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Time efficiency of self-assembly is crucial for many biological
processes. Moreover, with the advances of nanotechnology, time
efficiency in artificial self-assembly becomes ever more important.
While structural determinants and the final assembly yield are
increasingly well understood, kinetic aspects concerning the time
efficiency, however, remain much more elusive. In computer sci-
ence, the concept of time complexity is used to characterize the
efficiency of an algorithm and describes how the algorithm’s run-
time depends on the size of the input data. Here we characterize
the time complexity of nonequilibrium self-assembly processes by
exploring how the time required to realize a certain, substantial
yield of a given target structure scales with its size. We identify
distinct classes of assembly scenarios, i.e., “algorithms” to accom-
plish this task, and show that they exhibit drastically different
degrees of complexity. Our analysis enables us to identify opti-
mal control strategies for nonequilibrium self-assembly processes.
Furthermore, we suggest an efficient irreversible scheme for the
artificial self-assembly of nanostructures, which complements the
state-of-the-art approach using reversible binding reactions and
requires no fine-tuning of binding energies.

nonequilibrium self-assembly | time efficiency | time complexity |
self-assembly scenario | supply control

T ime efficiency of self-assembly plays an important role in
biology. For example, virus assembly must be fast to produce

many virus particles before the infected cell is eliminated by the
host’s immune system (1–3). Moreover, as larger and ever more
complex nanostructures are to be realized for technological or
medical applications, time efficiency in artificial self-assembly
becomes vital (4, 5). Designing self-assembly schemes that are
fast and resource efficient is, however, challenging. The task
amounts to finding strategies that avoid the formation of large
numbers of incompatible and incomplete fragments of the de-
sired target structure. Such kinetic traps (6–10) arise even when
all building blocks have a high binding specificity and erroneous
binding is negligible, and they become more prominent with
increasing structure size. Consequently, assembly time increases
with structure size.

But how exactly does the assembly time scale with the size of
the target structure, and how does this scaling depend on the self-
assembly scheme? What kinds of schemes optimize the assembly
time? Answers to these questions will enable assembly strategies
to be identified that are optimally suited for the production of
large, functionally complex macromolecular structures via artifi-
cial self-assembly, a major goal in nanotechnology (4, 5, 11–13).
Here, we address these questions by studying the time complexity
(as opposed to structural complexity) (14–17) of four prototypical
self-assembly scenarios, using scaling arguments and in silico
modeling of the stochastic dynamics. Three of these scenarios
have well-established realizations in biological and artificial self-
assembly processes. The fourth strategy is a distinct idea con-
ceptualized to achieve efficient self-assembly in a technological
context by effectively regulating the supply of building blocks.

General Model and Self-Assembly Scenarios
To explore these questions in their simplest form, we consider
an assembly process involving N identical copies of S different

species of building blocks (monomers) and assume chemical
reaction kinetics in a well-mixed fluid environment. By C =
N /V we denote the concentration of monomers per species,
where V is the reaction volume. As we expect the time efficiency
of the assembly process to depend on the dimensionality of
the structure, we investigate the assembly of linear polymers,
two-dimensional sheets, and three-dimensional cubes of edge
length L (volume S) (Fig. 1). We specify the system as a fully
heterogeneous system with S distinct species because this case
defines the most general self-assembly process that allows for
the largest set of different assembly strategies to be applied.
Our analysis shows, however, that for three of the four strategies
we consider, the heterogeneity of the building blocks is indeed
irrelevant in the limiting case of large particle numbers N and
therefore our results hold independently of the heterogene-
ity of the structures. We assume that all binding reactions are
specific and take place only between “neighboring” species as
illustrated in Fig. 1. Erroneous binding between the constituents
that would lead to malformed structures is thereby not taken
into account. Following the assumptions of classical aggregation
theory, we furthermore neglect interactions among oligomers
(17, 18).

