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Abstract
Koopman operator theory converts traditional analysis of nonlinear dynami-
cal systems into analysis of composition operators, allowing one to use mature
tools from linear functional analysis but requires working in infinite dimen-
sional space. Common Petrov-Galerkin methods for Koopman operator anal-
ysis suffer from spectral pollution - elements in the approximated spectrum
which are caused solely by discretization and do not approximate elements
in the true spectrum of the Koopman operator. Resolvent-based algorithms
to identify spectral pollution are studied, resulting in new connections and
insights about existing methods, as well as a new method based on previous
work. Moreover, the notion of ”true” Koopman spectrum is critically investi-
gated.



Contents
1 Introduction 1

2 Background 1
2.1 Koopman and Perron-Frobenius Operators . . . . . . . . . . . 1
2.2 Spectral Properties . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 The Spectrum . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Spectra of Koopman and Perron-Frobenius Operators . 6

2.3 Pseudospectra . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Definitions of the Pseudospectrum . . . . . . . . . . . 9
2.3.2 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Numerical Methods 15
3.1 Petrov-Galerkin Methods . . . . . . . . . . . . . . . . . . . . . 15
3.2 Extended Dynamic Mode Decomposition (EDMD) . . . . . . 16

3.2.1 The Galerkin Ansatz . . . . . . . . . . . . . . . . . . . 16
3.2.2 Functional Minimization . . . . . . . . . . . . . . . . . 17
3.2.3 EDMD for the Perron-Frobenius Operator . . . . . . . 20

3.3 Residual EDMD (ResDMD) . . . . . . . . . . . . . . . . . . . 20
3.3.1 Validation of Koopman Eigenpairs . . . . . . . . . . . 20
3.3.2 A Naive Attempt at Duality . . . . . . . . . . . . . . . 23

3.4 kernel EDMD (kEDMD) . . . . . . . . . . . . . . . . . . . . . 25
3.4.1 The Kernel Trick and Reproducing Kernel Hilbert Spaces 25
3.4.2 Application to EDMD . . . . . . . . . . . . . . . . . . 28

3.5 kernel ResDMD (kResDMD) . . . . . . . . . . . . . . . . . . . 30
3.5.1 Associating a Residual to K̂ . . . . . . . . . . . . . . . 30
3.5.2 The Perron-Frobenius Connection . . . . . . . . . . . . 32

4 Examples 36
4.1 Duffing Oscillator . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Alanine Dipeptide . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3 Blaschke Products . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2 An Initial Numerical Experiment . . . . . . . . . . . . 41
4.3.3 The Adjoint of H2(A) . . . . . . . . . . . . . . . . . . 41

5 Conclusion 44

References 45



1

1 Introduction
Dynamical systems theory has seen many revolutions. One recent such revolu-
tion is to use operator theoretic tools to analyze the global behavior of chaotic
systems. Concieved originally in the 1930’s by Koopman and Von Neumann
[24] but popularized largely in the last two decades, the study of global dynam-
ics under a mapping S is conducted by studying the action of the composition
ψ ◦ S of S with an observable ψ. Observables which act as eigenvalues for
the composition operator and its dual hold information on slowly decaying
structures in phase space.

Currently the most popular method by far for analyzing composition oper-
ators (named Koopman operators) is dynamic mode decomposition (DMD).
The past two decades have seen massive growth in this topic, and DMD has re-
cieved many evolutions [12]. One primary concern of nearly all DMD methods
is spectral pollution. The Koopman operator often has unfavorable spectral
qualities such as continuous spectrum which are unstable, and are destroyed
by finite approximation. The task set forth in the present paper is to identify
which candidate eigenvectors (computed e.g. by DMD) are approximations of
eigenmodes of the true Koopman operator (or its adjoint), and which arise due
to discretization.

2 Background
We consider a discrete dynamical system generated by a map S : Ω → Ω
defined on a measure space (Ω,A, dx) which is nonsingular, that is

∫
S−1(A)

dx =

0 for any A ∈ A with
∫
A
dx = 0. We will always assume that Ω is at least a

finite dimensional complete metric space.

2.1 Koopman and Perron-Frobenius Operators
Koopman operator theory shifts the focus from dynamics of points in state
space X to dynamics of observables g : Ω → C. A state x ∈ Ω evolves by
iteratively applying the map S, and similarly observables evolve under the
action of the Koopman operator

Kg = g ◦ S. (2.1)

The primary benefit of this alternative viewpoint of dynamics is that K is linear
and can therefore be analyzed using algebraic and functional analytic tools.
However, the Koopman operator acts on function spaces which are typically
infinite-dimensional. Even the Krylov space {g, Kg, K2g, . . .} is generically
infinite-dimensional: consider e.g. an indicator function g = 1[0,1] and a trans-
lation S(x) = x− 1.
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It should be noted that until now we have not declared a function space to act
as a domain for K. This is because there are many potential domains for which
K is not only well-defined, but has interesting properties worth studying. For
the current section we consider K : L∞ → L∞. On this space K is obviously
bounded, in fact it is a contraction. However, that need not be the case for
other spaces. Depending one the function space and in S, K may not even be
bounded.

The Koopman operator tracks how observables evolve with S. There is however
a dual viewpoint: that of densities and pushforwards. From the duality pairing

〈f, Kg〉 = 〈Lf, g〉 (2.2)

for f ∈ L1, g ∈ L∞ we may deduce the form of an adjoint operator, known
as the transfer operator or Perron-Frobenius operator. Consider an indicator
g = 1A for an A ∈ A and let f ≥ 0. The left hand side of 2.2 is

∫
f(x)1A(S(x)) dx =

∫
f(x)1S−1(A)(x) dx =

∫
S−1(A)

f(x) dx, (2.3)

and the right hand side

∫
Lf(x)1A(x) dx =

∫
A

Lf(x) dx. (2.4)

Hence Lf ∈ L1 should satisfy the equation

∫
A

Lf(x) dx =

∫
S−1(A)

f(x) dx. (2.5)

A short exercise in measure theory shows that

A 7→
∫
S−1(A)

f(x) dx (2.6)

defines a finite absolutely continuous measure, and hence by the Radon-Nikodym
theorem the measure has a unique density which by 2.5 is precisely Lf . For
general f ∈ L1 decompose f = f+ − f− with f+, f− ≥ 0 and set Lf =
Lf+ − Lf−.

2.6 shows that L is precisely the action of the pushforward S]µ = µ ◦ S−1

for densities. This provides a useful intuition for the transfer operator: we
move away from the viewpoint of single points x ∈ Ω, and instead consider
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Figure 2.1: Illustration of the pushforward intuition of the Perron-Frobenius
operator. Action of the L associated with the quadratic map S : [0, 1] 	
, x 7→ 4x(1 − x). One million points are sampled uniformly in [0, 1] and
mapped forward under S, S2, and S10. The respective distributions are shown
in histograms.

distributions of point density. If x is chosen from a random distribution with
density f , then the distribution of S(x) has density Lf .

When S is a diffeomorphism, L has an explicit form.

Theorem 2.1. Let S be a diffeomorphism. Then

Lf =
f ◦ S−1

|detDS−1|
(2.7)

In particular one sees that when S is a measure algebra isomorphism (that is,
S and S−1 both preserve the measure) then the Koopman operator is unitary,
i.e. K∗(= L) = K−1.

Proof. This follows from a change of variables y = S(x)∫
g · Lf dx =

∫
K · f dx =

∫
f(y) · g ◦ S−1(y)

∣∣detDS(S−1(y))
∣∣ dy. (2.8)

Corollary 2.2. Assume S is a piecewise diffeomorphism, i.e. there exists a
disjoint decomposition Ω =

⊎n
l=1 Ul such that for each l, Sl ..= S|Ul

: Ul → Vl
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is a diffeomorphism. Then

(Lf)(x) =
n∑
l=1

f ◦ S−1
l (x)∣∣detDS−1
l (x)

∣∣1Vl(x). (2.9)

2.2 Spectral Properties
2.2.1 The Spectrum

We begin with abstract definitions for parts of the spectrum.

Definition 2.3. Let M : D(M) → X be a linear operator on a Banach space
(X, ‖ · ‖). The domain D(M) ⊂ X of M may be a dense subset of X . M
is called closed if: whenever xk → x is a convergent sequence with Mxk
convergent, then Mxk →Mx.

Closedness is weaker than continuity due to the extra assumption that Mxk
is convergent.

Definition 2.4. The spectrum σ(M) of a closed operator M is the set of
numbers λ ∈ C for which M − λI does not have a bounded inverse. The
complement ρ(M) ..= C\σ(M) is called resolvent set and (M −λI)−1 is called
the resolvent.

Proposition 2.5. The spectrum admits a disjoint decomposition

σ(M) = σp(M) ] σc(M) ] σr(M) (2.10)

into point-, continuous-, and residual-spectrum with

σp(M) = {λ ∈ C |M − λI is not injective} ,
(2.11)

σc(M) = {λ ∈ C |M − λI is injective, but its range is a dense subset of X} ,
(2.12)

σr(M) = {λ ∈ C |M − λI is injective, but does not have dense range} .
(2.13)

Remark. In some literature, 0 is never part of the spectrum. We do not take
this approach.

An element λ ∈ σp(M) is a true eigenvalue in the sense that there exists a
vector x ∈ X such that (M − λI)x = 0. The continuous spectrum has a
similar characterization as the set of λ ∈ C for which M − λI is injective but
not bounded from below, i.e. there exists a sequence (xk)k, ‖xk‖ = 1, for which
0 < ‖(M − λI)xk‖ → 0. Equivalently, (M − λI)−1 cannot be extended to a
bounded linear operator, but is still a (densely defined) closed linear operator.
(See the proof of theorem 2.20 for a proof of this characterization.)
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We have already used the duality pairing 2.2 to deduce a form of the Perron-
Frobenius operator. For completetess we provide a full definition for the adjoint
of an unbounded operator and cite some basic facts about adjoints.

Definition 2.6. Let M : X ⊃ D(M) → X be a densely defined closed linear
operator on a Banach space. The adjoint operator is constructed as follows.
Let

D(M∗) = {f ∈ X ∗ | ∃ f ′ ∈ X : 〈f,Mg〉 = 〈f ′, g〉 ∀ g ∈ D(M)} . (2.14)

Now M∗ is defined by M∗f = f ′.

Lemma 2.7 ([23]). Let X be a reflexive1 Banach space. Then the adjoint
operator is also densely defined and closed, and

1. M∗∗ =M ,

2. ker(M∗) = ran(M)⊥,

where for A ⊂ X , A⊥ = {f ∈ X ∗ | 〈f, g〉 = 0 ∀ g ∈ A} is the annihilator.

One might ask why such detail is required in defining the spectrum. The
answer lies in the subtle consequences of infinite-dimensionality. The following
example from [18] shows the subtle interplay between residual spectrum and
spectrum of the adjoint operator, all of which requires infinite-dimensionality.
Example 2.8 (Shift operators on `2(N)). The canonical right-shift operator

R : (a1, a2, . . .) 7→ (0, a1, a2, . . .) (2.15)

is adjoint to the left shift

L : (a1, a2, . . .) 7→ (a2, a3, . . .). (2.16)

We claim:

σp(L) = {λ ∈ C | |λ| < 1} σp(R) = ∅ (2.17)
σc(L) = {λ ∈ C | |λ| = 1} σc(R) = {λ ∈ C | |λ| = 1} (2.18)
σr(L) = ∅ σr(R) = {λ ∈ C | |λ| < 1} . (2.19)

Indeed, to see 2.17 consider 0 < |λ| < 1, aλ = (λ, λ2, . . .). Then clearly Laλ =
λaλ. Moreover L(0, 0, . . .) = (0, 0, 0, . . .) so the first half of 2.17 is proven. On
the other hand, suppose Ra = λa for some a 6= 0, λ ∈ C. Then letting n be

1The bidual X ∗∗ is isomorphic to X , that is, X ∗∗ ∼= X .
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the first index such that an 6= 0, we must have 0 = an−1 = (Ra)n = λan so
λ = 0. But the kernel of R is clearly {0}.

