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Abstract
Air pollution is a serious issue that currently affects many
industrial cities in the world and can cause severe ill-
ness to the population. In particular, it has been proven
that extreme high levels of airborne contaminants have
dangerous short-term effects on human health, in terms
of increased hospital admissions for cardiovascular and
respiratory diseases and increased mortality risk. For
these reasons, an accurate estimation of airborne pollu-
tant concentrations is crucial. In this paper, we propose
a flexible novel approach to model hourly measurements
of fine particulate matter and meteorological data col-
lected in Beijing in 2014. We show that the standard
state space model, based on Gaussian assumptions, does
not correctly capture the time dynamics of the observa-
tions. Therefore, we propose a non-linear non-Gaussian
state space model where both the observation and the
state equations are defined by copula specifications, and
we perform Bayesian inference using the Hamiltonian
Monte Carlo method. The proposed copula state space
approach is very flexible, since it allows us to separately
model the marginal distributions and to accommodate a
wide variety of dependence structures in the data dynam-
ics. We show that the proposed approach allows us not
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only to accurately estimate particulate matter measure-
ments, but also to capture unusual high levels of air
pollution, which were not detected by measured effects.

K E Y W O R D S

air pollution, Bayes, Hamiltonian Monte Carlo, state space models

1 INTRODUCTION

Over recent decades, rapid economic development and urbanization lead to severe and chronic
air pollution in China, which is currently listed as one of the most polluted countries in the
world. Airborne pollutants contribute not only to the contamination of the air, but also of food
and water, making inhalation and ingestion the major routes of pollutant exposure, in addition to
dermal contact, to a minor extent (Kampa & Castanas, 2008). Exposure to ambient air pollution
has been associated with a variety of adverse health effects, ranging from cardiovascular and res-
piratory illnesses, such as stroke and ischemic heart disease, to cancer and even death. Human
health effects include birth defects, serious developmental delays in children, and reduced activ-
ity of the immune system, leading to a number of diseases (Liang et al., 2015). It has been shown
that air pollution increases mortality and morbidity and shortens life expectancy (World Health
Organization, 2013), with heavy consequences in terms of health care and economy (Song et al.,
2017). Outdoor PM2.5 has been established as one of the best metrics of air pollution-related
risk to public health, since it is considered to be the fraction of air pollution that is most reliably
associated with human disease (Liu et al., 2017). In particular, PM2.5 is known to be a better pre-
dictor for acute and chronic health effects than other types of particulate matter pollutants (Matus
et al., 2012). PM2.5 consists of fine particulate matter with aerodynamic diameters of less than 2.5
micrometres (𝜇m). PM2.5 is a portion of air pollution that is made up of extremely small particles
and liquid droplets containing acids, organic chemicals, metals, and soil or dust particles, that
are able to travel deeply into the respiratory tract, reaching the lungs. Sources of PM2.5 include
combustion in mechanical and industrial processes, vehicle emissions, and tobacco smoke. It has
been estimated that in China, ambient PM2.5 was the first-ranking mortality risk factor in 2015
and exposure to this pollutant caused 1.1 million deaths in that year (Cohen et al., 2017).

Fine particulate matter is a key driver of global health and therefore it is vital to accurately
model and estimate the exposure to PM2.5, especially in areas of severe and persistent air pollu-
tion such as China and its biggest cities like Beijing. A precise estimation of air pollution is crucial
for a realistic appraisal of the risks that airborne contaminants pose and for the design and imple-
mentation of effective environmental and public health policies to control and limit those risks
(Shaddick et al., 2018).

Several contributions in the literature focus on modelling the observed concentrations of
ambient air pollution via spatio-temporal models based on Gaussian assumptions. For example,
Sahu et al. (2006) modelled fine atmospheric particulate matter data collected in the US using a
Bayesian hierarchical spatio-temporal approach. Sahu and Mardia (2005) used a spatio-temporal
process based on a Bayesian kriged Kalman filtering to model atmospheric particulate matter in
New York City. Calder (2008) adopted a Bayesian dynamic process convolution approach to pro-
vide space-time interpolations of PM2.5 and PM10 concentrations readings taken across the state
of Ohio.
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Another stream of research in the atmospheric science literature is devoted to forecasting
pollutant concentrations using deep learning models (Ayturan et al., 2018). Feng et al. (2015)
used PM2.5 and meteorological variables as input nodes to a multi-layer perceptron (MLP)
back-propagation artificial neural network (ANN). The authors used air mass trajectory anal-
ysis to identify air corridors to different air pollution monitoring stations in China, and they
applied wavelets decompositions to pollutant predictors to improve the ANN forecast accuracy.
Li et al. (2016) proposed a spatio-temporal deep learning (STDL)-based air quality prediction
method using data from 12 air quality monitoring stations in Beijing. Other authors adopted
recurrent neural networks (RNNs) with long short-term memory (LSTM) for forecasting air pol-
lution concentrations. For example, Bui et al. (2018) applied LSTM to predict urban air quality
in South Korea. Liu et al. (2020) combined LSTM-based wind-sensitive attention mechanisms
with an LSTM neural network for predicting PM2.5 concentrations. Other applications of deep
models include the paper by Rangapuram et al. (2018), which presents a forecasting method that
parametrizes a particular linear Gaussian state space model using an RNN. For multivariate time
series forecasting, Salinas et al. (2019) combine an RNN-based time series model with a Gaussian
copula process, relying on a low-rank approximation of the covariance structure.

In this paper, we propose a novel flexible non-linear non-Gaussian state space model based on
copulas, that includes a dynamic latent smoothing effect. As opposed to traditional methods, our
approach, in addition to model the observed concentrations of air pollution, allows us to obtain an
estimate of underlying non-measured factors and to identify time-points where the latent states
have a considerable impact on the response, which are critical to assess pollution-related health
risks. These points correspond to unusual high levels of air pollution, which cannot be accommo-
dated for simply by the model including covariate effects such as weather conditions and seasonal
patterns. These can have dangerous effects on human health. Extreme air pollution levels need
to be carefully monitored, since it is proven that acute exposures increase the rate of cardiovascu-
lar, respiratory and mortality events (Anderson et al., 2012). Recent studies in various countries
confirm the severity of short- and long-term effects of the exposure to increased levels of airborne
contaminants on human health, including respiratory diseases, decreased lung functions, recur-
rent health care utilization, reduced life expectancy and increased mortality. Vulnerable people,
such as infants and elderly, are particularly susceptible to extreme air pollution levels. In par-
ticular, children who are exposed to an excess level of PM2.5 are under a significantly high risk
of hospitalization for respiratory symptoms, asthma medication use, and reduced lung function,
while PM2.5 pollution is linked to an increased risk of hospital admission for heart failure among
the elderly. In addition, air pollution has a substantial economic impact, since it multiplies the
worldwide healthcare burden (Anderson et al., 2012; Kan et al., 2012; Kim et al., 2015). We will
show that our methodology performs better than traditional approaches in accurately modelling
unusual high levels of air pollutants, allowing us to better assess the effects of human exposure
to airborne contaminants.

