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Abstract

This thesis focuses on the decompositions of the bath correlation func-
tion using an Ohmic spectral density. The calculation of the bath correla-
tion function yields high computational effort. Hence we used a definition
consisting of a sum of exponential functions to define the bath correla-
tion function in order to simplify the computation. The Gradient Descent
Algorithm is used for the optimal approximation of the bath correlation
function.



Contents

[1I__Introductionl

|12 Background|
2.1 Open quantum systems| . . . . ... .. ... ... ... ...
2.2 Spectral densityl. . . . . . . ... L Lo

3.2 Variational Fitting| . . . . . . ... ... ... ... ...

4 Methodology|
4.1 Gradient Descent for Optimization| . . . . . . . . .. .. ... ..

(42 umerical Implementation|. . . . . . . ... ... ...

4.2.2 Approximation and Optimization|. . . . . . . . . ... ..
4.2.3 L2 Regularization| . . .. ... .. ... ... ... ...,
4.2.4 K Regularization| . . . . . ... .. .. 0.

b Tesal T ol
[6_Conclusionl

7 List of Figures|

|18 Bibliography|

11
11
12
12
13
14
15

16

21

22

23



1 Introduction

Open quantum system are in constant interaction with their external environ-
ments. These systems are pivotal in understanding various occurring phenom-
ena in physics and chemistry. The bath correlation function is fundamental in
the characterization of the aforementioned interactions, providing insights into
the dynamics of the system and decoherence processes.

The quantum interactions between the system of interest and the environ-
ment lead to energy exchange and entanglement. Decoherence is observed as a
result, where the system’s quantum behavior diminishes due to the influences of
the external environment. It is essential to model these interactions accurately
in order to predict the system behavior and design quantum technologies.

The influence of the environmental fluctuations over time is quantified by
the bath correlation function. The bath correlation function entails information
regarding the environment’s spectral properties and its influence on the sys-
tem. In that sense, it is crucial to be able to understand and properly evaluate
this function in order to effectively model open quantum systems. In these open
quantum system models the environment is often modeled as an infinite number
of harmonic oscillators that couple linearly to some system degrees of freedom.
It is convenient to describe the impact of the environment on the system us-
ing a spectral density, which contains information about the spectrum of the
environment as well as the frequency-dependent coupling. [11 2] [3], 4]

This thesis aims to investigate variational fitting techniques for approximat-
ing the bath correlation function as a sum of exponential functions. The bath
correlation function in its integral form is relatively simple in terms of calcu-
lation. However,the traditional formulations of the bath correlation function
and methods such as the Hierarchy of Pure States (HOPS) and the Hierarchical
Equations of Motion (HEO) involve multiple integrations of the bath correla-
tion function which yield high computational intensity and complexity. The
approximation serves the simplification of complex interactions, making them
more tractable for analytical and numerical analyses. Hence, reducing the com-
putational complexity for the evaluation of the interactions.



2 Background

2.1 Open quantum systems

Various phenomena in physics do not comply to the laws of classical mechanics.
Hence, open quantum systems are pivotal to model these phenomena and to
predict their behaviors. These systems interact with their environments, which
leads to energy exchange and entanglement.[6l [7, [§] If the environment’s im-
pact causes the system’s quantum behavior to diminish, the system experiences
decoherence [§].

The spin-boson model is fundamental for the description of how a two-state
system (TSS) interacts with the surrounding bosonic environment (bath) [6].
This model is widely applied in quantum optics, condensed matter physics and
quantum computing, where understanding decoherence and dissipation is cru-
cial. The two-state system represents an open quantum system with two discrete
energy states, similar to a quantum bit (qubit) in computing or an electron spin
in a magnetic field. The subatomic particles called ’bosons’ have an integer
spin. The environment is a bosonic bath, which consists of and infinite num-
ber of harmonic oscillators (bosons) [7]. The bosons appear on distinct energy
levels, hence it is possible for dissipation to occur when a boson is coupled to
another particle. The TSS and the environment exchange energy, leading to
dissipation and decoherence as shown in Figurdl]

M@W

Bath B

System-environment coupling

Figure 1: Schematics of the total system consisting of the two-state system TSS
and the bath B