To see 2.18, take |λ| = 1 and construct approximate (L, λ)-eigenvectors vn =
(λ, λ2, . . . , λn, 0, . . .). Then (L−λI)vn = (0, . . . , 0, λn+1, 0, . . .) so ‖(L−λI)vn‖ =
1 but ‖vn‖ =

√
n. It remains to show that λ is of continuous spectrum, as

opposed to residual spectrum. Indeed, for any w such that for all v ∈ `2,
0 = 〈(L− λI)v, w〉 =

〈
v, (R− λ̄I)w

〉
so that w is an eigenvector of R which

by 2.17 is a contradiction. An entirely analogous argument shows that the
circle is also continuous spectrum for R.

We now reverse the discussion to see that any |λ| < 1 is in the residual spec-
trum of R. For v ∈ `2 and w a λ̄-eigenvector of L we have 0 = 〈v, 0〉 =〈
v, (L− λ̄I)w

〉
= 〈(R− λI)v, w〉 so that the range of R− λI is orthogonal to

w.

Finally, σ(M) is bounded by ‖M‖ for any operator M , and clearly ‖L‖ = 1.
But σp(L) ∪ σc(L) = {λ ∈ C | |λ| ≤ 1} so σr(L) = ∅. Combined with the
previous paragraph, this shows 2.19.

The example already suggests some important relationships regarding the spec-
trum of adjoint operators.

Theorem 2.9. Let M be a densely defined closed linear operator on a reflexive
Banach space.

1. λ ∈ σ(M) iff λ̄ ∈ σ(M∗).

2. If λ ∈ σr(M), then λ̄ ∈ σp(M
∗).

3. Conversely, if λ ∈ σp(M), then λ̄ ∈ σp(M
∗) ∪ σr(M∗).

4. σc(M) = σc(M
∗).

Proof. 1. Suppose M − λI has a bounded inverse B. Then (M − λI)B =
B(M − λI) = I. Equivalently B∗(M∗ − λ̄I) = (M∗ − λ̄I)B∗ = I∗ = I.

2. The range of M − λI is not dense in X . Hence there exists a v ∈
ran(M − λI)⊥. But this implies v ∈ ker(M∗ − λ̄I).

3. There exists a v ∈ ker(M − λI) which implies v ∈ ran(M∗ − λ̄I)⊥.

4. Follows from 1, 2, and 3.

2.2.2 Spectra of Koopman and Perron-Frobenius Operators

The Koopman and Perron-Frobenius operator spectrum holds information
about the long-term mixing rates of structures in phase space. We write (with
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Figure 2.2: Actions of the Koopman and Perron-Frobenius operators associ-
ated with the quadratic map S : [0, 1] 	, x 7→ 4x(1−x). The constant density
1[0,1] is fixed under K and the density f∗(x) =

1

π
√
x(1−x) is fixed under L (c.f.

figure 2.1).

some abuse of notation) L|X and K|X to denote the Perron-Frobenius / Koop-
man operators acting on the domain X .

Definition 2.10. An eigenfunction f for L|L1 with eigenvalue 1 is the density
of a (signed) invariant measure. We say S preserves the measure f dx.

The following are well-known facts about the Koopman and Perron-Frobenius
operator. They can be found in many sources e.g. [26].

Theorem 2.11. 1. If S is ergodic2, then there is at most one invariant
density. Conversely, if there is a unique invariant density which is
(dx−)almost everywhere positive, then S is ergodic.

2. If S is ergodic, then every eigenvalue of K|L1 is simple.

3. Suppose S is invertible. Then S is weak-mixing iff 1 is the only eigenvalue
of K|L1.

The following theorem is from [16].
2Ergodicity and mixing describe how obeservations become decorrelated over time. S is

ergodic if for all A,B ∈ A we have 1
n

∑n−1
j=0

∫
S−j(A)∩B

dx →
∫
A
dx
∫
B
dx as n → ∞. S is

weak-mixing if we have 1
n

∑n−1
j=0

∣∣∣∫S−j(A)∩B
dx−

∫
A
dx
∫
B
dx
∣∣∣→ 0 as n → ∞.
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Definition 2.12. A set A ⊂ Ω in phase space is called δ-almost-invariant if∫
S−1(A)∩A

dx = δ ·
∫
A

dx. (2.20)

When δ ≈ 1, A is also often called metastable.

Theorem 2.13. Let R 3 λ < 1 be an eigenvalue corresponding to a real-
valued normalized eigenfunction f of L|L1. Let further A ⊂ Ω be such that∫
A
f dx = 1

2
. Then

δ + η = λ+ 1 (2.21)

if A is δ-almost-invariant and Ω \ A is η-almost-invariant.

These are only a few interesting properties of the spectrum of these operators,
but there are many more which can be studied.

2.3 Pseudospectra
The reader will have likely noticed the sensitivity required in understanding the
spectrum for infinite-dimensional operators. In particular the spectral types
can be unstable w.r.t. perturbations of the operator. For example, for any
self-adjoint operator M (e.g. the generator for the Koopman semigroup in a
continuous-time dynamical system) there exists a compact operator E with
arbitrarily small norm such that the perturbation M + E has purely point
spectrum [23].

The situation is even worse when one considers perturbations of the dynam-
ics instead of perturbations of the Koopman / Perron-Frobenius operators.
Consider a circle rotation S : T → T, e2πiθ 7→ e2πi(θ+α). We have σ(L|L2) =
σp(L|L2) = αN0 . If the rotation is rational then the spectrum is discrete, but
if the rotation is irrational then the spectrum is dense in the unit circle.

In the present paper we tackle the instability problem for operator perturba-
tions. One might wonder whether operators which are ”close” (in some sense)
also have spectra which are ”close”. Unfortunately, this is in general not true.
Even in finite dimensions this breaks down, as the following example shows.
Example 2.14 ([35]). Let X = Rn and let

M =


0 1

. . . . . .
1
0

 . (2.22)
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Figure 2.3: Pseudospectra for the 40 × 40 Toeplitz matrix T with 0 on the
main diagonal, 1 on the first upper off-diagonal, and 1/4 on the second lower
off-diagonal. Contour lines show the boundary of the ε-pseudospectrum for
ε = 10−2, 10−4, 10−6, 10−8, 10−10. Black: Spectrum of T . Purple: Spectra of
T + E for 40 randomly sampled perturbations E with ‖E‖ < 10−4.

M is nilpotent so σ(M) = {0}. However, for an arbitrarily small ε > 0, the
perturbation

M + E =


0 1

. . . . . .
1

ε 0

 . (2.23)

has characteristic polynomial (−λ)n−(−1)nε so that σ(M+E) = {λ ∈ C | λn = ε}.
For growing n, σ(M +E) comes asymptotically close to filling the unit circle.

2.3.1 Definitions of the Pseudospectrum

Definition 2.15. Let M : D(M) → X be a closed linear operator. The ε-
pseudospectrum of M is the smallest set in C which contains the spectrum of
all perturbations of M with norm less than ε:3

σε(M) =
⋃

‖E‖<ε

σ(M + E). (2.24)

3Some authors will define the pseudospectrum with ”≤” instead of ”<”. This makes
σε(M) a closed set, but breaks theorem 2.16.
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Theorem 2.16. We have the following equivalent formulation of the pseu-
dospectrum:

σε(M) =

{
λ ∈ C | ‖(M − λI)−1‖ > 1

ε

}
(2.25)

where we use the convention that ‖(M−λI)−1‖ = ∞ if M−λI is not invertible.

Remark. While this result is practically pseudospectrum folklore, a correct
proof in the general case of closed linear operators on Banach spaces is diffi-
cult to find. Virtually all sources which cite this result, cite an unpublished
technical report by Chaitin-Chatelin and Harrabi [10]. The following proof is
based on [6] and extended slightly from bounded operators to closed (poten-
tially) unbounded operators.

Proof. We prove ”⊂” by contraposition: assume ‖(M − λI)−1‖ > 1
ε

and let
‖E‖ < ε. Then ‖(M − λI)−1E‖ < 1 and hence I + (M − λI)−1E is invertible.
This implies

M − λI + E = (M − λI)
(
I + (M − λI)−1E

)
(2.26)

is invertible.

Conversely, we prove ”⊃” by showing there exists an operator E with ‖E‖ < ε
sich that M − λI +E is not invertible. Since ‖(M − λI)−1‖ > 1

ε
there exists a

u ∈ X with ‖u‖ = 1 and (M − λI)−1u = v ∈ D(M) with ‖v‖ = 1
δ
> 1

ε
.4 The

Hahn-Banach theorem provides a v∗ ∈ X ∗ with ‖v∗‖ = 1 and v∗v = ‖v‖ = 1
δ
.

Set E = −δuv∗. Then ‖E‖ = δ < ε and

Ev = −δuv∗v = −u = −(M − λI)(M − λI)−1u = −(M − λI)v. (2.27)

Rearranging yields (M + E − λI)v = 0.

The proof of the above theorem also shows that one can consider only rank-one
perturbations in 2.24:

Corollary 2.17. We can restrict 2.24 to

σε(M) =
⋃

‖E‖<ε
rank E=1

σ(M + E). (2.28)

The following formulation of the pseudospectrum in the Hilbert space case will
be the main tool we use in the section on numerical methods.

Definition 2.18. The function

σinf(M) = inf
‖x‖=1

‖Mx‖ (2.29)

is known as the injection modulus.
4At this point we require the strict inequality. Otherwise, the existence of such a pair u,

v is not guaranteed.
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Lemma 2.19. Let M : D(M) → X be a closed linear operator on a Hilbert
space. If λ ∈ ρ(M) then

σinf(M − λI) = σinf(M
∗ − λ̄I), (2.30)

but this is not necessarily true if λ ∈ σ(M).

Proof. 2.30 for λ ∈ ρ(M) follows from the fact that for bounded operators A
we have ‖A‖ = ‖A∗‖, applied to A = (M − λI)−1. To see that 2.30 does not
hold for λ ∈ σ(M), consider again the right shift from example 2.8. Clearly
‖Rx‖ = ‖x‖ so R is bounded from below but L(1, 0, 0 . . .) = (0, 0, 0, . . .) so
σinf(L) = 0.

Theorem 2.20. For a Hilbert space operator M ,

1

‖(M − λI)−1‖
= min

{
σinf(M − λI), σinf(M

∗ − λ̄I)
}
. (2.31)

where we use the convention that 1/ ‖(M − λI)−1‖ = 0 when λ ∈ σ(M).

Proof. When λ ∈ σp(M), then obviously σinf(M−λI) = 0. Due to theorem 2.9
part 2, λ ∈ σr(M) has σinf(M

∗ − λ̄I) = 0. Finally, let λ ∈ σc(M) so M − λI is
injective. Assume σinf(M−λI) > 0. Then (M−λI)−1 : ran(M−λI) → D(M)
is bounded. But since ran(M − λI) ⊂ X is dense, (M − λI)−1 has a unique
bounded extension to X , a contradiction.

