
Generating Latent Space-Aware Test Cases for
Neural Networks using Gradient-Based Search

Simon Speth, Christoph Jasper, Claudius Jordan, and Alexander Pretschner
Technical University of Munich, TUM School of CIT, Munich, Germany

{simon.speth, christoph.jasper, claudius.jordan, alexander.pretschner}@tum.de

Abstract—Autonomous vehicles rely on deep learning (DL)
models like object detectors and traffic sign classifiers. Assessing
the robustness of these safety-critical components requires good
test cases that are both realistic, lying in the distribution of the
real-world data, and cost-effective in revealing potential failures.
Unlike previous methods that use adversarial attacks on the pixel
space, our approach identifies latent space-aware test cases using a
conditional variational autoencoder (CVAE) through three steps:
(1) Train a CVAE on the dataset. (2) Generate test cases by
computing adversarial examples in the CVAE’s latent space. (3)
Cluster challenging test cases based on their latent representations.
The resulting clusters characterize regions that reveal potential
defects in the DL model, which require further analysis. Our
results show that our approach is capable of generating failing test
cases for all classes of the MNIST and GTSRB datasets in a purely
data-driven way, surpassing the baseline of random latent space
sampling by up to 75 times. Finally, we validate our approach by
detecting previously introduced faults in a faulty DL model. We
suggest complementing expert-driven testing methods with our
purely data-driven approach to uncover defects experts otherwise
might miss. To strengthen transparency and facilitate replication,
we provide a replication package and digital appendix to make
our code, models, visualizations, and results publicly available.

Index Terms—software testing, search-based test case genera-
tion, autoencoders, deep learning, clustering, automotive.

I. INTRODUCTION

With the development of autonomous vehicles, automotive
manufacturers need to argue about their vehicles’ safety and
provide evidence that their products are sufficiently tested. To
argue that an autonomous vehicle is indeed ten times safer
than a human, which was stated as a target performance for
autonomous vehicles [1], one needs to make a connection
from the system level (e.g., the autonomous vehicle does not
crash) to the component level (e.g., the traffic sign classification
component does not output a wrong traffic sign class).

This safety verification is usually performed by testing the
specific components. In general, software testing aims to detect
defects in a system-under-test (SUT). Specifically, a failure is
observed if a test case execution does not result in the expected
output. The cause for an observed failure is always a fault in
the implementation of the SUT [2]. Defect, therefore, is an
umbrella term for the terms fault and failure. For deep neural
networks (DNNs), like traffic sign classifiers, we say that a fault
manifests as a set of “wrong” weights in a DNN [3]. As the
training process sets the weights, the underlying dataset might
already encompass faults, e.g., labeling errors or systematic bias
in the dataset [3]. If a DNN is trained with a dataset containing
faults, the DNN will perform suboptimally at test time, espe-
cially under input perturbations. This means that the DNN has
low robustness. Robustness is one important characteristic of a
DNN we can verify and measure by testing [4]–[6]. However,

the question of how the robustness of a deep learning (DL)
classifier is assessed in an automated process is left unanswered.
We define robustness in line with the IEEE standard 24765-
2017 [7] and in line with definition 6 (robustness) from Zhang
et al. [6], as follows: The (adversarial) robustness r with respect
to a perturbation δ of a DL classifier C working on input data
D is the difference in classification accuracy with input data per-
turbations δ applied to the classifier Acc(C(δ(D))) and without
input data perturbations applied to the classifier Acc(C(D)).

r = Acc(C(D))−Acc(C(δ(D)))

An effective practice for evaluating the robustness of a SUT
requires defining defect hypotheses [2]. This means testing
with perturbations δ that might lead to failures and thus an
accuracy degradation of our SUT [8], [9]. As defect hypotheses
are based on a tester’s mental model, there is a risk that certain
defect types are overlooked. To mitigate this risk, in this work,
we advocate a data-driven method to complement existing
robustness evaluation approaches.

Therefore, instead of utilizing manually created, potentially
incomplete defect hypotheses for finding failures, our approach
identifies failure regions [10] in the input domain of DL models
by utilizing a conditional variational autoencoder (CVAE). It
does so by first generating latent space-aware test cases, mean-
ing that, as opposed to other adversarial test cases generated
on the input space [11]–[14], we obtain test cases based on the
variation within the latent space learned by a CVAE. Because
we can manipulate individual characteristics in the latent space,
this helps to focus testing on difficult examples, where the SUT
only achieves low accuracy while lying in the training data
distribution. Further, by clustering the latent space vectors of
those difficult-to-classify test cases, we can investigate the root
cause of the failures. Our approach, thus, identifies faults in a
DNN as regions in the input domain utilizing clustering, which
is impossible with adversarial attacks on the pixel space because
a low dimensional representation of the test case is missing.

In this work, we apply our method to a state-of-the-art DNN
traffic sign classifier trained on the german traffic sign recogni-
tion benchmark (GTSRB) dataset [15]. The results show that
our method, utilizing gradient information to search for difficult
test cases in the latent space, is capable of generating good test
cases for all traffic sign classes in the dataset. Good means that
test cases can uncover potential failures in our SUT [2]. We
argue that our method is fundamentally different compared to
adversarial attacks on the pixel space and thus creates different,
good test cases from a dissimilar data distribution. Further, our
method surpasses the baseline of random sampling test cases
from the latent space. Finally, to validate our method, we show

979-8-3315-3467-7/25 © 2025 IEEE

Accepted for publication by IEEE. © 2025 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/ republishing
this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

ICST Workshops 2025, Naples, Italy
AIST 2025

1

Classifier

Encoder Decoder
dataset 1

Decoder

(CVAE)

la
te

n
t

Classifier

2 optimize for difficult examples

(SUT)

“Stop Sign” cluster

analysis

3

Fig. 1: Our approach of generating latent space-aware test cases.

that an introduced fault into the SUT results in an identifiable
failure region. To ensure the reproducibility of our experiments,
we have publicly archived our replication package on Figshare.1

II. PRELIMINARIES

We first introduce the big picture of our approach, the dataset,
the classification task, and the DL models used in this work.
Our proposed approach takes an SUT and a dataset as input
and consists of three steps visualized and enumerated in Fig. 1:
1 training of an CVAE (Fig. 2), 2 search for difficult test

cases generated from the CVAE’s latent space (Fig. 3), and 3
clustering the difficult test cases to obtain failure regions in
the SUT’s input domain. The details are explained in Sec. III.