Specifically, we assume the following reaction kinetics: Any
two compatible monomers can bind at rate μ, forming a dimer
that serves as a nucleus for further growth by sequential addi-
tion of monomers at rate ν per binding site. Analyses of more
complex reaction schemes including heterogeneous binding rates
are discussed in SI Appendix and show that our conclusions are
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Fig. 1. Schematic description of the model. N identical copies of S different species of monomers assemble into one- (1D), two- (2D), or three-dimensional
(3D) heterogeneous structures of edge length L (only the 2D case is illustrated explicitly). A constant influx of monomers of species i takes place during the
time interval [Ti , Ti +

1
α ] with net influx rate Nα. Once added to the system (activated), monomers start to self-assemble. A monomer of a bulk species has

two (1D), four (2D), or six (3D) possible binding partners as shown. In the 1D case, we assume periodic boundary conditions, i.e., species 1 and S can bind
as well and the final structures form closed rings. In the higher-dimensional cases, we assume open boundaries, implying that the species located at the
boundary have a reduced number of binding partners. Any two fitting monomers can dimerize with rate μ. Subsequent to dimerization, structures grow
by attachment of single monomers with rate ν per binding site. Furthermore, monomers can detach from a cluster with rate δn = Ae−nEB , where n is the
number of bonds that need to be broken and EB the binding energy per bond. We set A = 1018Cν, with C = N/V denoting the concentration of monomers
per species. Our aim is to minimize the assembly time T90 when 90% of all resources are assembled into complete structures. To this end, we control particular
elements of the assembly process (control parameters) and distinguish four scenarios that are defined through the respective control parameter(s). The other
parameters are fixed from the following set of “default” values: Ti = 0,α = ∞, μ = ν, EB = ∞(δn = 0). Each scenario can be used to elude kinetic traps and
achieve a high assembly yield but how much time do these different strategies require?

robust against model modifications. We mainly consider irre-
versible processes, in which structures can only grow. To assess
the relevance of reversible binding, we also discuss a scenario
in which individual monomers may detach from the edges of
incomplete structures at a finite detachment rate δn that de-
creases exponentially with the number n of bonds that need to be
broken: δn = Ae−nEB (Arrhenius’ law). Here EB is the binding
energy per contact (bond) in units of kBT and the constant
A can typically be assumed to be large relative to the rate of
reactions (19, 20). Note that we consider only the detachment
of single monomer units. In the special case of one-dimensional
structures, this implies that the structures grow and shrink only
at the ends but do not break up in the middle. This assumption
can be justified if some mechanism stabilizes linear structures in
the middle (for example, if allosteric effects stabilize the interior
bonds). Otherwise, fragmentation of one-dimensional structures
would strongly reduce the time efficiency of their self-assembly
and the result of our analysis below must be interpreted as an
upper limit for the efficiency.

Once a structure contains all S species it is considered com-
plete, and no further attachment or detachment processes occur
(absorbing state). The yield of the assembly process is defined
as the number of complete structures relative to their maximum
possible number N.

In artificial self-assembly systems, the temporal supply of com-
ponents can usually be controlled externally. This offers effective
ways of regulating the assembly dynamics. To examine the poten-
tial of such supply-control strategies, we study two diametrically
opposed cases. In the first case, all building blocks are supplied
(activated) uniformly over a fixed time interval τ = 1/α at a
constant influx rate Nα. By controlling α one can regulate the
concentrations of monomers and hence the effective dimeriza-
tion rate. In the second case, the different species are added

in a defined temporal sequence (Fig. 1), which allows one to
favor specific assembly pathways by altering the order of the time
points Ti at which a species i is added (supply order).

Besides the binding rate ν that fixes the timescale, we are
left with four control parameters, EB ,μ,α, {Ti}, which define
different assembly scenarios (Fig. 1). In the reversible binding
scenario, kinetic traps are avoided by “designing” monomers with
an optimal binding energy EB and resulting detachment rates
δn . This strategy is considered as the state of the art in DNA-
brick–based self-assembly (21–24) but it also plays an important
role in biology, for instance for virus capsid assembly (25). In
the dimerization scenario, the assembly process is controlled by
the dimerization rate μ. A nucleation barrier μ/ν < 1 can be
implemented for example by allosteric effects or with the help
of enzymes (assembly factors) and is known to play a central
role in many instances of biological self-assembly (26–29). In
the activation scenario, the assembly efficiency is controlled by
an overall influx rate α without discrimination between species.
Such a control of the availability of active monomers has been
suggested as a means to effectuate the self-assembly of some virus
capsids (26), as well as other cellular macromolecular structures
like the membrane attack complex (30). Finally, in the just-
in-sequence (JIS) scenario, the monomers are supplied just in
sequence with a favorably chosen assembly path by appropriate
design of the supply order {Ti}. We therefore expect that these
four key scenarios cover the underlying mechanisms of a large
class of biologically and experimentally relevant self-assembly
processes.