Corollary 2.21. In the Hilbert space setting, the psudospectrum can be for-
mulated as:

σε(M) = {λ ∈ C | ∃ u ∈ X : ‖u‖ = 1 and either
‖(M − λI)u‖ < ε or

∥∥(M∗ − λ̄I)u
∥∥ < ε

}
. (2.32)

In the general Banach space setting,

σε(M) = σr(M) ∪ {λ ∈ C | ∃ u ∈ X : ‖u‖ = 1, ‖(M − λI)u‖ < ε} . (2.33)

The residual spectrum causes many common and unintuitive issues in spectral
theory. In the study of pseudospectra, this issue is alleviated in one of three
ways: (1): consider only classes of operators which have no residual spectrum
(e.g. finite-dimensional or compact operators), (2): compute a slightly different
object known as the approximate-point spectrum (see below), (3): ignore the
problem entirely and write proofs which are all slightly incorrect.

Definition 2.22. The approximate-point pseudospectrum is the set of points
for which there exists an ε-approximate pseudoeigenvector

σap,ε(M) = {λ ∈ C | ∃ u ∈ X : ‖u‖ = 1, ‖(M − λI)u‖ < ε} . (2.34)
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The ε→ 0 limit of such sets is the approximate-point spectrum

σap(M) =
⋂
ε>0

σap,ε(M) (2.35)

=
{
λ ∈ C | ∃ (uk)k : ‖uk‖ = 1 ∀ k, lim

k→∞
‖(M − λI)uk‖ = 0

}
. (2.36)

2.3.2 Properties

To gain some intuition for the pseudospectrum, we derive some properties for
specific types of operators.

Definition 2.23. An operator M on a Hilbert space is called normal if M∗M =
MM∗. Special classes of normal operator include unitary operators (M∗ =
M−1) and self-adjoint operators (M∗ =M).

Proposition 2.24. For a normal operator M , σr(M) = ∅.

Proof. Let λ ∈ σ(M), A =M −λI. If λ is not an eigenvalue then kerA = {0}
and

{0} = kerA = kerA∗ = (ranA)⊥ (2.37)

where for the second equality we used the normality. Hence ranA is dense.

Lemma 2.25. For a closed linear operator M we have

dist(λ, σ(M)) ≥ 1

‖(M − λI)−1‖
∀λ ∈ C. (2.38)

Moreover, if M is a normal operator on a Hilbert space, then we have equality.

Proof. Let λ ∈ ρ(M), η ∈ σ(M). Denote A =M − λI, B =M − ηI. Then A
is invertible and

B = A− (A−B) = A(I − A−1(A−B)). (2.39)

Now ‖A−1(A−B)‖ ≤ ‖A−1‖ |λ− η| so if |λ− η| < 1
‖B−1‖ then the right hand

side of 2.39 is invertible, a contradiction to η ∈ σ(M).

To prove equality in the case of normal operators requires some heavy machin-
ery from operator theory, namely:

1. Every normal operator is unitarily similar to a multiplication operator
on some semi-finite measure space (i.e. there exists a unitary U such that
M = U−1MaU where (Maf)(x) = a(x)f(x) is a multiplication operator).

2. For multiplication operators, equation 2.38 holds with equality.

These results can be found in many sources e.g. [34].

Theorem 2.26. We have



2.3 Pseudospectra 13

1. σδ(M) ⊂ σε(M) whenever δ ≤ ε,

2.
⋂
ε>0 σε(M) = σ(M),

3. σ(M)+Bε ⊂ σε(M), where Bε is the ball with radius ε centered at 0 and
+ refers to pointwise summation C +D = {x+ y | x ∈ C, y ∈ D}.

4. If M is normal, then σ(M) +Bε = σε(M).

Remark. Theorem 2.26 effectively says that the Pseudospectra are nested sets
which grow at least as quickly as ε-balls around the spectrum.

Proof. 1 and 2 are consequences of the representation 2.24 of the pseudospec-
trum. 3 and 4 are consequences of lemma 2.25.

We will use the following theorem from Globevnik [19] and Daniluk [8], the
proof of which if not very instructive.

Lemma 2.27. Let M be a bounded linear operator on a Hilbert space X . Then
the resolvent norm function λ 7→ ‖(M − λI)−1‖ cannot be constant on an open
set U ⊂ C.

This lemma can be extended to Lp spaces [7], finite dimensional Banach spaces
[20], Banach spaces which are complex uniformly convex [19], but not general
infinite dimensional Banach spaces [33].

Theorem 2.28. The function which maps (ε,M) 7→ σε(M) which sends an
ε > 0 and a bounded M acting on a Hilbert space X to the set σε(M) is
continuous using the metric

d( (ε1,M1), (ε2,M2) ) = |ε1 − ε2|+ ‖M1 −M2‖ (2.40)

in the domain and the Haussdorff metric in the codomain.

Remark. 1. The idea for the proof is taken from [15], though it originally
included two errors: it does not take into account residual spectrum, and
makes a bound which is unfortunately not correct. These issues can be
lifted in the Hilbert space setting, so that the theorem is still correct as
it is stated in [15].

2. If one replaces σε(M) with σap,ε(M) in theorem 2.28, then the proof in
[15] is essentially correct (save for the bound) and even works for any
space where the resolvent norm cannot be constant. To the best of this
author’s knowledge, there is no published correct proof for the general
Banach space setting with σε(M), despite it being considered common
knowledge in the study of pseudospectra.

Proof. Let (M, ε) and (M ′, ε′) be such that d ( (M, ε), (M ′, ε′) ) < δ for some
0 < δ < ε/2. Without loss of generality let ε ≤ ε′.
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Let λ ∈ σε′(M
′). By 2.32 there exists a normalized v ∈ X such that either

‖(M ′ − λI)v‖ < ε′ or
∥∥(M ′∗ − λ̄I)v

∥∥ < ε′. Assume the former is true. It
follows

‖(M − λI)v‖ ≤ ‖(M −M ′)v‖+‖(M ′ − λI)v‖ < δ−|ε− ε′|+ε′ ≤ δ+ε (2.41)

where for the last inequality we used that ε ≥ ε′−|ε′ − ε|. By 2.32, λ ∈ σε+δ(M)
and hence σε′(M ′) ⊂ σε+δ(M).

For the case that
∥∥(M ′∗ − λ̄I)v

∥∥ < ε′, equation 2.41 can be done exactly the
same with

∥∥(M∗ − λ̄I)v
∥∥ on the left hand side.

Now let λ ∈ σε−δ(M). Again this implies there exists a normalized v ∈ X such
that either ‖(M − λI)v‖ < ε− δ or

∥∥(M∗ − λ̄I)v
∥∥ < ε− δ. Assume again the

former is true. Then

‖(M ′ − λI)v‖ ≤ ‖(M ′ −M)v‖+ ‖(M − λI)v‖ < δ + ε− δ ≤ ε′ (2.42)

and hence λ ∈ σε′(M
′) so that σε−δ(M) ⊂ σε′(M

′) (again the adjoint case can
be done exactly the same with adjoints on the left hand side of the equation).

We now have σε−δ(M) ⊂ σε′(M
′) ⊂ σε+δ(M) which implies for the Haussdorff

distance between σε(M) and σε′(M
′),

H (σε(M), σε′(M
′) ) (2.43)

≤ max {H (σε(M), σε−δ(M) ) , H (σε(M), σε+δ(M) ) } (2.44)
≤ H (σε−δ(M), σε+δ(M) ) . (2.45)

Appealing to lemma 2.27 now yields that 2.45 converges to 0 as δ → 0, which
was to be proven.

We conclude the section on mathematical background by examining the inter-
action between an operator and finite rank approximations of it. The methods
we will describe in the following section are special types of finite-section meth-
ods.

Theorem 2.29. Let M be a closed linear operator and (Πn : X → Vn)n be a
collection of projections onto finite-dimensional subspaces Vn which converge
pointwise to the identity. Let further (λ, c) ∈ C × Vn be an ε-pseudoeigenpair
of ΠnMΠn. Then for every δ > 0 there exists an N = N(δ, c) such that
λ ∈ σε+δ(M) whenever n > N .

However, this does not necessarily imply σε(ΠnMΠn) → σε(M) in the Hauss-
dorff metric.

Proof. Let N be such that of off-diagonal action of (M−λI) on c is bounded by
δ, i.e. ‖(I − ΠN)(M − λI)ΠNc‖ < δ. Now the claim follows from the triangle
inequality since

(M − λI)c = (ΠNMΠN − λI)c+ (I − ΠN)(M − λI)ΠNc (2.46)
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and (by definition) c = ΠNc.

For the second claim of the theorem consider the two-sided left shift operator
L : `2(Z) → `2(Z) and let

Πn : (. . . , a−1, a0, a1, . . .) 7→ (. . . , 0, 0, a−n, . . . a−1, a0, a1, . . . , an, 0, 0, . . .).
(2.47)

Then L is unitary and has spectrum on the (complex) unit circle T, so σε(L) =
T+Bε. However, ΠnLΠn is nilpotent so σε(ΠnLΠn) always contains 0, which
is not in T+Bε for any ε < 1.

With an understanding of the spectral properties of Koopman and Perron-
Frobenius operators as well as the pseudospectrum, we are prepared to apply
pseudospectral methods to some of the most common Koopman approximation
methods, known under the umbrella term dynamic mode decomposition.

3 Numerical Methods

3.1 Petrov-Galerkin Methods
The original Ritz-Galerkin method is described as follows: we are given a PDE
problem in its weak formulation:

find u ∈ X such that q(v, u) = 〈f, v〉 ∀ v ∈ W (3.1)

where q is some elliptic sesquilinear form, f ∈ X given, 〈·, ·〉 some inner prod-
uct, and W some test set. The form q is typically derived from some mini-
mization problem for a functional representing energy.

The idea behind the Ritz-Galerkin method is to solve 3.1 on a finite-dimensional
subspace: let W = span {ψ1, . . . , ψN} be q-linearly independent.

Then writing
Ψ(x) = [ψ1(x) | . . . | ψN(x)] , (3.2)

we make the approximation u ≈ Ψcu and have v = Ψcv for cu, cv ∈ CN . Now
3.1 reduces to

find cu ∈ CN such that q(Ψcv,Ψcu) = 〈f,Ψcv〉 ∀ cv ∈ CN . (3.3)

One quickly verifies that cu is the unique solution to the matrix equation
Ax = b with

Aij = q(Ψei,Ψej) = q(ψi, ψj), bi = 〈f,Ψei〉 = 〈f, ψi〉 . (3.4)

where ei ∈ CN is the i-th standard unit vector. A is known as the stiffness
matrix.
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One can extend the Ritz-Galerkin formulation by allowing the test space to
differ from the basis space: keep u ≈ Ψcu but let W = span {ψ∗

1, . . . , ψ
∗
M},

then A and b become

Aij = q(ψ∗
i , ψj), bi = 〈f, ψ∗

i 〉 . (3.5)

In the regime M > N this equation is overdetermined so it is solved in a least
squares sense

‖Ax− b‖22 = min
x∈CN

! (3.6)

where ‖·‖2 is the vector `2 norm. This is known as the Petrov-Galerkin method.

One can extend the method further by asking that multiple solutions for mul-
tiple right hand sides (fj)

N
j=1 are computed simultaneously, that is

‖AX −B‖2F = min
X∈CN×N

!, Bij = 〈fj, ψ∗
i 〉 (3.7)

where ‖·‖F denotes the Frobenius norm.

Numerically, 3.7 can be solved using the Moore-Penrose inverse

X = A†B. (3.8)

An exercise in matrix calculus shows that the solution can also be written in
the form

X = (A∗A)−1A∗B. (3.9)

Both forms will prove to be useful later.