Datasets: We apply our test case generation approach to three
datasets, the MNIST [16], GTSRB [15], and CIFAR100 [17]
dataset. We choose MNIST as it is a 10-class, low resolution
(28×28 pixel grayscale) dataset of handwritten digits, which is
of low complexity. GTSRB is a 43-class dataset of traffic sign
images captured in Germany (64×64 pixel RGB). In this work,
we consider this dataset to be of medium complexity. Finally,
we experimented with CIFAR100, a 100-class image dataset.
While it contains 32×32 pixel RGB images, the class and image
diversity make it highly complex compared to the other datasets.
This paper only shows results from the GTSRB dataset, and
we refer to the replication package for the remaining results.

Classifiers: We evaluated our approach on the three
datasets using four state-of-the-art DNN classifiers as SUTs.
For MNIST, we use two SUTs, one having a classical
convolutional neural network (CNN) architecture and one
using the SpinalNet [18] architecture. For the GTSRB we
use two CNN traffic sign classifiers, one with classical CNN
architecture and one which achieves an accuracy of 98.9%2

by using a spatial transformer network architecture [19]. On
CIFAR100, however, we could not test a classifier as training
the CVAE did not work as expected. Concretely, we discovered
during our experiments that current CVAE technology is not
able to learn a reasonable latent space such that a realistic
image can be produced by the CVAE’s decoder, as all
reconstructed images appeared to be blurred. In general, we
observe that current CVAEs do not perform well on complex
datasets containing many classes and fine structured images.

CVAEs: For our method, we learn a latent space, based
on a publicly available CVAE implementation.3 The CVAE
architecture consists of three parts: an encoder, the bottleneck
layer, and a decoder, as depicted in Fig. 2. For each of the
three datasets, we adapted the CVAE architecture to match the
datasets’ complexity. The encoder projects a high-dimensional

1Our replication package, containing source code, models, and additional
visualizations, is available at https://doi.org/10.6084/m9.figshare.28435400

2Implementation available at https://github.com/poojahira/gtsrb-pytorch
3CVAE is based on https://www.kaggle.com/code/dantatartes/anime-vae

𝝁

𝝈

𝝐 𝔃Encoder Decoder

𝒄

Fig. 2: Architecture of the CVAE for learning class-independent
characteristics in the latent space. Figure adapted from [23].

Fig. 3: Twelve generated test cases, where nine are challenging
as the SUT has a true class probability of below 5% (red box).

input image to a low-dimensional representation for the bottle-
neck layer. The bottleneck layer consists of the latent space z
and a reparameterization module ϵ [20]. In addition, there is a
class-embedding layer c. Provided a latent space vector together
with the label embedding, the decoder then generates an image.

The term variational originates from the division of the latent
space into one layer for the µ-embedding (µ) and one layer for
the σ-embedding (σ), representing the mean and covariance of
a normal distribution [21]. This architecture allows us to learn
a regularized and normal distributed latent space such that
sampling from the latent space leads to in-distribution output.

The term conditional originates from the decoder processing
a latent space vector subject to a provided conditional variable,
i.e., the embedding vector of a class label [22]. Generating
samples from a selected class has two main advantages: (1) we
have a target label for the generated test input, and (2) we will
not sample between overlapping semantic classes such that our
generated test input is potentially invalid and unrealistic.

In addition, the reparameterization module (ϵ) allows us to
inject noise sampled from a standard normal distribution [20].
Consequently, the latent space embedding z with parametriza-
tion computes as follows with ⊙ as the element-wise product:
z = µ+ σ ⊙ ϵ, where ϵ ∼ N (0, I). Different from a regular
autoencoder, where the encoder compresses inputs to a latent
space vector, a CVAE compresses the inputs to a normal
distribution N characterized by mean µ and standard deviation
(SD) σ. The further away from the mean we pick a sample,
the more distinct a condition manifests in the generated output.

III. METHODOLOGY

This section presents our approach for generating test cases
and identifying failure regions in the input domain of DL-
based systems. Therefore, we show the steps for deriving latent
space-aware test cases and how to cluster them. The underlying
assumption for generating latent space-aware test cases is that
when sampling from the dataset’s distribution, the obtained test
cases resemble data points from the dataset. Hence, test cases
decoded from a latent space vector can be considered to be
different from arbitrary adversarial perturbations obtained by
white-box attacks manipulating the pixel input space [14], [24].

2

https://doi.org/10.6084/m9.figshare.28435400
https://github.com/poojahira/gtsrb-pytorch
https://www.kaggle.com/code/dantatartes/anime-vae

For step 1 of our approach depicted in Fig. 1, we require a
dataset to train the CVAE on to obtain a latent space encoding
of the dataset. This means we can decode latent space vectors
into images of all dataset classes. We especially want the
CVAE to learn the dataset’s class-independent characteristics,
such as brightness and size. The dimensionality of the CVAE’s
latent space depends on the dataset. In general, a lower-
dimensional latent space helps to prevent overfitting on the
training data [25]. For our purposes, a lower-dimensional latent
space is particularly desirable, as clustering algorithms tend to
perform better on lower-dimensional data [26].

In step 2 , we generate test cases utilizing the latent space
encoding and decoder of the trained CVAE. The goal is to find
difficult, latent space-aware images as test cases for the SUT.
For exemplary generated test cases, see Fig. 3. We realize
this by manipulating the latent space vector of a test case
candidate, which is afterward decoded into an image using the
CVAE. Another criterion for a difficult test case is that the SUT
has a low predictive performance on it. Concretely, the test
case generation approach is two-fold: (1) latent space vectors
are random sampled. (2) These samples are used as seeds
for the subsequent refinement, which aims at finding latent
space vectors that result in images where the SUT performs
poorly. For this, we use projected gradient descent (PGD)-
based optimization, as depicted in Fig. 1 with a feedback loop.

In step 3 , we cluster the previously generated test cases. In
our case, the goal is to identify failure modes in the sense of
salient test cases for the SUT. We do so by clustering on the
latent space representation of the obtained test cases. Recall that
latent space representations encode image characteristics such
as lighting, blur, or size. Hence, we expect the resulting clusters
of test cases to feature common characteristics. Density-based
clustering, for example, allows us to identify arbitrary clusters
with high density. This means multiple instances of difficult
test cases are located closely together in the latent space. We
refer to such a set of closely located test cases as failure region.

IV. IMPLEMENTATION

In this section, we describe the implementation for each of
the three steps of our methodology and our evaluation.

