41

A. Hyperparameters

42

A. Hyperparameters

p = 3 p = 6
RKO-BRKGA RKO-SA RKO-BRKGA RKO-SA

p 382 SAmax 465 p 322 sAmax 496
pe 0.0137 α 0.7678 pe 0.0166 α 0.2276
pm 0.5055 βmin 0.0756 pm 0.7427 βmin 0.2309
ρe 0.7674 βmax 0.0070 ρe 0.7377 βmax 0.7414

T0 4138542 T0 8832280
RKO-GRASP RKO-ILS RKO-GRASP RKO-ILS

α 0.0160 βmin 0.3903 α 0.1300 βmin 0.1445
hs 0.5830 βmax 0.4161 hs 0.9097 βmax 0.7111
he 0.0076 he 0.0021

RKO-VNS RKO-PSO RKO-VNS RKO-PSO
kmax 96 p 177 kmax 86 p 5
βmin 0.8021 c1 2.3558 βmin 0.3760 c1 9.9256

c2 9.4573 c2 3.6392
w 0.1226 w 1.6666

RKO-SGA RKO-LNS RKO-SGA RKO-LNS
p 174 βmin 0.3331 p 4 βmin 0.8226
pc 0.0444 βmax 0.6793 pc 0.5700 βmax 0.2154
µ 0.1683 T0 6109826 µ 0.1321 T0 6876865

α 0.1114 α 0.4301
RKO-BRKGA-CS COBYLA RKO-BRKGA-CS COBYLA

p 65 rhobeg 0.1815 p 236 rhobeg 0.5975
pe 0.0530 tol 0.0006 pe 0.0534 tol 0.0009
pm 0.2931 pm 0.6138
ρe 0.7217 ρe 0.9830

SPSA SPSA
α 0.7663 α 0.8225
γ 0.1281 γ 0.1514
c 0.0406 c 0.0585
A 908.9013 A 538.6038
a 0.8063 a 0.8113
patience 340 patience 748

Table A.1.: Hyperparameters used in Section 3

43

A. Hyperparameters

RKO-BRKGA RKO-SA
p 222 SAmax 326
pe 0.0687 α 0.7006
pm 0.6517 βmin 0.7893
ρe 0.8815 βmax 0.2054

T0 3217348
RKO-GRASP RKO-ILS

α 0.8428 βmin 0.0134
hs 0.5686 βmax 0.8352
he 0.0536

RKO-VNS RKO-PSO
kMax 78 PSize 260
βmin 0.2505 c1 5.3649

c2 5.4446
w 5.6354

RKO-SGA RKO-LNS
p 102 βmin 0.8226
pc 0.6425 βmax 0.2154
µ 0.1913 T0 6876865

α 0.4301
RKO-BRKGA-CS COBYLA

p 230 rhobeg 0.2357
pe 0.0047 tol 0.0006
pm 0.4092
ρe 0.9912

SPSA
α 0.6058
γ 0.1420
c 0.2358
A 732.1952
a 0.4288
patience 645

Table A.2.: Hyperparameters used in Section 4

44

A. Hyperparameters

RKO-BRKGA RKO-SA
p 20 SAmax 613
pe 0.0873 α 0.1593
pm 0.0998 βmin 0.1019
ρe 0.8285 βmax 0.0187

T0 6831366
RKO-GRASP RKO-ILS

α 0.5165 βmin 0.0993
hs 0.1288 βmax 0.3098
he 0.0613

RKO-VNS RKO-PSO
kmax 89 p 37
βmin 0.3302 c1 0.5054

c2 5.3294
w 5.0747

RKO-SGA RKO-LNS
p 29 βmin 0.8995
pc 0.0708 βmax 0.6388
µ 0.0543 T0 13409

α 0.5312
RKO-BRKGA-CS COBYLA

p 120 rhobeg 0.2413
pe 0.6118 tol 0.0005
pm 0.4189
ρe 0.9008

SPSA
α 0.9372
γ 0.1486
c 0.3758
A 988.2278
a 0.5129
patience 352

Table A.3.: Hyperparameters used in Section 5

45

B. TSP instances

ID name #cities #qubits #free params
1 ulysses16 16 4 27
2 ulysses22 22 5 33
3 gr24 24 5 33
4 fri26 26 5 33
5 gr48 48 7 48
6 eil51 51 7 48
7 st70 70 8 57
8 eil76 76 8 57
9 pr76 76 9 63
10 gr96 96 9 63
11 rd100 100 9 63
12 kroD100 100 9 63
13 kroA100 100 9 63
14 kroC100 100 9 63
15 lin105 105 9 63
16 gr120 120 10 72
17 gr202 202 13 93
18 tsp225 225 13 93

Table B.1.: The traveling salesman problem (TSP) instances used in Section 5. The
instances marked in grey were used for hyperparameter optimization.

