### Riemannian quantum circuit optimization based on matrix product operators



Isabel Nha Minh Le (isabel.le@tum.de)<sup>1,2</sup>, Shuo Sun<sup>1,2</sup>, and Christian B. Mendl<sup>1,2,3</sup>

### Goal

Classically optimize a quantum circuit to approximate the time evolution for time  $\Delta t$ 

Treat problem classically for short  $\Delta t$ 



Execute on quantum hardware for  $\Delta t \gg 1$ 

#### Methods

- Start with a brickwall circuit that implements a Trotter step
- Approximate the reference as a higher-order Trotterization and express it as a matrix product operator (MPO)
- Evaluate cost function and gradient using **tensor network methods**
- Use **Riemannian optimization** to incorporate the unitary constraint of the quantum gates

### Results

*Spin chains* 

- a) Transverse-field Ising model (50 sites, J=1, g=0.75, h=0.6, t=2): up to 4 orders of magnitude improvement
- b) Heisenberg model (50 sites, *J*=(1,1,-1/2), *h*=(3/4,0,0), *t*=0.25): up to 1

*Fermionic systems* 

- c) Spinful Fermi-Hubbard chain (50 qubits, T=1, V=4, t=0.3): up to a factor of 6 improvement
- d) Molecular Hamiltonian (LiH, 6 orbitals, diagonal interaction): up to



## By combining Riemannian optimization

and tensor network methods, we



Download the full paper

## improve the accuracy of Trotter circuits

# up to four orders of magnitude.



Download this poster

### **Optimization problem**

**Optimization statement:** 

 $G_{\text{opt}} = \underset{G \in \mathcal{U}(4)^{\times N}}{\arg\min} \mathcal{C}(U_{\text{ref}}, W)$ 

Cost function: Hilbert-Schmidt test  $\bullet$ 

 $\mathcal{C}(U_{\rm ref}, W) = 1 - \frac{1}{d^2} \left| \text{Tr}(U_{\rm ref}^{\dagger} W) \right|^2$ 

Evaluation of  $\partial_{G_{\ell}} \operatorname{Tr}(U_{\mathrm{ref}}^{\dagger}W)$  using tensor networks lacksquare





### **Tensor network methods** 4x4-2x2x2x2matrix tensor



<sup>1</sup>Technical University of Munich, School of Computation, Information and Technology <sup>2</sup> Munich Center for Quantum Science and Technology (MCQST) <sup>3</sup> Technical University of Munich, Institute for Advanced Study