1.1 Linear Gaussian state space models

State space models are dynamic statistical analysis techniques, which assume that the state of
a system at time t can only be observed indirectly through observed time series data (Durbin
& Koopman, 2000). State space models contain two classes of variables, the unobserved state
variables, which describe the development over time of the underlying system, and the observed
variables (Durbin & Koopman, 2002). Let’s consider a specific univariate linear Gaussian state
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space model, which is a first order unobserved component model, with continuous states and
discrete time points t= 1,… ,T

Zt = 𝜌
O
t Wt + 𝜎

O
t 𝜂

O
t (1)

Wt = 𝜌
L
t Wt−1 + 𝜎

L
t 𝜂

L
t . (2)

Here, (Zt)t=1,… ,T is a random vector corresponding to the observations, (Wt)t=1,… ,T is an unob-
served state vector and 𝜂

O
t and 𝜂

L
t are independent disturbances, with 𝜂

O
t ∼ N(0, 1) and 𝜂

L
t ∼

N(0, 1) for t= 1, … , T. Further, it holds that 𝜌O
t ∈ (−1, 1), 𝜌L

t ∈ (−1, 1), 𝜎O
t ∈ (0,∞) and 𝜎

L
t ∈

(0,∞). It is also assumed that W0 ∼ N(𝜇L
0 , (𝜎

L
0 )

2) is independent of 𝜌L
t and 𝜌

L
t for all t, where 𝜇

L
0

and 𝜎
L
0 are generally known. Equation (1) is commonly referred to as the observation equation

and it describes how the observed series depends on the unobserved state variables Wt and on the
disturbances 𝜂O

t . Equation (2) is referred to as the state equation and it describes how these state
variables evolve over time (Van den Brakel & Roels, 2010).

Typically, Kalman filter recursions are used for determining the optimal estimates of the state
vector Wt given information available at time t (Durbin & Koopman, 2012). Other methods,
such as Empirical Bayes, were proposed by Koopman and Mesters (2017) to efficiently esti-
mate dynamic factor models defined by latent stochastic processes, adopting a shrinkage-based
approach. Ippoliti et al. (2012) used a linear Gaussian state space model to produce predictions of
airborne pollutants in Italy and in Mexico.

1.2 Beijing ambient air pollution data

In this paper, we aim at accurately estimating the concentration of airborne particulate matter
using a flexible state space model. We consider a data set of hourly PM2.5 readings (𝜇g∕m3) and
meteorological measurements, such as dew point (DEWP, degrees Celsius), temperature (TEMP,
degrees Celsius), pressure (PRES, hPa), wind direction (CBWD, taking values: northwest (NW),
northeast (NE), southeast (SE) and calm and variable (CV)), cumulated wind speed (IWS, m/s)
and precipitations (PREC), collected in 2014 in Beijing. The data set refers to a single location, with
PM2.5 measurements collected at the US Embassy in Beijing, and meteorological data collected at
the Beijing Capital International Airport. The data set used in this paper is part of a larger data set
collected in Beijing during a 5-year time period, from January 1st, 2010 to December 31st, 2014, for
a total of 43,824 observations. The data are available at https://archive.ics.uci.edu/ml/datasets/
Beijing+PM2.5+Data (Liang et al., 2015). We split the data into 12 monthly sub-sets, since this
allows us to adjust the model over time periods. In order to consider the effects of meteorological
conditions on airborne contaminants concentrations, we assume a generalized additive model
(GAM) (Hastie & Tibshirani, 1986). However, the choice of using a GAM is arbitrary, since it might
be replaced by any regression-type model able to remove the covariate effects. More precisely, we
suppose that, for each month, the relationship between the logarithm of PM2.5 concentrations Yt
and covariates xt for each hourly data point t = 1, … , T (where T is the total number of monthly
observations) is described by a GAM, such that

Yt = f (xt) + 𝜎𝜀t, (3)

where xt contains the meteorological covariates and seasonal covariates capturing within-day and
-week patterns. Further, f (⋅) is a smooth function of the covariates, expressing the mean of the
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GAM, and 𝜀t
iid∼ N(0, 1). As suggested by many authors in the air pollution literature, we are going

to investigate the presence of structures in the residual processes (Burnett & Krewski, 1994; Laird
& Ware, 1982; Lee et al., 2014). For estimation, we make use of the two-step approach which is
commonly used for copula models: we first estimate the GAM, fix the GAM parameters at point
estimates, and then estimate the copula model to capture temporal effects (Joe & Xu, 1996). For
t = 1, … , T, we define the standardized errors Zt as

Zt =
Yt − f (xt)

𝜎
. (4)

This step allows us to account for weather and seasonal patterns. High values of Zt are of interest to
detect unusual high levels of pollution so far not accounted for. Using the estimates f̂ and �̂� of the
GAM, we obtain approximately standard normal data ẑt from the (4). Empirical autocorrelation
functions of (ẑt)t=1,… ,T for each month show dependence among succeeding observations (sup-
plement, Figure 1). Thus the independence assumption for the errors 𝜀t of the GAM in Equation
(3) seems to be inappropriate. We also estimated a GAM with heteroscedastic errors for each of
the 12 months, allowing for a time varying variance. However, the results showed only very minor
differences with a GAM model with homoscedastic errors. We employ a state space model, as
specified in Equations ( (1) and (2), to allow for time effects in the GAM. Here 𝜌

O
t and 𝜌

L
t will

be estimated from the data. Further, we assume that they do not depend on time, i.e. we set
𝜌

O
t = 𝜌O and 𝜌

L
t = 𝜌L. In our data application we split the data into monthly periods to make this

assumption more plausible.
We now consider a state space model for Zt, which is standardized by a GAM. Under our

assumptions we have 𝜎
O
t =

√
Var(Zt|Wt) =

√
1 − 𝜌

2
O and 𝜎

L
t =

√
Var(Wt|Wt−1) =

√
1 − 𝜌

2
L with

𝜌O, 𝜌L ∈ (−1, 1). For the initial conditions we assume 𝜇L
0 = 0 and 𝜎

L
0 = 1. With these assumptions

the state space model in (1) and (2) becomes

Zt = 𝜌OWt +
√

1 − 𝜌
2
O𝜂

O
t

Wt = 𝜌LWt−1 +
√

1 − 𝜌
2
L𝜂

L
t (5)

with 𝜂
O
t , 𝜂

L
t

iid∼ N(0, 1) and W0 ∼ N(0, 1). Note that representation (5) induces the following bivari-
ate normal distributions

(
Zt

Wt

)

∼ N2

((
0
0

)

,

(
1 𝜌O

𝜌O 1

))

and

(
Wt

Wt−1

)

∼ N2

((
0
0

)

,

(
1 𝜌L

𝜌L 1

))

.

