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Abstract
Background.  Reliable detection and precise volumetric quantification of brain metastases (BM) on MRI are essen-
tial for guiding treatment decisions. Here we evaluate the potential of artificial neural networks (ANN) for auto-
mated detection and quantification of BM.
Methods.  A consecutive series of 308 patients with BM was used for developing an ANN (with a 4:1 split 
for training/testing) for automated volumetric assessment of contrast-enhancing tumors (CE) and non-
enhancing FLAIR signal abnormality including edema (NEE). An independent consecutive series of 30 pa-
tients was used for external testing. Performance was assessed case-wise for CE and NEE and lesion-wise 
for CE using the case-wise/lesion-wise DICE-coefficient (C/L-DICE), positive predictive value (L-PPV) and sen-
sitivity (C/L-Sensitivity).
Results. The performance of detecting CE lesions on the validation dataset was not significantly affected when 
evaluating different volumetric thresholds (0.001–0.2 cm3; P = .2028). The median L-DICE and median C-DICE for CE 
lesions were 0.78 (IQR = 0.6–0.91) and 0.90 (IQR = 0.85–0.94) in the institutional as well as 0.79 (IQR = 0.67–0.82) and 
0.84 (IQR = 0.76–0.89) in the external test dataset. The corresponding median L-Sensitivity and median L-PPV were 
0.81 (IQR = 0.63–0.92) and 0.79 (IQR = 0.63–0.93) in the institutional test dataset, as compared to 0.85 (IQR = 0.76–
0.94) and 0.76 (IQR = 0.68–0.88) in the external test dataset. The median C-DICE for NEE was 0.96 (IQR = 0.92–0.97) 
in the institutional test dataset as compared to 0.85 (IQR = 0.72–0.91) in the external test dataset.
Conclusion. The developed ANN-based algorithm (publicly available at www.github.com/NeuroAI-HD/HD-BM) allows 
reliable detection and precise volumetric quantification of CE and NEE compartments in patients with BM.

Automated detection and quantification of brain 
metastases on clinical MRI data using artificial neural 
networks
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Key Points

•	 Assisting practitioners to overcome limitations of manual assessment of tumor 
burden.

•	 High performance on heterogeneous MRI data and brain metastases lesions of 
small sizes.

•	 Publicly available artificial neural network based brain metastases segmentation 
algorithm.

About 25–45% of all patients with extracranial, malig-
nant primary tumors develop brain metastases (BM).1,2 
Despite multimodal treatments the life expectancy of the 
patients who develop BM is still poor, with median sur-
vival of 2–18 months.2,3 In this context, the determination 
of the exact endpoints of the treatment effectiveness plays 
a key role in neuro-oncology. One of the essential cri-
teria for the precise assessment of the efficiency of a new 
therapy for brain tumors is the growth dynamics deter-
mined by magnetic resonance imaging (MRI) based mainly 
on manual measurements of target lesions according to the 
Response Assessment in Neuro-Oncology Brain Metastases 
(RANO-BM) criteria.4 Although manual measurements of 
the largest diameter as prescribed by the RANO-BM criteria 
allow easy and widespread adoption in clinical practice, pre-
vious studies have shown that volumetric measurement 
may provide a more reliable and accurate metric.5–7 The clin-
ical potential of volumetric measurements and the possi-
bility of automating this laborious analysis through artificial 
neural networks (ANN) has primarily been demonstrated in 
the setting of primary brain tumors,8–16 whereas only a lim-
ited number of studies have investigated these approaches 
in the setting of BM.17–28 Prior studies that have evaluated 
the performance of ANN for the detection and/or segmenta-
tion of BM have shown promising results but have also been 
limited by a relative high number of false positive (FP) re-
sults (ranging from 1.5 to 20 per case)17,20,24–26 and relatively 
poor performance in detecting smaller BM (high number of 
false negative with reported F1-scores in the range of 0.76–
0.85).19,21,23 Moreover, available studies so far only focus 
on segmenting the contrast-enhancing tumors (CE) lesion 
of BM whereas they do not quantify the surrounding non-
enhancing FLAIR signal abnormality/ edema (NEE) which 
may be particularly important in the context of evaluating 
post-treatment changes during follow-up of BM.

