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Abstract

Motivation: During disease progression or organism development, alternative splicing may lead to isoform
switches that demonstrate similar temporal patterns and reflect the alternative splicing co-regulation of such genes.
Tools for dynamic process analysis usually neglect alternative splicing.

Results: Here, we propose Spycone, a splicing-aware framework for time course data analysis. Spycone exploits a
novel IS detection algorithm and offers downstream analysis such as network and gene set enrichment. We
demonstrate the performance of Spycone using simulated and real-world data of SARS-CoV-2 infection.

Availability and implementation: The Spycone package is available as a PyPI package. The source code of Spycone
is available under the GPLv3 license at https://github.com/yollct/spycone and the documentation at https://spycone.
readthedocs.io/en/latest/.

Contact: olga.tsoy@uni-hamburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Changes in alternative splicing (AS) lead to a differential abundance
of gene isoforms between experimental conditions or time points. If
the relative abundance of two isoforms of a gene changes between
two conditions or time points, this behavior is called isoform switch-
ing (IS). While differential isoform expression focus on the change in
the expression value of one isoform, IS detects switches of predom-
inantly expressed isoforms between conditions. A change of the pre-
dominant isoform appears as an intersection in time course data.
However, existing methods for time course change points detection
are applied to detect abrupt change between states while IS events
are usually slow and gradual changes of isoform expression
(Aminikhanghahi and Cook, 2017). IS has a functional impact on
the gene when the two switching isoforms perform different func-
tions or when they have different interaction partners. Vitting-
Seerup and Sandelin (2017) showed that IS changes the functions of
19% (N¼2352) of genes with multiple isoforms in cancer, most of
them leading to a protein domain loss. In cardiovascular disease, the

IS of Titin causes clinical symptoms of dilated cardiomyopathy
(Makarenko et al., 2004). Therefore, the detection and functional
interpretation of IS events is a promising strategy to reveal the

mechanism of disease development.
However, the above examples refer to molecular snapshots of

dynamic processes. In order to study such dynamic processes, like

disease progression, we need time course data. By identifying groups
of genes with similar temporal expression or AS/IS patterns, we can
dissect the disease progression into mechanistic details. A study of

mouse retinal development has shown that genes with similar tem-
poral exon usage patterns shared similar biological functions and
cell type specificity (Wan et al., 2011). However, existing tools for
AS analysis mostly focus on a single condition or two conditions

from snapshot experiments. Tools developed for time course data
analysis, e.g. TiCoNE (Wiwie et al., 2019), moanin (Varoquaux and
Purdom, 2020), TimesVector-web (Jang et al., 2021) focus on gene

expression level and neglect splicing. Thus, systematic time course
AS analysis is usually done manually. Common approaches are
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semi-automatic clustering of temporal patterns of percent-spliced-in
(PSI) value (Trincado et al. 2017; Xing et al. 2020) or differential
splicing analysis between pairs of time points (Hooper et al. 2020).
PSI values indicate the fraction of transcripts carrying an AS event
and thus do not directly reflect isoform switches which are crucial
for interpreting functional consequences of AS. Iso-MaSigPro uses a
generalized linear model to detect differential expression changes
along time courses between two experimental groups (Nueda et al.,
2018). However, Iso-MaSigPro is limited in time series data with
two conditions and it does not provide information like switching
points. TSIS, the only available tool to perform AS time course ana-
lysis in one condition, detects IS events whose effect lasts across sev-
eral time points (Guo et al., 2017). However, TSIS treats all IS
events similarly, independent of their expression level. As a result,
TSIS emphasizes isoforms with low expression while isoforms with
comparably high expression levels are expected to be more involved
in biological processes.

We introduce Spycone, a splicing-aware framework for system-
atic time course transcriptomics data analysis. It employs a novel IS
detection method that prioritizes isoform switches between highly
expressed isoforms over those with minor expression levels, thus
focusing on biologically relevant changes rather than transcriptional
noise. Spycone operates on both gene and isoform levels. For
isoform-level data, the total isoform usage is quantified across time
points. We have incorporated clustering methods for grouping genes
and isoforms with similar time course patterns, as well as network
and gene set enrichment methods for the functional interpretation of
clusters. The IS genes within the same clusters are expected to inter-
act cooperatively with other functionally related genes. Thus, we hy-
pothesize that disease mechanisms or developmental changes can be
identified with network and functional enrichment methods. We
compare the performance of Spycone and TSIS on a simulated and
real-world dataset. On the latter, we demonstrate how Spycone
identifies network modules that are potentially affected by alterna-
tively spliced genes during SARS-CoV-2 infection.

2 Materials and methods

2.1 Data preprocessing
We demonstrated the performance of Spycone on RNA-seq data
from SARS-CoV-2 infected human lung cells (Calu-3) with eight
time points and four replicates for each time point (de la Fuente
et al., 2020).

For the SARS-CoV-2 dataset, we used Trimmomatic v0.39
(Bolger et al., 2014) to remove Illumina adapter sequences and low-
quality bases (Phred score < 30) followed by Salmon v1.5.1 (Patro
et al., 2017) for isoform quantification with a mapping-based
model, the human genome version 38 and an Ensembl genome an-
notation version 104.

