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Abstract

Dark matter (DM) resembles a big puzzle in physics, whose origin and interactions
are mostly unknown. In this dissertation, we investigate the case of electromag-
netically interacting spin-1/2 DM candidates, focusing on the theory predictions of
these interactions and their role in direct detection experiments. We calculate the
electromagnetic (EM) moments of neutral spin-1/2 fermions at the one-loop level for
scalar- and vector portals to the Standard Model (SM), finding compact expressions
applicable to arbitrary Dirac- or Majorana particles. We apply these formulas to
the archetypical Majorana DM candidate, the lightest neutralino, for different as-
sumptions on the supersymmetric particle spectrum. Using the DM non-relativistic
effective field theory, we formulate the signal rate at the detector in a factorized
way, separating the ultraviolet physics from the experimental details. This concise
formulation is employed to translate the constraints on the effective operators to the
parameter space of a Dirac toy model. We find that direct detection experiments
provide robust exclusion limits, especially for CP violation in the dark sector. Fi-
nally, we apply the model-independent expressions of the EM moments to neutrinos,
for which we calculate the contribution from various extensions of the SM.

Zusammenfassung

Dunkle Materie (DM) stellt ein großes Rätsel in der Physik dar, deren Ursprung und
Wechselwirkungen weitgehend unbekannt sind. In dieser Dissertation untersuchen
wir den Fall von elektromagnetisch wechselwirkenden spin-1/2 Kandidaten für DM,
wobei wir uns auf die theoretischen Vorhersagen dieser Wechselwirkungen und ihre
Rolle bei Experimenten zum direkten Nachweis von DM konzentrieren. Wir berech-
nen die elektromagnetischen (EM) Momente von neutralen spin-1/2 Fermionen auf
dem Einschleifenniveau für Skalar- und Vektorportale zum Standardmodell (SM) und
finden kompakte Ausdrücke, die für beliebige Dirac- oder Majorana-Teilchen gelten.
Wir wenden diese Formeln auf den archetypischen Majorana DM Kandidaten, das
leichteste Neutralino, für verschiedene Annahmen über das supersymmetrische Teil-
chenspektrum an. Unter Verwendung der nichtrelativistischen effektiven Feldtheorie
der DM formulieren wir die Signalrate am Detektor in einer faktorisierten Weise,
die die ultraviolette Physik von den experimentellen Details trennt. Diese prägnante
Formulierung wird verwendet, um die Beschränkungen für die effektiven Operato-
ren in den Parameterraum eines Dirac-Spielzeugmodells zu übertragen. Wir stellen
fest, dass Experimente zum direkten Nachweis von DM robuste Ausschlussgrenzen
liefern, insbesondere für CP-Verletzung im dunklen Sektor. Schließlich wenden wir
die modellunabhängigen Ausdrücke der EM Momente auf Neutrinos an, für die wir
den Beitrag von verschiedenen Erweiterungen des SM berechnen.
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Chapter 1

Introduction

The nature of dark matter (DM) remains one of the central unresolved questions
in astrophysics and cosmology. Observations at galactic and cosmological scales
indicate that most of the matter in our Universe is non-baryonic. However, direct
evidence for its non-gravitational interactions is still lacking. Many proposed ideas
attempt to explain the DM conundrum, ranging from incredibly light bosons that
behave like waves to particles that interact weakly with ordinary matter and even to
massive primordial black holes that can weigh as much as the Sun. This wide variety
of possibilities underscores our limited understanding of DM.
As a result, various search strategies are employed to investigate this expansive

landscape of models and ideas. For particle DM, these efforts include studying
the byproducts of particle collisions at colliders, examining cosmic rays from both
galactic and extragalactic sources, and measuring DM-induced recoil signatures in
dedicated shielded underground laboratories.
Historically, one of the most studied candidates for DM has been the weakly inter-

acting massive particle (WIMP). This hypothetical particle is expected to interact
through weak-scale couplings and elegantly explains the observed abundance of DM
through a process known as the “freeze-out” mechanism. WIMPs naturally emerge
in several reasonable extensions of the Standard Model (SM), such as supersym-
metry. However, numerous state-of-the-art direct detection experiments, including
XENONnT, LUX-ZEPLIN, PandaX, and DarkSide-50, have not detected a conclus-
ive WIMP signal. This lack of evidence challenges the minimal top-down paradigm
and motivates alternative avenues.
More recent searches target lower-mass WIMPs, employing novel detection tech-

niques—such as semiconductors or the Migdal effect—to access previously untested
parameter space. Theoretical models have also broadened, encompassing ideas like
boosted DM, multi-component scenarios, and interactions that do not necessarily
rely on weak-scale couplings. An effective field theory (EFT) approach has become
especially popular, as it parameterizes possible DM–SM interactions through higher-
dimensional operators and thus allows model-independent analyses from a bottom-up
perspective.
One intriguing possibility is that DM interacts indirectly, although very weakly,
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Chapter 1 Introduction

with photons. Depending on the spin of the DM particle, quantum effects can give
rise to various electromagnetic (EM) moments beyond a simple electric charge. If
the particle is self-conjugate (for example, a Majorana fermion), only certain EM
moments are permitted. This introduces the potential to differentiate between Dirac-
and Majorana DM candidates.
These EM moments can be explicitly calculated within specific ultraviolet (UV)

models, establishing a connection between the low-energy phenomenology charac-
terized by the EM moments of DM and the fundamental UV model. While many
searches focus on one dominant EM interaction at a time, these UV completions
often generate multiple EM moments. This situation necessitates a more compre-
hensive approach to the EFT of electromagnetically interacting DM to effectively
compare theoretical predictions with experimental results.
Neutrinos, which are part of the SM, present a parallel case. Their small but non-

zero masses imply physics beyond the SM, and a key question is whether they are
Majorana- or Dirac fermions. Unlike DM, some neutrino EM moments are predicted
within the SM, which might be detected through scattering experiments or astro-
physical observations. The Dirac- or Majorana nature of neutrinos again dictates
which EM moments can appear, such that an experimental signature of neutrino
EM moments could indicate their nature and, therefore, help us understand the
mechanism of neutrino mass generation. Further, from a theoretical point of view,
many models can increase the EM properties of the neutrinos, such that an obser-
vation deviating from the SM prediction would be a clear indication of new physics.
Therefore, understanding the theoretical foundations governing these interactions is
fundamental to correctly interpreting a possible signal.
This work explores the scenario of electromagnetically interacting DM and the

theory prediction for the neutrino EM moments. In a model-independent way, we
calculate the EM moments of neutral spin-1/2 fermions at the one-loop level and
subsequently apply these formulas to the cases of DM and neutrinos. By combining
experimental null signatures of DM direct detection experiments with the analytical
formulas for the EM moments, we bridge between the EFT of electromagnetically
interacting DM and the UV parameter space of DM models. We showcase this
interplay for the archetypical WIMP candidate, the lightest neutralino, and a Dirac
toy model. For the case of neutrinos, we study in-depth the prediction of various
models—both within the (minimally extended) SM and beyond—for the neutrino
EM moments and identify the conditions on these models to give rise to a sizeable
contribution.
This dissertation is structured as follows: First, we motivate the DM conundrum in

chapter 2 by providing an overview of its observational evidence, thermal production
mechanisms, and search strategies. After briefly introducing the role of EM moments
in particle physics, we carry out the one-loop calculation of the EM moments of
neutral spin-1/2 fermions for scalar- and vector mediators and discuss the kinematical
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features of the resulting expressions in chapter 3. Then, in chapter 4, we discuss the
phenomenology of DM direct detection in more detail, particularizing the framework
to the EM moments of spin-1/2 DM candidates. In light of these experimental
constraints, we discuss in chapter 5 the theoretical prediction for the anapole moment
of the lightest neutralino in the minimal supersymmetric standard model. Similarly,
in chapter 6, we apply the general results of direct detection experiments to a Dirac
DM toy model and map the exclusion limits of the EFT to the UV parameter space.
Here, we also discuss the implications for a thermal relic. Finally, in chapter 7,
we examine the EM moments of neutrinos, both within the SM and beyond. We
show that our general results correctly produce the known results for the SM and
some typical extensions. In the last section, we also promote a model in which the
neutrinos acquire dark moments. In chapter 8, we summarize the findings of this
work and provide conclusions.
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Chapter 2

Dark matter: evidence, production and
search avenues

Here, we briefly review the observational evidence of dark matter (DM), discuss
the standard production mechanisms, and introduce present search techniques. For
reviews of DM, see, for example, refs. [4–8].

2.1 Observational evidence

We review some examples of evidence hinting at DM ranging from scales of galax-
ies (∼ 100 kpc) and galaxy clusters (∼ 1Mpc) to cosmological scales (∼ (100 −
1000)Mpc). Fore further details, see e.g. refs. [6, 8–10].

2.1.1 Galaxies

Observations show that the rotation curves of spiral galaxies become flat for large
distances to the center [11], see fig. 2.1. These findings contrast the expectation
for the rotation curve based on the visible matter only, for which a decrease of the
velocity v(r) for large distances from the center is expected. This discrepancy can be
solved by modifying either i) the gravitational force or ii) the matter content within
a galaxy. Along the former approach is the idea of modified Newtonian dynamics
(MOND) [12–14], which, however, is in tension with observations on the scale of
galaxy clusters [15–19]. Therefore, the latter approach, assuming the presence of
additional non-luminous matter, dark matter, to explain the measured discrepancy
in rotation curves, is favored, which we will discuss in this section in detail.
In this context, we may model a galaxy to consist of three main components: the

disc, the bulge, and the DM halo as schematically drawn in fig. 2.2. Although the
description and proportions of these contributions strongly depend on the galaxy, we
will employ simple analytical models to describe these three gravitational potentials
to showcase the main argument for a galactic DM halo.
We model the bulge by an exponentially decreasing spherical mass density,

ρb(r) = ρ0
be
−r/Rb , (2.1)
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Chapter 2 Dark matter: evidence, production and search avenues

Figure 2.1: Measured rotation curves from 21 Sc galaxies. Figure taken from ref. [11]
© AAS. Reproduced with permission.

and the disk by the Freeman model [20], corresponding to an exponentially flat disk
with surface density

Σ(r) = Σ0e
−r/Rd . (2.2)

For the DM halo, we assume the Navarro–Frenk–White (NFW) profile [21, 22]

ρχ(r) =
ρ0
χ

r/Rχ (1 + r/Rχ)2 , (2.3)

however, the qualitative arguments hold, of course, also for other halo models. In
the above densities, the radius RX is the typical scale of the component X = b, d, χ,
and the normalization factors ρ0

X and Σ0 can be related to the total masses of the
component and therefore related to the observation.
To find the rotation velocity vX(r) of a point particle with mass m due to the

gravitational potential of source X = b, d, χ, we use the fact that the centrifugal
force and the gravitational force are in equilibrium, therefore

v2
X(r) = r

∂

∂r
ΦX . (2.4)

6



2.1 Observational evidence

O

DM halo

bulge

disk

Figure 2.2: Sketch of the main components of a galaxy, where the bulge is assumed
to be spherical symmetric around the origin O, a radial symmetrical disk is located
at z = 0, and a spherical symmetrical DM halo surrounds the whole galaxy.

As the potential ΦX is sourced by the density ρX we can write

ΦX(r) = −4πG


1

r

r∫

0

dr′r′2ρX(r′) +

∞∫

r

dr′r′ρX(r′)


 (2.5)

for the spherical symmetrical distributions, and [23]

Φd(r, z = 0) = −4G

r∫

0

da√
r2 − a2

∞∫

a

dr′r′
Σ(r′)√
r′2 − a2

(2.6)

for the disk. Calculating the potentials, therefore, allows us to determine the rotation
curves due to the three different contributions outlined above.

Bulge contribution

For the bulge contribution, we find

v2
b (r) =

GM tot
b

r

[
1− e−r/Rb

(
1 +

r

Rb
+

1

2

r2

R2
b

)]
, (2.7)

with total bulge mass M tot
b = 8πρ0

bR
3
b .

7



Chapter 2 Dark matter: evidence, production and search avenues

Disk contribution

The computation of the disk contribution turns out to be mathematically more
involved than the bulge- and DM halo contribution. Plugging the exponentially flat
disk surface density into eq. (2.6), we find [20, 23]

Φd(r, z = 0) = −πGΣ0r [I0(y)K1(y)− I1(y)K0(y)] , (2.8)

where we defined y = r
2Rd

in the arguments of the modified Bessel functions Iν and
Kν . Utilizing the recursion relations of these functions1, we find for the rotation
velocity [20]

v2
d(r) = GM tot

d

r2

2R3
d

[
I0

(
r

2Rd

)
K0

(
r

2Rd

)
− I1

(
r

2Rd

)
K1

(
r

2Rd

)]
, (2.9)

where the total mass within the disk reads M tot
d = 2πΣ0R

2
d.

DM halo contribution

For the NFW profile, we find for the potential

Φχ(r) = −
4πGR3

χρ
0
χ

r
log

(
1 +

r

Rχ

)
. (2.10)

The rotation velocity induced by the DM in the galaxy then reads

v2
χ(r) =

GMχ(Rχ)

log(2)− 1
2

[
log(1 + r/Rχ)

r
− 1

r +Rχ

]
, (2.11)

with the DM mass inside the sphere of radius Rχ being

Mχ(Rχ) = 4πR3
χρ

0
χ

(
log(2)− 1

2

)
. (2.12)

In a galaxy in which these three components are the dominant sources of the
gravitational potential, the rotation velocity of an object can, therefore, be described
as

v2(r) = v2
b (r) + v2

d(r) + v2
χ(r). (2.13)

To compare our simplified analytical treatment of the galactic components with
the measurements depicted in fig. 2.1, we infer the values for the mass scales
{M tot

b ,M tot
d ,Mχ(Rχ)} and scale radii {Rb, Rd, Rχ} from the fits conducted in

ref. [24], and which are presented in table 2.1. For these values, we show in fig. 2.3 the
1 dI0

dz
= I1, dK0

dz
= −K1, dI1

dz
= I0 − 1

z
I1 and dk1

dz
= −K0 − 1

z
K1, see ref. [23, appendix C].
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2.1 Observational evidence

Parameter Value Units
M tot
b 2.3 1010M�
Rb 1.5 kpc
M tot
d 5.7 1010M�
Rd 3.3 kpc

Mχ(Rχ) 22.3 1010M�
Rχ 21.6 kpc

Table 2.1: Typical values for the parameters describing a spiral galaxy’s bulge, disk,
and DM profile. Data taken from ref. [24].

rotation velocities from the individual contributions and their combined prediction.
We observe that the rotation curve, including the DM contribution, becomes flat for
large r, whereas the disk- and bulge contributions individually become suppressed.

We conclude that the simplified analytical model of the galactic composition and
the resulting rotation curve is in qualitative agreement with the measurements shown
in fig. 2.1. This comparison highlights the relatively simple solution the presence of
a DM halo offers to accommodate the observed flatness of the rotation curves for
bodies far away from the center of galaxies.

2.1.2 Galaxy clusters

The arguably first evidence of DM was found on the scales of galaxy clusters by
observations of the Coma cluster by F. Zwicky in 1933 [25–27], finding that the
observed mass-to-light ratio was significantly above the expectation. This appar-
ent discrepancy between direct observation and the mass deduced using the Virial
theorem could be explained by the presence of non-luminous matter. More precise
measurements of the masses of such galaxy clusters can be obtained using X-ray
observations [28–30] and weak gravitational lensing effects [31]. These techniques
allow mapping the gravitational sources and the visible matter, resulting in different
matter distributions.
Examples of these studies include MACSJ0025.4-1222 [32] and the prominent bul-

let cluster, where the mass distribution deduced from visible matter differs from the
mass distribution inferred from lensing data significantly, leading to a 7.6σ claim for
the presence of DM in this system [33]. Further, from the DM component’s lack of
deceleration, the same observations can be utilized to derive limits on the DM self-
interactions [34]. In the case of the bullet cluster, self-interactions with cross-sections
σχ/mχ < 0.47 cm2/g are excluded at the 95% C.L. [33].

9
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0 10 20 30 40 50

r [kpc]
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100

150

200

v
(r
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[k

m
/s

]

Galactic rotation curve

vbulge

vdisk

vDM (NFW)

vtotal

Figure 2.3: Prediction for the rotation curves of a typical galaxy using eq. (2.13) for
the values shown in table 2.1.

2.1.3 Cosmic microwave background

Now, we turn to even larger scales. The omnipresent cosmic microwave background
(CMB), measured in 1964 by Penzias and Wilson [35], constitutes an observational
handle into the physics at the time of matter-radiation decoupling, which occurred
at a temperature of Tdec ' 0.26 eV ' 3000 K. Today, due to redshift, these photons
constitute a nearly uniform blackbody spectrum with temperature T 0

dec ' 2.725 K
with minor anisotropies of order δT/T ∼ 10−5 [36]. Measurements of this spec-
trum can be confronted with the theoretical prediction within a specific cosmological
model.
Due to its simplicity and success, a popular model is the ΛCDM model, consisting

of an expanding Universe with a cosmological constant Λ and cold dark matter
(CDM).2 The metric for the isotropic and homogeneous expanding Universe can be
described by the Friedmann-Robertson-Walker (FRW) metric, defined through the
line element

ds2 = dt2 − a2

(
dr2

1− kr2
+ r2dΩ2

)
, (2.14)

hereby, a is the scale factor describing the spatial expansion of the Universe, and
k ∈ {−1, 0, 1} is the space-time curvature. Assuming the Universe to behave as a per-
fect fluid, its evolution can be described by the Friedmann–Lemaître equations [40,

2For an introduction to cosmology, see, for example, refs. [37–39].
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2.1 Observational evidence

41]

H2 =
8πG

3
ρ+

Λ

3
− k

a2
, (2.15a)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
− k

2a2
, (2.15b)

with the Hubble rate H = ȧ
a . The first equation in eq. (2.15) can be expressed as

H2a2 (Ωm + Ωr + ΩΛ − 1) = k, (2.16)

where the dimensionless densities for matter, radiation and dark energy are given
respectively by Ωm = ρm/ρc, Ωr = ρr/ρc and ΩΛ = Λ

8πG/ρc, where ρc = 3H2/8πG
is the critical density. The matter density is a sum of the baryonic- and CDM
contribution, Ωbh

2 and ΩDMh
2 respectively.

As mentioned above, measuring the temperature fluctuations over the sphere of the
last scattering allows us to probe a cosmological model. Multiple physical processes
can alter the measured CMB temperature fluctuations, such as acoustic oscillations
and the proper description of the CMB photons propagating through the Universe,
such as by including the Sachs-Wolfe effect [42]. The former describes the imprints of
the baryon-photon fluid oscillating due to gravitational agglomerations. Before the
photons decoupled from matter, the baryon-photon fluid was attracted by overdense
regions, compressing the fluid. Competing with this compression was the resulting
radiation pressure of the fluid, leading to an expansion. This resulted in a cycle of
compression and expansion of the fluid, which left an imprint on the peaks of the
angular CMB power spectrum.
In the ΛCDM model, the energy densities can be related to the location, width,

and shape of the peaks in the spectrum [9]:

• An increase in the total energy content Ωtot = Ωm+Ωr+ΩΛ moves the acoustic
peaks to smaller multipole moments `. The same is achieved for an increase in
the dark energy density ΩΛ.

• The matter content Ωmh
2 = Ωbh

2 + ΩDMh
2 affects the gravitational poten-

tial generating the acoustic oscillations. An increase in this density leads to
a smoothening in the gravitational background, dampening the peaks. Fur-
ther, the potential for the gravitational wells inducing the acoustic oscillations
becomes steeper, which reduces the separation between high modes in the spec-
trum.

• The baryon density Ωbh
2 is a proxy for the mass of the baryon-photon fluid.

It affects the height of the peaks.

11



Chapter 2 Dark matter: evidence, production and search avenues

With these considerations in mind, the data from satellites such as WMAP [43]
and PLANCK [44] can be used to fit the parameters of the ΛCDM model. The
most recent measurement from PLANCK leads to the following energy budget of the
Universe [45]:

ΩDMh
2 = 0.1198± 0.0015, (2.17a)

Ωbh
2 = 0.02225± 0.00016, (2.17b)

ΩΛ = 0.6844± 0.0091, (2.17c)

with h = H0/100 (Mpc s/km) and H0 = (67.27 ± 0.66) km/(Mpc s) [45] being the
Hubble parameter.
Thus, an expanding Universe with a cosmological constant and cold DM agrees

exceptionally well with the precise measurement of the CMB power spectrum.

2.1.4 Large scale structure

Finally, evidence for DM can be found on the largest accessible scale: the large-scale
structure of the Universe.3 This enormous filament-like structure of the Universe
comprises superclusters of galaxies and volumes absent of matter called voids. The
distribution of these structures allows us to test the cosmological model, as, during
the finite time of the Universe, t ' 13.8Gyr [45], these structures must have formed.
Using observational data from analyses using weak lensing, Lyman-α, cluster counts,
etc., this structure can be quantified through the power spectrum P (k). Further,
simulations can offer another handle on the clustering dynamics during the evolution
of the Universe [47].
The dynamics of gravitationally interacting matter in the Universe can be de-

scribed by the Vlasov equation [48]

∂f

∂τ
+

p

am
∇f − am∇Φ · ∇pf = 0, (2.18)

where f(x,p) is the number density and Φ is the cosmological matter potential,
sourcing the gravitational interactions via the perturbations, such that ∇2Φ =
3
2ΩmH 2δ(x, τ), with δ(x, τ) = ρ(x, τ)/ρ̄(τ) − 1 being the density contrast and
H = Ha. Further, τ =

∫
dt′
a(t′) is the comoving time, and x = ar the comoving

distance.
Taking moments of the Vlasov equation, we find respectively the continuity- and

3For a comprehensive review, see, for example, ref. [46].
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2.2 Production mechanisms

Euler equations describing the evolution of the density contrast

∂δ(x, τ)

∂τ
+∇ · ((1 + δ(x, τ))u(x, τ)) = 0, (2.19a)

∂uj
∂τ

+ H uj + ui∇iuj = −(∇Φ)j −
1

ρ
∇i(ρσij), (2.19b)

where u(x, τ) = v(x, τ)−H x is the peculiar velocity. Further, for a perfect fluid,
the stress-tensor σij vanishes at first order, such that eq. (2.19) reduces to a coupled
differential equation of the density contrast δ(x, τ) and the peculiar velocity u(x, τ).
The matter power spectrum is defined as the correlation function between the

matter fluctuations (in momentum space) at different locations

〈δ(k)δ(k′)〉 = (2π)3δ(3)(k + k′)P (k), (2.20)

i.e. it quantifies to which extent matter content at different locations is correlated and
thus provides a measure for the Universe’s large-scale structure. The predicted power
spectrum can be compared to observations from extensive galaxy surveys mapping
the large-scale structure. The conclusion is that the baryonic matter content alone
cannot explain the measured large-scale structure formation. Instead, an additional
gravitational source must have been present to predict a distribution similar to the
measured one, which, within the ΛCDM model, is CDM.

2.2 Production mechanisms

Here, we introduce two standard production mechanisms of DM: freeze-out and
freeze-in. For more details and alternative production mechanisms, see, for example,
refs. [8, 9, 38, 49–53].

2.2.1 Freeze-out

The freeze-out paradigm of a weakly interacting massive particle (WIMP) is argu-
ably the most straightforward DM production mechanism. Due to its simplicity and
the fact that a DM particle with weak-scale mass mχ ∼ 100 GeV and weak-scale
coupling gdark ∼ 0.1−1 reproduces the measured relic density of ΩDMh

2 ' 0.12 [45],
it is sometimes dubbed the WIMP-miracle.
In this framework, it is assumed that in the early Universe, DM had a sizable

interaction with the SM, keeping the DM particles in thermal equilibrium with the
remaining particles of the thermal bath via processes

χχ←→ SMSM. (2.21)

13



Chapter 2 Dark matter: evidence, production and search avenues

Following ref. [50], the number density of non-relativistic DM particles nχ subject
to these 2↔ 2 processes follows the Boltzmann equation [38]

dnχ
dt

+ 3Hnχ = −〈σv〉
(
n2
χ − (neq.χ )2

)
, (2.22)

with neq.χ being the DM number density in thermal equilibrium, and [49]

〈σv〉 =
1

8m4
χTK

2
2 (mχ/T )

∞∫

4m2
χ

ds σ (s− 4m2
χ)
√
sK1(

√
s/T ) (2.23)

is the thermally averaged DM annihilation cross-section. The quadratic dependency
on the number density on the right-hand side of eq. (2.22) is because we consider
2 ↔ 2 processes, where the terms in the bracket describe the forward (∼ n2

χ) and
backward (∼ (neq.χ )2) processes respectively. The term proportional to the Hubble
parameter H originates from the expansion of the Universe, diluting the DM number
density over time.
It is common to introduce the dimensionless abundance Y = nχ/s and the variable

x = mχ/T , with which eq. (2.22) can be cast as

x

Yeq.

dY

dx
= −Γχ

H

((
Y

Yeq.

)2

− 1

)
, (2.24)

where the DM-bath interaction rate is given by Γχ = neq.χ 〈σv〉. In this form, one can
identify the following behavior: in thermal equilibrium, the right-hand side vanishes,
such that the yield is a constant. Once the temperature is smaller than the DM mass,
the DM production becomes Boltzmann suppressed while the annihilation remains
efficient, assuming that Γχ > H. Then, the second term on the right-hand side
of eq. (2.24) becomes negligible, resulting in the strong decrease of the yield as a
function of x, following the equilibrium yield Y ' Yeq.. Eventually, the Hubble rate
becomes larger than the rate of DM annihilations, i.e. when Γχ ∼ H. Here, Y
will decouple from its equilibrium value and experience freeze-out at the freeze-out
temperature xf = mχ/Tf ∼ 20 − 25. In eq. (2.24) this can be observed as in the
limit Γχ/H � 1, the right hand side vanishes, thus, Y → const.
The resulting values of the abundance today, Y0, are proportional to the inverse

of the annihilation cross-section, as a larger annihilation rate will lead to a faster
depletion of DM particles in the Universe. The prediction for the measurable DM
relic density is [38]

Ωχh
2 ' 1.07× 109

√
g∗
g∗s

mχ

Tf

(n+ 1) GeV−1

MPl.〈σv〉
, (2.25)
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Figure 2.4: Freeze-out of the DM abundance for a thermal WIMP candidate (left),
and the freeze-in line for a FIMP candidate (right) as a function of the dimensionless
temperature x = mχ/T for the WIMP and x = mΣ/T for the FIMP. Σ is a scalar
mediator that is in thermal equilibrium with the SM, whose decay produces DM
particles. Figures taken from ref. [51]; reproduced with permission from J. Herms.

whereMPl. ' 1.2×1019 GeV is the Planck mass, and g∗s (g∗) is the effective number
of relativistic degrees of freedom of the entropy (energy density). The appearance of
n accounts for the different velocity dependency the annihilation cross-section could
have, as [38]

〈σv〉 = σ0x
−n, (2.26)

i.e. n = 0 corresponds to s-wave annihilation, n = 1 to p-wave annihilation etc.
One key feature of the freeze-out mechanism is that the larger the DM annihilation

cross-section, the smaller the prediction for the DM relic density. As the cross-section
is proportional to the square of the coupling between the dark sector and the SM,
this relation is transferred to the coupling. This behavior can be seen in the left panel
of fig. 2.4, where we show the freeze-out line of a WIMP candidate as a function of
x.