Here, we evaluated the potential of a state-of-the-art 
ANN-based on the self-configuring nnU-Net method29 for 
automated detection and quantification of CE lesions and 
NEE in BM using MRI data from a large institutional dataset 
for training, validation and testing. We evaluated detection 
and segmentation performance of the developed ANN on a 
case- and lesion-wise basis and analyzed the dependence 
of these metrics on the size of BM. Moreover, we applied 
the ANN to an independent external dataset, thereby en-
abling to evaluate the generalization of the model across 
multisite data.

Material and Methods

Datasets

The retrospective analysis of imaging data was approved 
by the local ethics committee of the Medical Faculty of 
the University of Heidelberg and informed consent was 
waived. The following datasets were used for the present 
study:

Institutional Dataset

To develop, train and test an ANN for automated inter-
pretation of MRI data in clinical setting we collected MRI 
data (n = 308) of adult patients (mean age 61 ± 11 years; 
163 female) with BM from several primary cancers, who 
underwent standardized MRI examination for radiation 
treatment planning at Heidelberg University Hospital be-
tween 04/2011 and 04/2018. We included the last MRI scan 
prior to the start of radiation therapy. No exclusions were 
made based on the primary tumor histology or time-point 

Importance of the Study

Treatment efficacy according to the Response 
Assessment in Neuro-Oncology Brain 
Metastases (RANO-BM) is highly dependent on 
the tumor growth dynamic, which relies on accu-
rately detecting brain metastases (BM) instances 
and estimating their volumetric extent correctly. 
Due to the difficulties and time-intensive nature 

of this task artificial neural networks (ANN) 
based methods have been proposed to auto-
mate this process, firstly for brain tumors and 
recently also for BM. This study expands on pre-
vious work to more challenging clinical settings 
with data from varying stages of treatment and 
improves performance for small BM instances.
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of MRI exam, neither initially at primary diagnosis of BM, 
nor early post-operatively or follow-up, with the goal of ex-
posing the ANN to as many different appearances of BM 
on MRI and thus enabling it to learn a broad range of clin-
ical scenarios. The institutional MRI dataset was divided 
into a training/validation and a test dataset with a ratio of 
4:1. Specifically, the institutional training/validation dataset 
consisted of 246/308 (80%) patients and the institutional 
test dataset consisted of 62/308 (20%) patients.

External Dataset

Another cohort of 30 adult patients (mean age 
58 ± 11 years; 15 female) with lung cancer and at least one 
BM, who underwent routine MRI scans at the Heidelberg 
Thoracic Clinic between 06/2013 and 08/2019 was used to 
verify the generalisability of our developed method. This 
dataset consisted of MRI data at the time point of first oc-
currence of BM in the course of the disease.

Image Acquisition

MRI exams of the institutional dataset were acquired 
with a 3 T MRI system (Magnetom Verio, Skyra or Trio TIM; 
Siemens Healthineers), except a single measurement of the 
training set, which was acquired with a 1.5-T field strength 
(Magnetom Avanto; Siemens Healthineers). All MRI exams 
of the external test dataset were acquired with a 1.5-T 
MRI system (Magnetom Avanto; Siemens Healthineers). 
MRI scans from all datasets were acquired according to 
an established protocol and included T1-weighted images 
before and after gadolinium contrast agent and FLAIR im-
ages (detailed description of acquisition parameters in the 
Supplement).

Image Preprocessing

The MRI data were processed as described in Kickingereder 
et al.8 Briefly, this included deep-learning based brain ex-
traction using HD-BET,30 image co-registration, and cal-
culation of T1-subtraction maps (T1-sub). Subsequently, 
ground-truth segmentation of the BM was performed 
using ITK-SNAP (www.itksnap.org), as described in 
Kickingereder et  al.8 by IP, an in-training radiologist with 
5 years of experience and subsequently checked by PV a 
board-certified neuroradiologist with 10  years of expe-
rience. Any discrepancies were resolved through con-
sensus discussion. Specifically, CE lesions (on the T1-sub 
images or in case of artifacts on T1-sub with additional 
support of T1-weighted post-contrast images) as well as 
the associated NEE (excluding the contrast-enhancing and 
necrotic portion of the BM, resection cavity and obvious 
leukoaraiosis) were selected using a region-growing seg-
mentation algorithm.

