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Abstract

Background: Eukaryotic gene expression is controlled by cis-regulatory elements (CREs), including promoters and enhancers, which
are bound by transcription factors (TFs). Differential expression of TFs and their binding affinity at putative CREs determine tissue-
and developmental-specific transcriptional activity. Consolidating genomic datasets can offer further insights into the accessibility of
CREs, TF activity, and, thus, gene regulation. However, the integration and analysis of multimodal datasets are hampered by consider-
able technical challenges. While methods for highlighting differential TF activity from combined chromatin state data (e.g., chromatin
immunoprecipitation [ChIP], ATAC, or DNase sequencing) and RNA sequencing data exist, they do not offer convenient usability, have
limited support for large-scale data processing, and provide only minimal functionality for visually interpreting results.

Results: We developed TF-Prioritizer, an automated pipeline that prioritizes condition-specific TFs from multimodal data and gen-
erates an interactive web report. We demonstrated its potential by identifying known TFs along with their target genes, as well as
previously unreported TFs active in lactating mouse mammary glands. Additionally, we studied a variety of ENCODE datasets for cell
lines K562 and MCF-7, including 12 histone modification ChIP sequencing as well as ATAC and DNase sequencing datasets, where we
observe and discuss assay-specific differences.

Conclusion: TF-Prioritizer accepts ATAC, DNase, or ChIP sequencing and RNA sequencing data as input and identifies TFs with dif-
ferential activity, thus offering an understanding of genome-wide gene regulation, potential pathogenesis, and therapeutic targets in
biomedical research.

Introduction
Understanding how genes are regulated remains a major research
focus of molecular biology and genetics [1]. In eukaryotes, gene
expression is controlled by cis-regulatory elements (CREs) such as
promoters, enhancers, or suppressors, which are bound by tran-
scription factors (TFs) promoting or repressing transcriptional ac-
tivity depending on their accessibility [2]. TFs play an important
role not only in development and physiology but also in diseases;
for example, it is known that at least a third of all known human
developmental disorders are associated with deregulated TF ac-

tivity and mutations [3–5]. An in-depth investigation of TF regula-
tion could help to gain deeper insights into the gene-regulatory
balance found in normal physiology. Since most complex dis-
eases involve aberrant gene regulation, a detailed understanding
of this mechanism is a prerequisite to developing targeted thera-
pies [6, 7]. This is a daunting task, as multiple genes in eukaryotic
genomes may affect the disease, each of which is possibly con-
trolled by candidate CREs.

TF chromatin immunoprecipitation sequencing (ChIP-seq) ex-
periments are the gold standard for identifying and understand-
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ing condition-specific TF binding at a nucleotide level. However,
since there are approximately 1,500 active TFs in humans [8] and
about 1,000 in mice [9], and additionally considering the need to
establish TF patterns separately for each tissue and physiological
condition, this approach is logistically prohibitive. Alternatively,
histone modification (HM) ChIP-seq but also ATAC sequencing
(ATAC-seq) and DNAse sequencing (DNAse-seq) offer a broader
view of the chromatin state due to their individual capability (i.e.,
ChIP-seq identifies protein–DNA interactions, ATAC-seq detects
open chromatin regions via Tn5 transposase cuttings, and DNAse-
seq maps accessible chromatin sites by digesting chromatin with
DNase I) to highlight open chromatin regions aligned with active
genes, hence allowing the identification of condition-specific CREs
[10]. Computational methods can then be used to prioritize TFs
likely binding to these CREs, leading to hypotheses and defining
the most promising TF ChIP-seq experiments. This narrows the
scope of TF ChIP-seq experiments needed to confirm working hy-
potheses about gene regulation [11–13].

Several general approaches have been proposed to identify key
TFs that are responsible for gene regulation. Among them, for ex-
ample, is (i) a basic coexpression or mutual information analy-
sis of TFs and their target genes combined with computational
binding site predictions [14]. (ii) Some tools use a combination
of TF ChIP-seq data—providing genome-wide information about
the exact locations of TF binding—with predicted target genes
that can enhance coexpression analyses [15]. (iii) Other tools em-
ploy a combination of genome-wide chromatin accessibility (e.g.,
HM ChIP-seq data) or activity information, putative TF binding
sites, and gene expression data. This combination can be pow-
erful in determining key TF players and is used by the state-of-
the-art tool diffTF [16]. Most of the proposed approaches require
substantial preprocessing, computational knowledge, adjustment
of the method to a new use case (e.g., more than 2 conditions
and/or time-series data), and manual evaluation of the results
(e.g., manual search and visualization for TF ChIP-seq data to pro-
vide experimental evidence for the predictions). Hence, to stream-
line this process, we present TF-Prioritizer, a Java pipeline to pri-
oritize TFs that show condition-specific changes in their activity.
TF-Prioritizer falls into the third category of the previously de-
scribed approaches and automates several time-consuming steps,
including data processing, TF affinity analysis, machine learning
predicting relationships of CREs to target genes, prioritization of
relevant TFs, data visualization, and visual experimental valida-
tion of the findings using public TF ChIP-seq data (i.e., ChIP-Atlas
[17]).

Figure 1 depicts a general overview of the pipeline. TF-
Prioritizer accepts 2 types of input data: (i) histone modifica-
tion peak ChIP-seq/ATAC-seq/DNase-seq data indicating acces-
sible regulatory regions showing differential activity (peak data
are typically generated by MACS2 [18]) and (ii) gene expression
data from RNA-seq, which allows the identification of differen-
tially expressed genes that are potentially regulated by TFs at spe-
cific time points or physiological condition. If peaks from ATAC-
seq or DNase-seq were provided, we generate footprints (i.e., spe-
cific regions of the peaks within hypersensitive sites that could
indicate the regulatory region of genes [19]) by employing HINT
(i.e., HINT uses hidden Markov models to identify footprints by us-
ing strand-specific, nucleosome-sized signals with corrections for
ATAC-seq and DNase-seq protocol-specific biases to successfully
target CREs) for further processing [20–22]. Our pipeline searches
for TF binding sites using TRAP [23] within CREs around accessible

genes and calculates an affinity score for each known TF to bind at
these particular loci using TEPIC [24,25]. TEPIC uses an exponen-
tial decay model that was built under the assumption that regula-
tory elements close to a gene are more likely important than more
distal elements and weighs this relationship accordingly. This al-
lows us to assess TF binding site specific probabilities by using
TF binding affinities calculated by TRAP, which uses a biophysi-
cal model to assess the strength of the binding energy of a TF to
a CRE’s total sequence [23]. Beginning with these CRE candidates,
we search for links to possible regulated putative target genes that
are differentially expressed between given conditions (e.g., disease
and healthy). Approaching the task of linking CREs to target genes,
we employ the framework of TEPIC2 [25] and DYNAMITE [25] (fea-
ture comparison Supplementary Table S1), which uses a logistic
regression model predicting differentially expressed genes across
time points and conditions based on TF binding site information
to score different TFs according to their contribution to the model
and their expression (for a more technical description, see “Tech-
nical workflow” section). In general, TF-Prioritizer uses TEPIC and
DYNAMITE pairwise of the provided data (i.e., pairwise for each
condition and each time point). Based on a background distribu-
tion of the scores (combination of differential expression, TEPIC,
and DYNAMITE—see “Discovering cis-regulatory elements using a
biophysical model” section), TF-Prioritizer computes an empirical
P value reflecting the significance of the results (see “An aggre-
gated score to quantify the contribution of a TF to gene regula-
tion” section). TF-Prioritizer offers automated access to comple-
mentary ChIP-seq data of the prioritized TFs in ChIP-Atlas [17] for
validation and shows predicted regulatory regions of target genes
using the Integrative Genomics Viewer (IGV) [27–29]. Then, TF-
Prioritizer automatically generates a user-friendly and feature-
rich web application that could also be used to publish the results
as an online interactive report.

