
Journal of Mechanics , 2022, 38 , 60–76 
https://doi.org/10.1093/jom/ufac006 
Regular Article 

An accurate strategy for computing reaction forces and fluxes 

on trimmed locally refined meshes 

Davide D’Angella 1 , ∗, Stefan Kollmannsberger 1 , Alessandro Reali 2 , Ernst Rank 

1 

and Thomas J.R. Hughes 3 
1 Chair of Computational Modeling and Simulation, Technische Universität München, Munich, Germany 

2 Department of Civil Engineering and Architecture, Università di Pavia, Pavia, Italy 
3 Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, TX, United States 

∗Corresponding author: davide.dangella@tum.de 

ABSTRACT  

The finite element method is classically based on nodal Lagrange basis functions defined on conforming meshes. In this context, total reaction 
forces are commonly computed from the so-called “nodal forces”, yielding higher accuracy and convergence rates than reactions obtained from 

the differentiated primal solution ( “direct” method ) . The finite cell method and isogeometric analysis promise to improve the interoperabil- 
ity of computer-aided design and computer-aided engineering, enabling a direct approach to the numerical simulation of trimmed geometries. 
However, body-unfitted meshes preclude the use of classic nodal reaction algorithms. This work shows that the direct method can perform par- 
ticularly poorly for immersed methods. Instead, conservative reactions can be obtained from equilibrium expressions given by the weak problem 

formulation, yielding superior accuracy and convergence rates typical of nodal reactions. This approach is also extended to non-interpolatory 
basis functions, such as the ( truncated ) hierarchical B-splines. 
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immersed boundaries are considered on the fluid–structure cou- 
pling interface based on an augmented Lagrangian formulation. 
In this work, the conservative reactions are first reviewed for 

conforming meshes subject to strong Dirichlet boundary con- 
ditions. This approach is then extended to non-conforming 
trimmed meshes, where the boundar y of the geometr y does not 
match the element boundaries. In particular, the total reaction 
flux is computed on boundaries subject to weak boundary con- 
ditions, such as the penalty [ 18 ] and the symmetric Nitsche’s 
[ 19 ] methods. The computation of the total fluxes for conform- 
ing meshes is viewed as testing a variational form with specific 
test functions, serving as “extraction functions” in the framework 
of [ 20 ]. Namely, the reactions are obtained by the expression 
of equilibrium given by the weak form, yielding a total flux in 
global equilibrium with the other fluxes and data of the problem. 
Reactions are observed to converge with rates two times higher 
than the energy-norm error for Nitsche’s method on a trimmed 
two-dimensional ( 2D ) benchmark problem with a smooth so- 
lution. This phenomenon is often referred to as superconver- 
gence [ 9 , 20 –22 ]. The same convergence rates are obtained for 
the penalty method, provided that the penalization parameter is 
suitably scaled. 
Moreover, it is shown how this approach can be generalized to 

bases that do not form a partition of unity and are not based on 
the concept of “nodes”. For example, this approach is valid for hi- 
erarchical B-splines ( HB ) [ 23 , 24 ], one promising approach to 
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1. INTRODUCTION 

In many applications, the goal of finite-element analyses is to ap-
proximate specific physical quantities of interest. These data are
often derived from the primal solution, such as in the case of to-
tal reaction forces or fluxes. Such quantities are often the most
relevant data in engineering design and analysis. The evaluation
of fluxes and forces derived from the primal finite-element solu-
tion has been investigated for conforming meshes in several liter-
ature contributions. For example, in [ 1 –10 ] the flux is obtained
through a modified variational problem with an additional aux-
iliary field corresponding to the normal flux over the Dirichlet
boundary. Such an approach amounts to a mere post-processing
step, and the resulting flu x f ulfil ls equi librium in a global or local
sense. This technique, referred to as conservative or consistent, is
proven in the above references to be more accurate and achieve
higher convergence orders than the “direct” approach of differ-
entiating the primal solution. In [ 11 ], reactions on mesh bound-
aries ( subject to strong boundary conditions ) are obtained for
the Stokes flow through a variational interpretation similar to the
one discussed in this work. In [ 12 ], similar formulae for the reac-
tions on ( conforming ) mesh boundaries are studied, focusing on
coupled problems. In the mentioned publications, the reactions
are computed on Dirichlet boundaries of meshes conforming to
the computational domain. In [ 13 ], this approach is extended to
computing reactions on ( conforming ) mesh boundaries subject

to weak boundary conditions. In [ 14 –17 ], consistent forces on 
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Figure 1 Portion of the façade element [ 32 ]. 
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ocal refinement for isogeometric analysis ( IGA ) [ 25 , 26 ]. The
asic idea of IGA is to use the same functions used to describe
he geometry in computer-aided design ( CAD ) directly as finite-
lement shape functions, tightening the design-through-analysis 
terations. These functions include B-splines and non-uniform
ational B-splines ( NURBS ( https://en.wikipedia.org/wiki/ 
on-uniform _ rational _ B-spline ) ) . The isogeometric approach
s compelling for domains defined by NURBS geometries, as
uitable solution spaces can be constructed on the exact geom-
try. When the domain of interest is not described exactly by
URBS geometries, IGA can be combined with the finite-cell
ethod [ 27 –29 ], retaining the geometric exactness. The finite-
ell approach allows performing finite-element analysis using
eshes that are not conforming to the domain boundaries. For
urther details on these approaches, we refer to [ 25 –28 , 30 , 31 ].
The structure of this paper is as follows: Section 2 motivates
he conservative approach for computing the reactions. A three-
imensional trimmed example with a complex geometry defined
y a Standard Triangle Language ( STL ) file is considered, show-
ng that the direct method can perform particularly poorly for
mmersed meshes, as the weak boundary conditions also indi-
ectly constrain the gradient of the solution. Section 4 explains
ow the standard way to compute the reactions can be inter-
reted as testing a variational form with specific test functions.
his point of view serves as a basis to compute conservative
eactions on trimmed bases not forming a partition of unity in
ections 5 and 6 . In Section 7 , it is shown that the method is su-
erconvergent and approximates the total flux in a smooth two-
imensional problem with higher accuracy for both the penalty
nd Nitsche’s methods. In Section 8 , the method is shown to give
onsistent results for both the penalty and Nitsche’s methods
n the considered three-dimensional trimmed example. Finally,
ection 9 shows how this approach can be applied to compute
eaction tractions for IGA of trimmed Kirchhoff–Love shells. 