In order to assess the suitability of the linear Gaussian state space model to the Beijing air pollu-
tion data, we display in Figure 1 the bivariate normalized contour plots of the pairs (ẑt, ẑt−1)t=2,… ,T
for each month, to visualize the dependence structure between two successive time points in the
series. Using (5) we see that Zt can be written as a linear function of Zt−1 and independent nor-
mally distributed disturbances. Since Z1 is normally distributed, it follows that (Zt,Zt−1) are jointly
normal. In particular, we have

Zt ∼ N(0, 1) and Cov(Zt,Zt−1) = 𝜌
2
O𝜌L ∀t ≥ 1. (6)

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/71/3/613/7067600 by Technical U

niversity of M
unich, U

niversity Library user on 25 M
arch 2025



618 KREUZER et al.

month 1

Zt−1

Z
t

−3 −1 1 3

−
3

0
2

month 2

Zt−1

Z
t

−3 −1 1 3

−
3

0
2

month 3

Zt−1

Z
t

−3 −1 1 3

−
3

0
2

month 4

Zt−1

Z
t

−3 −1 1 3

−
3

0
2

month 5

Zt−1

Z
t

−3 −1 1 3

−
3

0
2

month 6

Zt−1

Z
t

−3 −1 1 3

−
3

0
2

month 7

Zt−1

Z
t

−3 −1 1 3

−
3

0
2

month 8

Zt−1

Z
t

−3 −1 1 3

−
3

0
2

month 9

Zt−1

Z
t

−3 −1 1 3

−
3

0
2

month 10

Zt−1

Z
t

−3 −1 1 3

−
3

0
2

month 11

Zt−1

Z
t

−3 −1 1 3

−
3

0
2

month 12

Zt−1

Z
t

−3 −1 1 3

−
3

0
2

F I G U R E 1 Normalized contour plots of pairs (ẑt, ẑt−1)t=2,… ,T ignoring serial dependence for each of the 12
Beijing air pollution monthly data sets [Colour figure can be viewed at wileyonlinelibrary.com]

However, Figure 1 reveals that the normalized contour plots of the Beijing monthly data devi-
ate from the elliptical shape of a Gaussian dependence structure (which, to aid comparisons, is
depicted in the top left panel of Figure 3 in the supplement). For example, the normalized con-
tour plots for January and October (months 1 and 10) show tail dependence and/or asymmetry
in the tails, which cannot be modeled with a Gaussian distribution. This suggests that the linear
Gaussian state space model is too restrictive for the Beijing air pollution data and a more flexible
approach needs to be adopted.

1.3 Our proposal

In the literature, extensions of the linear Gaussian state space model, relaxing the assumptions
of linearity and normality, have been studied, for example, by Johns and Shumway (2005). They
adopted a non-linear and non-Gaussian state space formulation to model airborne particulate
matter, yet relying on the Normal distribution to describe the errors in the state and observa-
tion equations. Chen et al. (2012) implemented a non-linear state space model to predict the
global burden of infectious diseases using the extended Kalman filter approach. Non-linear state
and observation equations of this model were derived from differential equations, however the
authors still used Gaussian noise terms in the observation and state equations.

We propose a very flexible Bayesian non-linear and non-Gaussian state space model, where
both the observation and the state equations are described by copulas. Copulas are flexible

D
ow

nloaded from
 https://academ

ic.oup.com
/jrsssc/article/71/3/613/7067600 by Technical U

niversity of M
unich, U

niversity Library user on 25 M
arch 2025

http://wileyonlinelibrary.com


KREUZER et al. 619

mathematical tools, which allow us to model separately the marginals from the dependence
structure, and the use of different copula families are suitable to accommodate various types of
dependences. More formally, a d-dimensional copula is a multivariate distribution function on
the d-dimensional hyper cube [0, 1]d with uniformly distributed marginals. A thorough overview
about copulas is provided in Joe (2014) and Nelsen (2007). We point out that our approach
is different from the one introduced by Smith and Maneesoonthorn (2018), who proposed the
construction of copulas through the inversion of nonlinear state space models. First, we find
an equivalent formulation of the Gaussian state space model in (5) in terms of copulas. The
representation is given by

(Ut,Vt) ∼ C
N
U,V (⋅, ⋅; 𝜏O)

(Vt,Vt−1) ∼ C
N
V2,V1

(⋅, ⋅; 𝜏L), (7)

where

Ut = Φ (Zt) ,Vt = Φ (Wt), (8)

with Φ denoting the standard normal cumulative distribution function. The variables Ut and Vt
are marginally uniformly distributed on (0,1) and Zt and Wt are standard normal. Here the Gaus-
sian copulas CN

U,V and CN
V2,V1

are parametrized by Kendall’s 𝜏, obtained as 𝜏O = 2
𝜋

arcsin(𝜌O) and
𝜏L = 2

𝜋
arcsin(𝜌L). Corresponding approximately uniform pseudo-copula data, that can be used

for estimating the model in (7), are obtained as

ût = Φ (ẑt) . (9)

By reformulating the state space representation in Equation (5) in terms of copulas in Equation
(7), it is straightforward to see how we can generalize the Gaussian linear state space model
by replacing the Gaussian copulas in Equation (7) with arbitrary bivariate copulas. Typical
restrictions of the Gaussian copula, such as symmetric tails, can be circumvented. For example,
a Gumbel copula would allow for asymmetric tails. Koopman et al. (2016) incorporated the
symmetric-tailed Gaussian and Student t copulas in non-linear non-Gaussian state space mod-
els; however, asymmetric tail dependence could not be captured, since the authors ignored
non-symmetric copula families and restricted their attention solely to autoregressive state
equations. The proposed copula-based state space model allows us to specify various dependence
structures to model the relationships between the observations and the underlying states, and to
describe the states evolution over time. We will show that our methodology is able to accurately
model the levels of PM2.5 in Beijing.

The remainder of the paper is organized as follows. Section 2 introduces a copula-based state
space model, Section 3 illustrates Bayesian inference for the proposed approach and Section 4
is devoted to the application of the copula state space model to the Beijing pollution data.
Concluding remarks are given in Section 5.

2 THE COPULA STATE SPACE MODEL

The copula state space model extends the linear Gaussian state space approach, allowing copula
specifications in place of normal distributions as in the observation equation as well as in the state
equation. In particular, we assume that the dynamic behaviour of the residuals Zt ∶= Φ−1(Ut)
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for the GAM model introduced in Equation (3), with Zt ∼ N(0, 1) and Ut ∼ U(0, 1) defined as in
Equation (8), depends on the latent variable Wt ∶= Φ−1(Vt), with Wt ∼ N(0, 1) and Vt ∼ U(0, 1),
according to a bivariate copula distribution given in the observation equation. The evolution of
the latent variable Wt over time is also described by a bivariate copula distribution, which defines
the state equation of the model. Our approach is more flexible than traditional copula-based time
series models, since it captures covariate effects using a semiparametric regression, and then con-
structs a state space model on the standardized residuals, with copulas modelling the observation
as well as the state equation. Other approaches use copulas to model the observed time-series
directly as Markov processes, however they do not consider latent variables to capture the series
temporal dynamics. The Markov process approach has been first followed by Chen and Fan (2006)
and then extended to financial time series models by Patton (2009). In Smith et al. (2010) higher
order Markov dependence is allowed and modelled in a D-vine copula framework. The copula
distributions defining the observation and state equations of the proposed state space approach
do not necessarily belong to the same family, allowing maximum flexibility in the specification
of the model. However, we restrict our model to bivariate copula families with a single parame-
ter. This gives still a flexible class of copula families, including e.g. Gaussian, Gumbel, Clayton or
Frank copulas. The Student t copula can also be included if we fix the degrees of freedom param-
eter. An overview of different bivariate copula families can be found in Joe (2014), Chapter 4.
Further, we are able to express the copula dependence parameters in the observation and state
equations in terms of Kendall’s 𝜏. This is convenient for comparison of the dependence strength,
since the parameter space of distinct copula families may be different. More formally, we assume
that the joint distributions for the uniformly transformed variables Ut and Vt, with t = 1, … , T,
are described by copulas, similarly to the (7); however, the Gaussian copula in the observation
equation is replaced by CO

U,V (⋅, ⋅; 𝜏O) and the Gaussian copula in the states equation is replaced by
CL

V2,V1
(⋅, ⋅; 𝜏L), where 𝜏O = g(𝜃O) is the Kendall’s 𝜏 of the copula of the observations and 𝜏L = g(𝜃L)

is the Kendall’s 𝜏 of the copula of the states (latent variables), respectively. The function g is an
appropriate one-to-one transformation function, and 𝜃O and 𝜃L are the parameters of the bivari-
ate copulas CO

U,V and CL
V2,V1

, respectively. For the specification of g for some one-parameter copula
families see Joe (2014), Chapter 4.