2.2 Protein–protein interaction network and

domain–domain interaction
A protein–protein interaction (PPI) network is obtained from
BioGRID (v.4.4.208) (Oughtred et al., 2021) and a domain–domain
interaction network from 3did (v2019_01) (Mosca et al., 2014).
The edges of the PPI network are weighted according to the number
of interactions found between the domains of the protein (nodes of
PPI), given by the domain–domain interaction. Weighting PPIs with
domain-based information can result in a functionally more inter-
pretable network in diseases and pathways (Shim and Lee, 2016).

2.3 Simulation
We used the SARS-CoV-2 dataset described above as a reference for
setting the parameters of a negative binomial distribution of gene ex-
pression counts, as well as the parameters of the Poisson distribution
of the number of isoforms for each gene.

2.3.1 First-order Markov chain

A first-order Markov chain is used for the simulation of the gene
states at each time point. In the simplest form, we defined two gene
states: switched or unswitched. Change of the states along the time
course depends on the transition probabilities.

We used a Dirichlet distribution to simulate relative abundance
for each isoform of a gene. The relative abundance of an isoform is
the ratio of the isoform expression to the total gene expression. The
outcome of the Dirichlet distribution is k-dimensional vectors x
with real numbers between 0 and 1 such that the sum of the ele-
ments in x is 1. This is suitable to simulate probability distribution
of k categories. The Dirichlet distribution is defined as:

f Mtja0; a1; . . . ; akð Þ ¼ 1

betaðaÞ
Y
i¼1

k

Mai�1
i ; (1)

beta að Þ ¼
Qk

i¼1 CðaiÞ
Cð
Pk

i¼1 aiÞ
; (2)

where the parameter is a k-dimensional vector governing the distri-
bution of the probabilities. In our case, k equals the number of iso-
forms in a gene, where each isoform will be assigned an i value. The
higher i, the higher the probability of the isoform i.

In Model 1, where we assumed that switching isoforms are high-
ly expressed, the a for switching isoforms are a ¼ f1, 2, . . ., sg*10, s
is the number of switching isoforms, while a for the remaining iso-
forms are 1. To introduce switching events, the isoform probabilities
of two highly expressed isoforms are swapped. For instance, if the
isoform probabilities of the unswitched state for gene g with five iso-
forms are f0.03, 0.07, 0.1, 0.3, 0.5g. Then, the isoform probabilities
for the switched state is f0.03, 0.07, 0.1, 0.5, 0.3g.

In Model 2, where we assumed that isoforms with abundance
higher than 0.3 have equal chances to switch, the vector is a ¼ f1, 2,
. . ., kg*10, k is the number of all isoforms. To introduce switching
events, the probabilities of two random isoforms will be swapped.

After we simulated abundances for each isoform, we multiplied
it to a gene expression mean selected based on real-life dataset to ob-
tain the transcript expression mean (li). The gene expression means
are randomly picked among the genes with the same number of iso-
forms from the real-world dataset.

We simulated time course data with 10 time points and 3 repli-
cates using 10 000 genes. The transcript expression of replicates is
sampled from normal distribution with a given transcript mean (li),
and the variance is sampled from a gamma distribution as the
following:

hi � gamma a ¼ li þ noise

li�noise

� �
(3)

Countti � normalðli; hiÞ: (4)

In order to simulate the differences generated for each individual
experiment in real life, we tested on noise levels 1, 5 and 10. This
setting can ensure isoforms with higher abundance will have a
higher variance compared to those with lower abundance. The simu-
lated dataset can be downloaded from doi: 10.5281/zen-
odo.7228475. The code for generating the benchmarking figures is
stored in https://github.com/yollct/spycone_benchmark.

The data were analyzed with Spycone’s detect_isoform_switch
function and TSIS’s iso.switch function. TSIS was further tested in
two modes—TSIS and major_TSIS—major_TSIS uses the max.ratio
¼ TRUE parameter.

2.4 Detection of isoform switch events
2.4.1 Spycone

The first step of IS detection is to filter out transcripts that have an
average transcripts per million (TPM) <1 over all time points.

2 C.T.Lio et al.
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Spycone then detects IS events based on the relative abundance of
the isoforms. The IS events are defined with the following metrics:

2.4.1.1 Switching points. Switch points refer to the points where
two time courses intersect in at least 60% of the replicates. For every
pair of isoforms in a gene, Spycone detects all possible switch points
for further analysis. For a dataset that has only one replicate,
Spycone checks the intersection between isoform pairs in one
replicate.

2.4.1.2 Switching probability. As TSIS, Spycone calculates a switch-
ing probability for each IS event. A switching probability is the aver-
age of the ratio of samples where the relative abundance I of
isoform i is higher than isoform j before switch (T1), and vice versa,
the ratio of samples where the relative abundance I isoform i is
lower than of isoform j after switch (T2). If two isoforms switched
between time interval T1and T2 the switching probability between
isoform i and isoform j is:

PðswitchÞ ¼ ½PT1
ðIi;t > Ij;tÞ þ PT2

ðIi;t < Ij;tÞ�=2; (5)

where P denotes the frequency of the respective condition between
relative abundance (I) of isoform i and j at each time point t within
the time interval T.