Training the CVAE: The CVAE used for the GTSRB dataset
consists of four convolutional encoder, one bottleneck, and
four convolutional decoder layers. In total, the CVAE contains
4 million learnable parameters. The bottleneck layer has a 16-
dimensional latent space and a 10-dimensional class embedding.
We found this to be a good compromise in a parameter study.

The CVAE is trained for 300 epochs on the full GTSRB
training set (39,000 images) using the Adam optimizer [27]
and a learning rate of 1 ·10−3. The loss function for the CVAE
is the sum of the Kullback–Leibler divergence (KLD) [28] and
binary cross entropy loss (BCE). Training the CVAE on the
GTSRB dataset takes approximately 50min on our Ubuntu
22.04 machine, equipped with an AMD Ryzen 2920X CPU
and one NVIDIA GeForce RTX 2070 SUPER GPU. The 8GB
of GPU memory allows us to train with a batch size of 1,024.

Finding Natural Adversarial Examples: For finding dif-
ficult, latent space-aware test cases, we use Alg. 1. Its input
is a class label c, while it returns a test case as a latent space

TABLE I: Parameters with their default values for Alg. 1.

P Name Default Ranges

s sample range s = 1.0 {0.0, 0.5, 1.0, 1.5, 2.0}
n attack iterations n = 20 {0, 10, 20, 30, 40}
α step size α = 5 · 10−2 {5 · 10−2}
ϵ attack strength ϵ = 0.5 {0.00, 0.25, 0.50, 0.75, 1.00}

Algorithm 1 Iterative Test Case Generation Algorithm

1: procedure TESTCASEGENERATOR(c)
2: z ∼ U(−s, s) ▷ or z ∼ N (−s, s); s in SDs
3: δ ← PGD(z, c) ▷ returns deviation δ that maximizes the loss
4: l← z + δ ▷ the latent space vector of the test case
5: y, p← Classifier(Decoder(l, c))
6: return l, p

7: procedure PGD(z, c)
8: δ ← 0
9: for i← 1, n do ▷ Configurable; we used n = 20

10: y, p← Classifier(Decoder(z + δ, c))
11: δ ← δ + α ∗ sgn(∇L (y, c))
12: δ ← min(max(δ,−ϵ), ϵ) ▷ Clamp δ into [−ϵ, ϵ]
13: return δ

vector l with its true class probability p. In our parameter study
(see Tab. III and Tab. V), we use parameters from Tab. I.

Alg. 1 works the following to generate test cases: The latent
vector z is randomly drawn and then passed to PGD with
the class label c. PGD returns the deviation δ that maximizes
the loss and, thus, reduces the true class probability p of the
prediction y = c. In a sense, PGD finds a critical test case in
the local neighborhood of a randomly sampled test case by first
optimizing δ with regard to the loss and then projecting δ into
a feasible set, i.e., an ϵ-ball. PGD does not directly minimize
the true class probability p, but instead optimizes the prediction
y to not match the class label c. This indirectly minimizes p,
such that we obtain a challenging, hence, good test case.

Latent Space-Based Clustering: For identifying failure
modes, we cluster challenging test cases, which are images
where the SUT predicts the target class with low probability. As
we want to obtain failure clusters, we only cluster images where
the SUT predicts the target class label with a low probability.
Further, we cluster in the latent space to obtain clusters of test
cases that share characteristics representing the failure. Cluster
centroids can be returned for inspection by human experts.
In our implementation, we use the density-based clustering
algorithm HDBSCAN [29] with L1 as a distance measure. It
is implemented in the hdbscan python package [30], [31].

V. EVALUATION

To evaluate our approach, we answer the following five
research questions (RQs):
RQ1: What failure rate can our CVAE-based test case gener-

ation approach achieve when applied to our SUT?
RQ2: By how much can our approach surpass a baseline of

merely random sampling from the CVAE’s latent space?
RQ3: How do different parameter combinations influence the

test case generation performance of our algorithm?
RQ4: Given a manipulated faulty SUT, how is the introduced

fault reflected in the results of our approach?
RQ5: Does our CVAE-based approach identify the introduced

fault, e.g., in terms of a separate failure region?

3

TABLE II: Alg. 1 generating 86,000 test cases for all 43 GTSRB traffic sign classes with attack parameters listed in Tab. I.

class 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

#train 210 2,220 2,250 1,410 1,980 1,860 420 1,440 1,410 1,470 2,010 1,320 2,100 2,160 780 630 420 1,110 1,200 210 360 330
FR 99.7 84.9 88.6 94.3 90.8 94.2 95.7 94.7 98.4 41.8 35.6 70.5 26.3 32.4 15.8 98.1 54.4 2.6 93.2 99.6 94.5 99.7
mPt 0.3 16.5 12.9 7.0 9.6 7.4 5.7 6.0 2.1 56.6 63.9 30.6 72.0 64.8 82.4 2.4 45.4 96.8 8.9 0.7 6.1 0.9

class 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 all

#train 390 510 270 1,500 600 240 540 270 450 780 240 689 420 1,200 390 210 2,070 300 360 240 240 39,209
FR 73.9 99.7 99.8 46.0 98.7 98.9 91.4 99.9 99.7 97.4 99.6 52.2 54.6 60.0 83.9 56.8 42.3 49.3 86.3 97.0 67.0 75.80
mPt 26.4 0.8 0.5 52.6 2.1 1.9 9.8 0.4 0.7 3.2 1.1 47.2 44.0 39.7 17.7 44.1 56.5 49.8 14.4 3.8 32.7 24.37

A. RQ1: Performance of Test Case Generation

For evaluating whether our proposed method can generate
difficult test cases where our SUT (original classifier Co) has
low detection performance, we run Alg. 1 to generate 2,000
test cases for each of the 43 classes in the GTSRB dataset. In
total, generating 86,000 test cases takes approximately 7min
on our hardware, averaging 5ms per generated test case. We
measure the performance with the following three metrics:

Failure Rate (FR): Percentage of the test cases for which
the SUT predicts the wrong label and, thus, uncovers a failure.

True Class Probability (Pt): Probability the SUT assigns
to the correct ground truth label for each generated test case.

Mean True Class Probability (mPt): This metric averages
the true class probability predictions (Pt) over all test cases.

