
Department of Mathematics
TUM School of Computation, Information and Technology
Technical University of Munich

Dimension of Sparse Factor Analysis
Models

Carolina Kornitzer

Thesis for the attainment of the academic degree

Bachelor of Science

at the TUM School of Computation, Information and Technology of the Technical University of Munich.

Supervisor:
Prof. Mathias Drton, Ph.D.

Advisor:
Dr. Nils Sturma

Submitted:
Munich, 15.01.2025

I hereby declare that this thesis is entirely the result of my own work except where otherwise indicated. I
have only used the resources given in the list of references.

Munich, 15.01.2025

Mobile User

Abstract
Factor analysis is a statistical tool for modeling observed variables and their correlations in terms of un-
derlying independent, unobserved factors. This thesis focuses on sparse factor analysis models, which
are characterized by factors that do not necessarily influence all observed variables. Recent results have
shown that for such models, the dimension can always be upper-bounded. When a certain level of spar-
sity is present, a lower bound can also be determined. Clearly, in cases where both bounds coincide, a
dimension formula is obtained. In this thesis, we seek to develop software in R to determine these bounds
computationally, as this may already suffice to get the model’s dimension. As a practical application, we
perform simulations to identify the smallest graph in terms of the number of nodes and edges for which the
bounds vary, as well as to identify the graphs that have expected dimension despite differing bounds. For
the latter case of graphs, we will make use of the computer algebra system MACAULAY2 to determine the
dimension, as differing bounds do not provide definitive information. Moreover, we extend our dimension
analysis to a particular case of sparse factor analysis models with dependent, unobserved factors.

Zusammenfassung
Faktorenanalyse ist ein statistisches Verfahren zur Modellierung beobachteter Variablen und ihrer Kor-
relationen in Bezug auf zugrunde liegende unabhängige, unbeobachtete Faktoren. Diese Arbeit befasst
sich mit dünnbesetzten Faktorenanalyse-Modellen, die dadurch charakterisiert sind, dass die Faktoren
nicht alle beobachteten Variablen beeinflussen müssen. Jüngste Ergebnisse haben gezeigt, dass für sol-
che Modelle die Dimension immer nach oben beschränkt werden kann. Wenn ein bestimmter Grad an
Dünnbesetzung vorhanden ist, kann auch eine untere Schranke bestimmt werden. In Fällen, in denen
beide Schranken übereinstimmen, erhält man eine Dimensionsformel. In dieser Arbeit werden wir eine
Software in R entwickeln, um die Schranken computerbasiert zu berechnen. Oftmals genügt dies, um die
Dimension des Modells zu erhalten. Als praktische Anwendung führen wir Simulationen durch, um den
kleinsten Graphen in Bezug auf die Anzahl an Knoten und Kanten zu identifizieren, für den die Schranken
nicht übereinstimmen, und um diejenigen Graphen zu identifizieren, die trotz abweichender Schranken
die erwartete Dimension haben. Für diesen letzten Fall nutzen wir das Computeralgebrasystem MACAU-
LAY2, um die Dimension zu bestimmen, da abweichende Schranken keine endgültige Information liefern.
Darüber hinaus erweitern wir unsere Analyse auf einen konkreten Fall von dünnbesetzten Modellen mit
abhängigen Faktoren.

Contents

1 Introduction 1

2 Preliminaries 2
2.1 Algebraic background . 2
2.2 Factor analysis models . 4

3 Bounds on the dimension 7
3.1 Upper bound on the dimension . 7
3.2 Lower bound on the dimension . 9

4 Computation 12
4.1 Algorithm to compute the upper bound . 12
4.2 Algorithm to compute the largest lower bound . 15
4.3 Computing dimensions in Macaulay2 . 17
4.4 Simulations . 19

4.4.1 Results on graphs up to three latent and seven observed nodes 19
4.4.2 Smallest graph for which the bounds differ . 22

5 Dependent factors 25

6 Conclusion 32

1

1 Introduction

Factor analysis is a powerful statistical technique where unobserved random variables, termed factors,
affect linearly the behavior of observed random variables along with some independent noise. It has its
origins in the early 1900s when Spearman conceptualized the idea now known as factor analysis to study
intelligence structures (Spearman, 1904). Since then, factor analysis has contributed valuable insights for
analyzing multivariate data in a variety of fields, including psychology and medicine (Iwanaga et al., 2020;
Petrinovich and Hardyck, 1964), economics (Jurczak and Jurczak, 2021) and sociology (Petersen et al.,
1964). In practice, the number of factors is significantly smaller than the number of observed variables,
which explains the common characterization of factor analysis as a dimension-reduction tool (Drton et al.,
2007). In particular, let X ∈ Rp be the vector of observed variables Xi, and let Y ∈ Rm represent the
vector of factors Yi. Then factor analysis relies on the assumption that X can be defined as the solution of
equations

X = ΛY + ε,

where Λ ∈ Rp×m is the unknown factor loading matrix and ε ∈ Rp denotes the vector of noise terms εi.
The factors Yi are usually not only assumed to be independent of the noise ε but also mutually indepen-
dent. It is furthermore assumed that the factors Yi are scaled to have mean zero and variance one and
that E[εi] = 0 and Var[εi] =: ωii ∈ (0,∞).
Our principal focus in this work will be the covariance matrix of X, which, given our previously made
assumptions, is given by

Σ := Cov[X] = ΛΛ⊤ + Ω,

where Ω is a diagonal matrix with entries ωii = Cov[εi]. More precisely, we will identify each factor analysis
model with the set of its covariance matrices and aim to determine this set’s dimension. Significant differ-
ences in terms of dimension properties emerge when distinguishing between full factor analysis models,
where all entries of Λ are nonzero, and sparse factor analysis models, where the coefficients λvh of Λ are
allowed to be zero. While the dimension of traditional full factor models can be easily obtained by counting
parameters, the dimension of sparse factor models can potentially drop, making the process of dimension
determination less immediate. However, a recent advance has shown that for any model an upper bound
on the dimension can be evaluated. For models with a certain level of sparsity, we can additionally derive
a lower bound. In cases where both bounds coincide, a dimension formula is obtained (Drton et al., 2024).
This approach significantly accelerates the process of manually determining the dimension in many cases
and motivates the central task of this thesis: Implementing efficient algorithms in R for computational
bound evaluation, with the final goal of computationally deriving the model’s dimension when possible. For
cases where the bounds are insufficient to obtain the dimension, we demonstrate how to compute the
dimension directly using the computer algebra system MACAULAY2.
The thesis is structured into four major parts. Chapter 2 covers basic algebraic background and notions
of factor analysis, necessary for a proper understanding of the topic. We then summarize in Chapter 3 the
bounds on the dimension of sparse factor analysis models that were obtained in Drton et al. (2024), illus-
trating the results with an example. In Chapter 4 we examine thoroughly the computational aspects, which
includes presenting algorithms in R to evaluate the bounds on the dimension of models, comparing their
complexity, running simulations and analyzing their results. Finally, in Chapter 5 we drop the previously
made assumption of independent factors, leading to a brief study of the dimension of a particular sparse
factor analysis graph with dependent factors.

2 CHAPTER 2. PRELIMINARIES

2 Preliminaries

2.1 Algebraic background

We will begin by introducing some common algebraic results which will provide the necessary foundation
for a proper understanding of the subject. The first proposition establishes a connection between the
dimension of a map’s image and the rank of the corresponding Jacobian matrix. This is Proposition 16.1.7
from Sullivant (2018), specifically tailored to the case where the function maps into the space Rn.

Proposition 2.1. Let Θ ⊆ Rd with dim Θ = d and suppose that τ is a rational map τ : Θ −→ Rn. Then
dim Im(τ) is equal to the rank of the Jacobian matrix evaluated at a generic point:

J(τ) =


∂τ1
∂θ1

. . . ∂τ1
∂θd

...
. . .

...
∂τn
∂θ1

. . . ∂τn
∂θd

. (1)

Remark 2.2. Let s = dim Im(τ) be the generic rank of J(τ) and denote the set of all s× s minors of J(τ)
by G = {g1, ..., gk} ⊂ R[θ1, ..., θd] with k =

(d
s

)(n
s

)
. Then every l × l minor of J(τ) with l > s vanishes,

while at least one s × s minor must be nonzero (Bapat, 2012, Section 2.3). Furthermore, let us denote
by N = {θ ∈ Θ : rank J(τ(θ)) < s} the set of all critical points of τ . By definition, for all θ ∈ N , every
s× s minor must vanish. Consequently, we can express the set of critical points as the intersection of the
vanishing sets of gi ∈ G:

N =
⋂

i∈[k]
V (gi) =

⋂
i∈[k]
{θ ∈ Θ : gi(θ) = 0}.

As stated in the Lemma of Okamoto (1973, Section 2), each vanishing set V (gi) has Lebesgue measure
zero, which implies that N is also of measure zero. We conclude that rank(J(τ(θ))) = s for almost all
θ ∈ Θ.

For a given polynomial map τ : Rd −→ Rn, we can define the following ring map

ψτ : R[x1, ..., xn] −→ R[y1, ..., yd]
xi 7−→ τi(y1, ..., yd),

(2)

referred to as the dual map of τ throughout the thesis. It can indeed be interpreted as a sort of dual
to τ , in the sense that it maps the coordinates of the codimension of τ to the corresponding polynomial
expression. The next proposition states an important property about the kernel of ψτ . We denote the
vanishing ideal by I(·).

Proposition 2.3. Let τ : Rd −→ Rn be a polynomial map and let ψτ be the corresponding dual map as
defined in (2). It holds that

kernel(ψτ) = I(Im(τ)). (3)

Proof. We show inclusion in both directions.
“⊆” Let g ∈ kernel(ψτ), then

0 = ψτ (g(x1, ..., xn)) = g(τ1(y1, ..., yd), ..., τn(y1, ..., yd)).

In particular, this holds for all y ∈ Rd. Since {τ(y)|y ∈ Rd} = Im(τ), we get that g vanishes for all
elements of Im(τ), which implies g ∈ I(Im(τ)).

2.1. Algebraic background 3

“⊇” Let g ∈ I(Im(τ)). In order to prove that g ∈ kernel(ψτ), we must show 0 = ψτ (g(x1, ..., xn)) for all
x ∈ Rn. Fixing any x ∈ Rn yields

ψτ (g(x1, ..., xn)) = g(τ1(y1, ..., yd), ..., τn(y1, ..., yd)) = 0,

with the last equality following from g ∈ I(Im(τ)). This completes the proof.

We will now review the study of semi-algebraic sets, which are sets defined by a combination of polynomial
equations and inequalities. The results are based on Chapter 2 of Bochnak et al. (1998), unless where
otherwise stated. They will become particularly relevant in Section 4.3, where we give an approach to
algebraically compute the dimension of a factor analysis model.

Definition 2.4. A semi-algebraic subset of Rn is a finite union of sets of the form

{x ∈ Rn|g1(x) = . . . = gl(x) = 0, h1(x) > 0, . . . , hm(x) > 0},

where g1(x), . . . , gl(x), h1(x), . . . , hm(x) are in R[X1, . . . , Xn].

Having established a formal definition of semi-algebraic sets, we can now proceed to state one of their main
properties: stability under projections. This valuable characteristic, known as Tarski-Seidenberg Theorem,
guarantees that mapping a semi-algebraic set to a lower dimensional space preserves its semi-algebraic
structure.

Theorem 2.5. (Tarski-Seidenberg Theorem) LetA denote a semi-algebraic subset of the space Rn+1 and
let π : Rn+1 → Rn be the projection on the space of the first n coordinates. Then π(A) is a semi-algebraic
subset of Rn.

Proof. A proof of this theorem can be found in Bochnak et al. (1998, Theorem 2.2.1).

We can now extend beyond the general projection property of semi-algebraic sets, leading to a corollary
that particularly highlights the behavior of a semi-algebraic set’s image under polynomial mappings.

Corollary 2.6. (Coste, 2002, Corollary 2.4)
(1) If A is a semi-algebraic subset of Rn+k, its image by the projection on the space of the first n

coordinates is a semi-algebraic subset of Rn.

(2) If A is a semi-algebraic subset of Rm and F : Rm → Rn a polynomial mapping, then the direct
image F (A) is a semi-algebraic subset of Rn.

Proof. The first statement is trivially obtained by induction on k. For the second statement, write F as the
composition of the graph function and a projection

F : Rm ΓF−→ Rm × Rn π−→ Rn.

We note that ΓF (A) = {(x, y) ∈ Rm × Rn | x ∈ A and y = F (x)} is a semi-algebraic subset of Rm × Rn

and that F (A) is its projection onto Rn. The result follows by applying the first statement.

To further study semi-algebraic sets, we will now focus on their dimension, which is defined below.

Definition 2.7. LetA ⊆ Rn be a semi-algebraic set. Denote by R[X1, . . . , Xn]/I(A) the ring of polynomial
functions on A. The dimension of A is defined by

dim(A) = dim(R[X1, . . . , Xn]/I(A)). (4)

We close this section by considering the Zariski closure of a semi-algebraic set A ⊆ Rn, which is the
smallest algebraic subset of Rn containing A (Coste, 2002, Section 3.3.2). The vanishing ideal of a
Zariski closure always coincides with the vanishing ideal of the original set. Note that this result is widely
considered self-evident, and no explicit proof was found in the literature. For completeness, we provide a
proof here.