2.2.2 Freeze-in

Another common production mechanism is the freeze-in mechanism. Here, the DM
particles were never in thermal equilibrium with the thermal bath but instead were
continuously produced by annihilations or decays of bath particles. To avoid the
DM from thermalizing, this mechanism requires a very small DM-SM interaction
rate and, therefore, a small coupling between the DM particle and the SM. A DM
candidate that is produced via the freeze-in mechanism is sometimes dubbed a feebly
interacting massive particle (FIMP) [54].
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Chapter 2 Dark matter: evidence, production and search avenues

For a decaying bath particle Σ→ χχ, the thermal history of a FIMP is described
by the Boltzmann equation [50]

dnχ
dt

+ 3Hnχ = 2ΓΣ→χχ
K1(mΣ/T )

K2(mΣ/T )
neq.Σ , (2.27)

where ΓΣ→χχ is the decay rate of the scalar Σ and neq.Σ denotes its equilibrium number
density. We can introduce similar dimensionless variables as in section 2.2.1 and cast
eq. (2.27) as

x

Y eq.
Σ

dY

dx
=

2ΓΣ→χχ
H

K1(mΣ/T )

K2(mΣ/T )
. (2.28)

The approximate solution of eq. (2.28) for the relic abundance then reads [54]

Ωχh
2 ' 1.09× 1027 gΣ

g∗s
√
g∗

mχ

m2
Σ

ΓΣ→χχ, (2.29)

where gΣ is the intrinsic number of degrees of freedom of Σ. In contrast to the
freeze-out scenario introduced in section 2.2.1, the DM relic density is proportional
to the decay width of the mediator particle Σ or the production cross-section of the
DM particles, constraining the couplings to be of order g ∼ 10−11 or so, depending
on the scenario [54]. In the right panel of fig. 2.4, we present the freeze-in line for a
FIMP candidate, showcasing the steady production of DM particles via the decay of
the bath particle Σ.

2.3 Non-gravitational search efforts

As discussed in section 2.1, all observational evidence for the existence of DM comes
from its gravitational interactions at different scales. Therefore, there is the worst-
case possibility that this is, in fact, the only interaction DM possesses, which would
severely limit our experimental reach on it. Some models accounting for this scenario
include fuzzy DM [55, 56], describing ultra-light bosonic degrees of freedom, which
can be produced via the misalignment mechanism [57–59], or ultra-heavy DM, being
produced non-thermally via the inflaton field [60, 61].
However, as we discussed in section 2.2, within the standard WIMP- or FIMP

paradigms, a DM candidate with a coupling to the SM can be produced in the
early Universe, offering an attractive production mechanism. Many reasonably well-
motivated UV complete models providing a DM candidate, such as the minimal
supersymmetric standard model, naturally predict WIMPs. Therefore, the simplicity
of these production mechanisms and the general WIMP model landscape motivates
the scenario of DM interacting with the SM.
Here, we introduce the three pillars of current experimental efforts probing the non-

gravitational nature of particle DM. Due to the lack of evidence pointing in other
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2.3 Non-gravitational search efforts

directions, experimental studies typically consider either some benchmark (WIMP-)
scenario for the analysis or try to describe the experimental results in a model-
independent manner.

2.3.1 Indirect detection

In indirect detection experiments, the aim is to observe the decay- or annihilation
products of DM particles originating from dense regions of the Universe, such as
the galactic center, dwarf galaxies, or the core of the Sun. For more details on this
subject, see, for example, refs. [8, 62–64].
The final states of the particle physics processes describing the DM decay or anni-

hilation are strongly model-dependent, and a priori, so are the search strategies and
the resulting phenomenology. However, from a practical point of view, these analyses
are performed in a model-independent way, focusing on specific primary channels,
such as χχ→W+W−, bb̄, `+`−, etc. The energy spectra at the source [8]

dNSM

dE
=
∑

prim

BRprim
dNprim

SM
dE

, (2.30)

where the primary branching ratios BRprim are defined as

BRprim =

{ 〈σv〉prim
〈σv〉tot for DM annihilation

Γprim
Γtot

for DM decay
, (2.31)

are the only part dependent on the DM physics via the annihilation cross-section
〈σv〉 or the decay width Γ. After the annihilation (or decay), the description
of these primary particles is governed by SM physics, including their decays,
showering and hadronization and can be calculated using public codes such as
Pythia [65], Herwig [66, 67] or Geant4 [68]. Eventually, only the long-lived particles
e±, p/p̄, d/d̄, γ, ν`/ν̄` are left, see fig. 2.5 for a schematic presentation.

Thus, measuring the observed flux of gamma-rays, neutrinos, and other particles
at Earth provides a way to study annihilating or decaying DM—assuming knowledge
of the astrophysical SM background and adequately estimating the DM-induced flux.

2.3.1.1 Gamma ray searches

The differential photon flux stemming from Majorana DM annihilations in the Milky
Way reads [8]

dΦ

dΩdE
=

1

2

r�
4π

(
ρ�
mχ

)2

J〈σv〉dNγ

dE
, (2.32)
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Figure 2.5: Sketch depicting annihilating (or decaying) DM into the primary particles,
which further decay, shower, and hadronize. Figure taken from ref. [8].

where r� is the radial distance from Earth to the Galactic Center, and ρ� is the DM
abundance at Earth. The differential flux at source is given in eq. (2.30), and we
defined the dimensionless J-factor

J =

∫

l.o.s.

ds

r�

(
ρ(r(s, θ))

ρ�

)2

, (2.33)

in which the squared DM density ρ(r(s, θ)) is integrated along the line of sight
(l.o.s.). The latter is parameterized in terms of the radial distance from the galactic
center, r(s, θ) =

√
r2
� + s2 − 2r�s cos θ, where r� is the galactic radial coordinate

of the Solar System. The flux for annihilating DM is proportional to ρ2 because
the annihilation process considered here inherently demands two DM particles in the
initial state.
Similarly, if DM is decaying, the flux is expressed as

dΦ

dΩdE
=
r�
4π

ρ�
mχ

DΓ
dNγ

dE
, (2.34)

where effectively the J-factor and the thermally averaged annihilation cross-section
〈σv〉 are replaced respectively by the D factor, defined by

D =

∫

l.o.s.

ds

r�

ρ(r(s, θ))

ρ�
, (2.35)

and the decay width Γ. Further, as only one parent particle is needed for the decay,
the photon spectrum in this scenario is proportional to the DM density.
In practice, the differential fluxes presented for DM annihilations and DM decays

in eq. (2.32) and eq. (2.34) respectively, ought to be integrated over the opening
angle corresponding to the observational accessible region.
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For dwarf satellite galaxies the same formulas as in eqs. (2.32) and (2.34) apply,
with the relevant difference being the choice of the integration limits when integrating
over the solid angle, introducing a somewhat arbitrary analysis-dependency, as the
choice is not necessarily dictated by the experimental apparatus or the physical region
of interest, as it is for the analysis of gamma rays from the Galactic Center.
Current generation experiments looking for an abnormal flux of gamma rays in-

clude Fermi-LAT [69, 70] and the H.E.S.S. [71], and their reach on DM-induced fluxes
have been probed in refs. [72–74] and refs. [75, 76], respectively.

2.3.1.2 Neutrinos

The fluxes for neutrinos are very similar to the gamma-rays presented in eqs. (2.32)
and (2.34), with the main difference being the effect of flavor oscillations. Therefore,
the flux of a neutrino with a specific flavor at Earth is related to the flux at production
via the neutrino oscillation probability over astrophysical distances as [77]

P``′ =

3∑

i

|U`iU`′i|2 '




0.55 0.18 0.27
0.18 0.45 0.38
0.27 0.38 0.35


 , (2.36)

where we used the most recent central fit values from NuFIT 6.0 [78].4

For example, in a model in which DM decays into τ -neutrinos at the source,
due to the propagation detectors at Earth will measure all flavors with composition
(νe : νµ : ντ ) ' (0.27 : 0.38 : 0.35), i.e. a single-flavor initial neutrino flux turns into
a neutrino flux of all flavors at the detector. Dedicated search efforts exist trying to
measure this DM-induced neutrino flux, such as from the IceCube collaboration [79–
87] and the KM3NeT collaboration [88–90].

2.3.1.3 Charged cosmic rays

Search strategies based on charged particles typically focus on the respective anti-
particle flux, as their production is less likely to occur due to non-DM-related as-
trophysical processes. Thus, less background is expected. Here, we comment on
positrons, anti-protons, and anti-deuterons.
In contrast to photons and neutrinos, describing the propagation of charged

particles from the source to Earth is more complicated, as many effects influence
their propagation. The fundamental equation for the propagation is the transport

4See also the NuFIT website www.nufit.org.

19

www.nufit.org
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equation for the number density per unit kinetic energy f(x, t), which reads [8, 91]:

Q(E,x) =−∇ (K(E,x) · ∇f) (2.37a)

+
∂

∂z
(sgn(z)fVconv) (2.37b)

− ∂

∂E

(
be±(E,x)f + v2

e±Kp(E,x)
∂f

∂E

)
. (2.37c)

The left-hand side in eq. (2.37) describes the injection of positrons into the Galactic
environment and is thus referred to as source term. It reads

Q(E,x) =





1
2

(
ρ
mχ

)2
〈σv〉tot dNe±

dE for DM annihilation
ρ
mχ

Γtot
dNe±

dE for DM decay
. (2.38)

The term on the right-hand side of eq. (2.37a) is the diffusion term modeling the
propagation through the inhomogeneous Galactic magnetic fields. The diffusion
coefficient K is typically assumed to be a scalar and may be modeled as [92]

K(R) = βηK0

(
R

GeV

)δ [
1 +

(
Rl
R

)(δ−δl)/sl
]sl [

1 +

(
R

Rh

)(δ−δh)/sh
]−sh

, (2.39)

where the rigidity is defined as the momentum per unit charge, R = p/Ze. The
effect of spectral breaks [93] for low-(l) and high (h) rigidity is modeled using the
2-times broken power law. Their location is given by Rl/h; their diffusion spectral
index is given by δl/h, and the rate at which the spectrum changes is controlled by
sl/h. Finally, η models the dependency on the velocity β = ve±/c and δ ∼ 0.5− 1 is
the spectral index. If the presence of the spectral breaks is neglected, the diffusion
coefficient can be parameterized as (see e.g. refs. [94, 95])

K(R) = βK0

(
R

GeV

)δ
. (2.40)

The term in eq. (2.37b) models the convective wind, asserting a force on the
charged cosmic rays. The smaller the energy of the charged cosmic ray is, the stronger
this force will act upon it. Further, the first term in eq. (2.37c) accounts for the en-
ergy loss during propagation and includes the interactions of the cosmic ray with the
interstellar gas, inverse Compton scattering on photons and the CMB, and synchro-
tron radiation. Competing to that is the effect of re-acceleration due to the presence
of diffusion centers, which can induce a second-order Fermi acceleration [96] and is
modeled by the second term in eq. (2.37c).
Overall, solving the diffusion equation given in eq. (2.37) is complicated and de-

pends on many model parameters that have to be deduced from observables such
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as the boron-to-carbon ratio [97]. Furthermore, one has to resort to numerical tools
such as GalProp [98, 99] or DRAGON [100, 101], or use semi-analytical approximations.
In the past, an abnormal flux of positrons was reported by the PAMELA collabor-

ation [102] and by the AMS collaboration [103, 104], which could be explained by as-
trophysical processes [105–108], or by an annihilating-or decaying DM particle [109–
117].
The diffusion equation of anti-protons is very similar to that of positrons given

in eq. (2.37). The energy parameter E appearing in the source term Q should be
replaced by the kinetic energy K = E − mp of the anti-proton and an additional
term accounting for the loss of anti-protons when passing the Galactic disc due to
nuclear effects,

2hδ(z)(Γann + Γnon-ann.)f, (2.41)

should be added to the right hand side of eq. (2.37). Due to the abundance of protons
at the Galactic disc located at z = 0, the anti-protons can annihilate with rate Γann.
and thus be removed from the spectrum. The second rate, Γnon-ann., describes other
effects that effectively remove anti-protons from the flux, such as scattering events,
in which the anti-protons lose significant energy.
For the anti-deuterons, the discussion is similar to that of anti-protons, with the

important difference being the estimation of the loss term eq. (2.41), owing to the
different particle physics interactions. Further, as the anti-deuteron flux is expected
to be tied to the anti-proton flux, the former is severely constrained by the limits on
the latter [118].

2.3.2 Direct detection

Here, we briefly introduce the standard framework of DM direct detection experi-
ments and discuss the overall features. For comprehensive reviews, see e.g. refs. [119,
120]. The direct detection phenomenology of electromagnetically interacting DM is
discussed in detail in chapter 4.
We consider DM particles scattering off a target T with mass mT in a laboratory

on Earth. Typically, the experiment is located under an overburden, such as a
mountain, to shield the detector from hindering background sources as sketched in
fig. 2.6. As the interaction strength of DM with baryonic matter has to be minor,
it can travel through the overburden freely until it may interact with the dedicated
target of the experimental setup.
It is assumed that a flux of DM originating from the local halo with a density of

ρχ ' 0.3 GeVcm−3 and with a particular velocity profile may interact with targets in
the experimental setup. Hereby, typically one type of interaction between DM and
the target is assumed, which is then constrained by the absence of measured events
and recoil spectra.
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exp.
inc. DM flux

scattered

cosmic rays

Figure 2.6: Sketch of a typical setup of an underground DM direct detection ex-
periment (not to scale). If an incoming DM particle scatters off the target in the
experiment, it deposits energy, which the detector tries to measure. The overburden
shields the laboratory from cosmic rays, reducing the background noise.

The differential recoil rate from a DM particle interacting with the target via a
cross-section σ with flux F(v), can be written as:

dR

dER
=

1

mT

∫

v>vmin

d3vF(v + vE)
dσ

dER
(2.42)

=
ρ0

mχmT

∫

v>vmin

d3v vf(v + vE)
dσ

dER
. (2.43)

In the last line, we substituted the DM velocity flux with the DM halo distribution
boosted to the Earth’s rest frame. A typical model—which we also assume exclusively
in this dissertation—is the Standard Halo Model (SHM), which assumes a Maxwellian
galactic DM distribution

f(v) = N−1e−v
2/v20 Θ(v − vesc.), (2.44)

with normalization factor

N = π3/2v3
0

[
erf

(
vesc.
v0

)
− 2vesc.√

πv0
e
− v

2
esc.
v20

]
. (2.45)

In this expression the Galactic escape velocity of DM reads vesc. = 544 km s−1, its
typical speed is given by v0 = 220 km s−1 and Earth’s speed is vE = 232 km s−1.
The total number of scattering events can then be obtained by integrating over

the energy spectrum as

Nsig = w ×
∫

dER
dR

dER
, (2.46)

where we assumed perfect detector efficiency. In this expression, w is the exper-
iment’s exposure typically given in units of ton × year or gram × days. Using

22



2.3 Non-gravitational search efforts

eq. (2.46), we can compare experimental results with the theoretical prediction for
different models. Apart from the astrophysical information which governs the ve-
locity distribution F(v + vE) and the local abundance ρ0, the relevant quantity is
the differential cross-section between DM and the target. Therefore, this inherently
model-dependent quantity is the bridge between the particle description of DM and
the experimental signature.
Before discussing the exclusion limits on the typical DM-nucleus cross-section, we

briefly address some general remarks about the DM direct detection landscape. We
sketch in fig. 2.7 a typical exclusion plot on a model parameter such as a cross-
section or a coupling, highlighting the typical dominant analysis approach for the
respective mass range. In such a figure, parameters above the exclusion line are
excluded, and points below are allowed; in fig. 2.7, examples for such points are
indicated by the red cross and green circle, respectively. The exclusion line is given
at a certain confidence level (C.L.), which in the direct detection phenomenology is
typically chosen to be a 90% C.L. Typically, the here-discussed nuclear recoil events
dominate the spectrum for DM masses mχ & 10 GeV. For sub-GeV DM candidates,
typically, the exclusion limits using electron recoils dominate, see for example, the
studies conducted in refs. [121–124] and for an effective field theoretical description of
general DM-electron interactions ref. [125]. Apart from alternative proposed avenues
for DM direct detection [126–131], the utilization of the Migdal effect [132] opens the
possibility for studying sub-GeV DM using current detector technologies [133], which
we discuss in more detail in section 4.2.1. As evident from fig. 2.7, the limits derived
using this Migdal effect can bridge the gap between DM-electron and DM-nucleus
scattering, albeit this can depend on the target and the interaction [123, 124].
As discussed above, to evaluate eq. (2.46), we need to assume a particular in-

teraction between DM and the target. For now, we consider the standard scenario
where the interaction between DM and the target is given by the operator χ̄χN̄N
or χ̄γµχN̄γµN , which are spin-independent (SI). The cross-section entering the dif-
ferential rate in eq. (2.42) then reads

dσ

dER
=

mT

2µ2
T v

2
× σSI0 × F 2

SI(ER), (2.47)

where µT is the reduced mass of the DM-target system, σSI0 is the spin-independent
cross-section at zero-momentum transfer,

σSI0 = σp
µ2
T

µ2
N

[
Z + (A− Z)

fn
fp

]2

, (2.48)

where σp is the cross-section between DM and proton and here considered the free
parameter which the experiment probes. Further, µN is the reduced mass of the
WIMP-nucleon system, and fn (fp) is the relative interaction strength to neutrons
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Figure 2.7: Typical exclusion landscape from DM direct experiments. The vertical
axis typically denotes a coupling or cross-section; the blue line indicates the exclusion
limit. We further indicate roughly the regions where electron recoils, the Migdal
effect, or DM-nucleus scattering analyses provide the leading constraints.

(protons). Typically, in the standard approach, it is assumed that the DM particle
couples to neutrons and protons with the same strength, such that fn = fp. This
assumption is sometimes referred to as isospin conservation. The momentum depend-
ency of this interaction is modeled by FSI(ER), which is typically parameterized by
the Helm form factor [134, 135]

FSI(ER) = 3 exp
(
−q2s2/2

)
[sin(qr)− qr cos(qr)] /(qr)3, (2.49)

with q =
√

2mTER, s = 1 fm, r =
√
R2 − 5s2 and R = 1.2A1/3 fm. Then, for the

SHM, the differential rate reads

dR

dER
=

ρ0

2µ2
Nmχ

η(vmin)A2σpF
2
SI(ER), (2.50)

where [120]

η(vmin) =
v3

0π
3/2

2N vE

[
erf(z̃+)− erf(z̃−)− 2√

π
e−z

2
esc.(z̃+ − z̃−)

]
(2.51)

is the velocity integral for the standard SI interaction and the SHM, and

z̃± = min(zmin ± zE, zesc.), (2.52)
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Figure 2.8: 90% C.L. exclusion limits on the DM-proton SI cross-section σp in the
standard spin-independent scenario for the XENON1T experiment for the analytical
approach outlined in this section. We also include the limit derived using the public
code WimPyDD [136] and the result reported by the XENON1T collaboration [137].

with zX = vX/v0.
In fig. 2.8 we present the exclusion limit on the DM-proton SI cross-section σp

from XENON1T following the approach outlined in this section for an exposure
of w = 1 ton × year with 7 measured events and a background count of zero in
the interval [1.8, 61] keVnr, taken from the data file provided by WimPyDD [136] (see
appendix A for details on the statistical treatment). For comparison, we also show
the limit derived using the public code WimPyDD [136] and the result presented by the
XENON1T collaboration [137]. The main difference between our analytical result
and the results obtained from the literature is the detector efficiency, which we
neglected for simplicity.
The standard direct detection paradigm discussed so far is helpful as a benchmark

for comparing different experiments. However, in practice, the type of interaction
between DM and the target is model-dependent, which includes the velocity depend-
ency, the recoil spectrum, and the potential presence of multiple types of interactions
with the target, where each can have a different velocity dependency. Therefore, in
general, one cannot simply recast the published limits on the standard interaction
cross-section, as shown in fig. 2.8, but has to calculate the signal rates on a model-
by-model basis.
Albeit designed for DM searches, direct detection experiments have recently proved

their capability as neutrino observatories. The xenon-based experiments XENONnT
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and PandaX-4T reported in ref. [138] and ref. [139], respectively, the first meas-
urements of coherent elastic neutrino-nucleus scattering (CEνNS) of solar neutrinos.
These neutrinos constitute an inevitable background dubbed the neutrino floor [140–
143] or neutrino fog [144], whose recoil spectra can mimic DM-induced events. This
background makes a statistical analysis eventually very difficult, as the needed ex-
posure for clear discrimination between neutrinos and a DM signal is unlikely to be
obtainable [145].

2.3.3 Collider searches

Finally, if DM interacts with SM particles, it could be directly produced in collider
facilities such as the Large Hadron Collider (LHC) at CERN [146]. The main charac-
teristic is a specific event’s missing (transverse) energy, indicating that particles left
the detectors unnoticed. Such an event could be attributed to the production of DM
pairs pp→ χχ if the center of mass energy

√
s of the initial states allows for such a

kinematic configuration. Therefore, this energy conservation argument gives a hard
requirement of

√
s > 2mχ for DM production at colliders, neglecting the energy dis-

tribution within the colliding protons. Since the LHC operates with a center of mass
energy of

√
s ∼ 13.6 TeV [146, 147], DM particles with mass mχ ∼ 7 TeV would not

be produced by the LHC and, therefore, be invisible to collider analyses. Key experi-
ments at the LHC studying the potential of new physics are ATLAS [148], CMS [149]
and LHCb [150, 151], which are capable of studying DM phenomenology [152–155].
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Chapter 3

Electromagnetic moments of neutral
spin-1/2 fermions

In this chapter, we aim to calculate the electromagnetic (EM) moments of neutral
fermions in vacuum.1 Throughout this dissertation, the term moment refers to one
of the EM interactions of an elementary particle, which may not necessarily be
related to a coefficient in a classical expansion of a charge- or current distribution.
In particular, the anapole moment—which indeed is not a moment as it describes a
non-radiating configuration—and the millicharge and charge radius are referred to
as moments.
The building pieces developed here are helpful for a class of fermionic DM models,

further discussed in chapters 5 and 6, and for neutrinos, both within the SM and
beyond, which we discuss in chapter 7.

3.1 Electromagnetic moments in particle physics

In this section, we introduce some selected examples of EM moments of SM particles
to emphasize their role in the landscape of theoretical particle physics.
EM moments of particles offer the possibility of probing the SM experimentally

with high precision. One of the best-measured quantities is the anomalous mag-
netic moment of the electron, characterizing an electron’s interaction strength with
a magnetic field. It is defined through ae = (ge − 2)/2, where

µe = −ge
e

2me
(3.1)

defines the g-factor of the electron, ge. In Dirac theory, the prediction reads ge = 2,
and a deviation from this observation is attributed to quantum effects. Calculat-
ing the first-order correction in perturbation theory was one of the first quantum
predictions made in 1948 by J. Schwinger [159], who obtained

ae =
α

2π
' 0.001 161 4. (3.2)

1We note that medium effects could further contribute to the EM interactions of neutral fermi-
ons [156–158].
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Nowadays, its value within quantum electrodynamics has been calculated up to
O
(
α5
)
[160, 161], with further contributions arising from electroweak- and hadronic

contributions. It is experimentally constrained to be [162]

aexp.e = 0.001 159 652 180 59(13), (3.3)

agreeing with the SM prediction at the level of δae ∼ 0.7× 10−12 [162].
In contrast, the measurement of the anomalous magnetic moment of the muon

seemingly differs from its SM prediction. The combined measurement of BNL [163]
and FNAL [164] reads

aexp.µ = 116 592 059(22)× 10−11, (3.4)

being at a 5.0σ tension with the SM prediction [164]. However, some of this deviation
could be attributed to the determination of the hadronic vacuum polarization [165,
166]. If, however, this tension persists, this discrepancy could be a sign of BSM
physics such as supersymmetry [167]. For reviews on this subject, see, for example,
refs. [168–170].
While the magnetic properties of particles reflect their interaction with magnetic

fields, electric dipole moments characterize their interaction with the electric field.
The electric dipole moment of the neutron, dn, is fundamentally linked to the strong
CP problem—a long-standing puzzle in quantum chromodynamics (QCD). In prin-
ciple, the SM symmetries allow the QCD Lagrangian to contain the CP-violating
term

LSM ⊃ θ
g2
s

32π2
G̃aµνG

µν
a , (3.5)

where gs is the strong coupling constant, Gaµν is the gluon field-strength tensor and
G̃aµν its dual. As θ is a free parameter of the theory, it is expected to be of O(1)
following the argument of naturalness [171]. As this term can be written as a total
derivative of a Chern–Simons current, it will not lead to physical observables in
perturbation theory [172]. However, considering the inner structure of the neutron
using the chiral Lagrangian, this term induces an electric dipole moment of the
neutron [173],

dn ' 5.2× 10−16 e cm× θ, (3.6)

and is therefore proportional to the CP-violating parameter θ. Experimental searches
have set extremely stringent upper limits on the neutron electric dipole moment2,
finding that [174]

|dn| < 2.9× 10−26 e cm (90% C.L.), (3.7)

implying that θ is unnaturally small, constituting the strong CP problem.

