
TECHNICAL UNIVERSITY OF MUNICH

School of Computation, Information and
Technology
 Informatics

Master’s Thesis in Informatics

Quantum Gate Simulation Using Tree
Tensor Networks

Juxhin Allaisufi

TECHNICAL UNIVERSITY OF MUNICH

School of Computation, Information and
Technology
 Informatics

Master’s Thesis in Informatics

Quantum Gate Simulation Using Tree
Tensor Networks

Simulation von Quantengatteroperationen
mittels Tree Tensor Networks

Author: Juxhin Allaisufi
Supervisor: Prof. Dr. Christian B. Mendl
Advisors: M.Sc. Richard Milbradt
Submission Date: 31.03.2025

Disclaimer

I confirm that this Master’s thesis is my own work and I have documented all
sources and material used.

 (Date) (Juxhin Allaisufi)

Acknowledgements
First of all, I would like to thank Prof. Dr. Christian B. Mendl for trusting me in
completing this thesis, and M.Sc. Richard Milbradt for his guidance and input throughout
the entire thesis.

I would like to continue with thanking my dear friends, Sara, Relisa, Zajmena and
Moreno, without whose continuous and genuine support I would not have been to able
finish this chapter of my life.

In addition, I would like to thank all the members of my family, my mother, sister,
nephews, two cousins, my uncle and his wife, and my beautiful grandparents for their
unconditional loving.

Dhe së fundmi dua të falënderoj tim atë, shpresoj të jesh krenar, babë!

Abstract

This thesis explores the simulation of quantum circuits using tree tensor networks
(TTNs), a structured representation well-suited for modeling quantum systems with

limited entanglement. The project focuses on simulating quantum gate behavior,
visualizing qubit state evolution, and testing small-scale quantum protocols. As a case

study, the encoding process of the Shor error-correcting code is implemented and
extended to span 18 qubits, demonstrating the framework’s scalability.

While some advanced operations are omitted due to current limitations, such as multi-
controlled gates, the results confirm the correctness of the implemented logic and provide

a foundation for future extensions. Planned improvements include expanding the
supported gate set, validating additional gate types, and developing a testing

infrastructure to ensure accuracy and stability. This work contributes to the broader effort
of building efficient and extensible tools for quantum circuit simulation.

Zusammenfassung

Diese Arbeit untersucht die Simulation von Quantenschaltungen mithilfe von Tree Tensor
Networks (TTNs), einer strukturierten Darstellung, die sich besonders gut für die

Modellierung von Quantensystemen mit begrenzter Verschränkung eignet. Der Fokus liegt
auf der Simulation des Verhaltens von Quantengattern, der Visualisierung der Zustands-
entwicklung von Qubits sowie dem Testen kleiner Quantenprotokolle. Als Fallstudie wird
der Kodierungsprozess des Shor-Fehlerkorrekturcodes implementiert und auf 18 Qubits

erweitert, um die Skalierbarkeit des Frameworks zu demonstrieren.

Einige fortgeschrittene Operationen, wie beispielsweise mehrfach-kontrollierte Gatter,
werden aufgrund aktueller Einschränkungen noch nicht unterstützt. Dennoch bestätigen

die Ergebnisse die Korrektheit der implementierten Logik und bilden eine solide Grundlage
für zukünftige Erweiterungen. Geplante Verbesserungen beinhalten die Erweiterung des

Gattersatzes, die Validierung zusätzlicher Gattertypen sowie die Entwicklung einer
Testinfrastruktur zur Sicherstellung von Genauigkeit und Stabilität. Diese Arbeit leistet

damit einen Beitrag zum Aufbau effizienter und erweiterbarer Werkzeuge für die
Simulation von Quantenschaltungen.

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

Contents

1 Introduction ... 2
2 Background .. 4

2.1 Tensor Networks .. 4
2.2 Tree Tensor Networs .. 6
2.3 Quantum Bits .. 7
2.4 Single Qubit Gates .. 8
2.5 Multiple Qubit gates ... 9
2.6 Quantum Circuits .. 11
2.7 Tree Tensor Networks in PyTreeNet .. 12

3 Implementing Quantum Gate Operations .. 14
3.1 Time Evolution .. 17

4 Results ... 19
4.1 Pauli-X Gate .. 19
4.2 Pauli-Z Gate .. 20
4.3 CNOT Gate ... 22
4.4 Bell State Circuit ... 23
4.5 Comparing Results .. 25
4.6 Shor Code .. 25

5 Future Work ... 29
6 Conclusion .. 30
Bibliography .. i
List of Acronyms .. iii
List of Figures .. iii

1

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

1 Introduction
By utilizing concepts from quantum mechanics including superposition, entanglement,
and unitary evolution, quantum computing provides a radically novel method of
computation. In the lack of large-scale, fault-tolerant quantum hardware, simulation
tools are essential to the development, testing, and comprehension of quantum
algorithms as the field develops. Tree tensor networks (TTNs), a family of tensor-based
models renowned for their capacity to effectively describe specific entangled quantum
states, are used in this thesis to investigate the modeling of quantum gates and small
circuits.

The core objective of this work is to implement and simulate the behavior of
both single- and multi-qubit quantum gates within a TTN framework. An abstract
class structure is introduced, defining a common interface for all gates through the
apply_gate, plot, and compare_results methods. This design enables flexibility and
extensibility, and serves as a foundation for concrete implementations of key quantum
operations, including the Pauli gates (X, Y, Z), the Hadamard gate, phase shift gates,
and entangling gates such as CNOT, SWAP, and controlled phase operations. Each gate
is defined not only by its action on qubits but also by its role in the broader context of
quantum circuit simulation.

Visualization plays a central role in validating the simulation, with plots illustrating
how the expectation values of local observables evolve over time. For instance, the
application of the X gate clearly demonstrates the expected transition from the ground
to the excited state in the Z basis, while the Z gate produces no change in Z-basis
expectation when acting on a qubit in the |+⟩ state, highlighting its phase-only effect.
Multi-qubit gates such as CNOT are also analyzed in depth, showing how entanglement
is generated and how the state of one qubit can conditionally affect another. These
results not only verify the correctness of the implementation but also offer insight into
the physical meaning of the gate operations within the TTN formalism.

As a practical application, this framework is used to simulate the encoding process
of the Shor code, a foundational quantum error-correcting code designed to protect
against arbitrary single-qubit errors. While the full correction logic is not implemented
due to the current lack of multi-controlled gates such as CCNOT, the encoding steps
are faithfully realized and repeated for two logical qubits across 18 physical qubits.
This partial implementation demonstrates the structure of encoded states and lays the
groundwork for future expansion toward complete quantum error correction procedures.

2

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

Controlled shift and phase shift gates are also implemented as part of this effort, though
further validation is planned to confirm their correctness in full circuits.

Finally, the thesis outlines clear directions for future work. These include extending
the gate set to incorporate CCNOT and other multi-controlled gates, validating more
complex gate operations, and introducing an automated testing framework to ensure
the stability and correctness of the simulation. Together, these contributions provide a
flexible and scalable platform for simulating quantum gates and circuits using tensor
networks, and offer a meaningful step toward high-fidelity quantum software tools.

3

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

2 Background
It is crucial to have a basic understanding of quantum computing and its guiding
principles before diving into the backdrop of this thesis. A number of reputable books
offer thorough introductions to this subject, shedding light on important ideas including
quantum mechanics, qubits, quantum gates, and quantum algorithms.

Notable among them is Quantum Computation and Quantum Information by
Michael A. Nielsen and Isaac L. Chuang [1], which remains one of the most
influential references in the field. Additionally, Principles of Quantum Computation
and Information by Giuliano Benenti, Giulio Casati, and Giuliano Strini [2] provides a
structured approach to quantum information theory.