4 CHAPTER 2. PRELIMINARIES

Proposition 2.8. Let A ⊆ Rn be a semi-algebraic set. Then

I(A) = I(closzar(A)), (5)

where closzar(A) is the Zariski closure of A.

Proof. We show inclusion in both directions.
“⊇” Since A ⊆ closzar(A), we get that I(closzar(A)) ⊆ I(A).
“⊆” Suppose g ∈ I(A). Then g vanishes on a set Q ⊆ Rn which contains A. By definition, Q must
be Zariski-closed and closzar(A) ⊆ Q. This implies that g vanishes on the set closzar(A), and therefore
g ∈ I(closzar(A)) as needed.

The next proposition follows immediately.

Proposition 2.9. Let A ⊆ Rn be a semi-algebraic set. Then

dim(A) = dim(closzar(A)). (6)

Proof. Since I(A) = I(closzar(A)), we have

dim(A) (4)= dim(R[X1, . . . , Xn]/I(A)) (5)= dim(R[X1, . . . , Xn]/I(closzar(A))) (4)= dim(closzar(A)).

2.2 Factor analysis models

The results in this section rely on the work of Drton et al. (2024). We begin by introducing some necessary
terminology and notation related to directed graphs, which will be used in this thesis.
A directed Graph G can be described as a tuple (H ∪ V,D), where V and H represent finite and disjoint
sets of observed and latent nodes, respectively. For the entirety of this thesis, we will fix |V | = p and
|H| = m. The set D ⊆ H × V refers to the edges. We write h → v ∈ D, whenever (h, v) ∈ D
and say that h is a parent of its child v. Note that in all chapters of this thesis except for Chapter 5, we
will exclusively consider bipartite graphs where edges point from latent to observed nodes. Furthermore,
we will denote by pa(v) = {h ∈ H : h → v ∈ D} the set of all parents of a node v ∈ V and by
ch(h) = {v ∈ V : h → v ∈ D} the set of all children of a node h ∈ H. For the set that contains all pairs
consisting of 2 distinct nodes of V , we write C(V, 2) := {{v, w} : v, w ∈ V, v ̸= w}. Then the set of joint
parents of a pair {u, v} ∈ C(V, 2) can be declared as jpa({u, v}) = {h ∈ H : h ∈ pa(u)∩ pa(v)}. Finally,
let h ∈ H be a latent node, then C(V, 2)h = {{v, w} ∈ C(V, 2) : h ∈ jpa({v, w})} refers to the set of all
2-pairs of nodes that share h as a joint parent.
We now formalize that each factor analysis graph encodes a factor analysis model that can be identified
with the set of its covariance matrices. We write RD for the set of real |V | × |H| matrices Λ = (λvh) with
support D, where λvh = 0 if h → v ̸∈ D. Additionally, we denote the subset of diagonal positive definite
matrices by Rp

>0 ⊂ PD(p), where PD(p) is the set of all positive definite matrices in Rp×p.

Definition 2.10. Let G = (V ∪ H, D) be a factor analysis graph with |V | = p and |H| = m. As a model
of the covariance matrix, the factor analysis model determined by G is the image F (G) = Im(τG) of the
parametrization map

τG : Rp
>0 × RD −→ PD(p)

(Ω,Λ) 7−→ Ω + ΛΛ⊤.
(7)

Our main subject of interest is the dimension of the covariance model F (G) of a sparse factor analysis
graph G. Determining the dimension of a full factor analysis model involves simply counting parameters,
since they are always of expected dimension, min{|V | + |D|,

(|V |+1
2
)
} (Drton et al., 2007, Theorem 2).

However, this intuitive approach is usually not applicable for sparse factor analysis graphs, as their dimen-
sion may drop. The following example serves well to introduce the sparse factor analysis models that we
will be working with.

2.2. Factor analysis models 5

h1

h2 h3

v1 v2 v3 v4 v5 v6

Figure 1 Sparse factor analysis graph with lower model dimension than number of parameters.

Example 2.11. Consider the graph in Figure 1. Clearly, its expected dimension equals |V | + |D| = 16.
The covariance model F (G) is a subset of the space of symmetric 6 × 6 matrices which has dimension(7

2
)

= 21. Performing matrix multiplication, we can easily convince ourselves that in every covariance
matrix there are three zero entries, σv1v2 = σv2v3 = σv2v6 = 0. This yields a trivial upper bound of 18. We
will see in Example 3.4 that the model’s actual dimension is 15. Hence, we observe that in the case of this
particular sparse factor analysis model, dimension drops by one.

To determine the actual dimension of a sparse factor analysis model, we will, rather than just counting
parameters, make use of the connection between the dimension of F (G) and the Jacobian matrix of τG.
This was established in Proposition 2.1. Thus, let us consider the dual map of τG which expresses the
entries of the covariance matrix Σ = Ω+ΛΛ⊤ with Ω = diag(ωvv) ∈ Rp

>0 and Λ = (λvh) ∈ RD, and which
is given by

ψτG : R[σuv|u, v ∈ V] −→ R[ωvv, λvh|v ∈ V, h ∈ H]

(σuv) 7−→
{∑

h∈jpa({u,v}) λuhλvh if u ̸= v,

ωuu +
∑

h∈pa(u) λ
2
uh if u = v.

(8)

We can now easily study the Jacobian matrix of τG that has the following structure

J =
ω λ()

u Ip C
{u, v} 0 B

,

where the first rows indexed by u indicate the derivatives of σuu and the lower rows indexed by {u, v} with
u ̸= v refer to the derivatives of σuv. The derivatives of the entries σuu with respect to ω are given by

∂σuu

∂ωvv
=
{

1 if u = v,
0 else,

which explains the unit matrix Ip in the upper left block of J . The entries of the matrix B in the lower right
block are given by

∂σuv

∂λzh
=
{ λvh if z = u and h ∈ jpa({u, v}),
λuh if z = v and h ∈ jpa({u, v}),
0 else.

(9)

Recalling Proposition 2.1, the dimension of the covariance model F (G) coincides with the rank of the
Jacobian matrix and thus

dimF (G) = p+ rank(B). (10)

For our purpose of formalizing bounds on the dimension of sparse factor analysis models, we will introduce
the idea of valid collections which are characterized by pairwise disjoint components whose cardinalities
do not exceed the number of children of the corresponding factor.

6 CHAPTER 2. PRELIMINARIES

Definition 2.12. Let G = (V ∪ H) be a factor analysis graph and let A = (Ah)h∈H be a collection of
observed 2-pairs, that is, Ah ⊆ C(V, 2). We say that the collection A is valid if

(i) Ah ⊆ C(V, 2)h with cardinality |Ah| ≤ | ch(h)| for all h ∈ H, and

(ii) the collection is pairwise disjoint, i.e., Ah ∩Aℓ = ∅ for h ̸= ℓ.

Moreover, we say that
∑

h∈H |Ah| is the sum of cardinalities of a valid collection.

The next definition allows us to identify a particular class of factor analysis graphs that possess a minimal
level of sparsity.

Definition 2.13. A factor analysis graph and its associated model satisfy the Zero Upper Triangular As-
sumption (ZUTA) if there exists a relabeling of the latent nodes H = {h1, . . . , hm} such that ch(hi) is not
contained in

⋃
j>i ch(hj) for all i = 1, . . . ,m. In this case, there is then a relabeling of the observed nodes

V = {v1, . . . , vp} such that vi ∈ ch(hi) and vi ̸∈
⋃

j>i ch(hj) for all i = 1, . . . ,m.

Example 2.14. Consider the graph in Figure 1. Both the latent and observed nodes are already ordered
in a way that satisfies ZUTA. Note that several other relabelings of latent and observed nodes are also
possible for ZUTA to be satisfied, such as interchanging the roles of h2 and h3 as well as v2 and v3.

The ZUTA condition guarantees that the factor loading matrix Λ can be rearranged, by permuting its
columns and rows, such that all entries above the main diagonal are zero, while all diagonal entries are
nonzero. Furthermore, ZUTA ensures the existence of a more refined version of valid collections, referred
to as ZUTA-compliant collections.

Definition 2.15. Suppose that ZUTA is satisfied. A valid collection A = (Ah)h∈H of 2-pairs is ZUTA-
compliant if {vi, w} ∈ Ahi

for all w ∈ ch(hi) \ {vi} and for all i ∈ [m].

Remark 2.16. Consider the sets Ci := {{vi, w} : w ∈ ch(hi) \ {vi}} for i ∈ [m]. If the ZUTA assumption
holds, existence of a ZUTA-compliant collection follows directly, given that the collection A = (Ah)h∈H,
where Ahi

= Ci, satisfies all conditions of Definition 2.15. In fact, this collection contains the minimum
amount of 2-pairs that are necessary to form a ZUTA-compliant collection, with each component Ahi

having cardinality | ch(hi)| − 1. For every further ZUTA-compliant collection A = (Ah)h∈H, it must hold
that Ci ⊆ Ahi

for all i ∈ [m]. Recalling Definition 2.12, we get that the cardinality of Ahi
can be at

most equal to | ch(hi)|. This leads to the conclusion that there are 2 possibilities for the components of a
ZUTA-compliant collection, namely

Ahi
=
{
Ci ∪ {Si} or

Ci,

where Si := {ui, wi} ∈ C(V, 2)h \ Ci such that an empty intersection between the components is main-
tained. We define the index sets I(=) = {i ∈ [m] : |Ahi

| = | ch(hi)|} and I(<) = [m] \ I(=). Clearly, if
Ahi

= Ci ∪ {Si} then i ∈ I(=), but if Ahi
= Ci it holds that i ∈ I(<).

7

3 Bounds on the dimension

Having established the previous results, we are now able to properly study the dimension of sparse factor
analysis models. Therefore, we summarize the approaches for evaluating the upper and lower bound on a
model’s dimension as described in Drton et al. (2024), and give a brief sketch of the corresponding proofs.
We will then demonstrate both proof strategies with an illustrative example. It is important to note that if
the upper bound coincides with the lower bound, we immediately get a result for the model’s dimension.
Otherwise, the bounds do not suffice to provide a precise value of the dimension. This issue is tackled in
Section 4.3.

3.1 Upper bound on the dimension

We begin by giving an upper bound on the dimension of sparse factor analysis models in the next theorem.
It relies on finding a valid collection A = (Ah)h∈H with maximal sum of cardinalities

∑
h∈H |Ah| and can

be applied to any sparse factor model, regardless of whether ZUTA is satisfied.

Theorem 3.1. Let G = (V ∪ H, D) be a factor analysis graph. Let A = (Ah)h∈H be a valid collection of
2-pairs such that the sum of cardinalities

∑
h∈H |Ah| is maximal among all valid collections. Then

dim(F (G)) ≤ |V |+
∑
h∈H
|Ah|.

Outline of the Proof: We refer to Drton et al. (2024, Theorem 2.9) for a detailed version of the proof,
and provide a summary of the key steps in the following. Recalling Equation (10), we aim to show that
rank(B) ≤

∑
h∈H |Ah|, as this directly implies the statement. Let λi := (λch(hi),hi

) ∈ R| ch(hi)| and
A∁ := C(V, 2) \ (

⋃
h∈HAh). Furthermore, we recall the index sets I(=) and I(<) that were defined in

Remark 2.16. For the purpose of this proof, we arrange columns and rows of the matrix B as

B =



λ1 · · · λm

Ah1 B1,1 · · · B1,m
...

...
Ahm Bm,1 · · · Bm,m

A∁ BA∁,1 · · · BA∁,m

. (11)

The proof strategy is as follows. First, we verify that the submatrix of B, consisting of the rows indexed by
the pairs R ∈ A∁ and the columns indexed by λi, where i ∈ I(<), is zero. Define the set

J0 = {i ∈ I(=) : BA∁,i ̸= 0} = {i ∈ I(=) : hi ∈ jpa(R) for some R ∈ A∁},

and, for all k ≥ 1, define

Jk = {j ∈ I(=) : there is i ∈ Jk−1 such that hj ∈ jpa(R) for some R ∈ Ahi
}.

Since hj ∈ jpa(R) for all R ∈ Ahj
, it must hold that Jk ⊆ Jk+1 for all k ≥ 0. Additionally, there must be

a k∗ ≥ 0 such that the sequence J0 ⊆ J1 ⊆ . . . stabilizes with Jk∗ = Jk∗+1 = Define J := Jk∗
.

Assuming that the previous statements hold true, we proceed to show that the matrix blocksBj,i with j ∈ J
and i ∈ [m] \ J are also equal to zero. Finally, we conclude that after restructuring the matrix B, its rank
cannot exceed

∑
h∈H |Ah|.

8 CHAPTER 3. BOUNDS ON THE DIMENSION

Example 3.2. Consider the graph in Figure 1. A maximal, valid collection is given by

Ah1 = {{v1, v3}, {v1, v4}, {v1, v5}, {v1, v6}, {v3, v4}},
Ah2 = {{v2, v4}, {v2, v5}, {v4, v5}},
Ah3 = {{v3, v6}}.

Clearly, I(=) = {1, 2} and I(<) = {3}. The only relevant 2-pairs in A∁ that index a nonzero row in B are
{{v3, v5}, {v4, v6}, {v5, v6}} ⊂ A∁. In the following discussion of this example, A∁ will refer exclusively to
this set of three 2-pairs.
Claim 1: BA∁,i = 0 for all i ∈ I(<).