2.  MOTIVATION  

onsider the portion of the façade element [ 32 ] shown in
ig. 1 a. Its design takes advantage of the production freedom
ffered by additive manufacturing technologies to combine the
esthetics of wavy surfaces with functionalities such as insula-
ion, ventilation, load transfer and shading ( cf. [ 32 , 33 ] ) . These
unctionalities lead to a geometry featuring a complex internal
tructure and detailed external surfaces ( cf. Fig. 1 b ) . The ge-
metry is described by a fine STL file ( courtesy of Dr Moritz
ungenast ) , as displayed in Fig. 1 c. Note that the STL file does
ot define a computational geometry directly suitable for tradi-
ional methods based on conforming meshes. 
The objective is to compute the total heat flux across the
tructure induced by a temperature difference on two opposite

https://en.wikipedia.org/wiki/Non-uniform_rational_B-spline
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Figure 2 Boundary conditions and solution example for the façade element. 
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faces. The following Laplace’s equation and boundary condi-
tions serve as a model problem: 

−∇ · ( κ∇u ) = 0 in �, ( 1 )

u = 0 on �0 , ( 2 )

u = 1 on �1 , ( 3 )

κ∇u · n = 0 on ∂� \ ( �0 ∪ �1 ) . ( 4 )

Here, � ⊂ R 

3 denotes the domain defined by the
façade element, �0 ⊂ ∂�, and �1 ⊂ ∂� and �0 ∩ �1 = ∅
denote the left and r ight boundar ies highlighted in Fig. 2 a,
κ ∈ R 

3 ×3 denotes the conductivity tensor and n denotes
the outward unit boundary normal. Following the finite-cell
approach [ 28 , 29 , 31 ], a simulation model is constructed
without the need to build a conforming mesh, a potentially
time-consuming step in the total simulation pipeline [ 25 , 26 ].
The geometry � is immersed in a larger rectangular cuboid �fict

that can be straightforwardly meshed by a Cartesian element
grid. As approximation, tr ivar iate B-splines are used, rendering
the immersed approach a tr immed tr ivar iate IGA. Figure 1 d
shows an example of elements intersecting the physical domain
�. Since the boundaries �0 and �1 , in general, do not coincide
with a subset of element faces, but they are immersed in the
elements, a strong imposition of the temperature boundary
conditions would significantly deteriorate the accuracy. Instead,
these boundary conditions are imposed weakly ( cf., e.g. [ 34 ,
35 ] ) , as explained in detail in Section 3.3 . Figures 2 b and c show
the temperature and heat flux obtained with B-spline basis
functions of order p = 2 and κ being the identity matrix. The
boundary conditions are applied using Nitsche’s method with
stabilization parameter γ = 10 ( p + 1 ) 2 / h ( cf. Eq. ( 17 ) and [ 36 ,
37 ] ) , where h denotes the mesh size, as explained in Section 3.3 .
A question now arises about the way to accurately compute the
total flux from the trimmed discrete solution. Once a numeri-
cal solution u h for the problem of Eqs. ( 1 ) –( 4 ) is obtained, the
conventional way for conforming finite elements with Lagrange
shape functions and subject to strong boundary conditions can
be summarized as in Table 1 . It is yet not immediately clear how
this conventional procedure can be used for trimmed meshes
with non-nodal shape functions, as there are no nodes and the
boundary is immersed in the element domains. 
Since the numerical solution u h defines a numerical flux κ∇u h

for every spatial location x ∈ � ( u h is assumed to be at least
continuous ) , it is, in principle, possible to integrate numeri-
cally κ∇u h · n over �1 . However, total fluxes computed in this
way can have poor accuracy. Figure 3 a shows that different to-
tal fluxes are obtained for Nitsche’s method with stabilization
parameter γ = 10 ( p + 1 ) 2 / h ( cf. Eq. ( 17 ) and [ 36 , 37 ] ) and
for the penalty method with penalization parameter β = 10 2 / h p
( cf. Eq. ( 15 ) ) , where h denotes the mesh size, as explained in
Section 3.3 . Although the two methods yield different total
fluxes, Fig. 3 b shows that the internal energy converges to the
same value. One reason for this behavior is that the weak bound-
ary conditions applied on curved surfaces indirectly constrain
the solution gradient, as the solution space has a finite dimen-
sion. Such an effect is different for the penalty and Nitsche’s
method, as the latter requires a stabilization parameter generally
lower than the penalty parameter. 
Moreover, if the numerical flux is integrated over �0 and �1 ,

the obtained values are similar but not in perfect equilibrium.
Such a difference is displayed in Fig. 3 c, where the relative error
between the two fluxes is computed as 

e (q h 0 , q 
h 
1 ) = 

∣∣∣∣1 − q h 0 
−q h 1 

∣∣∣∣ , ( 5 )

where q h 0 and q 
h 
1 represent the integrated flux κ∇u h · n defined by

the numerical solution u h over �0 and �1 , respectively. Namely,
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Table 1 The traditional algorithm for computing the reactions on conforming meshes of nodal partition-of-unity finite elements [ 8 , 9 , 38 , 82 –84 ]. 

Let η( �0 ) be the set of nodes on �0 . 

1. For each node A ∈ η( �0 ) associated with the nodal shape function N A , 
compute the internal nodal flux 

q A = 

∫ 

�

∇ N A ·
(
κ∇ u h 

)
d�

and the external nodal flux 

q e A = 

∫ 

�

N A f d� + 

∫ 

�h 

N A h d�. 

2. The reaction r on �0 is obtained by summing the nodal fluxes of 
all nodes located on �0 , minus the known external fluxes 

r = 

∑ 

A ∈ η(�0 ) 

q A − q e A . 

Figure 3 Flux across the Dirichlet boundary �1 , internal energy and equilibrium for a sequence of bisected meshes. 
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q h i = 

∫ 

�i 

κ∇u h · n d�, i ∈ { 0 , 1 } . ( 6 ) 

This example indicates that integrating the numerical flux does
ot use all information contained in the finite-element solution.
ndeed, the underlying variational principle finds a solution that
ulfills equilibrium in a global and local ( element ) sense [ 9 , 38 ].
herefore, this information is contained in the solution. The rest
f the paper is devoted to the development of a strategy to accu-
ately extract it. 
To this end, the article lays out an explanation for computing
he total flux and reaction forces based on equilibrium consider-
tions, generalizing the traditional approach to 
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( 1 ) non-nodal basis functions that do not necessarily form a
partition of unity, 

( 2 ) trimmed meshes. 

3. THE  MODEL  PROBLEM  

Let � ⊂ R 

D be a bounded Lipschitz domain with disjoint
Dirichlet and Neumann boundaries �g , �h , respectively, such
that �g ∪ �h = ∂�, �g ∩ �h = ∅ . The strong form of the heat
conduction problem reads 

−∇ · ( κ ∇u ) = f in �, ( 7 )

u = g on �g , ( 8 )

κ ∇u · n = h on �h , ( 9 )

where κ ∈ R 

D ×D is the thermal-conductivity tensor, h : �h →
R is the prescribed flux, g : �g → R is the prescribed temper-
ature, f : � → R is the volumetric heat supply and n ∈ R 

D is
the vector normal to the boundary. 

