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Usmg off-nadlr data to interpret nadir altimetry:
phenomenal seas from storms Daniele and Eddie
Fabrice Ardhuin!, Marcello Passaro?, Guillaume Dodet!


https://odl.bzh/QSkrv3Xj

Storm catalog: Ardhuin & De Carlo (2025)
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Naming storms:
big thanks to all who made wave observations possible
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Waves come from wind, but they respond to

currents, sea ice, icebergs, water depth ...
De Carlo et al. (JGR 2023, using SWIM L2S data)
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Better understanding of wave spectra: better Hs , and o

s (for example) currents
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Advertising ...

Most of this talk: new chapter
See also Young (1989), Krogstad et al. (1999)

l'0PS

Chapter 5

Wave groups and fluctuations of
wave parameters

Before we look at the evolution of the wave field over tens of kilometers and hours time scale, it is
worth looking at consequences of the shape of the wave spectrum on fluctuations in wave properties at
the scale of few minutes and kilometers. Indeed, the fact that waves are random introduces small scale
variations. Most early work was focused on defining the statistics of series of high waves (Arhan and
Ezraty, 1978; Masson and Chandler, 1993), which can be useful for example when catching waves on
a surfboard, avoid the high waves when navigating a landing craft through the surf zone, or landing a
helicopter on a ship. In this chapter we will start with another application which has become prominent
as we are starting to look at smaller and smaller scale details in the wave field: estimating the expected
fluctuations associated with groups (De Carlo et al., 2023), so that we may separate it from other effects,
including refraction induced by currents and water depth, wave breaking, etc, which will be discussed in
the following chapters. This investigation will also allow us to estimate lower bounds for uncertainties
of wave measurements that will be defined from the time and space footprint of the measurements. The
full uncertainty also contains instrument noise and measurement noise effects.

5.1 Wave envelope, local amplitudes and their statistics

Let (. be the complex number such that { = Re((.) is the free surface, (. is usally called the analytic
signal. The envelope 7 of the signal is defined by 7 = |¢.|, with an example shown in Fig. 5.1, using

bottom pressure p(2 = —h) instead of surface elevation (. This defines a local amplitude of the signal
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Ocean waves in geosciences

parts 1 and 2: general wave topics from deep to shallow water
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Fabrice Ardhuin,

Laboratoire d’Océanographie Physique et Spatiale, Brest, France

doi: 10.13140/RG.2.2.16019.78888/11,

, https://github.com/ardhuin/waves_in_geosciences
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1. Back to basics: the Brown waveform

Basic idea of altimetry: waveform contain information about
a) mean surface elevation = “sea surface height”, b) standard deviation = Hs / 4

0.8 1
0.6 1
ideal Brown waveform
0.4 1
Hs=40s c/2
0.2 1
0.0 . i .
-4 -2 0 2 4
(t—1)/0os
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1. Back to basics: limitations of Brown model

Problems:  The mean and std are defined over what spatial scale?
What about their fluctuations?

traditional view:
scale separation & spatial homogeneity,

Brown model with speckle noise
e.g. CFOSAT data (L1b, corrected for ant. pattern). See De Carlo et al. (JGR 2023)
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1. Back to basics: limitations of Brown-Hayne model

Problems:  The mean and std are defined over what spatial scale?
What about their fluctuations?

traditional view:
scale separation & spatial homogeneity,

Brown model with speckle noise
e.g. CFOSAT data (L1b, corrected for ant. pattern)

but some waveforms
really do not fit very well...
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2. Wave groups, Q,, and doughnut footprints

Satellite position: at time t; attime t,= t,+0.3 s

<
57
15
&
%

envelope
a=H.?2 a:hl

0.
—a

surface elevation C 2

~p=pc p {km)
Here the max amplitude is H/2 , with H_ = 4v< *>
¢ = n(x) x cos (k x) , envelope is n(x),
local wave height =4 n V(2/n), so that <H > = H, here H_is constant
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2. Wave groups

Satellite position: at time t; attime t,

what is measured by
the altimeter?

<
57
15
&
%

envelope n

a=H/2

surface elevation C 2

P=pPc
Here the max amplitude is H /2 , with H_ = 4V < >
¢ = n(x) x cos (k x) , envelope is n(x),

local wave height = 4 n V(2/n), so that <H > = H_
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2. Wave groups

Satellite position: at time t; attime t,
1.0- 795-%
0.8+
0.6+
—at tl
0.4- — fit:H,=1.6H,
envelope n — At )
=Hy2 4 2
A 02— - fit: Hy=0.1H,
—aH . . : : j 0.0-4
surface elevation C 2 2 | 4
i 0=De o p (km) h-a h h+a h+2a
Here, Lg=4.5 km : long wave groups
longer than the “oceanographic footprint” scale of Chelton et al. (JTECH 1989)
pc=\/(2 h H)=2.4 km — Hs=2m for Jason or Hs=5 m for CFOSAT
With Lg >> p_: retracking gives SWH from 0.1 to 1.6 H_, i.e. SWH = .. not H_ !N