3.2 Extended Dynamic Mode Decomposition (EDMD)
3.2.1 The Galerkin Ansatz

We apply the Petrov-Galerkin Ansatz to obtain a matrix approximation K
for K|X . Let q(·, ·) = 〈·, ·〉 and consider a linearly independent family of
functions {ψ1, . . . , ψN} ⊂ X . Take delta distributions, that is 〈δx, ψ〉 = ψ(x),
for the test function(als): let (wi, xi)Mi=1 represent a quadrature scheme and set
ψ∗
i =

√
wiδxi .

We then solve the Galerkin equation 3.7 for fj = Kψj:∥∥∥√WΨXK −
√
WΨY

∥∥∥2
F
= min

K∈CN×N
! (3.10)

with W = diag(w1, . . . , wM) and

(ΨX)ij = 〈δxi , ψj〉 = ψj(xi), (ΨY )ij = 〈δxi ,Kψj〉 = ψj(S(xi) ). (3.11)
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This results in the EDMD matrix

K = Ψ†
XΨY = (Ψ∗

XWΨX)
−1(Ψ∗

XWΨY ). (3.12)

Inverting ΨX involves computing the Moore-Penrose inverse of an N × M
matrix, whereas inverting Ψ∗

XΨX involves computing the inverse of a symmet-
ric N × N matrix. Depending on the relationship between M and N in the
particular usecase, either formulation might be cheaper.

Another look at the second formulation of the EDMD matrix shows that

Gij
..= (Ψ∗

XWΨX)ij =
M∑
k=1

wkψi(xk)ψj(xk)
M →∞−−−−−→ 〈ψi, ψj〉L2 =.. Gij, (3.13)

Aij ..= (Ψ∗
XWΨY )ij =

M∑
k=1

wkψi(xk)ψj(S(xk) )
M →∞−−−−−→ 〈ψi,Kψj〉L2 =.. Aij,

(3.14)
G and A can be computed with constant memory requirement.

3.2.2 Functional Minimization

We could have arrived at equation 3.10 completely differently: keeping the test
space the same as the basis space i.e. ψ∗

i = ψi. Then the Galerkin equation
3.7 reads

‖GK − A‖2F = min
KinCN×N

! (3.15)

The question is well-posed in the sense that {ψ1, . . . , ψN} is linearly indepen-
dent and hence G is invertible. Thus,

K = G−1A. (3.16)

We see that the EDMD matrixK = G−1A is a quadrature approximation of the
”infinite data” EDMD matrix K = G−1A. The benefit of this viewpoint is that
it is ambivalent to the inner product: as long as an one has an approximation
scheme for 〈ψi, ψj〉X for some inner product space X , then one can approximate
the stiffness matrix G and target matrix A with respect to X . From this point
on, G and A will be with respect to the arbitrary unspecified Hilbert space X
unless otherwise stated.

Notice that equation 3.15 can be rewritten as a functional least squares mini-
mization:

‖ΨK −KΨ‖2X 1×N = min
K∈CN×N

! (3.17)

where KΨ = [Kψ1 | . . . | KψN ] is understood elementwise and X 1×N is the
space of (row) vector-valued functions with each component in X

‖[f1 | . . . | fN ]‖2X 1×N = ‖f1‖2X + . . .+ ‖fN‖2X . (3.18)
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Let us investigate Ψ : CN → X a bit closer. Decompose the Hilbert space
X = W ⊕V where

W = span {ψj}Nj=1 , V = W⊥ (3.19)

and let {ψj}∞j=N+1 be a basis of V .

A short calculation using the orthogonality of {ψj}Nj=1 and {ψj}∞j=N+1 shows
that for φ ∈ X ,

〈φ,Ψc〉 =
N∑
j=1

〈φ, ψj〉 cj. (3.20)

Hence the adjoint quasi-matrix Ψ∗ : X → CN acts as

Ψ∗φ =

〈φ, ψ1〉
...

〈φ, ψ1〉

 . (3.21)

Lemma 3.1. For an arbitrary basis {ψj}Nj=1, the orthogonal projector Π onto
the space spanned by the basis is

Π = Ψ(Ψ∗Ψ)−1Ψ∗. (3.22)

Proof. The solution of a linear least squares problem ‖Ax− b‖ = min! is the
result of orthogonally projecting b onto the range of A, that is, Ax = Πb. From
equation 3.9 we know x = (A∗A)−1A∗b. Therefore Πb = Ax = A(A∗A)−1A∗b.
Since this holds for arbitrary b, the result is proven.

Using equation 3.9 we see that equation 3.17 has the solution

K = (Ψ∗Ψ)−1Ψ∗(KΨ) (3.23)

Inserting the definitions of Ψ and Ψ∗ yields K = G−1A exactly as in equation
3.15.

If we view the result of applying K as in equation 3.23 to a vector c as an
object in X , that is, ΨKc, we see that

ΨKc = Ψ(Ψ∗Ψ)−1Ψ∗(KΨ)c = ΠKΨc = ΠKΠΨc. (3.24)

Since this holds for arbitrary c we have proven that (when viewed as an op-
erator on X ) K encodes precisely the action of ΠKΠ, the finite section of K
over span {ψj}Nj=1. In this way, the Ritz-Galerkin method is a special case of
a finite section method.
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Algorithm 1 Extended Dynamic Mode Decomposition (EDMD)

Require: Dictionary {ψj}Nj=1, data points and weights {(wi, xi)}Mi=1

1: Construct G, A as in 3.13, 3.14
2: Set K = G−1A (or L = G−1A∗)
3: Compute an eigendecomposition KV = V Λ (or LV = V Λ)
4: return Eigenvalues and eigenvectors Λ, V

Figure 3.1: Algorithm 1 applied to the quadratic map (c.f. figure 2.1) per-
formed with M = 100 Gauß-Legendre quadrature nodes and weights, and
N = 40 Legendre polynomials transplanted to the interval [0, 1]. Left: spec-
trum of K. Middle: (normalized) eigenfunction of K for the eigenvalue λ = 1.
Right: (normalized) eigenfunction of L for the eigenvalue λ = 1. Compare
with figure 2.2.
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3.2.3 EDMD for the Perron-Frobenius Operator

From equation 3.23, and noting the form of A,

〈ψi,Lψj〉 = 〈Kψi, ψj〉 = 〈ψj,Kψi〉 = Aji (3.25)

yields an equivalent Galerkin method for L:

L = (Ψ∗Ψ)−1Ψ∗(LΨ) = G−1A∗ (3.26)

or the finite analogue:
L = G−1A∗. (3.27)

3.3 Residual EDMD (ResDMD)
3.3.1 Validation of Koopman Eigenpairs

The formulation 3.24 shows that K (when viewed as a operator on X ) con-
verges weakly to K. However, from example 2.14 we know that the spectrum
is already unstable for operators which are close in the strong operator topol-
ogy, let alone in the weak topology. It is therefore entirely unclear a priori
that the eigenvalues and eigenvectors of K actually represent eigenvalues and
eigenfunctions of K.

In the Perron-Frobenius operator community, a common solution to the men-
tioned issue is stochastic blurring. Instead of considering a deterministic dy-
namical system generated by S, one consider a stochastic system: x ∈ Ω is
assigned a distribution of possible image points instead of being assigned to
the point S(x). The resulting Markov process has an associated (stochas-
tic) Perron-Frobenius operator which (under some conditions on the type of
stochastic blurring) is Hilbert-Schmidt on L2(Ω). This way, the finite sec-
tions converge strongly to the (stochastic) Perron-Frobenius and (since it is
Hilbert-Schmidt) so do the eigenvalues [16].

We take a different approach using the theory of pseudospectra. We wish to
know which of our eigenvalues are spurious, that is, caused by the reduction
to a finite section, and which eigenvalues are accurate. To determine this, we
consider equation 2.32: if a sequence (λN , cN)N of (normalized) eigenpairs for
K = K({ψj}Nj=1) converges to a true λ ∈ σ(K) then we must have

lim
N→∞

‖(K − λNI)ΨcN‖2X = 0 (3.28)

(where Ψ = ΨN is as in 3.2) or

lim
N→∞

∥∥(L − λ̄NI)ΨcN
∥∥2
X = 0. (3.29)

Conversely, if neither of these tend to 0 as N grows, then we can rule out λN
as a candidate eigenvalue.



3.3 Residual EDMD (ResDMD) 21

From section 3.2.2 we know that the Galerkin equation 3.10 is a quadrature
approximation of equation 3.17. Similarly, the regression error

res(λ, c;M,N)2 ..=
∥∥∥√W (ΨY − λΨX)c

∥∥∥2
2

(3.30)

is precisely a quadrature approximation of equation 3.28.

Theorem 3.2. Let λ and g = Ψc be a candidate eigenpair for K. Then

lim
M→∞

res(λ, c;M,N)2 = ‖(K − λI)g‖2X (3.31)

Proof. Denote J = Ψ∗
YWΨY and observe that

lim
M→∞

Jij = 〈Kψi,Kψj〉 =.. Jij. (3.32)

Consider the action of Ψ on standard unit vectors:

〈Ψei,Ψej〉 = 〈ψi, ψj〉 = Gij = e∗iGej. (3.33)

Analogously e∗iAej = 〈ψi,Kψj〉, e∗i Jej = 〈Kψi,Kψj〉. Sesquilinearity of 〈·, ·〉
yields

〈g, g〉 = c∗Gc, 〈g,Kg〉 = c∗Ac, 〈Kg,Kg〉 = c∗Jc. (3.34)

The proof is now simply a calculation. Indeed,∥∥∥√W (ΨY − λΨX)c
∥∥∥2
2

= ( (ΨY − λΨX)c )
∗ W ( (ΨY − λΨX)c )

= c∗
(
Ψ∗
YWΨY − λ̄Ψ∗

XWΨY − λΨ∗
YWΨX + |λ|2Ψ∗

XWΨX

)
c

= c∗Jc − λ̄ c∗Ac − λ c∗A∗c + |λ|2 c∗Gc.

(3.35)

Taking the infinite-data limit,

lim
M→∞

∥∥∥√W (ΨY − λΨX)c
∥∥∥2
2

= c∗Jc − λ̄ c∗Ac − λ c∗A∗c + |λ|2 c∗Gc

= 〈Kg,Kg〉 − λ̄ 〈g,Kg〉 − λ 〈Kg, g〉+ |λ|2 〈g, g〉

= 〈(K − λI) g, (K − λI) g〉

= ‖(K − λI) g‖2X .

(3.36)

From the proof we also directly see the following corollaries.
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Definition 3.3. Let M : X ⊃ D(M) → Y be a closed linear operator and
V ⊂ X . We say that V forms a core of M if the closure5 of M |V if M .

Corollary 3.4. Let λ ∈ C, define

res(λ;M,N) ..= min
c∗Gc=1

res(λ, c;M,N). (3.37)

Then
lim
M→∞

res(λ;M,N) = min
g∈span{ψ1,...,ψN}

‖g‖=1

‖(K − λI)g‖X . (3.38)

In particular this corollary implies that if we calculate some candidate eigen-
pairs, compute res for each one, and throw out eigenpairs which do not satisfy
a threshhold res(λ, c) < ε, then the remaining candidate eignpairs really are
close to eigenpairs of K. This process is summarized in algorithm 2.

Corollary 3.5. Let Λ(ε;M,N) denote the set of eigenvalues returned by algo-
rithm 2. Then

lim sup
M→∞

max
λ∈Λ(ε;M,N)

∥∥(K − λI)−1
∥∥−1 ≤ ε. (3.39)

Finally, theorem 3.2 also provides a method to compute the ε-approximate
point pseudospectrum of K, summarized in algorithm 3.