The quantum two-time bath correlation function quantifies the interactions
between the bath and the two-state system, which often is a two-state parti-
cle. The generic Hamiltonian of a system coupled to a bath, in the absence of
external fields, can be expressed as

H= fI(q,p) + _F:IB(Q,P) + ﬁSB(qapaQaP)a (1)

where H, is the system Hamiltonian, Hp is the bath Hamiltonian, Hgp is the
system-bath Hamiltonian. In addition, (q,p) = (¢;,p;) and (Q,P) = (Qx, Px) ,
indicate the generalized multidimensional conjugated coordinates for the system
and the bath, respectively [5].



2.2 Spectral density

The spectral density J(w) describes the frequency dependent coupling of the
system to the bath. The spectral density function is necessary to calculate
the bath correlation function. Although there are different definitions for the
spectral density function in the quantum literature, we will be using the spectral
density with exponential cutoff.

J(w) = nwse” we, (2)

where w, is the cutoff frequency and 7 scales the overall strength [I][19][20].
The spectral density function J(w) = nw®e” “c encompasses various spectral
densities depending on the value of the Ohmic parameter s:

e Ohmic Spectral Density: When s = 1, the spectral density is linear in
w, representing a direct proportionality. This form is typical in systems
where the environment induces a friction-like effect on the system.

e Sub-Ohmic Spectral Density: For s < 1, the spectral density grows
slower than linearly with w, indicating weaker coupling at low frequencies.
This scenario is relevant in systems where low-frequency environmental
modes dominate the interaction.

e Super-Ohmic Spectral Density: When s > 1, the spectral density in-
creases faster than linearly with w, suggesting stronger coupling at higher
frequencies. This situation arises in environments where high-frequency
modes have a more significant impact on the system.

The parameter n denotes the coupling strength between the system and the
environment, while w, is the cutoff frequency ensuring that J(w) diminishes
for large w [12]. This behavior reflects the physical reality that environmental
modes beyond a certain frequency have negligible influence on the system. For
the purpose of this thesis, each of the parameters 7, s and w, will hold a random
value within an interval of their typical values. Therefore, the variational fitting
process will not optimize by adapting to set parameters.
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Figure 2: J(w)/(nw.) plotted in terms of w/w.

3 Theoretical Framework

3.1 The Bath Correlation Function

The bath correlation function describes the influence of the environment on a
system. The correlator C(t) is in general complex and one can show, see,w.g.,
Refs. [14] and [I5], that it has the following symmetries with respect to time
[5]:

C(=t)=C*(t) = C(t — iph). (3)

In the research article ”On the alternatives for bath correlators and spectral den-
sities from mixed quantum-classical simulations” by Stéphanie Valleau, Alexan-
der Eisfeld, and Aldn Aspuru-Guzik have utilized the Fourier transform of
the time correlation function to derive the definition of the bath correlation
function[5]. First, the Fourier transform of the time correlation function is de-
fined

Glw) = FICW)] () = / T ety (@)

—00

The function G(w) is referred to as the temperature-dependent coupling density
[5]. C(t) has real and imaginary parts. Hence G(w) can be split into a symmetric
and antisymmetric component using the convention of Ref. [13].

G((.L)) = Ggym(w) + Gasymm(w)a (5)

Gy fusymm () = 3(G) % G(—). (



The time symmetry in Eq implies that G(w) is related to its antisymmetric

part by
2

Gw) = P

Gasymm (w> (7)

= (14 coth(fhw/2))G asymm (w) (8)

It will be convenient to abbreviate Gysymm (w) by defining
J(w) = Gasymm (w).

[5] Using both the definition of G(w), Eq/] and the relation in Eq[7] the corre-
lation function can be defined as:

C(t) = % / h J(w) {coth (%‘”) + 1] et dw (9)

— 00

This function as itself yields high computational effort and less than optimal
runtime with regards to HOPS and HEO methods.