2.4.1.3 Significance of switch points. If replicates are available,
Spycone calculates the significance of a switch point by performing
a two-sided Mann–Whitney U-test between relative abundance be-
fore and after the switch point similar to TSIS. For a dataset that has
only one replicate, a permutation test is performed, where the time
points within a time course are permuted. An empirical P-value is
calculated to indicate the probability for the two switching isoforms
to have a higher dissimilarity coefficient and higher difference of
relative abundance before and after switch. Since the goal here is to
select genes that have significant IS, Spycone takes the best switch
point for further analysis with the smallest P-value. Other significant
switch points will be reported as part of the result for users to
investigate.

2.4.1.4 Difference of relative abundance. To quantify the magni-
tude of changes during IS, Spycone calculates the average difference
of relative abundance before and after a switch point. If replicates
are available, Spycone calculates the average change of relative
abundance. We selected a cutoff of 0.1, where the changes in the
relative abundance accounts for at least 10% of the total gene ex-
pression. Difference of relative abundance I between switching iso-
forms i and j is defined as:

Diffi;j;s ¼
XR

r¼1

Ir
i;sþ1 � Ir

i;s

� �
=Rþ

X
r¼1

R

ðIr
j;sþ1 � Ir

j;sÞ=R
" #

=2 ; (6)

where s is a switch point of Isoform i and j; R is the number of
replicates.

2.4.1.5 Event importance. Event importance is a novel metric that
accounts for the expression level of switching isoforms. We defined
event importance of a switch occurs between time point t and t þ 1
as:

Event importance ¼
X
r¼1

R Ir
aGt

maxðIr
GtÞ
þ

Ir
aGtþ1

maxðIr
Gtþ1Þ

þ
Ir
bGt

maxðIr
GtÞ
þ

Ir
bGtþ1

maxðIr
Gtþ1Þ

 !
=4

" #
=R;

(7)

where Ir
aGtis the relative abundance of isoform a of a gene G at time

point t; and R is the total number of replicates. Each I is normalized
to the highest relative abundance max(Ir

Gt) at the corresponding
time point. The metric takes the average of the relative abundance
of isoforms i and j before and after switch.

For the analysis, we used IS events with differences of relative
abundance higher than 0.2 and event importance higher than 0.3.

2.1.4.6 Dissimilarity coefficient. Dissimilarity coefficients di;j assess
the dissimilarity of the time course between isoforms. It is calculated
based on the Pearson correlation ri;j between time course I and J:

ri;j ¼
covðI; JÞ

ri;rj
(8)

d ¼ 1� r

2
: (9)

The higher coefficient, the less similar are the time courses.

2.4.1.7 Domain inclusion or exclusion. We used the Pfam database
v.35.0 (Mistry et al., 2021) to map domains to isoforms. Spycone
compares isoforms in the IS event with each other to define if there
is a loss/gain of domain.

2.4.1.8 Multiple testing correction. Finally, we implemented mul-
tiple testing corrections for IS detection. Available corrections are
Bonferroni, Holm–Bonferroni and Benjamini–Hochberg false dis-
covery rate. We use the Benjamini–Hochberg method as default.

2.4.2 TSIS

To detect IS in TSIS, we used the following parameters: (i) the
switching probability > 0.5; (ii) difference before and after switch >
10; (iii) interval lasting before and after at minimum one time point;
(iv) P-value < 0.05 and (v) Pearson correlation < 0. More detailed
descriptions of parameters are found in Guo et al. (2017). The above
parameters are set with defaults suggested by TSIS, except param-
eter (iii), since we have a larger interval between time points (12 h at
maximum).

2.5 Change of total isoform usage
Isoform usage measures the relative abundance of an isoform.
Isoform usage of all isoforms from one gene are summed up to ob-
tain the total isoform usage. We defined the change of total isoform
usage as between two consecutive time points:

Dtotal isoform usage ¼Xn

A¼0

j IAGt1Pn
A¼0ðIAGt1Þ

� IAGt0Pn
A¼0ðIAGt0Þ

� �
j ; (10)

where I is the expression of isoform A of gene G at time points t1

and t0; and n is the total number of all isoforms for gene G.

2.6 Clustering analysis
The clustering algorithms are implemented using the scikit-learn ma-
chine learning package in python (v0.23.2) (Pedregosa et al., 2011)
and tslearn (v0.5.1.0) time course machine learning package in py-
thon (Tavenard et al., 2020). The available algorithms are K-means,
K-medoids, agglomerative clustering, DBSCAN and OPTICS.

The number of clusters is chosen manually by visually checking
the Ward distance dendrogram (Supplementary Fig. S6).

2.7 Gene set enrichment and network analysis
For enrichment analysis, Spycone uses g:Profiler and NEASE.
g:Profiler is a functional enrichment toolkit for GO terms and path-
ways (Raudvere et al., 2019). Gene set enrichment method is per-
formed using Fisher’s exact test. NEASE (Louadi et al., 2021) is an
enrichment method for co-regulated alternative exons. We used
NEASE with KEGG and Reactome pathways. For a seamless ana-
lysis, the newest version of the NEASE’s Python package (v1.1.9) is
integrated with Spycone.

Spycone employs DOMINO (0.1.0) (Levi et al., 2021) for active
module identification in PPI networks using default parameters.