Corollary 3.6. Assume span {ψj}∞j=1 forms a core of K. Then

lim
N→∞

lim
M→∞

res(λ;M,N) = σinf(K − λI). (3.40)

Moreover the outer limit N → ∞ is monotonically decreasing so that

σap,ε(K) =
⋂
N>0

{
λ ∈ C | lim

M→∞
res(λ;M,N) < ε

}
. (3.41)

Proof. From 3.38 it is clear that limM→∞ resN,M(λ) ≥ σinf(K − λI) and that
resN,M is decreasing with N . Let δ > 0 be arbitrary and g ∈ X be such that
‖g‖ = 1 and ‖(K − λI)g‖ < σinf(K − λI) + δ. Since span {ψj}∞j=1 forms a
core of K, we can find an N and ĝ ∈ span {ψj}Nj=1 such that ‖g − ĝ‖ < δ and
‖(K − λI)ĝ‖ < ‖(K − λI)g‖+ δ. This implies ‖ĝ‖ > 1− δ and ‖(K − λI)ĝ‖ <
(σinf(K− λI) + 2ε)/(1− ε). Since this holds for all ε > 0, the claim is proven.
In fact, the convergence is uniform on compact sets.

The computation of res(λ) reduces to a generalized eigenvalue problem. Let

U (= U(λ)) = J − λ̄A− λA∗ + |λ|2G. (3.42)
5A linear operator N : D(N) → Y which is not closed might only be so because the

domain D(N) might not be ”large enough”. If there exists an extension (i.e. N̄ : D(N̄) → Y,
D(N) ⊂ D(N̄), N̄

∣∣
D(N)

= N) which is closed, then N is closable and the smallest such N̄

is called the closure of N .
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Then computing res(λ)2 is equivalent to solving the minimization problem

min
c∈CN

c∗Uc such that c∗Gc = 1. (3.43)

Let ξ be a Lagrange multiplier, that is, a necessary condition for a solution of
3.43 is

Uc− ξGc = 0 (3.44)
since U and G are (conjugate) symmetric. Inserting such a c into the objective
yields

c∗Uc = c∗ξGc = ξ (3.45)
since c∗Gc = 1. Hence 3.43 is solved by computing the smallest generalized
eigenvalue solution of 3.44 (symmetry of U and G guarantees that all such
eigenvalues are real).

Algorithm 2 Verification of candidate eigenpairs for K

Require: Dictionary {ψj}Nj=1, data points and weights {(wi, xi)}Mi=1, tolerance
ε

1: Perform algorithm 1 to obtain G, A, KV = V Λ
2: Construct J as in 3.32
3: for each candidate eigenpair (λ, v) do
4: Compute res(λ, v) as in 3.43
5: Throw out λ if res(λ, v) ≥ ε
6: return Verified Koopman (approximate-point) eigenvalues Λ(ε;M,N) =

{(λ, v) | res(λ, v) < ε}

Algorithm 3 Residual EDMD to Compute σap,ε(K)

Require: Dictionary {ψj}Nj=1, data points and weights {(wi, xi)}Mi=1, grid
{zν}Tν=1 ⊂ C, tolerance ε

1: Perform algorithm 1 to obtain G, A, K
2: Construct J as in 3.32
3: for zν do
4: Compute res(zν) as in 3.43
5: return {zν | res(zν) < ε} as an approximation for σap,ε(K)

3.3.2 A Naive Attempt at Duality

From this point onward, we shall always assume (without loss of generality)
that ΨX has full rank, that is, rank N when N ≤M or rank M when M ≤ N .

Algorithm 3 provides a way to compute the approximate-point pseudospectrum
of the Koopman operator. In order to resolve the full pseudospectrum, one
needs to compute σinf(K− λI) and σinf(L− λ̄I) for λ’s of interest. One could
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Figure 3.2: Algorithm 3 applied to the quadratic map (c.f. figure 2.1) per-
formed with the same parameters as figure 3.1. Contours of λ 7→ res(λ) are
shown with the spectrum of K. The quadratic map is ergodic [32] which is
verified by the residuals. The eigenvalues of K other than 1 are spurious.

hope to perform the calculations in 3.36 backwards using L instead of K, but
quickly notices that the inner product 〈Lg,Lg〉 or g = Ψc is not computable
using just the information at hand.

We instead try to follow the calculations forward. Starting with L = G−1A∗

and g = Ψc we see that the analogous regression error for a candidate eigenpair
can be written as

‖(A∗ − λG) c‖2CN = ‖(Ψ∗
YW − λΨ∗

XW )ΨXc‖2CN . (3.46)

Notice that Ψ∗
XW is precisely a quadrature appoximation of Ψ∗ from equation

3.21. Ψ∗
XW takes an interpolation vector f ∈ CM and approximates the inner

product with an interpolant function. Analogously we can deduce that Ψ∗
YW

is a quadrature approximation of (KΨ)∗.

Assuming that {ψj}Nj=1 is an orthonormal family, taking the infinite data limit



3.4 kernel EDMD (kEDMD) 25

yields

lim
M→∞

‖(Ψ∗
YW − λΨ∗

XW )ΨXc‖2CN

= ‖((KΨ)∗ − λΨ∗) g‖2CN

=

∥∥∥∥∥∥∥
 〈 (K − λI)ψ1, g 〉

...
〈 (K − λI)ψN , g 〉


∥∥∥∥∥∥∥
2

CN

=
N∑
j=1

|〈 (K − λI)ψj, g 〉|2

=
N∑
j=1

∣∣〈ψj, (L − λ̄I)g
〉∣∣2

=
∥∥(ΠLΠ− λ̄I)g

∥∥2
X

(3.47)

where Π is the orthogonal projector onto span {ψj}Nj=1. By the Galerkin prop-
erty we know that L encodes precisely the action of ΠLΠ. Hence,∥∥(ΠLΠ− λ̄I)g

∥∥2
X =

∥∥(L− λ̄I)c
∥∥2
CN (3.48)

and so the least-squares Ansatz computes the pseudospectrum of L which by
theorem 2.29 cannot be used analogously to algorithm 3 to compute σap,ε(L).
We would need to send N → ∞ before N → ∞, which would cause the
equation L = G−1A∗ to break.

While we will not use this immediately, we still expand the first line of 3.47
since we will see it again later.

‖(Ψ∗
YW − λΨ∗

XW )ΨXc‖2CN

=
∥∥∥(Ψ∗

Y

√
W − λΨ∗

X

√
W
)√

WΨXc
∥∥∥2
CN

=
(√

WΨXc
)∗√

W
(
ΨYΨ

∗
Y − λ̄ΨXΨ

∗
Y − λΨYΨ

∗
X

+|λ|2ΨXΨ
∗
X

)√
W
(√

WΨXc
)

(3.49)

3.4 kernel EDMD (kEDMD)
3.4.1 The Kernel Trick and Reproducing Kernel Hilbert Spaces

The choice of dictionary {ψj}Nj=1 naturally has massive impacts on the accu-
racy of the above methods. We will see later in section 4 that a poorly chosen
dictionary can cause catastrophic results. This is because even though there
may be many ways to (in the limit N → ∞) form a basis of X , any practical
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calculation will necessarily have a finite cut-off. So the challenge becomes find-
ing efficient ways to increase N without needing to perform O(N2) quadrature
problems.

One method which is enormously popular in machine learning [1, 9, 21, 28] is
the so-called kernel trick. Consider the function k : C2 × C2 → C, (w, z) 7→
(1 + w∗z)2. We can write this as

k(w, z) = (1 + w̄1z1 + w̄2z2)
2

= (1 + 2w̄1z1 + 2w̄2z2 + 2w̄1w̄2z1z2 + w̄1
2z21 + w̄2

2z22)

= 〈Ψ(z),Ψ(w)〉C1×6 (= Ψ(z)Ψ(w)∗)

(3.50)

for the basis

Ψ(x) =
[
1
∣∣ √2x1

∣∣ √2x2
∣∣ √2x1x2

∣∣ x21 ∣∣ x22] ∈ C1×6. (3.51)

While the result is the same, computation of (1+w∗z)2 requires only 5 floating-
point operations, whereas Ψ(z)Ψ(w)∗ requires 23. More generally, any such
relation k(w, z) = Ψ(z)Ψ(w)∗ is called a kernel trick.

Definition 3.7. Let k : Ω× Ω → C be

1. continuous,

2. conjugate-symmetric, i.e. k(w, z) = k(z, w),

3. finitely positive semidefinite, i.e. for all x1, . . . , xM ∈ Ω the matrix
G = ( k(xj, xk) )

M
j,k=1 ∈ CM×M is positive semidefinite6.

Then k is called valid or Mercer kernel. A function Ψ : Ω → Y into some
Hilbert space Y with k(w, z) = 〈Ψ(z),Ψ(w)〉Y is known as a feature map.

One obvious kernel is given by a dictionary: letting Ψ(x) = [ψ1(x) | . . . | ψN(x)]
as before, k(w, z) = Ψ(z)Ψ(w)∗ is also a kernel. Moreover, one sees that when
k(z, ·) is an element of some Hilbert space Y , then another obvious feature map
is given by Ψ(z) = k(z, ·). This feature map (called canonical feature map) is
of much importance. This is because the functions which can be represented
by the features are precisely of this form.

Definition 3.8. A Hilbert space Y which enjoys the reproducing property:

1. k(w, ·) ∈ Y for all w ∈ Ω,

2. 〈k(w, ·), f〉 = f(w) for all f ∈ Y

is called reproducing kernel Hilbert space (RKHS) generated by k.

The following are immediate from the definition:
6For any v ∈ CM , v∗Gv ≥ 0.
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Lemma 3.9. Let k generate a RKHS Y. Then

1. 〈k(w, ·), k(·, z)〉Y = k(w, z) for all w, z ∈ Ω,

2. The set {k(w, ·) | w ∈ Ω} is dense in Y (w.r.t. the Y-norm).

We conclude the list of basic facts about RKHS with a characterization of
when a kernel generates an RKHS. The following is a special case of theorem
4 from [3].

Theorem 3.10. Let Ω be compact, k : Ω × Ω → C continuous on the finite
measure space (Ω, dx). Then the following are equivalent:

1. k is finintely positive semidefinite.

2. k is the kernel of some unique RKHS H ⊂ C0, where C0 denotes the set
of continuous functions on Ω.

3. k is of the form

k(w, z) =
∞∑
j=1

µ2
j φj(z)φj(w) = Ψ(z)Ψ(w)∗ (3.52)

for Ψ(z) = [µ1φ1 | µ2φ2 | . . .]. The set {φj}∞j=1 forms an orthonormal
basis of L2(Ω). The µj ≥ 0 can be ordered by decreasing magnitude and
converge to 0 as j → ∞.

Moreover, the set {ψj ..= µjφj}∞j=1 forms an orthonormal basis of H.

Entire books are written on such kernels [30] and their properties. Common
kernels include:
Example 3.11. The polynomial kernel k : Cd × Cd → C, (w, z) 7→ (1 +
w∗z/c2)α feature map is given by all (multivariate) polynomials up to degree
α. Note that computing k(w, z) requires only O(d) operations, but computing
Ψ(z)Ψ(w)∗ requires superexponentially (in α) many combinations.

Example 3.12. The Gaußian kernel k(w, z) = exp
(
−‖w−z‖2

c2

)
, c 6= 0, has a

feature map which is infinite-dimensional. Indeed, consider (for notational
simplicity) w, z ∈ R:

k(w, z) = exp
(
−|w|2

c2

)
· exp

(
2w · z
c2

)
· exp

(
−|z|2

c2

)
= exp

(
−|w|2

c2

)
·

(
∞∑
k=0

1

k!