To demonstrate the potential and usability of TF-Prioritizer,
we use genomic data describing mammary glands in pregnant
and lactating mice and compare our analysis to established
knowledge [30]. Employing the web application generated by TF-
Prioritizer, we found well-studied TFs involved in the mammary
gland development process, and we identified additional TFs,
which are candidate key factors in mammary gland physiology.
Additionally, we use ENCODE cell line data (K562 and MCF-7) to
demonstrate the potential and usability of TF-Prioritizer using
ATAC-seq, DNase-seq, and HM ChIP-seq data.

Materials and Methods
Implementation
The main pipeline protocol is implemented in Java version 11.0.14
on a Linux system (Ubuntu 20.04.3 LTS). The pipeline uses subpro-
grams written in Python version 3.8.5, R version 4.1.2, C++ ver-
sion 9.4.0, and CMAKE (RRID:SCR_015875) version 3.16 or higher.
External software that needs to be installed before using TF-
Prioritizer can be found on GitHub (see Availability Section). We
also provide a bash script “install.sh,” that automatically down-
loads and installs necessary third-party software and R/Python
packages. The web application uses Angular CLI version 14.0.1 and
Node.js version 16.10.0. We also provide a dockerized version of
the pipeline; it uses Docker version 20.10.12 and Docker-Compose
version 1.29.2 (Availability Section). TF-Prioritizer is available as a
docker that can be pulled from docker hub and GitHub packages
(“Availability of source code and requirements” section).
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Figure 1: General overview of the TF-Prioritizer pipeline. TF-Prioritizer uses peaks from ChIP-seq or ATAC-seq/DNase-seq and gene counts from
RNA-seq. If peaks from the protocols ATAC-seq or DNase-seq were provided, we treat them by using the footprinting method HINT and use the
footprints for further processing [20–22]. It then (1) calculates TF binding site affinities using the tool TRAP [23], (2) links candidate regions to potential
target genes by employing TEPIC [24], (3) performs machine learning (by using the framework of TEPIC2 [25] and DYNAMITE) to find relationships
between TFs and their target genes, (4) calculates background and TF distributions, (5) picks TFs that significantly differ from the background using
the Mann–Whitney U test [26] and a comparison between the mean and the median of the background and TF distribution, (6) searches for
tissue-specific TF ChIP-seq evaluation data in ChIP-ATLAS [17], (7) creates screenshots using the Integrative Genomics Viewer from predicted regions
of interest [27–29], and (8) creates a feature-rich web application for researchers to share and evaluate their results.

Table 1: Overview of datasets covering mammary gland develop-
ment from pregnancy to lactation

p6 p13 L1 L10 Sum

ChIP-seq H3K27ac 3 1 8 4 16
ChIP-seq H3K4me3 2 3 5 0 10
ChIP-seq Pol2 2 0 5 4 11
RNA-seq 6 8 3 4 21

Data processing
Mammary gland development and lactation in mice
Datasets (GEO accession ID: GSE161620) are processed with the nf-
core/RNA-seq [31] and nf-core/ChIP-seq pipelines in their default
settings, respectively [32, 33]. The FASTQ files of pregnant and lac-
tating mice are processed by Salmon (RRID:SCR_017036) [34] and
MACS2 (RRID:SCR_013291) [35] to retrieve raw gene counts and
broad peak files.

The dataset spans several time points in mammary gland de-
velopment from pregnancy to lactation. For each stage, 2 distinct
time points are available: pregnancy day 6 (p6), pregnancy day 13
(p13), lactation day 1 (L1), and lactation day 10 (L10). For each time
point, the dataset contains RNA-seq data and ChIP-seq data for hi-
stone modifications H3K27ac and H3K4me3, as well as Pol2 ChIP-
seq data (Table 1). We used H3K27ac, H3K4me3, and Pol2 data for
creating the model.

Table 2: Overview of the dataset covering several HM ChIP-seq,
ATAC-seq, DNase-seq, and RNA-seq for the cell lines K562 and
MCF-7

Protocol K562 MCF-7 Sum

ATAC-seq 4 1 5
DNase-seq 4 4 8
ChIP-seq H3K27ac 1 2 3

H3K27me3 2 2 4
H3K36me3 2 2 4
H3K4me3 4 2 6
H3K9me3 1 2 3

H2AFZ 1 1 2
H3K4me1 2 1 3
H3K4me2 1 1 2
H3K79me2 1 1 2

H3K9ac 2 1 3
H4K20me1 1 1 2

RNA-seq 15 4 19

ENCODE cell lines
ATAC-seq, DNase-seq, ChIP-seq, and RNA-seq data are down-
loaded from the ENCODE project for the cell lines K562 (hu-
man chronic myelogenous leukemia cell line) and MCF-7 (human
breast adenocarcinoma cell line), which are both often used to
study cancer biology and have been subjected to a large number
of different experimental protocols and assays (Table 2, file iden-
tifiers in Supplementary Material S1) [90].
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Technical workflow
Preprocessing
TF-Prioritizer uses peak data from ChIP-seq, ATAC-seq, or DNase-
seq and a gene count matrix from RNA-seq as input files (see
GitHub repository for detailed formatting instructions). Initially,
the pipeline downloads necessary data (gene lengths, gene sym-
bols, and short descriptions of the genes) from BioMart (RRID:
SCR_019214) [36]. Optionally, genes with low expression can be
removed. TF-Prioritizer uses a transcripts per million (TPM) filter
of 1 as default to remove TFs that show very low expression and
are most probably not relevant. Subsequently, we use DESeq2 to
normalize read counts and calculate the log2-fold change (log2fc)
[37]. In parallel, TF-Prioritizer preprocesses the peaks by first em-
ploying HINT if the provided peak data are labeled as ATAC-seq
or DNase-seq to perform footprinting to correct for the biases
(i.e., by analyzing chromatin accessibility data in terms of histone
modification state, enabling more accurate comparison between
the 2 data types) between the ChIP-seq, ATAC-seq, and DNase-
seq protocols [20, 38]. TF-Prioritizer then filters blacklisted regions
that would likely lead to false positives [39]. Peak files from the
same sample group can be merged to significantly reduce the to-
tal runtime of the pipeline without affecting the ability of the TF-
Prioritizer to identify candidate CREs.

Discovering cis-regulatory elements using a biophysical
model
TEPIC links CREs to target genes using a window-based approach
(default: 50,000 bp) [24, 25] using TRAP, a biophysical model to
quantify transcription factor affinity [23]. The window-based ap-
proach can be enhanced by providing Hi-C loop data, where the
prediction window is extended or limited to a chromatin loop
around potential CREs and target genes. TEPIC interprets ChIP-
seq signal intensity as a quantitative measure of TF binding
strength, which also helps in recovering low-affinity binding sites
that would be missed in a classical presence/absence model [24].
The default TEPIC framework searches for dips on top of peaks.
However, numerous studies have shown that CREs are often en-
riched between histone peaks (peak–dip–peak or peak–valley–
peak model) [40]. To better accommodate histone modification of
ChIP-seq data, we thus extended the TEPIC framework to search
for transcription factor binding sites (TFBSs) between 2 peaks that
have close (default 500 bp) genomic positions. TEPIC aggregates
individual TF affinities into a TF-Gene score, which is the sum of
the individual affinities normalized by the length of the consid-
ered CREs.

According to the description in Schmidt et al. [41], the TF-Gene
score aw(g, t) for a gene g and a TF t in window sizew is calculated
as in Equation 1:

Equation 1: calculation of the TF-Gene score

aw(g, t) =
∑

p∈Pg,w

ap,t

|p| − l
e− dp,g

d0 (1)

In Equation 1, ap,t is the affinity of TF t in peak p. The set of
peaks Pg,w contains all open-chromatin peaks in a window of size
w around the gene g.dp,g is the distance from the center of the
peak p to the transcription start site of the gene g, and d0 is a con-
stant fixed at 50,000 bp [42]. The affinities are normalized by peak
and motif length, where |p| is the length of the peak p and l is
the total length of the motif of TF t (see Schmidt et al. [24, 25, 41]
for more specific information on how the TF-Gene score is calcu-
lated). Since proximal CREs are expected to have a larger influence
on gene expression compared to distal ones, these contributions

are weighted following an exponential decay function of genomic
distance [25].