3.2 Variational Fitting

The coth function as an integrand results in poor performance while computing.
Therefore instead of numerically integrating the full function, we approximate
it using a sum of exponential functions:

Cappros(t) = Zgje_wjt (10)

The coefficients g; and frequencies w; are to be optimized using gradient de-
scent methods to optimize the approximation of the bath correlation function.
The coeflicients g; are real. However the frequencies w; are split into real and
imaginary parts,

wj = aj + 1.
This ensures that the variational fitting process can optimize the parameters
adequately and the program doesn’t run into issues such as the difference be-

tween the bath correlation function and its approximation gradually increasing
throughout the variational fitting process.

10



4 Methodology

4.1 Gradient Descent for Optimization

Gradient descent is mainly used for machine learning and optimization prob-
lems. Gradient descent seeks to find a local minimum of the cost function by
adjusting model parameters [9]. In this work, we will utilize the gradient de-
scent algorithm to optimize the parameters g; and w; by minimizing the error
between the original and approximated correlation function abiding the guide-
lines of the article ”Create a Gradient Descent Algorithm with Regularization
from Scratch in Python” by Turner Luke, see Ref.[9]. For our model optimiza-
tion, we’ll perform least squares optimization, where we seek to minimize the
sum of the differences between our predicted values, and the data values[9]. The
quadratic cost function is defined as:

C— S (i — Ui)?

2 (11)

where y; is the model prediction from the independent variable. The model
prediction is presented as a polynomial model.

Ui = Bo + Przi + ... + By (12)

As the name suggests, gradient descent algorithm optimizes the parameters to
minimize the cost function by calculating the gradient of the cost, dependent on
the independent variables. The gradient of the cost function is presented with
the V operator as

5c . 6C e
VO= — 4 — + . . (13)

Fitting the parameters in such a way that descends the gradient enables a
lesser cost, which is the objective of the minimization process. Updating the
parameters g; and wj, see @, with their gradients allows the program to move
in the direction of the steepest descent of the cost function. The gradient of
the parameter are calculated and multiplied with the learning rate. This term
is then subtracted from the parameter and the result of the subtraction is set
as the updated parameter, respectively. The gradient contributions are then
divided by the amount of timestamps, essentially averaging over time. This
process is equivalent to computing the gradient of the mean squared error,
which is normalized. The parameters are updated with a negative step along
the gradient. This method exhibits a cost function, that iteratively decreases in
value.

11



4.2 Numerical Implementation
4.2.1 Parameters

A Python implementation was developed using SciPy and NumPy to solve the
optimization problem using the gradient descent algorithm. After the spectral
density function and the bath correlation function are defined, see Eq[2] and [0}
the typical range of the parameters that are not to be fitted is given, see Table
Starting off with the coupling strength 7, this parameter represents the system-
bath coupling strength The typical range of the values lie between 0.01 and 2,
where 17 < 1 indicates weak coupling and shows a perturbative regime. Hence
Markovian approximation is valid. On the other hand the range n > 1 indicates
strong coupling and that the non-Markovian effects become significant [16][L7].
The cutoff frequency w, determines the characteristic frequency scale of the
bath. The value typically ranges from 0.01eV/f to 10 eV/h. A large value, e.g.
we > 1, corresponds to a fast-decaying bath correlation function in terms of
short memory effects and Markovian behavior. A small value however leads to
a bath with long memory and strong non-Markovian effects [2][18].The choice of
w,. depends on the environment, where it should be large enough to capture all
relevant bath modes but small enough to maintain numerical efficiency. Another
parameter used is the inverse temperature 3, where § = 1/kgT. In natural units
(h = kp = 1), the value range of the inverse temperature is typically described
as 0.1% <pg< 10%. A high temperature regime corresponds to a small value
of B (e.g. B < 1) and indicates the domination of thermal fluctuations. A low
temperature regime on the other hand (e.g. § > 5) underlines the importance
of the quantum effects [4]. The reduced Planck’s constant % is often set to 1 in
natural units. In terms of simplicity, this work will also set & to 1eV's [2I]. The
spectral density exponent s defines the type of the spectral density, see page
The typical values for s range from 0.5 to 2.

A random value among the typical range is assigned to each of these param-
eters every time the Python code is initialized. This results in varying values
for the cost function but prevents the algorithm from over-fitting or adapting
to constant parameters.