46

Abbreviations

BRKGA Biased Random Key Genetic Algorithm

COBYLA Constrained Optimization By Linear Approximation

COP combinatorial optimization problem

CS clustering search

CVaR conditional value-at-risk

GRASP Greedy Randomized Adaptive Search Procedure

ILS Iterated Local Search

LNS Large Neighborhood Search

MS Mølmer-Sørensen

NISQ noisy intermediate-scale quantum

PSO Particle Swarm Optimization

QAA Quantum Adiabatic Algorithm

QAOA Quantum Approximate Optimization Algorithm

QUBO quadratic unconstrained binary optimization

RKGA Random Key Genetic Algorithm

47

Abbreviations

RKO random key optimization

RVND Random Variable Neighborhood Descent

SA Simulated Annealing

SPSA Simultaneous Perturbation Stochastic Approximation

TSP traveling salesman problem

UQBP unconstrained binary quadratic programming

VNS Variable Neighborhood Search

VQA variational quantum algorithm

w3R weighted three-regular graph

48

List of Figures

2.1. Illustration of the RKO paradigm, adapted from Schütz et al. [58]. The
decoder fD maps a simple point inside the hypercube to a possibly
complex solution space. 7

2.2. QAOA schematic adapted from Zhou et al.[68] 12

3.1. The results of the Nemenyi test for Quantum Approximate Optimization
Algorithm (QAOA) parameter optimization (p = 3). Most pairs of
methods can be distinguished. RAND, RKO-SA, and SPSA show no
significant differences between each other. 17

3.2. Probability of measuring the optimum solution popt for each method,
aggregated over problem instances of size n = 14 (p = 3). The boxes
indicate the interquartile range. The whiskers cover the whole range of
observed values. The orange line indicates the median. 18

3.3. On the left, mean value of popt per test instance. Instances are sorted by
ascending difficulty (decreasing popt) within each problem size. Error
bars indicate maximum and minimum values. Horizontal positions are
offset for readability and have no further meaning. On the right, the
number of solved instances (popt > 0.1) for p = 3 plotted against the
number of decoder evaluations on a logarithmic scale. 19

3.4. The results of the Nemenyi test for QAOA parameter optimization (p = 6). 20
3.5. Probability of measuring the optimum solution popt for each method,

aggregated over problem instances of size n = 14 (p = 6). The boxes
indicate the interquartile range. The whiskers cover the whole range of
observed values. The orange line indicates the median. The orange dot
indicates the median for (p = 3) . 21

3.6. The number of "solved" instances (popt > 0.1) for p = 6 plotted against
the number of decoder evaluations on a logarithmic scale. 22

3.7. Scaling of RKO compared to RAND with increasing problem size for
p = 3 and p = 6. Absolute values (left) and relative difference ∆r =

(RKO − RAND)/RAND (right) . 23

4.1. The results of the Nemenyi test for the structure decoder. 28

49

List of Figures

4.2. Probability of measuring the optimum solution popt for each method for
the structure decoder, aggregated over problem instances of size n = 14.
The boxes indicate the interquartile range. The whiskers cover the whole
range of observed values. The orange line indicates the median. 29

4.3. The number of "solved" instances (popt > 0.1) for the structure decoder
plotted against the number of decoder evaluations on a logarithmic scale. 30

4.4. Operator prevalence against decoder evaluations for two exemplary
instances of size n = 8 (left) and n = 14 (right). For readability, all
graphs are moving averages with a window size of 100 points. The first
row shows the overall prevalence of an operator at any position. Rows
two to four show the prevalence of operators selected for U1, U2, and U3

respectively. 32

5.1. The polynomial compression scheme. Figure adapted from Sciorilli et al.
[60]. Instead of only considering the signs, we use the full expectation
values to construct a random key vector χ 34