Recalling Equation (9) and Equation (11), B has the following structure

B =



λv1,h1 λv3,h1 λv4,h1 λv5,h1 λv6,h1 λv2,h2 λv4,h2 λv5,h2 λv3,h3 λv6,h3

{v1, v3} λv3,h1 λv1,h1

{v1, v4} λv4,h1 λv1,h1

{v1, v5} λv5,h1 λv1,h1

{v1, v6} λv1,h1 λv6,h1

{v3, v4} λv4,h1 λv3,h1

{v2, v4} λv4,h2 λv2,h2

{v2, v5} λv5,h2 λv2,h2

{v4, v5} λv5,h1 λv4,h1 λv5,h2 λv4,h2

{v3, v6} λv6,h1 λv3,h1 λv6,h3 λv3,h3

{v3, v5} λv5,h1 λv3,h1

{v4, v6} λv6,h1 λv4,h1

{v5, v6} λv6,h1 λv5,h1



,

where void entries are zero. We see that the lower right block BA∁,3 is zero as required. Hence, Claim 1 is
already satisfied.

Claim 2: Bj,i = 0 for all j ∈ J, i ∈ [m] \ J .

The sequence (Jk)k∈N is given by J0 = Jk = {1} ∀k ∈ N. Consequently, the sequence stabilizes
already for k∗ = 0. That said, according to Claim 2, it must hold that B1,2 = B1,3 = 0 which coincides with
the results seen in the prior matrix B.

Claim 3: The rank of the matrix B cannot exceed
∑

h∈H |Ah|.

As a last step, we rearrange our matrix appropriately by placing the rows corresponding to A∁ in between
the rows corresponding to Ah1 and Ah2 . Then the matrix B is given by

B =



λv1,h1 λv3,h1 λv4,h1 λv5,h1 λv6,h1 λv2,h2 λv4,h2 λv5,h2 λv3,h3 λv6,h3

{v1, v3} λv3,h1 λv1,h1

{v1, v4} λv4,h1 λv1,h1

{v1, v5} λv5,h1 λv1,h1

{v1, v6} λv1,h1 λv6,h1

{v3, v4} λv4,h1 λv3,h1

{v3, v5} λv5,h1 λv3,h1

{v4, v6} λv6,h1 λv4,h1

{v5, v6} λv6,h1 λv5,h1

{v2, v4} λv4,h2 λv2,h2

{v2, v5} λv5,h2 λv2,h2

{v4, v5} λv5,h1 λv4,h1 λv5,h2 λv4,h2

{v3, v6} λv6,h1 λv3,h1 λv6,h3 λv3,h3



.

3.2. Lower bound on the dimension 9

The rank of this block matrix is limited by the sum of the minimum of the number of nonzero rows and
columns of the upper left block plus the minimum of the number of nonzero rows and columns of the lower
right block, i.e.

rank(B) ≤ 5 + 4 =
∑
h∈H
|Ah|.

Therefore, in this example the upper bound from Theorem 3.1 is 15.

3.2 Lower bound on the dimension

Unlike Theorem 3.1, which applies to any sparse factor analysis graph, the theorem for determining a
lower bound on the dimension is valid only for graphs that meet the ZUTA Assumption of Definition 2.13.

Theorem 3.3. Let G = (V ∪ H, D) be a factor analysis graph. Suppose that ZUTA is satisfied and let
A = (Ah)h∈H be a valid collection that is ZUTA-compliant. Then

dim(F (G)) ≥ |V |+
∑
h∈H
|Ah|.

Outline of the Proof: For a detailed version of the proof we refer to Drton et al. (2024, Theorem 2.12), and
provide a summary of the key steps in the following.
Let us first explain why it is enough to find a generic choice of Λ, denoted by Λ0 = (λ0

vi,hj
) ∈ RD, for

which the rank of B0 = B(Λ0) is at least r =
∑

h∈H |Ah|. Applying the conclusion of Remark 2.2 to the
submatrixB of the Jacobian matrix, we find that the rank ofB equals its generic rank s = dim(F (G))−|V |
almost everywhere . Assume we find a Λ0 for which rank(B0) ≥ r, then we must distinguish between two
cases. Either Λ0 is a critical point, and thus s > rank(B0), which, recalling Equation (10), implies

dim(F (G)) = |V |+ s > |V |+ rank(B0) ≥ |V |+ r,

or Λ0 is not a critical point and hence s = rank(B0), which yields

dim(F (G)) = |V |+ s = |V |+ rank(B0) ≥ |V |+ r.

Thus, finding a generic choice of parameters Λ0 such that rank(B(Λ0)) ≥ r indeed concludes the proof.
Recall all sets defined in Remark 2.16 and let S = {Si : i ∈ I(=)} as well as A∁ = C(V, 2) \ (

⋃
h∈HAh).

Moreover, define ch(hi)− = ch(hi)\{vi} and λ−
i = λch(hi)−,hi

∈ R| ch(hi)|−1. For the purpose of this proof,
we rearrange the matrix B as

B =



λv1,h1 · · · λvm,hm λ−
1 · · · λ−

m

C1 λ−
1 B1,1

. . .
...

. . .
Cm λ−

m Bm,1 · · · Bm,m

S BS,1 · · · BS,m

A∁ BA∁,1 · · · BA∁,m

, (12)

where void entries are zero. We now define all λ0
vi,hi

with i ∈ [m] and all λ0
ui,hi

, λ0
wi,hi

with {ui, wi} ∈ S to
be set to one. The remaining entries of the matrix Λ0 will be zero. We proceed by showing that through
row reduction, we can eliminate all nonzero non-diagonal entries in the upper right block of B0, while
ensuring that the upper left block remains unchanged. Additionally, eliminating all nonzero entries in the
rows indexed by S will introduce fill-ins in the corresponding left block of B0, resulting in it having full row
rank equal to |S|. This shows that rank(B(Λ0)) ≥

∑
i∈[m] |Ci|+ |S| = r.

10 CHAPTER 3. BOUNDS ON THE DIMENSION

Example 3.4. Consider the graph in Figure 1 and the ZUTA-compliant, valid collection

Ah1 = {{v1, v3}, {v1, v4}, {v1, v5}, {v1, v6}, {v3, v4}},
Ah2 = {{v2, v4}, {v2, v5}, {v4, v5}},
Ah3 = {{v3, v6}}.

We have C1 = {{v1, v3}, {v1, v4}, {v1, v5}, {v1, v6}}, C2 = {{v2, v4}, {v2, v5}}, C3 = {{v3, v6}}, as well
as I(=) = {1, 2} , I(<) = {3} and S = {S1, S2} with S1 = {v3, v4} and S2 = {v4, v5}. Furthermore,
λ−

1 = (λv3,h1 , λv4,h1 , λv5,h1 , λv6,h1), λ−
2 = (λv4,h2 , λv5,h2), λ−

3 = (λv6,h3). Recalling Equation (9) and
Equation (12) we conclude that the matrix B can be written as

B =



λv1,h1 λv2,h2 λv3,h3 λv3,h1 λv4,h1 λv5,h1 λv6,h1 λv4,h2 λv5,h2 λv6,h3

{v1, v3} λv3,h1 λv1,h1

{v1, v4} λv4,h1 λv1,h1

{v1, v5} λv5,h1 λv1,h1

{v1, v6} λv6,h1 λv1,h1

{v2, v4} λv4,h2 λv2,h2

{v2, v5} λv5,h2 λv2,h2

{v3, v6} λv6,h3 λv6,h1 λv3,h1 λv3,h3

{v3, v4} λv4,h1 λv3,h1

{v4, v5} λv5,h1 λv4,h1 λv5,h2 λv4,h2

{v3, v5} λv5,h1 λv3,h1

{v4, v6} λv6,h1 λv4,h1

{v5, v6} λv6,h1 λv5,h1



,

where void entries are zero. To obtain the matrix B0 we set the entries λv1,h1 , λv2,h2 , λv3,h3 , λv3,h1 , λv4,h1 ,
λv4,h2 , λv5,h2 equal to one and get

B0 =



λv1,h1 λv2,h2 λv3,h3 λv3,h1 λv4,h1 λv5,h1 λv6,h1 λv4,h2 λv5,h2 λv6,h3

{v1, v3} 1 1
{v1, v4} 1 1
{v1, v5} 1
{v1, v6} 1
{v2, v4} 1 1
{v2, v5} 1 1
{v3, v6} 1 1
{v3, v4} 1 1
{v4, v5} 1 1 1
{v3, v5} 1
{v4, v6} 1
{v5, v6}



.

Claim 1: By row reduction, the upper right block of B0 can be transformed into a diagonal matrix of size∑
i∈[m] |Ci|, while no fill-in occurs in the upper left block of B0.

For Claim 1 to be satisfied, we need to eliminate the nonzero entry with row index {v3, v6} and column
index λv6,h1 by subtracting the fourth row indexed by {v1, v6} from it. Clearly, this does not create any
fill-ins in the upper left block of B0. The upper right block is then diagonal and of size

∑
i∈[3] |Ci| = 7

Claim 2: By row reduction, the submatrix of B0 that consists of the rows indexed by S can be transformed
such that the left block with columns indexed by λvi,hi

, ..., λvm,hm is of full row rank, and the right block with
columns indexed by λ−

1 , ..., λ
−
m is zero.

As for Claim 2, we eliminate the nonzero entries in the rows indexed by {v3, v4} and {v4, v5}. Both
transformations mentioned in Claim 1 and Claim 2, result in B0 having the form

3.2. Lower bound on the dimension 11

B0 =



λv1,h1 λv2,h2 λv3,h3 λv3,h1 λv4,h1 λv5,h1 λv6,h1 λv4,h2 λv5,h2 λv6,h3

{v1, v3} 1 1
{v1, v4} 1 1
{v1, v5} 1
{v1, v6} 1
{v2, v4} 1 1
{v2, v5} 1 1
{v3, v6} 1
{v3, v4} −2
{v4, v5} −2
{v3, v5} 1
{v4, v6} 1
{v5, v6}



.

Clearly, Claim 2 holds for this matrix, and we can conclude that the matrix consisting of all except the last
three rows is of full row rank, which is why

rank(B) ≥ rank(B0) ≥
∑
i∈[3]
|Ci|+ |S| =

∑
i∈[3]
|Ahi
| = 9.

Hence, the lower bound from Theorem 3.3 is given by 15. Recalling Example 3.2, we observe that the
upper and lower bound on the dimension coincide. This confirms that the dimension is indeed 15, as
claimed in Example 2.11.

Remark 3.5. Note that there can potentially be several relabelings of observed and latent nodes such that
the ZUTA condition is satisfied. Each relabeling can give a different lower bound in Theorem 3.3. To get
as close as possible to the actual value of the dimension, we are interested in finding the maximal lower
bound that can be found among all ZUTA-compliant, valid collections of all possible ZUTA relabelings.

12 CHAPTER 4. COMPUTATION

4 Computation

In this section, we will focus on the computational aspects of the thesis. We begin by presenting the
algorithms developed in R (R Core Team, 2024) to compute the upper and lower bound on the dimension
of a sparse factor analysis model, as proposed in Theorem 3.1 and Theorem 3.3. This also includes a
comparison of different approaches, illustrative examples and a complexity analysis. For a detailed review
on the complexity of algorithms, we refer to Chapter 9 of Cormen et al. (2009). We cover the case of
dimension determination for models with differing bounds by proposing a solution using the open-source
computer algebra system MACAULAY2 (Grayson and Stillman). Furthermore, we apply all algorithms to
run simulations and summarize the results obtained. Note, that the computations were performed on a
single thread of an Apple M1 processor (3.2 GHz) with 8GB unified memory.

4.1 Algorithm to compute the upper bound

An intuitive approach to evaluate the upper bound on the dimension of a given sparse factor analysis
graph is described in R pseudocode by Algorithm 1. In line 2 we begin by computing all

(|V |
2
)

2-pairs of
observed nodes. The function generateAllCollections is the core of Algorithm 1 and generates,
as the name suggests, all possible collections of the just obtained 2-pairs. The function generates a total

of (2(|V |
2) − 1)|H| collections. However, this number is extremely large even for graphs of moderate size,

and the calculation crashes due to insufficient memory and long running times. For instance, the graph in
Figure 2 (a), with only five observed nodes, already has 1.070.599.167 distinct collections.

Algorithm 1 Evaluate the upper bound on the dimension of a sparse factor analysis graph

Input: sparse factor loading matrix Λ of G = (H ∪ V,D), a factor analysis graph.
Output: upper bound on the dimension of the model corresponding to G.

1: MaxCollection← {}.
2: allpairs← generateAllpairs(Λ).
3: allCollections← generateAllCollections(Λ,allpairs).
4: for A ∈ allCollections do
5: if A is valid and |A| > |MaxCollection| then
6: MaxCollection← A.
7: end if
8: end for
9: upperbound← |MaxCollection|+ |V |.