2See https://www.psi.ch/en/nedm/edms-world-wide for an overview of experimental efforts.
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3.1 Electromagnetic moments in particle physics

A proposed solution is the Peccei-Quinn mechanism [175, 176], where a U(1)PC
symmetry is added to the SM. After this U(1)PC symmetry breaks spontaneously, a
Goldstone boson is introduced to the theory. At the minimum of the potential, the
presence of the Goldstone boson cancels the θ term, and the oscillations about this
minimum are the axions, a DM candidate [172].
The last example of EM moments in the SM is the neutrino. Neutrinos are electro-

magnetically neutral particles within the SM. In contrast to the neutron, however,
neutrinos are point-like elementary particles, such that no inner structure could in-
duce an interaction with the EM field. Nevertheless, as we see in this chapter in
general and explicitly in chapter 7, quantum corrections can give neutrinos up to
four unique interaction form factors characterizing their interaction with a photon.
In the past, a neutrino magnetic moment was proposed as a solution to the solar

neutrino problem, explaining the smallness of the measured solar electron neutrino
flux, which conflicted with the prediction. A neutrino with magnetic dipole moment
would interact with the Sun’s magnetic field in the convective zone, which could lead
to a decrease of the flux [177–181]. As the neutrino dipole moments vanish within
the SM, this solution to the solar neutrino problem necessitated BSM physics to
generate a relatively large neutrino magnetic dipole moment.
In contrast, the SM predicts a non-zero charge radius and anapole moment3 for

a Dirac neutrino. Historically, their calculation was plagued by apparent inconsist-
encies, such as gauge dependency and the appearance of UV divergent terms, which
raised the question about whether these quantities are physical or not [185–198]. We
comment on this problem in more detail in section 3.2 and discuss the theoretical
prediction for all EM moments of neutrinos in different models in chapter 7.
Finally, the consideration of EM moments also found its way into the DM model

landscape, in particular, in the context of direct detection phenomenology of spin-
1/2 WIMPs [199–208]. Similar to the neutrino, DM candidates can have interactions
with the EM current at the quantum level. For a spin-1/2 candidate, these include
millicharges, magnetic dipole moments, electric dipole moments, charge radii, and
anapole moments, where the details depend on the UV model and whether the
fermion satisfies the Majorana condition. These EM properties can give rise to
interactions by coupling to the charge- or the magnetic dipole moment of the targets
in direct detection experiments. Further, in multicomponent DM models, the dipole
moments can induce radiative decay between the different DM states [209–211], which
could produce gamma lines observable in indirect detection experiments [212].
Consequently, EM multipoles have been generalized to higher spin DM particles.

In refs. [213, 214], a comprehensive study of spin-1 DM candidates, including po-

3An anapole moment is a P- and C-violating interaction corresponding to a non-radiating con-
figuration; first proposed in 1956 by Y. B. Zel’Dovich [182], which has been measured in cesium [183]
and ytterbium [184].

29



Chapter 3 Electromagnetic moments of neutral spin-1/2 fermions

tential signals from direct detection experiments and astrophysical and cosmological
sources, has been conducted. The possibility of EM moments of gravitinos, i.e. spin-
3/2 particles, was discussed in refs. [215–217], and an analysis of direct detection,
collider physics, and thermal production for Majorana particles with EM moments
was conducted in ref. [218] for spin s ≤ 2.

3.2 Warm-up: diagonal electromagnetic moments

3.2.1 The EM vertex and the EFT

Now we turn to the calculation of the diagonal EM moments of a neutral spin-1/2
fermion, allowing processes with an off-shell photon of the type χ(p1)→ χ(p2)+γ(q).
The most general vertex of a fermion with the EM field can be written as (see for

example refs. [219–223])

Mµ(q) = (γµ−qµ/q/q2)
[
fQ(q2) + fA(q2)q2γ5

]
+iσµνq

ν
[
fM (q2) + ifE(q2)γ5

]
, (3.8)

where fQ, fA, fM and fE are respectively the charge-, anapole-, magnetic dipole- and
electric dipole form factor and qµ = (p1 − p2)µ is the outgoing photon momentum.
Further, /q = γµq

µ, γ5 = iγ0γ1γ2γ3 and σµν = i
2 [γµ, γν ].

In the on-shell limit, these form factors reduce to their respective EM moment:

fQ(q2 → 0) = eQχ + q2bχ, fA(q2 → 0) = Aχ, (3.9a)

fM (q2 → 0) = µχ, fE(q2 → 0) = dχ, (3.9b)

where Qχ is the charge of χ in units of e > 0, bχ is its charge radius4, Aχ its anapole
moment and µχ and dχ are respectively its magnetic- and electric dipole moment.
If the scale of momentum transfer is small compared to the scales generating the

EM moments, q2 � Λ2, the phenomenology of the fermion-photon interaction can
be described by these EM moments via the effective Lagrangian

Leff. = eQχχ̄γ
µχAµ (3.10a)

+
µχ
2
χ̄σµνχFµν +

dχ
2
χ̄σµνγ5χFµν (3.10b)

+ bχχ̄γ
µχ∂νFµν +Aχχ̄γµγ5χ∂νFµν . (3.10c)

In eq. (3.10), χ is the spinor describing the neutral fermion, Aµ is the photon field and
Fµν = ∂µAν − ∂νAµ its field strength tensor. Note that the charge radius operator
has the same dimension as the anapole operator, therefore motivating the need to

4The term charge radius stems from the interpretation of the charge form factor as the Fourier
transform of the charge distribution ρ(x), whose second term in the expansion is proportional to
the charge radius, such that bχ = 1

6

∫
d3x r2ρ(x) ≡ 1

6
〈r2χ〉 [223].
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Mµ

χ χ

SM SM

γ

Figure 3.1: A fermion χ interacting with the SM via the photon γ.

expand the charge form factor to the second order in q2 in eq. (3.9a). This effective
Lagrangian results in a portal to the SM, as depicted in fig. 3.1.5

In the light of experimental efforts, the hierarchy q2 � Λ2 may not be satisfied. In
direct detection facilities, the transferred momentum can be of order O(100 MeV),
such that light quarks or electrons in the loop (Λ = mq or Λ = me) spoil this
condition. In this case, one should model the photon interaction with the form
factors, introducing an explicit q-dependency. For an approximation, one can set the
light masses in the loop expression to zero, in which case the finite photon momentum
regularizes the loop integral [225]. However, the limit q2 → 0 can safely be taken to
calculate the inherent EM moments.
If CP is conserved, the electric dipole moment vanishes, and if χ satisfies the

Majorana condition, all but the P- and C-violating anapole moment vanish [219,
226–228]. We discuss this case in more detail in section 3.3.2.

3.2.2 Extraction of the EM moments

The amplitudeMµ for the χ→ χ+ γ process can be calculated up to some order in
perturbation theory, resulting diagrammatically in

iMµ = 1L

χ χ

γ

+ 2L

χ χ

γ

+ · · · , (3.11)

5The Feynman diagrams in this dissertation were drawn using TikZ-Feynman [224].
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where 1L (2L) denotes the one-loop (two-loop) contribution, and we omitted higher-
order terms. These loop diagrams can be computed in a specific UV model, resulting
in complicated combinations of the kinematic variables, the gamma matrices and
loop-integrals. As the EM form factors correspond to the pre-factors of certain
combinations of the gamma matrices (see eq. (3.8)), we cannot directly extract them
from a given amplitude. We would have to resort to Gordon-like identities to properly
re-express the amplitude via the contained EM form factors.
Alternatively, we can use the fact that the matrices

Γ ∈ {1, γµ, iγ5, γµγ5, σµν} (3.12)

make up a basis [229], and define projection operators PµM, whose coefficients are
determined by matching to the Lorentz structure of a specific EM form factor. Then,
this projector can extract the EM form factors from the perturbative amplitude in
eq. (3.11).
To determine the projectors, we first express the canonical vertex of eq. (3.8) in

terms of the following form factors [1, 230, 231]

Mµ = F1(q2)(γµq2 − qµ/q) +
i

2m
σµνqνF2(q2) +

1

m
qµF3(q2)

+G1(q2)(γµq2 − qµ/q)γ5 +
i

2m
G2(q2)σµνqνγ

5 +
1

m
G3(q2)qµγ5, (3.13)

which are related to the canonical definition as

fQ(q2) = q2F1(q2), fA(q2) = G1(q2), (3.14a)

fM (q2) =
1

2m
F2(q2), fE(q2) = − i

2m
G2(q2). (3.14b)

With respect to the vertex parameterization given in eq. (3.13), we may define the
projector as [1, 230–232]

PµM = (/p1 +m)

[(
aM1 γ

µ + aM2
Pµ

2m
+ aM3

qµ

2m

)
γ5

+ bM1 γ
µ + bM2

Pµ

2m
+ bM3

qµ

2m

]
(/p2 +m) (3.15)

≡ (/p1 +m) P̃µM (/p2 +m) , (3.16)

with M ∈ {G1, G2, G3, F1, F2, F3}, Pµ = pµ1 + pµ2 and the factors (/p1,2 + m) ensure
that the spinors satisfy the Dirac equation. We can determine the coefficients aMi
and bMi by solving the equation

tr
(
PµMiMµ

)
= M (3.17)
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using the vertex parameterization of eq. (3.13) and the kinematics

p2
1 = p2

2 = m2, p1 · p2 = (2m2 − q2)/2, q · p1 = q2/2, q · p2 = −q2/2. (3.18)

We find the following projectors6:

P̃µF1
= −i6mP

µ + (q2 − 4m2)γµ

4q2(4m2 − q2)2
, P̃µG1

= i
q2γµ − 2mqµ

4q2(4m2 − q2)
γ5, (3.19a)

P̃µF2
= im

m(4m2 − q2)γµ − (2m2 + q2)Pµ

q2(4m2 − q2)2
, P̃µG2

= −i mPµ

q2(4m2 − q2)
γ5, (3.19b)

P̃µF3
= −i mqµ

2q2(4m2 − q2)
, P̃µG3

= −imq
µ

2q4
γ5. (3.19c)

Note that these projectors can safely be defined in D = 4 as the amplitudeMµ they
multiply is inherently convergent in D = 4 [233].
Therefore, by projecting out the form factors and taking the photon on-shell, we

can map the UV physics generating the loops to the coefficients in the effective field
theory, whose Lagrangian is given by eq. (3.10).

3.2.3 Diagonal EM moments of neutral spin-1/2 fermions

To showcase the projector method, we derive here the one-loop contribution to the
EM moments M of a neutral Dirac fermion χ due to a t-channel mediator.7 For
now, we ignore the exact model or the origin of this interaction and leave this for the
upcoming chapters, in which we apply these results to concrete UV models of DM and
neutrinos. In that sense, this section’s results can be considered the building blocks
to easily calculate the EM moments in a generic model where the fermion interacts
via a t-channel mediator with the photon. Note that these classes of models do not
generate a millicharge Qχ.

Concretely, we consider the following interactions via a charged scalar S,

L = χ̄
[
cLPL + cRe

iφCPPR

]
S∗f + h.c., (3.20)

and a vector boson V µ

L = χ̄γµ
[
vLPL + vRe

iΦCPPR
]
χ−V +

µ + h.c., (3.21)

leading to the scalar - and vector contribution MS and MV , respectively.8 Here, cL/R
and vL/R are real Yukawa-type couplings, parameterizing the strength with which

6The anapole projector P̃µG1
was already derived in ref. [1].

7The symbol M ∈ {Qχ, µχ, dχ,A, bχ} denotes from now on the canonical EM moments.
8To calculate the full contribution to the EM moments from a vector boson, one has to include

the diagrams with associated Goldstone bosons.
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χχ
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χ− χ−
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V V
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γ̂

Figure 3.2: Interaction between the neutral fermion χ with the photon at one-loop
level. Note that depending on the exact model, the external states may be either
Dirac- or Majorana fermions. For the latter case, the charge-conjugated diagrams
have to be included. Note that for the two rightmost diagrams, a background photon
replaces the external photon; see text for details.

the neutral fermion χ interacts via the left/right (PL/R) component of the fermion
f or χ−. For simplicity, we assume that the fermions f and χ− are color singlets; if
f = q, a color factor has to be added to the EM moments accordingly. Furthermore,
ΦCP and φCP are CP-violating phases, which could, for example, originate from
fermion- or scalar mixing, respectively. We discuss the latter case in more detail in
chapter 6; the former case was considered in ref. [234] for a SU(2)L× SU(2)R×U(1)
gauge theory, where a relative CP phase between the WL/R bosons can introduce a
physical CP phase ΦCP, affecting the dipole moments of neutrinos.
Both eq. (3.20) and eq. (3.21) generate EM moments at the one-loop level via the

diagrams depicted in fig. 3.2. If the external neutral fermion χ is self-conjugated,
all EM moments except the anapole moment vanish. Furthermore, in this scenario,
the anapole moment of a Majorana fermion is twice the anapole moment of a Dirac
fermion, i.e. AM = 2×AD [223, 226–228]. In the language of the Feynman diagrams,
this relationship manifests itself by including the respective self-conjugate diagrams.
Using the Feynman rules for Majorana fermions introduced in refs. [235, 236], the
contributions to the dipole moments and the charge radius cancel exactly, whereas
the anapole moment is doubled in value [1, 2]. We discuss this formalism in more
detail in section 3.3.2.
A naive evaluation of the diagrams depicted in fig. 3.2 with vector boson V leads

to a UV-divergent, gauge-dependent, and thus unphysical result for the dimension-6
operators. These issues have been encountered in the past in the evaluation of the
charge radius and anapole moment of neutrinos [185–196, 237], which have been ulti-
mately resolved by using the Pinch Technique (PT)9 [190, 193, 194], or, equivalently,
the background field method (BFM) [239–241].
This elegant equivalence was used for many calculations to tame apparent unphys-

ical results. Using the BFM, the W boson contribution to the anapole moment of
9See ref. [238] for a review of the PT.
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the lightest neutralino was conducted in refs. [1, 2] and the electric dipole moments
of fermions in the two-Higgs doublet model was calculated in a gauge-invariant way
in refs. [242, 243]. In ref. [244], the magnetic dipole moment of fermions was calcu-
lated using the PT, emphasizing the simplicity and the strength to explicitly test the
gauge dependency. It is also noted that the standard calculation procedure cannot
account for the gauge dependency of the off-shell form factors. Therefore, besides
reproducing the standard results for the dipole moments, the PT or BFM is crucial
in consistently calculating the momentum-dependent dipole form factors.
Thus, for the vector interaction in eq. (3.21), we evaluate the diagrams in the

background field Feynman gauge to obtain a gauge-independent and UV convergent
expression for the charge radius and the anapole moment. Effectively, this is achieved
by replacing the photon with its background field analog, γ → γ̂, such that at the
one-loop order in the background Feynman gauge, the following vertices are adjusted
as [245]

iΓ̂µνργV V (k1, k2, k3) = −ie [gνρ(k3 − k2)µ + gµν(k2 − k1 + k3)ρ + gρµ(k1 − k3 − k2)ν ]
(3.22)

and
iΓ̂µνργGV (k1, k2, k3) = 0, (3.23)

where G denotes the Goldstone mode associated with the spontaneous symmetry
breaking, giving rise to the mass of the gauge boson V .
Following the outlined procedure above, we calculate the amplitude iM corres-

ponding to the diagrams shown in fig. 3.2 and extract the contributions to the
diagonal EM moment M using the projectors of eq. (3.19) and the relations of
eq. (3.14), where we used FeynCalc [246–248] for the Dirac algebra and loop re-
duction, Package-X [232, 249] for the analytical simplification of the loop integrals,
and FeynHelpers [250] for linking these packages. In the following, we report the
results for the diagonal EM moments of a neutral Dirac fermion.
For the scalar mediator, similar calculations of the EM moments of DM have been

reported in refs. [1–3, 225, 251–256]. For the vector mediator, the anapole moment
of Majorana fermions was calculated in refs. [1, 2].

Magnetic dipole moment

We find that the scalar contribution to the magnetic moment can be written as

µSχ =
−eQf

32π2mχ

[
(c2
L + c2

R)FS1
(
mf

mχ
,
mS

mχ

)
+ 2cLcR cosφCPFS2

(
mf

mχ
,
mS

mχ

)]
,

(3.24)
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where we defined the loop functions

FS1 (µ, η) =− 1 +
1

2
(µ2 − η2) log

(
µ2/η2

)

− (η2 − 1)(η2 − 2µ2)− µ2(3− µ2)√
∆

arctanh

( √
∆

η2 + µ2 − 1

)
(3.25)

and

FS2 (µ, η) = µ

[
1

2
log

(
µ2

η2

)
+
η2 − µ2 + 1√

∆
arctanh

( √
∆

η2 + µ2 − 1

)]
, (3.26)

and we introduced ∆ = (µ2 − η2 + 1)2 − 4µ2.10

Similarly, the vector contribution reads

µVχ =
−eQf

16π2mχ

[
(v2
L + v2

R)FV1
(
mχ−

mχ
,
mV

mχ

)
+ 2vLvR cos ΦCPFV2

(
mχ−

mχ
,
mV

mχ

)]
,

(3.27)
with

FV1 (µ, η) =− 1 +
1

2
(µ2 − η2 + 2) log

(
µ2/η2

)

− (η4 − η2(2µ2 + 3) + µ4 + µ2 + 2)√
∆

arctanh

( √
∆

η2 + µ2 − 1

)
, (3.28)

and

FV2 (µ, η) = −2µ

[
1

2
log

(
µ2

η2

)
+
η2 − µ2 − 1√

∆
arctanh

( √
∆

η2 + µ2 − 1

)]
. (3.29)

Both contributions scale as ∼ m−1
χ with the remaining kinematical dependency

included in the loop functions FS,V1,2 . For large mediator mass mS,V � mχ or
mf,χ− � mχ, the overall scaling is µχ ∼ m−1

X (see appendix B.4), where X de-
notes the heaviest state amongst S (V ) and f (χ−).
Note that the magnetic moment can be generated via two different loop functions.

The first, ∼ FS,V1 , can be interpreted as originating from a mass-insertion occurring
at an external leg, whereas the term ∼ FS,V2 is due to an internal mass-insertion. The
interpretation comes from the observation that the former term scales as µχ ∼ mχ

for mχ � mX , whereas the latter scales as µχ ∼ mf in the same limit.

10We note that this result can also be obtained using the expressions for the anomalous magnetic
moment of the muon [257].
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Electric dipole moment

For the electric dipole moment, we find respectively the scalar and vector contribution

dSχ =
eQf

16π2mχ
cLcR sinφCPFS2

(
mf

mχ
,
mS

mχ

)
(3.30)

and
dVχ =

eQf
8π2mχ

vLvR sin ΦCPFV2
(
mχ−

mχ
,
mV

mχ

)
. (3.31)

As expected, if the theory preserves CP, i.e. φCP = ΦCP = 0, both contributions
yield a zero electric dipole moment.

Anapole moment

For the anapole moment of the Dirac fermion, the result reads

ASχ =
−eQf

192π2m2
χ

[
|cL|2 − |cR|2

]
FS3
(mf

mχ
,
mS

mχ

)
(3.32)

for the scalar contribution and

AVχ =
−eQf

96π2m2
χ

[
|vL|2 − |vR|2

]
FV3
(mχ−

mχ
,
mV

mχ

)
(3.33)

for the vector contribution. The anapole loop functions are defined as

FS3 (µ, η) =
3

2
log

(
µ2

η2

)
+

3η2 − 3µ2 + 1√
∆

arctanh

( √
∆

η2 + µ2 − 1

)
(3.34)

and

FV3 (µ, η) =
3

2
log

(
µ2

η2

)
+

3η2 − 3µ2 − 7√
∆

arctanh

( √
∆

η2 + µ2 − 1

)
. (3.35)

The expressions we find for the anapole moment, are ∼ (|cL|2 − |cR|2) and
∼ (|vL|2 − |vR|2), viz. they respectively vanish if |cL| = |cR| or |vL| = |vR|, mak-
ing the P violation explicit. Therefore, to generate a large anapole moment of a
fermion χ, the UV theory itself has to violate P to a large extent, as the amount of
P violation is transferred to the magnitude of the anapole moment. For example, in
the SM, the neutrino anapole moment is generated via the weak interaction, which
maximally violates parity, see chapter 7.
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Figure 3.3: All loop functions FSi generating the EM moments in our scalar toy
model for different values of η = mS/mχ and mf = mτ , rescaled by the power of
mχ entering the respective moment.

Charge radius operator

We find for the charge radius operator the scalar contribution

bSχ =
−eQf

384π2m2
χ

[
(c2
L + c2

R)FS4
(
mf

mχ
,
mS

mχ

)
+ 2cLcR cosφCPFS5

(
mf

mχ
,
mS

mχ

)]
,

(3.36)
where we defined the loop functions

FS4 (µ, η) =
2
(
8∆2 + ∆(9η2 + 7µ2 − 5)− 4µ2(3η2 + µ2 − 1)

)

∆3/2
arctanh

( √
∆

η2 + µ2 − 1

)

+
4(4∆ + η2 + 3µ2 − 1)

∆
+ (8µ2 − 8η2 − 1) log

(
η2

µ2

)
(3.37)
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and

FS5 (µ, η) = 8µ

[
∆ + η2(−∆ + 2µ2 + 1) + µ2(∆− 2µ2 + 3)− 1

∆3/2
arctanh

( √
∆

η2 + µ2 − 1

)

(3.38)

+
µ2 − η2

∆
+

1

2
log

(
η2

µ2

)]
. (3.39)

The vector contribution reads

bVχ =
−eQf

192π2m2
χ

[
(v2
L + v2

R)FV4
(
mχ−

mχ
,
mV

mχ

)
+ 2vLvR cos ΦCPFV5

(
mχ−

mχ
,
mV

mχ

)]
,

(3.40)

with loop functions

FV4 (µ, η) =
4
(
4η4 − η2(8µ2 + 7) + 4µ4 − 5µ2 + 3

)

∆
− (8η2 − 8µ2 − 5) log

(
η2/µ2

)

+ 2∆−3/2arctanh

( √
∆

η2 + µ2 − 1

)
×
[
− (32η2 + 19)µ6 + (48η4 + 9η2 + 19)µ4

+ (η2 − 1)2(8η4 − 13η2 + 9)− (32η6 − 39η4 + 14η2 + 17)µ2 + 8µ8

]

(3.41)

and

FV5 (µ, η) = 16µ

[
η2 − µ2

∆
+

1

2
log
(
µ2/η2

)
)

+
(η2 − µ2)(η4 − η2(2µ2 + 3) + µ4 − 3µ2 + 2)

∆3/2
arctanh

( √
∆

η2 + µ2 − 1

)]
.

(3.42)

We show the functional behavior of all loop functions FSi (µ, η) (FVi (µ, η)) in fig. 3.3
(fig. 3.4) for fixed η ∈ {1.01, 1, 10, 100} and a tau-philic model (f = τ), where we
rescaled the loop functions with the power of mχ entering the EM moments to allow
for better comparison of their relative sizes.
All loop functions are enhanced for small mass-splittings η → 1 or µ→ 1, as long

as the other particle in the loop is light. The physical interpretation is that for such
mass configurations, the loop particles can be on-shell [225].
Finally, we note from figs. 3.3 and 3.4 that multiple moments can be of compar-

able size simultaneously. Therefore, the typical EFT assumption of having only one
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Figure 3.4: Same as fig. 3.3, but for the vector loop functions FVi .

moment dominate the interaction with the photon is only valid in some particular
regions in parameter space. We will discuss this point further in the context of the
Dirac DM candidate and its potential signature in DM direct detection experiments
in chapter 4.
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3.3 General electromagnetic moments of fermions

3.3 General electromagnetic moments of fermions

In the previous section, we discussed the diagonal EM form factors and the calcu-
lation of the corresponding moments for the building block Lagrangians eqs. (3.20)
and (3.21) and presented the results in terms of loop functions. Here, we generalize
this approach for processes χ1 → χ2 + γ, which includes the diagonal elements from
section 3.2 and the transition moments between the neutral fermions χ1 and χ2.

3.3.1 Dirac fermions

Conceptually, we follow the steps outlined in detail in section 3.2, but keep the
external fermions generic. In the general case the form factors of eq. (3.8) are now
matrices, containing the diagonal and transition- or off-diagonal EM form factors,

Mµ
ji = (γµ − qµ/q/q2)

[
(fQ)ji(q

2) + (fA)ji(q
2)q2γ5

]

+iσµνqν
[
(fM )ji(q

2) + i(fE)ji(q
2)γ5

]
, (3.43)

where i (j) labels the initial (final) external mass eigenstate and the form factors
fQ, fA, fM , and fE are now matrix-valued. For small outgoing momentum transfers
q2 = (p1 − p2)2 ' 0, the form factors reduce to their respective static analog,

(fQ)ji(q
2 → 0) = eQji + q2bji, (fA)ji(q

2 → 0) = Aji, (3.44a)

(fM )ji(q
2 → 0) = µji, (fE)ji(q

2 → 0) = dji. (3.44b)

If j = i, the moment is referred to as diagonal moment, whereas for j 6= i, it is a
transition or off-diagonal moment.
For the building blocks, we consider the generalized versions of eqs. (3.20)

and (3.21),
L = χ̄i

[
ciLPL + ciRPR

]
fS∗ + h.c., (3.45)

and
L = χ̄iγ

µ
[
viLPL + viRPR

]
fV †µ + h.c., (3.46)

respectively and consider the couplings ciL/R and viL/R to be complex from now on.
At the one-loop level, the interactions given in eqs. (3.45) and (3.46) generate a

portal to the photon, which we depict in fig. 3.5. We evaluate these diagrams using
Package-X [232, 249] and extract their contribution to the EM moments Mji.
We find that the EM moments generated by the scalar mediator can be written

compactly as

MS
ji =

eQf
32π2

{[
cjL(ciL)∗ ± cjR(ciR)∗

]
FSM

(
mf

mχ1

,
mS

mχ1

,
mχ2

mχ1

)

+
[
cjL(ciR)∗ ± cjR(ciL)∗

]
GSM

(
mf

mχ1

,
mS

mχ1

,
mχ2

mχ1

)}
, (3.47)
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Figure 3.5: One-loop transition diagrams generating the EM moments; for the dia-
grams with vector bosons, we employ the background field method; see section 3.2
for details.

and for the vector mediator as

MV
ji =

eQf
32π2

{[
vjL(viL)∗ ± vjR(viR)∗

]
FVM

(
mf

mχ1

,
mV

mχ1

,
mχ2

mχ1

)

+
[
vjL(viR)∗ ± vjR(viL)∗

]
GVM

(
mf

mχ1

,
mV

mχ1

,
mχ2

mχ1

)}
, (3.48)

where the upper sign (+) is for M = µ, b and the lower sign (−) for M = d,A.
Because the EM current is hermitian, so are the EM moments [223]

MS,V = (MS,V )†. (3.49)

Thus, the loop functions satisfy

F
S,V
M

(
mf

mχ1

,
mS,V

mχ1

,
mχ2

mχ1

)
= F

S,V ∗
M

(
mf

mχ2

,
mS,V

mχ2

,
mχ1

mχ2

)
, (3.50a)

G
S,V
M

(
mf

mχ1

,
mS,V

mχ1

,
mχ2

mχ1

)
= ±GS,V ∗M

(
mf

mχ2

,
mS,V

mχ2

,
mχ1

mχ2

)
. (3.50b)

Similarly, the EM moments for anti-fermions, denoted by M, can be obtained from
the EM moments of fermions by employing CPT-invariance [223], resulting in

Q
S,V

= −(QS,V )∗,

µS,V = −(µS,V )∗, d
S,V

= −(dS,V )∗,

AS,V = (AS,V )∗, b
S,V

= −(bS,V )∗.