We want to point out that the biophysical model calculated by
TRAP only returns the center of a potentially large area of high
binding energy. The TF is supposed to bind somewhere in this area.
In our IGV screenshot, the center of the high binding energy area
can appear at a distance up to the window defined by TEPIC. We
consider predicted TF peaks as matching if we find TF ChIP-seq
peaks inside this window. Following this, we do not expect the pre-
dicted TF bindings to overlap exactly with the TF ChIP-seq peaks.

An aggregated score to quantify the contribution
of a TF to gene regulation
To determine which TFs have a significant contribution to a
condition-specific change between 2 sample groups, we want to
consider multiple lines of evidence in an aggregated score. We in-
troduce TF–target gene (TG) scores (Fig. 2) which combine (i) the
absolute log2-fold change of differentially expressed genes since
genes showing large expression differences are more likely af-
fected through TF regulation than genes showing only minor ex-
pression differences and (ii) the TF-Gene scores from TEPIC in-
dicating which TFs likely influence a gene. To further quantify
this link, we also consider the total coefficients of a logistic re-
gression model computed with DYNAMITE [25]. DYNAMITE pre-
dicts (high/low) expression of a gene based on the fold changes
of TF-Gene scores reported by TEPIC and thus helps to prioritize
among multiple potential TFs regulating a gene. We calculate TF-
TG scores (ω) for each time point and each type of ChIP-seq data
(e.g., different histone modifications) as in Equation 2:

Equation 2: Calculation of the TF-TG score ω for each time point
and each type of ChIP-seq data:

ωw(g, t) = |log2( f c(g))| · aw(g, t) · |η(g, t)|, (2)

where f c(g) represents the fold change of the target gene g be-
tween the 2 conditions, aw(g, t) is the TF-Gene score retrieved by
TEPIC as detailed above, and η(g, t) is the total regression coeffi-
cient of DYNAMITE’s linear model of the expression of the target
gene g as a function of the expression of the TF t.

A random background distribution allows
TF-Prioritzier to exclude spurious results
The ultimate goal of TF-Prioritizer is to identify those TFs that
are most likely involved in regulating condition-specific genes.
To judge if a specific TF-TG score is meaningful, we generate
a background distribution under the hypothesis that most TFs
will not be condition specific. Therefore, we generate 2 different
kinds of distributions (see Fig. 2): (i) for each HM m, a background
distribution containing all positive TF-TG scores associated with
m: BG(m) = {ωw(g, t) | t ∈ TF(m), g ∈ TG(t), ωw(g, t) > 0}. Here, TF(m)
denotes the set of TFs that can bind to strands of the DNA modi-
fied by m, and TG(t) is the set of target genes of the TF t. (ii) For each
HM-TF pair (m, t) with t ∈ TF(m), a foreground distribution con-
taining all positive TF-TG scores associated with (m, t): FG(t, m) =
{ωw(g, t) | g ∈ TG(t), ωw(g, t) > 0}. Note that FG(t, m) ⊆ BG(m) holds
for all HM-TF pairs (m, t). We then test each TF distribution of
each ChIP-seq against the global distribution matching the ChIP-
seq data type. If the P value of a Mann–Whitney U (MWU) test [43]
is below the threshold (default: 0.05) and the median and mean
of the TF are higher than the background distribution, the TF is
recognized as a potential candidate. In the last step, we sort the
TFs based on the mean of the TF-TG scores and report the ranks.
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Figure 2: Workflow of the distribution analysis to prioritize TFs in a global context by using TF-TG scores. We use several scores conducted by
previously performed analysis (see Supplementary Fig. S1), specifically the total log2-fold change (DESeq2), the TF-Gene score (TEPIC), and the total TF
regression coefficient (DYNAMITE). We then calculate the TF-TG score for each time point for each TF on each of the TF predicted target genes (TG)
and save it to separate files for the background of each histone modification and for each TF in each histone modification. In the next step, we perform
a Mann–Whitney U [43] test between the distribution of the background of the histone modification and the distinct TF distribution of the same
histone modification. If the TF passes the Mann–Whitney U test and the median and mean of the TF are higher than the background median and
mean, we consider this TF as prioritized for the histone modification. We perform a discounted cumulative gain to receive one list with all prioritized
TFs and overall histone modifications.

We obtain a global list of prioritized TFs across several ChIP-seq
data types (e.g., different histone modifications) as follows:

Let S(m) be the set of transcriptions factors t such
that the 1-sided MWU test between the foreground dis-
tribution FG(t, m) and the background distribution BG(m)
yields a significant P value. For a fixed TF t ∈ S(m), let
rankm(t) = ∑

t′∈S(m)
[meang∈TG(t′ )ωw(g, t′ ) ≤ meang∈TG(t)ωw(g, t)] be

the rank of t in S(m) with respect to the mean TF-TG scores across
all target genes, where [·] is the Iverson bracket (i.e., [true] = 1
and [false] = 0). We now compute an overall TF score f (t) by
aggregating the HM-specific ranks as follows in Equation 3:

f (t) =
∑

m∈HM(t)

1 − rankm(t)
|S(m)| , (3)

where HM(t) denotes the set of histone modifications on strands
of the DNA where the TF t can bind. Note that if t /∈ S(m), rankm(t)
is not defined. In this case, we set rankm(t) = |S(m)| such that the
summand for t equals 0. Last, we sort TFs in ascending order ac-
cording to the scores f (t).

Discovering each score’s contribution to the
global score
To analyze the impact of the different parts of the TF-TG score, we
permute its components (TF score from TEPIC, regression coeffi-
cient of DYNAMITE, log2fc of DESeq2). We execute TF-Prioritizer
with the exact same configuration but with all possible combi-
nations of the components and compare the prioritized TFs (e.g.,
solely TF score from TEPIC, a combination of TF score from TEPIC
with the regression coefficient of DYNAMITE).

Validation using independent data from
ChIP-Atlas
TF-Prioritizer is able to download and visualize experimental
tissue-specific TF ChIP-seq data for prioritized TFs from ChIP-
Atlas [17], a public database for ChIP-seq, ATAC-seq, DNase-seq,
and Bisulfite-seq data. ChIP-Atlas provides more than 362,121
datasets for 6 model organisms (i.e., human, mouse, rat, fruit
fly, nematode, and budding yeast) [44]. TF-Prioritizer automati-
cally visualizes TF ChIP-seq peaks on predicted target sites of
prioritized TFs to experimentally validate our predictions. TF-
Prioritizer also visualizes experimentally known enhancers and
super-enhancers from the manually curated database ENdb [45].
Additionally, experimental data from other databases or experi-
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mental data retrieved by own experiments can be supplied and
processed by TF-Prioritizer.