Let us derive the theoretical worst-case complexity of Algorithm 1. Generating all 2-pairs of observed
nodes in line 2 has complexity O(|V |2). To compute all collections, we first use the function powerSet

from the package rje to generate the power set of the set of all 2-pairs once, which has cardinality 2(|V |
2)

(Evans, 2022). The operation’s complexity is given by O(
(|V |

2
)
2(|V |

2)) = O(|V |22|V |2). We then take the
|H|- fold Cartesian product of the power set to obtain all collections, adding a complexity of O(2|V |2|H|).
Let s ∈ N such that | ch(hi)| ≤ s for all i ∈ {1, ...,m}. For each collection, we verify three conditions in line
5, two of which involve simple cardinality checks. The computationally most expensive operation in line 5
is examining whether the components are pairwise disjoint, which has a complexity of O(s2|H|2). Thus,
iterating through every element of allCollections and verifying all conditions of line five determines the
running time of the Algorithm with O(2|V |2|H|s2|H|2). This very high theoretical complexity is consistent
with the issue previously described, and with the observed results shown in the second column of Table 1.

4.1. Algorithm to compute the upper bound 13

(a)

h1 h3

h2

v1 v2 v3 v4 v5

(b)

h1 h3

h2

v1 v2 v3 v4 v5 v6

Figure 2 (a) ZUTA graph with 5 observed variables and 3 latent factors. (b) ZUTA graph with 6 observed variables
and 3 latent factors.

To obtain results for at least all graphs with up to seven observed variables and up to three latent factors,
it is necessary to use a more efficient method than the one presented in Algorithm 1. One possibility is
demonstrated in Algorithm 2, which only computes collections of 2-pairs that satisfy Definition 2.12 and
chooses one with maximal sum of cardinalities. The function getchildrenpairs generates a list of
size m where each component corresponds to one latent node and contains all 2-pairs of children of the
respective latent node. Then getvalidcomponents creates a list, also of size m, where each entry
contains all combinations of the just generated children pairs of the corresponding latent node that satisfy
condition (i) of Definition 2.12. For this purpose, the efficient function comboGeneral from the package
RcppAlgos is used (Wood, 2024). By default, it sorts the combinations from smallest to largest. The
Algorithm proceeds with a total of m loops, one for each latent factor. The loops verify that the second
condition (ii) of Definition 2.12 holds, making sure that the resulting collection is valid. When the innermost
loop is reached, the variable MaxCollection is updated only if the resulting collection has higher sum of
cardinalities than the one currently stored in MaxCollection. A crucial improvement in terms of efficiency
is achieved by going through each loop in reverse order, since the largest combinations come last, as
previously mentioned. This enables the algorithm to find a maximal valid collection of 2-pairs much faster.

Algorithm 2 Evaluate the upper bound on the dimension of a sparse factor analysis graph

Input: sparse factor loading matrix Λ of G = (H ∪ V,D), a factor analysis graph.
Output: upper bound on the dimension of the model corresponding to G.

1: MaxCollection← {}.
2: childrenpairs← getchildrenpairs(Λ).
3: allcomponents← getvalidcomponents(Λ, childrenpairs).
4: for A1 ∈ allcomponents[1] do
5: for A2 ∈ allcomponents[2] do
6: if A1 ∩A2 = ∅ then
7: for A3 ∈ allcomponents[3] do
8: if A1 ∩A3 = ∅ and A2 ∩A3 = ∅ then

9:
...

10: for Am ∈ allcomponents[m] do
11: if Ai ∩Am = ∅ for all i < m and |MaxCollection| <

∑
h∈[m] |Ah| then

12: MaxCollection← (A1, A2, ..., Am).
13: end if
14: end for
15:

...
16: end if
17: end for
18: end if
19: end for
20: end for
21: upperbound← |MaxCollection|+ |V |.

14 CHAPTER 4. COMPUTATION

Let us consider again the graph in Figure 2 (a). Then

|allcomponents[1]| =
(

6
1

)
+
(

6
2

)
+
(

6
3

)
+
(

6
4

)
= 56

|allcomponents[2]| =
(

6
1

)
+
(

6
2

)
+
(

6
3

)
+
(

6
4

)
= 56

|allcomponents[3]| =
(

3
1

)
+
(

3
2

)
+
(

3
3

)
= 7.

Consequently, using the approach in Algorithm 2, we iterate over at most 56 ∗ 56 ∗ 7 = 21.952 collections.
In the R code, additional break statements were added so that if |MaxCollection| =

∑
hi∈H | ch(hi)|, all

m loops are immediately terminated, since this is already as high as cardinality is allowed to get; recall
Definition 2.12. A comparison of the running times of Algorithm 1, Algorithm 2 without break statements
and Algorithm 2 with break statements, all applied to the graphs in Figure 1 and Figure 2, is shown in
Table 1. While the influence of the break conditions is subtle for the graphs in Figure 1 and Figure 2
(a), it becomes more significant as the number of edges increases. Note that the break condition only
improves performance in the case where a maximal valid collection A = (Ahi

)i∈H with
∑

hi∈H |Ahi
| =∑

hi∈H | ch(hi)| exists. The average run time of Algorithm 2 with break statements for graphs with the
same number of edges is shown in Table 3. Note that only ZUTA graphs with up to seven observed nodes
and up to three latent nodes were considered.

Graph Alg. 1 Alg. 2 without break statements Alg. 2 with break statements

Figure 1 Failed: Out of Memory 0.162201 secs 0.010082 secs
Figure 2 (a) Failed: Out of Memory 0.437795 secs 0.397758 secs
Figure 2 (b) Failed: Out of Memory 57.91415 mins 0.060979 secs

Table 1 Comparison of running times.

Theorem 4.1. Let G = (H ∪ V,D) be a factor analysis graph with |H| = m and |V | = p. The upper
bound on the dimension of F (G) given in Theorem 3.1 equals C if and only if Algorithm 2 returns C. The
algorithm has complexity at most O(s2sm+2m) where s ∈ N such that s ≥ | ch(hi)| for all i ∈ {1, ...,m}.

Proof. We start by analyzing the worst-case complexity of the algorithm. First, we note that for each latent
node hi, there are

(| ch(hi)|
2

)
pairs of children. Let s ∈ N such that s ≥ | ch(hi)| for all i ∈ {1, ...,m}. Then

|childrenpairs[i]| =
(
| ch(hi)|

2

)
= O(s2).

Let ri := min(| ch(hi)|, |childrenpairs[i]|). Note that if hi has exactly two children, we get ri = 1. If
hi has strictly more than two children, it holds that ri = | ch(hi)|. In any case, this implies ri ≤ s for
all i ∈ {1, ...,m}. Now, the number of elements in allcomponents[i] equals the number of subsets of
childrenpairs[i] with cardinality at most ri. This is

|allcomponents[i]| =
ri∑

k=1

(
|childrenpairs[i]|

k

)
= O(s2ri) ≤ O(s2s).

The complexity of verifying that two components Ai, Aj are disjoint is given by

|Ai||Aj | ≤ | ch(hi)|| ch(hj)| = O(s2).

Thus, iterating through all m loops in lines 4-20, has complexity

O(s2ss2s(s2 + s2s(2s2 + s2s(3s2 + s2s(. . . ((m− 2)s2 + s2s((m− 1)s2 +ms+ 1)))))))
= O(s2sm+2m).

4.2. Algorithm to compute the largest lower bound 15

We get that the lines 4-20 of Algorithm 2 run in exponential time O(s2sm+2m). Note that the function
getvalidcomponents has complexity O(ms2s) using the same thoughts as before. Clearly, generating
childrenpairs is not of higher complexity and can thus be neglected. We can conclude that the algorithm’s
total complexity is given by O(s2sm+2m).
Next, we show that the algorithm indeed returns an upper bound on the model’s dimension. Suppose that
the upper bound on the dimension of F (G) in Theorem 3.1 is given by C. Then there must be at least one
valid collection A = (A1, ..., Am) with sum of cardinalities equal to C − |V | =: C̃ and no valid collection
with a sum of cardinalities exceeding C̃ can be found. By construction of the variable allcomponents, each
component Ai ofA has to be contained in the respective list allcomponents[i]. The algorithm iterates over
all possible combinations of components, including the combination possibility given by A. Thus, at some
stage during the execution, the collection A will be examined. By definition, all components of A are
pairwise disjoint and we reach the innermost loop. Now one of two cases can occur. Either the sum of
cardinalities ofA is larger than the sum of cardinalities of the collection currently stored inMaxCollection,
forcing the algorithm to overwrite MaxCollection by A. Or a different valid collection Ã with |Ã| = |A|
has already been identified preventing MaxCollection from being overwritten. However, in both cases a
valid collection with sum of cardinalities C̃ is ultimately assigned to MaxCollection. Note that the case
that |A| is strictly smaller than the sum of cardinalities of the collection stored in MaxCollection cannot
occur, since this would imply the existence of a valid collection B with |B| > C̃. This contradicts what was
previously stated. We conclude that the Algorithm returns upperbound = |V |+ C̃ as needed.
Conversely, suppose the algorithm returns C. This translates to |MaxCollection| = C − |V | =: C̃.
Consequently, the variable MaxCollection must have been updated for the last time by a collection
A = (A1, ..., Am) with cardinality |A| = C̃. Additionally, it is ensured that the components of A are
pairwise disjoint, since this is being verified in each level of the nested for-loop. Given that the function
getvalidcomponents exclusively allows components that satisfy condition (i) of Definition 2.12, we can
conclude that A is valid. It remains to show that A has maximal sum of cardinalities among all other valid
collections. However, this follows easily given that in the case of B being a valid collection with |B| > |A|,
we would have overwritten the variable MaxCollection with B and the output of the algorithm would be
strictly larger than C, since

|B|+ |V | > |A|+ |V | = C.

This leads to a contradiction. We conclude that A satisfies all conditions of Theorem 3.1, and therefore
C = |V |+ C̃ is indeed the upper bound on the model’s dimension.

Remark 4.2. We emphasize that although Algorithm 1 and Algorithm 2 both have a very high theoretical
worst-case complexity, the running time of Algorithm 2 is significantly smaller in practice compared to
Algorithm 1, see Table 1. Optimizations, such as the break statements, the reverse iteration through the
loops, and the generation of only valid collections played a significant role in accelerating the process of
finding the largest valid collection.

4.2 Algorithm to compute the largest lower bound

We now propose an algorithm that computes the largest lower bound on the dimension of a sparse ZUTA
factor analysis graph, as determined by Theorem 3.3. To find the largest among all lower bounds, every
possible relabeling of the factor loading matrix Λ has to be taken into consideration; recall Remark 3.5.
Therefore, we first apply the function getRelabelings which generates all ZUTA relabelings of Λ.
We proceed to iterate over all ZUTA relabelings and use generateValidZUTACollections to con-
struct for each relabeling its valid, ZUTA-compliant collections. Note that the additional requirement of
ZUTA compliance significantly reduces the number of collections to evaluate. After generating all these
collections, we loop through them and update the variable MaxCollection whenever a collection with
larger sum of cardinalities is identified. Returning to our graph in Figure 2 (a), after running the func-
tion getRelabelings, we find that only three ZUTA relabelings of Λ must be examined. Executing
generateValidZUTACollections for each relabeling reveals that two of them have exactly three

16 CHAPTER 4. COMPUTATION

Graph # ZUTA relabelings # ZUTA compliant valid collections running time Alg. 3

Figure 2 (a) 3 10 0.08212 secs
Figure 2 (b) 1 34 0.04112 secs
Figure 1 27 255 0.31838 secs

Table 2 Comparison of the total number of ZUTA relabelings, the total number of
ZUTA compliant collections, and running times.

valid, ZUTA-compliant collections, while the third relabeling has four. Thus, in total we iterate over ten
collections which results in the algorithm terminating quickly as can be seen in Table 2. The average run
time of Algorithm 3 for graphs with the same number of edges is shown in Table 3. Note that only ZUTA
graphs with up to seven observed nodes and up to three latent nodes were considered.

Algorithm 3 Evaluate the largest lower bound on the dimension of a sparse ZUTA factor analysis graph

Input: sparse factor loading matrix Λ of G = (H ∪ V,D), a factor analysis graph that satisfies ZUTA.
Output: largest lower bound on the dimension of the model corresponding to G.

1: MaxCollection← {}.
2: allRelabelings← getRelabelings(Λ).
3: for A ∈ allRelabelings do
4: ZUTACollections← generateValidZUTACollections(A).
5: for B ∈ ZUTACollections do
6: if |B| > |MaxCollection| then
7: MaxCollection← B.
8: end if
9: end for

10: end for
11: lowerbound← |MaxCollection|+ |V |.

Theorem 4.3. Let G = (H ∪ V,D) be a sparse factor analysis graph with |H| = m and |V | = p that
satisfies ZUTA. The largest lower bound on the dimension of F (G), as determined by Theorem 3.3 equals
C if and only if Algorithm 3 returns C. The algorithm has complexity at most O(|H|!|V |!s2m+3m3) where
s ∈ N such that s ≥ | ch(hi)| for all i ∈ {1, ...,m}.
Proof. In terms of complexity, we note that there are |H|! permutations of columns, as well as |V |! per-
mutations of rows of the factor loading matrix Λ. The function, getRelabelings generates all possible
|H|!|V |! matrix permutations, loops through them, and checks if the matrix is in ZUTA form. This is done
by verifying that all diagonal entries are equal to one, while the upper triangle is zero. This adds a running
time of O(|H|2). Thus, the total complexity of getRelabelings is given by O(|H|!|V |!|H|2), while the
cardinality of the variable allRelabelings is bounded by |H|!|V |!.
Let s ∈ N such that | ch(hi)| ≤ s for all i ∈ [m]. Then for each component Ahi

of a ZUTA compliant
collection, there exist at most

1 +
(
| ch(hi)| − 1

2

)
≤ s2

distinct possibilities if | ch(hi)| > 2, and one possibility, if | ch(hi)| = 2. This implies that the cardinality of
the variable ZUTACollections is bounded by s2m. Let us derive the complexity of generating this variable
in line 4. The function generateValidZUTACollections begins by generating the potentially relevant
collections, of which there are at most s2m, as previously stated. The complexity of this operation is
O(s2m), proportional to the number of collections generated. It proceeds to loop through these collections
and checks for each whether the components are pairwise disjoint. Recall that the complexity of verifying
that two components Ai, Aj are disjoint is given by

|Ai||Aj | ≤ | ch(hi)|| ch(hj)| = O(s2).