Time Complexity Analysis
For each of the four scenarios, we investigated the minimal time
required to achieve a target yield of 90% (denoted as Tmin

90 ). This
requires us to identify the optimal value of the respective control
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Figure 4: time complexity
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Fig. 2. Time complexity. (A–C) The minimal assembly time Tmin
90 in the four scenarios in dependence of the size S of the target structure as obtained from

stochastic simulations for different dimensionalities of the structures: (A) 1D, (B) 2D, and (C) 3D. The reactive timescale (Cν)−1 defines the basic timescale in
the system, which depends on the initial concentration C of monomers per species. Hence, the minimal assembly time is measured in units of (Cν)−1. Each
data point represents an average over several independent realizations of the stochastic simulation for the same (optimal) parameter value, determined
by a parameter sweep (SI Appendix, section 1). We find power-law dependencies of the minimal assembly time on the size of the target structure. The
corresponding time complexity exponents θsim resulting from the simulations are summarized in the tables in A–C together with their theoretic estimates
θth (which we derive in SI Appendix, section 3). We indicate the scenarios as rev, reversible binding; act, activation; jis, just-in-sequence; and dim, dimerization.

parameter that maximizes the time efficiency. We are interested
in the asymptotic dependence of Tmin

90 on the structure size S
for S ,N � 1. In particular, while we have shown previously (31)
that for small copy numbers N, the activation scenario is strongly
influenced by stochastic effects, we here assume N to be large
enough so that stochastic effects can be considered irrelevant.

Maximal time efficiency can then be obtained by a proper
choice of the relative frequency of nucleation and growth events:
Initiation of new structures must be sufficiently retarded relative
to the growth of existing structures to avoid kinetic traps (“slow
nucleation principle”) (31–33). The larger the target structure is,
the smaller the ratio between the effective nucleation and growth
rate has to be to achieve a yield of 90%. However, too small
a nucleation rate severely limits the required assembly time on
the other hand. The various scenarios (with the exception of the
one-dimensional reversible-binding scenario, which constitutes a
special case) represent different mechanisms to control the ratio
between the nucleation and growth rate and therefore allow one
to tune it to an optimal value.

However, the effectiveness with which the ratio is controlled,
and thus the minimum assembly time that can be achieved, varies
greatly between the different strategies. In all cases, we find
numerically that both the optimal control parameter and the min-
imal assembly time exhibit power-law dependencies on the size
S of the target structure (Fig. 2). The corresponding exponents
are referred to as the control parameter exponent φ and the
(time) complexity exponent θ, respectively. Both exponents are
scenario specific and, moreover, depend on the dimensionality of
the assembled structure, as is discussed in detail below for each
scenario.

To derive analytical estimates for the exponents, we use that
the optimal ratio between nucleation and growth rate should
approximately scale inversely with the structure size,

number of nucleation events per time
number of attached monomers per time

∼ S−1 . [1]

A detailed mathematical evaluation of the scaling of the terms
on the left-hand side with the system parameters can be found in
SI Appendix, section 3. In the main text, we restrict ourselves to
a discussion of the phenomenology of our numerical results and
use heuristic scaling arguments.

Reversible-Binding Scenario. In the reversible-binding scenario,
the time complexity strongly depends on the dimensionality
of the structure. For one-dimensional structures, the rate of
monomer detachment is the same for all unfinished structures.
Hence, it is not possible to selectively disfavor nucleation of
new structures relative to the growth of existing structures
by varying the binding energy EB . In this respect, the one-
dimensional reversible-binding scenario constitutes a special
case among all scenarios, since it realizes a profoundly different
self-assembly mechanism. We find that structures are initially
formed in such an amount that the overall attachment and
detachment processes of the monomers balance out and the
concentration of monomers becomes stationary. Growth and
shrinkage of a structure then become approximately equally
likely and the cluster sizes evolve (approximately) diffusively,
with diffusion constant given by D = νm + δ, where m denotes
the stationary monomer concentration. Hence, varying the
detachment rate δ allows one to maximize the diffusive flux.
We show in SI Appendix, section 3 that the optimal detachment
rate and the resulting effective diffusion constant scale like
δopt ∼D ∼ ν

μ
(Cν)S−2. This implies that the assembly time for

one-dimensional structures scales like the diffusive timescale (to
diffusively transverse a distance S) Tmin

90 ∼ S2/D ∼ ν−2S4 with
time complexity exponent θ = 4, which agrees very well with the
results obtained from stochastic simulations (Fig. 2A).