3.1 The weak form for strong boundary conditions 
Given the set of trial functions S g, �g (�) and the test space
W 0 , �g (�) , 

S g, �g (�) = { u ∈ H 

1 (�) | u = g on �g } , ( 10 )

W 0 , �g (�) = { w ∈ H 

1 (�) | w = 0 on �g } , ( 11 )

the weak form of the problem reads 

find u ∈ S g, �g (�) 

such that a ( w, u ) = l(w ) ∀ w ∈ W 0 , �g (�) . (W) 

Here, a (w, u ) and l ( w ) denote the classic bilinear and linear
forms 

a (w, u ) = (∇ w, κ∇ u ) �, ( 12 )

l(w ) = (w, f ) � + (w, h ) �h . ( 13 )

3.2 The Galerkin form 

Problem ( W ) can be rewritten with homogeneous Dirichlet
boundary conditions by lifting g to �. In particular, let g � ∈
H 

1 (�) be such that g �
∣∣
�g 

= g. Then, u 0 = u − g � belongs to
W 0 , �g (�) and Problem ( W ) can be stated as 

find u 0 ∈ W 0 , �g (�) 

such that a (w, u 0 ) = l(w ) − a (w, g �) ∀ w ∈ W 0 , �g (�) . 

The Galerkin form of Problem ( W ) with a finite-dimensional
subspace W 0 , �g (�) ⊂ W 0 , �g (�) and an approximation g h to
g � reads

find u h ∈ W 

h 
0 , �g 

(�) ⊂ W 0 , �g (�) , 

such that a (w 

h , u h ) = l(w 

h ) − a (w 

h , g h ), ∀ w 

h ∈ W 0 , �g (�)

(G)

3.3 The weak form for weak boundary conditions 
In case the temperature boundary conditions are applied weakly,
these are not incorporated in the solution and test spaces. In-
stead, an additional term a w (·, ·) associated with the energy of
the constraint violation is added as follows: 

find u ∈ H 

1 (�) 

such that a (w, u ) + a w (w, u ) = l(w ) ∀ w ∈ H 

1 (�) . 

(w)

The term a w (w, u ) can assume different forms depending on
the weak-boundary approach. For the penalty method [ 18 ] with
a penalty parameter β ∈ R , a w (w, u ) = a β (w, u ) wi l l be de-
fined as 

a β (w, u ) = (w, β(u − g)) �˜ g . ( 14 )

Typically, when using finite-element shape functions of polyno-
mial order p , β is a mesh-dependent parameter scaled with h p to
retain the expected convergence rates [ 39 ], 

β = β̄
1 
h p 

, ( 15 )

where β̄ ∈ R is a user-specified parameter, often dependent on
the material parameters. 
For the symmetric Nitsche’s method [ 19 ] with stabilization

parameter γ ∈ R , a w (w, u ) = a γ (w, u ) is defined as

a γ (w, u ) = −( κ∇w · n , u − g) �g − (w, κ∇u · n ) �g 

+ (w, γ (u − ˜ g )) �g . ( 16 )

In this work, γ is scaled as in the original publication [ 19 ]: 

γ = γ̄
1 
h 
. ( 17 )

For immersed methods, better estimates for γ can be obtained
by solving a global or element-local generalized eigenvalue prob-
lem ( cf., e.g. [ 40 , 41 ] ) . Similar estimates through generalized
eigenvalue problems are also employed for variationally consis-
tent patch coupling ( cf., e.g. [ 42 –49 ] ) . 

3.4 The trimmed-domain Galerkin form 

The finite-dimensional spaces for trimmed analysis can be de-
fined using a fictitious domain �fict containing the physical do-
main � ⊂ �fict . The domain �fict can be chosen of a shape that
can be trivially meshed. For example, in two dimensions, �fict

can be rectangular and discretized by a Cartesian grid of ele-
ments. A finite-dimensional subspace W 

h (�fict ) ⊂ H 

1 (�fict )
is defined on such a mesh. For example, W 

h (�fict ) can be
spanned by a finite number of B-splines or piecewise polyno-
mials defined on a parameter space �fict ˆ � combined with the
geometrical mapping �fict = F (�fict ˆ �) ( cf., e.g. [ 8 , 26 ] ) . It is



An accurate strategy for computing reaction forces and fluxes on trimmed locally-refined meshes • 65 

a  

p

A

T  

a

N  

E  

t  

i  

t  

i

I

w  

d  

p  

e  

i  

[  

d  

m  

i  

o  

s  

n  

s  

o  

g  

y  

v

I  

i  

T  

r  

p  

s  

f  

o  

d
 

b  

i  

c  

t  

c  

p  

c  

d
 

p

F  

a  

t  

l  

o  

E
(  

r
 

w  

t  

�

N  

s  

t  

t  

i

 

w  

p
 

H

N
+  

D
ow

nloaded from
 https://academ

ic.oup.com
/jom

/article/doi/10.1093/jom
/ufac006/6562545 by Technische U

niversitaet M
uenchen user on 25 M

arch 2025
ssumed that the functions in W 

h (�fict ) have non-empty sup-
ort on �, namely 

supp (w 

h ) ∩ � � = ∅ , ∀ w 

h ∈ W 

h (�fict ) . ( 18 ) 

 discrete space for Problem ( w ) can be defined as 

W 

h (�) = span 
{
w 

h ∣∣
� : w 

h ∈ W 

h (�fict ) 
}
. ( 19 ) 

he trimmed Galerkin form of Problem ( w ) can be formulated
s 

find u h ∈ W 

h (�) , 

such that a (w 

h , u h ) + a w (w 

h , u h ) = l(w 

h ) , 

∀ w 

h ∈ W 

h (�) . (g) 

ote that the bilinear and linear forms are sti l l defined as in
qs. ( 12 ) and ( 13 ) . Specifically, the integrals are computed on
he physical domain � and not on �fict . However, from the
mplementation point of view, it can be convenient to express
he integrals over � as integrals over �fict through the domain-
ndicator function α : �fict → [0, 1]: 

α( x ) = 

{
1 if x ∈ �, 

0 otherwise . 

n particular, for u h , w 

h ∈ W 

h (�fict ) , the following holds 

a (w 

h , u h ) = (∇w 

h , κ∇u h ) �, ( 20 ) 