5.2. Brickwork ansatz used by Sciorilli et al.[60] with four qubits and six layers. 35
5.3. The results of the Nemenyi test for the TSP using polynomial qubit

compression and random key optimization (RKO) decoding. 37
5.4. AR achieved by all methods for individual TSP instances. The size of the

instance is indicated by the color map. The black dot marks the mean
AR achieved. The dashed line marks AR = 1. No method reaches this
value for any instance. 38

5.5. The mean approximation ratios achieved by the methods against the
number of decoder evaluations on a logarithmic scale. 39

5.6. The sampling distribution of cost function values between RAND, DIR-
RAND, and COBYLA for problem instances 2 and 18, respectively. For
instance, 18, the sampling mediated by the variational circuit is clearly
distinguished from the direct sampling. 40

50

List of Tables

A.1. Hyperparameters used in Section 3 . 43
A.2. Hyperparameters used in Section 4 . 44
A.3. Hyperparameters used in Section 5 . 45

B.1. The TSP instances used in Section 5. The instances marked in grey were
used for hyperparameter optimization. 46

51

Bibliography

[1] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. “Optuna: A Next-Generation
Hyperparameter Optimization Framework.” In: The 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data Mining. 2019, pp. 2623–2631.

[2] B. Augustino, M. Cain, E. Farhi, S. Gupta, S. Gutmann, D. Ranard, E. Tang,
and K. Van Kirk. Strategies for running the QAOA at hundreds of qubits. 2024. doi:
10.48550/ARXIV.2410.03015.

[3] F. Barahona. “On the computational complexity of Ising spin glass models.” In:
Journal of Physics A: Mathematical and General 15.10 (1982), p. 3241.

[4] P. K. Barkoutsos, G. Nannicini, A. Robert, I. Tavernelli, and S. Woerner. “Improv-
ing Variational Quantum Optimization using CVaR.” In: (2019). doi: 10.48550/
ARXIV.1907.04769.

[5] J. C. Bean. “Genetic Algorithms and Random Keys for Sequencing and Optimiza-
tion.” In: ORSA Journal on Computing 6.2 (May 1994), pp. 154–160. issn: 2326-3245.
doi: 10.1287/ijoc.6.2.154.

[6] V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, S. Ahmed, V. Ajith, M. S. Alam, G.
Alonso-Linaje, B. AkashNarayanan, A. Asadi, J. M. Arrazola, U. Azad, S. Banning,
C. Blank, T. R. Bromley, B. A. Cordier, J. Ceroni, A. Delgado, O. Di Matteo,
A. Dusko, T. Garg, D. Guala, A. Hayes, R. Hill, A. Ijaz, T. Isacsson, D. Ittah, S.
Jahangiri, P. Jain, E. Jiang, A. Khandelwal, K. Kottmann, R. A. Lang, C. Lee, T.
Loke, A. Lowe, K. McKiernan, J. J. Meyer, J. A. Montañez-Barrera, R. Moyard, Z.
Niu, L. J. O’Riordan, S. Oud, A. Panigrahi, C.-Y. Park, D. Polatajko, N. Quesada,
C. Roberts, N. Sá, I. Schoch, B. Shi, S. Shu, S. Sim, A. Singh, I. Strandberg, J. Soni,
A. Száva, S. Thabet, R. A. Vargas-Hernández, T. Vincent, N. Vitucci, M. Weber,
D. Wierichs, R. Wiersema, M. Willmann, V. Wong, S. Zhang, and N. Killoran.
PennyLane: Automatic differentiation of hybrid quantum-classical computations. 2018.
doi: 10.48550/ARXIV.1811.04968.

[7] S. Bolusani, M. Besançon, K. Bestuzheva, A. Chmiela, J. Dionísio, T. Donkiewicz,
J. van Doornmalen, L. Eifler, M. Ghannam, A. Gleixner, C. Graczyk, K. Halbig,
I. Hedtke, A. Hoen, C. Hojny, R. van der Hulst, D. Kamp, T. Koch, K. Kofler,
J. Lentz, J. Manns, G. Mexi, Erik Mühmer, M. E. Pfetsch, F. Schlösser, F. Serrano,

52

https://doi.org/10.48550/ARXIV.2410.03015
https://doi.org/10.48550/ARXIV.1907.04769
https://doi.org/10.48550/ARXIV.1907.04769
https://doi.org/10.1287/ijoc.6.2.154
https://doi.org/10.48550/ARXIV.1811.04968

Bibliography

Y. Shinano, M. Turner, S. Vigerske, D. Weninger, and L. Xu. The SCIP Optimization
Suite 9.0. Technical Report. Optimization Online, Feb. 2024.