Artificial Neural Network

The architecture of the developed ANN (termed HD-BM) 
was based on the BraTS 2020 winning,31 self-configuring 

nnU-Net method,29 which itself is based on the U-Net,32 
that has shown to have excellent performance in brain 
tumor segmentation in the context of a large-scale multi-
institutional study.8 During training, the model receives all 
input modalities of each training sample and was taught 
to reproduce the provided reference annotation. We fol-
lowed the original, state-of-the-art nnU-Net training re-
gime closely by training an ensemble of five models on our 
institutional train dataset, through the means of five-fold 
cross-validation. This splits the dataset into five partially 
overlapping training and five mutually exclusive valida-
tion subsets. Consequently, each of the images contained 
in the institutional training data set was used for valida-
tion once, allowing us to report validation metrics for our 
training cohort. Both test datasets remained untouched 
until model development was completed. Only then was 
the final model configuration used to generate predic-
tions. These predictions were subsequently used in the 
performance analysis. Through development of additional 
models we additionally investigate how only receiving the 
T1-weighted images after gadolinium contrast agent and 
FLAIR images influences the performance, which we sub-
sequently refer to as “Slim”. A detailed description of the 
applied ANN architecture and discussion of the Slim con-
figuration is available in the Supplement.

Statistical Analysis and Evaluation Metrics

The performance of HD-BM for detecting and seg-
menting BM in both datasets was assessed case-wise for 
CE and NEE and lesion-wise for CE using the case-wise/
lesion-wise DICE-coefficient (C/L-DICE), sensitivity (C/L-
Sensitivity). In addition, for CE lesions we calculated the 
lesion-wise positive predictive value (L-PPV), sensitivity 
(L-Sensitivity) as well as F1-score. For volume agreement 
we report concordance correlation coefficient (CCC) lesion-
wise for CE lesions and case-wise for NEE parts of BM. To 
evaluate the detection and segmentation performance be-
tween and within the respective datasets, we performed 
the Wilcoxon test and Spearman correlation. P < .05 was 
considered significant. The statistical analyses were per-
formed using R version 4.0.3 (https://www.r-project.org) 
and Python version 3.9.7 (http://www.python.org). More 
information regarding the statistical analysis is provided in 
the Supplement.

Results

Size and Distribution of Brain Metastases

Table 1 provides detailed characteristics of the included 
patients and BM. A  total of 1682 BM were segmented in 
the institutional training/validation dataset, 384 BM in the 
institutional test dataset, and 155 BM in the external test 
dataset. The average number of BM (CE lesions) per patient 
was similar between the training/validation dataset (7 ± 15) 
and the institutional test dataset (6 ± 11) as well as the ex-
ternal test dataset (5 ± 8) (P = .986). The average volume of 
individual CE lesions was similar between the training/val-
idation dataset (1.23 ± 4.59 cm3) and the institutional test 
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dataset (1.24 ± 4.46 cm3; P = .2258), whereas it was signifi-
cantly smaller in the external test dataset (1.03 ± 5.17 cm3, 
P = .0392 on comparison with the institutional test dataset). 
Similarly, the average volume of NEE per case was similar 
between the training/validation dataset (58.61 ± 55.54 cm3) 
and the institutional test dataset (62.1 ± 52.65 cm3; P = .334), 

whereas it was significantly smaller in the external test 
dataset (36.81 ± 52.69 cm3; P = .005 in comparison with the 
institutional test dataset). This discrepancy in volume for 
the both lesion classes in test datasets might be explained 
due to the significantly higher number of cases with sur-
gical resection in the institutional test dataset 20/62 (32%) 

  
Table 1.  Characteristics of the Patients Included in This Study

 Institutional dataset External test dataset P value 

Training set Test set 

Patient [n] 246 62 30 –

Gender [n, (%)]    .530

  Female 134 (54.5) 29 (46.7) 15 (50)  

  Male 112 (45.5) 33 (53.3) 15 (50)  