4.3. Computing dimensions in Macaulay2 17

For each collection, checking if its m components are pairwise disjoint, has a complexity of O(s2m2). We
conclude that generating ZUTACollections in line 4 has at most complexityO(s2m+2m2). The cardinality
check in line 6 has complexity O(sm). To summarize, we have shown that the nested for loop in line 3-10
has at most complexity O(|H|!|V |!s2m+3m3) which determines the complexity of Algorithm 3.
Next, we show that the algorithm indeed returns the largest lower bound on the dimension of a sparse
factor analysis model. Suppose that C is the largest lower bound on the dimension of F (G) found by
applying Theorem 3.3 to all possible ZUTA relabelings. Then there must exist at least one valid, ZUTA-
compliant collection A corresponding to a ZUTA relabeling of G, such that |A| = C − |V | =: C̃. The
sum of cardinalities of all further valid, ZUTA-compliant collections among all possible ZUTA relabelings
cannot exceed C̃. Since we generate all ZUTA relabelings of G in line 2 as well as all corresponding valid,
ZUTA-compliant collections in line 4, we must examine at some stage of the algorithm the collectionA with
the largest sum of cardinalities among all valid, ZUTA-compliant collections of all relabelings. At that point,
either the collection stored in the variable MaxCollection already has cardinality C̃ and MaxCollection
remains unchanged, or the collection stored in MaxCollection has smaller cardinality, in which case
MaxCollection is overwritten by A. Anyhow, the resulting sum of cardinalities of MaxCollection is given
by C̃ and the algorithm correctly returns the largest lower bound C = |V |+ C̃.
Conversely, assume that the algorithm returns C. Then the variable MaxCollection must have been
overwritten the last time by a ZUTA-compliant, valid collection A with |A| = C − |V | =: C̃ of some ZUTA
relabeling of G. By construction, all elements in ZUTACollections are both, valid and ZUTA-compliant,
which allows us to apply Theorem 3.3. We obtain that C is indeed a lower bound on the dimension of
F (G). It remains to show that it is the largest. Therefore, we assume that D is another valid, ZUTA-
compliant collection, possibly corresponding to a different ZUTA relabeling than A, with |D| > |A|. Per
construction, D has to be in the variable ZUTACollections of the respective relabeling. Since D satisfies
all conditions to overwrite the variable MaxCollection, the output of Algorithm 3 would be

|V |+ |D| > |V |+ |A| = C

This contradicts our previously made assumption, and we conclude that C is indeed the largest lower
bound on the model’s dimension that can be identified with Theorem 3.3.

Remark 4.4. Note that in practice we almost never have to iterate over all |H|!|V |! permutation possibilities
of the factor loading matrix Λ, since in the majority of cases there are only very few combinations of column
and row permutations of Λ with the desired properties. Thus, finding the maximal lower bound is usually
significantly faster than predicted by the theoretical worst-case running time, see Table 2 for reference.

4.3 Computing dimensions in Macaulay2

The purpose of this section is to demonstrate a method for computing the dimension of a factor analysis
model, using the computer algebra system MACAULAY2. This is primarily relevant for models whose upper
and lower bound, determined with Algorithm 2 and Algorithm 3, do not coincide.
We recall the algebraic background studied in Section 2.1, as well as the map τG in (7) and its dual ψτG in
(8). To computationally derive dim(Im(τG)) we must first understand that the set Im(τG) is semi-algebraic.
To get there, we define Ω = (ωij) ∈ Rp×p and Λ = (λij) ∈ Rp×m and rewrite the domain of τG as

Rp
>0 × RD = {(Ω,Λ) ∈ Rp×p × Rp×m | gij(Ω,Λ) = 0 for i ∈ [p], j ∈ [m], j → i /∈ D and

g̃ij(Ω,Λ) = 0 for i ∈ [p], j ∈ [p], i ̸= j and hii(Ω,Λ) > 0 for i ∈ [p]},

where gij(Ω,Λ) = λij , g̃ij(Ω,Λ) = ωij and hii(Ω,Λ) = ωii. By Definition 2.4, Rp
>0 × RD is a semi-

algebraic set. Since τG can be considered a polynomial mapping, Corollary 2.6 implies that Im(τG) is also
a semi-algebraic set. Bringing together these observations with the results obtained in Section 2.1 yields

dim(R[σij |1 ≤ i < j ≤ p]/ ker(ψτG)) (3)= dim(R[σij |1 ≤ i < j ≤ p]/I(Im(τG)))
(5)= dim(R[σij |1 ≤ i < j ≤ p]/I(closzar(Im(τG))) (4)= dim(closzar(Im(τG)) (6)= dim(Im(τG)).

(13)

18 CHAPTER 4. COMPUTATION

h1

h3

h2

v1 v2 v3 v4 v5

Figure 3 Smallest graph with differing lower and upper bounds, in terms of number of nodes and edges.

In MACAULAY2, applying the function dim(·) to an ideal I of a ring R computes the Krull dimension of
the quotient ring R/I. In particular, ker(ψτG) is an ideal (Karpfinger, 2024, Lemma 15.1). Thus, computing
its dimension in MACAULAY2 will actually return the dimension of R[σij |1 ≤ i < j ≤ p]/ ker(ψτG). Now,
with Equation (13) we get that this dimension coincides with dim(Im(τG)). We summarize that in order to
compute dim(Im(τG)), it suffices to compute dim(ker(ψτG)) in MACAULAY2.

Example 4.5. Consider the graph depicted in Figure 3. It corresponds to the smallest graph, in terms
of number of nodes and edges, for which the upper bound and largest lower bound on the dimension,
determined with Algorithm 2 and Algorithm 3, do not coincide. This graph is analyzed in more detail in
Section 4.4.2. The code snippet below can be executed to determine the actual dimension of the corre-
sponding model. First, the source and target ring, as well as the factor loading matrix and its transpose
are defined. One can proceed by computing the corresponding covariance matrix and by defining the dual
map ψτG . As previously stated, computing the dimension of the dual map’s kernel returns the dimension
of the factor analysis model. Running this code reveals that the model’s dimension is 12.

-- define source and target ring of the dual map
S = QQ[x11, x12, x13, x14, x15, x22, x23,

x24, x25, x33, x34, x35, x44, x45, x55];
T = QQ[omega1, omega2, omega3, omega4, omega5,

lambda11, lambda21, lambda31, lambda41, lambda51,
lambda12, lambda22, lambda32, lambda42, lambda52,
lambda13, lambda23, lambda33, lambda43, lambda53];

-- define the factor loading matrix
Lambda = matrix{{lambda11, 0 , lambda13},

{lambda21, 0 , lambda23},
{0 , lambda32, lambda33},
{0 , lambda42, lambda43},
{0 , lambda52, 0 }};

LambdaT = transpose Lambda;

-- compute the covariance matrix
Cov = Lambda * LambdaT +

diagonalMatrix {omega1, omega2, omega3, omega4, omega5};

-- compute the dual map, its kernel and the dimension
dualmap = map(T,S, matrix{{Cov_(0,0), Cov_(0,1), Cov_(0,2),

Cov_(0,3), Cov_(0,4), Cov_(1,1),
Cov_(1,2), Cov_(1,3), Cov_(1,4),
Cov_(2,2), Cov_(2,3), Cov_(2,4),
Cov_(3,3), Cov_(3,4), Cov_(4,4)}});

I = kernel(dualmap);
actualdim = dim(I);

4.4. Simulations 19

(a)

h1

h2

h3

v1 v2 v3 v4 v5 v6

(b)

h1

h2

h3

v1 v2 v3 v4 v5 v6 v7

(c)

h1

h2

h3

v1 v2 v3 v4 v5 v6 v7

Figure 4 Graphs that have expected dimension, although upper and lower bounds do not coincide.

4.4 Simulations

4.4.1 Results on graphs up to three latent and seven observed nodes

We will now use the results from the previous sections to investigate the dimension properties of all ZUTA-
graphs up to three latent nodes and up to seven observed nodes. After generating these graphs, we
compute for each the upper bound and lower bound on the dimension using Algorithm 2 and Algorithm 3,
as well as their expected and actual dimension. Calculation of the latter was performed using MACAULAY2,
as illustrated in Example 4.5, for all graphs where the resulting upper bound and lower bound differed. In
these particular cases, algebraic computation is necessary, since the theorems discussed in Section 3 are
not sufficient to determine the actual dimension.

Computation in R revealed that the bounds on the dimension of six graphs differed. Among these, three
graphs were identified in MACAULAY2 to have expected dimension and are depicted in Figure 4. Their
upper bound and lower bound are 18, 20, 21 and 17, 19, 20 respectively, while their actual dimension
equals 18, 20, 21. These graphs are of particular interest as the theorems in Section 3 fail to recognize
expected dimension, given that the dimension’s lower bound is not tight.

Let us inspect the graph in Figure 4 (a) as an example, to confirm that its true dimension is 18. Similarly
as described in the proof of Theorem 3.3 it suffices to find a generic parameter choice, such that the rank
of the block matrix B equals 12. The matrix B is given by

B =



λv1,h1 λv2,h2 λv3,h3 λv2,h1 λv3,h1 λv3,h2 λv4,h2 λv5,h2 λv6,h2 λv4,h3 λv5,h3 λv6,h3

{v1, v2} λv2,h1 λv1,h1

{v1, v3} λv3,h1 λv1,h1

{v2, v3} λv3,h2 λv3,h1 λv2,h1 λv2,h2

{v2, v4} λv4,h2 λv2,h2

{v2, v5} λv5,h2 λv2,h2

{v2, v6} λv6,h2 λv2,h2

{v3, v4} λv4,h3 λv4,h2 λv3,h2 λv3,h3

{v3, v5} λv5,h3 λv5,h2 λv3,h2 λv3,h3

{v3, v6} λv6,h3 λv6,h2 λv3,h2 λv3,h3

{v4, v5} λv5,h2 λv4,h2 λv5,h3 λv4,h3

{v4, v6} λv6,h2 λv4,h2 λv6,h3 λv4,h3

{v5, v6} λv6,h2 λv5,h2 λv6,h3 λv5,h3



,

where void entries are zero. Assume first that we set all parameters to one and transform the upper right
block into a diagonal matrix. Then the matrix B is given by

20 CHAPTER 4. COMPUTATION

B0 =



λv1,h1 λv2,h2 λv3,h3 λv2,h1 λv3,h1 λv3,h2 λv4,h2 λv5,h2 λv6,h2 λv4,h3 λv5,h3 λv6,h3

{v1, v2} 1 1
{v1, v3} 1 1
{v2, v3} −2 1 1
{v2, v4} 1 1
{v2, v5} 1 1
{v2, v6} 1 1
{v3, v4} 2 −2 1 1
{v3, v5} 2 −2 1 1
{v3, v6} 2 −2 1 1
{v4, v5} 1 1 1 1
{v4, v6} 1 1 1 1
{v5, v6} 1 1 1 1



.

Consider the last three rows indexed by {vi, vj} with i ∈ {4, 5}, j ∈ {5, 6}, i ̸= j. To eliminate all nonzero
entries in these rows, we subtract from each the corresponding four rows indexed by {v2, vi}, {v2, vj},
{v3, vi}, {v3, vj}. The structure of the matrix immediately indicates that these row-reduction operations
will create identical fill-ins in each row of the lower left block.

B0 =



λv1,h1 λv2,h2 λv3,h3 λv2,h1 λv3,h1 λv3,h2 λv4,h2 λv5,h2 λv6,h2 λv4,h3 λv5,h3 λv6,h3

{v1, v2} 1 1
{v1, v3} 1 1
{v2, v3} −2 1 1
{v2, v4} 1 1
{v2, v5} 1 1
{v2, v6} 1 1
{v3, v4} 2 −2 1 1
{v3, v5} 2 −2 1 1
{v3, v6} 2 −2 1 1
{v4, v5} −4 2 −2
{v4, v6} −4 2 −2
{v5, v6} −4 2 −2



.

This shows that setting all parameters to one is ineffective here, since it results in B having rank 10 which
causes the Jacobian to have rank 16. This is strictly smaller than the expected dimension. To obtain
full row rank, we must make a different parameter choice, such that the resulting fill-ins in the lower left
block do not create linearly dependent rows. Thus, we will now consider setting at least two parameters
to different values. Indeed, by assigning, for example, λv5,h3 to two and λv6,h3 to three, while setting all
remaining entries to one, we achieve the desired result. The matrix’s structure with those new entries,
after removing all nonzero entries below the diagonal in the upper right block is given by

B0 =



λv1,h1 λv2,h2 λv3,h3 λv2,h1 λv3,h1 λv3,h2 λv4,h2 λv5,h2 λv6,h2 λv4,h3 λv5,h3 λv6,h3

{v1, v2} 1 1
{v1, v3} 1 1
{v2, v3} −2 1 1
{v2, v4} 1 1
{v2, v5} 1 1
{v2, v6} 1 1
{v3, v4} 2 −2 1 1
{v3, v5} 2 −2 2 1
{v3, v6} 2 −2 3 1
{v4, v5} 1 1 2 1
{v4, v6} 1 1 3 1
{v5, v6} 1 1 3 2



.