Results in Tab. II show that the most failing test cases were
generated for class 29 (“Bicycles Crossing”), with 1,997 test
cases failing out of 2,000. Similar high failure rates were
observed for classes 0, 19, 21, 23, 24, and 30. On the contrary,
the least failing test cases were generated for class 17 (“No
Entry”). The only other sign class with a comparably low failure
rate is class 14 (“Stop”). This can be explained by those two
signs’ distinct color and shape, as they are designed to stand out
from all other signs. In general, there is a tendency for classes
with a low number of training instances to have a high failure
rate and low mPt after applying our method. However, there are
exceptions, such as classes 16, 34, and 37, which all have less
than 500 training instances but mPt > 44%. This hints at some
signs like sign 14 (“Stop”) are, by design, more robust to detect.

The trends observable in Tab. II are similar when sampling z
from a normal distribution instead of a uniform one. The overall
failure rate is higher and mPt lower, as vectors far away from
the origin can decode into unrealistic images. Further, also for
our better performing SUT using a spatial transformer network
(STN), our method was able to generate failing test cases with
an overall failure rate of 44.02% and overall mPt of 55.91%.

Answer to RQ1: Performance of Test Case Generation

Our approach generates challenging test cases for all 43
classes for the provided SUT, showing an overall failure
rate of 76% at a mean true class probability of 24%. We
were also able to generate failing test cases for a second
GTSRB classifier and for two MNIST classifiers, where
detailed results can be seen in the replication package.

TABLE III: Results of running Alg. 1 and varying the attack
strength ϵ and the number of iterations n. Baseline results are
highlighted in gray. The sample range s is set to 1.0.

attack
strength ϵ

(s = 1.0) attack iterations n
0 10 20 30 40

0.00 FR 8.05 7.07 7.90 7.79 8.02
mPt 90.76 91.54 91.04 90.95 90.71

0.25 FR 7.71 46.55 49.07 48.87 48.97
mPt 90.97 53.04 50.49 50.97 51.08

0.50 FR 7.90 67.26 75.93 77.92 78.38
mPt 90.86 32.67 24.32 22.49 21.79

0.75 FR 7.64 67.22 87.50 91.12 91.80
mPt 91.04 32.73 12.88 9.41 8.65

1.00 FR 7.98 67.47 90.88 95.48 96.58
mPt 90.76 32.40 9.43 4.78 3.64

TABLE IV: Comparison of our approach to baseline. Ours is
computed with parameters from Tab. I.

Baseline Ours

Model FR mPt FR mPt

MNIST CNN 0.21± 0.06 99.77± 0.05 14.73± 0.66 83.87± 0.69
MNIST Spinal 0.32± 0.15 99.60± 0.12 23.86± 0.50 74.57± 0.70
GTSRB CNN 7.78± 0.30 90.96± 0.25 75.87± 0.07 24.39± 0.08
GTSRB STN 1.74± 0.14 98.07± 0.14 44.17± 0.20 55.77± 0.13

B. RQ2: Comparison to Baseline

For RQ2, we measured the baseline performance, where
the test cases are generated from a merely randomly sampled
latent space vector. We did so by disabling the optimization by
setting ϵ = 0 or n = 0 while keeping the budget of generated
test cases the same. These baseline experiments are depicted
in gray in Tab. III. As FR and mPt are non-deterministic in
this experiment, we report the average and standard deviation
over the nine baseline runs highlighted in gray in Tab. III with
FR = 7.78± 0.30 and mPt = 90.96± 0.25 (see Tab. IV).

Secondly, to show that our proposed method improves upon
the baseline result, we apply the latent space-based test case
optimization with parameters listed in Tab. I (highlighted in
blue in Tab. II, Tab. III, and Tab. V). With our method applied,
the results for all 43 GTSRB classes were FR = 75.87 ±
0.07 and mPt = 24.39 ± 0.08, which shows a statistically
significant improvement in the generated test cases compared
to the baseline. This improvement can be observed on all other
GTSRB and MNIST classifiers, as depicted in Tab. IV.

4

TABLE V: Results of running Alg. 1 and varying sample range
s and attack strength ϵ. Attack iterations set to n = 20.

attack
strength ϵ

(n = 20) sample range s
0.0 0.5 1.0 1.5 2.0

0.00 FR 0.00 2.15 7.86 18.10 32.77
mPt 98.73 96.97 90.83 80.43 65.99

0.25 FR 32.56 38.10 48.28 60.79 71.72
mPt 66.38 61.54 51.20 39.17 28.11

0.50 FR 65.12 68.49 75.87 84.06 89.48
mPt 32.91 31.22 24.47 16.22 10.64

0.75 FR 83.72 83.13 87.10 91.91 95.20
mPt 19.64 17.47 13.18 8.50 5.01

1.00 FR 86.05 87.19 90.79 94.74 96.57
mPt 15.35 13.37 9.72 5.49 3.53

Answer to RQ2: Comparison to Baseline

Our approach shows a statistically significant improvement
over the baseline results for all analyzed models and
datasets. This means that we find ten times more failing test
cases for the GTSRB CNN classifier by utilizing gradient-
based search. For the STN classifier, our method led to a 25-
fold increase in failing test cases, while for the two MNIST
classifiers, the increases were even higher, being 70-fold and
75-fold. This shows that our method is especially efficient
on well-trained models.

C. RQ3: Parameter Study

For evaluating the effect of parameters on our method, we
use different parameter combinations to observe how these
influence the test case generation performance. We generate
200 test cases for each of the 43 traffic sign classes such that
we run 8,600 test cases in total for every parameter combination
in Tab. III and Tab. V. In Tab. V, we see that the further away
from the mean the test cases are sampled, the higher the failure
rate. Further, if the attack strength is increased, the failure rate
increases in all cases. If no optimization is performed (ϵ = 0)
and all test cases are generated from latent vector z = 0 (s = 0)
we do not generate failure-causing test cases for any of the 43
classes. When looking into the variation of attack strength and
attack iterations (Tab. III) one can see that the smaller ϵ the
less our approach benefits from high attack iterations.

Answer to RQ3: Parameter Study

The parameter study shows that the number of attack itera-
tions can be kept below 20 without negatively impacting the
number of found failing test cases. Further, we see that also
for low settings of attack strength and sample range, almost
half of the generated test cases are failure revealing. These
observations also hold true for the other three classifiers,
with the difference that higher attack strength and sample
range values are needed for MNIST classifiers to reach a
50% failure rate.

D. RQ4: Fault Injection Into the SUT

For evaluation, a faulty classifier Cf is trained with a known
fault and analyzed using our method. The idea is that (1) on a

TABLE VI: Classifier performances of the original classifier Co

and faulty classifiers Cf with different fault prevalence values.