[8] M. Born and V. Fock. “Beweis des Adiabatensatzes.” In: Zeitschrift fuer Physik
51.3–4 (Mar. 1928), pp. 165–180. issn: 1434-601X. doi: 10.1007/bf01343193.

[9] S. Bravyi, A. Kliesch, R. Koenig, and E. Tang. “Obstacles to Variational Quantum
Optimization from Symmetry Protection.” In: Physical Review Letters 125.26 (Dec.
2020), p. 260505. issn: 1079-7114. doi: 10.1103/physrevlett.125.260505.

[10] Britant and A. Pathak. Revisiting Majumdar-Ghosh spin chain model and Max-cut
problem using variational quantum algorithms. 2024. doi: 10.48550/ARXIV.2404.
18142.

[11] M. Cerezo, A. Arrasmith, R. Babbush, S. C. Benjamin, S. Endo, K. Fujii, J. R.
McClean, K. Mitarai, X. Yuan, L. Cincio, and P. J. Coles. “Variational quantum
algorithms.” In: Nature Reviews Physics 3.9 (Aug. 2021), pp. 625–644. issn: 2522-
5820. doi: 10.1038/s42254-021-00348-9.

[12] Y. Chai, K. Jansen, S. Kühn, T. Schwägerl, and T. Stollenwerk. Structure-inspired
Ansatz and Warm Start of Variational Quantum Algorithms for Quadratic Unconstrained
Binary Optimization Problems. 2024. doi: 10.48550/ARXIV.2407.02569.

[13] P. Chandarana, N. N. Hegade, K. Paul, F. Albarrán-Arriagada, E. Solano, A. del
Campo, and X. Chen. “Digitized-counterdiabatic quantum approximate opti-
mization algorithm.” In: Physical Review Research 4.1 (Feb. 2022), p. 013141. issn:
2643-1564. doi: 10.1103/physrevresearch.4.013141.

[14] A. A. Chaves, M. G. C. Resende, M. J. A. Schuetz, J. K. Brubaker, H. G. Katzgraber,
E. F. de Arruda, and R. M. A. Silva. A Random-Key Optimizer for Combinatorial
Optimization. 2024. doi: 10.48550/ARXIV.2411.04293.

[15] J.-D. Cho, S. Raje, and M. Sarrafzadeh. “Fast approximation algorithms on maxcut,
k-coloring, and k-color ordering for VLSI applications.” In: IEEE Transactions on
Computers 47.11 (1998), pp. 1253–1266. issn: 0018-9340. doi: 10.1109/12.736440.

[16] P. W. Claeys, M. Pandey, D. Sels, and A. Polkovnikov. “Floquet-Engineering
Counterdiabatic Protocols in Quantum Many-Body Systems.” In: Physical Review
Letters 123.9 (Aug. 2019), p. 090602. issn: 1079-7114. doi: 10.1103/physrevlett.
123.090602.

[17] K. De Jong and W. Spears. “On the virtues of parameterized uniform crossover.”
In: Proceedings of the 4th Intern. Conf. on Genetic Algorithms, Morgan Kaufmann. 1991.

[18] E. Farhi, D. Gamarnik, and S. Gutmann. The Quantum Approximate Optimization
Algorithm Needs to See the Whole Graph: A Typical Case. 2020. doi: 10.48550/ARXIV.
2004.09002.

53

https://doi.org/10.1007/bf01343193
https://doi.org/10.1103/physrevlett.125.260505
https://doi.org/10.48550/ARXIV.2404.18142
https://doi.org/10.48550/ARXIV.2404.18142
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.48550/ARXIV.2407.02569
https://doi.org/10.1103/physrevresearch.4.013141
https://doi.org/10.48550/ARXIV.2411.04293
https://doi.org/10.1109/12.736440
https://doi.org/10.1103/physrevlett.123.090602
https://doi.org/10.1103/physrevlett.123.090602
https://doi.org/10.48550/ARXIV.2004.09002
https://doi.org/10.48550/ARXIV.2004.09002

Bibliography

[19] E. Farhi, J. Goldstone, and S. Gutmann. A Quantum Approximate Optimization
Algorithm. 2014. doi: 10.48550/ARXIV.1411.4028.

[20] E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser. Quantum Computation by
Adiabatic Evolution. 2000. doi: 10.48550/ARXIV.QUANT-PH/0001106.