For a more structured introduction to the mathematical and physical foundations
of quantum computing, An Introduction to Quantum Computing by Phillip Kaye,
Raymond Laflamme, and Michele Mosca [3] is an excellent resource. More recent insights
can be found in Introduction to Classical and Quantum Computing by T.G. Wong [4],
which offers an accessible yet rigorous introduction to the field.

These works collectively form a solid basis for understanding the theoretical aspects
of quantum computing, which is crucial for the discussions in this thesis.

2.1 Tensor Networks
Tensor networks are a powerful mathematical framework used to efficiently represent
and manipulate high-dimensional data structures. They provide a structured way to
decompose large tensors into smaller, interconnected components, significantly reducing
the computational complexity associated with many-body systems, optimization
problems, and machine learning models. The fundamental idea behind tensor networks
is to exploit the entanglement properties of quantum systems, allowing for efficient
simulation and computation in contexts where direct manipulation of large tensors
would be infeasible [5]. Tensor networks have found extensive applications across
multiple domains, including chemistry [6], open quantum systems [7], [8], [9], and
condensed matter physics [10], [11]. Their utility extends further into holography,
quantum state preparation, and large-scale quantum simulations [12], [13], [14], [15]. In
machine learning, tensor-based methods play a crucial role in feature extraction, deep
learning architectures, and efficient model training [16], [17], [18], [19].

Tensor networks have been widely applied in physics, particularly in the study
of quantum many-body systems. Methods such as Matrix Product States(MPS)

4

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

and TTNs [20] enable the efficient representation of quantum states and aid in
solving complex optimization problems. These techniques have been instrumental in
advancing research in condensed matter physics and quantum simulations [21]. Beyond
physics, tensor networks are increasingly being used in machine learning, where they
offer an alternative to traditional deep learning architectures. By leveraging tensor
decompositions, researchers have improved model interpretability and reduced memory
requirements [22].

Figure 1: Tensor Network

Another promising direction is the intersection of tensor networks and probabilistic
graphical models, which has led to new techniques for supervised learning. Recent
research has demonstrated that tensor network-based models can outperform traditional
machine learning methods in tasks such as image and speech classification [23].
Additionally, the development of open-source software, such as TensorNetwork, has
facilitated the implementation of tensor network algorithms, making them more
accessible to researchers working in both physics and artificial intelligence [24].

5

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

As tensor network methods continue to evolve, their impact is expected to grow
across multiple disciplines, from quantum computing to large-scale optimization. Their
ability to compress and efficiently process large datasets makes them a critical tool in
the development of future computational models and simulations.

2.2 Tree Tensor Networs
TTNs are a specialized form of tensor networks that efficiently represent and
process high-dimensional data by organizing tensors in a hierarchical, tree-like
structure. This decomposition reduces the number of tensor contractions needed for
complex calculations, making them particularly useful for systems with strong locality
constraints and structured correlations. Unlike MPS, which arrange tensors in a linear
sequence, they branch out into multiple layers, making them effective for problems
involving hierarchical dependencies [25].

A major advantage of TTNs is their ability to encode quantum states with
entanglement structures that naturally align with tree-like topologies. This feature
is particularly valuable in quantum physics and computing, where they approximate
wave functions and study many-body quantum systems. By reducing computational
complexity, they facilitate the analysis of ground states, excited states, and quantum
phase transitions, making them an essential tool in condensed matter physics. They
have also been successfully used to optimize network structures dynamically, improving
their accuracy for quantum simulations [26].

Figure 2: An example of the Tree Tensor Network (TTN) architecture. Source: Zhou & Du, Tensor
Networks for Simulating Quantum Systems, 2023.

Beyond physics, their hierarchical structure has made them increasingly useful in
machine learning and artificial intelligence. They efficiently process structured data,

6

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

making them well-suited for feature extraction, classification, and pattern recognition.
In deep learning, TTNs offer an alternative to traditional neural networks by
significantly reducing the number of parameters, making them ideal for applications
requiring efficient data compression, such as image and speech recognition. Their ability
to scale efficiently has been instrumental in improving computational performance in a
range of AI applications [27].

Another important application is quantum circuit simulation, where they provide a
scalable framework for representing quantum gates. Unlike traditional tensor networks,
which become computationally expensive in large quantum systems, TTNs optimize
the simulation of complex quantum algorithms. This makes them crucial for quantum
information processing, including error correction, cryptography, and optimization
problems. The hierarchical structure of TTNs allows for efficient state representations,
enabling scalable classical simulations of quantum circuits [28].

In probabilistic modeling, TTNs help approximate high-dimensional probability
distributions, aiding in Bayesian inference and graphical models. Their hierarchical
structure enables scalable probabilistic reasoning, making them useful for modeling
biological networks, financial systems, and social interactions.

As computational demands grow, TTNs are expected to become increasingly
significant across multiple disciplines. Their ability to decompose high-dimensional
problems into manageable components makes them invaluable for quantum simulations,
machine learning, and probabilistic modeling. With continued advancements in tensor
network algorithms and hardware acceleration, they are set to further drive innovation
in computational science.

2.3 Quantum Bits
Classical information theory is built upon the concept of a bit, which exists in one of
two distinct states: 0 or 1. This can be likened to a switch, where “on” corresponds
to 1 and “off” to 0. In contrast, quantum information theory introduces the qubit, the
quantum counterpart of the classical bit. Unlike classical bits, which are restricted to a
single state at any given time, a qubit can exist in a superposition of both basis states,
represented as |0⟩ and |1⟩. Mathematically, these states are expressed as |0⟩ = (1

0) and
|1⟩ = (0

1) within a Hilbert space. The notation used to describe these quantum states,
known as Dirac notation or ket notation, represents them as column vectors.

7

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

In quantum mechanics, larger systems can be built by combining smaller ones. This
method is used to create systems with multiple qubits. If the qubits are independent,
their combined state can be described in the following way:

|𝜓1𝜓2⋯ 𝜓𝑛⟩ = |𝜓1⟩ ⊗ |𝜓2⟩ ⊗ ⋯ |𝜓𝑛⟩ (1)

where 𝜓1, 𝜓2, …, 𝜓𝑛 are the states of the individual qubits. The combined state is a
tensor product of the individual states. The tensor product (⊗) is a mathematical
operation that combines two or more vectors to create a new vector. Assuming we
have 2 qubits: |𝜓1⟩ = 𝛼1|0⟩ + 𝛽1|1⟩ and |𝜓2⟩ = 𝛼2|0⟩ + 𝛽2|1⟩ with both qubits in ℂ2, an
arbitrary product state |𝜓⟩ in ℂ4 from these qubits can be composed as:

|𝜓⟩ = |𝜓1⟩ ⊗ |𝜓2⟩ = 𝛼00|00⟩ + 𝛼01|01⟩ + 𝛼10|10⟩ + 𝛼11|11⟩ (2)

with |𝛼00|2 + |𝛼01|2 + |𝛼10|2 + |𝛼11|2 = 1 and |00⟩, |01⟩, |10⟩, |11⟩ are the computational
basis states. which are the tensor product of the individual basis states, e.g., |00⟩ =
|0⟩ ⊗ |0⟩ = (1

0) ⊗ (1
0).

2.4 Single Qubit Gates
In quantum computing, single-qubit gates operate on one single qubit. The most
common single-qubit gates are the Pauli gates, the Hadamard gate, and the Phase Shift
gate, which are represented by the matrices:

Pauli-X Pauli-Y Pauli-Z Hadamard Phase Shift

𝜎1 = 𝜎𝑋 =

(0
1

1
0)

𝜎2 = 𝜎𝑌 =

 (0
𝑖

−𝑖
0)

𝜎3 = 𝜎𝑍 =

(1
0

0
−1)

𝐻 =
1√
2
(1

1
1

−1)
𝑆 = (1

0
0
𝑖)

Figure 3: Pauli, Hadamard, and Phase Shift matrices.