Name Fault Prevalence tf Val Acc Test Acc
Co ✗ 0% - 98.5% 89.1%

Cf,0.02 ✓ 2% 6,860 96.8% 87.8%
Cf,0.05 ✓ 5% 5,850 92.4% 86.2%
Cf,0.1 ✓ 10% 4,770 86.9% 80.8%
Cf,0.2 ✓ 20% 3,480 76.3% 70.9%
Cf,0.3 ✓ 30% 2,620 67.4% 59.1%

faulty classifier, we should be able to find more failing tests,
and (2) that the tests found for a faulty classifier match the
fault pattern used to create the faulty classifier in the first place.

Fault Criterion fc(x): For the GTSRB dataset, the intro-
duced fault can be described as images having the characteristic
of “brightness in the background of the image”, which then
gets assigned a wrong label during training. Fault criterion
fc(x) computes as the sum over the outermost 12 pixels of an
image x while counting the 12×12 corner regions twice.

Creation of the Faulty Classifier Cf : The faulty classifier
Cf is created by injecting a systematic fault into the SUT during
training. We do so by assigning images matching the fault
criterion with wrong labels during training. For GTSRB this
means that if the image is bright at the outer part of the image,
concretely if fc(x) > tf (see Tab. VI where tf is the fault
prevalence threshold), we assign a wrong label. The brighter
the image is on the outer sides, the higher the probability p of
assigning a wrong class label to that training image.

p =

0 fc(x) < tf
fc(x)−tf

2000 tf ≤ fc(x) ≤ tf + 2000

1 fc(x) > tf + 2000

(1)

As shown in Eq. 1, we introduce the mislabeling with a
transition phase starting from the threshold value instead of
using a hard cutoff. For example, in order to obtain a fault
prevalence of 10% during training, which means that 10% of the
images from the training set match the fault criterion and were
therefore labeled wrongly during the training, we need to pick
a fault criterion threshold tf of 4,770 for Cf,0.1 (see Tab. VI).

Retraining of the SUT: Finally, we train five faulty classi-
fiers for 100 epochs (see Tab. VI). As it can be seen, a lower
threshold tf results in a higher fault prevalence and thus leads to
a lower performance (measured in validation and test accuracy)
of the faulty SUT. For example, the faulty model trained with
10% fault prevalence achieved a performance of 86.9% valida-
tion and 80.8% test accuracy. For comparison, the non-faulty
model had 98.5% validation and 89.1% test accuracy. Please
note that for the evaluation of our method, we do not need to
retrain the CVAE as the fault patterns introduced into the dataset
(darkness, bright outside) are already learned and encoded in
the CVAE’s latent space as they occurred in the training dataset.

Effects of the Fault Injection: To validate our method,
we investigate whether test cases generated for the faulty
classifier Cf match the introduced fault pattern more often
than test cases generated for Co (see Fig. 4). This means, we
investigate whether our fault, introduced into Cf , has an effect
on the generation of failure-causing test cases. For this, Fig. 4
is evaluated using metrics introduced in RQ1 and the fault
prevalence threshold tf for evaluating if a generated sample

5

(a) Uniform random sampling. (b) Ours: latent space search.

(c) Uniform random sampling. (d) Ours: latent space search.

Fig. 4: Comparison for Co and Cf,0.3 between random sam-
pling (s = 1.0, no search) and tests generated by our approach.

matches the introduced fault: We compare the original Co and
faulty classifier Cf,0.3 on 2,000 images of class 9 “No Passing”,
generated by our method. We picked class 9 as an example, as
this class showed average results in Tab. II. For all other classes,
please see the replication package. We can see in Fig. 4a that
the true class probability (Pt) for Co is almost 100% for all
randomly sampled tests. For Cf,0.3 this changes as 500 sampled
tests have a Pt below 20%. Next, we can observe in Fig. 4c
that random sampling without optimization, leads to around
1,000 tests matching the fault pattern. The graph for Cf,0.3

covers more area as this classifier misclassifies tests that match
the fault pattern, thus, having a lower Pt on those samples.
As the samples are sorted according to their Pt on the x-axis,
those matching tests appear first. When applying our method in
Fig. 4b, the average true class probability gets reduced to 57%
for Co, however, the failure mode search is much more effective
for the faulty classifier. Finally, we can see in Fig. 4d that more
tests generated by search now match the fault pattern for Cf,0.3

(around 1,200 instead of 1,000). This means our method can
identify weak points of a SUT. As we introduced a fault into
Cf,0.3, we hypothesize that this exact fault is targeted by our
test case generation. Here, we only discussed results for class 9,
Cf,0.3, and the GTSRB CNN classifier. The data for the other
four faulty classifiers show that with a lower fault prevalence,
the graphs of Cf (as in Fig. 4) become more similar to Co.

Answer to RQ4: Fault Injection Into the SUT

The introduced fault “assign wrong label if brightness in the
background of the image” is reflected in the generated tests
for the faulty classifier, confirming that our method works.
One can see this, as applying our method to the faulty
classifier results in significantly more test cases matching
the introduced fault. This also holds for the STN model and
the MNIST classifiers, where on MNIST we used “assign
wrong label if the digit has thick strokes” as fault criterion.

(a) Clusters found in Co (b) Clusters found in Cf,0.1

Fig. 5: Fault clusters on (a) the original and (b) the faulty
classifier for class 9. Gray points do not belong to any cluster.

(a) Centroid C-0 (b) Centroid C-1 (c) Centroid C-2

Fig. 6: Clusters found for the faulty classifier Cf,0.1 in Fig. 5.

E. RQ5: Identification of the Introduced Fault

After showing in RQ4 that introducing a fault into the SUT
has noticeable effects for one exemplary class, we want to craft
a more general argumentation that a fault can be found. For this,
we compare the fault clusters from the original and the faulty
classifiers by computing the distance to a reference cluster that
characterizes the introduced fault. By comparing the distance of
a cluster to this reference cluster, we can check if a fault found
by the clustering step is indeed the artificially introduced one.

Reference Cluster: We characterize the introduced fault in
the latent space with a reference cluster with the following four
steps: (1) We sample multiple latent space vectors for each class
from a uniform random distribution. (2) Decode these latent
space samples to images with the CVAE decoder. (3) Select
only images that match the fault criterion (fc larger than 4,770
for Cf,0.1 as in Tab. VI). (4) Finally, calculate the average of
the latent space vectors of images selected in step 3 to obtain
the 16-dimensional “reference vector” for the introduced fault.