Systematic analysis of alternative splicing in time course data using Spycone 3
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2.8 Splicing factor co-expression and motif enrichment

analysis
List of splicing factors and their position-specific scoring matrices
(PSSMs) are obtained from the mCross database (downloaded in
2022), currently only available for Homo sapiens (Feng et al.,
2019). First, we filtered splicing factors with TPM > 1 in all time
points. Next, we calculated the correlation between the relative
abundance of each isoform and the expression of splicing factors.
We filtered the pairs with correlation >0.7 or <�0.7 and adjusted
P-value <0.05.

Finally, we performed motif enrichment analysis using the motifs
module from the Biopython library (Cock et al., 2009). The motifs
module computes the log-odd probability of a specific region in the
genome to match the binding motif using the PSSM (Henikoff and
Henikoff, 1996). Hence, the higher the log-odd score, the more like-
ly the binding. We compared these scores obtained from the lost,
gained and unregulated exons from the same clusters. A Mann–
Whitney U-test is performed on the sets of scores. Each motif thresh-
old is selected using the distribution of the PSSM score over the fre-
quency of nucleotides (background). The threshold is set at a false
positive rate <0.01, meaning the probability of finding the motif in
the background is <0.01.

3 Results

3.1 Spycone overview
Spycone is available as a python package that provides systematic
analysis of time course transcriptomics data. Figure 1 shows the
workflow of Spycone. It uses gene or isoform expression and a bio-
logical network as an input. It employs the sum of changes of all iso-
forms relative abundance (total isoform usage) (de la Fuente et al.,
2020) (see Section 2), i.e. the sums of pairwise changes in relative
isoform abundance, across time points to detect IS events. It further

provides downstream analysis such as clustering by total isoform
usage, gene set enrichment analysis, network enrichment and splic-
ing factors analysis. Visualization functions are provided for IS
events, cluster prototypes, network modules and gene set enrich-
ment results.

IS detection. We propose novel metrics for the detection and se-
lection of significant IS across time. IS events are described as a
change of the isoform distribution between two conditions (time
points). To detect an IS, our algorithm first searches for switch
points, i.e. a specific time point where two isoform expression time
courses intersect.

The main challenges to detect time course IS are: (i) most genes
have multiple isoforms, the changes of the relative abundance can be
due to factors other than AS, e.g. RNA degradation. (ii) Most IS
have multiple switch points, with different magnitudes of change in
abundance; we need to consider how prominent the changes in
abundance are to be recognized as an IS event. (iii) Most genes have
multiple lowly expressed isoforms that constitute noise and might
not be biologically relevant. An ideal IS detection tool, therefore,
should prioritize IS events according to their expression level
(Supplementary Fig. S1).

Spycone overcomes these challenges by using a novel approach
to detect IS events. Spycone uses two metrics: a P-value and event
importance. The P-value is calculated by performing a two-sided
Mann–Whitney U-test between relative abundance before and after
the switch point among the replicates. Event importance is the aver-
age of the ratio of the relative abundance of the two switching iso-
forms to the relative abundance of the isoform with the highest
expression between the switching time points (see Section 2).
Examples of high and low event importance are illustrated in
Figure 2. The event importance will be highest when an IS includes
the highest expressed isoform. Similarly, event importance will be
low if an IS occurs between two lowly expressed isoforms. We also
provide different metrics to comprehensively assess features of
the IS events including switching probability, difference of abun-
dance before and after switching and a dissimilarity coefficient
(see Section 2).

Clustering analysis for identifying co-spliced genes. Similar to
how transcription factors co-regulate sets of genes, in the context of
AS, the splicing events of a subset of genes are co-regulated by splic-
ing factors (Barberan-Soler et al., 2011). For genes with important
IS events (identified as described above), we want to quantify the im-
pact of splicing regulation between two time points. To this end,
Spycone clusters genes by changes in total isoform usage over time
to identify co-spliced genes. A previous study showed that clustering
performance is highly dependent on the dataset and the clustering
method (Javed et al., 2020). Therefore, Spycone offers various clus-
tering techniques, including agglomerative clustering (hierarchical
clustering) (Johnson, 1967), K-Means clustering (Hartigan and
Wong, 1979), K-Medoids clustering (Park and Jun, 2009),
DBSCAN (Ester et al., 1996), OPTICS (Ankerst et al., 1999) and
various distance metrics such as euclidean distance, Pearson dis-
tance, as well as tslearn (Tavenard et al., 2020) for calculating the
dynamic time warping distance measure.

With temporal patterns of the clusters, Spycone dissects context-
specific processes in terms of AS. In order to gain functional know-
ledge of the clusters, Spycone offers g:Profiler (Raudvere et al.,

Fig. 1. Overview of the Spycone architecture. Spycone takes count matrices and bio-

logical networks as input. We provide isoform-level functions such as isoform

switch detection and total isoform usage calculation. Users could also cluster the

gene count matrix directly. For downstream analysis, we integrated multiple cluster-

ing algorithms and an active modules identification algorithm (DOMINO). We also

implemented splicing factors analysis for isoform-level data. Finally, visualizations

are provided to better evaluate and interpret the results

High event importance Medium event importance Low event importance

Fig. 2. Plots showing the examples of three levels of event importance. Each plot

contains all isoforms of a gene. The circle indicates the IS events with the corre-

sponding level of event importance

4 C.T.Lio et al.
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2019) and NEASE (Louadi et al., 2021) for gene set enrichment ana-
lysis. The former conducts classical enrichment analysis for multiple
ontologies and pathway databases. The latter combines information