= (∇ w 

h , ( α κ) ∇ u h ) �fict , ( 21 ) 

l(w 

h ) = (w 

h , f ) � + (w 

h , h ) �h ( 22 ) 

= (w 

h , α f ) �fict + (w 

h , h ) �h , ( 23 ) 

here the domain of κ and f can be extended onto �fict . The
omain-indicator function α penalizes the material outside the
hysical domain, recovering the physics of the problem. How-
ver, a discontinuity is introduced in the integrands, requir-
ng non-standard integration rules to retain accuracy ( cf., e.g.
 29 , 30 , 50 –57 ] ) . See [ 56 ] for a comprehensive review. The
omain-indicator function α effectively defines the physical do-
ain �, and its evaluation can be based on any geometric

nput allowing to classify given locations as being inside or
utside the domain. For example, the function α can repre-
ent domains defined by STL files through ray-tracing tech-
iques and k -dimensional trees ( cf. [ 58 ] ) . Similarly, the point in-
ide/outside classification can be carried out using simple logical
perations for geometrical models based on constructive solid
eometry ( cf. [ 30 , 59 ] ) . An approach to the direct trimmed anal-
sis of point clouds is presented in [ 60 ]. We refer to [ 28 ] to re-
iew the analysis of various trimmed geometrical models. 

4.  CONSERVATIVE  REACTIONS  TO  STRONG  

BOUNDARY  CONDITIONS  

n this section, the traditional way to compute the reactions is
nterpreted as testing a weak problem with specific test functions.
his point of view wi l l al low generalizing the computation of the
eactions to trimmed domains and to bases that do not form a
artition of unity. This interpretation is inspired by [ 3 , 9 ] and
imilar to the argumentation therein. However, in this work, the
ocus is on obtaining the ( integrated ) total reaction flux instead
f a “pointwise” approximation of the normal flux by a function
efined on the boundary. 
A conservative way to compute the reactions can be derived
y considering a problem compatible with the mixed problem
n Eqs. ( 7 ) –( 9 ) . Namely, other than the temperature boundary
ondition u = g on �g , the compatible reaction flux r is assumed
o exist and is prescribed on �g . The flux r is such that the
ondition u = g is retained on �g . The remaining data of the
roblem κ, f and h are unchanged. For elastic problems, this
orresponds to prescribing the forces that would enforce the
isplacement conditions. 
In particular, let us consider the following boundary-value
roblem with compatible conditions on �g : 

−∇ · ( κ ∇u ) = f in �, ( 24 ) 

u = g on �g , ( 25 ) 

κ ∇u · n = r on �g , ( 26 ) 

κ ∇u · n = h on �h . ( 27 ) 

or simplicity, the data κ, f , r , g , h and the boundary ∂� are
ssumed to be “smooth enough” for the following manipula-
ions to hold. Given a solution u ∗ ∈ H 

2 (�) for the mixed prob-
em of Eqs. ( 7 ) –( 9 ) , it wi l l also be a solution for the problem
f Eqs. ( 24 ) –( 27 ) with r = ( κ ∇u ∗ · n ) ∣∣

�g 
. Indeed, u * satisfies

qs. ( 24 ) , ( 25 ) and ( 27 ) , as they are the same as Eqs. ( 7 ) –
 9 ) . Moreover, Eq. ( 26 ) is trivially satisfied by the definition
 = ( κ ∇u ∗ · n ) ∣∣

�g 
. 

Following standard variational arguments, one can formulate a
eak form by multiplying Eq. ( 24 ) by a test function w belonging
o a test space chosen to be W = H 

1 (�) and integrating over
. This yields the following weak form: 
find u ∈ S g, �g (�) , 

such that a (w, u ) = l(w ) + (w, r) �g , 

∀ w ∈ W = H 

1 (�) . (R) 
ote that the test space consists of the whole H 

1 (�) function
pace, not requiring the test functions to be zero on any part of
he boundary. In particular, the boundedness of � ensures that
he constant w = 1 belongs to the test space W = H 

1 (�) . Test-
ng Problem ( R ) with w = 1 assures global equilibrium: 

0 = 

∫ 

�

f d x + 

∫ 

�h 

h d x + 

∫ 

�g 

r d x . ( 28 ) 

A solution u ∗ ∈ H 

2 (�) for the original weak Problem ( W )
i l l also solve the strong form in Eqs. ( 24 ) –( 27 ) and the com-
atible Problem ( R ) . 
Moreover, since W 0 , �g (�) is a closed subspace of H 

1 (�) ,
 

1 (�) admits the direct-sum representation [ 61 , 62 ]: 
H 

1 (�) = W 0 , �g (�) ⊕ W 0 , �g (�) ⊥ . 

amely, each w ∈ H 

1 (�) admits a ( unique ) representation w 0 
 w g , with w 0 ∈ W 0 , �g (�) and w g ∈ W 0 , �g (�) ⊥ . Following
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[ 8 , 9 , 13 ], the arbitrariness of w 0 + w g = w ∈ H 

1 (�) in Prob-
lem ( R ) implies the arbitrariness of w 0 and w g , allowing to refor-
mulate the problem as 

find u ∈ S g, �g (�) 

such that a (w 0 , u ) = l(w 0 ) , ∀ w 0 ∈ W 0 , �g (�) , and 

( 29 )

a (w g , u ) = l(w g ) + (w g , r) �g , ∀ w g ∈ W 0 , �g (�) ⊥ . ( 30 )

Eq. ( 29 ) is precisely the original variational form for strong
boundary conditions in Problem ( W ) . Therefore, if the compat-
ible weak Problem ( R ) has a solution, this wi l l also be the solu-
tion of the original Problem ( W ) . Assuming the latter problem
to have a unique solution in S g, �g (�) , this wi l l identify the so-
lution to the former problem. 
Consequently, given an appropriate reaction flux r that makes

the variational form in Problem ( R ) compatible with the orig-
inal weak form in Problem ( W ) , the conventional way to com-
pute the reactions for conforming meshes can be interpreted as
testing the variational form in Problem ( R ) with appropriate test
functions. The total flux computed in this way wi l l natural ly sat-
isfy the equilibrium expression given by the variational form.
Specifically, 

1. Given a solution u ∗ ∈ S g, �g (�) for the original weak
Problem ( W ) , assume that there exists an r ∈ L 2 (�g )
such that the variational form in Problem ( R ) holds for
u = u *. 

2. Then, the unknown total flux 
∫ 
�g 
r d� is obtained by test-

ing the compatible variational form in Problem ( R ) with
a function w g ∈ H 

1 such that w g 
∣∣
�g 

= 1 . 
3. The obtained total flux 

∫ 
�g 
r d� wi l l be in global equilib-

rium with the other fluxes, as the compatible variational
form in Problem ( R ) also holds for w = 1 ∈ H 

1 , yielding
the global equilibrium in the sense of Eq. ( 28 ) . 