(3.51)

Without loss of generality, we therefore focus on the matrices MS,V
ji for the re-

maining part of the analysis.
We provide the loop functions FS,VM and G

S,V
M in the general case in appendix B.1,

for the diagonal case in appendix B.2, for large mass-splittings between χ1 and χ2 in
appendix B.3, and finally for the limit of small external masses in appendix B.4. Note
that eq. (3.48) does not include the Goldstone modes, which are model-dependent
and have to be included using eq. (3.47).
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3.3.2 Majorana fermions

The calculation of EM moments for χ1,2 being Majorana fermions follows a similar
approach to the Dirac case. We extract the form factors from one-loop diagrams that
describe the coupling to the photon and take the on-shell limit q2 → 0. As noted in
section 3.2.3, the resulting form factors differ fundamentally, owing to the following
crucial differences between Dirac- and Majorana fermions:

• The number of diagrams is doubled because reversed processes must also be
considered. Following the conventions proposed in refs. [235, 236], we adopt
a global fermion flow and modify the vertices and propagators for reversed
diagrams. This results in diagrams similar to those in fig. 3.5, but with opposite
charge flows relative to the fixed fermion flow. For these diagrams, the vertices
and propagators are adjusted as:

Γ′ = CΓTC−1, (3.52)

S′(p) = CS(p)TC−1 = S(−p), (3.53)

where C represents the charge-conjugation matrix, Γ is a vertex, and S(p) the
fermion propagator. The total amplitude for the Majorana case is then the
sum of the “Dirac-like” diagrams and the reversed (or conjugated) diagrams.

• Under charge conjugation, a Majorana spinor satisfies

λ∗ψ = ψc = Cψ̄T , (3.54)

where λ is an arbitrary phase factors [258–260], set to unity in refs. [235, 236].
However, sometimes it can be convenient to keep this phase explicit, which
translates into a phase factor in the plane wave expansion

ψ =

∫
d3p

(2π)32Ep

∑

s=± 1
2

(
fs(p)us(p)e−ip·x + λf †s (p)vs(p)eip·x

)
, (3.55)

and thus affects the reversed diagrams [209, 228, 258, 261] and seemingly the
total amplitude. Of course, physical results are independent of the choice of this
phase [258, 262]. Following ref. [234], we initially leave these phases implicit
and discuss their explicit incorporation subsequently.

Taking these adjustments for the Majorana case into consideration, we find that
the EM moments of two Majorana fermions can be written as

(MS,V
ji )M = (MS,V

ji )D ∓ (MS,V
ji )D(ci,jL/R → (ci,jL/R)∗, vi,jL/R → (vi,jL/R)∗), (3.56)
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where the upper and lower signs correspond to M = µ, b and M = d,A, respect-
ively, and (MS,V

ji )D denotes the EM moments for Dirac fermions given in eqs. (3.47)
and (3.48). In terms of the loop functions, eq. (3.56) reads

(
MS
ji

)M
= i

eQf
16π2

{
Im
(
cjL(ciL)∗ + cjR(ciR)∗

)
FSM

(
mf

mχ1

,
mS

mχ1

,
mχ2

mχ1

)

+ Im
(
cjL(ciR)∗ + cjR(ciL)∗

)
GSM

(
mf

mχ1

,
mS

mχ1

,
mχ2

mχ1

)}
(3.57)

for M = µ, b, and for M = d,A we find

(
MS
ji

)M
=

eQf
16π2

{
Re
(
cjL(ciL)∗ − cjR(ciR)∗

)
FSM

(
mf

mχ1

,
mS

mχ1

,
mχ2

mχ1

)

+ Re
(
cjL(ciR)∗ − cjR(ciL)∗

)
GSM

(
mf

mχ1

,
mS

mχ1

,
mχ2

mχ1

)}
, (3.58)

with similar expressions for the vector contribution (MV
ji)

M .
As noted above, alternatively, the creation phase can be made explicit, leading to

an additional factor of λi in the Feynman rules for the reversed diagrams. Then,
eq. (3.56) can be written as

(MS,V
ji )M = (MS,V

ji )D ∓ λij × (MS,V
ji )D

(
c̃i,jL/R → (c̃i,jL/R)∗, ṽi,jL/R → (ṽi,jL/R)∗

)
, (3.59)

where −λij for M = µ, b and +λij for M = d,A, we defined λij = λ∗iλj and c̃
i,j
L/R and

ṽi,jL/R are the couplings in the new basis in which the creation phases are factored out.
We discuss these two formalisms in more detail when applying the general findings
of this section to Majorana neutrinos in section 7.2.2.

3.4 Numerical analysis of the general loop functions

We found in section 3.3 that the EM moments for Dirac- and Majorana fermions can
be expressed in terms of prefactors that depend only on the couplings, as well as the
loop functions FS,VM and G

S,V
M carrying all the dependency on the mass parameters.

In this section, we discuss the numerical evaluation11 of the EM loop functions
F
S,V
M and G

S,V
M in the general case as well discuss the analytical approximations for

two phenomenologically motivated limits. In the numerical analyses, the dipole loop
functions carry units of GeV−1, and the loop functions associated with the anapole
moment and charge radius have units of GeV−2.

11We evaluated the Passarino-Veltman functions with LoopTools [263].
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3.4.1 General loop functions

We present in figs. 3.6 to 3.9 the scalar- and vector loop functions as function of
mS,V /mχ1 − 1 and mχ2/mχ1 − 1 for fixed mχ1 = 100 GeV and mf = mτ . For
similar plots in which we present the loop functions for fixed mχ1 and mχ2 and vary
µ = mf/mχ1 and η = mS,V /mχ1 , see figs. B.1 to B.3 and figs. B.4 to B.6 for the
scalar- and vector loop functions respectively in appendix B.1.
Figures 3.6 to 3.9 indicate that the loop functions have unique dependencies on the

masses (apart from G
S,V
d differing from G

S,V
µ by a phase factor) and are suppressed

for large mS or large mχ2 . Therefore, generally, a non-trivial interplay between these
loop functions can be expected for the overall amplitudeMµ governing the coupling
to the photon.
For values of mS or mχ2 close to mχ1 on the other hand, most of the loop func-

tions become enhanced, with the notable exceptions being G
S,V
A and F

S,V
d , which

are suppressed for small mχ2 → mχ1 . This observation is expected, as we have not
encountered these loop functions when discussing the diagonal EM moments in sec-
tion 3.2. Further, we find that the loop functions related to the dipole moments are
typically numerically larger than the ones for the anapole and charge radius. As we
evaluated the loop functions for a τ -lepton in the loop, the fermion mass is fixed to
mf = mτ , resulting in the maxima positioned in the lower left corner of the panels
in figs. 3.6 to 3.9.
To quantify the location of the maxima, we present the scalar loop functions as

functions of mχ2/mχ1 in fig. 3.10 for some fixed values of mS and mf , highlighting
the resonance occurring in the general case, corresponding to the divergence of the
function

F̃ (ξ, µ, η) =
2
√
λ(ξ2, η2, µ2)

ξ2
arctanh

(√
λ(ξ2, η2, µ2)

(η + µ)2 − ξ2
+ iε

)
, (3.60)

where λ(x, y, z) is the Källén function [264]. The resonance condition then amounts
to

(µ+ η)2 ' ξ2. (3.61)

This resonance feature is the origin of the omnipresent enhancement in the lower
left corners in figs. 3.6 to 3.9, resulting for η = mS/mχ1 = 1.01 in the value of
(mχ2/mχ1 − 1)max ' 2.8× 10−2 for the which loop functions are enhanced.
A further feature of the loop functions is the observation that GS,VA,b vanish for µ = η,

which can be seen by the absence of points along the diagonal in the plots depicted
in figs. B.2 and B.5. Looking at the analytical expressions, this is expected as exact
cancellation occurs here. We note that all loop functions become mass-suppressed
as 1/mn

X , where X is the heaviest state among the loop particles f , S or V , and the
power n depends on the loop function. A further suppression ∼ 1/mn′

χ2
occurs the
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Figure 3.6: Scalar loop functions for the dipole moments for mχ1 = 100 GeV and
mf = mτ as a function of the mass-splitting between χ1 and the scalar S, and
between χ1 and χ2.

larger the mass-splitting between the two external fermions is. This suppression is,
of course, expected from general EFT arguments, as here, the effective operators are
inversely proportional to some power of the mass of the heaviest state in the loop.

3.4.2 Large mass-splitting between external states

The first limiting case we discuss is the scenario where the external states separate
a large hierarchy: mχ1 � mχ2 . The loop functions for the opposite hierarchy can be
obtained trivially using eq. (3.50). Applications for this case could include a very
heavy DM state decaying into a lighter, the decay of a sterile neutrino into an active
neutrino, or up-scattering processes of active neutrinos into a heavy state.
The analytical expressions given in appendix B.3 can approximate the loop func-

tions in this scenario. We find that the loop functions for the dipole moments and
the anapole moment/charge radius are related via a phase factor.
We present in fig. 3.11 the loop functions for the dipole moments and for the
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Figure 3.7: Same as fig. 3.6 but for the loop functions of the dimension-6 operators.

anapole moment/charge radius for a boson mass of mS,V = 100 GeV and a fermion
with mass mf = 1.1×mχ1 (left panel) or mf = mτ (right panel). We find that the
vector loop functions are typically larger than their scalar counterparts, with some
degeneracy occurring for small mχ1 . In the τ -philic case, we find an enhancement
at mχ1 ∼ mS,V , where the shape and scale depend on the loop function. For ex-
ample, while GSµ,d has a clear peak at mχ1 ∼ mS,V , FVµ,d does not, and instead is
approximately constant for values mχ1 > mS,V .

3.4.3 Light external states

Now, we consider the scenario in which both external masses are light compared to
the relevant scale in the loop: mχ1 ,mχ2 � Λ. The analytical expressions of the loop
functions are summarized in appendix B.4. This scenario is particularly interesting,
as active (and typically sterile) neutrinos are significantly lighter than the EW scale,
highlighting an important phenomenological application of these formulas. For a
further discussion, see chapter 7.
We present in fig. 3.12 the absolute value of the loop functions for the magnetic
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Figure 3.8: Same as fig. 3.6, but for the vector loop functions.

dipole moment and the anapole moment as a function ofmχ1 ; the ones for the electric
dipole and charge radius look very similar to them for the parameters considered in
the plot. Looking at the analytical expressions found in appendix B.4, the following
relations amongst the loop functions hold:

FSd /F
S
µ = i

mχ1 −mχ2

mχ1 +mχ2

, FVd /F
V
µ = −imχ1 −mχ2

mχ1 +mχ2

, (3.62a)

GSd /G
S
µ = i, GVd /G

V
µ = −i, (3.62b)

FSA/F
S
b ' 1 +O

(
mχ1mχ2/m

2
S

)
, FVA/F

V
b ' −1 +O

(
mχ1mχ2/m

2
V

)
, (3.62c)

GSA/G
S
b =

mχ1 −mχ2

mχ1 +mχ2

, GVA/G
V
b = −mχ1 −mχ2

mχ1 +mχ2

. (3.62d)

Therefore, the only significant difference is that in contrast to the anapole loop
function, GS,Vb does not vanish for mχ1 ' mχ2 . Similarly, in contrast to the magnetic
dipole moment, FS,Vd does vanish when the external masses are identical. The reason
is simply, that in the diagonal limit FS,Vd = G

S,V
A = 0.
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Figure 3.9: Same as fig. 3.7, but for the vector loop functions.

As can be seen from the functional behavior of these loop functions in fig. 3.12,
F
S,V
µ and G

S,V
A are proportional to the masses of the external fermions, explaining

their slope in the top left panel. In the top right panel, the second external fer-
mion has a mass of mχ2 = 100 keV, such that once mχ1 . mχ2 , these functions
become proportional to mχ2 and thus independent of mχ1 . This behavior can be
interpreted as occurring from the fact that a mass insertion flips the helicity of the
diagram. Therefore, the initial- or final-state fermion line has a mass insertion in
these scenarios.
The functions G

S,V
µ , on the other hand, are proportional to the mass mf of the

charged fermion f , as can be seen in the top panels. In the bottom panels, the
internal fermion mass is fixed by the mass-splitting mf/mχ1 = 1.1, such that the
proportionality to mf translates into a proportionality to mχ1 for GS,Vµ .
The scale of F

S,V
A is set by m−2

S,V , and as it only slightly depends on mχ1,2 , it
appears primarily constant throughout all panels of fig. 3.12, with the exception
being the deviation for mχ1 → 1 GeV observable in the bottom panels.
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Figure 3.10: Scalar loop functions |FSM| and |GSM| as function of ξ = mχ2/mχ1 for
different choices of masses.
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Figure 3.12: Magnetic moment- and anapole loop functions for the limit of light
external fermions mχ1,2 � mS,V = 100 GeV. Concretely, we set mχ2 = 0 (left) and
mχ2 = 100 keV (right). The top row considers a tau-lepton in the loop, whereas the
bottom row shows the loop functions for mf/mχ1 = 1.1.
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Chapter 4

Direct detection of dark matter with
electromagnetic moments

In this chapter, we particularize the calculation of DM-induced signals at direct
detection facilities discussed in section 2.3.2 to the case of electromagnetically in-
teracting DM candidates. First, we revisit the calculation for the Majorana case,
in which only one EM is non-zero, such that the conventional approach outlined in
section 2.3.2 suffices. We introduce the non-relativistic effective field theory of DM
direct detection and particularize this formalism to the case of EM interactions. In
this formalism, the presence of multiple operators can be studied quantitatively, par-
ticularly the impact on the signals due to their interference. We focus on the case of
Dirac DM and study its five EM interactions and the reach of the direct detection
experiments on the underlying parameter space spanned by the EFT operators.

4.1 Electromagnetic interactions I: simplified approach

Here, we describe the formalism used in the derivation of the nuclear recoil direct
detection limits of the anapole moment of Majorana DM candidates as presented
in ref. [2]. Similar studies for the Majorana case have been conducted in refs. [206,
225, 251, 253, 265]. The direct detection phenomenology of a Dirac DM candidate
having multiple EM interactions was studied in refs. [203, 206, 225, 252, 266, 267],
following a similar approach.
We consider the anapole moment interaction of a Majorana DM candidate1

L ⊃ Aχ
2
χ̄γµγ5χ∂νFµν , (4.1)

which gives rise to DM-target scattering processes depicted in fig. 4.1. Concretely,
we focus on the case where the target is a nucleus N . For DM-electron scattering
and their reach on the EM moments, see, for example, refs. [125, 268–270]. The

1For reasons of consistency, we kept the normalization factor of 1/2. This choice differs from
the usual convention used in this work.
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Mµ

χ χ

N, e− N, e−

γ

Figure 4.1: Effective interaction between χ and the target (nucleus or electron),
mediated by the photon. The blob resembles the effective vertex Mµ, which is
proportional to the anapole moment Aχ for the Majorana model.

differential cross-section reads [206, 265]

dσ

dER
= αA2

χ

[
Z2

(
2mT −

(
1 +

mT

mχ

)2 ER
v2

)
F 2
SI(q

2) +
1

3

mT

m2
N

(
µ̄T
µN

)2 ER
v2
F 2
D(q2)

]
,

(4.2)
which consists of the anapole-charge interaction, proportional to the SI form factor
FSI(q

2) and on the form factor arising from the anapole-dipole interaction propor-
tional to FD(q2), coupling to the spins of the target. The latter can be modeled
as [119]

F 2
D(q2) =

{
(sin(qR)/qR)2 if qR < 2.55 or qR > 4.5

0.047 2.55 ≤ qR ≤ 4.5
. (4.3)

Further,

µ̄T =

(∑

i

fiµ
2
i

Si + 1

Si

)
(4.4)

is the weighted dipole moment of the target, where the sum runs over the isotopes
i, and fi, Si and µi are respectively its elemental abundance, spin, and nuclear
magnetic moment [271].
Plugging this cross-section into the expression for the differential rate for an ex-

periment, eq. (2.42), allows the computation of scattering signals due to anapole-
mediated DM interactions. In contrast to the standard approach, in which the cross-
section σp was considered a free parameter, we can constrain the anapole moment Aχ
using the experimental data.2 We present in fig. 4.2 the 90% C.L. exclusion limits

2The exclusion limits were derived by Ryo Nagai.
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Figure 4.2: 90% C.L. exclusion limit on the anapole moment Aχ.

from XENON1T [137], SuperCDMS [272], CRESST-III [273] and XENONnT [274]
forecasts.3 The dominant constraints for mχ & 10 GeV comes from XENONnT,
being the most sensitive for mχ ∼ 40 GeV where it constraints the anapole moment
to be Aχ & 10−6µN fm. For smaller DM masses, SuperCDMS and CRESST-III give
the leading constraints due to their lower detection thresholds.

4.2 Non-relativistic effective field theory

Before proceeding with the Dirac DM discussion, we must introduce the general form-
alism of the non-relativistic effective field theory (NREFT) of DM direct detection
experiments.
Following refs. [275, 276], this formalism expresses the Lagrangian in terms of

hermitian Galilean-invariant operators expanded in the DM halo velocity v ∼ 10−3

and the transferred momentum q. The number of possible independent operators
depends on the spin of the DM candidate. For a fermionic candidate, one finds 14
independent operators at the lowest order in the expansion, which are summarized
in table 4.1. The Lagrangian then consists of these operators multiplied by Wilson

3See ref. [213] for details on the detection efficiencies.
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coefficients parameterizing the interaction strenghts of χ to the target:

L =
15∑

i=1

∑

N=n,p

cNi ONi . (4.5)

In eq. (4.5), cni denotes the coupling to the neutron, and cpi is the coupling to the
proton, typically assumed to be velocity- and momentum-independent. Alternatively,
the Wilson coefficients can be expressed in terms of the nucleon’s isospin as

c0
i =

1

2
(cpi + cni ) , c1

i =
1

2
(cpi − cni ) . (4.6)

In this basis, eq. (4.5) reads

L =

15∑

i=1

∑

τ=0,1

cτiOitτ , (4.7)

with t0 = 12×2 and t1 = τ3.
In this formalism, the differential rate written in eq. (2.42) is reformulated as

d2R

dERdvT
=
∑

T

NT
ρ

mχ
f(vT )vT

dσ

dER
, (4.8)

with cross-section

dσ

dER
=

2mT

4πv2
T

[
1

2jχ + 1

1

2jT + 1
|M|2

]
, (4.9)

in which the amplitude |M|2 contains the DM model dependency. This amplitude is
factorized in a part that depends on the DM physics, including the Wilson coefficients
of eq. (4.5), and a part that depends on nuclear physics, as [276]

1

2jχ + 1

1

2jT + 1
|M|2 =

4π

2jT + 1

1∑

τ=0

1∑

τ ′=0

∑

k

Rττ
′

k

[
cτi , c

τ ′
j , (v

⊥)2,
q2

m2
N

]
W ττ ′
Tk (y),

(4.10)
where y = (qb/2)2 and b is the size of the nucleus. The nuclear response functions
W ττ ′
Tk are independent of the DM physics and have been calculated, for example,

in refs. [275–277]. The DM response functions Rττ ′k are linear combinations of the
Wilson coefficients; see ref. [276] for the exact analytical expressions. Then, the
differential rate describing the elastic DM-nucleus scattering reads

dRχT
dER

=

∫

v>vmin

d3vT
dR

dERdvT
, (4.11)
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O1 = 1χ1N O9 = iSχ · (SN × q
mN

)

O3 = iSN · ( q
mN
× v⊥) O10 = iSN · q

mN
O4 = Sχ · SN O11 = iSχ · q

mN
O5 = iSχ · ( q

mN
× v⊥) O12 = Sχ · (SN × v⊥)

O6 = (Sχ · q
mN

)(SN · q
mN

) O13 = i(Sχ · v⊥)(SN · q
mN

)

O7 = SN · v⊥ O14 = i(Sχ · q
mN

)(SN · v⊥)

O8 = Sχ · v⊥ O15 = −(Sχ · q
mN

)
(
(SN × v⊥) · q

mN

)

Table 4.1: Non-relativistic Galilean-invariant operators for DM with spin 1/2, O2

vanishes at lowest order in the expansion.

where vmin =
√

mTER
2µ2T

.
As DM physics is factorized from nuclear physics, once the latter is determined, this

formalism can be used to study a range of DM models by matching the relativistic
operators to the Wilson coefficients of the NREFT. From a bottom-up point of
view, this formalism allows a systematic study of the NREFT, in particular the
consequences of multiple non-zero operators and the resulting interference effects
[278–280].

4.2.1 The Migdal effect in DM direct detection

In addition to the above-described elastic nuclear recoils, the scattering process can
give rise to an ionization signal by ejecting electrons via the Migdal effect [133, 281]
proposed in 1941 by A. Migdal [132].4 As a DM particle scatters off a nucleus,
displacing it, the electron cloud may not follow immediately. This delay leads to the
energy being distributed amongst the nucleus and the electrons, such that one of the
latter may be excited or ionized. The ionized electron can still yield a signal even if
the energy deposited as nuclear recoil is below the detector threshold.
The differential rate of such a signal can be written in a factorized way as [133]

dRχT
dEdet

=

∞∫

0

dER

∫

v>vmin

dvT
d2RχT

dERdvT
× 1

2π

∑

n,`

d

dEe
pn`→Ee(qe), (4.12)

where Edet is the energy at the detector, pn`→Ee(qe) is the ionization probability of
an electron with quantum numbers (n, `) with de-excitation energy En`. The ionized
electron has energy Ee with average momentum qe, which reads in the electron’s rest

4Experimental efforts to measure the Migdal effect in xenon atoms using neutrons have been
reported in refs. [282, 283].
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frame qe = me

√
2ER/mT . The differential rate in eq. (4.12) is given by the elastic

DM-nucleus rate given in eq. (4.11). Further, the minimal velocity now reads

vmin =
mTER + µTEEM

µT
√

2mTER
, (4.13)

where EEM = Ee + En` is the ionization energy deposited in the detector and is
related to the total energy deposited via

Edet = EEM +QER, (4.14)

where Q = Ee/ER is the quenching factor, describing the relative efficiency of nuclear
recoils compared to electron recoils. This discrepancy comes mainly from nuclei and
electrons traversing the detector differently; the former loses more energy in the form
of heat.
Since its proposed application to DM direct searches, the Migdal effect has

been used by several collaborations to extend the experimental reach to light DM
particles [284–291].
Similar to the neutrino floor affecting nucleus scattering analyses, neutrino CEνNS,

the neutrino Migdal effect, and neutrino electron scattering can give rise to a back-
ground contribution in searches utilizing the DM Migdal effect [145].

4.3 Electromagnetic interactions II: within the effective
field theory

4.3.1 The rate matrices

As proposed in refs. [278, 279], the scattering rate between DM and the target can
be formulated in a factorized way, where the DM halo model and the detector-
related physics is contained in a matrix, multiplying the coefficients cτi (or cNi ) of the
NREFT. In this formulation, the rate matrices can be calculated once for a specific
experiment and subsequently applied to almost arbitrary DM models by matching
the coefficients to the operators of the specific DM model.
To apply this approach to the case of the EM interaction, we first need to ex-

press the relativistic Lagrangian, given in eq. (3.10), within the NREFT formalism
by matching to the NR Wilson coefficients. We consider the following NR operat-
ors [267]:

• At dimension-4 DM could possess a millicharge Qχ, which could be induced
by a U(1)dark symmetry, whose gauge boson kinetically mixes with the SM
photon γ [292, 293]. The resulting millicharge is suppressed by the kinetic
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mixing parameter ε. The NR operator reads:

Omilli = e2
∑

N=n,p

QχQN
1

q2
O1, (4.15)

where Qp = 1 and Qn = 0 are the electric charges of the proton and neutron,
respectively.

• The magnetic dipole moment µχ and electric dipole moment dχ are the coeffi-
cients of dimension-5 operators, which can be generated via t-channel interac-
tions with scalars/vectors and fermions. Their NR operators read:

OMD = 2eµχ
∑

N=n,p

[
1

4mχ
QNO1 +

mN

q2
QNO5 +

1

2mN
gNO4

−mN

2q2
gNO6

]
, (4.16)

OED = 2edχ
∑

N=n,p

QNmN
1

q2
O11, (4.17)

with gp = 5.59 and gn = −3.83 being the gyromagnetic factors of the proton
and neutron, respectively.

• The dimension-6 NR operators are the anapole moment Aχ and the charge
radius bχ. A t-channel mediator can generate both of them. The NR operators
are given by:

Oana = eAχ
∑

N=n,p

(2QNO8 − gNO9) , (4.18)

OCR = ebχ
∑

N=n,p

QNO1. (4.19)

The anapole moment is only non-zero if parity is broken by the UV physics
generating it.