Mean age [years (± SD)] 61 (± 11) 61 (± 12) 58 (± 12) .454

No. of metastases (total) 1682 384 155 –

Mean no. of metastases per patient (± SD) 7 (± 15) 6 (± 11) 5 (± 8) .986

Case-wise volumes

  CE-Lesion    .007

    Mean CE-lesion volume (± SD) 8.47 cm3 (± 12.11) 7.81 cm3 (± 9.77) 5.31 cm3 (± 12.33)  

    Median CE-lesion volume (IQR) 3.91 cm3 (9.4) 5.31 cm3 (8.63) 0.63 cm3 (4.38)  

  NEE-Lesion    0.014

    Mean NEE-lesion volume (± SD) 58.61 cm3 (± 55.54) 62.1 cm3 (± 52.65) 36.81cm3 (± 52.69)  

    Median NEE-lesion volume (IQR) 42 cm3 (78.69) 49.22 cm3 (59.82) 10.10 cm3 (67.25)  

Lesion-wise volumes    .141

  Mean CE-lesion volume (± SD) 1.23 cm3 (± 4.59) 1.24 cm3 (± 4.46) 1.03 cm3 (± 5.17)  

  Median CE-lesion volume (IQR) 0.07 cm3 (0.33) 0.05 cm3 (0.29) 0.08 cm3 (0.33)  

Primary cancer [(n, (%)]    .256

  Lung 97 (39.4) 27 (43.5) 30 (100)  

  Breast 59 (24) 9 (14.5) –  

  Gastrointestinal 17 (6.9) 5 (8.1) –  

  Cancer of unknown primary origin 15 (6.1) 3 (4.8) –  

  Kidney 12 (4.9) 4 (6.5) –  

  Malignant melanoma 10 (4.1) 8 (12.9) –  

  Soft-tissue sarcoma 4 (1.6) 1 (1.6) –  

  Multiple primary tumors 4 (1.6) – –  

  Prostate 3 (1.2) – –  

  Others 25 (10.2) 5 (8.1) –  

MRI sequence [n, (%)]    –

  T1-w     

    3D acquisition 212 (86.2) 54 (87.1) 30 (100)  

    2D acquisition 34 (13.8) 8 (12.9) –  

    cT1-w 246 (100) 62 (100) 30 (100)  

  FLAIR 246 (100) 62 (100) 30 (100)  

MR vendors (field strength) [n, (%)]    –

  Siemens (1.5 T) – 1 (1.6) 30 (100)  

  Siemens (3.0 T) 246 (100) 61 (98.4) –  

SD, standard deviation; IQR, inter-quartile range; T, Tesla; CE, contrast-enhancing tumors; NEE, non-enhancing FLAIR signal abnormality/edema.
Group differences were evaluated with chi-square test for categorical and Kruskal–Wallis test or t test (depending on the distribution) for contin-
uous parameters.
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as compared to the external dataset with only one case out 
of 30 (3%) (p=0.0019).

The types of primary cancers were balanced between the 
institutional training/validation and test dataset (P = .256) 
with the most common entities being lung and breast 
cancer. In contrast the composition of primary cancers in 
the external test dataset was different and exclusively con-
sisted of lung cancer patients, thereby reflecting the treat-
ment focus of the Heidelberg Thoracic Clinic from which 
the external test dataset originated.

Detection and Segmentation Performance of 
HD-BM in the Validation Dataset

Table 2 and Figure 1 encompass detailed results on the per-
formance of HD-BM in the validation dataset. Specifically, 
the case-wise sensitivity and DICE-coefficient was 0.91 
(IQR = 0.82–0.95) and 0.90 (IQR = 0.79–0.93) for CE lesions 
as well as 0.95 (IQR = 0.87–0.98) and 0.95 (IQR = 0.88–0.97) 
for the NEE part of the BM.