The Pauli-X gate is the quantum analogue of the NOT-gate. It flips the |0⟩ to |1⟩ and
vice versa. The Pauli-Z flips the sign of the |1⟩ state and leaves the |0⟩ state unchanged.
The Pauli-Y acts like a combination of the Pauli-X and Pauli-Z gates. It rotates the
qubit states by 𝜋 around the y-axis on the Bloch sphere. The X, Y, and Z gates are also
called the Pauli matrices, and 𝜎⃗ = (𝜎1, 𝜎2, 𝜎3) is called a Pauli vector and is a vector of
2x2 matrices.

The Hadamard gate is one of the most used gates in quantum computing, and it
changes the basis of the matrix from {|0⟩, |1⟩} to {|+⟩, |−⟩} and vice versa with |+⟩ =
|0⟩+|1⟩√

2 and |−⟩ = |0⟩−|1⟩√
2 .

8

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

The Phase Shift Gate introduces a relative phase of π/2 to the |1⟩ state while
leaving |0⟩ unchanged. This gate is commonly used in quantum algorithms to introduce
controlled phase differences.

We can express all of the above in circuit notation:

𝛼|0⟩ + 𝛽|1⟩ 𝑋 𝛽|0⟩ + 𝛼|1⟩

𝛼|0⟩ + 𝛽|1⟩ 𝑌 −𝑖𝛽|0⟩ + 𝑖𝛼|1⟩

𝛼|0⟩ + 𝛽|1⟩ 𝑍 𝛼|0⟩ − 𝛽|1⟩

𝛼|0⟩ + 𝛽|1⟩ 𝐻 𝛼 |0⟩+|1⟩√
2 + 𝛽 |0⟩−|1⟩√

2

𝛼|0⟩ + 𝛽|1⟩ 𝑆 𝛼|0⟩ + 𝑖𝛽|1⟩

Figure 4: Most common single-qubit gates, including the Phase Shift Gate.

2.5 Multiple Qubit gates
Since single-qubit gates all have some rotation with a specific angle around the x, y, or
z-axis, they can be represented in the Bloch sphere. However, multi-qubit gates are too
complex for such representation. Instead, their behavior is described only using matrices.

The most common multi-qubit gate is the CNOT. It is a gate with two inputs:
one control qubit and one target qubit. The CNOT gate flips the target qubit if the
control qubit is in state |1⟩ and does nothing if the control qubit is in state |0⟩. In
circuit notation:

|𝑎⟩ |𝑎⟩

|𝑏⟩ |𝑎 ⊕ 𝑏⟩
or

|𝑎⟩ |𝑎⟩

|𝑏⟩ X |𝑎 ⊕ 𝑏⟩

Figure 5: The CNOT gate.

With a, b ∈ {0,1} and ⊕ means addition modulo 2 or just a simple logical XOR operator.
The effect of the CNOT gate as a matrix can be expressed as:

9

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

CNOT =

(
((
((
((

1
0
0
0

0
1
0
0

0
0
0
1

0
0
1
0)
))
))
))

(3)

The effect of the CNOT gate on all the basis states is as follows:

|00⟩ ⟼ |00⟩, |01⟩ ⟼ |01⟩, |10⟩ ⟼ |11⟩, |11⟩ ⟼ |10⟩ (4)

Another important two-qubit gate is the SWAP gate, which interchanges the states of
two qubits without modifying their individual values. Unlike the CNOT gate, which
conditionally flips the target qubit based on the control qubit, the SWAP gate simply
exchanges the quantum states of its two inputs. This operation is useful in quantum
algorithms that require rearranging qubits in a register or when simulating physical
systems where particles naturally exchange positions.

In circuit notation, the SWAP gate is represented as:

Figure 6: The SWAP gate.

The effect of the SWAP gate can be described using the following matrix representation:

SWAP =

(
((
((
((

1
0
0
0

0
0
1
0

0
1
0
0

0
0
0
1)
))
))
))

(5)

The transformation can be explicitly seen as:

|00⟩ ⟼ |00⟩, |01⟩ ⟼ |10⟩, |10⟩ ⟼ |01⟩, |11⟩ ⟼ |11⟩ (6)

If one qubit is initially in state |𝑎⟩ and the other in |𝑏⟩, applying the SWAP
gate exchanges their positions within the quantum register. Since this operation
solely interchanges the qubits without modifying their individual states, it is both
deterministic and reversible. This makes the SWAP gate particularly useful in quantum
circuits that require rearranging qubits while preserving their quantum information.

The Controlled Phase Shift Gate (CPhase) is a two-qubit gate that applies a phase
shift to the target qubit only when the control qubit is in state |1⟩. Unlike the CNOT
gate, which flips the target qubit, the CPhase gate modifies its phase without altering
probability amplitudes. If the control qubit is |0⟩, the target remains unchanged, but if
it is |1⟩, the target acquires a phase factor 𝑒{𝑖𝑡𝜃}. Special cases include the Controlled-Z
(CZ) gate when 𝑡𝜃 = 𝑝𝑖, the Controlled-S (CS) gate when 𝑡𝜃 = 𝑝 𝑖

2 , and the Controlled-

10

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

T (CT) gate when 𝑡𝜃 = 𝑝 𝑖
4 . The CPhase gate is crucial in quantum algorithms like

the Quantum Fourier Transform (QFT), quantum error correction, and entanglement
generation.

2.6 Quantum Circuits
Quantum circuits are composed of a structured sequence of quantum gates that act on
qubits to perform computations. The circuit model follows a layered architecture where
qubits are initialized, manipulated using unitary transformations, and then measured to
extract classical information. Unlike classical circuits, where logic gates deterministically
map inputs to outputs, quantum circuits exploit superposition, entanglement, and
interference to process information in fundamentally different ways.

The structure of a quantum circuit begins with qubit initialization, where each
qubit is set to a defined state, typically ∣ 0 ⟩ ∣0⟩. The next stage involves quantum
gate operations, where unitary transformations modify the qubit states. These gates
can be classified into single-qubit and multi-qubit gates. Single-qubit gates, such
as the Hadamard (H), Pauli (X, Y, Z), and phase gates (S, T), manipulate the
state of individual qubits. Multi-qubit gates, such as the CNOT and Toffoli gates,
introduce interactions between qubits, enabling the creation of entanglement and the
implementation of complex quantum operations.

A key characteristic of quantum circuit structure is its depth, which refers to the
number of sequential layers of gates that must be executed. A deeper circuit requires
more operations and is susceptible to noise and decoherence, making depth optimization
a critical concern in quantum computing. Parallelism within quantum circuits can help
mitigate these issues by allowing multiple gates to operate simultaneously on different
qubits, thereby reducing overall execution time.

Quantum circuits are often represented using quantum circuit diagrams, where time
progresses from left to right. Wires correspond to qubits, and quantum gates are applied
along these wires to modify their states. Measurement, typically performed at the end
of the circuit, collapses qubit states into classical binary outcomes, making the results
accessible for classical post-processing.

11

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

Figure 7: Visual explanation of quantum circuits.
 Source: Siddhartha Rao, Quantum Computation Primer – Part 2, 2020.

Scalability is a major challenge in quantum circuit design. As the number of qubits
grows, circuit complexity increases, making it difficult to maintain coherence and
fidelity. Techniques such as circuit compilation, gate decomposition, and tensor network
methods [29], [30] are crucial for optimizing quantum circuits. These methods help
reduce gate count, minimize circuit depth, and enhance fault tolerance, making large-
scale quantum computations more feasible.

As quantum technology advances, designing structured and efficient quantum
circuits will be essential for unlocking the full potential of quantum computing. Well-
optimized circuit architectures will enable the implementation of powerful quantum
algorithms, bringing quantum advantage closer to practical realization.