(
2

c2

)k
(w · z)k

)
· exp

(
−|z|2

c2

) (3.53)

so that

Ψ(x) = exp
(
−|x|2

c2

)1 ∣∣∣∣∣
√
2

c
x

∣∣∣∣∣ 1√
2!

(√
2

c
x

)2 ∣∣∣∣∣ . . .

 . (3.54)
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When w, z ∈ C then the middle term in 3.53 changes from w · z to w̄ · z + z̄ ·
w, and in higher dimensions this extends to all pairwise combinations of the
components of w and z. We note (and will use later) that the Gaußian kernel
is universal, meaning the RKHS H generated by k is dense in C0.
Example 3.13. The Sobolev space Hs contains all functions which are square
integrable and whose (weak) derivatives up to oder s are also square integrable.
That is, Hs is the closure of the smooth functions with compact support C∞

c

with respect to the norm

‖f‖2Hs =
∑
|α|≤s

‖Dαf‖2L2 (3.55)

where α ∈ Nd
0 are multiindices. Using the Fourier transform F this can readily

be rewritten as ‖f‖2Hs = 〈f, f〉Hs for

〈f, g〉Hs =

∫ (
1 + |ξ|2

)s Ff(ξ)Fg(ξ) dx. (3.56)

It can be shown [30] that the kernel

k : Cd × Cd → C, (w, z) 7→ (2π)−d
∫ (

1 + |ξ|2
)−s exp (i(w − z) · ξ) dξ

(3.57)
generates Hs. Moreover, when d = 1 and Ω = [a, b] is an interval, the Laplace
kernel

k : [a, b]× [a, b] → R, (w, z) 7→ 1

2
exp(− |w − z|) (3.58)

generates the slightly altered Sobolev norm

‖f‖2H̃2 = ‖f‖2H2 + |f(a)|2 + |f(b)|2 . (3.59)

Note that as sets, H̃2 = H2.

3.4.2 Application to EDMD

Notice that

G = Ψ∗
XWΨX =

M∑
i=1

wiΨ(xi)
∗Ψ(xi), A = Ψ∗

XWΨY =
M∑
i=1

wiΨ(xi)
∗Ψ(S(xi)).

(3.60)
Each summand is a rank one matrix in CN×N . N might be infinite, in which
case we interpret this statement as being about ”infinite matrix” type operators
in `2.

This is not in a form where one could use the kernel trick, since we have
summands of the form Ψ(xi)

∗Ψ(xi) instead of Ψ(xi)Ψ(xi)
∗. However, if we
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reverse the order of multiplication in Ψ∗
XWΨX = (

√
WΨX)

∗(
√
WΨX) then

Ĝ =
√
WΨXΨ

∗
X

√
W

=
( √

wjwi ·Ψ(xj)Ψ(xi)
∗ )M

i,j=1

=
( √

wiwj · k(xi, xj)
)M
i,j=1

.

(3.61)

Analogously

Â =
√
WΨYΨ

∗
X

√
W =

( √
wiwj · k(S(xi), xj)

)M
i,j=1

. (3.62)

We would now like to exploit the form of K = Ψ†
XΨY to use these ”flipped”

matrices. The key to do so will be a (compact) singular value decomposition
√
WΨX = QΣZ∗ (3.63)

where r = min{M,N}, Σ ∈ Rr×r
≥0 is a nonnegative diagonal matrix, and Q ∈

CM×r and Z ∈ CN×r are semi-unitary7.

Theorem 3.14. Let
K̂ ..=

(
Σ†Q∗) Â (QΣ†) . (3.64)

Then
K̂ = Z∗KZ (3.65)

and when N ≤M ,
K̂∗ =

(
Σ2Z∗)L (ZΣ−2

)
. (3.66)

In particular, equation 3.65 shows that a pair (λ, v) ∈ C × Cr (for λ 6= 0) is
an eigenpair of K̂ iff (λ, Zv) ∈ C × CN is an eigenpair of K. Moreover, the
eigenmodes g = Ψ · (Zv) can be evaluated at the data points xi, i = 1, . . .M .

One should take a moment to consider that the last statement made in the
theorem seems highly nontrivial at first. Often, the feature map is only given
implicitly - one knows there exists such a Ψ, but does not have an explicit
form. Even worse, the matrix Z is completely unatainable from just Ĝ and Â.

The benefit of using K̂ is that it can be computed in O(M2) time, independent
of N . All that is required is an eigendecomposition for Ĝ since by definition

Ĝ = QΣ2Q∗. (3.67)

Proof. Notice

ZK̂Z∗ = Ψ†
X

√
W

−1√
WΨYΨ

∗
X

√
W

√
W

−1
Ψ∗
X

† = KΠranΨ∗
X

√
W (3.68)

7A tall martrix M ∈ Cq×r, q ≥ r, is semi-unitary if the columns form an orthonormal
family.
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where ΠranΨ∗
X

√
W is the orthogonal projection onto the range of Ψ∗

X

√
W . But

since Ψ∗
X

√
W = ZΣQ∗, this is equivalent to

K̂ = Z∗KZ. (3.69)

Now

K̂∗ = Z∗K∗Z

= Z∗A∗G−1Z

= Z∗GG−1A∗G−1Z

= (Z∗G)L
(
G−1Z

)
=
(
Σ2Z∗)L (ZΣ−2

)
(3.70)

where we used that G is symmetric and (when N ≤M) invertible.

Finally, to evaluate g = Ψ · (Zv) at each xi, i = 1, . . . ,M , observe that
ΨX · (Zv) = QΣv.

Algorithm 4 Kernel EDMD

Require: kernel k : Ω× Ω → C, data points and weights {(wi, xi)}Mi=1, com-
pression factor r ≤M

1: Construct Ĝ, Â as in 3.61, 3.62
2: Compute an eigendecomposition Ĝ = QΣ2Q∗

3: Let Σ̃ = Σ[1 : r, 1 : r], Q̃ = Q[:, 1 : r] be the r largest eigenvalues and
corresponding eigenvectors

4: Construct K̂ =
(
Σ̃†Q̃∗

)
Â
(
Q̃Σ̃†

)
5: Compute an eigendecomposition K̂V = V Λ
6: return Eigenvalues and eigenvectors Λ, V

3.5 kernel ResDMD (kResDMD)
3.5.1 Associating a Residual to K̂

We set out again to deduce which candidate eigenvalues produced by algorithm
4 are spurious, and which are accurate. Theorem 3.14 suggests that we could
potentially compute ‖(K−λI)g‖ by using the altered features g = Ψ ·(Zv) the
same way as in theorem 3.2. However, this is not effective in the regime M ≤ N
(remember that the benefit of kernel methods was the ability to cheaply crank
N up).

Proposition 3.15 ([14]). Suppose M ≤ N and
√
WΨX ∈ CM×N has full

rank. Then for any eigenpair (λ, v) of K̂, the residual

res(λ, Zv;M,N) = 0. (3.71)
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Proof. Write
√
W (ΨY − λΨX)(Zv) =

√
WΨYZc− λQΣv =

√
WΨYΨ

∗
X

√
WQΣ†c− λQΣv.

(3.72)
Since

√
WΨX has full rank, the singular value matrix Σ in

√
WΨX = QΣZ∗

is invertible, and so
√
WΨYΨ

∗
X

√
WQΣ† = QΣK̂. Inserting, we see

√
W (ΨY − λΨX)(Zv) = QΣ(K̂ − λI)v = 0. (3.73)

The proposition suggests that we are suffering from overfitting of the snap-
shot data. We therefore require a different way to associate a residual to the
eigenpair.

Recall from equation 3.30 that res has an alternative representation as a re-
gression error. We could analogously ask if K̂ is the solution of a different
regression problem.

Let
Ψ̂X =

(√
WΨX

)∗
QΣ† = Z, Ψ̂Y =

(√
WΨY

)∗
QΣ†. (3.74)

Then we have

Ψ̂X

†
Ψ̂Y = Z∗

(√
WΨY

)∗
QΣ† =

(
Σ†Q∗) (√WΨXΨ

∗
Y

√
W
) (
QΣ†) = K̂∗.

(3.75)
Hence K̂∗ is precisely the solution to the least squares problem

min
B∈CM×M

∥∥∥Ψ̂Y − Ψ̂XB
∥∥∥ . (3.76)

This means that for a candidate eigenpair (λ, v) of K̂∗, the regression error is
given by

k̂res(λ, v;M,N) ..=
∥∥∥(Ψ̂Y − λΨ̂X

)
v
∥∥∥ . (3.77)

To provide a computable formulation we write

k̂res(λ, v)2 =
∥∥∥(Ψ∗

Y − λΨ∗
X)

√
W
(
QΣ†v

)∥∥∥2 (3.78)

which, after expanding the squared norm as in equation 3.35, can be written
as

v∗
(
Σ†Q∗) (√WΨYΨ

∗
Y

√
W − λ̄Â− λ̄Â∗ + |λ|2Ĝ

) (
QΣ†) v. (3.79)

Notice
(
Σ†Q∗) Ĝ (QΣ†) = I and

(
Σ†Q∗) Â (QΣ†) = K̂. Finally, letting

Ĵ =
√
WΨYΨ

∗
Y

√
W =

( √
wiwj · k(S(xi), S(xj))

)M
i,j=1

(3.80)
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we have that

k̂res(λ, v)2 = v∗
( (

Σ†Q∗) Ĵ (QΣ†)− λ̄K̂ − λK̂∗ + |λ|2I
)
v. (3.81)

At this point it is unclear whether r̂es has any physical meaning. It is an
error metric for some arbitrary seeming least squares regression problem with
matrices Ψ̂X and Ψ̂Y which do not have a clear interpretation. The current
state of research in this kernelized method stops here.

However, the fact that the adjoint K̂∗ solves the least squares problem, should
give the reader a suspicion that the residual might have more to do with the
Perron-Frobenius operator than with the Koopman operator.

Algorithm 5 Kernel ResDMD

Require: kernel k : Ω× Ω → C, data points and weights {(wi, xi)}Mi=1, com-
pression factor r ≤M , grid {zν}Tν=1 ⊂ C, tolerance ε

1: Construct Ĝ, Â as in 3.61, 3.62
2: Compute an eigendecomposition Ĝ = QΣ2Q∗

3: Let Σ̃, Q̃ be as in agorithm 4
4: Construct K̂, Ĵ as in 3.64, 3.80 (with Q̃ and Σ̃)
5: for zν do
6: Compute k̂res(zν) ..= min‖v‖=1 k̂res(zν , v), which is equivalent to finding

the smallest eigenvalue of the matrix in 3.81
7: return

{
zν | k̂res(zν) < ε

}

3.5.2 The Perron-Frobenius Connection

Compare equations 3.49 and 3.79:(√
WΨXc

)∗ (
Ĵ − λ̄Â∗ − λÂ+ |λ|2Ĝ

)(√
WΨXc

)
(3.82)(

QΣ†v
)∗ (

Ĵ − λÂ∗ − λ̄Â+ |λ|2Ĝ
) (
QΣ†v

)
(3.83)

One sees that up to conjugation of λ and multiplication by a factor Σ2Z∗ they
coincide exactly.