In higher dimensions, large clusters are typically bound more
tightly and hence become energetically favored over clusters of
small size, as illustrated in Fig. 3A. This creates an effective
nucleation barrier, which allows one to strongly enhance the time
efficiency compared to the one-dimensional case. Essentially, the
monomer concentration is thereby much larger than in the one-
dimensional case, which enables nucleated structures to grow
quickly. However, to guarantee both high resource efficiency
(high yield) and time efficiency, the binding energy must be
fine-tuned to within few percent of its optimal value (Fig. 3B).
Larger binding energies imply a lower nucleation barrier and
lead to kinetic trapping, whereas lower binding energies pro-
gressively reduce the effective nucleation rate. By fine-tuning
of the binding energy EB , we obtain the time complexity ex-
ponents θ2D ∼ 1.19 and θ3D ∼ 0.75, respectively, for the two-
dimensional (2D) and three-dimensional (3D) cases (Fig. 2 B
and C). Both exponents can also be estimated analytically from
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detachment rate δopt

1 exhibits a power-law dependence on the structure size with exponent characterized by the dimensionality of the structure. The control
parameter exponents φsim together with their theoretic estimates φth are summarized in the table.

Eq. 1 by deriving effective rates for nucleation and attachment
reactions (SI Appendix, section 3 and tables in Fig. 2 B and C).
Note that the binding energy EB is measured in units of kBT
and the detachment rate relative to the reaction rate (Cν).
Hence, the most feasible way to fine-tune the control parameter
in experiments will be to adapt either the temperature or the
monomer concentration C.

Dimerization Scenario. We then analyzed the remaining irre-
versible assembly scenarios, setting δn = 0. In the dimerization
scenario, decreasing the dimerization rate μ disfavors initiation
of new structures relative to the growth of existing structures.
Fig. 4A shows the corresponding transition from zero to perfect
final yield, with μ90 indicating the rate at which a final yield of
90% is achieved. We find that the optimal rateμopt that minimizes
the time required to achieve 90% yield is only slightly lower than
μ90 and, for linear structures, scales as μopt ∼ νS−2 (Fig. 4 A,
Inset). This dependence of μopt on S for linear structures can be
explained as follows: According to Eq. 1, when increasing the
structure size S, the ratio between nucleation (= dimerization)
and growth rate must be reduced to allow the structures to
grow to the larger size. However, to achieve the desired scaling,
μopt must scale quadratically with 1/S , because the number
of dimerization events per time increases with the number of
possible dimerization partners (∼S ) leading to an additional
factor of 1/S .

Since dimerization is the rate-limiting step, we expect that
the assembly time will predominantly be determined by the total
dimerization rateTmin

90 ∼ (CμoptS)
−1 ∼ (Cν)−1S . This estimate

correctly predicts the time complexity exponent θ = 1 for linear
structures (Fig. 2A). For target structures of higher dimension,
the effective growth rate of clusters is increased compared
to the one-dimensional case because structures grow radially.
This allows for a simple possibility to relate the exponents for
target structures of higher dimension to the one-dimensional
case by rescaling the binding rate ν: Note that the number of
possible binding partners of a globular structure with s particles
is proportional to its surface area and thus scales approximately
as s(d−1)/d , where d is the dimensionality of the structure. Thus,
defining an effective average binding rate νS ∼ νS (d−1)/d for
a target structure size S allows one to map higher-dimensional
growth processes to an effective one-dimensional process along
the radial coordinate. Replacing ν → νS therefore translates
the scaling laws for linear objects into approximate scaling laws
for higher-dimensional structures. This scaling idea for the

dimerization scenario accurately yields the control parameter
exponents for higher-dimensional structures (table in Fig. 4A)
and only slightly overestimates the time complexity exponents
in higher dimensions (Fig. 2 B and C). These deviations may be
attributed to the subleading contribution of the growth process
to the total assembly time, which becomes more pronounced
in higher dimensions. The dimerization scenario is the most
time-efficient scenario because reducing the dimerization rate
allows one to specifically control the effective nucleation speed
without simultaneously affecting the attachment rate. In contrast,
changing the binding energy in the reversible-binding scenario
at the same time reduces the effective attachment speed and
therefore renders this strategy less efficient.