4.4. Simulations 21

Proceeding as before, consider the rows indexed by {vi, vj}, with i ∈ {4, 5}, j ∈ {5, 6}, i ̸= j. We subtract
from each of these rows, the rows indexed by {v2, vi}, {v2, vj}, as well as λvj ,h3 times the row indexed by
{v3, vi}, and λvi,h3 times the row indexed by {v3, vj}, respectively. This yields

B0 =



λv1,h1 λv2,h2 λv3,h3 λv2,h1 λv3,h1 λv3,h2 λv4,h2 λv5,h2 λv6,h2 λv4,h3 λv5,h3 λv6,h3

{v1, v2} 1 1
{v1, v3} 1 1
{v2, v3} −2 1 1
{v2, v4} 1 1
{v2, v5} 1 1
{v2, v6} 1 1
{v3, v4} 2 −2 1 1
{v3, v5} 2 −2 2 1
{v3, v6} 2 −2 3 1
{v4, v5} −6 4 −4
{v4, v6} −8 6 −6
{v5, v6} −10 8 −12



.

We can now easily convince ourselves that the fill-ins that occurred result in the lower left block having full
rank of three, since  −6 4 −4

−8 6 −6
−10 8 −12

 →

−6 4 −4
0 2

3 −
2
3

0 0 −4

 .
Consequently, the generic parameter choice λv5,h3 = 2 and λv6,h3 = 3 leads to the matrix block B having
rank 12. The Jacobian matrix has full rank of 18 which confirms that the graph in Figure 4 (a) has expected
dimension. For the graphs (b) and (c) in Figure 4 we can use the same argumentation as above. With
setting λv6,h3 = 2 and λv7,h3 = 3 and assigning all remaining entries of graph (b) to one, the resulting
Jacobian has rank 20. For graph (c) the same parameter choice, λv6,h3 = 2 and λv7,h3 = 3, results in a
Jacobian of rank 21, as needed.
Bringing together the results computed in MACAULAY2 and R we obtain Table 3 which summarizes, for how
many of all generated ZUTA graphs, the expected dimension and the actual dimension coincide, and for
how many the upper bound and the lower bound coincide, grouped by the number of edges. Additionally
the average run times of Algorithm 2 and Algorithm 3 are displayed for each number of edges.

edges # ZUTA # graphs with # graphs with avg. run time avg. run time
graphs expected dim. coinciding bounds Alg. 2 in secs Alg. 3 in secs

2 1 1 1 6.40e-04 6.90e-04
3 1 1 1 6.90e-04 8.20e-04
4 3 1 3 7.70e-04 9.99e-03
5 4 2 4 1.02e-03 2.25e-02
6 11 3 11 1.16e-03 3.16e-02
7 18 5 18 1.82e-03 3.37e-01
8 32 7 32 1.69e-03 1.09e+00
9 48 9 47 3.46e-03 2.17e+00
10 60 11 59 1.39e-02 3.02e+00
11 66 25 65 1.19e-01 3.06e+00
12 60 33 59 8.52e-01 2.53e+00
13 50 35 49 5.71e+00 1.61e+00
14 30 25 29 2.60e+01 1.06e+00
15 18 17 18 8.80e-03 5.93e-01
16 8 8 8 7.12e-03 3.47e-01
17 4 4 4 1.94e-02 1.52e-01
18 1 1 1 2.36e-01 8.54e-02

Total 415 188 409 - -

Table 3 Results on all ZUTA graphs with at least two children per latent node and with |V | ≤ 7
and |H| ≤ 3. The average running times of Algorithm 2 and Algorithm 3 are given in seconds.

22 CHAPTER 4. COMPUTATION

(a)

h1

h3

h2

v1 v2 v3 v4 v5

(b)

h1

h3

h2

v1 v2 v3 v4 v5

Figure 5 (a) & (b) The only two relabelings of the graph in Figure 3 that satisfy ZUTA .

4.4.2 Smallest graph for which the bounds differ

The simulation performed in Section 4.4.1 revealed that the graph in Figure 3 is the smallest graph, in
terms of number of nodes and edges, where the upper bound and the largest lower bound do not coincide.
Note that for the purpose of this example, we will also examine the graphs in Figure 5 (a) and (b) which
depict the only two relabeled versions of the graph in Figure 3 that are in ZUTA form. The smallest upper
bound found is 13, whereas the largest lower bound among both ZUTA relabeling possibilities is 12. In
Example 4.5 we showed that the model’s dimension is 12 and thus coincides with the largest lower bound.
Let us now retrace the bound evaluation. Consider the graph in Figure 3 and the maximal, valid collection

Ah1 = {{v1, v2}},
Ah2 = {{v3, v4}, {v3, v5}, {v4, v5}},
Ah3 = {{v1, v3}, {v1, v4}, {v2, v3}, {v2, v4}}.

(14)

It follows that AC = {{v1, v5}, {v2, v5}}. Our index sets are defined by I(=) = {2, 3} and consequently
I(<) = {1}. In order to determine the maximal rank of the Jacobian of the map τG, we need to inspect its
submatrix B. Recalling Equation (9) and Equation (11) yields

B =



λv1,h1 λv2,h1 λv3,h2 λv4,h2 λv5,h2 λv1,h3 λv2,h3 λv3,h3 λv4,h3

{v1, v2} λv2,h1 λv1,h1 λv2,h3 λv1,h3

{v3, v4} λv4,h2 λv3,h2 λv4,h3 λv3,h3

{v3, v5} λv5,h2 λv3,h2

{v4, v5} λv5,h2 λv4,h2

{v1, v3} λv3,h3 λv1,h3

{v1, v4} λv4,h3 λv1,h3

{v2, v3} λv3,h3 λv2,h3

{v2, v4} λv4,h3 λv2,h3

{v1, v5}
{v2, v5}



,

where void entries are zero. Since B has eight nonzero rows, we conclude

rank(B) ≤ 8 =
∑
h∈H
|Ah|. (15)

Next we derive the maximal lower bound on the dimension. In order to get there, we aim to identify among
all ZUTA-compliant, valid collections of all ZUTA relabelings, one with maximal cardinality. Let us consider
the ZUTA graph in Figure 5 (a) first. According to Definition 2.15 the following 2-pairs are mandatory in the
respective components of any valid, ZUTA-compliant collection

C1 = {{v1, v2}, {v1, v5}},
C2 = {{v2, v3}, {v2, v4}, {v2, v5}},
C3 = {{v3, v4}}.

4.4. Simulations 23

Hence, C(V, 2)h1 \ C1 = {{v2, v5}}, as well as C(V, 2)h2 \ C2 = {{v3, v4}, {v3, v5}, {v4, v5}} and
C(V, 2)h3 \ C3 = ∅. Recalling Remark 2.16, we are interested in extending as many sets Ci as pos-
sible by exactly one 2-pair from the corresponding set C(V, 2)hi

\ Ci. Clearly, C3 cannot be increased
any further, so we are forced to set Ah3 := C3. However, C1 cannot be extended either, as the only
remaining 2-pair of children of h1 is {v2, v5}, which is already an element of C2. It is crucial to understand
that in this specific example there’s no ZUTA-compliant, valid collection where |Ah1 | = | ch(h1)| and we
thus have to set Ah1 := C1. Contrarily to the previous two components, one can add exactly one of the
2-pairs {{v3, v5}, {v4, v5}} ⊆ C(V, 2)h2 \C2 to C2 as neither appears in Ah1 nor Ah3 . This shows that the
collection A = (Ah)h∈H with

Ah1 = C1 = {{v1, v2}, {v1, v5}},
Ah2 = C2 ∪ {{v3, v5}} = {{v2, v3}, {v2, v4}, {v2, v5}, {v3, v5}},
Ah3 = C3 = {{v3, v4}}

satisfies all necessary criteria to be valid and ZUTA-compliant and has maximal sum of cardinalities,∑
h∈H |Ah| = 7, among all ZUTA-compliant collections of the relabeling given in Figure 5 (a). For complete-

ness, we verify that no larger ZUTA-compliant collection can be found for the relabeled graph in Figure 5
(b). Following the same argumentation as before with the roles of the nodes v4 and v5 interchanged, we
get that Ã = (Ãh)h∈H with

Ãh1 = {{v1, v2}, {v1, v4}},
Ãh2 = {{v2, v3}, {v2, v4}, {v2, v5}, {v3, v4}},
Ãh3 = {{v3, v5}}

is valid, ZUTA-compliant and of maximal cardinality. However, since
∑

h∈H |Ah| =
∑

h∈H |Ãh| we may
proceed with either collection, as both will return the same maximal lower bound. In the following, we will
continue with the collection A = (Ah)h∈H. In our specific case, the matrix B can be written as

B =



λv1,h1 λv2,h2 λv3,h3 λv2,h1 λv5,h1 λv3,h2 λv4,h2 λv5,h2 λv4,h3

{v1, v2} λv2,h1 λv1,h1

{v1, v5} λv5,h1 λv1,h1

{v2, v3} λv3,h2 λv2,h2

{v2, v4} λv4,h2 λv2,h2

{v2, v5} λv5,h2 λv2,h2

{v3, v4} λv4,h3 λv4,h2 λv3,h2 λv3,h3

{v3, v5} λv5,h2 λv3,h2

{v4, v5} λv5,h2 λv4,h2


;

recall Equation (9) and Equation (12). Setting the parameters λv1,h1 , λv2,h2 , λv3,h3 , λv3,h2 , λv5,h2 equal to
one, and all remaining entries to zero, results in B0 having the form

B0 =



λv1,h1 λv2,h2 λv3,h3 λv2,h1 λv5,h1 λv3,h2 λv4,h2 λv5,h2 λv4,h3

{v1, v2} 1
{v1, v5} 1
{v2, v3} 1 1
{v2, v4} 1
{v2, v5} 1 1
{v3, v4} 1 1
{v3, v5} 1 1
{v4, v5} 1


.

We proceed by row reduction and subtract the rows indexed by {v2, v3} and {v2, v5} from the row indexed
by {v3, v5} to eliminate all nonzero entries in this row’s right block.

24 CHAPTER 4. COMPUTATION

h1

h2

v1 v2 v3 v4 v5

Figure 6 Same graph as in Figure 5 (a), after removing h3 and swapping v2 and v3.

B0 =



λv1,h1 λv2,h2 λv3,h3 λv2,h1 λv5,h1 λv3,h2 λv4,h2 λv5,h2 λv4,h3

{v1, v2} 1
{v1, v5} 1
{v2, v3} 1 1
{v2, v4} 1
{v2, v5} 1 1
{v3, v4} 1 1
{v3, v5} −2
{v4, v5} 1


.

After these two operations, the resulting fill-in in the row indexed by {v3, v5} ensures that the submatrix of
B0 consisting of all but the last row has full row rank. Consequently,

rank(B) ≥ rank(B0) ≥ 7. (16)

The result 13
(15)
≥ dim(F (G)) = rank(B) + |V |

(16)
≥ 12 aligns with the outcome of the computation in R.

Remark 4.6. Note that the inequality between the upper bound and lower bound on the dimension of
the graph in Figure 3 arises because we were not able to find a valid, ZUTA-compliant collection with the
same sum of cardinalities as the maximal valid collection presented in Equation (14). However, if we were
to consider the graph in Figure 6, which is obtained by removing the latent node h3 from the graph in
Figure 5 (a), and by permuting the latent nodes v2 and v3, ensuring that ZUTA is satisfied, results will
differ significantly. To be more precise, its upper bound and lower bound on the dimension align. We can
convince ourselves that

Ah1 = {{v1, v3}, {v1, v5}, {v3, v5}},
Ah2 = {{v2, v3}, {v2, v4}, {v2, v5}, {v4, v5}}

is a valid, ZUTA-compliant collection with maximal sum of cardinalities since |Ah1 | = | ch(h1)| as well
as |Ah2 | = | ch(h2)|. The main difference is that having only two latent nodes enables, in this case, a
relabeling of the nodes where v2 /∈ ch(h1). This adjustment avoids the exclusion of the third 2-pair of
children of h1, which was previously necessary. We conclude that the dimension’s lower bound equals its
upper bound and consequently

dim(F (G)) = |V |+
∑
h∈H
|Ah| = 12.

25

5 Dependent factors

In this part of the thesis we will drop the previously made assumption of independent latent nodes. Instead,
we will consider models with a parametrization that includes a latent covariance matrix Φ, which is distinct
from the identity matrix. Therefore, we let G = (V ∪H, D,B) be a mixed graph, where V and H are finite
and disjoint sets of observed and latent nodes, respectively, and D ⊆ H× V , B ⊆ H×H are two sets of
edges. The set D contains all directed edges h → v, that point from latent to observed nodes, while the
pairs in B represent bidirected edges h ↔ h̃ between latent nodes. The pairs in B have no orientation,
which is why h↔ h̃ ∈ B if and only if h̃↔ h ∈ B.
For a definition of the factor analysis model, which is identified with the set of its covariance matrices,
we let RD, Rp

>0 and PD(p) denote the same sets as in Section 2.2. Additionally, we will define the set
RB = {Φ ∈ PD(m) : Φhh = 1 and Φhh̃ = 0 if h↔ h̃ /∈ B, h ̸= h̃}.