Since in the regime N ≤M , Z is unitary, it does not affect the minimal value
of 3.49 or 3.79. Moreover, when N ≤M we have G = ZΣ2Z∗ so that Σ2 holds
the (square) norm of the features ψ1, . . . , ψN . Hence QΣ† in

k̂res(λ)2 = min
‖v‖=1

v∗
(
Σ†Q∗) (Ĵ − λ̄Â− λÂ∗ + |λ|2Ĝ

) (
QΣ†) v (3.84)
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serves the same purpose as the stiffness matrix G in

k̃res(λ)2 ..= min
c∗Gc=1

(ΨXc)
∗
(
Ĵ − λÂ− λ̄Â∗ + |λ|2Ĝ

)
(ΨXc) . (3.85)

In particular we see that there must exist C1, C2 > 0 such that

C1 · k̂res(λ) ≤ k̃res(λ̄) ≤ C2 · k̂res(λ) (3.86)

so that algorithm 5 computes precisely the (scaled) pseudospectrum of ΠLΠ
as in 3.48.

So what happens in the regime N ≥ M? In this regime, L = G−1A∗ breaks
down since Ψ†

X = (Ψ∗
XΨX)

−1Ψ∗
X no longer holds (rather, Ψ†

X = Ψ∗
X (ΨXΨ

∗
X)

−1).
The key lies in the compression factor r from algorithm 4. Dropping the pre-
vious definition r = min {M,N}, we now allow r ≤ M and consider the
truncated singular value decomposition

ΨX ≈ Q̃Σ̃Z̃∗ (3.87)

for Q̃ ∈ CM×r, Σ̃ ∈ Cr×r, Z̃∗ ∈ Cr×N .

Z̃∗ can be interpreted as an orthogonal projection of the dictionary space onto
the space spanned by the r largest principal components

{
ψ̃j

}r
j=1

. Borrowing
from statistical learning theory, this subspace is spanned by observables which
have the largest variance when evaluated over the data points.

The benefit of truncation is that we decouple the N and M limits and therefore
allow performing the limit N → ∞ before M → ∞, which is necessary since a
priori the kernel feature map may be infinite-dimensional.

Let ψj = µjφj, j = 1, 2, . . . be the Mercer features from theorem 3.10. Fix r

and perform algorithm 3 with the new dictionary
{
ψ̃j

}r
j=1

and some M ≥ r.

This yields the new data matrix

Ψ̃X = Q̃Σ̃. (3.88)

Σ̃ is independent of N and converges uniformly to

G̃ = diag
(∥∥∥ψ̃1

∥∥∥2
L2
, . . . ,

∥∥∥ψ̃r∥∥∥2
L2

)
(3.89)

as M → ∞.

Reconsidering equation 3.85 we notice that for a candidate eigenpair (λ, u) ∈
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C× Cr and associated Koopman mode h = Ψ̃u ∈ span
{
ψ̃j

}r
j=1

,

lim
M→∞

∥∥∥(Ψ∗
Y − λΨ∗

X) Ψ̃Xu
∥∥∥2
`2

= ‖( (KΨ)∗ − λΨ∗ )h‖2`2

=
∞∑
j=1

∣∣〈 (K − λI)ψj, h 〉L2

∣∣2
=

∞∑
j=1

∣∣〈 ψj, (L − λ̄I)h
〉
L2

∣∣2 .
(3.90)

Recall from theorem 3.10 that the features ψj are orthogonal and bounded in
L2. Let

kres(λ, u; r,M)2 ..=
∥∥∥(Ψ∗

Y − λΨ∗
X) Ψ̃Xu

∥∥∥2
`2
. (3.91)

Using 3.89 we arrive at

lim
M→∞

kres(λ, u; r,M)2 =
∞∑
j=1

∣∣〈 ψj, (L − λ̄I)h
〉
L2

∣∣2 (3.92)

and

lim
M→∞

kres(λ; r,M)2 (3.93)

..= lim
M→∞

[
min

u∗Σ̃2u=1

∥∥∥(Ψ∗
Y − λΨ∗

X) Ψ̃Xu
∥∥∥2
`2

]
(3.94)

= min
h∈span

{
ψ̃1,...,ψ̃r

}
‖h‖=1

∞∑
j=1

∣∣〈 ψj, (L − λ̄I)h
〉
L2

∣∣2 . (3.95)

We arrive at the following theorem.

Definition 3.16. Let k, Ω be as in theorem 3.10. We say k is universal w.r.t.
K if the Mercer features ψj = µjφj, j = 1, 2, . . . form a core of K|L2.

Definition 3.16 is effectively a condition on the multipliers µj. If e.g. only
finitely many µj > 0 then k is not universal w.r.t. K.

Theorem 3.17. Let k, Ω again be as in theorem 3.10. Then there exists a
µ > 0 such that

‖(L − λI)h‖L2 < µε =⇒ lim
M→∞

kres(λ, u; r,M) < ε. (3.96)

Assume additionally that k is universal w.r.t. K. Then

lim
r→∞

lim
M→∞

kres(λ; r,M) ≤ µ · σinf
(
L − λ̄I

)
(3.97)

where L − λI = (L − λI)|L2.
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Proof. Appealing to theorem 3.10, we can rewite
∞∑
j=1

∣∣〈 ψj, (L − λ̄I)h
〉
L2

∣∣2
=

∞∑
j=1

∣∣〈 µjφj, (L − λ̄I)h
〉
L2

∣∣2
≤ µ2

1

∞∑
j=1

∣∣〈 φj, (L − λ̄I)h
〉
L2

∣∣2
(3.98)

since the µj are odered by decreasing magnitude. Hence the desired µ is
precisely µ1.

The theorem does not provide an explicit way to compute the pseudospec-
trum. Rather, it provides a necessary condition that an eigenpair is µε-
pseudospectral. Equivalently, it provides a condition for which one can reject
a candidate eigenpair as spurious. In fact, due to a theorem of Yosida saying
that the identity is not a Fredholm integral operator8 (which implies that the
multipliers µj must tend to zero), it is impossible to make the above theorem
into a sufficient condition on L2.

Nonetheless, this gives an operator theoretic interpretation for algorithm 5. In
the original literature [11], the residual k̂res was presented ad hoc. A reason for
the empirically observed effectiveness of the method was, until now, unknown.

We conclude by demonstrating how to compute kres(λ). We have

kres(λ)2 = min
u∗Σ̃2u=1

kres(λ, u)2 (3.99)

= min
u∗Σ̃2u=1

(
Ψ̃Xu

)∗ (
Ĵ − λ̄Â− λÂ∗ + |λ|2Ĝ

)(
Ψ̃Xu

)
. (3.100)

Letting w = Σ̃u and noting that by assumption Σ̃ii 6= 0 for all 1 ≤ i ≤ r, 3.100
becomes

min
w∗w=1

w∗
(
Q̃∗ĴQ̃− λ̄Q̃∗ÂQ̃− λQ̃∗Â∗Q̃+ |λ|2Σ̃2

)
w. (3.101)

Now with
J̃ = Q̃∗ĴQ̃, Ã = Q̃∗ÂQ̃, G̃ = Σ̃2, (3.102)

it follows that 3.99 can be solved by computing the smallest eigenvalue of

Ũ (= Ũ(λ)) = J̃ − λ̄Ã− λÃ∗ + |λ|2G̃. (3.103)

8If the identity is to be written as a integral operator then one would need the kernel to
be a Dirac delta k(x, ·) = δx(·) which is not in L2, let alone continuous.
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Algorithm 6 Modified kernel ResDMD with an operator-theoretic interpre-
tation
Require: kernel k : Ω× Ω → C, data points and weights {(wi, xi)}Mi=1, com-

pression factor r ≤M , grid {zν}Tν=1 ⊂ C, tolerance ε
1: Construct Ĝ, Â as in 3.61, 3.62
2: Compute an eigendecomposition Ĝ = QΣ2Q∗

3: Let Σ̃, Q̃ be as in agorithm 4
4: Construct K̂, Ĵ as in 3.64, 3.80 (with Q̃ and Σ̃)
5: for zν do
6: Compute kres(zν), which is equivalent to finding the square root of the

smallest eigenvalue of Ũ as in 3.103
7: return {zν | kres(zν) < ε}

4 Examples
Having studied the current most popular Koopman operator approximation
scheme in theory, it is time to set it in practice. Figures 2.1, 2.2, 3.1, 3.2
already show convincing results. We continue with three more results, showing
both advantages and disadvantages of dynamic mode decompositions.

4.1 Duffing Oscillator
We apply algorithm 3 on the unforced duffing equation [17]

ẍ = −δẋ− x(β + αx2) (4.1)

using the paramters α = 1, β = −1, δ = 1/2 as in [37]. Viewing this as a two-
dimensional first order ODE in the coordinates x and ẋ, the system has two
open basins of attraction, see figure 4.1. We use a cartesian grid quadrature
scheme consisting 500 Gauß-Legendre nodes and weights in each dimension
(transplanted onto the domain [−2, 2]), resulting in a total of M = 2500 nodes.
For a dictionary we use products of Legendre polynomials

(x, ẋ) 7→ Pk(x/2) · Pl(ẋ/2) (4.2)

for k, l = 0, . . . , 9, totalling N = 100 dictionary functions. We approximate
the continuous-time ODE system by time-stepping with step size ∆t = 0.1.
The first 3 nontrivial eigenfunctions of K are shown in figure 4.2.

The two stable equillibria located at x = ±
√

β
α
, ẋ = 0 are eigendistributions

in the sense that Dirac deltas centered at the equillibria are invariant under
K. EDMD attempts to resolve these Dirac distributions using the available
basis, resulting in two fast growing functions with support localized as much
as possible on the equillibria. Also visible are the two basins of attraction
approximated by the sign of the second largest eigenvalue.
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Figure 4.1: Phase portrait of the Duffing equation 4.1.

Finally, an almost-invariant set is seen tracing the boundary of the two basins.
Indeed, the basin of attraction for the unstable equillibrium at the origin is
precisely the two trajectories tracing the boundaries of the basins for the other
equillibria. This infinitesimal basin is approximated by smooth functions, re-
sulting in an artificial ”widening” of the single trajectories. Not visible is the
Dirac eigendistribution at the unstable equillibrium. This is because there was
not a data point centered at this equillibrium, and its instability caused points
to be mapped away too quickly.

4.2 Alanine Dipeptide
Alanine dipeptide is a biomolecule which is used as a standard nontrivial test
case for macroscopic dynamics [22]. Typical energy-optimization based meth-
ods to determine stable conformations are difficult to use due to many local
minima existing [27]. It is shown in [27] that the shape (and therefore chemical
reaction properties) are determined primarily by only two dihedral angles in
the backbone of the molecule (see figure 4.3).

We use trajectory data of the heavy atoms gathered from experiments in [29].
After subsampling the trajectory data to use just every 50th time steps, we
obtain M = 2500 data points in R30. We apply algorithm 5 using the Gaußian
kernel 3.53 with parameter c2 = 0.01. The spectrum of K̂ is shown in figure
4.3; figure 4.4 shows the two nontrivial eigenfunctions, projected into the space
spanned by the two dihedral angles.

It is highly important to note that no a priori information was used to choose
observables, determine the subsampling method, or tune the kernel parameter.
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Figure 4.2: Spectrum of the Duffing equation. Top left: Spectrum of K (or-
ange) with residuals computed from algorithm 3. The other plots are the real
parts of the first 3 nontrivial eigenfunctions for K. See section 4.1 for analysis.

The dihedral angles are used purely for plotting.

After obtaining the two nontrivial eigenfunctions, k-means clustering was used
with k = 3 clusters, to determine the metastable sets in R30. The projection of
these sets into the space spanned by the two dihedral angles is shown in figure
4.5. Indeed, these are the same metastable conformations as experimentally
observed in [27].