Indeed, inserting w g in Problem ( R ) yields ∫ 

�g 

r d� = (w g , r) �g 

= a (w g , u ∗) − l(w g ) , ( 31 )

where the term a (w g , u ∗) − l(w g ) can be evaluated for known
w g and u *. 
The test function w g defines the linear functional R w g (u ) asso-

ciated with the reactions and defined as 

R w g (u ) = a (w g , u ) − l(w g ) . ( 32 )

Note that such a functional is defined not only when r ∈
L 2 (�g ) , but it is continuous for any u ∈ H 

1 (�) , and l belongs
to H 

1 (�) ∗, the dual space of H 

1 (�) . 
Similarly, the reactions on multiple disjoint Dirichlet bound-

aries { �i 
g } i =1 ...n b , such that 

�g = 

n b ⋃ 

i =1 

�i 
g ( 33 )
can be computed by means of test functions w 

i 
g such that w 

i 
g | �i 

g 
=

1 , w 

i 
g | � j 

g 
= 0 for i � = j . 

4.1 Reactions for the Galerkin form 

Employing the classical nodal finite-element method ( cf., e.g. [ 8 ,
9 , 38 , 63 ] ) , the space W 0 , �g (�) in the Galerkin Problem ( G )
is commonly based on a discretization that partitions � into a
finite number of elements { �e } e =1 ..n e : 

� = 

n e ⋃ 

e =1 

�e . 

Following [ 8 , 9 ], let η = {1, 2, …, n d } be the set of indices of
the associated nodes N = { x A } A ∈ η ⊂ � and ηg = { A : x A ∈
�g } ⊂ η be the subset containing indices of nodes lying on �g .
Given the linear-independent nodal shape functions { N A } A ∈ η,
where N A is associated with node x A , the space spanned by
{ N A } A ∈ η admits the direct-sum decomposition 

span { N A } A ∈ η = span { N A } A ∈ η\ ηg ︸ ︷︷ ︸ 
W 0 , �g (�) 

⊕ span { N A } A ∈ ηg . ( 34 )

The functions { N A } A ∈ η\ ηg are a basis for the space W 0 , �g (�) ,
while { N A } A ∈ ηg are commonly used to define g h as 

g h = 

∑ 

A ∈ ηg 
g h A N A . ( 35 )

The discrete linear system of equations takes the form 

K d = F , ( 36 )

where 

K AB = a (N A , N B ), A, B ∈ η, 

F A = l(N A ) , A ∈ η. 

Eq. ( 36 ) can be partitioned into the blocks associated with the
nodes identified by η�ηg and ηg : [

K 00 K 0 g 

K 

� 

0 g K gg 

][
d 0 
d g 

]
= 

[
F 0 
F g 

]
, 

where 

[ K 00 ] AB = a (N A , N B ), A, B ∈ η \ ηg , [
K 0 g 

]
AB = a (N A , N B ), A ∈ η \ ηg , B ∈ ηg , [

K gg 
]
AB = a (N A , N B ), A, B ∈ ηg . 

The upper blocks yield the traditional problem for d 0 with
strong boundary conditions corresponding to Problem ( G ) : 

K 00 d 0 = F 0 − K 0 g d g . ( 37 )

The lower blocks correspond to the nodal forces associated with
the reactions. 
The computation of the reactions viewed as testing the varia-

tional form as in Eq. ( 31 ) corresponds in the discrete case to test-
ing the Galerkin form in Problem ( G ) with a w 

h 
g ∈ span { N A } A ∈ ηg 

such that w 

h 
g | �g = 1 . For the discrete matrix system of equations,

this corresponds to a left-multiplication by a coefficient vector
representing the coordinates of w 

h 
g in the basis { N A } A ∈ ηg . In the
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Table 2. Traditional algorithm to compute the reactions viewed as testing the weak and Galerkin form with a specific test function. 

Continuous ( Eq. ( 31 ) ) a (w g , u ) − l(w g ) 

Discrete ( Eq. ( 38 ) ) 
[
0 ... 0 1 ... 1 

] {[
K 00 K 0 g 

K 

� 

0 g K gg 

][
d 0 
d g 

]
−

[
F 0 
F g 

]}

Algorithm ( Table 1 ) 
∑ 

A ∈ ηg 

∫ 
�

∇ N A ·
(
κ∇ u h 

) − N A f d� − ∫ 
�h 
N A h d�
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ase of the considered nodal partition-of-unity basis { N A }, this
akes the form 

[
0 ... 0 1 ... 1 

] {[
K 00 K 0 g 

K 

� 

0 g K gg 

][
d 0 
d g 

]
−

[
F 0 
F g 

]}

= 

[
0 ... 0 1 ... 1 

][0 
r 

]
, ( 38 ) 

here the top block vanishes, as d 0 solves Eq. ( 37 ) , and r rep-
esents the nodal reactions. Similarly, given a boundary portion
0 ⊂ �g , if it is possible to construct a test function w 

h 
g, 0 ∈

pan { N A } A ∈ ηg such thatw 

h 
g, 0 | �0 = 1 andw 

h 
g, 0 | �g \ �0 = 0 , then the

eaction can be obtained by multiplication with a vector com-
osed of the coordinates w 

h 
g, 0 in the basis { N A } A ∈ ηg . This corre-

ponds to the traditional algorithm in Table 1 , as summarized in
able 2 . 

5. CONSERVATIVE  REACTIONS  FOR 

TRIMM ED  M ESHES  

nterpreting the total reaction as testing the weak form with spe-
ific test functions serves as a basis to obtain total conservative
eactions for trimmed meshes. In the case of weak boundary
onditions, the test space in Problem ( w ) naturally consists of
he whole H 

1 (�) , containing elements w such that w 

| �g 
= 1 .

herefore, it is not necessary to consider a compatible problem
ncluding the reactions. Instead, motivated by the principle of
irtual work in Problem ( w ) , the weak boundary condition term
epresents the normal flux action on the test functions with trace
n �g . In particular, given a w g ∈ H 

1 such that w g 
∣∣
�g 

= 1 , the
otal flux can be computed by evaluating either side of 

a (w g , u ) − l(w g ) = −a w (w g , u ). ( 39 ) 

Note that the total flux computed as in Eq. ( 39 ) is in the form
f the extraction expressions studied in [ 20 ]. For the Nitsche’s
ethod in Eq. ( 16 ) , this is further supported by the fact that

t is variationally consistent. Namely, assuming enough regular-
ty, integrating by parts, and using the arbitrariness of the test
unctions, the original strong form in Eqs. ( 7 ) –( 9 ) is recovered.
herefore, a weak solution u ∗ ∈ H 