from PPI and domain–domain interaction networks and allows to
predict functional consequences of AS events caused by a set of IS

genes.
Active modules identification. Genes with consistent temporal

patterns are thought to be functionally related in terms of co-
regulation, molecular interactions or participation in the same cellu-
lar processes. To uncover the underlying mechanism that is repre-

sented by a temporal pattern, Spycone projects the results of the
clustering analysis on a molecular interaction network for active

modules identification, i.e. for detection of subnetworks enriched in
genes affected by IS. We incorporated DOMINO (Levi et al., 2021)
as it has been previously demonstrated the best performance for this

task (Lazareva et al., 2021). To elucidate the functional impact of IS
events, we further leveraged domain–domain interaction informa-
tion from the 3did database (Mosca et al., 2014). Spycone identifies

domains lost/gained during IS, which might indicate a functional
switch, and affected edges in the PPI network. This provides add-

itional insights about the functional consequences of time course IS.
Splicing factor analysis. Spycone also provides splicing factor

analysis using co-expression and RNA-binding protein motif search.
Splicing factors are a group of RNA-binding proteins that regulate
the splicing of genes. We assume that the expression of splicing fac-

tors that are responsible for an IS event correlates with the relative
abundance of participating isoforms. Spycone calculates the correl-

ation between the expression value of a list of RNA-binding proteins
derived from ENCODE eCLIP data (Feng et al., 2019) and the
relative abundance of isoforms involved in IS. We implemented

PSSM of RNA-binding protein motifs to calculate and detect the
potential binding sites along the sequence of the targeted isoforms

(see Section 2).

3.2 Evaluation using simulated data
To evaluate the performance of Spycone, we compared its perform-

ance (precision and recall) to TSIS using simulated data. TSIS pro-
vides an option to filter for IS events that involve only the highest

abundance isoform—we refer to the result after filtering as
major_TSIS. We aimed to investigate whether the performance of
TSIS improves when applying this option.

We use a hidden Markov model to simulate the switching state
of the genes at each time point (see Section 2). We simulated two

models (Supplementary Fig. S2): Model 1 allows only major iso-
forms, i.e. those with the highest abundance per gene, to be involved

in IS events across time points; Model 2 allows IS to occur between
isoforms with relative abundance higher than 0.3. We used Model 2
to show that neither tool is biased towards events that involve only

major isoforms.
For both tools, we varied their parameters (difference of relative

abundance), to investigate how this affects their precision and recall.
We also considered different levels of variance of gene expression,
namely 1, 5 and 10, across replicates to mimic the noise (Fig. 3).

In Model 1, Spycone achieved high precision and recall. The pre-
cision of TSIS dropped drastically with increasing recall. After filter-

ing major events, TSIS’s recall reached 0.5. Spycone performs better
in the setting with the highest noise level as it maintains high preci-

sion (0.95) and acceptable recall (0.75). In Model 2, Spycone
achieved higher precision and recall than TSIS; however, they
dropped as the model allows more IS events. We applied spline re-

gression to detect switch points and calculated precision and recall
as above (Supplementary Fig. S3). Results showed that spline regres-

sion does not improve precision and recall in both tools. Moreover,
TSIS has a higher algorithmic complexity of O(n*log(n)) than
Spycone with a complexity of O(n), leading to a drastically lower

runtime for Spycone in the range of a few minutes rather than hours
(Supplementary Fig. S4). In summary, Spycone outperforms TSIS in
detecting IS events.

3.3 Application to SARS-Cov2 infection data
We applied Spycone to an RNA-seq time course dataset of SARS-
CoV-2-infected human lung cells (Kim et al., 2021). The dataset
contains eight time points: 0, 1, 2, 4, 12, 16, 24 and 36 h post-
infection. We kept isoforms with TPM > 1 across all time points
resulting in 36 062 isoforms for IS event detection with Spycone and
TSIS. To call an IS significant, we used the following criteria: for
Spycone, (i) switching probability > 0.5; (ii) difference of relative
abundance > 0.2 before and after the switch; (iii) dissimilarity coef-
ficient > 0.5; and (iv) adjusted P-value < 0.05. For TSIS, we used (i)
switching probability > 0.5; (ii) difference of expression before and
after switch > 10; (iii) correlation coefficient < 0; and (iv) adjusted
P-value < 0.05. The dissimilarity coefficient from Spycone and the
correlation coefficient from TSIS are used to filter for IS events with
negatively correlated isoforms. The values are chosen according to
the performance on Model 2 simulated data with noise level 10 that
showed the best precision. Spycone reported 915 IS events, of which
418 affected at least 1 protein domain. TSIS reported 985 events, of
which 417 affected at least one protein domain. On gene level,
Spycone reported 745 genes with IS events, TSIS reported 858 genes
where 225 genes were found by both Spycone and TSIS (Fig. 4A).

We then used the event importance metric to assess the ability of
each method to detect IS events from higher abundance isoforms.
We calculated event importance for IS events identified by Spycone,
TSIS and major_TSIS (Fig. 4B). Spycone results include mostly
events with high importance, while in TSIS events with low import-
ance prevail. Supplementary Table S1 shows the result for the
SARS-CoV-2 dataset from the Spycone IS detection. Event import-
ance has no clear prevalence towards overall gene expression and
adjusted P-value (Supplementary Figs S5 and S6).