4.3 Blaschke Products
4.3.1 Definition

As a final model we consider a family of (complex) analytic circle maps

S : T → T, z 7→ z
z − µ

1− µ̄z
(4.3)

for µ ∈ D in the open unit disk. S is a two-to-one map on the circle which
can be analytically extended to the annulus Aµ = {z ∈ C | |µ| < |z| < |µ|−1}.
The Perron-Frobenius operator spectrum has been studied analytically in [5].
It is shown (with much effort) that on a subspace of L2(T) containing certain
holomorphic functions, L is compact and has a simple spectrum.
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Figure 4.3: Left: alanine dipeptide molecule skeleton. The dihedral angles ϕ
and ψ are the primary determining factors of the shape and chemical reaction
properties of the molecule. Right: spectrum of K̂ with residuals computed
from algorithm 5. See section 4.2 for analysis.

Figure 4.4: First two nontrivial eigenfunctions of K̂ for the alanine dipeptide
molecule, projected into the space of the two dihedral angles. Note that K̂
is computed with the full 30-dimensional data and the observables use no a
priori information on the dihedral angles.
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Figure 4.5: k-means clustering of the almost invariant sets, projected into the
space of the two dihedral angles.

More specifically, let H(Ar) denote the set of holomorphic functions on an
annulus Ar, r < 1, and H2(Ar) the subspace of holomorphic functions which
are square integrable on the boundary ∂A = {z ∈ C | |z| = r or 1/r}.

This space (known as a Hardy space) is Hilbert with inner product

〈f, g〉H2(Ar)
=

[
lim
ρ↘r

1

2πi

∫
∂Bρ

f(z) · g(z)dz
z

]
+

[
lim
ρ↗ 1

r

1

2πi

∫
∂Bρ

f(z) · g(z)dz
z

]
.

(4.4)

It is not hard from here to see that en(z) = zn/
√
r2n + r−2n is an orthonormal

basis.

We do not make much use of the structure of H2(A) at first, aside from taking
note that H2(A) is a strict subset of L2(T).

Proposition 4.1 ([5]). Let S be a Blaschke product of the form 4.3 and Ar be
a suitably chosen annulus9 containing T. Then L|H2(A) is compact10 and

σ
(
L|H2(A)

)
= σp

(
L|H2(A)

)
= {µn | n ∈ N0} ∪ {µn | n ∈ N0} . (4.5)

As a consequence of H2(A) ⊂ L2(T),

{µn | n ∈ N0} ∪ {µn | n ∈ N0} ⊂ σp

(
L|L2(T)

)
. (4.6)

We note that, in its default form, algorithms 1, 4 attempt to compute σp
(
K|L2(T)

)
.

9By the expansivity of S, we can choose annuli A0 ⊂⊂ A′ ⊂⊂ A such that S(∂A0)∩A = ∅.
These conditions are necessary for well-definedness of L|H2(A) [4]. Here, ”A′ ⊂⊂ A” means
that the closure of A′ is a strict subset of A.

10In fact, L|H2(A) is Hilbert-Schmidt.
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4.3.2 An Initial Numerical Experiment

With this context, we use algorithm 3 for the Blaschke product, with µ =
3
4
eiπ/4. As a first attempt, we try again using Gauß-Legendre quadrature by

reparameterizing the circle onto [−1, 1]. We use M = 1000 quadrature nodes
and N = 40 Legendre polynomials as a dictionary. The numerically computed
spectrum is shown in figure 4.6. Aside from the trivial (constant) invariant
eigenfunction, the spectrum of L is entirely unrelated to the true spectrum.

However, when we perform the same experiment using the same number of
quadrature nodes, this time equally spaced, and a Fourier basis cn(θ) = eiπnθ,
n = −20, . . . , 20, then the spectrum of L matches the true spectrum exactly.
In fact, in [2] it is shown that (when enough quadrature nodes are used) the
approximated spectrum converges to the true spectrum exponentially in N .

What remains unclear is why the residuals computed using algorithm 3 are
still large in both the Legendre and Fourier experiments. If one were to rely
on the residuals computed by algorithm 3, one would reject these eigenvalues
as spurious. To understand this we recall theorem 2.9 and corollary 2.21. The
problem lies in the residual spectrum. Indeed, the point spectrum of K|L2(T)
does not include any of {µn | n ∈ N0} ∪ {µn | n ∈ N0} aside from the trivial
invariant eigenfunction.

However, since the Fourier basis is clearly orthonormal on L2(T), we have
G = I so that L = K∗. Additionally, finite-dimensional operators only have
point spectrum and so σp(K) = σp(L). Hence the seeming accuracy of σ(K)

is a reflection of the fact that σ(L) approximates σ
(
L|H2(A)

)
exponentially

well.

Nonetheless, one still can use ResDMD to verify the eigenvalues which are
computed, one just needs to do so over the ”correct” space. Since for n > 0,
µn /∈ σp

(
K|L2(T)

)
but µn ∈ σp

(
L|L2(T)

)
, we must have µn ∈ σr

(
K|L2(T)

)
.

From theorem 2.9, µn ∈ σp

(
K|H2(A)∗

)
where H2(A)∗ is the Banach space ad-

joint of H2(A) embedded in L2(T). We therefore must investigate the structure
of H2(A)∗.

4.3.3 The Adjoint of H2(A)

Let Dr = {z ∈ C | |z| < r} and H2(D∞
r ) be the set of functions holomorphic on

C\Dr which are square integrable on the boundary ∂Dr and vanish at infinity,
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that is

H2(Dr) =

{
f ∈ H(Dr) | 〈f, f〉H2(Dr)

= lim
ρ↗r

∫
∂Bρ

f(z)f(z)
dz

z
<∞

}
(4.7)

H2(D∞
r ) =

{
f ∈ H(C \ Dr) | lim

|z|→∞
f(z) = 0 and

〈f, f〉H2(D∞
r ) = lim

ρ↘r

∫
∂Bρ

f(z)f(z)
dz

z
<∞

} (4.8)

Theorem 4.2 ([4]). The Banach space adjoint of H2(Ar) ⊂ L2(T) is isomor-
phic to the direct sum H2(Dr)⊕H2(D∞

1
r

).

Some elementary complex analysis shows that

H2(Dr) =

{
f =

∞∑
n=0

cnz
n ∈ H(Dr) |

∞∑
n=0

|cn|2r2n <∞

}
(4.9)

and analogously

H2(D∞
1
r
) =

{
f =

∞∑
n=1

c−nz
−n ∈ H(C \ Dr) |

∞∑
n=1

|c−n|2r2n <∞

}
. (4.10)

Hence the space X = H2(Dr)⊕H2(D∞
1
r

) can be characterized by the norm

‖f‖2X =

∥∥∥∥∥
∞∑

n=−∞

cnz
n

∥∥∥∥∥
2

X

=
∞∑

n=−∞

|cn|2r2|n|. (4.11)

Notice that the coefficients cn are precisely the Fourier coefficients of f . The
triple H2(A) ⊂ L2(T) ⊂ H2(A)∗ = X is known as a Gelfand triple or rigged
Hilbert space. In particular the space X is distributional, it is strictly larger
than L2(T).

Knowing that

σ
(
L|H2(A)

)
= σp

(
L|H2(A)

)
⊂ σr

(
K|L2(T)

)
(4.12)

and that
σ
(
L|H2(A)

)
= σ

(
K|H2(A)∗

)
(4.13)

we can conclude

σ
(
K|H2(A)∗

)
= σp

(
K|H2(A)∗

)
= {µn | n ∈ N0} ∪ {µn | n ∈ N0} . (4.14)

We have therefore arrived (in an alternative manner) at the main result of [4].
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Figure 4.6: Left: spectrum of L with residuals calculated using algorithm 3,
when using an approximation space consisting of 40 Legendre polynomials.
Right: The same calculation using an approximation space of Fourier modes.
In both cases, green: true spectrum of L|H2(A), orange: spectrum of the EDMD
matrix L. Contour lines are logarithmically scaled, i.e. they show the approx-
imated ε-pseudospectrum for e.g. ε = 10−0.4, 10−0.3, 10−0.2, 10−0.1, etc. See
section 4.3.2 for analysis.

We may now use this knowledge to perform algorithm 3 in this space. Recall
equations 3.13, 3.14, 3.32 suggest that we can approximate G by

Gij ≈ 〈ψi, ψj〉X =
∞∑

n=−∞

cn(ψi)cn(ψj) r
2|n| (4.15)

and analogous for A and J . The result of doing so with the same fourier basis
as before results in figure 4.7. Indeed, both the eigenvalues and residuals verify
the analytically deduced spectrum of K|H2(A)∗ .

It is worth taking a moment to consider what has happened, as it is quite
unintuitive. When we shrunk the domain of L, we removed all element of
the spectrum which were not in the point spectrum. Correspondingly in the
dual, we enlarged the domain until elements of the residual spectrum became
elements of the point spectrum. By adding the necessary function(als) to the
domain, we were able to find new elements of the kernel of K−λI. This is the
only way that this can happen. An element of the residual spectrum can (by
theorem 2.9) not convert into continuous spectrum.
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Figure 4.7: Left: spectrum of K̂ with residuals calculated using algorithm 5,
Right: residulas calculated using the inner product 〈·, ·〉H2(A)∗ In both cases,
green: true spectrum of L|H2(A), orange: spectrum of the approximated matrix
(left K̂, right K using the dual Hardy inner product). Contour lines are
logarithmically scaled, i.e. they show the approximated ε-pseudospectrum for
e.g. ε = 10−2, 10−1, 10−0.5, 10−0.2, etc. See section 4.3.3 for analysis.

5 Conclusion
Five related algorithms for the study of Koopman and Perron-Frobenius oper-
ators are studied. The algorithms are based on the concept of pseudospectra,
which are investigated from a theoretical basis before applied to Koopman
operators. In the process, two new proofs (one extension and one correction
of previous proofs) are given for well-known results in pseudospectral theory.
The idea behind each algorithm is deduced rigorously, and new connections
between algorithms are presented. Finally, the algorithms are explored on
three examples.

The examples lead to a fundamental question in the study of operator theoretic
dynamics, which was already hinted toward in the example of the Duffing
equation. When the physically relevant (pseudo)eigenvectors lie outside of
the space of study, as e.g. Dirac distributions on equillibria and periodic
orbits, or e.g. adjoint Hardy space functionals, how should one know which
approximated eigenvectors are ”real”?

This interesting phenomenon that many discretization techniques are excited
by eigenmodes of Koopman operators over functions spaces which are strictly
larger than L2. This raises a question - which computed eigenmodes are (1)
”expected”: approximations of L2 Koopman eigenmodes, (2) ”unexpected”:
approximations of eigenmodes in unintended function spaces, (3): ”spurious”:
caused solely by the discretization? What is the ”right” function space for
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Koopman / Perron-Frobenius operator analysis?

The current state of research holds two potential answers to this question, the
first of which has already been mentioned in section 3.3.1: one can make a
philosophical change and assume that the underlying dynamics is governed
by a stochastic system. The result of this assumption is that K (resp. L)
”collapses” to a compact operator. In this case one can construct strongly
convergent approximation schemes e.g. Ulams’ method [16] or point-cloud
methods based on entropically regularized optimal transport [22]. However,
the stochastic approach ”destroys fine structures” in the sense that anythinig
which is not robust to perturbation is changed, e.g. fixed points become abso-
lutely continuous invariant measures with (potentially) support on the entire
phase space.

Another approach [13] considers only measure preserving dynamical systems
(thereby restricting to the case that K is an unitary) but tackles continuous
and point spectrum simultaneously by embedding some space X into a rigged
Hilbert space structure, X ⊂ L2(Ω) ⊂ X ∗. By carefully choosing this approx-
imation space, one can guarantee a existence of a full spectral decomposition
of K.
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