By employing TF ChIP-seq data from ChIP-Atlas, TF-Prioritizer
is capable of performing a TF co-occurrence analysis of priori-
tized TFs by systematically comparing the experimentally vali-
dated peaks of pairs of prioritized TFs. In a co-occurrence anal-
ysis, it is checked what percentage of available peaks of one TF
is also found in another TF. TF-Prioritizer returns the percentage
of similar peaks between prioritized TFs to discover the coregu-
lation of TFs. We investigate the co-occurrence of TFs t1 and t2

in terms of statistical significance by calculating a log-likelihood
score. Let B be the set of all TF binding sites and �(t) be the
set of peaks for TF t. For TF t, let count(t) be the number of
binding sites b ∈ B such that there is a peak π ∈ �(t) within b.
For a TF-TF pair (t1, t2 ), let count(t1, t2) be the number of bind-
ing sites b ∈ B such that there is a peak π1 ∈ �(t1) and a peak
π2 ∈ �(t2) within b, and then the log-likelihood score G2 is cal-
culated for the 4 observations: (i) count(t1, t2 ) (i.e., t1 and t2 are
co-occurring), (ii) count(t1) − count(t1, t2 ) (i.e., t1 is occurring but
t2 is not), (iii) count(t2) − count(t1, t2 ) (i.e., t2 is occurring but t1is
not), and (iv) count(t1, t2 ) − count(t1) − count(t2) + |B| (i.e., neither t1

nor t2 is occurring), with their corresponding expectation val-
ues (i) count(t1) · count(t2), (ii) count(t1) ∗ (|B| − count(t2)), (iii) (|B| −
count(t1)) ∗ count(t2), and (iv) (|B| − count(t1)) ∗ (|B| − count(t2)) as fol-
lows [46–48]:

G2 = 2 ·
∑

i∈{a,b,c,d}
observationi · log

(
observationi

expectationi

)
.

Note that when interpreting, each log-likelihood score needs
to be brought into relation with the number of peaks found in
the respective TFs and also set in relation with the other number
of peaks determined in the entire log-likelihood table, as the log-
likelihood score may differ from TF pair to TF pair. A high log-
likelihood score, in combination with a high number of peaks, with
respect to the entire log-likelihood table, generally indicates that
the co-occurrence relationship is statistically significant and that
the 2 TFs could be functionally related. For further details and
explanation of the formula and interpretation, consult [46–48].

Explorative analysis of differentially expressed
genes
TF-Prioritizer allows users to manually investigate the ChIP-seq
signal in the identified CREs of differentially expressed genes. To
this end, TF-Prioritizer generates a compendium of screenshots
of the top 30 upregulated or downregulated loci (sorted by their
total log2-fold change) between 2 sample groups. Additionally, we
allow the user to specify loci that are of special interest (e.g., the
CSN family or the Socs2 locus in lactating mice). TF-Prioritizer then
produces screenshots using the TF ChIP-seq data from ChIP-Atlas
and visualizes them in a dynamically generated web application.
Screenshots are produced using the IGV standalone application
[27–29]. TF-Prioritizer also automatically saves the IGV session so
the user can further research the shown tracks.

Handling missing data
In some cases, not all assay types are available for all samples, or
the data do not have the same high quality as the rest of the sam-
ples. TF-Prioritizer then skips the grouping of missing data points
and can still find meaningful results in the rest of the data. For
example, the data for 3 time points for 1 histone modification are
available, but 1 time point is missing or discarded. TF-Prioritizer

then uses only the 3 available time points for grouping and down-
stream processing and analysis.

Using TF-prioritizer to investigate gene
regulation
We use 3 approaches to evaluate the biological relevance and sta-
tistical certainty of our results: (i) literature research to validate
whether the reported TFs are associated with the phenotype of
interest, (ii) considering the top 30 target genes with highest affin-
ity values and determining if their expression cluster by condition
(note: we do not preselect differentially expressed genes for this
analysis but focus on affinities to avoid a circular line of reason-
ing; we also review the literature and report whether these genes
are known to be involved in either pregnancy or mammary gland
development/lactation), and (iii) validation using independent TF
ChIP-seq data from ChIP-Atlas. To conduct the third evaluation,
we built region search trees, a balanced binary search tree where
the leaves of the tree have a start and end position, and the tree
returns all leaves that overlap with a searched region for all chro-
mosomes of the tissue-specific ChIP-Atlas peaks for each avail-
able prioritized TF [49]. We then iterate over all predicted regions
within the window size defined in TEPIC and determine if we can
find any overlapping peaks inside the ChIP-Atlas peaks. If we can
find an overlap with a peak defined by the ChIP-Atlas data, we
count the predicted peak as a true positive (TP) or a false positive
(FP). Next, we randomly sample the same number of predicted
peaks in random length-matched regions not predicted to be rel-
evant for a TF. If we find an overlap in the experimental ChIP-Atlas
data, we consider this region as a false negative (FN) or a true neg-
ative (TN). Notably, we expect the FN count to be inflated since we
considered condition-specific peaks of active CREs. Inactive CREs
may very well have TFBSs that are not active. Nevertheless, we ex-
pect to find more such TFBSa in active regions compared to ran-
dom samples, allowing us to compute sensitivity, specificity, pre-
cision, accuracy, and the harmonic mean between precision and
sensitivity (F1-score) (see Supplementary Material S2).

Choice of parameters
In a pipeline like TF-Prioritizer, the choice of parameters is cru-
cial to retrieve meaningful results. In this section, we explain our
choice of parameters. We filter the RNA-seq data by a mean DE-
Seq2 normalized gene count of 50 and a TPM of 1 to exclude noise
of very weakly expressed target genes and TFs that are probably
not important for the condition but would negatively impact the
predictive models. We use the default configurations of TEPIC with
the exception of the TF binding site search—that is, in the histone
modification ChIP-seq data, it is important to search for TF bind-
ing sites between 2 peaks that are in close proximity (max. 500 bp)
to each other (peak–dip–peak or peak–valley–peak model) [40]).
The TEPIC2 framework and DYNAMITE were executed in default
configurations as provided by the authors. We provide all default
parameters in our configuration file.

Results and Discussion
We present TF-Prioritizer, which combines data to identify can-
didate CREs (e.g., ChIP-seq, ATAC-seq, DNase-seq) and RNA-seq
to identify condition-specific TF activity. TF-Prioritizer is built
on several existing state-of-the-art tools for peak calling, TF-
affinity analysis, differential gene expression analysis, and ma-
chine learning tools. TF-Prioritizer is the first to jointly consider
multiple types of modalities (e.g., different histone marks and/or
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time-series data), provide a joint list of active TFs, and enable the
user to see a visualized validation of the predictions in an inter-
active and feature-rich web application.

Exploring TFs in mammary tissue during
pregnancy and lactation in mice
We used TF-Prioritizer to identify TFs that are known to control
mammary gland development and lactation. The tool also identi-
fies TFs that are important in pregnancy, as well as new candidate
TFs that have not yet been widely studied. TF-Prioritizer reported
104 TFs, many of which control Rho family GTPase-associated tar-
get genes and Casein family genes. TF-Prioritizer was evaluated
using experimental TF ChIP-seq data where it showed high sensi-
tivity, specificity, precision, and accuracy (Supplementary Fig. S2,
Supplementary Material S2).

Prioritized TFs are known to play a role in
mammary gland development and lactation
TF-Prioritizer prioritized STAT5, a transcription factor that plays
an important role in mammary gland development [30, 50, 51].
Stat5 messenger RNA (mRNA) levels are highly upregulated during
the last days of pregnancy and at the beginning of lactation, sup-
porting experimental findings that STAT5 is a key driver of mam-
mary gland development. The predicted target genes of STAT5
show a clear expression separation between pregnancy and lacta-
tion (Fig. 3A, B). Peaks were predicted with a sensitivity of 57.8%, a
specificity of 66.3%, a precision of 78.1%, an accuracy of 60.6%, and
an F1-score of 66.5% (Supplementary Fig. S2). Additionally, STAT5
is known to activate the expression of the Socs2 gene during mam-
mary gland development [52, 53]. We can observe predicted peaks
of STAT5 near Socs2, which could explain the regulation of its ex-
pression by STAT5 (Fig. 3C). STAT5 is further known to regulate the
expression of the Casein gene family. Csn2, Csn1s2a, and Csn1s2b
[54] mRNA levels are strongly upregulated during lactation, which
could be explained by an activator role of STAT5 at the predicted
peaks in their close proximity [55–57] (Fig. 3D, Supplementary Fig.
S3, Supplementary Material S3, sec. STAT5).