2.7 Tree Tensor Networks in PyTreeNet
In PyTreeNet, we use tensor networks to simulate quantum circuits by encoding
quantum gates as tensors and evolving quantum states through tensor contractions.
Each gate in the circuit is represented by its corresponding unitary matrix which
is applied to the quantum state vector. To perform these operations, we define the
Hamiltonians of the gates, which describe their time evolution under the Schrödinger
equation, allowing us to construct operators for continuous transformations if needed.

When simulating a quantum circuit, we initialize a tensor network representation of
the quantum state, typically starting with the computational basis state Each quantum
gate (Pauli gates, Hadamard, CNOT, Phase Shift, etc.) is applied by contracting its
corresponding tensor with the state tensor at the appropriate qubit positions. Multi-

12

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

qubit gates like CNOT require entangling operations where tensors are contracted across
multiple sites in the network.

For time evolution or parameterized gates we exponentiate the Hamiltonian using
matrix exponentiation techniques to compute the gate operator:

𝑈 = 𝑒−𝑖𝐻𝑡 (7)

where 𝐻 is the Hamiltonian of the gate and 𝑡 is an evolution parameter. This formulation
allows us to simulate continuous transformations, such as rotational gates or phase-
shifting operations.

For circuit execution, we follow a sequential tensor contraction strategy where
each applied gate updates the state representation iteratively. This approach ensures
that we maintain an efficient representation of the quantum state while leveraging the
hierarchical structure of the tree tensor network (TTN to optimize contractions. The
final measurement is simulated by computing probability distributions from the state
tensor, extracting observables like expectation values of Pauli operators.

By leveraging PyTreeNet’s automatic differentiation and tensor contraction
capabilities we ensure efficient simulation of quantum circuits, allowing us to scale
beyond brute-force matrix multiplication methods typically used in quantum simulation

13

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

3 Implementing Quantum Gate Operations
The implementation of quantum gate simulations in this work is based on TTNs,
integrated as an extension to the PyTreeNet library. This extension introduces
a framework for applying and analyzing quantum gates within a tensor network
representation, enabling efficient quantum simulations with reduced computational
overhead. The developed framework is structured around a core abstract class,
QuantumGate, which serves as a template for implementing specific quantum gate
operations. This design ensures modularity, allowing seamless integration and expansion
with additional gates in the future.

Figure 8: UML Diagram of Quantum Gates

The QuantumGate class defines three essential methods: apply_gate, which applies a
quantum transformation to a qubit or set of qubits within the Tree Tensor Network
State (TTNS); plot, which visualizes the local magnetization of the system after
applying the gate; and compare_results, which facilitates benchmarking by comparing
the simulated results against different final times for each gate. These methods provide

14

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

a structured and flexible approach to handling quantum operations within the tensor
network framework.

Building upon this base class, specific quantum gates such as Pauli gates (X, Y,
Z), the Hadamard gate, the CNOT gate, the SWAP gate, and phase shift gates have
been implemented as subclasses. Each of these gates overrides the apply_gate method,
ensuring that the appropriate unitary transformation is applied to the quantum state
encoded in the tree tensor network. The implementation relies on tensor product
representations of quantum operators, ensuring compatibility with the PyTreeNet
infrastructure.

For instance, in the case of the Pauli-X gate, the apply_gate method constructs a
tensor product term representing the Pauli-X matrix applied to the target qubit. This
representation is then converted into a Hamiltonian, from which a Tree Tensor Network
Operator (TTNO) is derived. Using the BUG (Basis-Update and Galerkin) method
from PyTreeNet, the time evolution of the system is computed, allowing the quantum
gate to be effectively simulated. The final state is updated based on this evolution,
ensuring that the transformation is accurately represented in the TTN structure.

Similarly, the Hadamard gate follows a comparable approach but utilizes the well-
known Hadamard matrix to generate quantum superpositions. This gate is essential
for quantum algorithms as it enables the transformation of basis states into equal
superpositions, a crucial property for many quantum computational tasks.

The CNOT gate, in contrast, introduces entanglement between two qubits by
conditioning the application of an X operation on the control qubit’s state. Its
implementation involves defining a two-qubit tensor product that captures the
conditional nature of the operation and using PyTreeNet’s Hamiltonian-based time
evolution to update the network state. The CNOT gate can be won from the Hermitian
operator:

Figure 9: Hermitian Operator of CNOT gate

And from this Hermitian operator, we generate the Hamiltonian of the CNOT gate.
As seen form the operator, the Pauli-Z gate is applied to the control qubit, and the X-
Pauli gate is applied to the target qubit.

15

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

The SWAP gate enables the exchange of quantum states between two qubits.
Its implementation in the tensor network framework involves representing the three
fundamental swap interactions (XX, YY, ZZ) within the Hamiltonian. By using tensor
product decompositions, the correct unitary transformation is encoded in the network,
ensuring that the state exchange is accurately simulated. Below is the formula of how
to generate the SWAP gate from time evolution.

Figure 10: Time evolution for the SWAP gate

A more complex operation included in this framework is the phase shift gate and its
controlled variant, the Controlled Phase Gate. These gates introduce phase rotations
to specific qubits and are particularly useful in quantum algorithms where controlled
interference patterns play a role in computational speed-up. Their implementation
involves constructing parameterized unitary matrices representing phase rotations and
integrating them into the tensor network via Hamiltonian-based transformations.

The framework allows for plotting these expectation values over time, enabling
visualization of the gate effects on the quantum state. These expectation values,
particularly those of the Z operator, provide insight into the system’s dynamics under
various quantum transformations.

By incorporating quantum gate simulations into the tree tensor network
architecture, the PyTreeNet library gains a new feature that improves its capacity
to effectively simulate quantum systems. For systems with a lot of qubits, this
technique offers a scalable method of modeling quantum circuits by utilizing unitary
time evolution and tensor decompositions. The framework’s modular design guarantees
flexibility and for future additions like the addition of increasingly intricate multi-qubit
gates and error correction systems.

By showing how tree tensor networks can be used efficiently for quantum gate
operations, this work advances the field of quantum simulations. The potential of
TTNs as a potent tool for quantum computing research is highlighted by their capacity
to computationally efficiently and systematically imitate entanglement, superposition,
and controlled operations. This approach opens the door for further optimizations and

16

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

practical uses in quantum information processing by enabling the study of quantum
algorithms in a tensor network environment.

3.1 Time Evolution
This section describes the mechanism for applying quantum gates within a TTN
framework, enabling the simulation of quantum circuits in a structured and scalable
manner. The core functionality is implemented through the apply_gate function, which
executes individual gate operations, and discrete_time_evolution, which allows for the
sequential application of a set of quantum gates to evolve the quantum state over time.

A tree tensor network state and a series of quantum gates are intended inputs for
the discrete_time_evolution function. Every gate in this series is represented as a tuple,
with the kind of gate being indicated by the first element and the qubits participating
in the operation being specified by the remaining items. Using the apply_gate function,
the function applies the appropriate gate and its associated qubits to the network
after iterating through this sequence. To guarantee that the entire quantum circuit is
simulated in the right sequence, the quantum state is updated at each stage to represent
the change that the gate imposes. The final quantum state at the end of the procedure
captures the combined impact of all the gates that were used.

The primary execution unit for applying quantum gates is the apply_gate function.
The function retrieves all relevant gate information from a predefined dictionary,
GATE_CONFIGS, to guarantee flexibility and efficiency. The corresponding gate class,
which provides the actual implementation, the default time step size, which establishes
the discretization for time evolution, the default final time, which regulates the duration
of the system’s evolution under the gate operation, and any other configuration settings
necessary for the simulation are all stored in this dictionary. Adaptable execution is
made possible by overriding the defaults contained in GATE_CONFIGS with user-
provided custom values for the time step size, final time, or configuration parameters.

The function establishes if the gate being applied is a single-qubit or two-qubit
operation after the required parameters have been set. An X, Y, Z, Hadamard, or Phase
Shift gate, for example, applies the gate to the designated qubit with the appropriate
parameters if it functions on a single qubit. To guarantee that the proper transformation
is executed, an extra phase angle parameter is supplied explicitly to the P_phi (phase
shift) gate.