[21] T. A. Feo and M. G. C. Resende. “Greedy Randomized Adaptive Search Pro-
cedures.” In: Journal of Global Optimization 6.2 (Mar. 1995), pp. 109–133. issn:
1573-2916. doi: 10.1007/bf01096763.

[22] J. R. Finžgar, A. Kerschbaumer, M. J. A. Schuetz, C. B. Mendl, and H. G. Katz-
graber. “Quantum-Informed Recursive Optimization Algorithms.” In: (2023). doi:
10.48550/ARXIV.2308.13607.

[23] S. Foderà, G. Turati, R. Nembrini, M. F. Dacrema, and P. Cremonesi. Reinforcement
Learning for Variational Quantum Circuits Design. 2024. doi: 10.48550/ARXIV.2409.
05475.

[24] M. Friedman. “The Use of Ranks to Avoid the Assumption of Normality Implicit
in the Analysis of Variance.” In: Journal of the American Statistical Association
32.200 (Dec. 1937), pp. 675–701. issn: 1537-274X. doi: 10.1080/01621459.1937.
10503522.

[25] M. R. Garey and D. S. Johnson. Computers and intractability. A guide to the theory of
NP-completeness. 27. print. A @series of books in the mathematical sciences. New
York [u.a]: Freeman, 2009. 338 pp. isbn: 9780716710448.

[26] J. F. Gonçalves and M. G. C. Resende. “Biased random-key genetic algorithms
for combinatorial optimization.” In: Journal of Heuristics 17.5 (Aug. 2010), pp. 487–
525. issn: 1572-9397. doi: 10.1007/s10732-010-9143-1.

[27] R. D. Guerrero. Bee-yond the Plateau: Training QNNs with Swarm Algorithms. 2024.
doi: 10.48550/ARXIV.2408.08836.

[28] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual. 2024.

[29] S. Hadfield, Z. Wang, B. O’Gorman, E. G. Rieffel, D. Venturelli, and R. Biswas.
“From the Quantum Approximate Optimization Algorithm to a Quantum Alter-
nating Operator Ansatz.” In: Algorithms 12.2 (Feb. 2019), p. 34. issn: 1999-4893.
doi: 10.3390/a12020034.

[30] T. Hao, Z. He, R. Shaydulin, J. Larson, and M. Pistoia. End-to-End Protocol for High-
Quality QAOA Parameters with Few Shots. 2024. doi: 10.48550/ARXIV.2408.00557.

[31] J. H. Holland. Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. MIT press, 1992.

[32] IBM. IBM ILOG CPLEX Optimization Studio 22.1.2 Documentation. 2024.

54

https://doi.org/10.48550/ARXIV.1411.4028
https://doi.org/10.48550/ARXIV.QUANT-PH/0001106
https://doi.org/10.1007/bf01096763
https://doi.org/10.48550/ARXIV.2308.13607
https://doi.org/10.48550/ARXIV.2409.05475
https://doi.org/10.48550/ARXIV.2409.05475
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1080/01621459.1937.10503522
https://doi.org/10.1007/s10732-010-9143-1
https://doi.org/10.48550/ARXIV.2408.08836
https://doi.org/10.3390/a12020034
https://doi.org/10.48550/ARXIV.2408.00557

Bibliography

[33] J. Kennedy and R. Eberhart. “Particle swarm optimization.” In: Proceedings of
ICNN’95 - International Conference on Neural Networks. Vol. 4. ICNN-95. IEEE, 1995,
pp. 1942–1948. doi: 10.1109/icnn.1995.488968.

[34] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 2014. doi:
10.48550/ARXIV.1412.6980.

[35] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. “Optimization by Simulated An-
nealing.” In: Science 220.4598 (May 1983), pp. 671–680. issn: 1095-9203. doi:
10.1126/science.220.4598.671.

[36] G. Kochenberger, J.-K. Hao, F. Glover, M. Lewis, Z. Lü, H. Wang, and Y. Wang.
“The unconstrained binary quadratic programming problem: a survey.” In: Journal
of Combinatorial Optimization 28.1 (Apr. 2014), pp. 58–81. issn: 1573-2886. doi:
10.1007/s10878-014-9734-0.