The copula state space model is defined on the uniform scale as follows

Ut | Vt = vt ∼ C
O
U|V (⋅ | vt; 𝜏O) (10)

Vt | Vt−1 = vt−1 ∼ C
L
V2|V1

(⋅ | vt−1; 𝜏L) (11)

where (10) is the observation equation and (11) is the state equation. We assume, as in the linear
Gaussian state space model, that Ut is independent of Ut−1 given the latent state Vt. The copula
state space model introduced in Equations (10) and (11) can be visualized as in Figure 2.

We now derive the joint distributions of (Zt,Wt) ∼ FZt ,Wt and (Wt,Wt−1) ∼ FWt ,Wt−1 . By Sklar’s
theorem (Sklar, 1959), we have that

FZt ,Wt (zt,wt) = C
O
U,V (Φ(zt),Φ(wt); 𝜏O) = C

O
U,V (ut, vt; 𝜏O).

Hence,

FZt|Wt=wt (zt|wt) =
𝜕

𝜕vt
C

O
U,V (Φ(zt), vt; 𝜏O)

||||vt=Φ(wt)
= C

O
U|V (ut|vt; 𝜏O)

|||ut=Φ(zt),vt=Φ(wt)

= C
O
U|V (Φ(zt) |Φ(wt); 𝜏O).
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F I G U R E 2 Graphical visualization of the copula state space model

Similarly,

FWt|Wt−1=wt−1(wt | wt−1) = C
L
V2|V1

(Φ(wt) |Φ(wt−1); 𝜏L).

Therefore, the model can also be expressed on the normalized scale as follows

Zt | Wt = wt ∼ C
O
U|V (Φ(zt) |Φ(wt); 𝜏O) (12)

Wt | Wt−1 = wt−1 ∼ C
L
V2|V1

(Φ(wt) |Φ(wt−1); 𝜏L), (13)

where (12) is the observation equation and (13) is the state equation. Contour plots of (Zt,Zt−1) of
this model for different choices of bivariate copulas are shown in Figure 3, illustrating different
shapes that the model can deal with.

The copula state space model has the advantage of allowing flexibility in the specification of
the observation and state equations, and thus is able to accommodate a wide variety of depen-
dence structures in the air pollution data dynamics. In the standard GAM the errors are assumed
to be independent. Our methodology allows us to account for autoregressive effects in the error
through the underlying latent variable 𝜎Wt, as defined on the original scale of the GAM resid-
uals, or via the proxy Vt, on the uniform scale. These latent variables can be interpreted as
non-measured nonlinear autoregressive effects. As we will see in Section 4.3, our model’s flex-
ibility allows us to detect extreme air pollution levels, where the response is more susceptible
to the effect of the underlying latent variable. Capturing unusual air contaminant levels is very
important, since human exposure to pollution spikes have a substantial impact on general health,
causing severe cardiovascular and respiratory illness, and increasing mortality.

First we study the normalized copula state space model (12) and (13), when the copulas CO
U,V

and CL
V2,V1

are Gaussian copulas with parameters 𝜌O and 𝜌L. It is straight forward to see that
we can identify (12) and (13) as the Gaussian state space model (1) and (2) with time constant
parameters given by 𝜌

O
t = 𝜌O, 𝜎

O
t =

√
1 − 𝜌

2
O and 𝜌

L
t = 𝜌L, 𝜎

L
t =

√
1 − 𝜌

2
L, respectively. In partic-

ular the associated state equation is a stationary Gaussian AR(1) process, whose variance and
covariance expressions can be used to determine that the joint distribution of the observation vec-
tor (Z1, … ,ZT) for any integer value T > 0 is jointly normal with zero mean vector, marginal unit
variances and autocorrelations given by

cor(Zt,Zt+s) = 𝜌
2
O𝜌

s
L (14)
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F I G U R E 3 Normalized contour plots for (Zt,Zt−1) of the copula state space model for different bivariate
copulas. In the state and observation equation we choose the same copula family [Colour figure can be viewed at
wileyonlinelibrary.com]

for t = 1, … , T and s + t ∈ {1, … , T}. For s=1 we recover the result stated in Equation (6).
Now we consider the general copula state space case described by CO

U,V and CL
V2,V1

. The cor-
responding joint density of the observations uT = (u1, … ,uT) and states vT = (v1, … , vT) on the
copula scale is given by

c(uT , vT) =
T∏

t=1
cO

U,V (ut, vt; 𝜏O)
T−1∏

t=1
cL

V2,V1
(vt, vt+1; 𝜏L). (15)

Integration over the latent states will give the joint distribution of the observations uT . Since this
would require a T dimensional integration it is numerically intractable. However the bivariate
density of (U1,U2) is tractable. In particular we have

c(u1,u2) =
∫

1

0

[

∫

1

0
cO

U,V (u1, v1; 𝜏O)cL
V2,V1

(v1, v2; 𝜏L)dv1

]
cO

U,V (u2, v2; 𝜏O)dv2. (16)
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KREUZER et al. 623

The expression in the square bracket is a bivariate copula density for (U1,V2) (denoted by cU1,V2 )
associated with a three dimensional C-vine on the nodes {U1,V1,V2} with pair copula CO

U,V for
(U1,V1), CL

V2,V1
for (V1,V2) and the independence copula for the conditional copula of (U1,V2)

given V1. For an elementary introduction to vine copulas see for example Czado (2019), where the
three dimensional case is covered in Section 4.1. Using this bivariate copula density cU1,V2 as the
pair copula density for (U1,V2) in a three dimensional C-vine (U1,V2,U2), the pair copula density
cO

U,V for (V2,U2) together with the independence copula for the conditional copula for (U1,U2)
given V2, then we can identify c(u1,u2) in Equation (16) as the bivariate copula density arising
from the so specified three dimensional C-vine for (U1,V2,U2). Using the same approach we can
show that the marginal density of (U1+𝓁 ,U2+𝓁) for 𝓁 ≥ 1 coincides with the marginal density of
(U1,U2), i.e. c(u1+𝓁 ,u2+𝓁) = c(u1,u2) holds for all 𝓁 = 1, … , T.