The function takes the control and target qubit identifiers and applies the
appropriate transformation for two-qubit operations, including the CNOT and SWAP

17

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

gates, to guarantee that both qubits interact as intended. Similar to the P_phi gate,
the Controlled Phase Shift (CP_phi) gate applies a phase shift parameter to two qubits
rather than just one. The function makes sure that every transformation is carried
out accurately and that the quantum state changes in accordance with the specified
quantum circuit by differentiating between single-qubit and multi-qubit operations.

This approach offers a scalable and adaptable framework for applying quantum
gates in a tree tensor network environment. The system may effectively imitate
quantum circuits while preserving the benefits of tensor network-based representations
by organizing the execution using the apply_gate function and managing sequential
transformations with discrete_time_evolution. This method is ideal for investigating
intricate quantum algorithms because it guarantees that quantum state evolution will
continue to be computationally possible even as the number of qubits rises.

18

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

4 Results
In the following sections, we present the results of our quantum gate simulations
using tree tensor networks. The goal is to provide a clear and intuitive view of how
quantum gates behave when applied within a TTN-based simulation environment. We
include visual representations of the gates and illustrate how the quantum states of
the qubits evolve after each application. Additionally, we demonstrate the successful
integration and performance of the discrete_time_evolution algorithm in simulating
gate dynamics. These results collectively validate the correctness and effectiveness of
our overall implementation.

4.1 Pauli-X Gate
The first result we present corresponds to the implementation of the apply_gate

method for the Pauli-X gate, represented by the XGate class. The accompanying
plot displays the expectation value of the Z-operator over time, effectively visualizing
the local magnetization change induced by the application of the gate. Initially, the
expectation value of the Z-operator is +1, indicating that the qubit is in the ground
state |0⟩, which is an eigenstate of the Z operator. As time evolves, the expectation
value decreases smoothly and continuously, ultimately reaching −1. This behavior is
consistent with the action of the Pauli-X gate, which performs a bit-flip operation by
mapping |0⟩ to |1⟩. The observed evolution reflects a cosine-like transition, characteristic
of coherent quantum dynamics under unitary evolution governed by a Hamiltonian
containing the Pauli-X operator. This result confirms the correct implementation of the
apply_gate method within the tree tensor network framework. Moreover, the successful
visualization using the plot method demonstrates the ability of our simulation to track
changes in local observables over time. The smooth and complete transition from +1
to −1 in the expectation value indicates that the simulation correctly captures the
essential physics of the Pauli-X gate, validating both the gate logic and the underlying
discrete_time_evolution algorithm used in our model.

19

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

Figure 11: Plot of local magnetization change over time for the Pauli-X gate.

4.2 Pauli-Z Gate
We now present the result of the apply_gate method for the Pauli-Z gate, as implemented
in the ZGate class. The corresponding graph shows the expectation value of the Z-
operator over time. At first glance, the result may appear unusual, as the expectation
value remains constant at zero throughout the entire evolution. However, this outcome
is consistent with the physical properties of the Pauli-Z operation when analyzed more
closely. In our simulations, local magnetization is computed using the expectation value
of the Z-operator. Since the Pauli-Z gate acts by flipping the phase of the |1⟩ component
of the qubit without altering its population probabilities, its application does not result
in a measurable change in the Z-basis expectation value when starting from a balanced
or symmetric state, such as |+⟩ or a superposition. In such cases, the contributions

20

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

from the |0⟩ and |1⟩ components cancel out, resulting in a net expectation value of
zero. This result confirms the correct implementation of the gate and the consistency of
our simulation framework with quantum mechanical principles. The behavior observed
also reflects the inherent limitations of using Z-operator-based measurements to detect
purely phase-based transformations, which is precisely the nature of the Pauli-Z
operation.

Figure 12: Plot of local magnetization change over time for the Pauli-Z gate.

21

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

4.3 CNOT Gate
For the CNOT gate simulation, the initial quantum state is prepared with qubit 0
being in a superposition state and qubit 1 being in the computational basis state |0⟩.
Specifically, qubit 0 is initialized to:

1√
2
(|0⟩ + |1⟩) (8)

, which corresponds to the equal superposition state often denoted as |+⟩, while qubit
1 is initialized to the pure state |0⟩. The combined two-qubit system is therefore in the
product state:

1√
2
(|00⟩ + |10⟩) (9)

.

After applying the CNOT gate, where qubit 0 is the control and qubit 1 is the
target, the quantum system evolves into the entangled state:

1√
2
(|00⟩ + |11⟩) (10)

. This transformation implies that whenever the control qubit is in state |1⟩, the target
qubit is flipped from |0⟩ to |1⟩, as per the CNOT gate definition.

The results presented in the plot show the time evolution of the expectation value
of the Z-operator on both qubits. For qubit 0, the expectation value remains essentially
zero throughout the simulation, with only negligible numerical fluctuations on the order
of 10⁻¹⁵ due to floating-point precision. This is consistent with the qubit being in the |+⟩
state, which is an equal superposition of |0⟩ and |1⟩ and yields a Z expectation value of
zero. For qubit 1, the expectation value of the Z-operator decreases smoothly from +1 to
approximately 0, reflecting the evolution from a definite |0⟩ state toward a superposition
or entangled state as the system approaches the final Bell state. This behavior aligns
perfectly with theoretical expectations and confirms the correct implementation of both
the apply_gate method for the CNOT gate and the underlying discrete_time_evolution
algorithm.

22

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

Figure 13: Plot of local magnetization change over time for the CNOT gate.

4.4 Bell State Circuit
In this section, we analyze the result of simulating a Bell state preparation circuit using
our tree tensor network framework. The goal of this circuit is to create an entangled
quantum state starting from a simple, separable input. We begin with both qubits
initialized in the computational basis state |00⟩. The first operation applied to the
system is a Hadamard gate on the first qubit. This gate transforms the basis state |0⟩
into a superposition of |0⟩ and |1⟩, specifically into:

1√
2
(|0⟩ + |1⟩) (11)

As a result, the total two-qubit system after this operation becomes:

1√
2
(|00⟩ + |10⟩) (12)

At this point, the system is in a product state, qubit 0 is in a superposition, while qubit
1 remains in the |0⟩ state.

The second step of the circuit involves the application of a CNOT gate, where qubit
0 serves as the control and qubit 1 as the target. The action of the CNOT gate is to flip

23

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

the state of the target qubit if and only if the control qubit is in the state |1⟩. Applying
this operation to the current state results in the transformation:

1√
2
(|00⟩ + |11⟩) (13)

This new state is one of the four maximally entangled Bell states and demonstrates
perfect quantum correlations between the two qubits. It signifies that a measurement of
the first qubit will immediately determine the outcome of a measurement on the second
qubit, despite no local information being stored in either qubit individually.

To validate this result, we extract and examine the final statevector produced by
our TTN-based simulation. The numerical output is given by the following complex
amplitude array:

(
((
((
((

7.96326711𝑒 − 04 − 7.07106557𝑒 − 01𝑗
1.57198917𝑒 − 15 − 1.24215148𝑒 − 15𝑗
6.50761016𝑒 − 03 − 5.98956085𝑒 − 05𝑗

−6.50761016𝑒 − 03 − 7.07046661𝑒 − 01𝑗)
))
))
))

(14)

This array represents the coefficients 𝛼00, 𝛼01, 𝛼10, and 𝛼11 in the general quantum state
|𝜓⟩ = 𝛼00|00⟩ + 𝛼01|01⟩ + 𝛼10|10⟩ + 𝛼11|11⟩. Upon close inspection, we observe that
the dominant non-zero entries are those corresponding to the |00⟩ and |11⟩ components.
The amplitude for |00⟩ is approximately −0.7071, and similarly, the amplitude for |11⟩
is approximately −0.7071, both of which are consistent with the expected values of 1√

2
for a standard Bell state, up to a global phase. The remaining components, those for
|01⟩ and |10⟩, have amplitudes that are several orders of magnitude smaller (on the
order of 10⁻³ to 10⁻¹⁵), which we attribute to numerical artifacts arising from floating-
point precision and tensor contractions in the simulation.