Activation Scenario. In the activation scenario, nucleation is in-
hibited by controlling the concentration of available (or active)
monomers. Decreasing the influx rate α reduces the momentary
concentration of active monomers and therefore reduces the
effective dimerization rate. As in the dimerization scenario, this
leads to a transition from zero to perfect final yield (Fig. 4B).
The transition is not strictly monotonic but exhibits some small-
scale peaks, whose origin is not entirely clear. From the stochastic
simulations and scaling analysis (SI Appendix, section 3) we infer
for linear structures an optimal influx rate scaling as αopt ∼
ν
μ
(Cν)S−3 (Fig. 4 B, Inset). The dependence of αopt on S can be

explained similarly to that for the dimerization scenario: When
increasing S, according to Eq. 1, the ratio between effective
nucleation and growth rate must be reduced, while the increase
of the total nucleation rate with increasing number of species
must be balanced. Together, this accounts for a factor of 1/S2

in αopt, analogous to the dimerization scenario. Additionally,
however, increasing S would enhance the total influx of particles
and thus the momentary concentration of monomers. This again
would increase the nucleation rate and needs to be balanced, thus
explaining the third factor of 1/S . The control parameter expo-
nents φ for higher-dimensional structures can again be derived
with our rescaling argument, ν → νS (d−1)/d , and are found to be
only slightly larger than those obtained from simulations (table in
Fig. 4B). As the monomers are activated over a time span 1/α, the
time complexity exponents are the reciprocals of the parameter
exponents (Fig. 2).

We expect that the exponents for the activation scenario
remain the same if other forms of monomer input are considered.
For example, monomers could (reversibly or irreversibly)
switch between an assembly inactive and active state. In
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Fig. 4. Dimerization and activation scenario. (A and B) The final yield in dependence of the dimerization rate (A) and the activation or influx rate (B) for
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for different dimensionality. The corresponding control parameter exponents φsim are summarized in the tables together with their theoretic estimates φth

(main text).

SI Appendix, section 4, we simulate the reversible case explicitly,
assuming that the switch is fast so that active and inactive
monomers are at equilibrium. This case might indeed be relevant
in virus capsid assembly (26) and it exhibits the same scaling as
the constant influx scenario (SI Appendix, Fig. S5C). Controlling
the switching rate between particle configurations (for example
with light) (34) could also be a feasible way to implement the
activation scenario experimentally.

Just-in-Sequence Scenario. In the irreversible assembly scenarios
discussed so far, all species are made available simultaneously.
Consequently, excess nucleation of structures can only be sup-
pressed by using a low dimerization or activation rate. In contrast,
the JIS scenario favors specific assembly paths by regulating the
order in which building blocks are supplied. The species supplied
first in this temporal sequence define the nuclei for subsequent
growth. Formation of other competing nuclei (dimers) during
the assembly process is suppressed by the sequential delivery
of building blocks, which ensures that mutual binding partners
are supplied successively. Binding of newly added monomers to
existing structures is therefore more likely than formation of new
dimers. The frequency of competing nucleation events can be
controlled by adjusting the interval ΔT between the equidistant
time points Ti at which subsequent “batches” of monomers are
provided. Longer time intervals increase the yield at the cost of
a lower time efficiency.

To minimize the total number of batches, we chose an “onion”
supply protocol, which allows structures to grow radially from the
inside out, like the skins of an onion (Fig. 5C). Furthermore, the
time efficiency can be enhanced by using increasing, nonstoichio-
metric concentrations for the monomers in successive batches
(Fig. 5B). Nonstoichiometric concentrations in a properly
chosen ratio (SI Appendix, section 1, Just-in-sequence scenario)
reduce competition for resources between growing structures
(Fig. 5A) and thereby greatly enhance the time efficiency, as
well as robustness to extrinsic noise in the particle numbers
supplied, especially for higher-dimensional structures (Fig. 5D
and E). Therefore, nonstoichiometric concentrations are the
key to successful implementation of the JIS strategy for higher-
dimensional structures. Since we assume equidistant time
intervals ΔT between subsequent batches, the total assembly
time is the product of ΔT (∼S ) and the total number of batches
(∼L ∼ S1/d ), yielding the complexity exponents θ = 1 + 1/d ,
as shown in Fig. 2. To demonstrate the broad experimental

applicability of the JIS supply strategy with a concrete example,
we discuss in detail in SI Appendix, section 5 how the JIS strategy
could efficiently be used to assemble artificial T = 1 capsids.
Artificial capsids have important potential technological and
medical applications (35–37) and the simulations show that
the JIS strategy might indeed be a feasible and efficient way
to assemble these structures.