Using recursively three-dimensional C-vines with a conditional independence pair copula we
can also determine the density of (U1,U3). In particular we first use the three-dimensional C-vine
(V2,V3,U3), then (V1,V2,U3) and finally (U1,V1,U3). The pair copula associated with (U3,V2) in
the second C-vine (V1,V2,U3) is set to the bivariate marginal copula using integration from the
first C-vine (V2,V3,U3). Finally the pair copula for (V1,U3) in the third C-vine (U1,V1,U3) is set
to by the integrated bivariate marginal copula of the second C-vine. This recursive procedure can
then be extended to determine the density of (U1, Uk) for arbitrary k = 2, … , T. It is also easy to
see that c(u1+𝓁 ,uk+𝓁) = c(u1,uk) holds for all 𝓁 = 1, … , T and k = 1,… , T − 𝓁. In this sense the
copula state space model is stationary.

If we use the bivariate Farlie-Gumbel-Morgenstein copula for CO
U,V and CL

V2,V1
in the copula

state space model, we can perform the required integration analytically. In particular consider
the Farlie-Gumbel-Morgen copula density given as cFGM(u1,u2; 𝜃) = 𝜃(2u1 − 1)(2U2 − 1) + 1 with
parameter 𝜃 ∈ [−1, 1]. Then we have

∫

1

0
cFGM(u1, t; 𝜃1)cFGM(t,u2; 𝜃2)dt = cFGM

(
u1,u2;

𝜃1𝜃2

3

)

as shown for example in Stoica (2013). However this copula is not interesting in practice, because
it allows only for low dependence. In particular the associated Kendall’s 𝜏 is 2𝜃/9. For the general
case it follows that the Kendall’s 𝜏 associated with c(u1,ut) is given by

𝜏
FGM
1,t =

2𝜃L𝜃
t
O

3t+2 . (17)

2.1 Identifiability constraints

We notice some identifiability issues related to the model. In particular, if 𝜏O = 1, the observed
and latent variables are equivalent and hence the state equation becomes unnecessary. In addi-
tion, if 𝜏L = 0, then the latent variables (Vt)t=1,… ,T at different time points become uncorrelated.
Therefore, we need to set identifiability constraints for the copula state space model by establish-
ing a relationship between 𝜏O and 𝜏L. In order to do that, we notice that the dependence between
two successive time points Ut−1 and Ut is determined by both 𝜏L and 𝜏O. The form of the corre-
lation between Zt−1 = Φ−1(Ut−1) and Zt = Φ−1(Ut) can be derived exactly when CO

U,V and CL
V2,V1

are both Gaussian copulas. Since in the Gaussian case the parameter of the observation equation
copula is the correlation coefficient 𝜌O and the parameter of the state equation copula is the
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624 KREUZER et al.

correlation coefficient 𝜌L, then the correlation between Zt−1 and Zt is cor(Zt,Zt+1) = 𝜌
2
O𝜌L and

more generally (14) holds. For larger values of s and larger values of 𝜌L we see that cor(Zt,Zt+s) is
close to zero, so we observe an approximate nonidentifiability in that case. Similar remarks can
be made in the case of the Farlie-Gumbel-Morgenstein copula based model using Equation (17).
The higher the value of 𝜌L the smoother the latent states are. Higher smoothness of the latent
states induces a lower prediction uncertainty for the latent states. To guarantee a certain degree
of smoothness, we need to set 𝜌L greater than some specific value and therefore impose 𝜌O ≤ 𝜌L
in our approach. In particular, we assume the identifiability constraint in the Gaussian case
𝜌O = 𝜌

c
L for some suitable value c ≥ 1. In this case, the correlation between Zt−1 and Zt becomes

cor(Zt−1,Zt) = 𝜌
2c+1
L . Transforming the correlation coefficients into Kendall’s 𝜏, in the Gaussian

case, we obtain the following relationships

𝜏O =
2
𝜋

arcsin(𝜌c
L) and 𝜏L =

2
𝜋

arcsin(𝜌L),

hence, 𝜏O is a function of 𝜏L and c.
Figure 4 visualizes the relationship between the parameter 𝜏O (on the y-axis) plotted against

𝜏L (on the x-axis) in the Gaussian case for different values of c = 1, 3, 6, 10. Considering that the
strength of dependence between Ut−1 and Ut is increasing in 𝜏L and in 𝜏O, Figure 4 shows that the
higher the value of c the higher 𝜏L needs to be to achieve a fixed strength of dependence between
Ut−1 and Ut. Therefore, for higher values of c we expect to obtain a smoother behaviour of the
latent states (Vt)t=1,… ,T . We propose to use a similar relationship between 𝜏L, 𝜏O and c, not only
in the Gaussian case, but also for arbitrary bivariate copula families. Therefore, in general, we
impose the following identifiability constraint on the copula parameter for all bivariate copula
families with a single parameter identified uniquely by Kendall’s 𝜏 as follows

sin
(
𝜋

2
𝜏O

)
=
(

sin
(
𝜋

2
𝜏L

))c
for some suitable value c ≥ 1. (18)
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F I G U R E 4 Graphical representation of the relationship between the parameter 𝜏O plotted against 𝜏L in the
Gaussian case for different values of c = 1, 3, 6, 10 [Colour figure can be viewed at wileyonlinelibrary.com]
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3 BAYESIAN ANALYSIS OF THE COPULA STATE SPACE
MODEL

3.1 Hamiltonian Monte Carlo

The copula state space model is a highly non-linear and non-Gaussian model, which provides
great flexibility by allowing for different bivariate copulas. The downside of this flexibility is that
inference for this model is not straight forward, for example, it is not possible to implement a Gibbs
sampler, where we can directly sample from the corresponding full conditionals. For inference
for the copula state space model we rely on the No-U-Turn sampler of Hoffman and Gelman
(2014) implemented within the STAN framework (Carpenter et al., 2016). The No-U-Turn sampler
extends Hamiltonian Monte Carlo (HMC) and adaptively selects tuning parameters. HMC can
be considered as a Metropolis Hastings algorithm, where new states are efficiently obtained by
using information on the gradient of the log posterior density. The gradient is obtained through
automatic differentiation (Carpenter et al., 2015) in STAN. The HMC sampler has shown good
performance in several other cases (Hajian, 2007; Hartmann & Ehlers, 2017; Pakman & Paninski,
2014). We provide a short introduction to HMC in the supplement (Section D) and refer to Neal
et al. (2011) or Betancourt (2017) for more details.

An alternative Bayesian approach for jointly estimating parameters and states in non-linear
non-Gaussian state space models is presented by Barra et al. (2017), who designed flexible pro-
posal densities for the independent Metropolis-Hasting and the importance sampling algorithms.

3.2 Posterior inference

As prior distribution for 𝜏L we use a uniform prior on (0,1), which is a non-informative prior
restricted to positive dependence, since we do not expect negative dependence in our application.
With this prior choice we obtain a fully specified Bayesian model with posterior density

𝜋(𝜏L, v1, … , vT|û1, … , ûT) =
T∏

t=1
cU,V (ût, vt; 𝜏O)

T∏

t=2
cV2,V1(vt, vt−1; 𝜏L),

where 𝜏O is a function of 𝜏L as given in Equation (18). Note that for the Bayesian approach the
latent variables of the state equation are considered as parameters. We run the No-U-Turn sampler
to sample from this posterior density. For a chosen c we obtain a posterior sample for 𝜏L

𝜏
r
L(c), r = 1, … ,R

and, similarly, for 𝜏O, using the relationship in Equation (18),

𝜏
r
O(c), r = 1, … ,R

where R is the total number of HMC iterations. Additionally, posterior samples for the latent
variables Vt, for t = 1, … , T, are denoted by

vr
t (c), t = 1, … ,T and r = 1, … ,R.
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626 KREUZER et al.