Cluster Distance d(C1,C2): For the distance between
two clusters, we use cluster center distance. We calculate the
absolute 16-dimensional difference vector between the centroid
of the reference cluster C1 and the centroid of the found
cluster C2. Then each entry represents the absolute difference
in a specific dimension. We consider the largest value in the
difference vector the distance between C1 and C2. With this,
we provide a quantitative measure of how well the found cluster
matches the set of samples that constitutes the introduced fault.

d(C1,C2) = max|C1 −C2| (2)

We also used distance metrics based on the Jensen-Shannon
divergence [32], which showed similar results.

HDBSCAN Clustering: Results of the clustering step in
Fig. 5 show how our proposed method works: Analyzing the
original classifier Co, we find three failure regions, each having
a distance greater than 1.09 to the reference cluster. This
suggests that the introduced fault is not present in Co. Contrary,

6

executing the same method on the faulty classifier Cf,0.1, we
observe a large cluster C-2, with 385 cluster members and a
relatively low distance to the reference cluster of only 0.41.
This means we discovered a failure region in Cf,0.1, of the
fault “assign wrong label if brightness is in the background of
the image”. Finally, we visually inspect the cluster centroids
in Fig. 6 where we observe that the centroid of the cluster C-2
decodes into an image with a bright outer surrounding.

Answer to RQ5: Identification of the Introduced Fault

Comparing the clusters of fault-free classifier Co and fault-
containing classifier Cf,0.1, shows that one fault cluster
for Cf,0.1 was significantly closer to the reference cluster,
with a cluster distance of 1.09 for Co compared to 0.41 for
Cf,0.1. On the MNIST dataset, where low cluster distances
corresponded to thick digits, we observed similar results
with clusters being even better separated from each other.
This demonstrates that our method can detect failure regions,
showing that we can identify systematic problems in a SUT.

VI. THREATS TO VALIDITY

Internal Validity: A threat in the evaluation of our method
is the selection of the introduced faults. We selected these faults
because brightness and thickness clusters were observable in
the original classifiers and because these characteristics were
also encoded in the CVAEs. If a defect characteristic is not
encoded in the CVAEs, our method cannot generate test cases
containing that fault. We also carefully select parameters such
as in Alg. 1 or the fault prevalence parameter in our classifiers.

External Validity: By applying our method to different
datasets such as MNIST, GTSRB, and CIFAR100, as well as
different DL models, we minimize this threat. We showed that
our method works on MNIST and GTSRB with four different
classifiers. On CIFAR100, we found that current CVAEs can
not learn a reasonably small latent space while having good
reconstruction quality. We argue that this is a limitation of cur-
rent CVAE technology, and our method would potentially also
work on more complex datasets if future CVAEs or in general
latent space-based reconstruction methodologies improve.

Construct Validity: We acknowledge that in our approach,
the CVAE can only learn failures that are present in the training
dataset, meaning that we cannot discover failure regions not
present in the original training data. Furthermore, our method
can only uncover failures that can be encoded in the CVAE; if a
fault cannot be encoded in the latent space, the decoder cannot
generate test cases containing this fault. We thus suggest using
our method in addition to other established testing techniques.

VII. RELATED WORK

Optimization-Based Test Case Generation: Byun et al. [33]
use a two-stage CVAE to search for test cases in the latent space.
Unlike our gradient-based search approach, they apply particle
swarm optimization with a fitness function that guides test cases
towards (1) high prediction uncertainty and (2) a latent space
vector close to the zero vector (the center of the latent space).
They found that measuring uncertainty using test-time dropout
and Monte-Carlo simulation incurs a high computational cost,

requiring nearly an hour to generate 10,000 MNIST test cases.
In contrast, our gradient-based search method generates the
same number of test cases in under 30 seconds.

Zhao et al. [34] use a Wasserstein generative adversarial
network (GAN) to generate natural adversarial examples. They
used iterative stochastic search and hybrid shrinking search,
while the latter was found to be more efficient. A gradient-
based search, as in our work, was not applicable, as black-box
classifiers were used and domain applications were discrete.

Shukla et al. [35] train a GAN by perturbing latent space
features such that it outputs realistic images while belonging to
a different class. They created targeted and untargeted attacks
by optimizing the generator and discriminator with different
loss functions. Their method achieved high attack success rates
and was as effective as PGD applied on the pixel space.

Kang et al. [36] propose SINVAD, a methodology that uses a
VAE to generate test cases in the space of plausible images that
resemble the true training distribution. Contrary to our work,
they focus on generating test cases in between classes, whereas
we find conditions that make test cases from each class fail.

Guo et al. [37] create a method utilizing white-box gradient-
based search on the input space called DLFuzz. This differs
from us as DLFuzz does not change the semantics, whereas we
can generate test cases with any semantics present in the dataset.

Generative Models: Dunn et al. [38] use a GAN to perturb
meaningful features in contrast to perturbing pixel values like
in adversarial attacks. They argue that this type of perturbation
detects different faults than ℓp-norm restricted adversarial at-
tacks. The distinction to our work is that GANs are more prone
to two issues: (1) mode dropping such that certain parts of the
latent space cannot be used to generate output images and (2)
mode collapse [39], [40], which significantly reduces the GANs
output variety. To prevent issue (1), they keep images close to
a seed image by only optimizing over the first layers of the
generator. In our proposed method, we aim for an architecture
that maximizes the control and variety of the generated output.

VIII. CONCLUSION

In this work, we propose a domain-independent, data-driven
methodology for finding good test cases. By using our method,
a tester does not need to manually identify input transformations
for their specific domain. Instead, we train an autoencoder and
compute test cases based on the autoencoder’s latent space
using gradient-based search. These test cases are latent space
aware, as the decoder will only generate test cases that lie
within its learned data distribution. We cluster the generated
test cases by their latent space representation and call such
clusters failure regions. To the best of our knowledge, this is the
only work that uses a CVAE to detect failures automatically in
a purely data-driven way and validate the proposed approach.

Results show that our method works with multiple DL clas-
sifiers and on multiple datasets, such as MNIST and GTSRB.
We are able to generate failing test cases for all classes of the
two datasets, while on both datasets surpassing the baseline of
random sampling test cases from the latent space by a factor of
25 for GTSRB and 75 for MNIST. To validate our approach,
we created a fault-containing derivative of the original SUT.