• In principle, DM can have four dimension-7 interactions with photons (Rayleigh
operators):

χ̄χFµνFµν , χ̄γ5χFµν , χ̄χFµνF̃µνFµν , χ̄γ5χFµνF̃µν . (4.20)

Within the EFT framework, these operators could generate signals in indirect-
and collider searches of DM [294, 295] and have an impact on the relic density
due to χχ → γγ annihilations [296–299]. As the Rayleigh operators do not
contribute to signals at direct detection experiments, we do not include them
in our analysis and discussion.
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Therefore, in the NREFT, the Lagrangian describing scattering between DM and
nuclei via the EM moments is given by

LNREFT = Omilli + OED + OMD + Oana + OCR. (4.21)

By comparing eq. (4.21) with eq. (4.5), we obtain the Wilson coefficients in the
canonical basis:

cN1 =
e2QN
q2

Qχ +
2eQN
4mχ

µχ + eQNbχ ,

cN4 =
2egN
2mN

µχ , cN5 =
2eQNmN

q2
µχ , cN6 = −2egNmN

2q2
µχ ,

cN8 = 2eQNAχ , cN9 = −egNAχ , cN11 =
2eQNmN

q2
dχ ,

(4.22)

and all others are zero. Note that the millicharge, the magnetic moment, and the
charge radius contribute to cp1, leading to interference terms in the expression for
the rate. Further, some of the Wilson coefficients in eq. (4.22) are dependent on
the momentum q2, such that the approach outlined in refs. [278, 279] is not directly
applicable but has to be adjusted accordingly. This leads to a separate set of rate
matrix elements we present and utilize in the following.
Following refs. [278, 279], the projected total count of signal events in a given DM

direct detection experiment, denoted by E , can be factorized as [3]

N Esig = (Qχ µχ dχAχ bχ)




NEQχQχ NEQχµχ 0 0 NEQχbχ
NEQχµχ NEµχµχ 0 0 NEµχbχ

0 0 NEdχdχ 0 0

0 0 0 NEAχAχ 0

NEQχbχ NEµχbχ 0 0 NEbχbχ







Qχ
µχ
dχ
Aχ
bχ



,

(4.23)

where all detector specifics and astrophysical modeling of the local DM abundance
are encoded in the matrix elements NEij . We calculated the matrix elements using
eq. (4.11) and eq. (4.12) for DM-nucleus elastic scattering and Migdal scattering,
respectively, using WimPyDD [136].5 We used the ionization probabilities provided in
ref. [133] for the Migdal effect calculation.
We present in fig. 4.3 the matrix elements NEij for the direct detection experiments

XENON1T [300], LUX-ZEPLIN (LZ) [301], PICO-60 [302] and DS50 [303].6 The
units of the individual matrix elements are such that the left-hand side in eq. (4.23)
is dimensionless: NEQχQχ has no units, NEµχµχ and NEdχdχ have units of GeV2, and

5Gaurav Tomar performed this calculation.
6The data is available at https://github.com/ga42puq/EMmoments-rate-matrices.
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4.3 Electromagnetic interactions II: within the effective field theory

NEAχAχ and NEbχbχ have units of GeV4. The off-diagonal element NEQχµχ has units
of GeV1, NEQχbχ has units of GeV2 and NEµχbχ has units of GeV3. Note that for
the matrix elements of the DS50 experiment, we present the largest rate of all bins
considered. However, we treat the bins separately to derivate the exclusion limits;
see appendix A for more details.
With these matrix elements, we now have the tools equipped to calculate the

experimental limits on all EM interactions for considering i) one operator at a time
(which is the standard approach), and ii) multiple non-zero operators. Scenario ii)
includes interference terms, leading to weaker limits as one would obtain following
approach i).
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Figure 4.3: Matrix elements NEij defined in eq. (4.23) for different experiments E . See
main text for details.
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4.3.2 Application to one operator at a time

For demonstration, we assume that the only non-zero operator is the magnetic dipole
moment, such that eq. (4.23) reduces to

N Esig = µ2
χ × NEµχµχ . (4.24)

Using the measured number of counts of experiments E and the provided NEµχµχ (see
fig. 4.3), we can determine the 90% C.L. upper exclusion limit on the parameter
µχ by comparing the predicted DM signal count with the experimental data. For
more details on the statistical treatment, see appendix A. Proceeding similarly for
the other EM interactions, we obtain their respective exclusion limits, which are
presented in fig. 4.4.
In fig. 4.4, we also include limits from Supernova 1987A, the CMB, Voyager, and

from LEP [304, 305]. Colliders operate with significantly larger energies than the
DM direct detection scale defined through the momentum transfer q2

DD, resulting in
the hierarchy q2

coll. � q2
DD. Therefore, the underlying assumption on the validity of

the EFT is different in these two scenarios. Technically speaking, the exclusion limits
can only be compared if both scales are smaller than the scale Λloop generating the
EM moments. As can be seen from the toy model analysis in chapters 5 and 6, the
relevant scales appearing in the one-loop diagrams can be of order Λloop ∼ 50 GeV,
such that the collider bounds do not apply to such a model. Nevertheless, as we focus
on the EFT description in this chapter, we may assume that Λ2

loop � q2
DD, q

2
coll..

We further show limits from electron recoil analyses from XENON10 and
XENON1T [125]7 and from PANDA-X [270]. Additional nuclear recoil limits from
PANDA-X [267] are shown. For the anapole moment, we include the limits from
SuperCDMS and CRESST-III from fig. 4.2.8 For the millicharge, we include nuclear
recoil limits from ref. [306] and present a recast of the electron recoil limits from
XENON10 [307] and SENSEI [308], assuming a massless dark photon as in ref. [122].
Amongst the direct detection experiments, we find that for all operators, the elec-

tron recoil limits provide the best constraints for mχ . 1 GeV, the limits derived
using the Migdal effect formχ ∼ 1 GeV, and formχ & 5 GeV the limits derived using
nuclear recoils give the strongest limits. However, the complementarity between elec-
tron scattering and the Migdal effect varies when looking at separate experiments or
targets. While for the magnetic dipole, formχ = 2 GeV, the XENON1T Migdal limit
is one order of magnitude above the XENON1T electron limit, for the electric dipole,
it provides the dominant constraint at mχ = 2 GeV. This hierarchy is in analogy to
the comparison of short-range and long-range interactions and the complementarity
between Migdal- and electron recoil studies for xenon-targets conducted in refs. [123,

7As pointed out in ref. [269], the XENON10/XENON1T limits obtained in ref. [125] might need
to be adjusted slightly, weakening the exclusion bounds from these analyses.

8We accounted for the different vertex normalization convention.

63



Chapter 4 Direct detection of dark matter with electromagnetic moments

124]. While the dominant contribution to the magnetic dipole cross-section is classi-
fied as short-range (∼ O1), the electric dipole may be seen as long-range interaction
(∼ O11/q

2 ∼ 1/q), resulting in the observed hierarchy for XENON1T [309]. There-
fore, this classification also explains why the exclusion limits on the electric dipole
moment are roughly two to three orders of magnitude stronger than those on the
magnetic dipole moment. The strong limits on the electric dipole moment translate
into relatively strong limits on CP-violating couplings in the UV theory, in which
the EM moments are generated, see chapter 6.

64



4.3 Electromagnetic interactions II: within the effective field theory

10−1 100 101 102 103

mχ [GeV]

10−7

10−6

10−5

10−4

10−3

10−2

µ
χ

[G
eV

−
1
]

freeze-out

DS50
(M

ig.)

XENO
N1T

(M
ig.) XENON10 (e

− )

XENON1T (e
− )

SN1987A

LEP

CMB (e
+ e

− )

P
anda-X

(N
R
)

Panda-X (e
− )

PICO-60 (NR)

XENON1T (NR)

DS50 (NR)

LZ (NR)

90% C.L. Exclusion Limit on the MDM

10−1 100 101 102 103

mχ [GeV]

10−10

10−9

10−8

10−7

10−6

10−5

10−4

10−3

10−2

d
χ

[G
eV

−
1
]

freeze-out

D
S50

(M
ig.)

XENON1T (Mig.)

XENON10 (e
− )

XENON1T (e
− )

SN1987A

LEP
CMB (γγ)

Panda-X
(N

R
)

Panda-X (e
− )

PICO-60 (NR)

XENON1T (NR)

DS50 (NR)

LZ (NR)

90% C.L. Exclusion Limit on the EDM

10−1 100 101 102 103

mχ [GeV]

10−6

10−5

10−4

10−3

10−2

10−1

100

101

A
χ

[G
eV
−

2
]

freeze-out (Majorana)

freeze-out (Dirac)

D
S50

(M
ig.)

X
EN

O
N

1T
(M

ig.)

XENON10 (e
− )

XENON1T (e
− )

SN1987A

LEP

Voyager 1 (e+
e−)

P
anda-X

(N
R

)

Panda-X (e
− )

PICO-60 (NR)

X
E

N
O

N
1T

(N
R

)

DS50 (NR)

LZ (NR)

CRESST-III

SuperCDMS

90% C.L. Exclusion Limit on the Anapole Moment

10−1 100 101 102 103

mχ [GeV]

10−9

10−8

10−7

10−6

10−5

10−4

10−3

b χ
[G

eV
−

2
]

freeze-out

SN1987A

LEP

D
S50

(M
ig.)

X
EN

O
N
1T

(M
ig.)

P
anda-X

(N
R
)

Panda-X (e−)

PICO-60 (NR)

XENON1T (NR)

DS50 (NR)

LZ (NR)

90% C.L. Exclusion Limit on the Charge Radius

10−1 100 101 102 103

mχ [GeV]

10−11

10−10

10−9

10−8

Q
χ

freeze-in

DS50
(M

ig.)

XENON1T (Mig.)

PICO-60 (NR)

XENON1T
(NR)

DS50 (NR)

LZ (NR)

P
anda-X

(N
R
)

Panda-X (e
− )

XENON10(
e
− )

SENSEI

90% C.L. Exclusion Limit on the Millicharge

Figure 4.4: 90% C.L. limits on the EM moments of spin-1/2 DM. We also show the
values of the corresponding EM moment leading to the correct DM abundance via
freeze-out/freeze-in. See main text for details.

65



Chapter 4 Direct detection of dark matter with electromagnetic moments

γ, Z

χ

χ all

all

Figure 4.5: s-channel annihilation process for the EFT of DM with EM moments at
lowest order.

4.3.3 Intermission: relic density in the EFT

So far, we have not specified the production mechanism of the DM candidate and
simply assumed that χ makes up all of our galaxy’s halo DM distribution, potentially
leading to the direct detection signatures described above.
In the EFT of DM with EM moments, χ has a portal interaction mediated by the

photon and the Z boson. We chose a coupling to the hypercharge gauge boson Bµ

instead of Aµ to avoid unphysical contributions from annihilations into vector boson,
resulting in unitarity violation [218, 310], see appendix C for more details on this
matter.
Both freeze-in and freeze-out processes can give rise to the correct relic abundance.

At the lowest order, the s-channel annihilation shown in fig. 4.5 either annihilates
the DM particles, leading to the freeze-out of its number density, or, for freeze-
in, it populates the Universe steadily with χ particles via the inverse process. In
fig. 4.5, the final states can be SM particles coupling to the neutral gauge bosons
or, in the case of specific UV models, could contain other new degrees of freedom.
Suppose these new particles generate the EM moments. In that case, they provide
further portals to the SM, resulting in additional tree-level annihilation diagrams,
which typically dominate over the loop-suppressed EM multipoles. Therefore, the
thermal production phenomenology in such a UV model will differ drastically from
the findings within the EFT framework.
The freeze-in line for the millicharge and the freeze-out line for the remaining

interactions are shown in the exclusion plots for the EM moments in fig. 4.4. Apart
from the anapole moment, all freeze-out thermal relics are excluded in the EFT in
the whole parameter space considered. For the millicharge, the experimental reach is
roughly one order of magnitude above the freeze-in line. We do not explicitly consider
the freeze-in process for the dimension-full operators, as the required coupling is well
below the experimental sensitivity. For example, for the dipole moments, DM can
be generated by the freeze-in mechanism if µχ, dχ ∼ (10−15 − 10−18) GeV−1.
The s-channel annihilations with the Z boson are resonantly enhanced for the
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center of mass energies of
√
s ' mZ . Therefore, for mχ ' mZ/2 ' 45 GeV, more

DM is annihilated than in a photon-only model, which in turn leads to the sharp
drops of the freeze-out lines in fig. 4.4. Such a resonant production only avoids the
direct detection constraints on the thermal relic for the anapole moment, allowing a
small unconstrained window for mχ ∼ 45 GeV and Aχ ∼ 10−6 GeV−2.
Similarly, the freeze-in line has different features in the hypercharge-coupled model.

In contrast to the photon-coupled model, where the prediction is less dependent on
mχ for mχ & 1 GeV, the presence of the additional Z channel enhances the annihil-
ations SMSM→ χχ below the Z threshold at mχ ≤ mZ/2, allowing smaller values
of Qχ to generate the observed DM relic abundance. The additional Z channels
are kinematically inaccessible for DM masses above this threshold, such that the
freeze-in line aligns with the photon-only model prediction.

4.3.4 Application to multiple operators

For the scenario in which multiple operators are present at the same time—as is typ-
ically the case in models in which a Dirac DM candidate obtains EM moments— we
can use eq. (4.23) and the approach outlined in refs. [278, 279] to obtain conservative
limits on operators for which interference terms arise.
For the case at hand, this effect is relevant for the EM moments that appear in

the cN1 term in eq. (4.22): millicharge, magnetic moment, and charge radius. Using a
quadratic approximation for the likelihood, the conservative limits can be obtained
analytically using [278, 279]

Mmax
α =

√
N sig
E (Mmax)(N−1

E )αα, (4.25)

where N sig
E (Mmax) is the solution of

aE
(
N sig
E (Mmax)

)2
+ bEN sig

E (Mmax) + cE − 2.71 = 0, (4.26)

and (N−1
E )αα are the diagonal elements of the inverse rate matrices given in

eq. (4.23). The coefficients for the quadratic approximation of the likelihood func-
tions, {aE , bE , cE}, are provided in table A.2 of appendix A.

We present in fig. 4.6 the conservative limits on these operators as non-continuous
lines and the naive limits are indicated by continuous lines. As values of the EM mo-
ments above the dashed and dot-dashed limits are excluded, they can be considered
conservative irrespective of other EM interactions. Compared to the standard ap-
proach, the limits are weaker by a factor ∼ 2 − 5 in the conservative approach,
depending on the coupling, mass range, and experiment.
Furthermore, we can visualize the experimental reach on multiple operators in

a lower-dimensional subspace by evaluating the signal rate assuming two non-zero
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Figure 4.6: 90% C.L. exclusion limits on the millicharge, the magnetic moment and
charge radius in the standard approach (continuous) and conservative limits in which
interference terms are included (dashed and dot-dashed).

coefficients in the set {Qχ, µχ, bχ}. The overall signal rate can decrease or increase
depending on the relative phase as these operators interfere, leading to ellipses in
the two-dimensional space spanned by the respective coefficients.
We present in fig. 4.7 these exclusion ellipses for XENON1T, LZ, PICO-60 (1st and

2nd bin) and their combination for a Dirac DM candidate with a mass ofmχ = 4 GeV.
As the experiments have different sensitivities to the EM moments, the elements of
the rate matrix MEij vary—in particular, the off-diagonal elements—resulting in the
tilt of the ellipses. XENON1T and LZ use xenon as the target material; therefore,
the orientation of their exclusion ellipses is very similar. In contrast, the PICO-60
experiment uses C3F8, leading to a different orientation with respect to the xenon-
based ones. Due to this mismatch, the combination of these experiments leads to
a significant improvement in the global exclusion limit, as visualized by the black
exclusion ellipses, more than what would be gained by an increase in exposure to a
single experiment.9

9We followed ref. [279] for the derivation of the combined exclusion limit.
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Figure 4.7: 90% exclusion ellipses for the two-dimensional subspaces spanned by
{Qχ, bχ, µχ}; the colored regions are excluded by the respective experiments indic-
ated in the legend. We also show the exclusion ellipses by statistically combining
XENON1T, LZ, PICO-60 (1st bin), and PICO-60 (2nd bin).

69





Chapter 5

The lightest neutralino as an archetype
of Majorana fermions

In chapter 3, we derived the generic expressions for the various EM interactions of
a fermion in which a t-channel mediator generates them at the one-loop level. As
pointed out in refs. [1, 2], one application of these model-independent results is the
calculation of the anapole moment of the lightest neutralino χ̃0

1 within the minimal
supersymmetric standard model (MSSM). The neutralino is a Majorana fermion, so
the anapole operator is the only non-zero diagonal interaction with the EM field;
further, in chapter 4, we discussed the direct detection phenomenology and derived
the exclusion limits on the anapole moment from various dark matter laboratories.
We found that the strongest limit excludes a fermionic dark matter candidate with
mass mχ ' 40 GeV with an anapole moment of Aχ ' 2× 10−6 fmµN .
In this chapter, we want to explore the theoretical prediction for the anapole

moment of the lightest neutralino within the MSSM in light of the sensitivity of the
direct detection experiments. Conceptually, similar ideas have been considered in
refs. [311–314]; however, here we employ the general results derived in section 3.2
for a consistent treatment of the vector contribution utilizing the background field
method. Although, in general, the EM moments can also give rise to transition
elements, and thus decays of neutralinos [209–211], here we focus only on the diagonal
anapole moment of the lightest neutralino.

5.1 Supersymmetry in a nutshell

Before discussing the anapole moment of the lightest neutralino and its connection to
direct searches of dark matter in more detail, we briefly discuss the relevant notions
of supersymmetry (SUSY) to fix the notation. For a more detailed overview, see
refs. [315–322].
In SUSY, spacetime symmetry is extended to include a transformation that relates

bosonic and fermionic states. This extension is the only known way to circumvent
the Coleman-Mandula theorem [321, 323], which prohibits the scattering matrix from
having more symmetries than those from the Poincaré-group and internal symmet-
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ries. Thereby, its minimal realization, the minimal supersymmetric standard model
(MSSM), is a theoretically well-motivated extension of the SM. Here, the SM is aug-
mented with so-called supersymmetric partners for every field present in the SM.
Furthermore, due to technical reasons, the MSSM contains two Higgs doublets, one
up-type with hypercharge Y = +1, and one down-type with hypercharge Y = −1,
generating the mass terms for both weak isospin configurations T3L = ±1 [319].
The MSSM offers solutions to various open questions of the contemporary particle

physics landscape. Prominent examples include gauge coupling unification at high
energies, protecting the Higgs mass from large radiative corrections, and offering a
plausible weak-scale DM candidate. The latter point is only true if R-parity, also
known as matter parity, is conserved, stabilizing the lightest supersymmetric particle
(LSP), which can thus serve as a DM candidate. This discrete symmetry is defined
as

Rp = (−1)3(B−L)+2s, (5.1)

where B is the baryon number, L the lepton number and s is the spin. All SM
particles are assigned a value of Rp = +1, whereas the supersymmetric partners
have Rp = −1. In addition to stabilizing the LSP, a theory respecting R-parity has
no tree-level terms giving rise to rapid proton decays [324, 325]. The proton lifetime
is constrained to be τ & 1034 years [326, 327], such that these R-parity violating
(RPV) terms would have to be suppressed by unnaturally tiny coupling constants.
To avoid such terms altogether, assuming R-parity conservation for the MSSM is
common practice, which we also adapt in this chapter.
In exact SUSY, the masses of the SM particles and their supersymmetric partners

are identical. As experimentally, no new scalar fields with masses of the SM fermions
have been observed, SUSY cannot be realized exactly in Nature. Thus, SUSY must
be broken, which must occur in a hidden sector [319]. Subsequently, the breaking has
to be mediated to the visible sector, for which many mechanisms have been proposed
including supergravity mediating- [316, 328], gauge mediating- [329], and anomaly
mediating models [330–333].
From a practical point of view, one typically considers SUSY breaking by manu-

ally adding soft-breaking terms to the Lagrangian. These terms include soft-breaking
mass- and Yukawa terms for the new degrees of freedom. These soft parameters and
the mixing angles between the new states are O(100) unknown parameters intro-
duced in the MSSM. Considering phenomenological input, such as the absence of
new CP phases, no flavor changing neutral currents, and universality of the two first
generations, the number of new parameters can be reduced to be of O(20) [334],
which is still large enough to make phenomenological studies cumbersome.
Thus, typical approaches in phenomenological studies include only considering a

subset of these parameters, as typically done in collider studies as summarized by
the Particle Data Group in ref. [335], or focusing on isolated features of the model
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as in refs. [336–339]. Also, theoretical ideas, such as split-SUSY [340–343], where
all scalar partners are assumed to be heavy, can reduce the number of parameters.
Alternatively, one can use high-dimensional parameter scans (such as in refs. [344,
345]) to study a more general situation. Related to the former approach is the idea
of the RPV-3 MSSM [346, 347], where only the third generation sfermions are taken
to be light to avoid experimental constraints on the first two sparticle generations
while maintaining the stability of the electroweak vacuum with minimal fine-tuning.
In this dissertation, however, we focus on the R-parity conserving case, except for
the discussion of RPV MSSM contributions to the EM properties of neutrinos in
section 7.3.5.

5.2 Particle content of the minimal supersymmetric
standard model

Following ref. [319], we briefly introduce the particle content of the R-parity con-
serving MSSM before calculating and discussing the anapole moment of the lightest
neutralino in the upcoming sections. A similar introduction can be found in ref. [1].

5.2.1 The Higgs sector

The MSSM contains two Higgs doublets

h1 =

(
h1

1

h2
1

)
=

(
h0

1

h−1

)
and h2 =

(
h1

2

h2
2

)
=

(
h+

2

h0
2

)
, (5.2)

whose soft-breaking Lagrangian reads

−Lsoft ⊃ m2
1|h1|2 +m2

2|h2|2 + (m2
12 h1 · h2 + h.c.), (5.3)

where m1 and m2 are respectively the masses of the up-type and down-type Higgs,
and m2

12 = Bµ, where B is the soft-breaking bilinear parameter and µ is the Higgs-
higgsino mass parameter. After spontaneous symmetry breaking, the Higgs doublets
acquire each a vacuum expectation value (vev):

〈h1〉 =
1√
2

(
v1

0

)
, 〈h2〉 =

1√
2

(
0
v2

)
. (5.4)

Phenomenologically, the ratio of the two vevs,

tanβ =
v2

v1
, (5.5)

73



Chapter 5 The lightest neutralino as an archetype of Majorana fermions

with 0 < β < π/2, is a free parameter of the theory and enters through the couplings
in many observables. The Higgs potential reads at the minimum

V min
H =

1

32
(g′2 + g2)(v2

1 − v2
2)2 +

1

2
m2

1hv
2
1 +

1

2
m2

2hv2 −m2
12v1v2, (5.6)

where m2
1,2h = m2

1,2 + |µ|2. As at the minimum ∂V min
H /∂vi = 0, one can derive the

following relations [319]:

m2
12 = −1

2
(m2

1 −m2
2) tan(2β)− 1

2
m2
Z sin(2β), (5.7)

|µ|2 =
m2

2 sin2 β −m2
1 cos2 β

cos(2β)
− 1

2
m2
Z . (5.8)

The fields remaining in the low-energy theory are two neutral CP-even Higgs fields
h and H with masses

m2
h,H =

1

2

(
m2
A +m2

Z ∓
√

(m2
A −m2

Z)2 + 4m2
Zm

2
A sin2(2β)

)
, (5.9)

where one, typically the lighter, is identified with the mhexp. ' 125 GeV signature
measured by CMS [348] and ATLAS [349]. Further, the mass spectrum consists of a
CP-odd Higgs A with mass

m2
A =

2m2
12

sin 2β
, (5.10)

a charged Higgs H± with mass

m2
H± = m2

A +m2
W , (5.11)

a neutral Goldstone boson G0, and a charged Goldstone boson G±. Similar to the SM
Higgs mechanism, the Goldstone modes are identified with the longitudinal degree
of freedom of the gauge bosons Z and W±, respectively, giving rise to their masses
as

mW =
g

2

√
v2

1 + v2
2, mZ =

√
g′2 + g2

2

√
v2

1 + v2
2. (5.12)

The relevant independent parameters for the Higgs sector can, therefore, be chosen
as follows:

mA and tanβ. (5.13)

Then, all mixing angles and masses of the Higgs sector can be determined at the
tree level. In general, loop effects can give large corrections to the masses [350–352],
and are included in numerical tools commonly employed to study supersymmetric
particle spectra such as SuSpect [334], SOFTSUSY [353], FlexibleSUSY [354] and
Himalaya [355].
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5.2.2 Neutralinos and charginos

The fermionic superpartners of the gauge bosons B,W 0,W±, commonly referred to
as gauginos are the bino B̃ and the winos W̃ 0 and W̃±. As the superpartners of the
Higgs doublets introduced in eq. (5.2),

h̃1 =

(
h̃1

1

h̃2
1

)
=

(
h̃0

1

h̃−1

)
and h̃2 =

(
h̃1

2

h̃2
2

)
=

(
h̃+

2

h̃0
2

)
, (5.14)

also contain fermionic degrees of freedom; the neutral (charged) gauginos and the
neutral (charged) higgsinos can mix. We can write the vector containing the neutral
interaction eigenstates as

ψ0 = (B̃, W̃ 0, h̃1
1, h̃

2
2), (5.15)

where the mass matrix reads

Mn =




M1 0 −mZcβsW mZsβsW
0 M2 mZcβcW −mZsβcW

−mZcβsW mZcβcW 0 −µ
mZsβsW −mZsβsβcW −µ 0


 . (5.16)

The parameters M1 and M2 are respectively the soft bino and wino masses,
sβ = sinβ, cβ = cosβ, sW = sin θW and cW = cos θW .

After diagonalization with a unitary 4 × 4 mixing matrix N , the resulting mass
eigenstates are the neutralinos and are typically denoted by

χ̃0
i = Nikψ

0
k, (5.17)

satisfying mχ̃0
1
< mχ̃0

2
< mχ̃0

3
< mχ̃0

4
. The lightest of them, χ̃0

1, is a typical WIMP-
like DM candidate, as in many models, this is the LSP in the spectrum whose stability
is guaranteed by R-parity. The lightest neutralino is denoted by χ for the remaining
part of this chapter.
The charged components of the winos and the higgsinos also mix, forming the

chargino states denoted by χ̃±j , with j = 1, 2. The mass term for the interaction
eigenstates denoted by

ψ+ =

(
W̃+

h̃1
2

)
and ψ− =

(
W̃−

h̃2
1

)
, (5.18)

reads
−L ⊃ (ψ−)TXψ+ + h.c., (5.19)

where the chargino mass matrix is given by

X =

(
M2

√
2mW sinβ√

2mW cosβ µ

)
. (5.20)

75



Chapter 5 The lightest neutralino as an archetype of Majorana fermions

The mass matrix X is diagonalized by the 2× 2 unitary matrices U and V as

U∗XV −1 = M c
diag, (5.21)

and the mass eigenstates are identified with

χ+ = V ψ+ and χ− = Uψ−. (5.22)

The (squared) eigenvalues of the mass matrix X then read

m2
χ̃±1,2

=
1

2

[
|M2

2 |+ |µ2|+ 2m2
W∓

(
(|M2

2 | − |µ2|)2 + 4m4
W cos2(2β)

+ 4m2
W

(
|M2

2 |+ |µ2|+ 2 Re(M2µ) sin(2β)
))1/2]

, (5.23)

i.e. in terms of the four component Dirac spinors

χ̃+
j =

(
χ̃+
j

χ̃
−
j

T

)
, (5.24)

the diagonal mass Lagrangian reads

−L ⊃ mχ̃±1
¯̃χ

+
1 χ̃

+
1 +mχ̃±2

¯̃χ
+
2 χ̃

+
2 . (5.25)

If M2 and µ are real, the chargino mixing matrices can be written as

U = Ou (5.26)

and

V =

{
Ov if detX > 0

σ3Ov if detX < 0
, (5.27)

with real matrices

Oi =

(
cosφi sinφi
− sinφi cosφi

)
. (5.28)

The mixing angles φu and φv are related to the new SUSY parameters as

tan 2φu =
2
√

2mW (µ sinβ +M2 cosβ)

M2
2 − µ2 − 2m2

W cos(2β)
, (5.29a)

tan 2φv =
2
√

2mW (µ cosβ +M2 sinβ)

M2
2 − µ2 + 2m2

W cos(2β)
. (5.29b)

As eq. (5.29) is invariant under φi → φi + π/2, all four combinations have to be
checked whether they diagonalize the chargino mass matrix given in eq. (5.20), or
not [319].
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5.2 Particle content of the minimal supersymmetric standard model

As evident from the neutralino and chargino mixing matrices in eq. (5.16) and
eq. (5.20) respectively, the relevant parameters which determine the masses and, via
the elements of the mixing matrices, the couplings of the neutralinos and charginos
with the other MSSM particles, are:

M1, M2, µ, tanβ. (5.30)

5.2.3 Sfermion field content

Finally, we discuss the supersymmetric partners of the SM fermions. Their mass
term can be cast as

−L ⊃ f̃
†
M2
f̃
f̃ , (5.31)

where we introduced

f̃ =

(
f̃L
f̃R

)
, (5.32)

with f̃L(R) denoting the supersymmetric partner of the left-chiral (right-chiral) SM
fermion.1 The mass matrix for the charged sleptons and squarks is given by

M2
f̃

=

(
M2
f̃LL

M2
f̃LR

M2
f̃RL

M2
f̃RR

)
, (5.33)

with entries [356]

M2
f̃LL

= m2
f +m2

f̃L
+m2

Z cos(2β)(T f3L −Qf sin2(θW )), (5.34a)

M2
f̃LR

= mf (A∗f − µκ), (5.34b)

M2
f̃RR

= m2
f +m2

f̃R
+m2

Z cos(2β)Qf sin2(θW ), (5.34c)

M2
f̃RL

= mf (Af − µ∗κ), (5.34d)

where T f3L is the third component of the weak isospin of the fermion f , Qf its charge
in units of e > 0, and mf its mass. Further, m

f̃L
( m

f̃R
) is the left-chiral (right-

chiral) soft-breaking mass, µ is the Higgs-higgsino mass parameter appearing due to
the Higgs mechanism, Af are the soft-breaking trilinear couplings, and we defined

κ =

{
1/ tanβ f = up-type squarks
tanβ f = down-type squarks, ˜̀

. (5.35)

1Although we consider f̃ to be related to a specific fermion f of a single generation, we could also
interpret f̃L/R as three-dimensional vectors in generation space such that the resulting f̃ describes
collectively all sfermions, leading to intergenerational mixing [319]. Such a scenario, however, goes
beyond the scope of this work.
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Chapter 5 The lightest neutralino as an archetype of Majorana fermions

Finally, for completeness, the mass matrix for the sneutrinos in the absence of right-
handed neutrinos is given by

M2
ν̃ =

(
M2˜̀

L
+m2

ZT
ν̃
3L cos 2β 0

0 0

)
. (5.36)

The sfermion matrix in eq. (5.33) can be diagonalized by a 2×2 orthogonal matrix,

Of =

(
cos θf sin θf
− sin θf cos θ

)
, (5.37)

such that
OfM

2
f̃
OTf = diag(m2

f̃1
,m2

f̃2
) (5.38)

with m2
f̃1
< m2

f̃2
.