3.3 Predictive simulation

An advantage of the Bayesian approach is that our model already specifies the predictive distri-
bution, which is the distribution of the response for new data points conditional on observed data
points. From this distribution, uncertainty is easy to be quantified through credible intervals.

We consider the set
{
𝜏

r
L(c), vr

t (c), r = 1, … ,R, t = 1, … ,T
}

, a posterior sample of the model
parameters. Simulations for a new value at time t ∈ {1, … , T} on the copula scale can be obtained
by

• simulate ur
t (c) from CO

U|V

(
⋅|vr

t (c); 𝜏
r
O(c)

)
.

We refer to the corresponding distribution as the in-sample predictive distribution on the cop-
ula scale. The out-of-sample predictive distribution refers to new values at time t > T. Simulated
values from the one-day-ahead predictive distribution of UT+1 given UT , can be obtained as follows

• simulate vr
T+1(c) from CL

V2|V1

(
⋅|vr

T(c); 𝜏
r
L(c)

)
,

• simulate ur
T+1(c) from CO

U|V

(
⋅|vr

T+1(c); 𝜏
r
O(c)

)
.

In general, simulations from the i-days-ahead out-of-sample predictive distribution on the
copula scale can be obtained recursively through:

• simulate vr
T+i(c) ∼ CL

V2|V1

(
⋅|vr

T+i−1(c); 𝜏
r
L(c)

)
,

• simulate ur
T+i(c) ∼ CO

U|V

(
⋅|vr

T+i(c); 𝜏
r
O(c)

)
.

Based on a simulation of the (in-sample or out-of-sample) predictive distribution on the
copula scale ur

t (c), we further define

𝜀
r
t (c) ∶= Φ

−1 (ur
t (c)

)

as a sample of the predictive distribution of the error of the GAM model specified in Equation (3).
In particular, we estimate E(Yt) by f̂ (xt) with estimated error variance �̂�

2. So,

yr
t (c) ∶= f̂ (xt) + �̂�𝜀

r
t (c)

gives a sample of the predictive distribution of the response. Note that to obtain this predictive
sample we ignore the uncertainty in the marginal distribution.

4 DATA ANALYSIS

Recall the hourly data set discussed in Section 1.2 divided into 12 sub data sets, one data set for
each month.

4.1 Marginal models

For each of the 12 data sets we fit a GAM using the R package mgcv of Wood and Wood (2015),
where the response is the logarithm of PM2.5 and the covariates are DEWP, TEMP, PRES, IWS,
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KREUZER et al. 627

PREC and CBWD, as described in Section 1.2. We define an additional covariate PREC_ind, which
indicates if there is precipitation, i.e. PREC_ind = 1PREC > 0. We also use the hour denoted by H
and the weekday denoted by D as covariates. Liang et al. (2015) showed that the wind direction
not only has influence on the response itself, but might also influence the relationship between
the other covariates DEWP, TEMP, PRES, IWS, PREC and the response. Therefore we allow for
different smooth terms corresponding to different wind directions. More precisely, we create four
indicator variables corresponding to the four wind directions 1CBWD=CV, 1CBWD=NE, 1CBWD=NW
and 1CBWD=SE. Then, we replicate the part of the model matrix corresponding to a covariate x four
times and multiply each of the four parts with one of the indicator variables 1CBWD=CV,1CBWD=NE,
1CBWD=NW and 1CBWD=SE. So, we obtain four smooth terms for each of the covariates DEWP,
TEMP, PRES and IWS. We do not allow for these interactions with the covariate PREC since this
variable has only few values not equal to zero. For variable selection, the approach of Marra and
Wood (2011) is used, which allows terms to be penalized to zero.

Plots of the different estimated smooth components are shown in the supplement (Figure 2)
for the January data set. These plots indicate the covariate effects on PM2.5. For example, with
northwestern winds (NW), PM2.5 is lower for higher temperatures. Furthermore, we draw the
same conclusion as Liang et al. (2015), that different smooth terms are necessary for different wind
directions. For example, with northeastern winds (NE), we do not see any influence of the covari-
ate PRES on PM2.5, but with northwestern winds (NW), we observe a non-linear relationship
between PRES and PM2.5.

4.2 Model selection of monthly copula family and value of c based
on the Watanabe Akaike Information Criterion (in-sample)

We now consider model selection for the copula state space model. This includes the selection
of the copula families and the selection of the value of c. We fit models with different copula
families and different values of c and select the model which minimizes the Watanabe Akaike
Information Criterion (WAIC) introduced by Watanabe (2010). For our model AIC and BIC would
require to integrate out all the latent variables. Therefore we stick to the WAIC which is easy to
evaluate for such Bayesian models with latent variables. We define by 𝓁r

t ∶= c(ût, vr
t ; 𝜏

r
O(c)) the

likelihood contribution of iteration r at time t. Following Vehtari et al. (2017) the WAIC can then
be estimated by WAIC = −2

∑T
t=1

[
ln
(
Ê((𝓁r

t )r=1,… ,R)
)
− V̂ar

(
(ln(𝓁r

t ))r=1,… ,R
)]
, where Ê denotes

the sample mean and V̂ar the sample variance.
We have one GAM specification for each month and obtain, for each month, approximately

Uniform(0, 1) pseudo-copula data ût by the probability integral transform ût = Φ
(

yt−f̂ (xt)
�̂�

)
for

t= 1, … , T as in Equation (9). Here f̂ and �̂� are the estimates of the GAM and T denotes the
number of observations in the corresponding monthly data set. To simplify notation we avoid
indexing the models by month.

In the following we study several models that can be divided into three model classes.

• Gaussian state space model ℳN : CO
U,V and CL

V2,V1
are both Gaussian copulas.

• Copula based state space model ℳC: CO
U,V and CL

V2,V1
are from the same bivariate copula

family.
• GAM model with independent errorsℳI : CO

U,V and CL
V2,V1

are both independence copulas.
This corresponds to a standard GAM model with independent errors.
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F I G U R E 5 Traceplots of 1500 posterior draws after a burnin of 500 iterations of 𝜏L (left) and V100 (right) of
the first chain of the HMC sampler for the model with Student t copulas with 6 degrees of freedom and c=1 using
the data set for January

For each of the 12 monthly data sets on the copula scale, the three model classes are fitted.
To estimate model parameters we run the No-U-Turn sampler with 2 chains, where each chain
contains 2000 iterations. The first 500 iterations are discarded for burnin. Preliminary analysis
showed that this burnin choice is sufficient. We fit the independence model ℳI , the Gaussian
modelℳN for every value of c = 1, 3, 6, 10 and several latent copula models for the classℳC. The
different state space copula models correspond to all combinations of the values of c = 1, 3, 6, 10
and the following bivariate parametric copula families: Student t (df= 3), Student t (df= 6), Gum-
bel, Clayton and Frank. This set includes copula families that are appropriate for the observed
contour plots in Figure 1. So for one specific monthly data set a model is specified by the value of
c and the copula family.