This agreement between the theoretical Bell state and the simulated state
confirms the correctness of the gate implementations, the state evolution logic, and
the internal tensor network structure. It also illustrates the simulator’s ability to
capture entanglement, a fundamental aspect of quantum computation with high fidelity.
The structure of the output vector demonstrates that entanglement was successfully
generated and preserved, and the negligible amplitudes of unwanted basis states provide
additional evidence of the precision of the simulation.

Overall, this result provides a concrete benchmark for both the correctness and the
stability of our tree tensor network framework when applied to small entangling circuits

24

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

such as the Bell state preparation. It also showcases how even basic circuits can serve
as meaningful validation tools for more complex quantum simulations.

4.5 Comparing Results
The compare_results method is used to compare how the apply_gate operates under
different final time for a gate. The simulation was run for several different final times:
𝑝 𝑖

8 , 𝑝 𝑖
4 , 𝑝 𝑖

2 , and 𝑝𝑖. The X gate induces a rotation around the X-axis of the Bloch sphere,
and each final time corresponds to a different angle of this rotation. The resulting
quantum state for each case is as follows:

• Final time 𝑝 𝑖
8 : [0.92106099 + 0𝑖, 0 − 0.38941834𝑖]

• Final time 𝑝 𝑖
4 : [0.70384532 + 0𝑖, 0 − 0.71035327𝑖]

• Final time 𝑝 𝑖
2 : [0.00079633 + 0𝑖, 0 − 0.99999968𝑖]

• Final time 𝑝𝑖: [−0.99996466 + 0𝑖, 0 + 0.00840725𝑖]

At 𝑝 𝑖
8 , the qubit has only slightly evolved from |0⟩, with a small imaginary component

appearing in the amplitude of |1⟩, indicating the beginning of the rotation.

At 𝑝 𝑖
4 , the state is closer to an equal superposition of |0⟩ and |1⟩, reflecting a

rotation toward the equator of the Bloch sphere.

At 𝑝 𝑖
2 , the qubit has rotated approximately halfway, and the state is now nearly

entirely |1⟩, with the amplitude of |0⟩ approaching zero.

At 𝑝𝑖, the state has undergone a full half-rotation, returning close to |0⟩ but with
a global phase of −1. This is evident from the negative real part of the |0⟩ amplitude
and the near-zero amplitude of |1⟩.

These results align with the expected unitary evolution generated by the X
Hamiltonian, and confirm that the simulation correctly models continuous quantum
state transformation under time evolution.

4.6 Shor Code
One of the first and most basic quantum error-correcting codes is the Shor code. By
encoding a single logical qubit into a state of nine physical qubits, it is intended to guard
against both bit-flip and phase-flip problems. The Shor code is constructed using two
levels of encoding: a regular three-qubit bit-flip code is applied to each of the generated
qubits in the second layer, while a three-qubit repetition code in the Hadamard-
transformed basis is used in the first layer to guard against phase-flip mistakes. This
nested structure enables the code to correct any arbitrary single-qubit error.

25

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

A Hadamard gate is applied to the logical qubit first in the encoding procedure, and
then two controlled-NOT gates are applied to divide the state among the three qubits.
A second set of controlled-NOT gates is then used to further encode each of these three
qubits, creating a total of nine qubits that together form a single logical qubit. During
the error correction phase, some multi-qubit gates, such as Toffoli (CCNOT) gates, are
commonly used to identify and fix faults.

Figure 14: Shor Code. Source: Wikipedia

In our simulation, we implement the encoding and partial correction logic of the
Shor code using our tree tensor network (TTN) framework. However, we omit the
application of the CCNOT (Toffoli) gates, which are traditionally used for syndrome
measurement and conditional correction, because multi-controlled gates are not
currently implemented in our framework. Despite this limitation, the encoded state
structure and bit-flip protection layers are fully constructed and preserved, allowing us
to analyze the entanglement structure and simulate partial error correction behavior.
To demonstrate scalability, we apply this procedure twice, resulting in the encoding of
two logical qubits across a total of 18 physical qubits. This implementation serves as
a foundation for future extensions of the TTN framework to support more advanced
quantum error correction protocols.
gate_sequence = [
 # First Shor block (qubits 0–8)
 ("H", "qubit0", {}),
 ("CNOT", "qubit0", "qubit1", {}),
 ("CNOT", "qubit0", "qubit2", {}),
 ("H", "qubit0", {}),

26

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

 ("H", "qubit1", {}),
 ("H", "qubit2", {}),
 ("CNOT", "qubit0", "qubit3", {}),
 ("CNOT", "qubit1", "qubit4", {}),
 ("CNOT", "qubit2", "qubit5", {}),
 ("CNOT", "qubit3", "qubit6", {}),
 ("CNOT", "qubit4", "qubit7", {}),
 ("CNOT", "qubit5", "qubit8", {}),
 ("H", "qubit3", {}),
 ("H", "qubit4", {}),
 ("H", "qubit5", {}),
 # Second Shor block (qubits 9–17)
 ("H", "qubit9", {}),
 ("CNOT", "qubit9", "qubit10", {}),
 ("CNOT", "qubit9", "qubit11", {}),
 ("H", "qubit9", {}),
 ("H", "qubit10", {}),
 ("H", "qubit11", {}),
 ("CNOT", "qubit9", "qubit12", {}),
 ("CNOT", "qubit10", "qubit13", {}),
 ("CNOT", "qubit11", "qubit14", {}),
 ("CNOT", "qubit12", "qubit15", {}),
 ("CNOT", "qubit13", "qubit16", {}),
 ("CNOT", "qubit14", "qubit17", {}),
 ("H", "qubit12", {}),
 ("H", "qubit13", {}),
 ("H", "qubit14", {}),
]

The gate_sequence shown above is the structured input provided to our simulation
framework. It is defined as a Python array, where each element is a tuple representing
one quantum gate operation. A dictionary of optional configuration parameters, the
qubit or qubits the gate applies to (for single- or two-qubit gates), and the gate’s name as
a string (e.g., “H”, “CNOT”) make up each tuple. Values like time_step_size, final_time,
and a configuration object that regulates the application of the gate can all be found in
this dictionary. If the user does not provide a configuration, the simulation automatically
applies a predefined set of default parameters hardcoded within the framework.

When necessary, this style allows for precise control over gate application while
providing a flexible and legible means of defining quantum circuits at a high level.
Two iterations of the Shor encoding block, each working on nine qubits for a total of
eighteen qubits, are present in the given sequence. Using Hadamard gates, CNOT gates
to entangle qubits, and additional Hadamard gates at particular locations to get ready
for error detection, the sequence’s structure adheres to the logic of the Shor code.

27

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

As the algorithm iterates through the gate_sequence, the tree tensor network state
(TTNS) is updated incrementally. Each gate in the sequence is applied to the TTNS
using the apply_gate method of the corresponding gate class. For single-qubit gates
like “H”, the method updates the tensor of the targeted node directly. For two-qubit
gates like “CNOT” or “SWAP”, the TTNS is modified by performing the appropriate
contraction and recompression steps, updating the tensors of both involved nodes
and any connecting edges. This dynamic update process ensures that after each gate
application, the TTNS reflects the new quantum state, while maintaining an efficient
representation through the tree structure.

By the end of the sequence, the TTNS contains a full representation of the evolved
quantum state after all specified gates have been applied in order. This approach
provides a scalable way to simulate larger systems, observe intermediate states if needed,
and extend the circuit logic by simply appending new elements to the gate_sequence.