2 for Problem ( w ) , with the
eak boundary- condition term as in Eq. ( 16 ) , wi l l also solve
oth the compatible strong form in Eqs. ( 24 ) –( 27 ) with r =
( κ ∇u ∗ · n ) ∣∣

�g 
and the associated weak form in Problem ( R ) .

he reactions can be computed as in Eq. ( 31 ) . 
For the penalty method [ 18 ], the weak form in Problem ( w ) ,
ith the weak boundary-condition term as in Eq. ( 14 ) , corre-

ponds to the following perturbed strong form: 
−∇ · ( κ ∇u ) = f in �, ( 40 ) 

κ ∇u · n + β(u − g) = 0 on �g , ( 41 ) 

κ ∇u · n = h on �h . ( 42 ) 

rom Eq. ( 41 ) , it follows that (1 , κ ∇u · n ) �g = −(1 , β(u −
)) �g = −a β (w g , u ) = a (w g , u ) − l(w g ) is a natural approxi-
ation to the flux on �g . 

5.1 Reactions for the Galerkin form 

n order to compute the total flux on a disjoint portion of the
oundary �0 ⊂ �g for partition-of-unity bases on trimmed do-
ains, one strategy can be to define a function w 

h ∈ W 

h (�)
hat is one in a neighborhood of �0 , and has zero trace on �g ��0 .
n particular, the function w 

h , such that w 

h 
∣∣
�e 

= 1 for each ele-
ent �e cut by �0 , wi l l also be such that w 

h 
∣∣
�0 

= 1 , even for a
omplex boundary �0 that cannot be interpolated exactly by the
hape functions. 
Algorithmically, the only necessary modification to the proce-
ure in Table 1 is to sum the fluxes q A associated with functions
 A with non-zero trace on �0 and zero trace on �g ��0 . An exam-
le is shown in Fig. 4 , where standard reactions for nodal linear
hape functions are visually compared to the trimmed-mesh re-
ctions with linear and quadratic B-splines shape functions ( cf.
 26 ] ) . Note that in Fig. 4 c, the first two columns of control points
re needed to compute the reactions, as these are the linear
unctions with support on the constrained boundary. In Fig. 4 d,
he first three columns of control points have to be consid-
red for computing the reaction, as the basis functions’ support
rows with the order. This procedure can be summarized as in
able 3 . 

6. CONSERVATIVE  REACTIONS  FOR BASES  

NOT  FORMING A  PARTITION OF  UNITY  

qs. ( 31 ) and ( 39 ) are already in a general form, suitable for
ases that do not form a partition of unity. Using the same
deas as in Section 5 , the strategy is to define a test function w 

h 

hat is one on each cut element. With the reasonable assump-
ion that the basis functions { N A } can represent constants, let
 A ∈ R be the coefficient associated with the shape function N A ,
uch that 

∑ 

A 

c A N A = 1 on �. ( 43 ) 
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Figure 4 Solution field, mesh and reactions for trimmed meshes. The reactions are depicted as red arrows in the x -direction located at the 
control points. 

Table 3. Algorithm for computing the reactions on trimmed meshes with partition-of-unity shape functions. 

Given the shape functions { N A }, let ˜ η(�0 ) = { A : N A | �0 
� = 0 } be the set of indices of shape functions with non-zero trace on �0 . It is 

assumed N A | �g \ �0 
= 0 ∀ A ∈ 

˜ η(�0 ) . 

1. For each A ∈ 

˜ η(�0 ) , compute the discrete fluxes 

q A = 

∫ 

�

∇ N A ·
(
κ∇ u h 

)
d�, q e A = 

∫ 

�

N A f d� −
∫ 

�h 

N A h d�. 

2. The reaction r on �0 is obtained by summing the fluxes of 
shape functions with non-zero trace on �0 

r = 

∑ 

A ∈ ̃  η(�0 ) 

q A − q e A . 
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The computation of the reactions is summarized in Table 4 ,
where the sum in Table 3 is generalized to a weighted sum of
fluxes associated with basis functions with non-zero trace on �0 .
Note that for partition-of-unity bases, it holds c A = 1 for any A .
In this case, the procedure in Table 4 is the same as the one in
Table 3 . 
 

x B-splines 
For hierarchical B-splines ( HB ) , the coefficients { c A } can be ob-
tained by projecting onto the hierarchical mesh the coefficients
representing the function one on the base level. Since the stan-
dard B-splines form a partition of unity [ 64 ], the base-level coef-
ficients are all equal to 1. Let c e be the vector of coefficients { c A }
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Table 4. Algorithm for computing the reactions on trimmed meshes. The basis functions do not need to form a partition of unity. 

Given the shape functions { N A }, let ˜ η(�0 ) = { A | N A | �0 
� = 0 } be the set of indices of shape functions with non-zero trace on �0 . It is 

assumed N A | �g \ �0 
= 0 ∀ A ∈ 

˜ η(�0 ) . 
Let { c A } ⊂ R be the coordinates of 1 in the basis { N A }, as in Eq. ( 43 ) . 

1. For each A ∈ 

˜ η(�0 ) , compute the discrete fluxes 

q A = 

∫ 

�

∇ N A ·
(
κ∇ u h 

)
d�, q e A = 

∫ 

�

N A f d� −
∫ 

�h 

N A h d�. 

2. The reaction r on �0 is obtained by a weighted sum of fluxes associated with 
shape functions with non-zero trace on �0 , 

r = 

∑ 

A ∈ ̃  η(�0 ) 

c A ( q A − q e A ) . 

Figure 5 Example of coefficients ( circled numbers ) for computing the reactions with bases that do not form a partition of unity. 
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ssociated with functions with support on the element �e , then
 

e can be obtained as follows: 

c e = C 

e 1 , ( 44 ) 

here 1 is a vector of ones, and C 

e is the element hierarchical ex-
raction operator ( see [ 65 –67 ] ) . Algorithmically, this projection
an be performed as described in [ 68 ]. See Fig. 5 a for an example
f values for the coefficients { C A }. 