Note that the off-diagonal terms of eq. (5.33) are proportional to the corresponding
fermion mass, such that for practical purposes, the mixing of the first two generations
can be considered to be negligible. This assumption is also experimentally motivated,
as light sfermions of the first two generations would cause problematic flavor-changing
neutral currents, unobserved by experiments [319, 357]. For heavy soft masses in the
first two generations, these processes can be suppressed [358, 359]; see refs. [317, 319]
for more details.
We conclude that at the tree level, the relevant input parameters for the sfermion

sector are the soft-breaking mass parameters

m˜̀
L
, mũL , mc̃L , mt̃L

,

m˜̀
R
, mũR , mc̃R , mt̃R

, m
d̃R
, ms̃R , m

b̃R
,

(5.39)

and the trilinear soft-breaking couplings

Aτ , Ab, At. (5.40)

5.3 Anapole moment of the lightest neutralino

As demonstrated in refs. [1, 2], the anapole moment of the lightest neutralino is
generated at the one-loop level by its interactions with a i) sfermion and fermion,
ii) chargino and W boson (and the associated Goldstone boson), and a iii) chargino
and Higgs boson. Depending on the couplings, mixing angles, and masses of the low-
energy particle spectrum, these processes can contribute with different strengths,
such that general statements about the size of the anapole moment of the lightest
neutralino cannot be made. These three contributions are depicted in fig. 5.1.
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Figure 5.1: Diagrams generating the anapole moment of the lightest neutralino χ
within the MSSM using the BDM. As χ is a Majorana fermion, the conjugated
diagrams are kept implicit but considered in the calculation.

The relevant part of the MSSM Lagrangian describing the interaction with the
(s)fermions can be formulated as [319]

L ⊃ χ̄
[
ci,aL PL + ci,aR PR

]
f̃afi + h.c. (5.41)

Here, f̃a describes the mass-eigenstate a of the superpartner of the fermion fi, where
i is a generation index. Assuming no intergenerational scalar mixing, the couplings
between the sfermions, fermions, and χ read:

ci,1L = GfiL cos θ
f̃a

+HfiR sin θ
f̃a
, (5.42a)

ci,1R = GfiR sin θ
f̃a

+HfiL cos θ
f̃a
, (5.42b)

ci,2L = −GfiL sin θ
f̃a

+HfiR cos θ
f̃a
, (5.42c)

ci,2R = GfiR cos θ
f̃a
−HfiL sin θ

f̃a
, (5.42d)

where we defined

GfiL = −
√

2g
[
T fi3LN

∗
12 + tan θW (Qfi − T fi3L)N∗11

]
, (5.43a)

GfiR =
√

2g tan θWQfiN11, (5.43b)

HfiL = − g√
2mW

mfi ×
{
N14/ sinβ, fi = u-type
N13/ cosβ, fi = d-type, `

, (5.43c)

HfiR = HfiL∗. (5.43d)
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Chapter 5 The lightest neutralino as an archetype of Majorana fermions

The interactions of χ with the charged gauge boson and its associated Goldstone
mode is given by [319]

L ⊃ χ̄γµ
[
vjLPL + vjRPR

]
χ̃−j W

+
µ + χ̄

[
cG,jL PL + cG,jR PR

]
χ̃−j G

+ + h.c., (5.44)

with

vjL = −gN12U
∗
j1 − g

1√
2
N13U

∗
j2, (5.45a)

vjR = −gN∗12Vj1 + g
1√
2
N∗14Vj2, (5.45b)

cG,jL = g cosβ

[
N∗13U

∗
j1 −

1√
2
U∗j2(N∗12 + tan θWN

∗
11)

]
, (5.45c)

cG,jR = −g sinβ

[
N14Vj1 +

1√
2
Vj2(N12 + tan θWN11)

]
. (5.45d)

Finally, the interactions of the lightest neutralino with the charged Higgs boson
can be written as [319]

L ⊃ χ̄
[
cH,jL PL + cH,jR PR

]
H+χ̃−j + h.c., (5.46)

with couplings

cH,jL = −g sinβ

[
N∗13U

∗
j1 −

1√
2
U∗j2(N∗12 + tan θWN

∗
11)

]
, (5.47a)

cH,jR = −g cosβ

[
N14Vj1 +

1√
2
Vj2(N12 + tan θWN11)

]
. (5.47b)

As these interactions are parameterized following the notation of chapter 3, we
can use the general results of section 3.2 to directly deduce the anapole moment of
the lightest neutralino [1, 2]:

Aχ = A
f̃

+AW +AH , (5.48)

where we separated the three different contributions induced respectively by the
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interactions in eqs. (5.41), (5.44) and (5.46). Explicitly, they read [1, 2]:

A
f̃

= − e

96π2m2
χ

∑

i,a

N i
cQi

[
|ci,aL |2 − |c

i,a
R |2

]
FS3
(mfi

mχ
,
m
f̃a

mχ

)
, (5.49a)

AW =
e

96π2m2
χ

{
2
∑

j

[
|vjL|2 − |v

j
R|2
]
FV3
(mχ̃±j

mχ
,
mW

mχ

)

+
∑

j

[
|cG,jL |2 − |c

G,j
R |2

]
FV3
(mχ̃±j

mχ
,
mW

mχ

)}
, (5.49b)

AH =
e

96π2m2
χ

∑

j

[
|cH,jL |2 − |c

H,j
R |2

]
FS3
(mχ̃±j

mχ
,
mH+

mχ

)
. (5.49c)

In eq. (5.49), N i
c (Qi) is the color factor (electric charge) of the fermion in the loop,

and we used Qχ̃±j = −1 for the charginos. Further, the scalar- and vector anapole

loop functions FS,V3 are given in eq. (3.34) and eq. (3.35) respectively.
Note that the anapole moment identically vanishes in the supersymmetric limit,

as can be checked explicitly by evaluating eq. (5.49) for vanishing soft-breaking para-
meters.

5.4 Analysis for simplified particle spectra

In this section, we discuss a few common simplified limiting cases of the full MSSM
particle spectrum that compromise typical simplified model setups of Majorana dark
matter.

5.4.1 Pure lightest neutralino and heavy scalars

The first simplified scenario is akin to minimal dark matter [360], in which dark
matter is part of a specific representation of SU(2)L. Here, all sfermions are assumed
to be heavy and thus decouple from the low-energy theory (i.e. split-SUSY [340–
343]). Therefore, the only interactions remaining at the low-energy scale are due to
the gauge- and Higgs-related terms in the MSSM Lagrangian.

Bino limit (singlet)

The first case assumes that the lightest neutralino is a pure bino state (N11 = 1),
thus a singlet under the gauge group of SU(2)L. Regarding the MSSM parameters,
this limit is realized if M1 �M2, |µ|,mf̃

. Here, the lightest neutralino is practically
inert and does not couple to the charged gauge boson and the charged Higgs, so the
anapole moment is predicted to be very small.
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Chapter 5 The lightest neutralino as an archetype of Majorana fermions

Wino limit (doublet)

For the MSSM parameters satisfying M2 � M1, |µ|,mf̃
the lightest neutralino is a

wino, interacting with theW boson via the charged wino component of the charginos.
Only the W boson loop (and the Goldstone) contribute to the anapole moment in
this limit. However, the couplings in this scenario are inherently P-conserving, as

v1
L ' −g, v1

R ' −g, (5.50a)

cG,1L ' 0, cG,1R ' 0, (5.50b)

such that the anapole moment is strongly suppressed in the wino DM scenario.

Higgsino limit (triplet)

Finally the higgsino limit is realized if |µ| �M1,M2,mf̃
. The two lightest neutrali-

nos are almost mass-degenerate, forming a pseudo-Dirac pair. The lightest chargino
is comprised of the charged higgsino component. The couplings read:

v1
L ' −

g

2
, v1

R '
g

2
, (5.51a)

cG,1L ' 0, cG,1R ' 0, (5.51b)

such that similar to the wino limit, the anapole moment is strongly suppressed. For
the loop induced by the charged Higgs boson, eq. (5.46) indicates that also this
contribution is suppressed and, therefore, negligible.
All in all, we find that for the pure neutralino limits (e.g. bino, wino, and higgsino),

the anapole moment of the lightest neutralino is negligible. For it to be enhanced,
one needs to introduce parity-breaking interactions, which can be achieved by either

i) light sfermions in the spectrum (see eq. (5.41)), or

ii) non-pure neutralinos with higgsino component (see eq. (5.44)).

These two options generate an anapole moment via the scalar- and vector contribu-
tions, respectively. In the generic MSSM parameter landscape, both conditions can
be satisfied simultaneously.

5.4.2 Pure lightest neutralino and a light scalar

As discussed in the previous subsection, one way to generate an anapole moment is
through introducing light scalar degrees of freedom. We particularize this scenario
for the three pure neutralino cases. Therefore, the vector contribution is absent, as
the respective couplings respect parity.
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Bino and a light stau

As noted in section 5.4.1, for the case of a pure bino, the neutralino does not couple
to the W - and the Higgs boson. Therefore, the only contribution to the anapole
moment can be due to additional light scalars, to which the bino couples. We consider
a simplified scenario in which the bino interacts with a SM fermion f and the mass-
eigenstates f̃1 and f̃2 (where m

f̃1
< m

f̃2
), obtained by diagonalizing the interaction

eigenstates f̃L and f̃R via a rotation parameterized by the mixing angle θ
f̃
. Using

the general couplings of eq. (5.42), we find:

c1
L = −

√
2g
[
tan θW (Qf − T f3L)

]
cos θ

f̃
, c1

R =
√

2g tan θWQf sin θ
f̃
, (5.52a)

c2
L =
√

2g
[
tan θW (Qf − T f3L)

]
sin θ

f̃
, c2R =

√
2g tan θWQf cos θ

f̃
. (5.52b)

We present in the upper left panel of fig. 5.2 a scatter plot of the anapole moment for a
tau-philic bino (therefore f = τ) with parameters in the range mχ ∈ [101, 104] GeV,
m
f̃1
∈ [mχ, 10mχ], m

f̃2
∈ [m

f̃1
, 10mχ], and θ

f̃
∈ [0, 2π]. We employ the limit on

staus from LEP [361], ATLAS [362] and the constraints from the Z → inv. width,
excluding new charged particles with masses below ∼ 45 GeV [363]. The latter is the
cause of the fragmentation for mχ . 40 GeV in the top left panel in fig. 5.2, as here
the scalar mass is constrained to be heavier than ∼ 45 GeV, thus setting the overall
scale of the anapole as Aχ ∼ m−2

S . For larger values, mχ & 45 GeV, the scalar mass
can be comparable to mχ, evading the constraints. Thus, we find an enhancement of
the anapole moment for small mass-splittings between the scalar and χ, defining the
upper scale of Aχ in fig. 5.2. Meanwhile, the lower scale is set by the largest scalar
mass considered in the scan, mS ≤ 10×mχ. These features are smeared out by the
randomness of the Yukawa coupling, further enhancing or decreasing the prediction
for the anapole moment. The few points indicating strongly suppressed anapole
moments correspond to cancellations between the couplings, implying accidental P-
conserving interactions.

Wino and a light stau

Also, here, the anapole moment is generated by the inherent parity-violating interac-
tion between the wino, a fermion, and the associated sfermion. The parity-violating
couplings read

c1
L = −

√
2gT f3L cos θ

f̃
, c1

R = 0, (5.53a)

c2
L =
√

2gT f3L sin θ
f̃
, c2

R = 0. (5.53b)

We present in the top right panel of fig. 5.2 a scatter plot for similar parameter
choices as discussed in the bino paragraph.
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Figure 5.2: Anapole moment of the pure bino, wino, and higgsino generated by a light
τ̃ in units of the nucleon magneton µN = e/2mp. For the higgsino case, we separately
show the result for tanβ = 5 (tanβ = 50) in red (blue). The presented points satisfy
the constraints on staus from ATLAS [362], LEP [361] and the Z-width [363].

Higgsino and a light stau

Finally, in the scenario that the neutralino is a pure higgsino and its anapole moment
is solely generated by one light sfermion in the spectrum, the couplings read:

c1
L = HfL sin θ

f̃
, c1

R = HfL cos θ
f̃
, (5.54a)

c2
L = HfL cos θ

f̃
, c2

R = −HfL sin θ
f̃
, (5.54b)

with

HfL = − g

2mW
mf ×

{
1/ sinβ, f = u-type
1/ cosβ, f = d-type, `

, (5.55)

violating parity. The expected anapole moment for the tau-philic scenario is presen-
ted in the bottom panel of fig. 5.2 for tanβ = 5 in red and tanβ = 50 in blue.
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5.4.3 Mixed lightest neutralino with heavy scalars

In this scenario, the contribution from scalar particles in the loop is suppressed by
their masses as Aχ ∼ m−2

S , which are negligible if the scalars are sufficiently heavy.
Therefore, the only sizeable contribution in this scenario can arise from charginos
and W or Higgs bosons in the loop. The only free parameters in this setup are
the soft gaugino masses M1,2, the bilinear Higgs soft parameter µ, and the ratio of
the two Higgs vevs, tanβ. We employ collider constraints on charginos assuming
decays via W bosons from LEP [364], setting a lower bound on the chargino mass
as mχ̃±1

> 103.5 GeV, and from ATLAS [365].

Bino-wino

First, we consider the bino-wino mixed neutralino, realized if the mass parameters
satisfy M1,2 � µ. In this limit, only the lighter chargino, which is a charged wino,
is part of the low-energy spectrum. The couplings between the lightest neutralino,
the chargino, and the W boson become:

v1
L = −gN12, v1

R = −gN∗12, (5.56a)

cG,1L = 0, cG,2R = 0, (5.56b)

which preserves parity and, therefore, does not generate an anapole moment. The
other contribution due to the chargino and Higgs vanishes, as the former is a charged
wino, thus

cH,1L = 0, cH,1R = 0. (5.57)

We conclude that a bino-wino without light scalars has no anapole moment.

Bino-higgsino

The mixed bino-higgsino scenario corresponds to MSSM parameters satisfying
M1, µ � M2. Then, the only light chargino in the spectrum is a charged higgsino.
Therefore, in contrast to the bino-wino scenario, the interaction of the neutralino
with the charged Higgs and chargino does not vanish. The couplings read:

cH,1L = g sinβ tan θWN
∗
11, cH,1R = −g cosβ tan θWN11. (5.58)

Further, the couplings between neutralino, chargino, andW boson read in this limit:

v1
L = − g√

2
N13, v1

R = g
g√
2
N∗14 (5.59a)

cG,1L = − g√
2

cosβ tan θWN
∗
11, cG,2R = − g√

2
sinβ tan θWN11. (5.59b)

85



Chapter 5 The lightest neutralino as an archetype of Majorana fermions

102 103 104

mχ [GeV]

10−14

10−13

10−12

10−11

10−10

10−9

10−8

|A
|/µ

N
[f

m
]

Bino-Higgsino with tan β = 5

Bino-like

Higgsino-like

Mixed

102 103 104 105

mχ [GeV]

10−13

10−12

10−11

10−10

10−9

10−8

|A
|/µ

N
[f

m
]

Wino-Higgsino with tan β = 5

Wino-like

Higgsino-like

Mixed

Figure 5.3: Scans over the simplified SUSY model parameters in which the light-
est neutralino is a mixture of bino & higgsino (left) and wino & higgsino (right).
The color denotes the dominant admixture of the neutralino. The constraints from
LEP [364], ATLAS [365] and the Z-width [363] are applied.

The result of a random scan with parameters M1, µ ∈ [100, 105] GeV and tanβ = 5
is shown in the left panel of fig. 5.3. Here, we assumed a heavy charged Higgs
boson, such as to focus only on the W -chargino loop contribution to the neutralino’s
anapole moment. In fig. 5.3 the colors denote whether the lightest neutralino is
bino-like (|N11| > 0.95, red), higgsino-like (

√
N2

13 +N2
14 > 0.95, green) or wino-like

(N12 > 0.95, blue). The pink dots show the remaining points, where the lightest
neutralino is an admixture of the different interaction eigenstates. As expected,
the points indicating large mixing result in the largest predictions for the anapole
moment, as here, the P violation is enhanced. In contrast, the bino- and wino-
like scenarios lead to smaller values of the anapole, as here, the chargino is heavy,
suppressing the amplitude. On the other hand, the higgsino-like scenario is enhanced
because the lightest neutralino and chargino become mass-degenerate, for which the
loop functions are enhanced.
The plot in the left panel of fig. 5.3 indicates that in the mixed scenario (pink dots),

the neutralino can be lighter than the minimal mass-scales of the scan, given by
M1, µ ≥ 100 GeV. This apparent inconsistency originates from the diagonalization
procedure of the neutralino mixing matrix, where multiple entries of comparable scale
result in massesmχ ∼ 50 GeV for the lightest neutralino. In this scenario, a relatively
large mass-splitting to the chargino is realized, such that collider constraints on the
chargino are evaded.
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Wino-higgsino

Finally, ifM2, µ�M1, the lightest neutralino is a mixture of wino and higgsino, and
both charginos can be light and thus contribute to the anapole moment. The coup-
lings between the lightest neutralino, the W boson and the charginos χ̃±j , j = 1, 2,
read:

vjL = −gN12U
∗
j1 −

g√
2
N13U

∗
j2, vjR = −gN∗12Vj1 +

g√
2
N∗14Vj2, (5.60a)

cG,jL = g cosβ
[
N∗13U

∗
j1 −

1√
2
U∗j2N

∗
12

]
, cG,jR = −g sinβ

[
N14Vj1 +

1√
2
Vj2N12

]
,

(5.60b)

being typically parity-violating. The same holds for the interaction with the charged
Higgs, for which the couplings read:

cH,jL = −g sinβ
[
N∗13U

∗
j1 −

1√
2
N∗12U

∗
j2

]
, cH,jR = −g cosβ

[
N14Vj1 +

1√
2
Vj2N12

]
.

(5.61)
We present in the right panel of fig. 5.3 a parameter scan with similar choices for the
input parameters as for the previous case; the conclusions are analogous to the earlier
discussion. In contrast to the bino-higgsino scenario, no points with mχ ≤ 100 GeV
are identified, as in this scenario not only χ but also the chargino is light, which is
excluded by LEP constraints [364].

5.5 Analysis within the full MSSM

For the analysis in the full MSSM, we consider a broad scan of the soft paramet-
ers defining the low-energy physics after renormalization group evolution. We apply
various experimental constraints to this resulting particle spectrum to eliminate ex-
cluded points from this high-dimensional parameter space.
The scan setup is as follows: We generate a random set of input parameters

defined at the scale Λ = 3 TeV according to table 5.1 and run them down to the
electroweak scale using SOFTSUSY 4.0 [353]. The resulting low-energy spectrum is
checked against experimental constraints. We used the LEP constraints implemented
in micrOMEGAs v3 [366–369] and LHC limits on sparticles using SMODELS v2 [370].
Further, we used constraints on the Higgs sector using HiggsBounds v4 [371–374]
and HiggsSignals [375] to ensure that the physical Higgs boson in the spectrum
has a mass of 123 GeV < mh < 127 GeV. Flavour constraints are included using
SuperIso v3.0 [376] and GM2Calc [377]. To interface the different codes with the
common SLHA [378, 379] format, we used PySLHA [380] and SLHAea [381]. We then
used the analytical formulas in eq. (5.49) to calculate the anapole moment of the
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MSSM MSSM (lepto-philic)
Parameter Range Parameter Range

M1 [100, 2000] GeV M1 [100, 2000] GeV
M2 [100, 2000] GeV M2 [100, 2000] GeV
M3 [2000, 5000] GeV M3 3000 GeV
At,b,τ [−4000, 4000] GeV At 4000 GeV
mA [103, 105] GeV Ab,τ 0

tanβ [3, 50] mA 5000 GeV
µ [100, 2000] GeV tanβ 50

m˜̀
L,R

[100, 2000] GeV µ [100, 2000] GeV
mq̃L1,2

[400, 2000] GeV mẽL,R , mµ̃L,R [100, 1000] GeV
mũR1,2

, m
d̃R1,2

[400, 2000] GeV mτ̃L,R 3000 GeV

mq̃L3
[300, 2000] GeV mq̃L1,2

,mũR1,2
, m

d̃R1,2
5× 104 GeV

mũR3
, m

d̃R3
[300, 2000] GeV mq̃L3

,mũR3
, m

d̃R3
104 GeV

Table 5.1: Input parameters for the MSSM scans defined at the scale Λ = 3 TeV for
the full scan (left) and for the smaller scan, focusing on the lepto-philic coannihilation
region (right). For details on the meaning of each parameter, see section 5.1.

lightest neutralino using the low-energy spectrum satisfying all experimental con-
straints listed above.
The resulting values for the anapole moment of the lightest neutralino are presen-

ted in fig. 5.4 for the scan defined by the parameter ranges given in the left part
of table 5.1. In the left panel of fig. 5.4, the color indicates the composition of
the lightest neutralino. Only a few bino-like points survived the experimental con-
straints. While the wino-like points populate the region around |Aχ| ∼ 10−7 fmµN ,
the higgsino-like points have maximal values around |Aχ| ∼ 10−8 fmµN . Apart
from the fact that also smaller values of mχ are populated, the scenario of mixed
neutralinos does not have a distinct tendency.
In the right panel of fig. 5.4, the color indicates which diagram gives the dominant

contribution to the total anapole moment, i.e. the sfermion-fermion loop (red), the
W -chargino loop (blue) or the Higgs-chargino loop (green). The remaining points
are colored in pink.
Overall, the interpretation follows the discussion of the simplified setups in sec-

tion 5.4: large values of the anapole are due to light scalars in the model with O(1)
enhancement per light scalar. On the other hand, the loops with vector bosons
saturate at |Aχ| ∼ 10−8 fmµN . As visible, no points are found in which the Higgs
contribution AH is dominant, whereas the mixed scenario populates the whole range.
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Figure 5.4: Result of the parameter scan within the MSSM using as boundary con-
ditions the input values defined in table 5.1. In the left panel, we highlight the
composition of the lightest neutralino, and in the right panel, the dominant contri-
bution to its anapole moment. For the experimental constraints considered, see the
main text.

In this full scan, we considered a high-dimensional parameter space with finite
computing power, risking burying interesting features, such as resonance regions.
Further, some points that survived all the above-mentioned constraints could be in
tension with direct detection experiments, mainly if the squarks are light or the
channels with Higgs bosons are enhanced. Albeit we covered some of the phenomen-
ologically interesting scenarios semi-analytically in section 5.4, here we also want to
consider a dedicated lower-dimensional scan, focusing on light sleptons of the first
two generations while allowing all neutralino compositions. Therefore, both possib-
ilities of an enhanced anapole moment can be realized: light sleptons and sizeable
mixing among the interaction eigenstates comprising the lightest neutralino. The
exact parameter ranges are summarized in the right part of table 5.1, and the res-
ulting predictions for the anapole moment of the lightest neutralino are depicted in
fig. 5.5.
As in fig. 5.4, in the left panel of fig. 5.5, the color indicates the composition of the

lightest neutralino, whereas in the right panel, it indicates the dominant contribution
to the anapole moment. Further, in the right panel the star indicates points which
satisfy direct detection constraints from XENON1T [137], PICO-60 [302], CRESST-
III [273] and DarkSide-50 [303] as recast by micrOMEGAs v5.3.41 [306, 368]. We find
that most of the bino-like and wino-like points avoid the direct detection constraints
while predicting large values of the anapole moment due to the light sleptons in the
spectrum. In contrast, almost all mixed and higgsino-like points are excluded due to
the enhanced tree-level Higgs channel in this scenario.
We do not include constraints from the dark matter relic abundance as we want
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Figure 5.5: Same as fig. 5.4 but for the parameters shown in the right table of
table 5.1. In the right panel, a star indicates that direct searches do not exclude this
parameter point, as calculated by micrOMEGAs v5.3.41.

to remain agnostic about the production mechanism. Therefore, the points shown
in figs. 5.4 and 5.5 may not correspond to spectra in which the lightest neutralino
reproduces the measured relic abundance.
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Chapter 6

Dirac dark matter with
electromagnetic moments

In this chapter, we introduce a simplified toy model of Dirac DM, in which EM
multipoles are generated at the one-loop level. We use the model-independent direct
detection constraints derived in chapter 4 to obtain limits on the UV parameter
space. We also discuss these results in light of thermal production via the standard
freeze-out mechanism.