[37] M. Kölle, D. Seidl, M. Zorn, P. Altmann, J. Stein, and T. Gabor. Optimizing
Variational Quantum Circuits Using Metaheuristic Strategies in Reinforcement Learning.
2024. doi: 10.48550/ARXIV.2408.01187.

[38] Q. Langfitt, R. Tate, and S. Eidenbenz. Phantom Edges in the Problem Hamiltonian:
A Method for Increasing Performance and Graph Visibility for QAOA. 2024. doi:
10.48550/ARXIV.2411.05216.

[39] M. Larocca, P. Czarnik, K. Sharma, G. Muraleedharan, P. J. Coles, and M. Cerezo.
“Diagnosing Barren Plateaus with Tools from Quantum Optimal Control.” In:
Quantum 6 (Sept. 2022), p. 824. issn: 2521-327X. doi: 10.22331/q-2022-09-29-
824.

[40] P. F. Leonhart, E. Spieler, R. Ligabue-Braun, and M. Dorn. “A biased random key
genetic algorithm for the protein–ligand docking problem.” In: Soft Computing
23.12 (Feb. 2018), pp. 4155–4176. issn: 1433-7479. doi: 10.1007/s00500-018-
3065-5.

[41] H. R. Lourenço, O. C. Martin, and T. Stützle. “Iterated Local Search.” In: Handbook
of Metaheuristics. Kluwer Academic Publishers, pp. 320–353. isbn: 1402072635.
doi: 10.1007/0-306-48056-5_11.

[42] A. Lucas. “Ising formulations of many NP problems.” In: (2013). doi: 10.48550/
ARXIV.1302.5843.

[43] J. R. McClean, J. Romero, R. Babbush, and A. Aspuru-Guzik. “The theory of
variational hybrid quantum-classical algorithms.” In: New Journal of Physics 18.2
(Feb. 2016), p. 023023. issn: 1367-2630. doi: 10.1088/1367-2630/18/2/023023.

55

https://doi.org/10.1109/icnn.1995.488968
https://doi.org/10.48550/ARXIV.1412.6980
https://doi.org/10.1126/science.220.4598.671
https://doi.org/10.1007/s10878-014-9734-0
https://doi.org/10.48550/ARXIV.2408.01187
https://doi.org/10.48550/ARXIV.2411.05216
https://doi.org/10.22331/q-2022-09-29-824
https://doi.org/10.22331/q-2022-09-29-824
https://doi.org/10.1007/s00500-018-3065-5
https://doi.org/10.1007/s00500-018-3065-5
https://doi.org/10.1007/0-306-48056-5_11
https://doi.org/10.48550/ARXIV.1302.5843
https://doi.org/10.48550/ARXIV.1302.5843
https://doi.org/10.1088/1367-2630/18/2/023023

Bibliography

[44] J. R. McClean, M. E. Kimchi-Schwartz, J. Carter, and W. A. de Jong. “Hybrid
quantum-classical hierarchy for mitigation of decoherence and determination of
excited states.” In: Physical Review A 95.4 (Apr. 2017), p. 042308. issn: 2469-9934.
doi: 10.1103/physreva.95.042308.

[45] D. C. McKay, I. Hincks, E. J. Pritchett, M. Carroll, L. C. G. Govia, and S. T. Merkel.
Benchmarking Quantum Processor Performance at Scale. 2023. doi: 10.48550/ARXIV.
2311.05933.

[46] J.-Y. P. Michel Gendreau, ed. Handbook of Metaheuristics. Springer US, 2010. isbn:
9781441916655. doi: 10.1007/978-1-4419-1665-5.

[47] N. Mladenović and P. Hansen. “Variable neighborhood search.” In: Computers
& Operations Research 24.11 (Nov. 1997), pp. 1097–1100. issn: 0305-0548. doi:
10.1016/s0305-0548(97)00031-2.

[48] G. Nannicini. “Performance of hybrid quantum/classical variational heuristics
for combinatorial optimization.” In: (2018). doi: 10.48550/ARXIV.1805.12037.

[49] J. A. Nelder and R. Mead. “A Simplex Method for Function Minimization.” In:
The Computer Journal 7.4 (Jan. 1965), pp. 308–313. issn: 1460-2067. doi: 10.1093/
comjnl/7.4.308.

[50] P. B. Nemenyi. Distribution-free multiple comparisons. Princeton University, 1963.

[51] A. C. M. d. Oliveira, A. A. Chaves, and L. A. N. Lorena. “Clustering search.” In:
Pesquisa Operacional 33.1 (Apr. 2013), pp. 105–121. issn: 0101-7438. doi: 10.1590/
s0101-74382013000100007.