Parameter Typical Range Unit

Coupling Strength (n) | 0.01 <n <2 dimensionless

Cutoff Frequency w, 0.01 <w. <10 Hz (or energy:
J/h,eV/h)

Inverse Temperature | 0.1 < 3 <10 1/eV (or s/J)

(8)

Reduced Planck’s Con- | i =~ 1.054571817 x | eVs (or Js)
stant (h) 10734
Spectral Density Ex- | 0.5 < s <2 dimensionless
ponent (s)

Table 1: Parameters, The Typical Range of Their Values and the Units
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4.2.2 Approximation and Optimization

Using the randomly initialized parameters, a set of discrete values for C(t) are
generated using the definition in Eq[9] The discrete values are to be used to
fit the sum of exponential functions Copproz, see Eq to the original bath
correlation function. The Python code behind the variational fitting process
can be simply presented as:

Algorithm 1 Variational Fitting of the Bath Correlation Function as a Sum of
Exponential Functions

tvals < time values
J(w)  nwse” we
Ct) « 5= [T J(w) [coth (Bg‘“) + 1} e~ wdw
Clals(t) < discrete values of C(t)
Capprox(t) Z;{:1 gje it
error < Coapproz(t) — Cuals(t)
cost < 3, [Coats(t) = Capprozya, (B)|° + )‘reg(Zj 932' + Z_j |w;1?)
if ¢t in t,4s then
Compute Cupprox
Compute error
else if j in K then
for each j in K
Compute expterm = e~
if the number of iterations is 0 then
for each iteration to a selected number of max. iterations
Compute the gradients grad;, grad,,,, grad,,; utilizing L2 regulariza-
tion
Update Parameters g; and w; using the learning rate and the gradients
Return updated g;,w;
Set previous cost to oo
Compute cost function with updated g;, w;
if |previous cost - cost| is less than the given threshold then
Set previous cost = cost
Print the cost every 10th iteration
Return optimized g;, w;
end ifthe optimized parameters are presented
end ifthe number of iteration reaches max. iterations
Plot results with the optimized parameters
end ifthe optimization process is complete and the results are plotted.

t
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4.2.3 L2 Regularization

The L2 regularization, also known as the Ridge regression, is a method used to
produce stable estimates of the coefficients [22]. The Ridge regression is often
used to alleviate the overfitting in machine learning models. Overfitting can
occur in different ways. With our optimization problem, the coefficients g; and
w; becoming too large can cause overfitting, forcing the approximation to follow
the exact details of the given data or the noise rather than the true function.
Another cause of overfitting can be the use of too many exponential terms K,
see in the summation. In that case, the approximation might fit the training
data perfectly but fail to generalize to new time values. To mitigate overfitting,
L2 regularization introduces a penalty term to the cost function to keep them
from becoming too extreme 3] The penalty term

Areg(z g + Z jw;[?) (14)

is then added to the cost function. Hence, the value of the cost function also
increases with extreme parameter values, and the cost minimization algorithm
prioritizes the parameters with less extreme values.

A

>

WZ
Minimize cost

, //Q

o N N
Minimize penalty Minimize cost + penalty

Figure 3: L2 Regularization



4.2.4 K Regularization

K regularization is not a formal mathematical method, but an implicit imple-
mentation we evaluated in our Python code. K regularization simply consists of
scaling the learning rate with the number of exponential terms K. With higher
K, the process exhibits higher computational complexity. By scaling the learn-
ing rate proportional to 1/ VK, we enable a lower learning rate for higher K,
therefore, more stability. K regularization is another method that one may use
if overfitting occurs despite L2 regularization. In itself K regularization doesn’t
enable greater stability than L2 regularization, see Fig. [0} In the prospects of
our work, L2 regularization is sufficient. One may choose to use K regularization
as a supplementary form of stability. K regularization fundamentally controls
model complexity.