6.2 Reactions for integrated Legendre polynomials 
he basis functions used in the p -version of the finite-element
ethod do not form a partition of unity. Given an order p , such

 univariate basis is defined in the interval [ −1, 1] as [ 69 ]: 

ˆ ξ1 (r) = 

1 
2 
( 1 + r ) , ( 45 ) 

ˆ ξ2 (r) = 

1 
2 
( 1 − r ) , ( 46 ) 

ˆ ξi (r) = P i −1 (r) i = 2 , 3 , . . . , p + 1 , ( 47 ) 

here ˆ ξ1 (r) and ˆ ξ2 (r) are the classical linear shape functions,
hile P i −1 is defined by an integral expression of the Legendre
olynomials L i 

P i (r) = 

√ 

2 i − 1 
2 

∫ r 

−1 
L i −1 (t ) d t 
= 

1 √ 

4 i − 2 
( L i (r) − L i −2 (r) ) , i = 2 , 3 , . . . . 

ince the linear shape functions form a partition of unity ˆ ξ1 +
ˆ 2 = 1 on [ −1, 1], the remaining high-order functions ˆ ξi , i ≥ 3,
i l l have a zero coefficient. See Fig. 5 b for an example. Similarly,
or a basis obtained by the tensor product of the univariate ba-
is in Eqs. ( 45 ) –( 47 ) , the coefficients wi l l be the tensor product
f the univariate coefficients. Namely, the linear shape functions
i l l have coefficient 1, while the remaining high-order functions
i l l have a zero coefficient. In the case of a boundary-conforming
esh, this section agrees with the extraction of nodal forces pre-
ented in [ 20 , 21 ]. However, this result is also valid for the more
eneral case of trimmed meshes. 

7. 2D  BENCHMARK 

n this section, a smooth problem involving a flux induced by a
emperature difference on a curved geometry is considered. In
wo dimensions, a simple benchmark can be formulated on a
uarter of annulus �with inner and outer radii r 1 and r 2 , respec-
ively ( cf. Fig. 6 a ) . In particular, let us consider 

∇ · ( κ ∇u ) = 0 in � = 

{
x ∈ (0 , r 2 ) 2 : r 1 < ‖ x ‖ < r 2 

}
, 

u = 2 ln ( r 1 ) on �0 = 

{ x ∈ ∂� : ‖ x ‖ = r 1 } , 
u = 2 ln ( r 2 ) on �1 = 

{ x ∈ ∂� : ‖ x ‖ = r 2 } , 
κ ∇u · n = 0 on ∂� \ ( �0 ∪ �1 ) , 



70 • Journal of Mechanics , 2022, Vol. 38 

Figure 6 2D benchmark. Geometry, analytical solution and mesh example. 
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where κ is the identity matrix. The analytical solution of the
problem is the harmonic function ( cf. Fig. 6 b and c ) 

u = 2 ln ‖ x ‖ . 

Note that the data of the problem do not specify any external
flux. The global equilibrium only assures that the flux across the
Dirichlet boundary �0 balances the flux across �1 . However,
such total flux cannot be obtained directly from the source term
or the boundary conditions. 
The domain � is immersed in a Cartesian mesh of the bound-

ing box �fict = ( 0, r 2 ) 2 . One mesh example is shown in Fig. 6 d.
The discontinuity in the integrands is resolved by reparame-
terized integration-domains conforming to the physical domain
�, as explained in [ 54 , 55 ]. The problem is solved with both
Nitsche’s and penalty methods, as in Eqs. ( 14 ) and ( 16 ) , with
parameters β̄ = 10 2 ( cf. Eq. ( 15 ) ) and γ̄ = 10(p + 1) 2 ( cf.
Eq. ( 17 ) ) , similarly to [ 36 , 37 ]. The immersed B-splines analysis
is compared to the solution obtained by a conforming NURBS
mesh with similar element size h and strong Dirichlet boundary
conditions. 
The energy error of the numerical solution u h is computed

with respect to the bilinear form a ( ·, ·) of the original problem
without weak boundary conditions. In particular, the error 

e (u h ) = 

√ 

1 
2 
a (u − u h , u − u h ) ( 48 )

for the conforming mesh is shown in Fig. 7 a to have a similar con-
vergence behavior for both Nitsche’s and penalty methods. The
conservative fluxes q c 0 and q 

c 
1 are computed on the boundaries

�0 and �1 according to Table 3 . The direct fluxes are numeri-
cally integrated as follows: 

q h i = 

∫ 

�i 

κ∇u h · n d�, i ∈ { 0 , 1 } . ( 49 )

Figures 7 c and d show the relative flux error 

e i (q ) = 

∣∣∣∣∣1 −
q ∫ 

�i 
κ∇u · n d�

∣∣∣∣∣ ( 50 )

for both the direct fluxes e i ( q h ) ( dashed lines ) and for the
conservative ones e i ( q c ) ( solid lines ) . Note that the conser-
vative reactions yield more accurate results than the direct
approach and show an apparent convergence to the analytical
total flux. Nitsche’s method yields convergence rates that are
two times higher than the strain-energy error rates, similar to
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Figure 7 2D benchmark. Energy error and flux errors for direct fluxes ( dashed lines ) and conservative fluxes ( solid lines ) . 
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hose obtained with the conforming mesh ( cf. Fig. 7 b and d ) .
his phenomenon is often referred to as superconvergence
 9 , 20 –22 ]. These rates of convergence are not attained by
he penalty method, as shown in Fig. 7 c. Indeed, the penalty
ethod accurately computes the reactions of a perturbed prob-

em, and the penalty parameter is scaled with h p . Instead, if the
enalty parameter is scaled as β = β̄/ h 2 p , then the same rates
f convergence as the conforming mesh and Nitsche’s method
re attained, as shown in Fig. 8 a. Note that the conservative
pproach is always more accurate than the direct approach for
olutions of the same degree. 
The equilibrium error 

e (q 0 , q 1 ) = 

∣∣∣∣1 − q 0 
−q 1 

∣∣∣∣ ( 51 ) 

s shown in Fig. 8 b–d for both direct fluxes e (q h 0 , q 
h 
1 ) ( dashed

ines ) and conservative fluxes e (q c 0 , q 
c 
1 ) ( solid lines ) . Note that

he conservative fluxes are in equilibrium up to small numeri-
al inaccuracies that grow as the condition number with order
 ( h −2 ) . The direct-flux equilibrium error is several orders of
agnitude higher than the one for the conservative fluxes. 
8. FAÇADE  ELEMENT 

he model problem for the façade element introduced in
ection 2 is solved with trivariate B-splines . The obtained con-
ervative reactions yield a total flux converging to the same value
or both Nitsche’s and penalty methods. This behavior does not
eem to hold for the direct approach: compare Fig. 9 a and b with
ig. 3 a and c. 