Analysis of the performance of HD-BM for detecting and 
segmenting CE lesions on a lesion-wise level demonstrated 
an F1-score of 0.94 (IQR = 0.76–1.0), with a L-sensitivity of 0.77 
(IQR = 0.57–0.92) and L-PPV of 0.82 (IQR = 0.65–0.93) resulting 
in a L-DICE-coefficient of 0.72 (IQR = 0.56–0.90). To evaluate if 
the F1-score improves when filtering predicted instances by 
their volume, we calculated it over a range of volume thresh-
olds ranging 0.001–0.2 cm3 (Supplementary Figure S2). By 
filtering instances < 0.006cm3 the F1-score increased from 
mean 0.86 ± 0.19 to its maximum value of mean 0.87 ± 0.19. 
However, since this increase was non-significant (P = .203) no 
volumetric threshold was applied for subsequent analyses.

Detection and Segmentation Performance of 
HD-BM in the Test Datasets

Table 2 and Figure 1 encompass detailed results on the 
performance of HD-BM in both institutional and external 
test dataset. Exemplary predicted segmentations of the 
distinct test set patients are shown in Figures 2 and 3. 
The case-wise median C-sensitivity and median C-DICE 
in the institutional test dataset was 0.91 (IQR = 0.82–0.95) 
and 0.90 (IQR = 0.85–0.94) for CE lesions as well as 0.95 
(IQR = 0.91–0.98) and 0.96 (IQR = 0.92–0.97) for the NEE part 
of the BM. In contrast, the case-wise median C-sensitivity 
and median C-DICE in the external test dataset were 0.91 
(IQR = 0.83–0.96) and 0.84 (IQR = 0.76–0.89) for CE lesions 
as well as 0.91 (IQR = 0.83–0.97) and 0.85 (IQR = 0.72–0.91) 
for the NEE part of BM. Comparing these metrics between 
the institutional and external test dataset demonstrated 
similar C-sensitivity (P = .761) but lower C-DICE (P = .002) 
of CE lesions as well as lower C-sensitivity (P = .018) and 
C-DICE (P < .001) of the NEE part of BM in the external test 
dataset. The number of FP/scan was 0.87 in the institutional 
and 0.20 in the external test dataset.

The volume of the individual CE lesions significantly 
influenced the segmentation performance (L-DICE) of in-
dividual CE lesions (Spearman’s r =  .789 with P < .001 in 
the institutional test dataset and Spearman’s r  =  .555 
with P < .001 in the external test dataset) (Supplementary 
Figure S3). Similarly, the volume of the NEE part of BM 

did also significantly influence the segmentation perfor-
mance (C-DICE) of the NEE part of BM on a case-wise level 
(Spearman’s r = .642 with P < .001 in the institutional test 
dataset and Spearman’s r = .697 with P < .001 in the external 
test dataset) (Supplementary Figure S3). Consequently, the 
significantly lower volumes of individual CE lesions and 
NEE part of BM in the external test dataset as compared to 
the institutional test dataset likely explains the relative per-
formance drop of HD-BM in the external test dataset.

Analysis of the performance of HD-BM for detecting 
CE lesions on a lesion-wise level demonstrated a me-
dian F1-score score of 0.93 (IQR = 0.80–1.0) with a median 
L-sensitivity of 0.81 (IQR = 0.63–0.92) and a median L-PPV 
of 0.79 (IQR  =  0.63–0.93) in the institutional test dataset. 
A  similar performance was observed in the external test 
dataset with a median F1-score of 1.0 (IQR  =  0.89–1.0), a 
median L-sensitivity of 0.85 (IQR = 0.76–0.94) and a median 
L-PPV of 0.76 (IQR = 0.68–0.88).

Correlation Between Ground-Truth and Predicted 
Volumes by HD-BM

HD-BM exhibits a strong correlation between the indi-
vidual CE-lesion volumes (i.e. on a lesion-wise basis) de-
rived from ground-truth segmentation masks vs. those 
predicted by the HD-BM algorithm in the institutional test 
dataset (CCC  =  0.990 [95% CI  =  0.988–0.991]) as well as 
in the external test dataset (CCC = 0.935 [95% CI = 0.913–
0.952]) (Figure 4). Similar performance metrics were 
obtained when analyzing the NEE volumes (on a case-wise 
basis) derived from ground-truth segmentation masks vs. 
those predicted by the HD-BM algorithm in the institutional 
test dataset (CCC = 0.982 [95% CI = 0.971–0.989]) as well 
as in the external test dataset (CCC = 0.99 [95% CI = 0.979–
0.995]) (Figure 4).