Additionally, ELF5, another transcription factor that plays an
important role in mammary gland development, was predicted
to be relevant by TF-Prioritizer. Elf5 mRNA levels increase at the
end of pregnancy and the beginning of lactation, hence supporting
ELF5’s role in mammary gland development. Peaks were predicted
with a sensitivity of 77.5%, a specificity of 80.5%, a precision of
81.6%, an accuracy of 79%, and an F1-score of 79.5% (Supplemen-
tary Fig. S2). TF-Prioritizer predicts ELF5 binding sites near Gli1.
Gli1 mRNA levels are downregulated during lactation, and ELF5
is thus probably acting as a suppressor for Gli1. Fiaschi et al. [58]
showed experimentally that Gli1-expressing females were unable
to lactate, and milk protein gene expression was essentially ab-
sent (Supplementary Figs. S4 and S5, Supplementary Material S3,
sec. ELF5).

TF-Prioritizer further prioritized ESR1 [59] and NFIB [30], both
known for their essential function in mammary gland develop-
ment and lactation (Supplementary Material S3, sec. ESR1 and
NFIB). Our results suggest that the mechanisms of pregnancy,
mammary gland development, and lactation could be dependent
on Rho GTPase [60, 61] and its regulation by several TFs reported
here. Experimental validation is needed to elucidate those com-
plex processes further (see Supplementary Material S3, sec. Rho
GTPase’s role in pregnancy, mammary gland development, and
lactation) [62].

Prioritized novel TFs with a predicted role in
pregnancy, mammary gland development, and
lactation
We predict 2 TFs, CREB1 and ARNT, suggesting a role in the pro-
cesses of pregnancy, mammary gland development, and lactation.

CREB1 binding sites show considerable overlap with binding
sites of other TFs known to be involved in mammary gland de-
velopment and lactation, such as ELF5 (22% of binding sites over-
lap, log-likelihood score 6,914 with a sample size of 16,531), NFIB
(29% binding sites overlap, log-likelihood score 15,793 with a sam-
ple size of 23,923), and STAT5A (21% binding sites overlap, log-
likelihood score 5,902 with a sample size of 15,180) (see Supple-
mentary Fig. S6A–C). The co-occurrences could be significant due
to the high log-likelihood values with a high sample size in com-
parison to the whole co-occurrence table. We hypothesize that a
correlation of association strength may offer additional evidence
for a functional association between TFs. Indeed, CREB1 shows a
moderate correlation of binding site affinities with NFIB, STAT5A,
STAT5B, and ELF5 (Supplementary Fig. S7). Our results suggest
that CREB1 regulates a member of the Rho GTPase gene family
and a member of the Casein gene family. Since CREB1 has not yet
been recognized to contribute to aspects of mammary develop-
ment and physiology, further experimental validation of our find-
ings is needed (Supplementary Material S3, sec. CREB1).

Furthermore, the TF ARNT is prioritized along with 2 cofac-
tors and predicted to be more involved in mammary gland de-
velopment but less involved in lactation due to its high expres-
sion levels during the last state of pregnancy and lower expression
during lactation. However, experimental mouse genetics demon-
strated that ARNT is not required for mammary development and
function [63], suggesting the presence of alternative and compen-
satory pathways (Supplementary Material S3, sec. ARNT).

Comparing TF-Prioritizer and diffTF
We compared TF-Prioritizer against the state-of-the-art tool
diffTF that prioritizes and classifies TFs into repressors and acti-
vators given conditions (e.g., health and disease) [16]. diffTF does
not allow multiple conditions or time-series data and distinct
analysis of histone modification peak data in a single run and does
not consider external data for validation. We point out that diffTF
cannot use different sample sizes between ChIP-seq and RNA-seq
data (i.e., diffTF requires that for each ChIP-seq sample, there is an
RNA-seq sample and vice versa). diffTF does not use a biophysical
model to predict TFBS but uses general, not tissue-specific, peaks
of TF ChIP-seq data and considers all consensus peaks as TFBS
[16]. For a comparison of features and technical details, see Sup-
plementary Table S2 and Supplementary Table S3, respectively.
Since the diffTF tool does not provide an aggregation approach
to different conditions, we aggregate the prioritized TFs the same
way as TF-Prioritizer does (i.e., the union of all prioritized TFs over-
all runs using diffTF’s default q value cutoff of 0.1) to enhance
the comparability of the overall conditions in the final results. In
summary, diffTF prioritized 300 TFs compared to the 104 TFs (in-
cluding combined TFs like Stat5a..Stat5b that count as 1 TF in TF-
Prioritizer) that TF-Prioritizer reported (Fig. 4A). It thus seems that
diffTF is less specific than TF-Prioritizer (see Supplementary Ta-
ble S4 for a comparison of prioritized TFs). diffTF also finds known
TFs that TF-Prioritizer captures (e.g., STAT5A, STAT5B, ELF5, and
ESR1) but does not capture the well-known TF NFIB. diffTF also
prioritizes CREB1 and ARNT, which, in our opinion, are strong can-
didates for experimental validation. By deploying 20 cores on a
general computing cluster, TF-Prioritizer took roughly 7.5 hours
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A

B D

C

Figure 3: Validation of selected STAT5 target genes. (A, B) Heatmaps of predicted target genes. We select Socs2 and Csn family genes (black arrows) as
they are known to be crucial in either mammary gland development or lactation. In the heatmaps, we can observe a clear separation of these target
genes between the time points p13 and L1. (C, D) IGV screenshots of the loci of Socs2 and the Csn family. We included a predicted track in the IGV
screenshot that indicates high-affinity binding regions for the TF that are represented by a tick and a black box surrounding it. In (C), we see that we
predict peaks in p13 near Socs2. From these data, we suggest that Socs2 mRNA expression is controlled by STAT5 [52, 53]. In (D), we can observe Pol2
tracks that show a distinct change in the expression of Csn family proteins between pregnancy and lactation. This indicates that STAT5 controls the
expression of milk proteins.

A B

Figure 4: Venn diagram of prioritized TFs by TF-Prioritizer and diffTF. (A) diffTF and TF-Prioritizer found 62 (18.2%) common TFs. diffTF and
TF-Prioritizer found known TFs (e.g., STAT5A, STAT5B, ELF5, and ESR1), but diffTF did not capture the well-known TF NFIB. diffTF and TF-Prioritizer
both prioritized CREB1 and ARNT as candidates for experimental validation. (B) We ranked the diffTF results by P value and consider the top 104 (the
same amount of TFs that the TF-Prioritizer predicted). Here only CREB1 is still predicted to be important by diffTF—other TFs such as STAT5A..STAT5B,
ELF5, and NFIB drop out.

to be fully executed, and diffTF took approximately 41 hours to
be fully executed. Due to the high number of TFs that are prior-
itized by diffTF, we ranked the TFs after their P value (where a
low P value indicates higher evidence that a TF is involved in the
processes) provided by diffTF and cut off the exact same amount

of TFs (104 TFs) that are prioritized by TF-Prioritizer to make the
benchmarking more comparable and interpretable. We observe
that the known TFs drop out (e.g., STAT5A, STAT5B, ELF5, NFIB,
ESR1) (Fig. 4B). CREB1, which we suggest to be a good candidate
for experimental validation, can still be found in diffTF’s predic-
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tion. Notably, only 22 TFs are prioritized by both TF-Prioritizer and
diffTF by using this cutoff.

Limitations and considerations
TF-Prioritizer has several limitations. TF-Prioritizer is heavily de-
pendent on the parameters of the state-of-the-art tools it is us-
ing (e.g., providing Hi-C data to TEPIC could have a significant im-
pact on the search window while linking potential CREs to target
genes). We also point out that we neither have any experimental
evidence nor existing literature as proof that the default length of
500 bps of the dip model used in the extended TEPIC framework
is the ideal cutoff.