6.1 The Dirac dark matter toy model

We consider a lepto-philic DM candidate with a t-channel scalar mediator. The total
Lagrangian of this theory reads:

L = LSM + Lχ + Lscalar + Ltri. + Lquart. + Lportal. (6.1)

Here, LSM is the Lagrangian of the SM, and Lχ contains the kinetic- and mass term
of the DM candidate,

Lχ = χ̄i/∂χ−mχχ̄χ. (6.2)

Further, Lscalar describes the scalar Lagrangian, Ltri. and Lquart. contain trilinear
and quartic interactions, and Lportal contains the Yukawa interaction, providing a
portal between the dark- and visible sector. We discuss these terms in the following.
From the discussion in chapter 3, we know that a portal interaction of DM with

a scalar and fermion can give rise to EM interactions. Depending on the richness
of this vertex structure, all or only a subset of the possible EM interactions are
generated. To capture the complete phenomenological picture, the toy model should
have different couplings to parameterize the Yukawa interactions between χ and
the left- and right components of the SM fermion in the loop. Choosing complex
couplings also allows for CP violation and, therefore, an electric dipole moment.
In the toy model here, we can achieve that by introducing couplings to the left-

and right chiral parts of the SM fermion via a portal interaction

Lportal = yLχ̄S†LF + yRe
iφCPχ̄S†RfR + h.c., (6.3)
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Chapter 6 Dirac dark matter with electromagnetic moments

where we introduced a SU(2)L singlet scalar field S−R = SR and doublet
SL = (S0

L, S
−
L ) coupling respectively to a SM fermion singlet f and doublet F with

real couplings yL/R. We consider a lepto-philic model, such that we can identify
F = (νL, `L) and f = `R, where ` = e, µ, τ is an SM lepton. Note that we can choose
yR to carry the CP-violating phase φCP without loss of generality.
The Lagrangian of the scalar fields is given by

Lscalar = (DµSL)†(DµSL) + |DµSR|2 −m2
LS†LSL −m2

R|SR|2, (6.4)

where the covariant derivatives depend on the quantum numbers of SL and SR and
we introduced soft masses m2

L/R.
The trilinear term is given by

−Ltri. = A(S†LΦ)SR + h.c., (6.5)

whose presence induces mixing between SL and SR after electroweak symmetry
breaking. This mixing is controlled by the trilinear coupling A, which we assume to
be real for simplicity.
The last piece in eq. (6.1) is the quartic term

−Lquart. =
∑

S=SL,SR

1

2
λS0 (S†S)2 + λS1 (Φ†Φ)(S†S)

+ λSL2 (Φ†SL)(S†LΦ) + λSLSR3 (S†LSL)(S†RSR), (6.6)

where Φ denotes the SM Higgs doublet. For the sake of simplicity, we set these
quartic couplings to zero from now on, as they do not influence the EM interactions
of χ. In principle, however, they appear in the scalar mixing matrix and thus impact
the left-right mixing angle (see, for example, ref. [254]). We could, however, achieve
a similar effect by rescaling the soft masses m2

L/R accordingly.
After the SM Higgs field acquires a vacuum expectation value of v ' 246 GeV, the

following scalar mass matrix emerges

−Lscalar ⊃
(
S∗L S

∗
R

)
(
m2
L A v√

2

A v√
2

m2
R

)(
SL
SR

)
, (6.7)

which can be diagonalized by a rotation
(
SL
SR

)
=

(
cosψ − sinψ
sinψ cosψ

)(
S1

S2

)
, (6.8)

where the mixing angle is given by

tanψ = −
√

2Av

m2
R −m2

L +
√

2A2v2 + (m2
R −m2

L)2
. (6.9)
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S

f f

χχ

γ

f

S S

χχ

γ

Figure 6.1: Diagrams generating the EM moments of the Dirac DM candidate in our
toy model with S = S1,2.

Thus, in this new basis, the toy model Lagrangian in eq. (6.1) has diagonal scalar
mass terms,

L ⊃ −m2
L(S0

L)S0
L −m2

S1
S†1S1 −m2

S2
S2

2 , (6.10)

where the mass eigenvalues read

m2
S1,2

=
1

2

(
m2
R +m2

L ∓
√

2A2v2 + (m2
R −m2

L)2

)
. (6.11)

In analogy to the similar discussion in the SUSY context, a negative m2
S1

would
indicate a breaking of the SU(3)c or U(1)EM symmetry. Even if the squared masses
are positive, too large values of A can lead to unstable vacua, resulting in additional
constraints from vacuum stability [382–387].
From now on, we trade the parameter set {mL,mR, A} in favor of {mS1 ,mS2 , sinψ}

and assume that the vacuum stability constraints are negligible.
In the mass basis, the relevant portal interaction of eq. (6.3) now reads

Lportal = χ̄
[
yL cosψPL + yR sinψeiφCPPR

]
S∗1f + h.c.

+ χ̄
[
−yL sinψPL + yR cosψeiφCPPR

]
S∗2f + h.c. (6.12)

This portal interaction, eq. (6.12), is akin to the building block Lagrangian used in
section 3.2, which we used to derive the EM moments for a neutral Dirac fermion.
Therefore, S1 and S2 generate at the one-loop level, depicted in fig. 6.1, the dipole
moments, an anapole moment and a charge radius of χ.
Using the general results derived in section 3.2, we find for the magnetic- and
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electric dipole moment of χ

µχ = − eQf
32π2mχ

{
(y2
L cos2 ψ + y2

R sin2 ψ)F1

(
mf

mχ
,
mS1

mχ

)
(6.13a)

+ 2yLyR cosψ sinψ cosφCPF2

(
mf

mχ
,
mS1

mχ

)
(6.13b)

+ (y2
L sin2 ψ + y2

R cos2 ψ)F1

(
mf

mχ
,
mS2

mχ

)
(6.13c)

− 2yLyR cosψ sinψ cosφCPF2

(
mf

mχ
,
mS2

mχ

)}
(6.13d)

and

dχ =
eQf

16π2mχ
yLyR cosψ sinψ sinφCP

[
F2

(
mf

mχ
,
mS1

mχ

)
−F2

(
mf

mχ
,
mS2

mχ

)]
, (6.14)

respectively. The electric dipole moment vanishes without CP violation, i.e.
sinφCP = 0 implies dχ = 0. Furthermore, it vanishes if the scalar masses are
identical, mS1 = mS2 , or if the mixing between the gauge eigenstates is trivial, in
which case sinψ = 0 or cosψ = 0, as here an appropriate field redefinition can rotate
the phase away.
The anapole moment reads

Aχ = − eQf
192π2m2

χ

{[
y2
L cos2 ψ − y2

R sin2 ψ
]
F3

(
mf

mχ
,
mS1

mχ

)
(6.15a)

+
[
y2
L sin2 ψ − y2

R cos2 ψ
]
F3

(
mf

mχ
,
mS2

mχ

)}
. (6.15b)

Note that the P violation is explicit; if the couplings of χ to the left- and right-chiral
fermion in eq. (6.12) are identical, the anapole moment vanishes.
Finally, the charge radius can be expressed as

bχ =
−eQf

384π2m2
χ

{
(y2
L cos2 ψ + y2

R sin2 ψ)F4

(
mf

mχ
,
mS1

mχ

)
(6.16a)

+ 2yLyR cosψ sinψ cosφCPF5

(
mf

mχ
,
mS1

mχ

)
(6.16b)

+ (y2
L sin2 ψ + y2

R cos2 ψ)F4

(
mf

mχ
,
mS2

mχ

)
(6.16c)

− 2yLyR cosψ sinψ cosφCPF5

(
mf

mχ
,
mS2

mχ

)}
. (6.16d)

Although, in general, both scalars S1 and S2 contribute, from now on, we limit
our discussion to the scenario in which S2 is very heavy and can be integrated out

94



6.2 Constraints from direct detection signals

from the low-energy theory. In practice, the moments are mainly generated by the
light scalar S1, as all further contributions are suppressed by some power of mS2

such that even a scalar mass-splitting of a factor of a few would be enough for the
contribution from S1 to be a good approximation for the whole amplitude. Therefore,
this assumption is well motivated except if the scalars are close in mass.
We can identify the relevant portal couplings in eq. (6.12) as

cL ≡ yL cosψ, cR ≡ yR sinψ. (6.17)

As we can interpret (cL, cR) as a vector in the plane of P-breaking couplings, it is
useful to express them in polar coordinates as

cL = c cos θ, cR = c sin θ, (6.18)

with radius c2 = c2
L + c2

R and P-violating angle tan θ = cR/cL = yR/yL tanψ. Then,
maximal P violation corresponds to cos θ = 0 or sin θ = 0. Finally, we express the
scalar mass using the mass-splitting parameter η = mS1/mχ > 1.

Thus, the toy model is characterized by the following set of parameters:

mχ, η, c, sin θ, sinφCP. (6.19)

6.2 Constraints from direct detection signals

In section 4.3, we calculated the model-independent rate matrices, which can be used
to translate limits on the EFT operators into limits on the parameter space of UV
models that generate these EM interactions. Here, we apply this formalism to derive
exclusion limits on the parameter space of our toy model. Similar analyses have been
carried out in refs. [225, 252, 388] for a simplified version of this toy model.
For ` = e, tree-level interactions with the bound electrons are introduced, leading

to an additional source of recoil signatures in the detectors; therefore, it is beyond
the scope of this analysis. Further, the toy model generates contributions to the
electron’s anomalous magnetic moment, translating into severe constraints on the
electron-philic couplings [225]. Also, for ` = µ, the toy model gives a contribu-
tion to the (g − 2)µ, which is of the opposite sign with respect to the discrepancy
between measurement and SM prediction [225] (see section 3.1 for an overview). In
contrast, the experimental limits on the dipole moments of the τ -lepton are signi-
ficantly weaker [389, 390], allowing room for BSM physics. Due to this freedom, we
consider the τ -philic version of the toy model for the remaining part of the analysis.
In principle, however, future experimental limits on the dipole moments of the τ -
lepton [391–395] could be used to infer complementary constraints on the τ -philic
toy model parameter space.
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For fixed values of sin θ and sinφCP we show in figs. 6.2 and 6.3 the regions in the
two-dimensional plane spanned by mχ and η−1 for which a given operator gives the
largest contribution to the overall signal rate for a specific experiment. We find that
the anapole is always suppressed compared to the other operators. Although within
the toy model, its numerical value is usually close to the value of the charge radius,
the experimental sensitivity to the charge radius operator is significantly stronger,
see figs. 4.3 and 4.4. As visualized in figs. 6.2 and 6.3, the assumption that only
one operator gives the dominant contribution at direct detection experiments is not
justified in a general setup. Further, which operator dominates depends not only
on the model parameters but also on the experiment. In particular, we find that
even relatively small values of the CP-violating angle, such as sinφCP ∼ 0.01, can
make the electric dipole contribution dominant for some experiments and for some
combinations of mχ and η − 1.
Therefore, we consider all four EM moments for calculating the exclusion limits

using the factorized rate equation in eq. (4.23). The EM moments µχ, dχ, Aχ and bχ
are calculated as a function of the toy model parameters summarized in eq. (6.19),
resulting in the number of events at the experiment E , N Esig. Using the statistical
methods outlined in appendix A, we derive exclusion limits on this parameter space
following the non-observation of DM events. We consider two phenomenologically
interesting cases: i) the case of maximal CP violation, and ii) a conservative scenario
with minimal signal count with respect to P- and CP violation.

Maximal CP violation

We choose the benchmark value of sinφCP = 1 for maximal CP violation. Further,
we set sin θ = 1/

√
2, corresponding to minimal P violation, as then cL = cR. Fur-

ther, we set the effective coupling c = 1; the limits for all but DS50 would rescale
appropriately as N Esig ∼ c4. For DS50, the situation is more complicated, as we
employ the background subtraction procedure to calculate the exclusion limits; see
appendix A for more details.
For these benchmark values, we derive the limits on η − 1 as a function of mχ,

which we present in fig. 6.4a. In this figure, we also present collider limits from τ̃
searches from LEP [361], ATLAS [396] and the model-independent constraints on
new light charged particles from the Z-width measurement [363].
Our analysis indicates that direct detection experiments can probe a large portion

of the parameter space; particularly, relatively large mass-splittings can be probed in
the CP-violating scenario. For instance, when the DM mass is around mχ ' 10 GeV,
the obtained limits rule out scalar masses of approximatelymS1 ' 10 TeV. Addition-
ally, we find that small mass-splittings in the range of η ' O(1.01− 1.1) for heavier
DM masses of mχ ' O(1− 10) TeV are excluded. This strong sensitivity arises
from the non-relativistic electric dipole operator being enhanced for low momenta,
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Figure 6.2: Dominant contribution to the LZ and XENON1T (NR) signal rate for
specific choices of P- and CP-violating angles as indicated in each panel.
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Figure 6.3: Same as fig. 6.2, but for XENON1T (Migdal) and PICO-60 (1st bin) .
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see section 4.3. Consequently, when sinφCP 6= 0, the electric dipole significantly
contributes to the overall signal rate, resulting in strong limits.

Conservative limits

Although the toy model we consider has only five free parameters, we have to resort
to some lower dimensional parameter space by fixing, for example, the angles and
c and then constraining the remaining parameters. We followed this approach for
the maximal CP-violating scenario above, where the angle choice was a phenomen-
ologically interesting edge case. In order to find more general conclusions about the
phenomenology, we could conduct parameter scans, as we did for the neutralino in
chapter 5. Here, we want to follow a different approach, resulting in conservative
limits on the toy model parameter space.
For this, we define the minimized signal rate

N Emin(mχ, η, c) = min
sin θ, sinφCP

N Esig(mχ, η, c, sin θ, sinφCP), (6.20)

which for every point in parameter space gives the minimal rate with respect to P-
and CP violation. Due to the complicated dependency on the couplings, angles, and
kinematic configurations, we determine this minimized rate numerically for calculat-
ing the exclusion limit; see appendix A for more details.
We present the minimized rate for the experiments under consideration in fig. 6.5 as

a function of mχ for η = 1.1. In each panel, the lower plot shows the solution for the
angles θ and φCP, which minimize the signal count. The upper plot shows the total
signal count in black, the different contributions from the four EM moments, and
the interference term between the charge radius and the magnetic moment. We find
that sinφCP = 0 always minimizes the rate. This behavior is expected as the electric
dipole does not interfere with other operators and is proportional to the CP-violating
angle. Thus, CP violation always increases the signal count. The P-violating case is
more complicated, and no general statements about its impact on the signal count
can be made. For mχ & 1 GeV and η = 1.1, we find that sin θ = −1/

√
2 leads to a

minimization for most experiments. For a different value of η, this relation changes.
We present the resulting exclusion limit in fig. 6.4b for c = 1. As we used the

minimal rate, these limits are conservative, as any increase in N Esig would result in
stronger constraints. Therefore, irrespective of the amount of P- or CP violation
in the toy model, the areas enclosed by the contours in the (mχ, η − 1) plane are
excluded. Even in this conservative approach, a relatively large region in parameter
space is excluded, extending to mχ ∼ 4 TeV for small mass-splittings η ∼ 1.01. Even
for mχ ∼ 1 TeV, scalar masses of mS1 ∼ 2 TeV are excluded, providing a robust and
complementary handle on the toy model parameter space.
In principle, further constraints on this toy model can be derived from indirect

detection searches; see, for example, refs. [251, 253, 295, 397, 398] for studies on
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Figure 6.4: 90% C.L. exclusion limits for a model with maximal CP violation (left)
and the P- and CP independent signal rate N Esig (right). In both cases, we set
c = 1. The blue and red areas show the results of stau searches by LEP [361] and
ATLAS [396], respectively. The orange area shows the constraint derived from the
decay width of the Z boson [363].

similar models. Such an analysis introduces further uncertainties, for example, from
modeling the DM halo, which makes general statements about the interplay of direct
detection, collider studies, and indirect detection experiments difficult.
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Figure 6.5: Each panel presents the signal count at a specific experiment for the
minimized signal rate. The dashed line for the interference contribution indicates
that this term is negative, leading to substantial cancellations for XENON1T (Mig-
dal) and DS50. Further, we present the corresponding solutions for the P- and
CP-violating angles in the respective lower sub-figures. For the DS50 experiment,
we present the total signal rate, i.e. we summed over all nine bins.
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Chapter 6 Dirac dark matter with electromagnetic moments

6.3 Constraints on the thermal relic

For our toy model, we can calculate the relic abundance Ωχh
2 within the stand-

ard freeze-out paradigm (see section 2.2) and interpret the measured relic density
ΩDMh

2 ' 0.12 [45] as a constraint, thereby fixing one of the UV model parameters.
In the regime outside the coannihilation region, the relic abundance of χ for the

case in which it interacts with either SL or SR is driven by the tree-level t-channel
annihilation diagrams depicted in fig. 6.6. The thermally averaged annihilation cross-
section can be written as (see e.g. refs. [252, 397, 399, 400])

〈σv〉 '
y4
L/R

32π

m2
χ

√
1− (mτ/mχ)2

(m2
χ +m2

L/R −m2
τ )2

. (6.21)

In the coannihilation region, i.e. if the mass-splitting between the initial states
is small, the processes X1X2 → X3X4, with Xi being bath-particles, can become
relevant. In particular, the process χS1,2 → X3X4 is enhanced for η . 1.2, for
which the EM moments are also large. This correlation offers an interesting interplay
between thermal production and the direct detection signature. As in this toy model,
DM possesses EM interactions, also processes mediated by the SM neutral gauge
bosons are constituents of the Boltzmann equations and should be included, as we
did in the EFT analysis in section 4.3.3.
To account properly for this large number of processes, we implement our model

in FeynRules [401–403] and use the public tool micrOMEGAs [368, 404] (which uses
CalcHEP [405] internally) to solve the Boltzmann equations numerically to obtain
the relic abundance of χ.
We want to provide some examples of how the relic density and direct detection

experiments can give complementary constraints on the parameter space of our toy
model. For the benchmark scenarios summarized in table 6.1, we use the measured
relic abundance of ΩDMh

2 ' 0.12 [45] to fix one of the Yukawa couplings yL/R of
the UV theory, which allows us to calculate the EM moments of χ. As the signal
events at the direct detection laboratories only depend on the EM moments (see
section 4.3), we then infer to which extent direct searches exclude this combination
of parameters.
The reason for choosing the gauge Yukawa couplings yL/R instead of cL/R is that

the relevant channels for thermal production inherently discriminate between the
left- and right-chiral leptons. E.g. the process χχ → τLτL is accompanied by the
annihilation diagrams χχ → ντντ , see fig. 6.6. This is not the case for χχ → τRτR,
as τR is a SM singlet. Therefore, taking yL/R as a free parameter gives control over
these distinct processes relevant to thermal production.
We present in fig. 6.7 the resulting exclusion plots for the benchmark scenarios

outlined in table 6.1 together with the same collider exclusion limits shown in fig. 6.4.
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Figure 6.6: Tree-level t-channel diagrams of DM annihilation for the tau-philic toy
model.

Benchmark yL yR sinψ sinφCP
B1 fixed 0 1/

√
2 0

B2 fixed 0.3 1/
√

2 0

B3 0 fixed 1/
√

2 0

B4 0.1 fixed 1/
√

2 0.1

B5 0.3 fixed 1/
√

2 1

B6 fixed 0.1 0.1 0.1

Table 6.1: Benchmarks for the two-dimensional scans of our simplified model. We
scan over the masses mχ and the lighter of the scalar soft masses mS1 and fix one
Yukawa coupling by requiring Ωχh

2 = ΩDMh
2 = 0.12 [45]. We assume that the

heavier scalar can be integrated out from the low-energy theory. The benchmarks
B1 and B3 have been investigated in ref. [252].

Further, the black contours indicate the value of

c =
√
c2
L + c2

R =
√
y2
L cos2 ψ + y2

R sin2 ψ (6.22)

required for thermal production via the freeze-out mechanism. The dot-dashed line
represents c = 0.1, the continuous line c = 0.4, the dashed line c = 1.0, and the
dotted line c =

√
4π, the perturbative limit. The dark shaded region in the lower

left corners corresponds to the cases for which DM is under-abundant, typically due
to too efficient coannihilations. This region is extended to larger values of η for
the benchmark scenario B2 (B5), as here the Yukawa coupling is set to yR = 0.3
(yL = 0.3), in which case also the annihilations are too efficient, depleting the DM
number density.
The presence of multiple dot-dashed countours in the lower left region in the

benchmark scenario B4 comes from the fact that the solution to c = 0.1 is not

103



Chapter 6 Dirac dark matter with electromagnetic moments

unique. For the value of sinψ in this benchmark scenario, the contour is defined
through c2 = 1

2(y2
L + y2

R). Therefore, yR = ±yL gives a solution on the contour
defined by c = yL (= 0.1). As the couplings control the interaction strength to the
left/right component of the τ -lepton, see eq. (6.12), they affect the corresponding
annihilation cross-sections involving τL/R. Thus, both solutions yR = +yL and
yR = −yL result in a distinct contour for c = 0.1 in the (mχ, η − 1)-plane.
Finally, the blue regions present the excluded regions from direct detection experi-

ments by combining XENON1T, LZ, and PICO-60.1 We find that for the benchmark
scenarios enumerated in table 6.1, the direct detection constraints rule out a signi-
ficant part of the parameter space of the thermal relic. In particular, the benchmark
with large CP violation (B5) is entirely ruled out. Further, the collider studies
severely constrain the low-mass region, which is not reachable by the direct detec-
tion experiments. Except for the benchmark B5, for a thermal relic, only DM masses
at the TeV scale with O(1) mass-splittings to the scalar field are not excluded, with
details depending on the benchmark considered. In all benchmarks, we find that the
processes due to the EM moments, such as the s-channel diagram in fig. 4.5, at best
contribute at the percent level.
In principle, there could be regions in parameter space where both production

mechanisms—freeze-in and freeze-out—play a complementary role [406–408]. Fur-
ther, as pointed out in ref. [408], the presence of multiple DM candidates in the
dark sector can alter the production history substantially, in particular if the heavier
state(s) can decay into the lighter. This constitutes an additional source term in
the Boltzmann equation for the lightest DM state, effectively rendering its coupling
to the SM arbitrary. In such a scenario, the halo DM particles could have large
couplings to the SM, which would give large signals in terrestrial direct detection
facilities. In the standard freeze-out paradigm, such a coupling would likely lead to
underproduction and, therefore, be considered excluded.

1As in section 4.3.4, we followed ref. [279] for combining the experimental constraints.
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Figure 6.7: Parameter scan for the benchmark scenarios listed in table 6.1, where
we fixed either yL or yR (with c2 = c2

L + c2
R) for thermal production of χ via freeze-

out. We also add the collider constraints already shown in fig. 6.4. The blue-shaded
region is the combined exclusion limit from LZ, XENON1T, and PICO-60; see the
main text for details.
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Chapter 7

Electromagnetic moments of neutrinos

Most of this dissertation focused on the EM moments of Dirac- and Majorana DM
candidates and their corresponding direct detection phenomenology.
In this chapter, we aim to use the general results derived in chapter 3 to calculate

the EM properties of neutrinos within the framework of the minimally extended SM
and other common BSM scenarios. Additionally, we explore the case of a dark sector,
in which dark moments of the active neutrinos are generated.

7.1 General remarks about neutrino electromagnetic
moments

7.1.1 Overview of neutrino EM interactions

In the SM, neutrinos are massless neutral fermions that interact with a photon exclus-
ively through the dimension-6 operators. BSM contributions, however, can enhance
all EM interactions, making the study of neutrino EM properties a valuable probe
for new physics. Depending on the specific BSM scenario, these enhancements can
arise either as direct consequences of the neutrino mass-generation mechanism [228,
261, 409–412] or from other BSM frameworks, including left-right symmetric mod-
els [413–417], supersymmetric theories [416, 418, 419], leptoquark models [420], and
various other proposals [421–426]. Further, two-photon interactions of neutrinos can
also be generated [427], which are beyond the scope of this work. For a comprehens-
ive review of the general properties of neutrino EM moments and their implications,
see ref. [223].
The EM moments of neutrinos have different experimental signatures: In the limit

of very light neutrinos, the magnetic moment flips the neutrino helicity, prevent-
ing interference terms with weak interactions for 2→ 2 scattering events [428]. This
results in an additional term in the cross-section, which scales inversely with the neut-
rino energy, providing a unique spectral feature. In contrast, in the same limit, the
anapole moment can be interpreted as a shift in the vector coupling or, equivalently,
as a modification of the weak mixing angle [429]. Therefore, precise measurements
of the weak mixing angle at small scales can probe the anapole moment [430, 431].
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As mentioned in the general introduction to the EM moments in section 3.1,
historically, calculating the anapole moment and the charge radius of neutrinos was
challenging. The problem was, that a naive evaluation of the triangle diagrams leads
to a gauge-dependent and UV-divergent expression [185–190, 192–195]. In fact, a
direct calculation in the linear ξ gauge results in an anapole moment [1]

A ∼ ε−1
UVξ + · · · , (7.1)

with εUV being the small dimensional shift originating from dimensional regulariza-
tion of the one-loop integral. As the SM is renormalizable and there is no correspond-
ing counter term, this result cannot be a physical and thus measurable quantity. By
considering the vertex-like topologies of the one-loop amplitude of a 2→ 2 process,
it was realized in refs. [190, 192–194], that the unphysical terms from the triangle-
and box diagrams cancel each other, resulting in a physical expression for the ana-
pole and charge radius. Hereby, the Pinch Technique (PT) played a pivotal role,
allowing the reassignment of sub-amplitudes diagrammatically. Equivalently, the
background field formalism can be employed, in which the amplitude is evaluated in
the background Feynman gauge [239–241].
Nowadays, the charge radius (or anapole moment) of the neutrino is its EM prop-

erty closest to being measured. From reactor anti-neutrino-electron scattering events,
the TEXONO collaboration obtained limits on the effective charge radius of the elec-
tron anti-neutrinos [432], which read in our convention

−3.5× 10−33 cm2 < (bee)eff. < 5.5× 10−33 cm2, (7.2)

where (bee)eff. = bee +Aee is the effective charge radius of the electron anti-neutrino.
As discussed in section 3.3, the EM moments of anti-fermions can be related to the
EM moments of fermions, such that we can identify (bee)eff. = −bee+Aee = −(bee)eff.;
see also ref. [429].
Meanwhile, the canonical prediction in the minimally extended SM is (bee)eff. '

4.14 × 10−34 cm2, see sections 7.2.1 and 7.2.2. As evident, the theory prediction is
roughly one order of magnitude below the current experimental limit and constitutes
a good observable for models beyond the SM akin to the anomalous magnetic moment
of the muon. Therefore, experimental constraints on the effective charge radius of
neutrinos will constitute a novel avenue to probe new physics.
The situation for the dipole moments is different. Using solar neutrinos, XEN-

ONnT obtained the leading limits on the effective magnetic dipole moment [433]

(µee)eff. < 6.4× 10−12 µB ' 1.9× 10−9 GeV−1, (7.3)

where (µee)eff. = µee − idee. The same diagrams, which resulted in a relatively large
effective charge radius, predict µαα ' 3.2 × 10−19

(
mν
1 eV

)
µB for a Dirac neutrino
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in the minimally extended SM. Here, the theory prediction and the experimental
constraints separate seven orders of magnitude.
In addition to these two experimental studies, other experiments and analyses

provide constraints on the EM properties of neutrinos. These include studies of solar
neutrinos in underground laboratories [434–439], coherent elastic neutrino-nucleus
scattering (CEνNS) [440–444], reactor experiments [445–448], collider searches [449–
453], and beam dump experiments [454–456]. Astrophysical observations [457–467]
and cosmological analyses [458, 468] also provide constraints, alongside other ideas
to probe the neutrino EM properties [469–471]. It is crucial to note that comparing
these different bounds is not straightforward because experiments are typically sens-
itive to some effective EM moment instead of the canonical moments M defined in
the neutrino mass basis.
Recently, the xenon-based DM direct detection experiments XENONnT [138] and

PandaX-4T [139] have reported the first nuclear recoil measurements of solar neut-
rinos via CEνNS. These results demonstrate their potential as neutrino telescopes
and open up new avenues for exploring neutrino properties [145, 472], particularly
their EM moments [437, 473]. These experimental advancements underscore the im-
portance of understanding the theoretical predictions of extensions of the SM for the
EM moments of neutrinos.