15



5 Results and Discussion

In this section, we evaluate the accuracy of the variational fitting method used
to approximate the bath correlation function C(t). The initial fitting curves in
Fig. [ and Fig. [f] are generated using parameters that are randomly assigned
from a range of their typical values. The initialization plotted by these figures
consists of a total of 100 time-discrete values of the bath correlation function in
a span of 5 seconds. As expected, the approximation in this stage is poor, as the
randomly chosen parameters do not effectively capture the structure of the bath
correlation function. This results in significant deviations between Coyriginai(t)
and Coppros(t), see Figures @

° ® Original Re[C(t)]
Fitted Re[C(t)]

Time (t)

Figure 4: Initial Fit for the Real Part of C(¢)

° ® Original Im[C(t)]
Fitted Im[C(t)]

Im[C(o)]
]
°

Time (t)

Figure 5: Initial Fit for the Imaginary Part of C(¢)
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The parameters from the initial fit are then regulated and updated with their
gradients. Hereby, the parameter w;, see equation is separated into a real
part a; and an imaginary part ;. The gradients of both parts are calculated
and the fitted to the initial parameter to prevent additional error due to w;
being complex. Figure[6shows the original and the approximated bath correla-
tion functions calculated with the parameters optimized with gradient descent
and L2 regularization. The approximation struggles at small time values, then
improves over time. This is largely because of the relation of the exponential
terms and Cypprog(t) at ¢ = 0. At t = 0, all exponential terms are equal to
1, so the approximated bath correlation function solely depends on the sum of
coefficients g;. But the original C'(¢) at ¢ = 0 depends on an integral over the
full spectral density, hence it exhibits a much richer structure. This results in
a better fit at later times, where exponential terms start to differentiate them-
selves. Despite the visible deviation near ¢ = 0 in both real and imaginary parts,
the fit is satisfactory overall, especially after ¢ > 1. The oscillatory behavior is
captured in phase and amplitude. This model succeeds to capture the dominant
dynamics of the correlation function. The early-time error is expected, due to
all exponential terms evaluating to 1, making it difficult to model steep fea-
tures or derivative discontinuities. The inaccuracy is addressed by emphasizing
early-time behavior using weighted time values, where the sampling near ¢t = 0
have more impact in regards to later time values. This solution however yields
a similar result, since the deviation is expected because of the limited control
over sharp initial features.

Original vs Approximated C(t) using Gradient Descent with Complex Frequencies
8 <

—— Re[C(t)] (Original)
-=-- Re[C(t)] (Approx)
—— Im[C(t)] (Original)

Im[C(t)] (Approx)

Figure 6: Original vs Approximated C(t) Using the Parameters Optimized with
Gradient Descent and L2 Regularization
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As seen in Figure [5| gradient descent reduces the costs efficiently with each
iteration. Whereas within approximately 100 iterations, the value of the cost
function is negligible. The higher initial cost values stem from the initial fit,
where the initially fitted function greatly deviates from the original correlation
function. The cost consists of the absolute difference between the original and
the approximated correlation function, and also the regularization term, under-
standably, see section[£:2.2] It is observable, that the gradient descent algorithm
minimizes the cost efficiently, as intended.

The Cost Function Values with Iterations

50 T T T T T T T
—=— Cost

40 + R

30

Cost

20

10 - B

|

| | 1 1
0 20 40 60 80 100 120 140 160 180 200
Number of Iterations

0

Figure 7: The Cost Function Values with Iterations, Increments of 10

Figure exhibits the absolute approximation error |Cyars(t) — Capprowyars ()]
as a function of time for varying values of the number of exponential terms K in
(5,10, 20, 30,50), see As K increases the approximation error consistently
decreases, especially for intermediate to long times (¢ > 1). Low values for K
indicate a lower amount of exponential terms, which are to be summed to express
the original correlation function. Hence, for lower values the the approximation
is limited in flexibility to capture the full structure of C(¢), leading to higher
persistent error. Even for high K, the error at ¢ = 0 remains non-negligible,
further emphasizing the challenge in matching the sharp features of the original
function at early times. This behavior illustrates the typical trade-off between
model complexity and approximation accuracy. A larger K introduces more
parameters and increases the expressive power of the exponential sum, allowing
for better fitting. However, without proper regularization, higher K can also
increase the risk of overfitting or numerical instability. In regards of model
complexity and algorithm runtime, we found K = 30 to be a suitable value for
this work, enabling decent runtime.