[52] P. H. V. Penna, A. Subramanian, and L. S. Ochi. “An Iterated Local Search heuristic
for the Heterogeneous Fleet Vehicle Routing Problem.” In: Journal of Heuristics
19.2 (Sept. 2011), pp. 201–232. issn: 1572-9397. doi: 10.1007/s10732-011-9186-y.

[53] A. Peruzzo, J. McClean, P. Shadbolt, M.-H. Yung, X.-Q. Zhou, P. J. Love, A.
Aspuru-Guzik, and J. L. O’Brien. “A variational eigenvalue solver on a photonic
quantum processor.” In: Nature Communications 5.1 (July 2014). issn: 2041-1723.
doi: 10.1038/ncomms5213.

[54] M. J. D. Powell. “A Direct Search Optimization Method That Models the Ob-
jective and Constraint Functions by Linear Interpolation.” In: Advances in Op-
timization and Numerical Analysis. Springer Netherlands, 1994, pp. 51–67. isbn:
9789401583305. doi: 10.1007/978-94-015-8330-5_4.

[55] J. Puerto, F. Ricca, M. Rodríguez-Madrena, and A. Scozzari. “A combinatorial
optimization approach to scenario filtering in portfolio selection.” In: Computers
& Operations Research 142 (June 2022), p. 105701. issn: 0305-0548. doi: 10.1016/j.
cor.2022.105701.

56

https://doi.org/10.1103/physreva.95.042308
https://doi.org/10.48550/ARXIV.2311.05933
https://doi.org/10.48550/ARXIV.2311.05933
https://doi.org/10.1007/978-1-4419-1665-5
https://doi.org/10.1016/s0305-0548(97)00031-2
https://doi.org/10.48550/ARXIV.1805.12037
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1093/comjnl/7.4.308
https://doi.org/10.1590/s0101-74382013000100007
https://doi.org/10.1590/s0101-74382013000100007
https://doi.org/10.1007/s10732-011-9186-y
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1007/978-94-015-8330-5_4
https://doi.org/10.1016/j.cor.2022.105701
https://doi.org/10.1016/j.cor.2022.105701

Bibliography

[56] G. Reinelt. “TSPLIB—A Traveling Salesman Problem Library.” In: ORSA Journal
on Computing 3.4 (Nov. 1991), pp. 376–384. issn: 2326-3245. doi: 10.1287/ijoc.3.
4.376.

[57] S. Ropke and D. Pisinger. “A unified heuristic for a large class of Vehicle Routing
Problems with Backhauls.” In: European Journal of Operational Research 171.3 (June
2006), pp. 750–775. issn: 0377-2217. doi: 10.1016/j.ejor.2004.09.004.

[58] M. J. A. Schuetz, J. K. Brubaker, H. Montagu, Y. van Dijk, J. Klepsch, P. Ross,
A. Luckow, M. G. C. Resende, and H. G. Katzgraber. “Optimization of Robot
Trajectory Planning with Nature-Inspired and Hybrid Quantum Algorithms.” In:
(2022). doi: 10.48550/ARXIV.2206.03651.

[59] M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, and N. Killoran. “Evaluating analytic
gradients on quantum hardware.” In: (2018). doi: 10.48550/ARXIV.1811.11184.

[60] M. Sciorilli, L. Borges, T. L. Patti, D. García-Martín, G. Camilo, A. Anandkumar,
and L. Aolita. Towards large-scale quantum optimization solvers with few qubits. 2024.
doi: 10.48550/ARXIV.2401.09421.

[61] J. C. Spall. “A Stochastic Approximation Technique for Generating Maximum
Likelihood Parameter Estimates.” In: 1987 American Control Conference. 1987,
pp. 1161–1167. doi: 10.23919/ACC.1987.4789489.

[62] K. J. Sung, J. Yao, M. P. Harrigan, N. C. Rubin, Z. Jiang, L. Lin, R. Babbush, and
J. R. McClean. “Using models to improve optimizers for variational quantum
algorithms.” In: Quantum Science and Technology 5.4 (Sept. 2020), p. 044008. issn:
2058-9565. doi: 10.1088/2058-9565/abb6d9.