28

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

5 Future Work
While the current implementation demonstrates the successful simulation of quantum
gates and circuits using a tree tensor network framework, there remain several directions
for future development and enhancement. A primary objective is the extension of
the gate set supported by the framework. In particular, the implementation of multi-
controlled gates such as the CCNOT (Toffoli) gate is essential for completing the full
logic of quantum error correction protocols like the Shor code. Currently, the absence
of this gate limits our ability to perform syndrome-based error correction, although the
encoding steps have been fully realized.

In addition to expanding the gate set, further validation of existing implementations
is required. Specifically, we have already developed controlled shift and phase shift gates,
but their integration into complex circuits has yet to be thoroughly tested. Ensuring
their correctness is essential, especially for simulating algorithms and protocols that
rely heavily on controlled operations and precise phase manipulation.

Another critical area for future work is the development of a comprehensive testing
framework. While the apply_gate method is the core interface for modifying quantum
states, we currently lack automated verification of its correctness across various gates
and configurations. Implementing unit tests that evaluate the output of this method
against known analytical results or alternative simulation backends would provide
confidence in the simulator’s stability and accuracy. Such tests can include gate-specific
checks, invariance properties, and expected state transitions for standard circuits.

Incorporating these tests into a continuous integration pipeline will allow us to
detect regressions and inconsistencies early in the development cycle. Moreover, a robust
testing suite will be indispensable for future contributions and feature expansions, as it
ensures that new functionalities do not compromise existing components. Altogether,
these extensions and verifications will strengthen the simulator’s reliability and prepare
it for simulating larger and more complex quantum systems.

29

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

6 Conclusion
This thesis presented the design and implementation of a quantum gate simulation
framework based on tree tensor networks (TTNs), with the goal of efficiently modeling
quantum circuits and exploring gate behavior through structured, low-complexity
representations of quantum states. By defining a modular architecture centered around
an abstract QuantumGate class and its concrete implementations, we were able to
simulate a wide variety of single- and two-qubit gates, including Pauli gates, the
Hadamard gate, phase shifts, CNOT, SWAP, and controlled-phase gates.

The correctness of these implementations was verified through dynamic
visualizations of local observables, such as the Z-operator expectation values. These
results not only aligned with theoretical predictions but also offered intuitive insight
into how quantum states evolve under gate applications in a TTN framework. The
simulation of key entangling operations, including the CNOT gate and the preparation
of Bell states, further confirmed the ability of our system to accurately model entangled
dynamics.

A notable application of the framework was the partial implementation of the Shor
code, a foundational quantum error correction protocol. While the full syndrome-based
correction process could not be executed due to the absence of the CCNOT gate in
the current system, the encoding steps were fully constructed and repeated to cover 18
physical qubits, demonstrating the scalability and structure of logical encoding within
the TTN model.

In addition, controlled shift and phase shift gates were implemented, laying the
groundwork for further algorithmic extensions, though they require formal validation in
complete circuits. The thesis also recognized the need for a robust testing infrastructure
to ensure correctness and regression safety across future updates, particularly in the
apply_gate method which forms the core of the simulation engine.

In summary, this work provides a flexible and extensible platform for simulating
quantum gates and small circuits using tree tensor networks. It bridges theoretical
models with practical implementation and paves the way for future developments in
quantum simulation, error correction, and quantum software tooling. With further
extensions, such as multi-controlled gate support and comprehensive testing, the
framework will be well-positioned to model more complex quantum systems and
contribute to the advancement of quantum computing research.

30

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

Bibliography
[1] Nielsen, M. A., and Chuang, I. L., 2010, Quantum Computation and Quantum

Information: 10th Anniversary Edition, Cambridge University Press.

[2] Benenti, G., Casati, G., and Strini, G., 2004, Principles of Quantum Computation
and Information, World Scientific. [Online]. Available: https://books.google.de/
books?id=5gmH-DLuIlMC.

[3] Kaye, P., Laflamme, R., and Mosca, M., 2007, An Introduction to Quantum
Computing, Oxford University Press, Inc., USA.

[4] Wong, T., 2022, Introduction to Classical and Quantum Computing, Rooted Grove.
[Online]. Available: https://books.google.de/books?id=M3jqzgEACAAJ.

[5] Biamonte, J., and Bergholm, V., 2017, “Tensor Networks in a Nutshell,” arXiv.
[Online]. Available: https://arxiv.org/pdf/1708.00006.

[6] Szalay, S., Pfeffer, M., Murg, V., Barcza, G., Verstraete, F., Schneider, R., and
Legeza, Ö., 2015, “Tensor Product Methods and Entanglement Optimization for
Ab Initio Quantum Chemistry,” International Journal of Quantum Chemistry,
115(19), pp. 1342–1391. https://doi.org/10.1002/qua.24898.

[7] Wood, C. J., Biamonte, J. D., and Cory, D. G., 2015, “Tensor Networks and
Graphical Calculus for Open Quantum Systems,” arXiv. https://doi.org/10.
48550/arXiv.1111.6950.

[8] Jaschke, D., Montangero, S., and Carr, L. D., 2018, “One-Dimensional Many-Body
Entangled Open Quantum Systems with Tensor Network Methods,” Quantum
Science and Technology, 4(1). https://doi.org/10.1088/2058-9565/aae724.

[9] Strathearn, A., Kirton, P., Kilda, D., Keeling, J., and Lovett, B. W., 2018,
“Efficient Non-Markovian Quantum Dynamics Using Time-Evolving Matrix
Product Operators,” Nature Communications, 9(1). https://doi.org/10.1038/s
41467-018-05617-3.

[10] Schollwöck, U., 2011, “The Density-Matrix Renormalization Group in the Age of
Matrix Product States,” Annals of Physics, 326(1), pp. 96–192. https://doi.org/
10.1016/j.aop.2010.09.012.

[11] Bañuls, M. C., 2023, “Tensor Network Algorithms: A Route Map,” Annual
Review of Condensed Matter Physics, 14(1). https://doi.org/10.1146/annurev-
conmatphys-040721-022705.

[12] Jahn, A., and Eisert, J., 2021, “Holographic Tensor Network Models and Quantum
Error Correction: A Topical Review,” Quantum Science and Technology, 6(3).
https://doi.org/10.1088/2058-9565/ac0293.

i

https://books.google.de/books?id=5gmH-DLuIlMC
https://books.google.de/books?id=5gmH-DLuIlMC
https://books.google.de/books?id=M3jqzgEACAAJ
https://arxiv.org/pdf/1708.00006
https://doi.org/10.1002/qua.24898
https://doi.org/10.48550/arXiv.1111.6950
https://doi.org/10.48550/arXiv.1111.6950
https://doi.org/10.1088/2058-9565/aae724
https://doi.org/10.1038/s41467-018-05617-3
https://doi.org/10.1038/s41467-018-05617-3
https://doi.org/10.1016/j.aop.2010.09.012
https://doi.org/10.1146/annurev-conmatphys-040721-022705
https://doi.org/10.1146/annurev-conmatphys-040721-022705
https://doi.org/10.1088/2058-9565/ac0293

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

[13] Melnikov, A. A., Termanova, A. A., Dolgov, S. V., Neukart, F., and Perelshtein, M.
R., 2023, “Quantum State Preparation Using Tensor Networks,” Quantum Science
and Technology, 8(3). https://doi.org/10.1088/2058-9565/acd9e7.

[14] Patra, S., Jahromi, S. S., Singh, S., and Orús, R., 2024, “Efficient Tensor Network
Simulation of Ibm’s Largest Quantum Processors,” Physical Review Research,
6(1). https://doi.org/10.1103/PhysRevResearch.6.013326.

[15] Rieser, H.-M., Köster, F., and Raulf, A. P., 2023, “Tensor Networks for Quantum
Machine Learning,” Proceedings of the Royal Society A: Mathematical, Physical
and Engineering Sciences, 479(2275). https://doi.org/10.1098/rspa.2023.0218.