9. TRIMMED  KIRCHHOFF–LOVE  SHELL  

EXAMPLE  

he presented reaction computation can be extended to the fol-
owing weak form of the Kirchhoff–Love shell problem with
eak boundary conditions ( cf., e.g. [ 70 –75 ] ) : 

find u ∈ H 

2 (�) , 

such that a ( w , u ) + b disp ( w , u ) 

+ b rot ( w , u ) = l( w ) , ∀ w ∈ H 

2 (�) , ( 52 ) 
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Figure 8 2D benchmark. Equilibrium error and improved convergence in the flux error obtained by the penalty method. The conservative 
fluxes are in equilibrium up to machine precision. 

Figure 9 Façade element example. Total flux and equilibrium error for the direct fluxes ( dashed lines ) and conservative fluxes ( solid lines ) . 
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where a ( w , u ) is the bilinear form representing the internal work

a ( w , u ) = 

∫ 

�

ε ( w ) : N ( u ) d� + 

∫ 

�

κ( w ) : M ( u ) d�. 

The symbols ε and κ denote the membrane and bending strain
tensors, respectively, while N and M are the in-plane stress and
bending moments, respectively. The term l( w ) is the linear func-
tional representing the external work of a volumetric body load
f and the traction t over the boundary �t ⊂ ∂�: 

l( w ) = 

∫ 

�

w · f d� + 

∫ 

�t 

w · t d�. 

For simplicity, only zero external bending moments are consid-
ered. The term b disp ( w , u ) penalizes a displacement different
from g on the boundary �g ⊂ ∂�: 

b disp ( w , u ) = 

∫ 

�g 

βdisp w · ( u − g ) d�, 
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Figure 10 Trimmed Kirchhoff–Love shell example. 
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here βd isp ∈ R is a user-defined penalty parameter. Finally, the
erm b rot ( w , u ) penalizes the normal rotations on the boundary
θ ⊂ ∂�:

b rot ( w , u ) = 

∫ 

�θ

β r ot ( n · �( w ) ) ( �( u ) · n ) d�, 

here β r ot ∈ R is a user-defined penalty parameter, the symbol
 represents the outward in-plane normal to the boundary �θ

nd �( u ) = a 3 ( u ) − A 3 denotes the angle between the shell
ormal in its undeformed A 3 configuration and deformed a 3 ( u )
onfiguration afte r a pplying the deformation u . See [ 73 , 74 ] for a
etailed review. Following [ 74 ], given Young’s modulus E , Pois-
on’s ratio ν, thickness t and size h of the smallest element, the
enalty parameters are scaled as 

βdisp = β̄ Et 
h (1 −ν2 ) , 

β rot = β̄ Et 3 
12 h (1 −ν2 ) , 

here the common parameter β̄ ∈ R is user-defined. In the fol-
owing, the value β̄ = 10 3 is used, since in [ 74 ], this value is
hown to be suitable for various examples in the context of multi-
atch penalty coupling. 
Following the reasoning of the previous sections, the i th re-
ction component, r i , corresponding to the traction on �g is
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computed by testing the variational form with a test function
w 

g,i ∈ H 

2 such that w 

g,i 
i 

∣∣∣
�g 

= 1 , w 

g,i 
j 

∣∣∣
�g 

= 0 for j � = i and such

that (�( w 

g,i ) · n ) ∣∣
�θ

= 0 . In particular, given a known dis-
placement field u ∗ ∈ H 

2 , the i th component of the total reaction
can be computed by evaluating either side of the following equa-
tion: 

a ( w 

g,i , u ∗) − l( w 

g,i ) = −b disp ( w 

g,i , u ∗) . ( 53 )
The same strategy as in Sections 5 and 6 can be applied to

the present case to evaluate the reactions on trimmed geome-
tries with bases that do not form a partition of unity. The global
equilibrium is confirmed in the example shown in Fig. 10 a. The
edges of the circular hole on the left ( blue curves ) are clamped,
while a traction t = (0 , 0 , 1) � is applied on the straight bound-
ary marked in Fig. 10 a ( red arrows ) . 
The geometry is described by a B-spline patch stored in a

STandard for the Exchange of Product model data ( STEP ) file
format [ 76 ]. A ( trimmed ) computational mesh is obtained for
numerical analysis by k -refinement on the geometric patch, as
described in [ 25 , 26 ]. The STEP file also contains the trimming
curves in the parametric space of the B-spline patch, allowing
to define accurate shell integration rules following [ 54 ], as ex-
plained in [ 72 , 77 ]. 
The problem is solved with an initial ( trimmed ) B-spline

patch of uniform degree p = 3. The elements intersecting the
physical domain � are shown in Fig. 10 a. Figure 10 b shows the
displacement magnitude on the deformed geometry. The prob-
lem is also solved with hierarchical B-splines [ 23 , 24 ] with sev-
eral refinement levels. The elements cut by the clamped bound-
ary are recursively refined up to a refinement level l . Addi-
tionally, some elements totally outside the physical domain are
refined to ensure that the finest-level hierarchical functions are
activated, as explained in [ 78 ]. Specifically, for each cut-element
�e marked for refinement, it is also marked for refinement each
element ˜ �e ∈ �fict \ � contained in the support of basis func-
tions of element �e . See [ 78 ] for details. A graded mesh is ob-
tained by enforcing a mesh-admissibility class equal to one [ 79 ,
80 ]. Namely, each element can have active basis functions be-
longing to at most two consecutive levels. Details can be found
in [ 79 –81 ]. Figure 10 c shows the mesh obtained after l = 5 re-
cursive refinements, along with the von Mises stress around the
clamped hole. 
The basis functions having non-zero trace on the clamped

edge belong to the hierarchical-refinement levels l and l − 1.
These functions do not form a partition of unity, and the reaction
tractions are computed as described in Section 6.1 . The mesh
and discrete reactions for l ∈ {0, 2, 5} are shown in Fig. 10 e–g.
Figure 10 d shows the relative equilibrium error of the reaction
traction r on the clamped edge with the applied external traction
t computed as follows: 

e ( r , t ) = 

‖ r − t ‖ 2 

‖ t ‖ 2 
. ( 54 )

10. CONCLUSIONS  

In this work, we formulated and investigated a conservative ap-
proach for computing reaction forces and fluxes based on the
expression of global equilibrium given by the weak form. The
discussed approach is suitable for trimmed meshes and non-
interpolatory basis functions. We showed that the direct method
consisting of integrating the differentiated primal solution could
perform particularly poorly for immersed methods. Instead, the
conservative approach yields convergence rates two times higher
than the energy-norm error for a two-dimensional benchmark
with a smooth solution and weak boundary conditions. The ap-
proach is generalized to bases not forming a partition of unity,
such as the hierarchical B-splines and the integrated Legendre
polynomials. In conclusion, this work aims at providing an accu-
rate formulation for computing reaction forces and fluxes suit-
able for trimmed discretizations based on ( locally refined ) non-
interpolatory basis functions. 
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