Discussion
Fig. 2 shows the dependence of the minimal assembly time on
target structure size, together with the resulting time complex-
ity exponents for the different scenarios and dimensionalities.
All exponents decrease with increasing dimensionality of the
target structure and can even change their relative order. For
the dimerization, activation, and reversible-binding scenario, one
can show that the analysis is independent of the heterogene-
ity of the building blocks (SI Appendix, section 2). Remarkably,
the exponents are furthermore robust to various modifications
of the model such as heterogeneous binding rates, modified
boundary conditions, or altered definitions of the assembly time
(SI Appendix, section 4). Similarly, advanced protocols like an-
nealing or different forms of monomer input in the activation
scenario leave the exponents invariant. This invariance shows
that the time complexity analysis yields a reliable and robust
characterization of self-assembly processes. Furthermore, the
invariance of the parameter exponents allows for an optimal
control strategy to be identified in dependence of the size of the
target structure in each of the four scenarios.

The dimerization scenario turns out to be the most time-
efficient scenario in all dimensions. Controlling the dimerization
rate is efficient as it allows one to initiate just as many structures
as are needed, followed by a rapid growth phase if all particles
are readily available. For linear structures, the supply-control
strategies rank second and third, with coordinated supply in the
JIS scenario being more efficient than uncoordinated supply in
the activation scenario. Reversible binding is the least efficient
approach to assembling large linear structures, but it is efficient
for the assembly of higher-dimensional structures and then be-
comes competitive with the JIS scenario, slightly outperforming
it for large structure sizes.

The reason why reversible binding is inefficient for one-
dimensional structures is that for linear objects—in contrast
to higher-dimensional objects—nucleation cannot be slowed
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Fig. 5. JIS scenario. (A) In the JIS scenario, the different species are added sequentially; here, for illustration, they are in a linear sequence
(T1 < T2 < T3 < . . . ). Along the regular assembly paths, A1D (1D) or A2D (2D), additional dimers B can form, competing for resources with the regular
structures and thereby disrupting their growth. While for one-dimensional structures a disruption event prevents a structure A1D from further growth, in
higher dimensions both defective structures A2D and B continue to grow, thereby increasing competition for resources. (B) Competition for resources can be
alleviated by enhancing the amount of resources with each assembly step (nonstoichiometric concentrations; SI Appendix, section 1). For example, providing
the first species in concentration 0.9N and increasing linearly up to 1.1N for the last species strongly enhances assembly efficiency (D) and robustness (E).
(C) Parallel supply protocol illustrated for a 2D structure of size S = 25 causing the structures to grow radially in an “onion-skin”–like fashion. Roman
numbers indicate the order in which species are supplied. Species with identical numbers (“onion skins”) are supplied simultaneously in “batches.” (D) When
using nonstoichiometric concentrations, high yield can be achieved with a shorter time span ΔT between subsequent batches, exhibiting a smaller control
parameter exponent (Inset) compared to the case of stoichiometric concentrations. Simulations were performed for 3D structures with N = 104 to 105.
(E) External noise in the concentrations jeopardizes the yield when stoichiometric concentrations are used, whereas nonstoichiometric concentrations are
much more robust. Here, for each species we assumed a coefficient of variation CV = 0.1% with average particle numbers as in D.

down relative to growth by increasing the detachment rate. This
strong dependence of the efficiency on the dimensionality implies
that, generally, the morphology of the assembled structures
plays an important role for the reversible-binding scenario. For
example, assembling quasi-linear objects with two (or more)
layers of subunits instead of a one-layered linear object might
significantly increase the assembly efficiency. Identifying and
designing those morphologies that are particularly favorable and
assemble efficiently could therefore be an interesting direction
for future research.