As an example, we have a closer look at the model for January with Student t copulas with 6
degrees of freedom and c = 1. Figure 5 shows the traceplots of the dependence parameter 𝜏L and
the latent state at time point 100 (V100) for the first chain. The traceplots suggest that the chains
have converged. The chain for 𝜏L converges to values far away from zero, thus showing depen-
dence. Figure 6 illustrates the effect of the different values of c on the posterior mode estimates of
the latent states v̂t. As expected, we observe that the size of the oscillations decreases as the value
of c increases.

Table 1 shows the best model in ℳC, characterized by the value of c and the copula family,
and the best model inℳN , characterized by the value of c. In addition Table 1 shows the WAIC of
the best model within the model classesℳC,ℳN andℳI . We see that forℳN andℳC the value
of c of the best model is always equal to 1 thus allowing for higher oscillations in the posterior of
the latent states. The best model according to the WAIC is provided by the copula based model
class ℳC for every month, since this model is always associated to the smallest WAIC.

4.3 Analysis of fitted models

In the previous section we selected the best copula state space models according to the lowest
WAIC. This gave the copula family choice and the value of c for ℳC and the value of c for ℳN .
Figure 7 shows the estimated posterior densities for the dependence parameter 𝜏L for these mod-
els. We observe that most of the mass of the posterior density concentrates between 0.6 and 0.8 for
all monthly models. This range for 𝜏L coincides with positive dependence between two succeed-
ing time points. We also see that the Kendall’s 𝜏 values of the ℳC model class are slightly higher
than those of the ℳN model class for all months.
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F I G U R E 6 Estimated hourly posterior mode of the latent state v̂t at time t plotted against t for the
first 9 days of January for models with Student t copulas with 6 degrees of freedom and different values of c
(c= 1, 3, 6, 10). The posterior mode estimates are obtained as modes of univariate kernel density estimates and are
based on 3000 iterations from two chains [Colour figure can be viewed at wileyonlinelibrary.com]

T A B L E 1 Family of the best model in ℳC, value of c of the best model in ℳC and the best model in ℳN

and the WAIC of the best model within each class ℳC, ℳN and ℳI . The best model is selected with respect to
the WAIC

Family c WAIC

Month 𝓜C 𝓜C 𝓜N 𝓜C 𝓜N 𝓜I

1 t(6) 1 1 −926 −887 0

2 Frank 1 1 −755 −702 0

3 Frank 1 1 −1000 −898 0

4 t(3) 1 1 −1200 −1103 0

5 t(6) 1 1 −982 −945 0

6 t(3) 1 1 −672 −604 0

7 t(3) 1 1 −808 −722 0

8 t(3) 1 1 −680 −653 0

9 t(6) 1 1 −972 −873 0

10 Gumbel 1 1 −1130 −1102 0

11 t(6) 1 1 −910 −900 0

12 t(6) 1 1 −765 −758 0

The copula-based state space model was fitted to the standardized residuals of the GAM
ẑt as defined in Equation (4). To further evaluate our model, we simulate from the pre-
dictive distribution of the error for each t ∈ {1,… ,T}, as explained in Section 3.3, and
compare it to the standardized residuals of the corresponding GAM model. Figure 8 shows
that the copula state space model is able to recover the dynamics of the standardized
residuals.

If we ignored the latent effect, the distribution of the error would be standard normal. Sim-
ulating from the predictive distribution of the error can be considered as taking the latent effect
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F I G U R E 7 Estimated posterior density of the dependence parameter 𝜏L for the best model in ℳC (black)
and ℳN (red, dashed) according to the WAIC for all 12 data sets [Colour figure can be viewed at
wileyonlinelibrary.com]
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F I G U R E 8 Estimated mode of the predictive density of the error 𝜀t plotted against t for every data point in
January (top row) and October (bottom row) using the best models in ℳC as selected by WAIC. A 90% credible
region, constructed from the 5% and 95% empirical quantiles of simulations from the predictive distribution of
the error, is added in grey. Further, the standardized residual of the GAM ẑt is added in red (dashed) [Colour
figure can be viewed at wileyonlinelibrary.com]
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into account. Therefore a concentration of the predictive distribution that is far away from zero
indicates time points where the latent variable has higher effects. These are time points where
the level of the response is unusually high or low for the corresponding specification of the
covariates.

We see from Figure 8 that on January 18th, the estimated mode of the predictive den-
sity of the error is high. On this day unusual high pollution was recorded in Beijing where
PM2.5 reached around 500 micrograms per cubic meter (𝜇g/m3), skyrocketing to more than
20 times the level considered unhealthy by the World Health Organization (See https://www.
takepart.com/article/2014/01/18/beijing-china-air-pollution-billboard). The copula based state
space model with a Student t copula has a high peak on that day and is able to capture this unusual
behaviour.

The ability to model unusual high peaks of airborne contaminants is fundamental to accu-
rately assess the effect of exposure to human health. Indeed, many studies in the literature show
that increased levels of air pollutants may have a dramatic effect on human health. In particu-
lar, for a 10-𝜇g/m3 increase in PM2.5, hospital admissions for ischemic cardiac events and heart
failures may increase by 4.5% and 3.6%, respectively; respiratory and pneumonia hospitalizations
may increase by 17% and 6.5%; respiratory and lung cancer mortality may increase by 2.2% and
8%. In addition, exposure to PM2.5 is estimated to reduce the life expectancy of the population
by about 8.6 months on average (Anderson et al., 2012). The economic impact of PM2.5 pollu-
tion is also relevant, since fine particulate matter-related illness can ultimately lead to financial
and non-financial welfare losses of not only patients and their families but also a significant por-
tion of gross domestic product (GDP). Indeed, it was estimated that in 2009 China suffered a
health-related economic loss of 2.1% of its GDP, corresponding to 106.5 billion US dollars (Kim
et al., 2015). Therefore, the consequences on citizens’ health and economy of an extremely high
value of PM2.5, such as the one experienced in Beijing on the 18th January 2014, may be very
severe and extensive.

The proposed Bayesian non-linear non-Gaussian state space model allows us to capture
unusual extreme air pollution events appropriately and could provide accurate information to
stakeholders such as doctors and policy makers to better evaluate the consequences of pollution
on citizens.

4.4 Out-of-sample predictions

Short-term predictions of PM2.5 levels can be used to alert citizens of high pollution periods which
are dangerous to health. In this section we construct predictions several hours up to two days
ahead. More precisely, we consider the best copula state space model for March and use it to
predict the first 48 h of April. We choose March, since it is the month for which the non-elliptical
Frank copula was selected.

We first simulate from the out-of-sample predictive distribution of the error as explained in
Section 3.3. Figure 9 shows predictive densities for different time-steps ahead for this model, more
precisely the estimated forecast density of 𝜀T+t for t = 1, 12, 24, 48 h based on 3000 HMC iterations
from two chains. As we see from Figure 9, we obtain non-Gaussian forecast densities. Further,
the densities are more disperse for a longer time period ahead, reflecting the fact that uncertainty
increases if we predict a longer time period ahead.