18



Approximation Error vs Time for Different K

0.6 — k=5

0.5 — K=50

0.4

- C_approx|

0.3

0.2

Absolute Error |C_original

0.1

0.0

Figure 8: Approximation Error Plotted by Time for Different Values of K

To further analyze model performance, we evaluated three regularization
strategies using a fixed set of parameters. The strategies in question are no regu-
larization, L2 regularization and K regularization. Figure[Jdisplays the absolute
error over time for each case. It is visible that L2 regularization yields the low-
est and smoothest error, especially after the initial transient region. Although
it might seem as no regularization is performing as well as L2 regularization,
the no regularization strategy is unpredictable and unstable. No regularization
is heavily dependent on the initialization of the parameters, making it more
susceptible to overfitting. If overfitting occurs, which is observable more often
with no regularization in comparison to the other strategies, there is not a curve
for no regularization to be observed. The program fails to fit the approxima-
tion to the original function. K regularization on the other hand exhibits large
oscillations and peaks in the error, indicating poor convergence or underfitting.
Hence, supporting the initial argument, that K regularization is to be used as
a supplementary form of regularization in addition to L2 regularization. L2
regularization is crucial to the stabilization of the optimization process. It en-
ables the suppression of large parameter magnitudes, encourages smoother fits,
and avoids overfitting. The learning rate scaling (K-Regularization), while the-
oretically valid, under-performs in practice due to overly conservative updates,
leading to poor convergence. Thus, L2 regularization is clearly the more ro-
bust and effective regularization method in this setting. These results confirm
that both the choice of K and the regularization method significantly affect
the approximation performance. L2 regularization with a moderately large K
(e.g.,30,50, or higher) yields the best trade-off between accuracy and stability.
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Error vs Time: No Reg vs L2 vs K-Regularization

2.5 4

2.0 4

1.5 1

1.0

Absolute Error |C_original - C_approx|

0.5 1

0.0 1

—— No Regularization
L2 Regularization

—— K Regularization (LR = 1/K)

Figure 9: Error Plotted by Time for No Regularization, L.2 Regularization and

K Regularization

Strategy Error Near t =0 Long-Time Accu- | Stability
racy

Small K High error Poor Stable

Large K Slightly better Very good Can be unstable
without regulariza-
tion

L2 Regularization Moderate Best Very stable

K Regularization Very high error Poor Unstable

Table 2: Evaluation of Regularization Strategies
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6 Conclusion

This thesis presents a variational fitting approach for the bath correlation func-
tion using a sum of exponential functions. This approach is motivated by the
need to efficiently and accurately represent open quantum system dynamics,
where the bath plays a critical role in introducing memory effects and dissipa-
tion. The core of the method involved formulating C(t) as a sum of exponential
functions, see where g; are real coeflicients and w; are complex frequencies
to be optimized using gradient descent. To evaluate the performance of the ap-
proximation, we analyzed the convergence behavior and accuracy of the method
under different values of K and different regularization strategies. Our findings
overall include that the approximation tends to perform best at intermediate
to long times, while errors at early times remain a challenge due to structural
limitations of the exponential representation. The accuracy of the approxima-
tion could be further amplified by implementing even higher values of K and
higher numbers of maximum iterations for the gradient descent algorithm. With
regards to computational effort and runtime, this work was conducted with an
interval of (5 — 50) for K and (100 — 1000) maximum iterations for gradient
descent. L2 regularization in addition to the selection of a large K value proves
to be the best strategy in terms of long-time accuracy and stability. This work
demonstrates that a variational exponential sum is a viable and flexible tool for
modeling bath correlation functions, particularly when combined with proper
regularization. It opens the door to further improvements, including adaptive
basis selection, frequency-domain fitting, integration with non-Markovian quan-
tum dynamic solvers and the introduction of machine learning techniques to en-
hance optimization. Future research directions could include reevaluation using
Debye spectral density, exploring different functional bases beyond exponential
functions (e.g., Gaussian or Lorentzian functions), and extending the method to
multidimensional correlation functions in more complex quantum environments.
Overall, this study provides a practical and adaptable framework for spectral
decomposition in open quantum systems, contributing to more accurate simu-
lations in quantum chemistry, condensed matter, and quantum technologies.
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