To exclude IS events with lowly expressed isoforms, we applied
a filter of event importance higher than 0.3 to both Spycone and
TSIS results. We calculated the change of total isoform usage of the
IS genes across time points and employed Ward linkage hierarchical
clustering. This led to four clusters with similar temporal patterns of
changes in total isoform usage for Spycone (Fig. 4C, Supplementary
Fig. S7, Supplementary Table S2) and four clusters for TSIS
(Supplementary Fig. S10A). Each cluster is represented by a cluster
prototype, which is the median change of total isoform usage per
pair of time points.

IS events that lead to domain gain or loss might break the inter-
actions, hence rewiring the PPI network. Moreover, if the IS events
belong to the same cluster, it indicates the synchronized gain or loss
of interactions with particular pathways. Our goal is therefore to as-
sess if IS events within clusters rewire interactions with particular
pathways during SARS-CoV-2 infection. We performed AS-aware
pathway enrichment analysis using NEASE with KEGG (Kanehisa
et al., 2016) and Reactome (Jassal et al., 2020) pathway databases
for results from Spycone (Supplementary Fig. S8, Supplementary
Table S3) and TSIS (Supplementary Table S4, Supplementary Fig
S10B). In addition, we performed classical gene set enrichment ana-
lysis using g:Profiler. The results are not informative since only five
terms are found in Cluster 3 and zero in others.

Overall, clusters with similar prototypes from both tools are
enriched in distinct pathway terms. For example, TSIS’s Cluster 1

Fig. 3. Precision and recall curves for Spycone, TSIS and major-isoforms filtered

TSIS from simulated data of two models (rows) and three noise levels (columns)
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and Spycone’s Cluster 1 have a strong peak between 4 and 12 h
post-infection. Only transforming growth factor (TGF)-beta signal-
ing is commonly found in both tools. MAPK pathway and DNA
damage checkpoint are enriched uniquely in Spycone. TSIS’s Cluster
2 and Spycone’s Cluster 3 have lower changes of total isoform usage
overall. Spycone’s clusters showed more unique and relevant terms:
70 enriched Reactome terms in Spycone’s clusters and only 7 terms
in TSIS’s clusters. TSIS’s Cluster 3 and Spycone Cluster 2 show an
increase of change of total isoform usage after 12 h post-infection.
Spycone’s cluster is enriched uniquely in protein folding chaperonin
complex TriC/CCT and NOTCH signaling pathway. Finally, TSIS’s
Cluster 4 and Spycone’s Cluster 4 have increasing changes of total
isoform usage overall. TSIS’s cluster is enriched in mitosis-related
pathways, cell cycle and tubulin folding. Whereas in Spycone’s
Cluster 4 is found with signaling by PTK6, interferon, metabolism
of proteins, pentose phosphate pathway, etc.

Next, we detected active modules that show over-representation
of IS genes from the same cluster based on DOMINO using a PPI
network from BioGRID (Oughtred et al., 2021) (see Section 2).
Detected active modules suggest the impact of splicing on regulatory
cascades and cellular trafficking (Table 1, Fig. 5, Supplementary
Fig. S7).

3.3.1 Splicing factor Anaysis

Assuming that multiple IS events occurring between the same time
points are co-regulated by the same splicing factor, we perform co-
expression and motif analysis. The co-expression analysis yields
thirteen significant RNA-binding proteins that are positively or

negatively correlated with at least two isoforms of the same gene: in
cluster 1 - FUBP3, HLTF, IGF2BP3, ILF3, RBFOX2, RBM22,
SF3B1 and TAF15; in cluster 3 - IGF2BP3, RBM22, RPS6, SRSF7
and SUGP2; ( jrj > 0.6 and adjusted p-value < 0.05) (Table S5). To
investigate whether the regulated exons, i.e. the lost or gained exons
after IS events, show higher PSSM scores to a certain RNA-binding
protein motif than the unregulated exons in a cluster, we applied
motif enrichment analysis. We calculated PSSM scores along the
flanking regions of the exons 5’ and 3’ boundaries and excluded the
first and last exons in an isoform since these are often regulated by
5’-cap binding proteins and polyadenylation regulating proteins
(Zheng, 2004). All exons in the switched isoforms within a cluster
are categorized to 1) lost exons, 2) gained exons, and 3) unregulated
exons for the analysis (Fig.6, Table S6). RNA-binding proteins with
multiple motifs are numbered with an underscore. Each motif is
selected with a threshold where the false-positive rate is below 0.01.
Position-specific log-odd scores higher than the corresponding
threshold are obtained after calculating the PSSM scores of each
motif for all exons (see Methods section). The ILF3_9 and ILF3_14
motifs show higher log-odd scores at the 5’ end of the lost/gain
exons than of the unregulated exons in cluster 1 (one-sided Mann-
Whitney U test p-value < 0.05) (Fig. 6A). HLTF_7 and SRSF7_1
motifs show higher log-odd scores at the 3’ end (Fig. 6B).

4 Discussion

AS regulates dynamic processes such as development and disease
progression. However, AS analysis tools typically compare only two
conditions and neglect how AS changes dynamically over time.
Currently, the only existing tool for time course data analysis that
accounts for splicing is TSIS. TSIS detects temporal IS events but is
biased towards IS events between lowly expressed isoforms and does
not offer features for downstream analysis which is important for
interpreting the functional consequences of IS events.