To obtain predictions for the PM2.5 levels the simulations for the error needs to be combined
with the mean prediction of the GAM, according to our model Yt = f (xt) + 𝜎𝜀t.
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F I G U R E 9 Estimated predictive density of 𝜀T+t using the best copula state space model for March for
different time steps (hours) ahead (t = 1, 12, 24, 48). The estimated predictive density is the kernel density
estimate of simulations from the corresponding predictive distribution [Colour figure can be viewed at
wileyonlinelibrary.com]

To obtain the predicted mean of the GAM the covariate values are required. Ideally, we would
have to use in our model the predicted values of the covariates published by Chinese meteorolog-
ical authorities, as in Feng et al. (2015), for example. Unfortunately, except for the weekday D and
the hour H, future covariate levels are not known. Therefore, as the best proxy for an unknown
covariate vector with hour H = h, we use the covariate specifications of the last observed time
point with the same hour H = h. We denote this covariate vector by xl

t and obtain predictive
simulations of the response at time t > T as follows

yr
t = f̂ (xl

t) + �̂�𝜀
r
t , (19)

for r = 1, … , R. These predictive simulations are visualized in Figure 10. We see that the observed
values are most of the time within the 90% credible interval.

We compared our out-of-sample predictions with those obtained by applying a deep model
to our data. We implemented an LSTM RNN model using the same data setting adopted for the
proposed non-linear non-Gaussian state space model. In particular, we used the March data as
training set, the first 48 h of April as test set, with covariates set to the last observed time point
with the same hour. We included the PM2.5 variable, together with the meteorological covari-
ates in the input layer. All variables were normalized in order to give similar impact of all inputs.
The model was built using keras and tensorflow in R. For each predicted value, we com-
puted 5% and 95% bootstrap prediction intervals. Figure 10 shows predictions and credible regions
obtained from the copula state space approach and from the deep model. The Figure indicates
that the copula state space model provides better forecasts. For further comparison, we made
use of the mean squared error (MSE) to evaluate point forecasts and of the interval score (IS)
(Gneiting & Raftery, 2007) to evaluate the accuracy of the credible regions. The MSE of the cop-
ula state space model is 0.73, while the MSE of the deep model is 1.01. The IS of the copula state
space model is 4.92, while the IS of the deep model is 9.82. Since a lower IS indicates a more
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F I G U R E 10 The black line shows the estimated mode of the predictive density of the response t hours
ahead plotted against t. The simulations of the predictive distribution of the response 1 up to 48 h ahead are
obtained according to Equation (19) based on the best copula state space model for March. A 90% credible region,
constructed from the 5% and 95% empirical quantiles of simulations from the predictive distribution of the
response, is added in grey. Further, predictions and a corresponding 90% confidence region obtained from the
deep model are added in blue and the observed response values are shown in red [Colour figure can be viewed at
wileyonlinelibrary.com]

accurate credible region, both evaluation metrics are in favor of the copula state space approach.
Therefore, the out-of-sample results show that RNN produce less accurate probabilistic forecasts
than a well-formulated statistical time series model. This is consistent with findings by a num-
ber of other authors, such as, for example, Klein et al. (2020) in their paper about electricity
price forecasting.

In addition, the simulations for the error may be combined with mean predictions obtained
from the GAM with different covariate specifications. Since the covariates several hours ahead
are random, different scenarios as specified by different covariate levels are possible and should
be taken into account. Here, we first consider two cases where the temperature at each time point
in xl

t is increased and decreased by 1 degree. Second, we also investigate more extreme scenar-
ios for xl

t where we decrease and increase the temperature at each time point by 4 degrees and in
addition change the wind direction at each time point to the same value. The value for the wind
direction CBWD is set to either CV or SE. This yields four different scenarios. The mode estimates
of the resulting predictive densities are visualized in Figure 11. It is not surprising that the first
case where we only change the temperature by 1 degree results in less changes in the mode esti-
mates compared to the more extreme case. There are many more scenarios that can be analysed in
a similar fashion. In particular, relevant scenarios suggested by experts could be analysed. A con-
servative warning system could alert citizens if at least one of the scenarios results in dangerous
air pollution levels.

5 SUMMARY AND OUTLOOK

The starting point of this paper was the question of how to capture not only non-linear effects
of meteorological variables on pollution measures such as airborne particulate matter, but
also to allow for further time dynamics of the observations not covered by the meteorological
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F I G U R E 11 We show the estimated mode of the predictive density of the response t hours ahead plotted
against t for different specifications of the covariates. The simulations of the corresponding predictive
distribution of the response 1 up to 48 h ahead are obtained according to (19) based on the best copula state space
model for March (black line). In the top row, we consider additionally predictive distributions where the
temperature of xl

t is changed by ±1 degree. In the bottom row, we consider additionally predictive distributions
where the temperature of xl

t is changed by ±4 degree and the covariate CBWD is set equal to SE or CV [Colour
figure can be viewed at wileyonlinelibrary.com]

variables. For this we investigated hourly data of ambient air pollution in Beijing and illustrated
that the lag-one time dynamics is not a Gaussian one, thus ruling out standard linear state space
models.

To deal with this non-Gaussian dependence we proposed a novel non-linear state space model
based on a copula formulation for univariate observation and state equations. The observation
and state variables are coupled using two bivariate copulas. Since the copula approach allows
for separate modelling of the margins and dependence, the observation variables are allowed to
follow any time invariant statistical model. In the application we utilized a GAM to allow for
non-linear effects of covariates. Once the marginal distribution of the response variables is spec-
ified, they can be transformed to the uniform scale using the probability integral transform. The
resulting value on the uniform scale at time t, Ut, is then coupled with a [0, 1] valued state vari-
able for time t using a bivariate copula. Therefore, the observation equation of the copula based
state space formulation is given by the conditional distribution of Ut given the value of the state
variable at time t. The time dynamics of the state variables is then similarly modeled as the condi-
tional distribution of the state variable at time t given the state variable at time t − 1, where these
two state variables are jointly modeled by a bivariate copula. We first show that, in the case of a
bivariate Gaussian copula, standard linear state space models result. Since many different para-
metric bivariate copulas exist, the flexibility of the copula-based state space model is evident and
thus a significant extension of linear Gaussian state space models is possible.

Of course, such an extension has its price. In our case this means we cannot follow a standard
estimation approach such as the Kalman filter for linear state space models. Therefore we propose
and develop a Bayesian approach based on HMC. Further we deal with some identifiability issues
of the copula state space model, which we solve by restricting the strength of the dependence
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among the lag-one state space variables to be at least as high as the one of the observation variable
Ut and the state variable at time t.

The state variables can be interpreted as a way to capture non-measured effects and thus are
very appropriate for the data set analysed in this paper. It allowed us to identify unusual high levels
of pollution, which were not captured by the measured variables. We also present, with appro-
priate normalized bivariate contour plots, explorative tools to detect non-Gaussian dependence
structures.

The proposed approach can be used to accurately model extreme air pollution events
and can assist stakeholders in the evaluation of the health consequences of exposure.
The analysis of high temporal resolution particulate matter data allows us to immedi-
ately detect quick upsurges of airborne contaminants and anticipate lower temporal res-
olution health effects. Nevertheless, we point out that the applicability of copula state
space approach is not restricted to air pollution, but could be adopted in numerous
settings.

The approach first proposed here allows a wide range of extensions, such as adding
covariates for the dependence parameter of the bivariate copulas as well as extend-
ing to multivariate response data and adopting wavelets expansions for marginal mod-
els. Here the use of vine copulas can be envisioned wherever higher-dimensional than
bivariate copulas are needed. Another route of extension would be to model the bivari-
ate copulas completely nonparameteric. In this case, the identifiability issues have to be
reworked.
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