Definition 5.1. Let G = (V ∪ H, D,B) be a mixed factor analysis graph with |V | = p and |H| = m. As a
model of the covariance matrix, the factor analysis model determined by G is the image F (G) = Im(τG)
of the parametrization map

τG : Rp
>0 × RB × RD −→ PD(p)

(Ω,Φ,Λ) 7−→ Ω + ΛΦΛ⊤.
(17)

From now on, τG will always refer to the map in (17). Recall Proposition 2.1 which states that the dimension
of the model F (G) coincides with the maximal rank of the Jacobian matrix of τG. A natural upper bound
on the dimension is always given by the model’s expected dimension, min{|V |+ |D|+ |B|,

(|V |+1
2
)
}.

In this thesis, the influence of dependent latent nodes on a model’s dimension, will be analyzed exclusively
for a very particular case of graphs, which we will refer to as 2-chain graphs. They are characterized by
each latent node having two pure children and by a tridiagonal latent covariance matrix.

Definition 5.2. (Huang et al., 2022, Definition 2) An observed node v ∈ V is a pure child of a latent node
h ∈ H in a graph G, if pa(v) = {h}. That is, v has no other parents than h.

Definition 5.3. Let G = (V ∪H, D,B) be a mixed graph. We say that G is a 2-chain graph if

(i) each latent node hi with i ∈ [m] has exactly two children, where both are pure children, and

(ii) B = {(hi, hi+1)|i ∈ [m− 1]}.

There is then a relabeling of the observed nodes V = {v1, . . . , vp} such that ch(hi) = {v2i−1, v2i} for all
i ∈ [m].

Let G be a 2-chain graph with m factors. The corresponding latent covariance matrix Φ ∈ RB is symmetric
and tridiagonal. To simplify notation, we will from now on replace the entries ϕhihi+1 and ϕhi+1hi

with ϕi

for all i ∈ [m− 1]. Thus, the latent covariance matrix of G can be written as

Φ =


1 ϕ1
ϕ1 1 ϕ2

. . .
. . .

. . .
ϕm−2 1 ϕm−1

ϕm−1 1

, (18)

where void entries are zero.

26 CHAPTER 5. DEPENDENT FACTORS

(a)

h1 h2 h3

v1 v2 v3 v4 v5 v6 (b)

h1 h2 h3

v1 v2 v3 v4 v5 v6

Figure 7 (a) A graph where each latent node has exactly 2 children and both are pure.
(b) The 2-chain graph that corresponds to the graph in Figure 7 (a).

Example 5.4. Consider the graph in Figure 7 (a). For simplicity, we identify in this example the nodes
v1, . . . , v6 with the integers 1, . . . , 6, and the factors h1, h2, h3 with the integers 1, 2, 3. Clearly, each latent
node has exactly two children, where both are pure. The model’s expected dimension is given by 12.
Computing the actual dimension by following the approach described in Section 4.3 returns 9, indicating
that dimension drops by three. Let us instead consider the corresponding 2-chain graph, depicted in Fig-
ure 7 (b).The six observed nodes, v1, . . . , v6, are already ordered as desired. Furthermore, the expected
dimension is 14 and the latent covariance matrix Φ is given by

Φ =

 1 ϕ1 0
ϕ1 1 ϕ2
0 ϕ2 1

.
This gives rise to the covariance matrix Σ ∈ F (G) of the form

Σ = (σuv) =


ω11 + λ2

11 λ11λ21 λ11λ32ϕ1 λ11λ42ϕ1 0 0
λ11λ21 ω22 + λ2

21 λ21λ32ϕ1 λ21λ42ϕ1 0 0
λ11λ32ϕ1 λ21λ32ϕ1 ω33 + λ2

32 λ32λ42 λ32λ53ϕ2 λ32λ63ϕ2
λ11λ42ϕ1 λ21λ42ϕ1 λ32λ42 ω44 + λ2

42 λ42λ53ϕ2 λ42λ63ϕ2
0 0 λ32λ53ϕ2 λ42λ53ϕ2 ω55 + λ2

53 λ53λ63
0 0 λ32λ63ϕ2 λ42λ63ϕ2 λ53λ63 ω66 + λ2

63

 .

We will verify in Example 5.6 that the graph in Figure 7 (b) has expected dimension.

Let G be a 2-chain graph whose observed nodes are already ordered as stated in Definition 5.3. In what
follows, to avoid confusion, hvi ∈ H will refer to the only parent of the observed node vi ∈ V . We aim to
generalize the parametrization of the entries σvivj of a matrix Σ ∈ F (G). Since Σ is symmetric, it suffices
to consider the entries σvivj for i ≤ j. In particular, for Ω = diag(ωvivi) ∈ Rp

>0, Λ = (λvi,hvi
) ∈ RD and

Φ = (ϕhvi hvj
) ∈ RB , we have

σvivj =



λvi,hvi
λvj ,hvj

if i ̸= j and jpa({vi, vj}) = {hvi} = {hvj} ≠ ∅,
λvi,hvi

λvj ,hvj
ϕk if i ∈ {2k − 1, 2k} and j ∈ {2k + 1, 2k + 2} and k ∈ [m− 1],

ωvivi + λ2
vi,hvi

if i = j,

0 else.

(19)

Similarly as in the previous chapters, we need to inspect the Jacobian matrix for dimension evaluation. Its
structure is given by

J =
(ω ϕ λ

vi Ip 0 ∗
{vi, vj} 0 C1 C2

)
.

The upper rows correspond to the derivatives of σvivi , while the lower rows indicate the derivatives of the
entries σvivj for i < j. The unit matrix of rank p in the upper left matrix block results from

σvivi

ωvjvj

=
{

1 if i = j,

0 else.

27

Recalling Definition 2.1, we obtain that dim(F (G)) = p + rank(C), where C = (C1|C2) is the submatrix
consisting of the two lower right matrix blocks, C1, C2, of the Jacobian. The entries of C1 are given by

σvivj

ϕk
=

λvi,hvi
λvj ,hvj

if i ∈ {2k − 1, 2k} and j ∈ {2k + 1, 2k + 2},
0 else.

(20)

The entries of C2 are given by

σvivj

λvz ,hvz

=



λvi,hvi
if j = z and jpa({vi, vj}) = {hvi} = {hvj} ≠ ∅,

λvj ,hvj
if i = z and jpa({vi, vj}) = {hvi} = {hvj} ≠ ∅,

λvj ,hvj
ϕk if i = z and i ∈ {2k − 1, 2k}, j ∈ {2k + 1, 2k + 2} and k ∈ [m− 1],

λvi,hvi
ϕk if j = z and i ∈ {2k − 1, 2k}, j ∈ {2k + 1, 2k + 2} and k ∈ [m− 1],

0 else.

(21)

The next theorem states that the model of any 2-chain graph has expected dimension.

Theorem 5.5. Let G = (V ∪H, D,B) be a 2-chain graph. Then the corresponding factor analysis model
has expected dimension.

Proof. We begin by proving Theorem 5.5 for a 2-chain graph with |H| = 1 separately. Therefore, let
G = (V ∪ H, D,B) be a 2-chain graph such that |H| = 1. Its expected dimension equals three. Clearly,
B = ∅ and Φ = (1) ∈ R1×1. The matrix block C is given by

C =
(λv1,h1 λv2,h1

{v1, v2} λv2,h1 λv1,h1

)
and has generic rank equal to one. Thus, dim(F (G)) = p + rank(C) = 3 and G has indeed expected
dimension.
Now let G be a 2-chain graph with at least two latent nodes. In that case, expected dimension always
equals |V |+ |D|+ |B|. Given that the upper left matrix block Ip of the Jacobian matrix has rank |V | = p,
it remains to show, that the block C has generically rank r = |D| + |B| = 3m − 1. Applying a similar
argument as in the proof of Theorem 3.3, it suffices to find a generic choice of parameters, Λ0 ∈ RD and
Φ0 ∈ RB , for which the rank of C0 = C(Λ0,Φ0) equals r. Recalling Definition 5.3, we can relabel the
observed nodes, such that Pk := ch(hk) = {v2k−1, v2k} for all k ∈ [m]. Note, that hk refers to the same
factor as hv2k−1 and hv2k

previously. Let us specify the tuples ϕ = (ϕk)k∈[m−1], λ− = (λv2k−1,hk
)k∈[m]

and λ+ = (λv2k,hk
)k∈[m]. Moreover, we define the sets R− = {{v2k−1, v2k+1} : k ∈ [m − 1]} and

R+ = {{v2k, v2k+2} : k ∈ [m− 1]}. We write R∁ = C(V, 2) \
((⋃

k∈[m] Pk

)
∪R+ ∪R− ∪ {v1, v4}

)
. For

the purpose of this proof, the submatrix C will be rearranged as

C =



λ− ϕ λ+

P1 λ+
1 λ−

1
P2 λ+

2 λ−
2

...
.

Pm λ+
m λ−

m

λ+
1 λ+

2 λ+
2 ϕ1 λ+

1 ϕ1

R+
.

λ+
m−1λ+

m λ+
mϕm−1 λ+

m−1ϕm−1
{v1,v4} λ+

2 ϕ1 λ−
1 λ+

2 λ−
1 ϕ1

λ−
2 ϕ1 λ−

1 ϕ1 λ−
1 λ−

2

R−
.

λ−
mϕm−1 λ−

m−1ϕm−1 λ−
m−1λ−

m

R∁ ∗ ∗ ∗



, (22)

28 CHAPTER 5. DEPENDENT FACTORS

where void entries are zero; recall Equation (20) and Equation (21). We choose to set all parameters in
Λ0 and Φ0 equal to one. This immediately implies, that the submatrix of C0 consisting of only the rows
T ∈

((⋃
k∈[m] Pk

)
∪R+

)
and the columns λ−, ϕ is diagonal and of size 2m − 1. Therefore it must have

full row rank of 2m− 1.

Claim 1: By row reduction, the submatrix of C0 that consists of the rows indexed by R− can be trans-
formed such that the right block with columns indexed by λ+ is of full row rank, and the left and middle
blocks with columns indexed by λ− and ϕ are zero.

Fix any row indexed by {v2k−1, v2k+1} ∈ R−. This row contains three potential nonzero entries given
by λv2k+1,hk+1ϕk, λv2k−1,hk

ϕk and λv2k−1,hk
λv2k+1,hk+1 . They occur at the entries with column indices

λv2k−1,hk
, λv2k+1,hk+1 and ϕk. All three nonzero entries are equal to one, given our parameter choice. We

eliminate those entries by subtracting the rows indexed by Pk, Pk+1 and {v2k, v2k+2} ∈ R+. The relevant
submatrix of C0 is given by


λv2k−1,hk

λv2k+1,hk+1 ϕk λv2k,hk
λv2k+2,hk+1

Pk λv2k,hk
0 0 λv2k−1,hk

0
Pk+1 0 λv2k+2,hk+1 0 0 λv2k+1,hk+1

{v2k, v2k+2} 0 0 λv2k,hk
λv2k+2,hk+1 λv2k+2,hk+1ϕk λv2k,hk

ϕk

{v2k−1, v2k+1} λv2k+1,hk+1ϕk λv2k−1,hk
ϕk λv2k−1,hk

λv2k+1,hk+1 0 0

.
Setting all parameters equal to one yields


λv2k−1,hk

λv2k+1,hk+1 ϕk λv2k,hk
λv2k+2,hk+1

Pk 1 0 0 1 0
Pk+1 0 1 0 0 1

{v2k, v2k+2} 0 0 1 1 1
{v2k−1, v2k+1} 1 1 1 0 0

.
Performing the row-reduction as previously described creates two fill-ins. One occurs in the entry with
row index {v2k−1, v2k+1} and column index λv2k,hk

. The other one is created in the entry with row index
{v2k−1, v2k+1} and column index λv2k+2,hk+1 . Both fill-ins are equal to −2. Thus, after elimination the
relevant submatrix of C0 is given by


λv2k−1,hk

λv2k+1,hk+1 ϕi λv2k,hk
λv2k+2,hk+1

Pi 1 0 0 1 0
Pk+1 0 1 0 0 1

{v2k, v2k+2} 0 0 1 1 1
{v2k−1, v2k+1} 0 0 0 −2 −2

.
We have shown that, after elimination, for an arbitrary row of R−, indexed by {v2k−1, v2k+1}, the entries
indexed by the columns λv2k,hk

∈ λ+ and λv2k+2,hk+1 ∈ λ+ are both −2. All remaining entries of the row
equal zero. This implies that the submatrix of C0 consisting of the rows in R− is given by


λ− ϕ λv2,h1 λv4,h2 . . . λv2m,hm

{v1, v3} −2 −2
...

.
{v2m−3, v2m−1} −2 −2

R−

λ+︷ ︸︸ ︷
 .

Clearly, the right block with column index λ+ has full row rank |R−| = m − 1. The left and middle block
are zero. This proves Claim 1.

Claim 2: By row reduction, the row indexed by {v1, v4} can be transformed, such that the submatrix of
C0 consisting of the rows indexed by R− and {v1, v4} has full row rank.