What about Lg < p.?
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2. Wave groups, Q,,

For random waves in 1D, the PSD of the envelope near k=0 is proportional to HS2 ka
Here are 2 sea states with same Hs: a wind sea and a swell (De Carlo et al., JGR 2023)
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2. MLE3/MLE4 retrackers : « doughnut » footprint for Hs

Brown waveforms perturbed by analytical groups can be retracked ... analytically
For Least Squares cost functions: random groups impact on Hs & SSH = sum of perturbations

(b) local wave heights H;(x,y) . . .
SO For MLE3, here is the analytical solution:

7.5 25 (De Carlo et al. JGR 2023)
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2. MLE3/MLE4 retrackers : « doughnut » footprint for Hs

Brown waveforms perturbed by analytical groups can be retracked ... analytically
For Least Squares cost functions: random groups impact on Hs & SSH = sum of perturbations

(a) surface elevation ((x,y)

e s 2 e T

30 For MLE3, here is the analytical solution:

7.5 25 (De Carlo et al. JGR 2023)
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in 2D : doughnut shape

MLE3 retracker gives values that are
equivalent to a doughnut-shape filter
-0 of the local wave height map
Passaro et al. (in prep):
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2. « MLE3/MLE4 » retrackers : « doughnut » footprint for Hs

« doughnut theory » works: simulations without speckle (De Carlo & Ardhuin JGR 2024)

I , 350
141 | 0.41
(a) wave height 300 (b) sea level
A 0.31 300
- y= 0.77x + 2.14 A y = 0.71x + -0.00
> 250 _ oo , A
S 2| R7=o0s85 7| RZ=087 250
) @)
c 200 g 0.11
- e 200
3 10 B 0.0]
E 150 = -
@) £ -01
2 S
O g 100 100
O -0.2
© o
¥/ v H
o,< Q H z kk " 's
61 ~H kk——s— d |
8 10 12 -0.2 0.0 0.2

« MLE3 » retracking « MLE3 » retracking



3. Different retrackers: different wave group effects

Cost function can be optimised for

. . . . . 4 i A\ " m— analytic J,:eq. (12)
- reducing speckle noise (Maximum Likelihood) i filters for "SWH W -y g
- reducing speckle noise AND wave groups 13 —— v=0, no PTR, LS
- maximizing correlation between SWH and SSH ! === Vv=0,1S

]AH /" ; = ML, min=0.0
11 / == ML, rmin=0.06
R T N/ AR N S S A \ N R I B L UL ML, rmin = 0.06, a=-0.02
is the retracker 0 —— e
. - o -J2,Hs=10m
selected by ESA Seastate CCI project. |

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

(Schlembach et al., Remote sensing, 2020) normalized off-nadir distance b= py2/2hH,

It

* IS open source (https://github.com/ardhuin/wavesALTI )
* uses weighted least-square

« only fits the leading edge

weights = 1 / waveform:
- lower speckle noise than MLE3
- limited wave group noise
- smaller footprint that MLE3
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https://github.com/ardhuin/wavesALTI

3. Different retrackers: different wave group effects

WHALES has a smaller footprint that « MLE3 »
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Ardhuin - 5th CFOSAT Science Team Meeting, Biarritz, March 2025. slide 17



4. Waves for storm Daniele (this is Jason-3)
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4. Issues on other tracks ...

(a) surface geometry and back-scatter
satellite

(@)  median of SWH over 1 s 5 00(b) std of SWH over 1 s
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5. conclusion & recommandations

« After 30+ years of routine measurements, we are still making progress...

« 20 Hz or 1 Hz "SWH"” contains wave groups. SWH is not Hs: one example
« all time 1 Hz record » was SWH = 20.1 m (Hanafin et al. BAMS 2012) this

corresponds to Hs = 18.2 £0.2 m (Ardhuin & De Carlo, SEANOE 2025

By the way new records include storm Eddie (Hs=19.7+0.3 m with SWOT Poseidon 3C) and
storm Daniele (Hs = 18.5 £0.3 m)... These will be adjusted with intercalibration

We can start to use the « swh_1Hz_std » as a geophysical variable ...
e But that works best with sub-waveform retracking (WHALES and updates)

More tomorrow on how we can use wave data to learn about wave physics
and correct model parameterizations and forcing fields.

ADC Storm catalog and tracks: https://doi.org/10.17882/105378
Storm catalog (with list of altimeter tracks) : https://doi.org/10.17882/105378
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