[63] M. Suzuki. “Generalized Trotter’s formula and systematic approximants of ex-
ponential operators and inner derivations with applications to many-body prob-
lems.” In: Communications in Mathematical Physics 51.2 (June 1976), pp. 183–190.
issn: 1432-0916. doi: 10.1007/bf01609348.

[64] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright, S. J. van der Walt, M. Brett,
J. Wilson, K. J. Millman, N. Mayorov, A. R. J. Nelson, E. Jones, R. Kern, E. Larson,
C. J. Carey, İ. Polat, Y. Feng, E. W. Moore, J. VanderPlas, D. Laxalde, J. Perktold,
R. Cimrman, I. Henriksen, E. A. Quintero, C. R. Harris, A. M. Archibald, A. H.
Ribeiro, F. Pedregosa, P. van Mulbregt, and SciPy 1.0 Contributors. “SciPy 1.0:
Fundamental Algorithms for Scientific Computing in Python.” In: Nature Methods
17 (2020), pp. 261–272. doi: 10.1038/s41592-019-0686-2.

57

https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1016/j.ejor.2004.09.004
https://doi.org/10.48550/ARXIV.2206.03651
https://doi.org/10.48550/ARXIV.1811.11184
https://doi.org/10.48550/ARXIV.2401.09421
https://doi.org/10.23919/ACC.1987.4789489
https://doi.org/10.1088/2058-9565/abb6d9
https://doi.org/10.1007/bf01609348
https://doi.org/10.1038/s41592-019-0686-2

Bibliography

[65] S. Wang, E. Fontana, M. Cerezo, K. Sharma, A. Sone, L. Cincio, and P. J. Coles.
“Noise-induced barren plateaus in variational quantum algorithms.” In: Nature
Communications 12.1 (Nov. 2021). issn: 2041-1723. doi: 10.1038/s41467-021-
27045-6.

[66] J. Wurtz and P. J. Love. “Counterdiabaticity and the quantum approximate
optimization algorithm.” In: Quantum 6 (Jan. 2022), p. 635. issn: 2521-327X. doi:
10.22331/q-2022-01-27-635.

[67] J. Wurtz, S. Sack, and S.-T. Wang. Solving non-native combinatorial optimization
problems using hybrid quantum-classical algorithms. 2024. doi: 10.48550/ARXIV.
2403.03153.

[68] L. Zhou, S.-T. Wang, S. Choi, H. Pichler, and M. D. Lukin. “Quantum Approximate
Optimization Algorithm: Performance, Mechanism, and Implementation on Near-
Term Devices.” In: Physical Review X 10.2 (June 2020), p. 021067. issn: 2160-3308.
doi: 10.1103/physrevx.10.021067.

[69] L. Zhu, H. L. Tang, G. S. Barron, F. A. Calderon-Vargas, N. J. Mayhall, E. Barnes,
and S. E. Economou. “Adaptive quantum approximate optimization algorithm for
solving combinatorial problems on a quantum computer.” In: Physical Review Re-
search 4.3 (July 2022), p. 033029. issn: 2643-1564. doi: 10.1103/physrevresearch.
4.033029.

58

https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.1038/s41467-021-27045-6
https://doi.org/10.22331/q-2022-01-27-635
https://doi.org/10.48550/ARXIV.2403.03153
https://doi.org/10.48550/ARXIV.2403.03153
https://doi.org/10.1103/physrevx.10.021067
https://doi.org/10.1103/physrevresearch.4.033029
https://doi.org/10.1103/physrevresearch.4.033029

	Acknowledgments
	Abstract
	Contents
	Introduction
	Background
	Combinatorial Optimization and Metaheuristics
	MaxCut and Ising Models
	The Traveling Salesman Problem
	Random Key Optimization
	Variational Quantum Algorithms
	The Quantum Approximate Optimization Algorithm

	RKO for QAOA-Training
	Choice of Optimizers and Configuration
	Cost Function and Performance Metrics
	Hyperparameter Optimization
	Statistical Tests
	Problem Instances
	Parameter Decoder
	Results
	Discussion

	RKO for Operator Selection
	Structure Decoder
	Counterdiabatic Driving
	Phantom Edges
	Results
	Discussion

	RKO for Non-Native Poblems
	Polynomial Compression
	Permutation Decoder
	Variational Ansatz
	Experimental Setup
	Results
	Discussion

	Conclusions
	Hyperparameters
	TSP instances
	Abbreviations
	List of Figures
	List of Tables
	Bibliography