Full vs. Slim Configuration

Our Slim configuration of HD-BM performs slightly worse 
across the key metrics, as is to be expected with fewer in-
formation available. A detailed discussion and interpreta-
tion is provided in the Supplement S4.

Public Implementation of HD-BM

A public implementation of HD-BM is provided as 
open-source through www.github.com/NeuroAI-HD/HD-BM.

Discussion

The application of AI for automatic image processing in 
neuro-oncology has shown enormous potential to im-
prove the diagnostic and therapeutic decision-making pro-
cesses.8,33 In this paper, we created HD-BM, an ANN-based 
algorithm for automated volumetric quantification of BM 
and evaluated its performance in two test datasets: the in-
stitutional test dataset with n = 62 MRIs of patients with BM 
(n = 384) from different primary malignancies (n = 8) and 
the external test dataset with 30 patients with BM (n = 155) 
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from lung cancer. HD-BM performed well for both auto-
mated detection and volumetric quantification of BM with 
high agreement to the radiologist-annotated ground-truth 
and simultaneously obtaining ≤ 1 FP/scan. In contrast to 
previous studies HD-BM did not only focus on CE lesions 
but allowed precise differentiation between CE lesions and 
the surrounding NEE parts of BM, which may be particu-
larly important in the context of post-treatment changes 
during follow-up of BM.4 Moreover, we showed no need 
for applying the volumetric threshold to maximize lesion 
detection performance in contrast to prior studies (most 
ranging 0.003–4 cm3),19–23 thereby highlighting the robust-
ness of HD-BM even for small lesions.

A direct comparison of the performance of an algorithm 
with other works was only possible to a limited extent 
due to the different underlying data and metrics. HD-BM 
achieved a high F1-score (> 0.93 in both test sets); previous 
studies reported F1-scores of 0.76–0.85.19,21,23 This can 
be attributed to the fact that in our analysis a DICE-score 
of > 0.1 sufficed to be considered a true positive in con-
junction with the fact that our method had high detection 
performance even for small volume lesions. Moreover, 
our method presented a lower number of FP/scan (0.87 in 
the institutional and 0.2 in the external test dataset) com-
pared to about 1.5–20 FP/scan in the literature.17,20,25,27 
While Bousabarah et  al.19 have shown that smaller BM 
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Figure 1.  Segmentation (left column) and detection (right column) agreement between the ground-truth segmentation mask generated by the ra-
diologist and the automatically generated segmentation masks for contrast-enhancing (CE) tumor on a per lesion level (upper row) and a per case 
level (lower row) within each dataset using violin charts and superimposed box plots. The colors represent each data set.
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 8 Pflüger et al. Automated detection and quantification of brain metastases

increased the likelihood of FP, our method achieved a good 
performance despite the small size of the BM without re-
sulting in more FP or lower sensitivity. We obtained good 
L-Sensitivity in detecting BM in both test sets (0.81 and 
0.85 in institutional and independent test sets respec-
tively), which is well in line with previous studies reporting 

sensitivities of 0.70–0.96.17,19,20,22–27 Zhang et al.27 achieved 
the highest sensitivity of 0.96, but presented more than 
twenty times the number of FP/scan than HD-BM. This 
also applied to other works with higher sensitivity, which 
however also featured about eight times (7.8 FPs/scan)20 
and two times (1.5 FPs/scan)25 more FPs/scan than HD-BM. 

  
A B

C D

Figure 3.  Example of an MRI study with axial FLAIR and T1-weighted post-contrast images of a 71-year-old male patient with malignant melanoma 
and multiple BM in the institutional dataset (B, arrows and green) and perifocal edema (A, arrowhead). Our HD-BM algorithm detects the perifocal 
edema accurately (C, yellow) compared to the ground-truth segmentation (D, red).
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Figure 2.  Example of true positive (A), false negative (B) and false positive (C) findings in the institutional/external dataset. Three example MRI 
studies with axial T1-weighted postcontrast images. (A) HD-BM (orange) shows accurate detection of BM (white arrow) in the right precentral 
gyrus comparable to the ground-truth (GT) segmentation (green). (B) Missed BM (green) were mostly small or associated with subtle contrast en-
hancement as shown here in the right parietal lobe (white arrow). (C) False positive findings (orange) were predominantly associated with vascular 
changes (white arrow; capillary telangiectasia).
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A recent study by Park et al.26 reported a high sensitivity of 
0.931 and also low FP/scan with 0.59. They developed mul-
tiple methods, the best using a combination of 3D black 
blood and 3D gradient echo (GRE) imaging techniques, 
while their model based only the 3D GRE sequences (like 
ours), reached a sensitivity of 0.768, which is slightly lower 
than the L-Sensitivity in our test sets.