We want to highlight the main disadvantage of using the TF-TG
score as we significantly center the surveillance of TF-Prioritizer
on genes showing a high fold change or high expression, which
does not necessarily mean that those genes are the most relevant
for a condition. Also, note that TF binding behavior is regulated by
factors we do not observe here, such as phosphorylation. The re-
sults of the discounted cumulative gain ranking should be consid-
ered with care since the biologically most relevant TFs may man-
ifest in only a subset of ChIP-seq data types.

The calculation of TP, TN, FP, and FN is only an approximation,
as to the best of our knowledge, there is no known approach to de-
termine if a CRE or TFBS is active in a condition or not. Sensitivity,
specificity, precision, accuracy, and the harmonic mean of preci-
sion and sensitivity (F1) differ from TF to TF. We believe this is cor-
related with the prevalence of the binding sites or the motif speci-
ficity. We can also see a decline in the metrics if we look at cofac-
tor regulation (Fig. 5A, AHR..ARNT, ARNT, and ARNT..HIF1A). We
experience the highest performance of TF-Prioritizer by looking
at TFs where no cofactor regulation is currently known or widely
accepted (e.g., CREB1, ELF5, ESR1).

We further investigated the contribution of every single part
of the TF-TG score to the number and quality of the prioritized
TFs. To achieve this, we ran every combination of the components
of the score (i.e., log2fc, TEPIC, DYNAMITE) with TF-Prioritizer. In
Supplementary Table S5, we can see that the distribution anal-
ysis filters out about half of the TFs and only returns the most
promising TFs. In Fig. 5B, we can see that ELF5, AHR..ARNT, and
ARNT..HIF1A manifest in each of the scores independent of any
combination. NFIB, CREB1, and ARNT manifest in any score that
is related to TEPIC or DYNAMITE. ESR1 manifests in any score that
is related to the LOG2FC. STAT5A..STAT5B only manifests in cer-
tain combinations of the scores or in the TF-TG score. The LOG2FC
alone yields the most prioritized TFs, but at a closer look, the
LOG2FC alone would miss NFIB, which is highly relevant in mam-
mary gland development. Looking at these data, we believe that
the TF-TG score that combines TEPIC, DYNAMITE, and LOG2FC
results in the most promising TFs that are relevant.

In Figure 5C, we can see that STAT5A..STAT5B and ARNT only
manifest in the HM H3K4me3. ELF5, CREB1, and NFIB only mani-
fest in H3K27ac. ESR1, AHR..ARNT, and ARNT..HIF1A manifest in
both HMs H3K4me3 and H3K27ac. As expected, most TFs only
manifest in a subset of HMs, reflecting their association with cer-
tain chromatin states [64, 65].

Unraveling the specificity of TFs with respect to
HM ChIP-seq, ATAC-seq, and DNase-seq
The ENCODE project generated a plethora of different assays for
cell lines such as K562 and MCF-7, which we used here to deter-
mine to what extent different protocols (i.e., ATAC-seq, DNase-
seq, and HM-ChIP-seq) are suited to reveal condition-specific TFs.

In total, we discovered 381 unique TFs (339 across 11 HM ChIP-
seq experiments, 83 in ATAC-seq, and 96 in DNase-seq) if ATAC-
seq and DNase-seq open chromatin peaks were processed with
HINT to obtain footprints (Fig. 6, Supplementary Fig. S8A–C, Sup-
plementary Fig. S9A–D). Interestingly, the efficacy of footprinting
varies between the protocols significantly. Supplementary Fig. S9
shows differences in the number of footprints detected between
both protocols. While the number of open chromatin peaks was
nearly the same for both protocols, DNase-seq yields fewer foot-
prints compared to ATAC-seq. In general, TF-Prioritizer reports
more TFs when using footprinting compared to using open chro-
matin peaks. Many of these overlap with ChIP-seq TFs, confirm-
ing that footprinting is a meaningful strategy (Supplementary Fig.
S8A, B, Fig. 6). We found TFs that can only be detected in a subset of
the protocols (Fig. S6A, B, Supplementary Table 6). Using ChIP-seq
data, we found the largest number of TFs, likely due to the com-
bination of results from 10 different histone modifications and 1
histone variant, which together cover a wide variety of chromatin
states. We found the largest number of detected TFs using the
H2AFZ histone variant, possibly due to background peaks because
of low antibody sensitivity in this histone variant. Of note, in Sup-
plementary Fig. S10A, B, we investigated how the number of iden-
tified TFs differs when excluding H2AFZ. We can see a decrease
in the total number of prioritized TFs in ChIP-seq from 339 to 301.
We further examined how the number of identified TFs changes
when only employing frequently studied HM ChIP-seq data from
H3K27ac, H3K4me1, and H3K4me3 (Supplementary Fig. S10C, D).
We can observe a decrease in identified TFs from 339 to 152, but
again, the overlap with ATAC-seq and/or DNase-seq drops. H2AFZ
is predominantly found in CREs and is also associated with can-
cer [66]. Since we have only investigated cancer cell lines, it re-
mains unclear if this histone variant is generally highly informa-
tive of TF binding or if this is limited to cancer cells. Surprisingly,
DNase-seq and ATAC-seq show a comparably small overlap even
though both protocols are aimed at measuring chromatin acces-
sibility. This corroborates earlier findings where it was observed
that both protocols reveal assay-specific sites that contribute to
predicting gene expression [67].

Indeed, some TFs known to be important for both cancer cell
lines were reported through several protocols, while others were
reported by only 1 protocol. For instance, we found MYC, a key TF
for cell proliferation in K562 and MCF-7 cells [68, 69], was highly
ranked in ATAC-seq and HM ChIP-seq (H3K4me2, H3K79me2).
Conversely, GATA1, another TF important for cell differentiation in
K562 [70, 71], was prioritized only by DNase-seq. GATA1 regulates
MYB, a key hematopoietic TF involved in stem cell self-renewal
and lineage decisions that is prioritized in HM ChIP-seq (H2AFZ,
H3K27ac, H3K4me2) [71, 72]. TF-Prioritizer found many members
of the SP (SP1, SP2, SP3, SP4, SP8, and SP9) and KLF (KLF1, KLF2,
KLF3, KLF4, KLF6, KLF7, KL8, KLF9, KLF10, KLF11, KLF12, KLF14,
KLF15, and KLF16) family to be important for K562 cell differen-
tiation in a plethora of HM ChIP-seq, ATAC-seq, and DNase-seq
experiments. Notably, TF-Prioritizer uses an individual TF energy
pattern during the calculation of TF affinity to potential binding
(i.e., TRAP) for each TF of a TF family. The incorporation of TF ex-
pression data in our score further boosts this differentiation be-
tween TFs of the same family. We identified 6 of 9 TFs from the
SP TF family and 14 of 16 TFs from the KLF TF family [73]. Hu et
al. [74] found that the SP and KLF TF families are most important
in erythroid differentiation in K562 cells and that SP1 and SP3 are
involved in activating GATA1 [75].

We further investigated if TF-Prioritizer found biologically rel-
evant TFs for the MCF-7 cell line. We found ELF5, an important TF
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Figure 5: (A) Overview of performance metrics of prioritized TFs discussed in this article. (B) Contributions of individual components of the TF-TG
score to the accumulated TF-TG score. We systematically considered different components of the TF-TG score (i.e., the score of TEPIC, LOG2FC, and
DYNAMITE) as well as their combinations to determine their importance for the overall results. We find all important TFs exclusively using the TF-TG
score. (C) Investigation of which TFs are reported in which assay. We can see that the most important TFs only manifest in a subset of HMs.