In conclusion, our time-complexity analysis of self-assembly
describes lower bounds for the required assembly time as a
function of the target structure size. Furthermore, it provides
a robust description of how the parameters of the system must
be controlled to achieve optimal time and resource efficiency.
The analysis enables us to compare the efficiency of different
self-assembly scenarios. In computer science, the complexity of
a computational problem is defined as the complexity of the
fastest algorithm available to solve it (38). Among the assembly
scenarios discussed here, limiting the dimerization rate defines
the fastest assembly process and might thereby determine the
time complexity of self-assembly (of course, we cannot exclude
the possibility of even faster assembly strategies). Experimen-
tally, however, controlling the dimerization rate is difficult, as it
effectively requires building blocks that exhibit allosteric binding
effects. So far, experiments have typically resorted to rendering
binding reactions reversible (21–23, 25, 39, 40). Our analysis
shows that this common approach is time efficient for the assem-
bly of higher-dimensional structures. However, to be truly com-
petitive, fairly precise tuning of bond strengths, temperature, and
the concentration is required. Our analysis suggests that a supply-
control strategy like the JIS scenario is a promising alternative
that offers similar or better time efficiency using irreversible self-
assembly. As a significant advantage, this strategy does not rely
on sophisticated properties of the building blocks (like allosteric
effects or fine-tuned bond strengths) but only on temporal supply
control and hence on parameters that might be more amenable
to regulation and adaptation in experiments: In its simplest im-
plementation, the different species could just be added manually
to the system in the designated temporal sequence.

Compared to the current state-of-the-art approach via
reversible reactions, irreversible assembly schemes might thus
provide a complementary and more versatile strategy for
assembling complex structures, requiring control over relative
concentrations, rather than fine-tuning of the molecular details.
Importantly, the idea underlying the JIS scenario entails a
rather specific design principle for efficient irreversible assembly
protocols of complex nanostructures (“batches without mutual
binding partners”); we demonstrate in SI Appendix, section 5
how this principle is applied exemplarily for the assembly of
artificial T = 1 capsids. This design principle thereby provides
a clear path toward the experimental realization of the JIS
scenario, suggesting that the strategy will be broadly applicable
to the assembly of artificial structures.

An interesting question for future research concerns the
prospects for spatiotemporal supply control, i.e., controlling not
only the time interval but also the site at which monomers are
injected into a spatial system, for further enhancement of the
time efficiency. Moreover, it would be interesting to consider
the time complexity of assembly schemes like hierarchical self-
assembly (41–44), which include polymer–polymer interactions,
or assembly schemes in which interactions among the particles
allow for multiple self-assembly states. Finally, other potentially
important aspects of self-assembly include susceptibility to
errors in the case of reduced binding specificities or defective
particles, as well as robustness to stochastic effects for small copy
numbers. If particle numbers are large and nonspecific bonds
are sufficiently weak and reversible, we expect that these factors
will not considerably affect the assembly dynamics. Otherwise, it
might be instructive to test how the different assembly scenarios
are influenced by these factors and compare the robustness of
the various strategies in this respect.

Materials and Methods
This paper is accompanied by a detailed SI Appendix file, which discusses
the numerical and analytical methods that were used to simulate the four
scenarios and to determine their time complexity exponents. Specifically,
SI Appendix, section 1 shows the details of the numerical simulation and,
in particular, explains how the concentrations for the various species in the
just-in-sequence scenario were determined. SI Appendix, section 2 analyzes
the master equation and shows mathematically that the heterogeneity
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(distinguishability) of the building blocks is irrelevant for the dynamics in
the limit of large particle numbers. SI Appendix, section 3 is dedicated to
the mathematical scaling analysis and explains how the analytic estimates
for the time complexity and control parameter exponents are derived. Fur-
thermore, SI Appendix, section 4 demonstrates the robustness of the time
complexity exponents to various modifications of the model and variations
in the parameters. Finally, SI Appendix, section 5 illustrates how the just-in-
sequence supply strategy can be used in practice for the concrete example
of artificial T = 1 capsid assembly and thereby demonstrates the broad
applicability of the just-in-sequence scenario.

Data Availability. C++ code for simulations and data have been deposited
in GitHub (https://github.com/FloGat88/Self_Assembly.git) (45).
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