HD-BM exhibited both high detection performance and 
few FPs/cases, despite the challenging dataset containing 
multiple low volume lesions, and performed well on our 
independent test dataset, indicating high robustness and 
potential generalizability of our method. We are also con-
fident that HD-BM can be transferred to clinical conditions 
since the algorithm performed well on heterogeneous data 
with a broad appearance of BM on MRI including complex 
post-treatment alterations, like post-operative bleeding. 
The L-DICE segmentation performance of our HD-BM al-
gorithm (0.78 or 0.79 in both test sets) was in line with 
previous studies (0.6–0.82).17,19–23,26 As expected, on a case-
by-case basis our approach showed a better result with 
a median C-DICE-score of 0.9 in the institutional test set, 
which is comparable to the results in larger primary brain 
tumors.8 We observed comparatively lower L-DICE as com-
pared to C-DICE values, which can be expected because 
many patients have multiple lesions of different volumes: 
When calculating the C-DICE, the L-DICE of the bigger le-
sions influenced the metric more than smaller lesions, due 
to the greater number of true positive/false negative/FP 
voxels of the large lesions. Furthermore, the L-DICE of low 
volume lesions tends to be lower since the ratio of border 
voxels to internal voxels increases, leading to a more diffi-
cult segmentation problem. Additionally, the L-DICE of low 

volume lesions tends to be lower as shown in Bousabarah 
et al.19

Our study has some limitations. First, we acknowl-
edge the retrospective design of the study. Although 
HD-BM performed well on both internal and external 
test sets, further multicentric validation and refinement 
may be required to enable future clinical applicability, 
in order to verify its generalizability to images from dif-
ferent scanners and vendors. In this context, it will also 
be required to specifically evaluate the performance of 
HD-BM for longitudinal tracking of BM and response as-
sessment in individual patients. Second, HD-BM required 
multiparametric MRI data, thus limiting the applicability 
of our method if one of the four required sequences are 
missing. To mitigate this, previous studies have shown 
that missing MRI sequences may be synthesized using 
generative adversarial networks.34,35 Consequently, this 
may enable the use of HD-BM even with incomplete and 
heterogeneous sequence protocols.

In conclusion, our results highlight the capability of ANN 
for reliable detection and precise volumetric quantification 
of CE and NEE compartments in patients with BM, thereby 
supporting the assessment of BM disease burden and pro-
gression. A public implementation of HD-BM is available 
through www.github.com/NeuroAI-HD/HD-BM.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
Advances online.

  

60

40

20

C
E

 le
si

on
 v

ol
um

e 
(c

m
3 )

- 
ra

di
ol

og
is

t

0

0 20

CE lesion volume (cm3)- ANN

Agreement in CE lesion volume

Institutional training set CCC: 0.991 (95% CI 0.99 - 0.991)
Institutional test set CCC: 0.99 (95% CI 0.988 - 0.991)
External test set CCC: 0.935 (95% CI 0.913 - 0.952)

Institutional training set CCC: 0.996 (95% CI 0.995 - 0.997)
Institutional test set CCC: 0.982 (95% CI 0.971 - 0.989)
External test set CCC: 0.99 (95% CI 0.979 - 0.995)

Agreement in NEE lesion volumeBA

40 60

250

150

200

50

100

N
E

E
 le

si
on

 v
ol

um
e 

(c
m

3 )
- 

ra
di

ol
og

is
t

0

0 50 100

NEE lesion volume (cm3)- ANN

Institutional training set NEE

Institutional test set NEE

External test set NEE

Institutional training set CE

Institutional test set CE

External test set CE

150 200 250
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