A

B

Figure 6: Guide to determine which experiments fit best by the usage of ATAC-seq, DNase-seq, or several histone modifications. (A) We combined all
HM ChIP-seq data and investigated the overlap with ATAC-seq and DNase-seq. We found that ATAC-seq and ChIP-seq have a bigger overlap than
ATAC-seq and DNase-seq. We found 26 TFs that are prioritized by all 3 protocols. (B) We separated the TFs of the HM ChIP-seq data in which HMs they
were discovered. We can see huge differences between the HMs (e.g., while we can discover 137 TFs in H2AFZ, we can only discover 2 in H4K20me1).
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in breast cancer, to be prioritized in ATAC-seq, DNase-seq, and HM
ChIP-seq (H2AFZ). This is of particular interest, as ELF5 is a strong
biomarker in breast cancer, and TF-Prioritizer is capable of pri-
oritizing ELF5 in the ATAC-seq, DNase-seq, and ChIP-seq [76–78].
Piggin et al. [78] also postulated that ELF5 modulates the estro-
gen receptor. TF-Prioritizer found certain estrogen receptors (e.g.,
ESR2, ESRRG) to be relevant for cell differentiation in MCF-7. Estro-
gen receptor proteins are highly relevant in breast cancer [79, 80].
The TF GATA3 was also predicted (ATAC-seq, H3K27ac, H3K9ac)
to be important for cell differentiation in MCF-7. GATA3 is a key
player when it comes to cell differentiation in the MCF-7 cell line
[81, 82] and a regulator of estrogen receptor proteins [83]. FOXA1,
predicted by TF-Prioritizer (ATAC-seq), is important in cell differ-
entiation for MCF-7 cell lines, is a critical determinant of estrogen
receptor function, and affects the proliferation activity of breast
cancer [84, 85].

Conclusion and Outlook
TF-Prioritizer is a pipeline that combines RNA-seq and ChIP-seq
data to identify condition-specific TF activity. It builds on several
existing state-of-the-art tools for peak calling, TF-affinity analysis,
differential gene expression analysis, and machine learning tools.
TF-Prioritizer is the first tool to jointly consider multiple types of
modalities (e.g., different histone marks and/or time-series data)
and provide a summarized list of active TFs. A particular strength
of TF-Prioritizer is its ability to integrate all of this in an automated
pipeline that produces a feature-rich and user-friendly web report.
It allows interpreting results in the light of experimental evidence
(TF ChIP-seq data) either retrieved automatically from ChIP-Atlas
or user-provided and processed into genome browser screenshots
illustrating all relevant information for the target genes. Our ap-
proach was heavily inspired by DYNAMITE [25, 86], which follows
the same goal but requires manually performing all necessary
steps.

We show that TF-Prioritizer is capable of identifying already
known and validated TFs (e.g., STAT5, ELF5, NFIB, ESR1) that are
involved in the process of mammary gland development or lac-
tation and their experimentally validated target genes (e.g., Socs2,
Csn milk protein family, Rho GTPase associated proteins). Further-
more, we prioritized some not yet recognized TFs (e.g., CREB1,
ARNT) that we suggest as potential candidates for further exper-
imental validation. These results led us to hypothesize that the
Rho GTPases undergo major changes in their tasks during the
stages of pregnancy, mammary gland development, and lactation,
which are regulated by TFs.

In conclusion, each protocol and histone modification can un-
ravel unique transcription factor binding sites that provide insight
into gene regulatory mechanisms. It is our opinion that employing
TF-Prioritizer on as many protocols and HM ChIP-seq experiments
as possible could improve our understanding of given conditions.

In the future, we plan to extend TF-Prioritizer to more closely
explore the combined effects of enhancers, which are often non-
additive, as suggested by our current model [87]. We further plan
to test the functionality of TF-Prioritizer on ATAC-seq data and to
apply TF-Prioritizer in a single-cell context where histone ChIP-
seq is currently hard to retrieve. Furthermore, we plan to include
a more detailed ranking of the prioritized TFs. We plan to of-
fer the user the ability to apply raw FASTQ files to TF-Prioritizer,
where quality checks of the data will be performed. In sum-
mary, TF-Prioritizer is a powerful functional genomics tool that al-
lows biomedical researchers to integrate large-scale ChIP-seq and
RNA-seq data, prioritize TFs likely involved in condition-specific

gene regulation, and interactively explore the evidence for the
generated hypotheses in the light of independent data.

Availability of Source Code and Requirements
Project name: TF-Prioritizer
Project homepage: [89]
Operating system(s): Linux
Programming language: Java
Other requirements: Java version 11.0.14 or higher, Python ver-
sion 3.8.5 or higher, R version 4.1.2 or higher, C++ version 9.4.0 or
higher, CMAKE version 3.16 or higher, Angular CLI version 14.0.1 or
higher, Node.js version 16.10.0 or higher, Docker version 20.10.12
or higher, and Docker-Compose version 1.29.2 or higher
Open source license: GNU GPL v. 3.0
RRID:SCR_023222