Spycone, a framework for analysis of time course transcriptom-
ics data, features a new approach for detecting temporal IS events
and a new event importance metric to filter out lowly expressed iso-
forms. We demonstrate that Spycone’s IS detection method outper-
forms TSIS in terms of precision and recall based on simulated data.
A key advantage of Spycone is that it explicitly considers how well
IS events agree across replicates while TSIS considers averaged ex-
pression values among replicates and/or by natural spline-curves fit-
ting. More specifically, Spycone uses a non-parametric Mann–
Whitney U-test to test for significant IS and performs multiple test-
ing correction to reduce type I error.

We have demonstrated the usability of Spycone by analyzing
time course transcriptomics data for SARS-CoV-2 infection where
we found affected signaling cascades. We performed NEASE enrich-
ment on the clusters and compared the results from Spycone and
TSIS. Spycone results are enriched in relevant terms such as mito-
gen-activated protein kinase (MAPK) pathway (Cluster 1), NOTCH
signaling (Cluster 2), fibroblast growth factor receptor (FGFRs) and
toll-like receptor (TLR) pathways (Cluster 3) and pentose phosphate
pathway (Cluster 4). NOTCH signaling pathways are found up-
regulated in the lungs of infected macaques (Rosa et al., 2021).

The MAPK pathway has a pro-inflammatory effect by interact-
ing with SARS-CoV-2 downstream pathogenesis, especially in
patients suffering from cardiovascular disease (Weckbach et al.,
2022). TLR 7/8 cascades are related to ssRNA, and there is a study
supporting the association of TLR 7/8 with SARS-CoV-2 infection
(Salvi et al., 2021). The pentose phosphate pathway is an alternative
pathway of glycolysis that produces more reduced NADP (NADPH)
oxidase. It is activated during SARS-CoV-2 infection in response to
oxidative stress and the activation of the immune response (Yang
et al., 2021). Spycone also detected the enrichment of pathways
which association with severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) infection has not been characterized yet: kine-
sins, signaling by NTRKs, degradation of AXIN, signaling by
Hedgehog and 5-phosphoribose 1-diphosphate biosynthesis.

The active modules extracted from the clusters highlight mecha-
nisms involved in the host cell response to infection. In Cluster 2

A

B

C

Fig. 4. Comparing IS detection results from Spycone and TSIS (A) Venn diagram

showing the number of genes detected with isoform switch events by Spycone and

TSIS (all). (B) The distribution of the detected events in Spycone, TSIS and

major_TSIS based on the event importance metric of Spycone. The number of events

for each tool is indicated in brackets in the legend. (C) Cluster prototypes and all

objects show the pattern of the change of total isoform usage across time points
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Module 1 (Fig. 5B) revealed that interactions between three kinases
(MAPK39, AURKC and DCLK2) and a protein chaperone,
HSP90AA1 is affected by IS. HSP90 is expressed under the endo-
plasmic reticulum (ER) stress caused by SARS-CoV-2 and its inhibi-
tor is identified as a therapeutic inhibition target (Wyler et al.,
2021). A previous study found that knock down of MAP3K9
reduced SARS-CoV-2 virus replication (Higgins et al., 2021).
DCLK2 is differentially expressed in SARS-CoV-2 patients
(Alqutami et al., 2021). AURKC would be an interesting candidate
to investigate for its role in SARS-CoV-2 infection.

Besides these three kinases, network enrichment analysis high-
lighted the general importance of kinases in infection development,
e.g. JAK1, LYN, TYK2 and PRKCZ (Fig. 5). JAK1 is responsible for
interferon signaling (Yan et al., 2021). Inhibition of LYN reduces
the efficiency of SARS-CoV-2 virus replication (Meyer et al., 2021).
TYK2, which is a key player for IFN signaling, has been associated
with cytokine storms in SARS-CoV-2 patients (Solimani et al.,
2021). IS events of kinases might cause major rewiring of the trans-
duction cascade, which could lead to altered immune response, cell
cycle control and promote viral replication.

Our analysis also suggests an important role of growth factor
receptors (FGFR, epidermal growth factor receptor (EGFR) and
vascular endothelial growth factor (VEGF)) and their downstream
kinases. They are essential for viral infection since they modulate
cellular processes like migration, adhesion, differentiation and
survival. One example is that activation of EGFR in SARS-CoV-2

can suppress the IFN response and aid viral replication (Klann et al.,
2020).

Another key finding is that E3 ubiquitin ligases are affected by
IS. They are known to mediate host immune response by removing
virus particles. Various virus species hijack the host E3 ubiquitin
ligases in favor of viral protein production (Dubey et al., 2021).
They are also involved in maintaining TMPRSS2 stabilization dur-
ing virus entry to the host cells (Chen et al., 2021).

In splicing factor analysis, ILF3 and SRSF7 are identified as a
splicing factor affecting the splicing of exons. ILF3 plays a role in
antiviral response by inducing the expression of interferon-
stimulated genes (Watson et al., 2020). In another computational
analysis, SRSF7 is also predicted to have binding potential with
SARS-CoV-2 RNA (Horlacher et al., 2021).