29

We want to subtract the rows indexed by P1 and {v2, v4} ∈ R+ from the row indexed by {v1, v4}. Hence,
the relevant part of C0 is given by the submatrix


λv1,h1 ϕ1 λv2,h1 λv4,h2

P1 λv2,h1 0 λv1,h1 0
{v2, v4} 0 λv2,h1λv4,h2 λv4,h2ϕ1 λv2,h1ϕ1
{v1, v4} λv4,h2ϕ1 λv4,h2λv2,h1 0 λv1,h1ϕ1

.
Setting all parameters to one and performing the row reductions yields


λv1,h1 ϕ1 λv2,h1 λv4,h2

P1 1 0 1 0
{v2, v4} 0 1 1 1
{v1, v4} 0 0 −2 0

.
We now use Claim 1 of this proof and conclude, that the submatrix of C0 consisting of the rows indexed
by R− and {v1, v4} has the following structure



λ− ϕ λ+

{v1, v4} −2
−2 −2

R−
−2 −2

.
We can easily convince ourselves, that by subtracting from every row indexed by a 2-pair in R− the row
above, we obtain a diagonal matrix block



λ− ϕ λ+

{v1, v4} −2
−2

R− . . .
−2

,
which is of full row rank m. Putting together Claim 1 and Claim 2, we see that after all eliminations, the
submatrix of C0 consisting of all rows indexed by a 2-pair T ∈

((⋃
k∈[m] Pk

)
∪R+ ∪ {v1, v4} ∪ R−

)
has

the form



λ− ϕ λ+

P1 1 1
...

.
Pm 1 1

1 1 1

R+
1 1 1

{v1, v4} −2
−2

R− . . .
−2



,

and is of full rank r = m + (m − 1) + 1 + (m − 1) = 3m − 1. Therefore, we found a particular choice of
parameters for which the Jacobian matrix has rank |V |+ |D|+ |B|. This concludes the proof.

30 CHAPTER 5. DEPENDENT FACTORS

Example 5.6. Let us consider the graph depicted in Figure 7 (b). We aim to illustrate the row re-
ductions that were performed in the proof of Theorem 5.5. The 2-pairs of pure children are given by
P1 = {v1, v2}, P2 = {v3, v4} and P3 = {v5, v6}. Furthermore, we have λ− = (λv1,h1 , λv3,h2 , λv5,h3) and
λ+ = (λv2,h1 , λv4,h2 , λv6,h3), as well as R− = {{v1, v3}, {v3, v5}} and R+ = {{v2, v4}, {v4, v6}}. The
only 2-pairs inR∁ that index a nonzero row are {{v2, v3}, {v3, v6}, {v4, v5}} ⊂ R∁. Now, the matrix in (22)
is given by

C =



λv1,h1 λv3,h2 λv5,h3 ϕ1 ϕ2 λv2,h1 λv4,h2 λv6,h3

{v1, v2} λv2,h1 λv1,h1

{v3, v4} λv4,h2 λv3,h2

{v5, v6} λv6,h3 λv5,h3

{v2, v4} λv2,h1λv4,h2 λv4,h2ϕ1 λv2,h1ϕ1
{v4, v6} λv4,h2λv6,h3 λv6,h3ϕ2 λv4,h2ϕ2
{v1, v4} λv4,h2ϕ1 λv1,h1λv4,h2 λv1,h1ϕ1
{v1, v3} λv3,h2ϕ1 λv1,h1ϕ1 λv1,h1λv3,h2

{v3, v5} λv5,h3ϕ2 λv3,h2ϕ2 λv3,h2λv5,h3

{v2, v3} λv2,h1ϕ1 λv2,h1λv3,h2 λv3,h2ϕ1
{v3, v6} λv6,h3ϕ2 λv3,h2λv6,h3 λv3,h2ϕ2
{v4, v5} λv4,h2ϕ2 λv4,h2λv5,h3 λv5,h3ϕ2



,

where void entries are zero. By setting all parameters to one, we obtain the matrix C0 that has the form

C0 =



λv1,h1 λv3,h2 λv5,h3 ϕ1 ϕ2 λv2,h1 λv4,h2 λv6,h3

{v1, v2} 1 1
{v3, v4} 1 1
{v5, v6} 1 1
{v2, v4} 1 1 1
{v4, v6} 1 1 1
{v1, v4} 1 1 1
{v1, v3} 1 1 1
{v3, v5} 1 1 1
{v2, v3} 1 1 1
{v3, v6} 1 1 1
{v4, v5} 1 1 1



.

The submatrix of C0 consisting of the columns λ−, ϕ, and the rows T ∈
((⋃

k∈[3] Pk

)
∪R+

)
is diagonal

and has full row rank of five. This coincides with what was stated in the proof. We proceed to perform
the row reduction described in Claim 1, which corresponds to eliminating all ones in the rows indexed by
{v1, v3} ∈ R− and {v3, v5} ∈ R−. We get

C0 =



λv1,h1 λv3,h2 λv5,h3 ϕ1 ϕ2 λv2,h1 λv4,h2 λv6,h3

{v1, v2} 1 1
{v3, v4} 1 1
{v5, v6} 1 1
{v2, v4} 1 1 1
{v4, v6} 1 1 1
{v1, v4} 1 1 1
{v1, v3} −2 −2
{v3, v5} −2 −2
{v2, v3} 1 1 1
{v3, v6} 1 1 1
{v4, v5} 1 1 1



.

31

The entries of the row {v1, v3} ∈ R− equal −2 if the column index is λv2,h1 or λv4,h2 , and zero otherwise.
Similarly, the entries of the row with index {v3, v5} ∈ R− are −2 if the column index is λv4,h2 or λv6,h3 , and
zero otherwise. Therefore, the right block of the submatrix with rows in R− has full row rank of two. The
left and middle block of the submatrix are both zero and Claim 1 is satisfied. We proceed to eliminate the
ones in the row indexed by {v1, v4}, which yields

C0 =



λv1,h1 λv3,h2 λv5,h3 ϕ1 ϕ2 λv2,h1 λv4,h2 λv6,h3

{v1, v2} 1 1
{v3, v4} 1 1
{v5, v6} 1 1
{v2, v4} 1 1 1
{v4, v6} 1 1 1
{v1, v4} −2
{v1, v3} −2 −2
{v3, v5} −2 −2
{v2, v3} 1 1 1
{v3, v6} 1 1 1
{v4, v5} 1 1 1



.

Claim 2 is satisfied, given that the submatrix of C0 consisting of the rows indexed by R− and {v1, v4} has
full row rank of three. We see that the matrix consisting of all but the last three rows has full row rank
of eight. To summarize, we found a generic choice of parameters Λ0 ∈ RD and Φ0 ∈ RB that satisfies
rank(C(Λ0,Φ0)) ≥ 8. As the expected dimension of the model is 14, we get

14 ≥ dim(F (G)) = p+ rank(C) ≥ p+ 8 = 14.

We can confirm that the model has expected dimension.

32 CHAPTER 6. CONCLUSION

6 Conclusion

Motivated by the challenges arising from sparsity, the aim of this thesis was to provide a detailed study of
the dimension of sparse factor analysis models from both an algebraic and computational perspective.
We began by reviewing the necessary algebraic background and learned early on about the importance
of the Jacobian matrix for the analysis. Moreover, we identified each model with its set of covariance
matrices, and justified ways to bound the dimension of this set, building on recent results from Drton et al.
(2024). The approach of Drton et al. (2024) for evaluating the upper bound can be applied to any arbitrary
sparse factor analysis model and relies on finding a valid collection with maximal sum of cardinalities. On
the other hand, deriving a lower bound, following the idea suggested by Drton et al. (2024), is only possible
for models that satisfy the ZUTA condition and involves identifying a valid, ZUTA-compliant collection. In
cases where the upper bound and the largest lower bound coincide, we get a dimension formula.
We implemented the concepts in R to enable computational evaluation of the bounds. A large part of this
thesis consisted of a detailed analysis of the algorithms that were developed, including their complexity and
efficiency. It was necessary to incorporate strategic code improvements to obtain results for relatively large
graphs. These improvements comprised iterating backwards through the loops, adding break conditions,
and generating only relevant collections. All these enhancements contributed to successfully examine
the dimension properties of all sparse factor analysis graphs up to seven observed variables and up to
three latent factors. We proceeded to run simulations and created an overview that summarized the
number of graphs for which the bounds coincide, as well as the number of graphs with expected dimension,
both grouped by the number of edges. In cases where the largest lower bound differed from the upper
bound, we were initially uncertain whether the model had expected dimension or not. This gave rise
to the necessity of outsourcing the task of dimension evaluation for certain models to MACAULAY2. We
therefore briefly explained a core functionality of the computer algebra system and how it can be beneficial
to our analysis. We then demonstrated how the knowledge gap regarding the dimension of models with
varying bounds was closed using MACAULAY2 code. After finalizing the previously incomplete overview,
we recognized that in certain cases, factor analysis models have expected dimension despite differing
bounds. These cases were of particular interest as they accentuate weaknesses in the theorems and
point out the need of alternative approaches that cover all graphs appropriately.
Another interesting result was the identification of the smallest graph, for which the corresponding bounds
differed. Already for a graph with five observed and three latent nodes, the bounds failed to coincide.
We thoroughly analyzed the reason for this deviation and learned that in the case of this particular graph,
no valid, ZUTA-compliant collection could be determined with the same sum of cardinalities as the valid
collection found for the upper bound.
In the last chapter, we extended our analysis of dimension to models with dependent factors. In that case,
the relationship among the latent nodes is described by a latent covariance matrix that is not the identity
matrix. As an example, we focused exclusively on 2-chain graphs. For these very particular graphs, we
were able to prove that the corresponding models always have expected dimension. However, a general
study of the dimension of sparse factor analysis models with dependent factors remains an open problem.

33

Bibliography

Bapat, R. B. (2012). Linear algebra and linear models, third edition. Springer-Verlag, London.

Bochnak, J., Coste, M., and Roy, M.-F. (1998). Real algebraic geometry, volume 36 of Ergebnisse der
Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to algorithms, third edition.
MIT Press, Cambridge, MA.

Coste, M. (2002). An Introduction to Semi-Algebraic Geometry. Available at: https://perso.univ-
rennes1.fr/michel.coste/polyens/SAG.pdf.

Drton, M., Grosdos, A., Portakal, I., and Sturma, N. (2024). Algebraic Sparse Factor Analysis. arXiv
preprint arXiv:2312.14762.

Drton, M., Sturmfels, B., and Sullivant, S. (2007). Algebraic factor analysis: tetrads, pentads and beyond.
Probability Theory and Related Fields, 138 (3-4): 463–493.

Evans, R. (2022). rje: Miscellaneous Useful Functions for Statistics. R package version 1.12.1.

Grayson, D. R. and Stillman, M. E. Macaulay2, a software system for research in algebraic geometry.

Huang, B., Low, C. J. H., Xie, F., Glymour, C., and Zhang, K. (2022). Latent Hierarchical Causal Structure
Discovery with Rank Constraints. arXiv preprint arXiv:2210.01798.

Iwanaga, K., Umucu, E., Wu, J.-R., Yaghmaian, R., Lee, H.-L., Fitzgerald, S., and Chan, F. (2020). Assess-
ing vocational outcome expectancy in individuals with serious mental illness: a factor-analytic approach.
Journal of Mental Health, 29 (1): 116–123.

Jurczak, J. and Jurczak, G. (2021). Application of factor analysis in company management – selected
examples related to competitiveness and market success. Engineering Management in Production and
Services, 13 (3): 25–36.

Karpfinger, C. (2024). Algebra: Gruppen – Ringe – Körper, sixth edition. Springer Spektrum, Berlin.

Okamoto, M. (1973). Distinctness of the Eigenvalues of a Quadratic form in a Multivariate Sample. The
Annals of Statistics, 1 (4): 763–765.

Petersen, R. J., Komorita, S. S., and Quay, H. C. (1964). Determinants of Sociometric Choices. The Journal
of Social Psychology, 62 (1): 65–75.

Petrinovich, L. and Hardyck, C. (1964). Behavioral changes in parkinson patients following surgery: A
factor analytic study. Journal of Chronic Diseases, 17 (3): 225–233.

R Core Team (2024). R: A Language and Environment for Statistical Computing. R Foundation for Statis-
tical Computing. Vienna, Austria.

Spearman, C. (1904). General intelligence, objectively determined and measured. The American Journal
of Psychology, 15 (2): 201–293.

https://perso.univ-rennes1.fr/michel.coste/polyens/SAG.pdf
https://perso.univ-rennes1.fr/michel.coste/polyens/SAG.pdf

34 BIBLIOGRAPHY

Sullivant, S. (2018). Algebraic statistics, volume 194 of Graduate Studies in Mathematics. American Math-
ematical Society, Providence, RI.

Wood, J. (2024). RcppAlgos: High Performance Tools for Combinatorics and Computational Mathematics.
R package version 2.8.5.

	1 Introduction
	2 Preliminaries
	2.1 Algebraic background
	2.2 Factor analysis models

	3 Bounds on the dimension
	3.1 Upper bound on the dimension
	3.2 Lower bound on the dimension

	4 Computation
	4.1 Algorithm to compute the upper bound
	4.2 Algorithm to compute the largest lower bound
	4.3 Computing dimensions in Macaulay2
	4.4 Simulations
	4.4.1 Results on graphs up to three latent and seven observed nodes
	4.4.2 Smallest graph for which the bounds differ

	5 Dependent factors
	6 Conclusion