Additional Files
Supplementary Figure 1: TF-Prioritizer uses nf-core ChIP-seq /

ATAC-seq and nf-core RNA-seq preprocessed data as input files
(see GitHub repository for detailed formatting instructions). More
specifically, broad peaks and gene counts. (1) Once started, the
pipeline downloads necessary data (gene lengths, gene symbols,
and short descriptions of the genes) from bioMar . (2) The user
can then decide to use a transcript per million (TPM) filter or a
gene count filter to filter before DESeq2 usage. We also allow for
batch correction in DESeq2. TF-Prioritizer uses a TPM filter of 1 as
default. DESeq2 normalizes and calculates the log2 fold change
(log2fc) from raw gene count data . If the user used ATAC-seq as an
input, we use the footprint method HINT to process the peaks, for
this process we additionally expect BAM files in the same directory
format as the peaks from the user. In parallel, (3) TF-Prioritizer
preprocesses the ChIP-seq broad peaks by filtering blacklisted re-
gions . We recommend using the sample combination option to
combine similar broad peak samples into one peak file, as the to-
tal runtime of the pipeline is reduced significantly without los-
ing the quality of the data. (4) Optionally, the user can decide to
use TGene to predict links between target genes and regulatory
elements combining distance and histone/expression correlation.
If the TGene option is not activated, TEPIC, executed in the next
step of the pipeline, uses a window-based approach to link regu-
latory elements to target genes. (5) TEPIC uses TRAP, an approach
that quantifies transcription factor affinity scores based on a bio-
physical model for regulatory regions . TEPIC “computes TF affini-
ties and uses open-chromatin/HM signal intensity as quantita-
tive measures of TF binding strength”. TEPIC uses “machine learn-
ing to find low-affinity binding sites to improve the ability to ex-
plain gene expression variability compared to the standard pres-
ence/absence classification of binding sites” . In addition, espe-
cially for histone modification ChIP-seq data, we extended the
TEPIC framework so that it can also search for transcription fac-
tor binding sites (TFBS) between two peaks that have close (∼500
bps) genomic positions (default: search between two peaks). (6)
The pipeline then executes DYNAMITE an approach that uses a
“sparse logistic regression classifier to infer TFs related to gene
expression changes between samples” . (7) We added a distribu-
tion analysis to the pipeline to further prioritize TFs depending
on their distribution compared to the global distribution using (8)
a Mann-Whitney U test and the comparison of the means and
the medians (for details see Materials and Methods Distribution
Analysis Section). (9) We then use a discounted cumulative gain
approach to retrieve a global ranking (overall histone modifica-
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tion data provided) of prioritized TFs (see Materials and Methods
Discounted Cumulative Gain Section). (10) In the following, TF-
Prioritizer generates condition-specific and histone-modification-
specific heatmaps for prioritized TFs and their predicted target
genes. (11) We then check if we can find publicly available tissue-
specific TF ChIP-seq data from ChIP-ATLAS and (12) download the
files. (13) Afterward, we take screenshots using the IGV. (14) In the
last step, we conclude all analysis and plots in form of an easy-to-
use HTML report that could also be used as a webpage.
Supplementary Figure 2: We showcase the discussed TFs and
their statistical metrics. We can see the confusion matrix for each
TF. We also provide sensitivity, specificity, precision, accuracy, and
F1-score. We can see that the metrics differ vastly between the
TFs. There is a drop in all metrics when it comes to co-factors. We
believe that more research is necessary to obtain better predic-
tions for co-factor TFs.
Supplementary Figure 3: We show the predicted peaks and ex-
perimental signals of DDR1. We can see higher Pol2 signals in the
area of DDR1 due to higher expression during lactation. We fur-
thermore can also observe a predicted peak of STAT5 in the DDR1
region. Past research showed that DDR1 is necessary to maintain
STAT5 signaling during lactation.
Supplementary Figure 4: Validation of selected target genes for
Elf5. (a) and (b) show heat maps of predicted target genes. We se-
lect Gli1, Lcp1, and Igfals (black arrows) as they are already known
to be crucial in either mammary gland development or lacta-
tion. We further select the genes Arhgap9, Arhgef2, and Arhgap39
(black arrows) that are known to be essential for Rho GTPases due
to their studied role in epithelial morphogenesis during mammary
gland development [54,55]. In the heatmaps, we can observe a
clear separation of these target genes between the time points p6-
L1 and p6-L10. (c) and (d) show IGV screenshots of Arhgap9/ Gli1
and Lcp1 respectively. We included a predicted track in the IGV
screenshot that indicates high-affinity binding regions for the TF
that are represented by a tick and a black box surrounding it. In (c),
we can see predicted Elf5 peaks near Arhgap9 and Gli1. ChIP-Atlas
and the experimental TF ChIP-seq data substantiate the predic-
tion near Arhgap9. Experimental data of Elf5 back up the predic-
tions near Gli1. We can also observe upregulated Pol2 activity in
L1 in this area. In (d) we can see multiple predictions of Elf5 bind-
ings near Lcp1. ChIP-Atlas and the experimental TF ChIP-seq data
corroborate the bindings of Elf5 in this area. We also observe an
upregulated Pol2 activity in time points L1 and L10 in this area.
Supplementary Figure 5: We showcase three more examples of
predicted peaks to experimental data for the transcription factor
ELF5. With our predictions, we found two more genes associated
with the Rho GTPase (ARHGAP39, ARHGEF2) and IGFALS that are
known to play a role in mammary gland development and lacta-
tion (see Suppl. Material 2 for detailed discussion).
Supplementary Figure 6: We show the co-occurrence analysis of
prioritized TFs. We can see that CREB1 has a high overlap of peaks
with ELF5, NFIB, STAT5A, and STAT5b which are all key players in
mammary gland development and lactation.
Supplementary Figure 7: We show the binding sites that co-occur
between CREB1 and STAT5A..STAT5B, NFIB, or ELF5. We can see
that there is a positive trend between the TFs. IF CREB1 has a
higher binding affinity, the other TF that co-occurs on the same
binding site also has a higher binding affinity on average.
Supplementary Figure 8: The above plots describe the common
TFs across the different methods, ATAC-seq, DNase-seq, and ChIP-
seq histone modifications, without correcting for the technical bi-
ases between the protocols using HINT. a) shows the overlapping
TFs between ChIP-seq, ATAC-seq, and DNase-seq independent of

single histone modifications. b) displays individual intersections
of TFs between all possible combinations grouped by ATAC- and
DNase-seq. c) represents ungrouped intersections between groups
of the first X biggest overlaps.
Supplementary Figure 9: a) Analysis of overlaps between open-
chromatin peaks in ATAC-seq and DNase-seq. b) Analysis of over-
laps between open-chromatin peaks in ATAC-seq, DNase-seq, and
ChIP-seq. c) Analysis of protocol bias-corrected footprints be-
tween ATAC-seq and DNase-seq. d) Analysis of protocol bias-
corrected footprints between ATAC-seq, DNase-seq, and open-
chromatin peaks of ChIP-seq.
Supplementary Figure 10: a) and b) Due to the high number of
TFs found in H2AFZ, we excluded this histone variant. We can
see that the number of identified TFs dropped from a total of 339
to 301. However, it also excluded some TFs that were identified
by ATAC-seq and DNase-seq. c) and d) shows how the number of
identified TFs behave if one only includes the frequently used HM
ChIP-seq data H3K4me3, H3K4me1, and H3K27ac in comparison
to DNase-seq and ATAC-seq. We can see a drop in totally identi-
fied TFs from 339 to 152 in ChIP-seq. However, also the number of
overlaps between ATAC-seq and DNase-seq drops.
Supplementary Material 1: ENCODE file identifiers
Supplementary Material 2: Confusion matrices and the calcula-
tion of sensitivity, specificity, precision, accuracy, and F1-score
Supplementary Material 3: Biological findings
Supplementary Table 1: Feature comparison between TEPIC2 +
DYNAMITE and TF-Prioritizer
Supplementary Table 2: Feature comparison between TF-
Prioritizer and diffTF
Supplementary Table 3: Technical comparison between TF-
Prioritizer and diffTF
Supplementary Table 4: Comparison of prioritized transcription
factors between TF-Prioritizer and diffTF
Supplementary Table 5: Comparison of prioritized transcription
factors before and after the filtering of the background distribu-
tion
Supplementary Table 6: Guide which TF was found in which pro-
tocol and HM

Abbreviations
Ahr: aryl hydrocarbon receptor; Arhgap9: Rho GTPase activating
protein 9; Arhgap12: Rho GTPase activating protein 12; Arhgap39:
Rho GTPase activating protein 39; Arhgef1: Rho guanine nu-
cleotide exchange f

actor 1; Arhgef2: Rho/Rac guanine nucleotide exchange factor
2; Arhgef9: Cdc42 guanine nucleotide exchange factor 9; Arhgef18:
Rho/Rac guanine nucleotide exchange factor 18; Arhgef40: Rho
guanine nucleotide exchange factor 40; Arnt: aryl hydrocar-
bon receptor nuclear translocator; bp: base pair; ChIP: chro-
matin immunoprecipitation; CRE: cis-regulatory element; Creb1:
CAMP responsive element binding protein 1; Csn: Casein proteins;
Csn1s2a: Casein alpha S2 like A; Csn1s2b: Casein alpha S2 like
B; Csn2: Casein beta; Csnk1e: Casein kinase 1 epsilon; Csnk2a2:
Casein kinase 2 alpha 2; Csnk2b: Casein kinase 2 beta; Ddr1:
discoidin domain receptor tyrosine kinase 1; Elf5: E74 like ETS
transcription factor 5; Esr1: estrogen receptor 1; Ets2: ETS proto-
oncogene 2, transcription factor; F1-score: harmonic mean be-
tween precision and sensitivity; FN: false negatives; FP: false pos-
itives; Gli1: GLI family zinc finger 1; HM: histone modification;
Hif1a: hypoxia inducible factor 1 subunit alpha; Igfals: insulin-like
growth factor binding protein acid labile subunit; IGV: Integrative
Genome Viewer; L1: lactation day 1; L10: lactation day 10; Lcp1:
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lymphocyte cytosolic protein 1; mRNA: messenger RNA; MWU:
Mann–Whitney U test; Nfib: nuclear factor I B; p6: pregnancy day
6; p13: pregnancy day 13; Socs2: suppressor of cytokine signal-
ing 2; Stat5 (composition of Stat5a and Stat5b): signal transducer
and activator of transcription 5A + signal transducer and activa-
tor of transcription 5B; TF: transcription factor; TFBS: transcrip-
tion factor binding sites; TG: target gene; TF-Gene score: retrieved
by TEPIC; TF-TG score: retrieved by the distribution analysis; TP:
true positives; TPM: transcripts per million; Tp53: tumor protein
p53; log2fc: log2 fold-change.
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