Lastly, in order to get confident time course analysis results, one
will need high-resolution data in terms of number of time points and
sample replicates. Consequently, at least three time points and three

Table 1. Related biological processes and pathways of the respective modules found in clusters

Clusters Module Related biological processes

1 (Fig. 5, Supplementary Fig. S9A) 1 RNA splicing and mRNA processing

2 Cellular protein modification genes, signal transduction in the VEGF signaling pathway

3 Positive regulation of protein ubiquitination

4 Protein and intracellular trafficking genes

5 Protein and intracellular trafficking genes

2 (Supplementary Fig. S9B) 1 Transcription and mRNA splicing

2 Ras and Rho protein signaling transduction

3 Ubiquitination

4 Protein import into the nucleus

5 Transition of cell cycle to G2/M phase

3 (Supplementary Fig. S9C) 1 Regulation of transcription, cell cycle arrest and protein catabolic process

2 Transmembrane receptor protein tyrosine kinase signaling pathway, in particular MAPK

cascade and ERK cascade

3 Protein ubiquitination

4 Histone acetylation

5 Organelle membrane fusion

4 (Supplementary Fig. S9D) 1 Transcription and apoptotic processes

IS genes

non-IS genes

Fig. 5. Spycone results in modules of the PPI network and their corresponding gene

set enrichment results. Active network modules are identified using DOMINO.

Each node represents a domain of a gene. Darker nodes are the isoform switched

genes and lighter nodes are non-IS genes from the PPI. Dashed edges are the affected

interactions between the genes due to the loss/gain of domains during the IS events

A

B

Fig. 6. (A) Boxplots showing the PSSM score difference between lost/gained exons

and unregulated exons at the exon 50 boundaries in logarithmic scale (one-sided

Mann–Whitney U-test P-value < 0.05). (B) Boxplots showing the PSSM scores dif-

ference between lost/gained exons and unregulated exons at the exon 30 boundaries

in logarithmic scale (one-sided Mann–Whitney U-test P-value < 0.05). LE, lost

exons; GE, gained exons; UE, unregulated exons
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replicates are recommended in Spycone analysis. However, this cri-
terion is rather met due to technical and economical restraints.
Thus, Spycone also provides an option for a permutation test with
only one replicate for the dataset under investigation. We demon-
strated this usage in a tumor development dataset with one replicate
(see Supplementary information).

Limitations. Spycone achieves high precision and considerably
higher recall than the only competing tool TSIS. Nevertheless, the
moderate recall we observe in particular in the presence of noise
shows that there is further room for method improvement. In our
simulation Model 2, where we allowed for isoform switches be-
tween minor isoforms, we observed a reduction in both precision
and recall. Spycone identifies only two isoforms that switch per
event, but in reality, an event could involve more than two isoforms.
In the future, we should consider multiple-isoforms switches to han-
dle more complex scenarios. In addition, the usage of weighted PPI
network might introduce selection bias. However, the higher weight
gives higher confidence to an interaction, meaning more domains
between the proteins are interacting. Therefore, using weighted PPI
helps prioritizing interactions with higher confidence. We believe
this advantage outweighs the potential bias. Nevertheless, the usage
of weighted PPI is optional.

Spycone uniquely offers features for detailed downstream ana-
lysis and allows for detecting the rewiring of network modules in a
time course as a result of coordinated domain gain/loss. This type of
analysis is limited by the availability of the structural annotation.
However, the current developments in computational structural
biology that could expand the information about domains and do-
main–domain interactions e.g. AlphaFold2 (Jumper et al., 2021),
will greatly strengthen our tool. Lastly, our PSSM-based approach
for splicing factor analysis does not allow us to investigate splicing
factors that bind indirectly through other adaptor proteins, requir-
ing further experiments that establish binding sites for such proteins.
In our future work, we plan to optimize the algorithm and include
introns in the analysis.

Spycone was thus far applied exclusively to bulk RNA-seq data.
When considering tissue samples, IS switches between time points
could also be attributed to changes in cellular composition. An at-
tractive future prospect is thus to apply Spycone for studying IS in
single-cell RNA-seq data where dynamic IS events could be traced
across cellular differentiation using the concept of pseudotime.
However, the current single-cell RNA-seq technologies are limited
in their ability to discern isoforms (Arzalluz-Luque and Conesa,
2018).

5 Conclusion

With declining costs in next-generation sequencing, time course
RNA-seq experiments are growing in popularity. Although AS is an
important and dynamic mechanism it is currently rarely studied in a
time course manner due to the lack of suitable tools. Spycone closes
this gap by offering robust and comprehensive analysis of time
course IS. Going beyond individual IS events, Spycone clusters genes
with similar IS behavior in time course data and offers insights into
the functional interpretation as well as putative mechanisms and co-
regulation. The latter is achieved by RNA-binding protein motif
analysis and highlights splice factors that could serve as potential
drug targets for diseases. Using simulated and real data, we showed
that Spycone has better precision and recall than its only competitor,
TSIS and that Spycone is able to identify disease-related pathways in
the real-world data, as we demonstrated for SARS-CoV-2 infection.
In summary, Spycone brings mechanistic insights about the role of
temporal changes in AS and thus perfectly complements RNA-seq
time course analysis.
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is available as a PyPI package. The source code of Spycone is avail-
able under the GPLv3 license at https://github.com/yollct/spycone.
The code used to produce the result shown in this manuscript is
compiled into the Google colab notebook (https://colab.research.
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