7

We could visually as well as quantitatively confirm that our
method targeted the previously introduced fault.

We suggest using this approach together with other testing
methodologies that require expert knowledge about one’s con-
crete domain, such as metamorphic testing or defect-based
testing. Our method thus complements such approaches by
finding problems in DL models and shortcomings in the data
that testers otherwise might overlook.

ACKNOWLEDGMENT

We thank Jasmine Baral for refactoring the codebase, as well
as for implementing and conducting additional experiments.

REFERENCES
[1] F. Oboril et al., “MTBF model for AVs – From perception errors to

vehicle-level failures,” in Intelligent Vehicles Symposium, IV, Aachen,
Germany: IEEE, 2022, pp. 1591–1598. DOI: 10.1109/IV51971.2022.
9827006.

[2] A. Pretschner, “Defect-based testing,” Dependable Software Systems
Engineering, vol. 84, pp. 141–163, 2015. DOI: 10.3233/978-1-61499-
810-5-141.

[3] N. Humbatova et al., “Taxonomy of real faults in deep learning systems,”
in International Conference on Software Engineering, ICSE, Virtual,
South Korea: ACM, 2020, pp. 1110–1121. DOI: 10.1145/3377811.
3380395.

[4] E. W. Ayers et al., “PaRoT: A practical framework for robust deep
neural network training,” in NASA Formal Methods Symposium, NFM,
Moffett Field, CA, USA: Springer, 2020, pp. 63–84. DOI: 10.1007/978-
3-030-55754-6_4.

[5] Y. Feng et al., “DeepGini: Prioritizing massive tests to enhance the
robustness of deep neural networks,” in International Symposium on
Software Testing and Analysis, ISSTA, Virtual, USA: ACM, 2020,
pp. 177–188. DOI: 10.1145/3395363.3397357.

[6] J. M. Zhang et al., “Machine learning testing: Survey, landscapes and
horizons,” IEEE Transactions on Software Engineering, vol. 48, no. 1,
pp. 1–36, 2022. DOI: 10.1109/tse.2019.2962027.

[7] ISO Central Secretary, “Iso/iec/ieee international standard - systems
and software engineering–vocabulary,” International Organization for
Standardization, Tech. Rep., 2017, p. 541. DOI: 10.1109/IEEESTD.
2017.8016712.

[8] C. Berghoff et al., “Robustness testing of AI systems: A case study
for traffic sign recognition,” in Artificial Intelligence Applications and
Innovations, AIAI, Hersonissos, Crete, Greece: Springer, 2021, pp. 256–
267. DOI: 10.1007/978-3-030-79150-6_21.

[9] D. Hendrycks and T. Dietterich, “Benchmarking neural network ro-
bustness to common corruptions and perturbations,” in International
Conference on Learning Representations, ICLR, New Orleans, LA,
USA, 2019, pp. 1–16. DOI: 10.48550/arXiv.1903.12261.

[10] I. Koren and C. M. Krishna, Fault-tolerant systems. San Francisco,
CA, USA: Elsevier, 2007, p. 400. DOI: 10.1016/B978-0-12-088525-
1.X5000-7.

[11] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Symposium on Security and Privacy, SP, San Jose, CA,
USA: IEEE, 2017, pp. 39–57. DOI: 10.1109/SP.2017.49.

[12] I. J. Goodfellow et al., “Explaining and harnessing adversarial exam-
ples,” in International Conference on Learning Representations, ICLR,
San Diego, CA, USA, 2015, pp. 1–11. DOI: 10.48550/arXiv.1412.6572.

[13] C. Szegedy et al., “Intriguing properties of neural networks,” in Inter-
national Conference on Learning Representations, ICLR, Banff, AB,
Canada, 2014, pp. 1–10. DOI: 10.48550/arXiv.1312.6199.

[14] X. Zeng et al., “Adversarial attacks beyond the image space,” in
Conference on Computer Vision and Pattern Recognition, CVPR, Long
Beach, CA, USA: IEEE, 2019, pp. 4297–4306. DOI: 10.1109/CVPR.
2019.00443.

[15] J. Stallkamp et al., “Man vs. computer: Benchmarking machine learning
algorithms for traffic sign recognition,” Neural Networks, vol. 32,
pp. 323–332, 2012. DOI: 10.1016/j.neunet.2012.02.016.

[16] Y. LeCun et al., MNIST handwritten digit database, 2010.
[17] A. Krizhevsky, “Learning multiple layers of features from tiny images,”

University of Toronto, Tech. Rep., 2009.
[18] H. M. Dipu Kabir et al., “SpinalNet: Deep neural network with gradual

input,” IEEE Transactions on Artificial Intelligence, vol. 4, no. 5,
pp. 1165–1177, 2023. DOI: 10.1109/TAI.2022.3185179.

[19] Á. Arcos-García et al., “Deep neural network for traffic sign recognition
systems: An analysis of spatial transformers and stochastic optimisation
methods,” Neural Networks, vol. 99, pp. 158–165, 2018. DOI: 10.1016/
j.neunet.2018.01.005.

[20] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
International Conference on Learning Representations, ICLR, Banff,
AB, Canada, 2014, pp. 1–14. DOI: 10.48550/arXiv.1312.6114.

[21] C. Doersch, “Tutorial on variational autoencoders,” 2016. DOI: 10 .
48550/arXiv.1606.05908.

[22] K. Sohn et al., “Learning structured output representation using deep
conditional generative models,” in Neural Information Processing
Systems, NIPS, Montreal, Quebec, Canada: MIT Press, 2015, pp. 3483–
3491.

[23] “Variational autoencoder structure (reparameterized).” [Online; accessed
18-February-2025], Wikimedia Commons. (2021), [Online]. Available:
https : / / commons . wikimedia . org / wiki / File : Reparameterized _
Variational_Autoencoder.png.

[24] H.-T. D. Liu et al., “Beyond pixel norm-balls: Parametric adversaries
using an analytically differentiable renderer,” in International Con-
ference on Learning Representations, ICLR, New Orleans, LA, USA,
2019, pp. 1–21. DOI: 10.48550/arXiv.1808.02651.

[25] I. Goodfellow et al., Deep learning. online: MIT press, 2016, p. 785.
[26] I. Assent, “Clustering high dimensional data,” Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, vol. 2, no. 4, pp. 340–
350, 2012. DOI: 10.1002/widm.1062.

[27] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimiza-
tion,” in International Conference on Learning Representations, ICLR,
San Diego, CA, USA, 2015, pp. 1–15. DOI: 10.48550/arXiv.1412.6980.