[16] Ji, Y., Wang, Q., Li, X., and Liu, J., 2019, “A Survey on Tensor Techniques and
Applications in Machine Learning,” IEEE Access, 7, pp. 162950–162990. https://
doi.org/10.1109/ACCESS.2019.2949814.

[17] Panagakis, Y., Kossaifi, J., Chrysos, G. G., Oldfield, J., Nicolaou, M. A.,
Anandkumar, A., and Zafeiriou, S., 2021, “Tensor Methods in Computer Vision
and Deep Learning,” Proceedings of the IEEE, 109(5), pp. 863–890. https://doi.
org/10.1109/JPROC.2021.3074329.

[18] Sengupta, R., Adhikary, S., Oseledets, I., and Biamonte, J., 2022, “Tensor
Networks in Machine Learning,” Journal of the European Mathematical Society
(JEMS), 126. https://doi.org/10.4171/mag/101.

[19] Stoudenmire, E., and Schwab, D. J., 2016, “Supervised Learning with Tensor
Networks,” Advances in Neural Information Processing Systems, D. Lee, M.
Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, eds.. [Online]. Available: https://
papers.nips.cc/paper_files/paper/2016/file/53c04118df112c13a8c34b38343b9c10-
Paper.pdf.

[20] Silvi, P., Tschirsich, F., Gerster, M., Jünemann, J., Jaschke, D., Rizzi, M., and
Montangero, S., 2019, “The Tensor Networks Anthology: Simulation Techniques for
Many-Body Quantum Lattice Systems,” SciPost Phys. Lect. Notes, p. 8. https://
doi.org/10.21468/SciPostPhysLectNotes.8.

[21] Bañuls, M. C., 2020, “Tensor Network Algorithms and Applications,” Max
Planck Institute. [Online]. Available: https://www.mpq.mpg.de/6944607/tensor-
networks.

[22] Cichocki, A., Phan, A.-H., and Zhao, Q., 2017, “Tensor Networks for
Dimensionality Reduction and Large-Scale Optimizations. Part 2 Applications
and Future Perspectives,” arXiv. [Online]. Available: https://arxiv.org/abs/1708.
09165.

ii

https://doi.org/10.1088/2058-9565/acd9e7
https://doi.org/10.1103/PhysRevResearch.6.013326
https://doi.org/10.1098/rspa.2023.0218
https://doi.org/10.1109/ACCESS.2019.2949814
https://doi.org/10.1109/JPROC.2021.3074329
https://doi.org/10.4171/mag/101
https://papers.nips.cc/paper_files/paper/2016/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://papers.nips.cc/paper_files/paper/2016/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://papers.nips.cc/paper_files/paper/2016/file/53c04118df112c13a8c34b38343b9c10-Paper.pdf
https://doi.org/10.21468/SciPostPhysLectNotes.8
https://www.mpq.mpg.de/6944607/tensor-networks
https://www.mpq.mpg.de/6944607/tensor-networks
https://arxiv.org/abs/1708.09165
https://arxiv.org/abs/1708.09165

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

[23] Glasser, I., Pancotti, N., and Cirac, J. I., 2018, “From Probabilistic Graphical
Models to Generalized Tensor Networks for Supervised Learning,” arXiv. [Online].
Available: https://arxiv.org/abs/1806.05964.

[24] Roberts, C., Milsted, A., Ganahl, M., and others, 2019, “Tensornetwork: A Library
for Physics and Machine Learning,” arXiv. [Online]. Available: https://arxiv.org/
abs/1905.01330.

[25] Xiang, T., 2013, “Tree Tensor Network States,” Density Matrix and
Tensor Network Renormalization, Cambridge University Press, p. 21.
[Online]. Available: https://www.cambridge.org/core/books/density-matrix-and-
tensor-network-renormalization/tree-tensor-network-states/6CB6537972F91F2C
23497731868DDDAC.

[26] Nomura, Y., and Imada, M., 2023, “Automatic Structural Optimization of Tree
Tensor Networks,” Physical Review Research, 5, p. 13031. https://doi.org/10.
1103/PhysRevResearch.5.013031.

[27] Su, Y., Yuan, X., and Zeng, B., 2021, Tensor Network Techniques for Quantum
Computation, Open Access Publishing in the Quantum Sciences. [Online].
Available: https://library.oapen.org/handle/20.500.12657/96026.

[28] Seitz, P., Medina, I., Cruz, E., Huang, Q., and Mendl, C. B., 2023, “Simulating
Quantum Circuits Using Tree Tensor Networks,” Quantum, 7, p. 964. https://doi.
org/10.22331/q-2023-03-30-964.

[29] Muñoz-Coreas, E., and Thapliyal, H., 2022, “Everything You Always Wanted
to Know About Quantum Circuits,” arXiv preprint. [Online]. Available: https://
arxiv.org/abs/2208.11725.

[30] Fisher, M. P. A., Khemani, V., Nahum, A., and Vijay, S., 2022, “Random Quantum
Circuits,” arXiv preprint. [Online]. Available: https://arxiv.org/abs/2207.14280.

List of Acronyms

List of Figures
Figure 1: Tensor Network ... 5
Figure 2: An example of the Tree Tensor Network (TTN) architecture.
Source: Zhou & Du, Tensor Networks for Simulating Quantum Systems,
2023. .. 6
Figure 3: Pauli, Hadamard, and Phase Shift matrices. 8
Figure 4: Most common single-qubit gates, including the Phase Shift Gate.
9

iii

https://arxiv.org/abs/1806.05964
https://arxiv.org/abs/1905.01330
https://arxiv.org/abs/1905.01330
https://www.cambridge.org/core/books/density-matrix-and-tensor-network-renormalization/tree-tensor-network-states/6CB6537972F91F2C23497731868DDDAC
https://www.cambridge.org/core/books/density-matrix-and-tensor-network-renormalization/tree-tensor-network-states/6CB6537972F91F2C23497731868DDDAC
https://www.cambridge.org/core/books/density-matrix-and-tensor-network-renormalization/tree-tensor-network-states/6CB6537972F91F2C23497731868DDDAC
https://doi.org/10.1103/PhysRevResearch.5.013031
https://doi.org/10.1103/PhysRevResearch.5.013031
https://library.oapen.org/handle/20.500.12657/96026
https://doi.org/10.22331/q-2023-03-30-964
https://arxiv.org/abs/2208.11725
https://arxiv.org/abs/2208.11725
https://arxiv.org/abs/2207.14280

Juxhin Allaisufi - Quantum Gate Simulation Using Tree Tensor Networks

Figure 5: The CNOT gate. .. 9
Figure 6: The SWAP gate. ... 10
Figure 7: Visual explanation of quantum circuits.
 Source: Siddhartha Rao, Quantum Computation Primer – Part 2, 2020. 12
Figure 8: UML Diagram of Quantum Gates ... 14
Figure 9: Hermitian Operator of CNOT gate ... 15
Figure 10: Time evolution for the SWAP gate .. 16
Figure 11: Plot of local magnetization change over time for the Pauli-X
gate. .. 20
Figure 12: Plot of local magnetization change over time for the Pauli-Z
gate. .. 21
Figure 13: Plot of local magnetization change over time for the CNOT gate.
23
Figure 14: Shor Code. Source: Wikipedia ... 26

iv

	Introduction
	Background
	Tensor Networks
	Tree Tensor Networs
	Quantum Bits
	Single Qubit Gates
	Multiple Qubit gates
	Quantum Circuits
	Tree Tensor Networks in PyTreeNet

	Implementing Quantum Gate Operations
	Time Evolution

	Results
	Pauli-X Gate
	Pauli-Z Gate
	CNOT Gate
	Bell State Circuit
	Comparing Results
	Shor Code

	Future Work
	Conclusion
	Bibliography
	List of Acronyms
	List of Figures