[28] Solomon Kullback and R. A. Leibler, “On information and sufficiency,”
The Annals of Mathematical Statistics, vol. 22, no. 1, pp. 79–86, 1951.

[29] R. J. Campello et al., “Density-based clustering based on hierarchical
density estimates,” in Pacific-Asia Conference on Knowledge Discovery
and Data Mining, PAKDD, Gold Coast, Australia: Springer, 2013,
pp. 160–172. DOI: 10.1007/978-3-642-37456-2_14.

[30] L. McInnes and J. Healy, “Accelerated hierarchical density based
clustering,” in International Conference on Data Mining Workshops,
ICDMW, New Orleans, LA, USA: IEEE, 2017, pp. 33–42. DOI: 10.
1109/ICDMW.2017.12.

[31] L. McInnes et al., “hdbscan: Hierarchical density based clustering,”
The Journal of Open Source Software, vol. 2, no. 11, p. 205, 2017.
DOI: 10.21105/joss.00205.

[32] J. Lin, “Divergence measures based on the shannon entropy,” IEEE
Transactions on Information Theory, vol. 37, no. 1, pp. 145–151, 1991.
DOI: 10.1109/18.61115.

[33] T. Byun et al., “Manifold-based test generation for image classifiers,” in
International Conference on Software Engineering Workshops, ICSEW,
2020, p. 8. DOI: 10.1145/3387940.3391460.

[34] Z. Zhao et al., “Generating natural adversarial examples,” in Interna-
tional Conference on Learning Representations, ICLR, 2018, pp. 1–15.
DOI: 10.48550/arXiv.1710.11342.

[35] N. Shukla and S. Banerjee, “Generating adversarial attacks in the latent
space,” in Conference on Computer Vision and Pattern Recognition
Workshops, CVPRW, 2023, pp. 730–739. DOI: 10.1109/CVPRW59228.
2023.00080.

[36] S. Kang et al., “SINVAD: Search-based image space navigation for
DNN image classifier test input generation,” in International Conference
on Software Engineering Workshops, ICSEW, Seoul, Republic of Korea:
ACM, 2020, pp. 521–528. DOI: 10.1145/3387940.3391456.

[37] J. Guo et al., “DLFuzz: Differential fuzzing testing of deep learning
systems,” in Joint Meeting on European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering,
ESEC/FSE, Lake Buena Vista, FL, USA: ACM, 2018, pp. 739–743.
DOI: 10.1145/3236024.3264835.

[38] I. Dunn et al., “Exposing previously undetectable faults in deep neural
networks,” in International Symposium on Software Testing and Analysis,
ISSTA, Virtual, Denmark: ACM, 2021, pp. 56–66. DOI: 10 . 1145 /
3460319.3464801.

[39] A. Srivastava et al., “VEEGAN: Reducing mode collapse in GANs
using implicit variational learning,” in International Conference on
Neural Information Processing Systems, NIPS, Long Beach, CA, USA:
Curran Associates, Inc., 2017, pp. 3310–3320. DOI: 10.48550/arXiv.
1705.07761.

[40] H. Thanh-Tung and T. Tran, “Catastrophic forgetting and mode collapse
in GANs,” in International Joint Conference on Neural Networks,
IJCNN, Glasgow, UK: IEEE, 2020, pp. 1–10. DOI: 10.48550/arXiv.
1807.04015.

8

https://doi.org/10.1109/IV51971.2022.9827006
https://doi.org/10.1109/IV51971.2022.9827006
https://doi.org/10.3233/978-1-61499-810-5-141
https://doi.org/10.3233/978-1-61499-810-5-141
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1145/3377811.3380395
https://doi.org/10.1007/978-3-030-55754-6_4
https://doi.org/10.1007/978-3-030-55754-6_4
https://doi.org/10.1145/3395363.3397357
https://doi.org/10.1109/tse.2019.2962027
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1109/IEEESTD.2017.8016712
https://doi.org/10.1007/978-3-030-79150-6_21
https://doi.org/10.48550/arXiv.1903.12261
https://doi.org/10.1016/B978-0-12-088525-1.X5000-7
https://doi.org/10.1016/B978-0-12-088525-1.X5000-7
https://doi.org/10.1109/SP.2017.49
https://doi.org/10.48550/arXiv.1412.6572
https://doi.org/10.48550/arXiv.1312.6199
https://doi.org/10.1109/CVPR.2019.00443
https://doi.org/10.1109/CVPR.2019.00443
https://doi.org/10.1016/j.neunet.2012.02.016
https://doi.org/10.1109/TAI.2022.3185179
https://doi.org/10.1016/j.neunet.2018.01.005
https://doi.org/10.1016/j.neunet.2018.01.005
https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1606.05908
https://doi.org/10.48550/arXiv.1606.05908
https://commons.wikimedia.org/wiki/File:Reparameterized_Variational_Autoencoder.png
https://commons.wikimedia.org/wiki/File:Reparameterized_Variational_Autoencoder.png
https://doi.org/10.48550/arXiv.1808.02651
https://doi.org/10.1002/widm.1062
https://doi.org/10.48550/arXiv.1412.6980
https://doi.org/10.1007/978-3-642-37456-2_14
https://doi.org/10.1109/ICDMW.2017.12
https://doi.org/10.1109/ICDMW.2017.12
https://doi.org/10.21105/joss.00205
https://doi.org/10.1109/18.61115
https://doi.org/10.1145/3387940.3391460
https://doi.org/10.48550/arXiv.1710.11342
https://doi.org/10.1109/CVPRW59228.2023.00080
https://doi.org/10.1109/CVPRW59228.2023.00080
https://doi.org/10.1145/3387940.3391456
https://doi.org/10.1145/3236024.3264835
https://doi.org/10.1145/3460319.3464801
https://doi.org/10.1145/3460319.3464801
https://doi.org/10.48550/arXiv.1705.07761
https://doi.org/10.48550/arXiv.1705.07761
https://doi.org/10.48550/arXiv.1807.04015
https://doi.org/10.48550/arXiv.1807.04015

	Introduction
	Preliminaries
	Methodology
	Implementation
	Evaluation
	RQ1: Performance of Test Case Generation
	RQ2: Comparison to Baseline
	RQ3: Parameter Study
	RQ4: Fault Injection Into the SUT
	RQ5: Identification of the Introduced Fault

	Threats to Validity
	Related Work
	Conclusion