7.1.2 Assessment of the theory prediction

Before discussing the EM moments of light neutrinos in various models, we first ana-
lyze the behavior of the loop functions to better understand their overall dependence
on model parameters.
As active neutrinos are very light, mν ∼ 1 eV [45, 474–476], we can use the loop

functions for light external states discussed in section 3.4.3 to calculate the EM
moments of neutrinos.
In fig. 7.1, we present the relevant loop functions for scalar- and vector-mediated

one-loop processes that generate the EM moments as functions of the bosonic mass
parameter mS or mV . We consider the range 10 GeV < mS,V < 10 TeV, motivated
by the weak-scale and collider constraints, typically constraining new physics to be
above the TeV-scale.
We present the scenario for masses of mα = 0 and mβ = 1 eV in the top row,

showing the behavior for active neutrinos qualitatively. In the bottom row, we show
the loop functions formα = 0 andmβ = 100 keV, where the state β could be a sterile
neutrino. The continuous, dashed, and dotted lines indicate an electron, muon, or
tau in the loop. Note that the loop functions associated with the dimension-5 and
dimension-6 operators have units of GeV−1 and GeV−2, respectively.

For light external states, the functions FS,Vµ,d and G
S,V
A,b are relatively small, because

they are proportional to (mα ± mβ). This behavior is the primary reason for the
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Figure 7.1: Loop functions in the limit of light external states for mα = 0 and
mβ = 1 eV (mβ = 100 keV) in the top (bottom) panel; in the left panel we show
the scalar loop functions XSM (X = F,G), and in the right panels the vector loop
functions XVM. The units are GeV−1 (GeV−2) for the dimension-5 (dimension-6)
loop functions, and the continuous, dashed, and dotted lines indicate, respectively,
the contribution from an electron, muon, and tau lepton.

strong suppression of neutrino dipole moments in the minimally extended SM, as
we will see when discussing the theoretical predictions in sections 7.2.1 and 7.2.2.
Conversely, FS,VA,b and G

S,V
µ,d do not exhibit such strong suppression. These functions

correspond to the anapole and charge radius operators (FS,VA,b ), as well as the con-
tributions to dipole moments where the helicity flip occurs within the loop (GS,Vµ,d ).
The latter is proportional to the internal fermion mass, which is in fig. 7.1 the lepton
mass m`. Further, FS,Vµ,d is typically insensitive to the fermion mass in the loop, as
these terms are suppressed by factors of m2

f/m
2
S/V .

Therefore, just by analyzing the general loop functions for light neutrino, we can
deduce that due to the hierarchy in mass scales, the dipole moments (anapole moment
or charge radius) can only receive significant contributions if the G

S,V
µ,d (FS,VA,b ) term

is large.

110



7.2 Neutrino electromagnetic moments within the SM

Consequently, the EM moments of neutrinos can be enhanced if at least one of the
following conditions is satisfied:

• Light degrees of freedom in the loop, e.g. small mS,V ,

• Dipole moments: large couplings cjL/R(ciR/L)∗ or vjL/R(viR/L)∗,

• Anapole and charge radius: large couplings cjL/R(ciL/R)∗ or vjL/R(viL/R)∗.

As discussed in section 3.4.3, the dimension-5 and dimension-6 loop functions for
the scenario of light external masses are related straightforwardly, cf. eq. (3.62).
Therefore, in this chapter, we mainly focus on the magnetic dipole moments and
anapole moments of neutrinos. We comment on the phenomenological implications
of including all relevant EM moments in section 7.3.6.

7.2 Neutrino electromagnetic moments within the SM

7.2.1 SM Dirac neutrino

To understand the relevant scale set by the SM, we first revisit the calculation of
the EM moments of active Dirac neutrinos within the minimally extended SM. The
relevant part of the Lagrangian reads [228]

L =
g√
2

∑

`

[
ν̄`γ

µPL`W
+
µ − ν̄`

(
m`

mW
PR −

mα

mW
PL

)
`G+

]
+ h.c.

=
g√
2

∑

`

∑

α

U∗`αν̄α

[
γµPL`W

+
µ −

(
m`

mW
PR −

mα

mW
PL

)
`G+

]
+ h.c., (7.4)

where W+ is the weak gauge boson with mass mW , G+ is its associated Goldstone
boson, g = e/ sin θW ' 0.44 is the weak coupling constant, mα is the mass of the
neutrino mass eigenstate να, and m` is the mass of the lepton ` which has charge
Q` = −1 for ` = e, µ, τ . Finally,

U`α =




1 0 0
0 c23 s23

0 −s23 c23






c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13





c12 s12 0
−s12 c12 0

0 0 1


 (7.5)

is the unitary PMNS [477] lepton mixing matrix for Dirac neutrinos. Here, sij =
sin(θij) and cij = cos(θij) with 0 ≤ θij ≤ π/2 being the mixing angles and δCP is the
CP-violating Dirac phase.
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Chapter 7 Electromagnetic moments of neutrinos

As we calculated all EM moments in chapter 3 in full generality, we only have to
read off the couplings in the canonical parameterization for the scalar- and vector
interaction of eq. (3.45) and eq. (3.46) respectively. They read:

vαL =
g√
2
U∗`α, vαR = 0, (7.6a)

cαL =
g√
2
U∗`α

mα

mW
, cαR = − g√

2
U∗`α

m`

mW
. (7.6b)

The corresponding one-loop diagrams are depicted in fig. 7.2. We find for the EM
moments

(Mβα)` = − eGF

8
√

2π2
U∗`βU`α

{(
mαmβ ±m2

`

)
FSM

(
m`

mα
,
mW

mα
,
mβ

mα

)

−m`(mβ ±mα)GSM

(
m`

mα
,
mW

mα
,
mβ

mα

)

+m2
WFVM

(
m`

mα
,
mW

mα
,
mβ

mα

)
, (7.7)

where GF =
√

2g2/8m2
W is the Fermi constant. Particularizing eq. (7.7) to the dipole

moments, we find at leading order in mα,β [228, 234, 261, 478]

µ`βα =
eGF

32
√

2π2
(mα +mβ)U∗`βU`α

−2 + 7r2 − 6r4 + r6 + 4r4 log r

(−1 + r2)3
, (7.8a)

d`βα = −i eGF

32
√

2π2
(mα −mβ)U∗`βU`α

−2 + 7r2 − 6r4 + r6 + 4r4 log r

(−1 + r2)3
, (7.8b)

where r = m`/mW and we used the loop functions summarized in appendix B.4.
At leading order in r and after summing over all lepton generations, this reduces to

µβα =
3eGF

16
√

2π2
(mα +mβ)


δαβ −

1

2

∑

`=e,µ,τ

U∗`βU`α
m2
`

m2
W


 , (7.9a)

dβα = −i 3eGF

16
√

2π2
(mα −mβ)


δαβ −

1

2

∑

`=e,µ,τ

U∗`βU`α
m2
`

m2
W


 , (7.9b)

where we used
∑

` U
∗
`βU`α = δαβ . This relation may change with additional sterile

neutrinos; see ref. [223].
As evident from eq. (7.9), the off-diagonal elements are suppressed by factors of

m2
`/m

2
W . 5× 10−4m2

`/m
2
τ with respect to the diagonal dipole moments akin to the

GIM mechanism of flavor-changing neutral currents for quarks [479].
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Figure 7.2: Diagrams contributing to the EM moments of neutrinos within the (min-
imally extended) SM in the background field formalism. The neutrinos can be both
Dirac or Majorana; in the latter case, the conjugated diagrams should also be con-
sidered.

For the anapole moment and charge radius, we proceed similarly, i.e. we take the
loop functions presented in appendix B.4 and expand them up to lowest orders in
mα,β and r. This results in [2, 189, 190, 480]

Aβα = − eGF

24
√

2π2


3δαβ − 2

∑

`=e,µ,τ

U∗`βU`α log

(
m2
`

m2
W

)
 , (7.10a)

bβα =
eGF

24
√

2π2


3δαβ − 2

∑

`=e,µ,τ

U∗`βU`α log

(
m2
`

m2
W

)
 . (7.10b)

Therefore, the charge radius and anapole are—up to a sign and terms proportional
to mαmβ/m

2
W—equivalent. In contrast to the dipole moments, for the dimension-6

transition moments, the factors m2
`/m

2
W enter only via the logarithm.

As active neutrinos are relativistic and left-chiral, it is typically a good approx-
imation to set γ5 ' −1 in the interaction vertex given in eq. (3.8). Therefore, the
dimension-6 part of the vertex can be interpreted as being purely of charge radius
type (or equivalently purely of anapole type), with coupling (bβα)eff. = bβα −Aβα '
2bβα. Similarly, the dimension-5 operators compose together an effective magnetic
moment (µβα)eff. = µβα − idβα. As we will see below, for Majorana neutrinos, the
anapole moment is twice that of a Dirac neutrino, such that the dimension-6 in-
teractions of Dirac- and Majorana neutrinos with the photon are experimentally
indistinguishable, as any corrections are neutrino-mass suppressed [481].
Before discussing the Majorana results, we briefly summarize the strength of the

diagonal EM interactions of Dirac neutrinos within the minimally extended SM:

µαα ' 9.5× 10−17
( mα

1 eV

)
GeV−1 ' 3.2× 10−19

( mα

1 eV

)
µB, dαα ' 0, (7.11)

with transition moments being suppressed by further factors of m2
`/m

2
W due to the

GIM mechanism as explained above. The anapole moments and the charge radius
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read
Aβα =

∑

`=e,µ,τ

U∗`βU`αA`` ' −bβα, (7.12)

with [190, 480]

A`` ' diag (−5.37,−3.11,−1.93)× 10−7 GeV−2 (7.13a)

' diag (−2.07,−1.20,−0.74)× 10−34 cm2, (7.13b)

such that

Aβα '




−4.35 −1.35 0.66 + 0.02i
−1.35 −3.41 −0.26 + 0.01i

0.66− 0.02i −0.26− 0.01i −2.65


× 10−7 GeV−2, (7.14)

where we used for the PMNS mixing matrix the central values θ12 = 33.68◦,
θ23 = 48.5◦, θ13 = 8.52◦ and δCP = 177◦ for normal mass ordering [78]. The imagin-
ary parts are due to δCP 6= πZ.

7.2.2 SM Majorana neutrino

Obtaining the EM multipole moments of Majorana neutrinos generated by the same
loops as the Dirac case is also straightforward using the general formulas derived in
section 3.3.2. There, we found that the EM moments of Majorana fermions can be
expressed as

(MS,V
ji )M = (MS,V

ji )D ∓ (MS,V
ji )D(ci,jL/R → (ci,jL/R)∗, vi,jL/R → (vi,jL/R)∗), (7.15)

where the upper and lower signs correspond to M = µ, b and M = d,A, respectively.
Using the results for the Dirac EM moments of the previous section, we find (see
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ref. [234] for a derivation of the dipole moments using this notation)

µν
M

βα = i
3eGF

8
√

2π2
(mα +mβ)

∑

`

Im(U`αU
∗
`β)

(
1− 1

2

m2
`

m2
W

)

= −i 3eGF

16
√

2π2
(mα +mβ)

∑

`

Im(U`αU
∗
`β)

m2
`

m2
W

, (7.16a)

dν
M

βα = −i 3eGF

8
√

2π2
(mα −mβ)

∑

`

Re(U`αU
∗
`β)

(
1− 1

2

m2
`

m2
W

)

= i
3eGF

16
√

2π2
(mα −mβ)

∑

`

Re(U`αU
∗
`β)

m2
`

m2
W

, (7.16b)

AνMβα =
eGF

6
√

2π2

∑

`

Re(U`αU
∗
`β)

(
−3 + 2 log

(
m2
`

m2
W

))
, (7.16c)

bν
M

βα = −i eGF
6
√

2π2

∑

`

Im(U`αU
∗
`β)

(
−3 + 2 log

(
m2
`

m2
W

))
, (7.16d)

where the neutrino mixing matrix is given by

U = UDDM, (7.17)

with the Dirac lepton mixing matrix UD given in eq. (7.5), and the diagonal matrix

DM = diag
(
1, eiφ21 , eiφ31

)
(7.18)

containing the physical Majorana CP phases φα.
As mentioned in section 3.3.2, instead of setting all creation phases λi to unity, we

can keep them explicit, resulting in modified reversed diagrams [209, 226, 228, 258,
261], in which case, eq. (3.56) can be cast as

MM = MD ∓ λif ×MD
(
c̃L/R → (c̃L/R)∗, ṽL/R → (ṽL/R)∗

)
, (7.19)
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which is eq. (3.59). Following this convention, the EM moments read

(
µν

M

βα

)`
=

3eGF

16
√

2π2
(mα +mβ)U`αU

∗
`β

(
1− 1

2

m2
`

m2
W

)[
1− λ∗αλβU

∗
`αU`β

U`αU
∗
`β

]
, (7.20a)

(
dν

M

βα

)`
= −i 3eGF

16
√

2π2
(mα −mβ)U`αU

∗
`β

(
1− 1

2

m2
`

m2
W

)[
1 +

λ∗αλβU
∗
`αU`β

U`αU
∗
`β

]
,

(7.20b)
(
AνMβα

)`
=

eGF

12
√

2π2
U`αU

∗
`β

(
−3 + 2 log

(
m2
`

m2
W

))[
1 +

λ∗αλβU
∗
`αU`β

U`αU
∗
`β

]
, (7.20c)

(
bν
M

βα

)`
= − eGF

12
√

2π2
U`αU

∗
`β

(
−3 + 2 log

(
m2
`

m2
W

))[
1− λ∗αλβU

∗
`αU`β

U`αU
∗
`β

]
. (7.20d)

Thus, to some extent, eq. (7.20) can be considered to be more general than the
expressions shown in eq. (7.16), as by using the arbitrariness of the creation phases,
we can set λα = 1 for all α. Then, we reproduce the result from eq. (7.16). However,
the fraction in the square brackets is invariant under rephasing [258, 259]. It holds in
the formalism in which λα is set to unity, in which case the neutrino mixing matrices
are complex, or in which the phases are absorbed, and the lepton mixing matrix can
be made real [258].
If we assume that CP is conserved, we note that the condition of CP invariance of

the charged current in eq. (7.4) leads to the requirement that [258, 261]

U`α = U∗`αη
∗
Ξ(α). (7.21)

One finds after some algebra that the invariant quantity we encountered in eq. (7.20)
can be simplified as [261]

λ∗αλβU
∗
`αU`β

U`αU
∗
`β

=
λαηΞ(α)

λβηΞ(β)
=
η̃Ξ(α)

η̃Ξ(β)
, (7.22)

where η̃Ξ(α) = λαηΞ(α) = ±i, with ηΞ(α) being the CP phase of νMα . Then, the EM
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moments can be expressed as [258, 261]

µν
M

βα = − 3eGF

32
√

2π2
(mα +mβ)

∑

`

U`αU
∗
`β

m2
`

m2
W

[
1−

η̃Ξ(α)

η̃Ξ(β)

]
, (7.23a)

dν
M

βα = i
3eGF

32
√

2π2
(mα −mβ)

∑

`

U`αU
∗
`β

m2
`

m2
W

[
1 +

η̃Ξ(α)

η̃Ξ(β)

]
, (7.23b)

AνMβα =
eGF

12
√

2π2

∑

`

U`αU
∗
`β

(
−3 + 2 log

(
m2
`

m2
W

))[
1 +

η̃Ξ(α)

η̃Ξ(β)

]
, (7.23c)

bν
M

βα = − eGF

6
√

2π2

∑

`

U`αU
∗
`β log

(
m2
`

m2
W

)[
1−

η̃Ξ(α)

η̃Ξ(β)

]
. (7.23d)

From the expressions in eq. (7.23), it is clear that for Majorana neutrinos, only a
diagonal anapole moment exists, which has twice the value of the anapole moment of
a Dirac neutrino. Further, depending on the relative CP eigenvalues, only transition
electric (magnetic) moments and transition anapole moments (charge radii) can exist,
which are twice the value as for the Dirac case [226–228]. This observation implies
that Majorana neutrinos can have a transition electric dipole moment even if CP is
conserved [262, 482].
If the Majorana neutrinos are CP eigenstates, the Majorana neutrino mixing mat-

rix U can be written as [223, 483]

U`α = O`αeiφα (7.24)

with O being a orthogonal matrix and φα the Majorana CP phases. They are related
to the CP eigenvalues as e−2iφα = η̃Ξ(α) due to the fact that the charged current in
eq. (7.4) remains invariant under rephasing [258, 259]. Thus, the relevant product of
the neutrino mixing matrices we encountered in the previous discussion, for example
in eq. (7.23), simplifies to

U`αU
∗
`β = O`αO`β

√
η̃Ξ(β)

η̃Ξ(α)
. (7.25)

In particular, eq. (7.25) implies, that the product U`αU∗`β is either purely real
(η̃Ξ(α)/η̃Ξ(β) = 1), or purely imaginary (η̃Ξ(α)/η̃Ξ(β) = −1) [482]. Now, we are in
a position to compare both formalisms:
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Without creation phases

Plugging eq. (7.25) into eq. (7.16), we find that

µν
M

βα ∼ −
i

16
Im

(√
η̃Ξ(β)

η̃Ξ(α)

)
, dν

M

βα ∼
i

16
Re

(√
η̃Ξ(β)

η̃Ξ(α)

)
, (7.26a)

AνMβα ∼
1

6
Re

(√
η̃Ξ(β)

η̃Ξ(α)

)
, bν

M

βα ∼ −
i

6
Im

(√
η̃Ξ(β)

η̃Ξ(α)

)
, (7.26b)

where we dropped the masses, mixing matrices and couplings.

With creation phases

Using the parameterization given in eq. (7.25), eq. (7.23) becomes

µν
M

βα ∼ −
1

32

√
η̃Ξ(β)

η̃Ξ(α)

[
1−

η̃Ξ(α)

η̃Ξ(β)

]
, dν

M

βα ∼
i

32

√
η̃Ξ(β)

η̃Ξ(α)

[
1 +

η̃Ξ(α)

η̃Ξ(β)

]
, (7.27a)

AνMβα ∼
1

12

√
η̃Ξ(β)

η̃Ξ(α)

[
1 +

η̃Ξ(α)

η̃Ξ(β)

]
, bν

M

βα ∼ −
1

6

√
η̃Ξ(β)

η̃Ξ(α)

[
1−

η̃Ξ(α)

η̃Ξ(β)

]
. (7.27b)

For the possible relative CP eigenvalues of η̃Ξ(α)/η̃Ξ(β) = ±1, we can confirm that
both approaches give the same results for the SM-like EM moments of Majorana
neutrinos.
In principle, additional diagrams may contribute, depending on the mass gener-

ation of the neutrino masses [228, 261, 410, 411]. For example, the charged Higgs
component of a Higgs triplet—which gives rise to the Majorana masses—may in-
crease the dipole moments significantly [228]. We discuss this scenario in more detail
in section 7.3.1. Therefore, comparing the SM contribution of Majorana- and Dirac
EM moments is generally tricky.
We conclude that the dipole moments generated by SM particles are well below

the experimental reach for both Dirac- and Majorana neutrinos. The reason is that
the dipoles are proportional to the neutrino masses, µ, d ∼ (mα ±mβ), due to the
chirality flip on the external leg. In the language of the Lagrangians, this property
originates from the absence of any right-handed current, resulting in the term ∼ G

S,V
M

vanishing. As mentioned in section 7.1.2, this term could result in large predictions
for the dipole moments. Meanwhile, the weak gauge bosons suppress the anapole and
charge radius, as we found them to be proportional to Fermi’s constant, A, b ∼ ±GF .
In contrast to the neutrino mass suppression we encountered for the dipole moments,
this suppression is not as severe, explaining the relatively large SM prediction.
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Figure 7.3: Diagrams contributing to the EM moments of Majorana neutrinos within
the triplet extended SM.

7.3 Neutrino electromagnetic moments beyond the SM

7.3.1 Majorana neutrino with a Higgs triplet

A crucial difference between Dirac- and Majorana neutrinos is the inherently different
mass mechanism, introducing a model-dependence in the estimation of their EM
moments.
Following ref. [228], we discuss here the effect of a Higgs triplet on the EM mul-

tipoles of Majorana neutrinos. In addition to the diagrams that are present for the
Dirac case and were discussed in section 7.2.2, the single-charged Higgs component
B+ contributes to the EM moments of the neutrinos via the diagrams shown in
fig. 7.3.
The relevant portal interaction reads [228]

L ⊃ g√
2mW

∑

α,`

ν̄αU
∗
`α [m` tanαPR +mα cotαPL] `B+ + h.c., (7.28)

with mixing angle tanα =
√

2v3/v2, where v3 (v2) is the vev of the triplet (doublet),
satisfying

v2 = v2
2 + 2v2

3 ' (246 GeV)2. (7.29)

Experimentally, the vev of the Higgs triplet is expected to be at the GeV scale,
v3 ∼ (1− 8) GeV [484], resulting in a small mixing angle tanα ' O(0.005− 0.05).
Further,

B+ = − sinαφ+ + cosαH+ (7.30)

is the orthogonal combination of the charged Higgs components. Meanwhile,

S+ = cosαφ+ + sinαH+ (7.31)

is the unphysical Goldstone boson identified with the longitudinal mode of the W
boson, S+ = G+.
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Assuming CP-invariance, this additional contribution may be written for the mag-
netic dipole moment as

µtrip.βα = − e

32π2

{[
cβ`L (cα`L )∗ + cβ`R (cα`R )∗

]
FSµ

(
m`

mα
,
mB+

mα
,
mβ

mα

)

+
[
cβ`L (cα`R )∗ + cβ`R (cα`L )∗

]
GSµ

(
m`

mα
,
mB+

mα
,
mβ

mα

)]}[
1−

η̃Ξ(α)

η̃Ξ(β)

]
,

(7.32)

with

cα`L =
g√

2mW

U∗`αmα cotα, cα`R =
g√

2mW

U∗`αm` tanα, (7.33)

and similar expressions for the other EM moments. Expanding in mα,β/mW and
introducing x` = m`/mB+ , we find [228]

µtrip.βα =
eGF (mα +mβ)

32
√

2π2

∑

`

U`αU
∗
`β

x2
`

(1− x2
` )

3
×

×
[
4
(
x2
` − 1

) (
x2
` − 2 log(x`)− 1

)

+ tan2(α)
(
x4
` − 4x2

` log(x`)− 1
)] [

1−
η̃Ξ(α)

η̃Ξ(β)

]
. (7.34)

For the transition case (α 6= β), we can parameterize the relative enhancement of
the magnetic dipole moment due to a BSM contribution as [228]

µSMβα + µBSMβα

µSMβα
=

(ce + cµ)F (0) + cτF (mτ ) + FBSM

(ce + cµ)F (0) + cτF (mτ )
(7.35a)

=
F (mτ )− F (0) + c−1

τ FBSM

F (mτ )− F (0)
, (7.35b)

where c` = U∗`βU`α and F (m`) ' 1 − 1
2m

2
`/m

2
W . For the Higgs triplet, the BSM

contribution expanded to the lowest order in x` � 1 reads

F trip. ' 1

6

∑

`

c`x
2
`

(
4 + 4 log

(
x2
`

)
− tan2 α

)
. (7.36)

To estimate its size, we note that the contribution from the τ -lepton dominates, so
it is a reasonable approximation to drop the contributions from the light leptons.
Therefore, we can approximate

F trip. ' cτ
2

3

m2
τ

m2
B+

(
1 + log

(
m2
τ

m2
B+

))
, (7.37)
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Figure 7.4: Increase in the transition magnetic moment of Majorana neutrinos in the
SM with an additional Higgs triplet. The result is practically independent of tanα.

where we also dropped the term proportional to tan2 α � 1. Thus, the normalized
BSM contribution reads [228]

1 +
µtrip.βα

µSMβα
' 1− 4m2

W

3m2
B+

(
1 + log

(
m2
τ

m2
B+

))
> 1, (7.38)

where we used that
∑

` U
∗
`αU`β = 0 and the fact that me,mµ � mW ,mB+ and only

kept terms up to O
(
m2
τ/m

2
B+

)
. In this limit, the result becomes independent of the

neutrino mixing matrix.
We show in fig. 7.4 this contribution to the SM magnetic dipole moment as a

function of the charged Higgs mass mB+ . We see that the magnetic dipole moment
is enhanced by up to roughly two orders of magnitude for mB+ ∼ 10 GeV, enhancing
the corresponding decay rate by a factor of ∼ 104.
The enhancement on the diagonal magnetic dipole moment depends on the mixing

angles, as the sum over the lepton species now reads
∑

` U
∗
`αU`α = 1, leading to terms

∼ (U∗ταUτα)−1 appear in the numerator and denominator of eq. (7.38).
For the anapole moment, we find

Atrip.
βα = − eGF

48
√

2π2
tan2 α

∑

`

U`αU
∗
`βx

2
`

3− 3x2
` + (2 + x2

` ) log
(
x2
`

)

(1− x2
` )

2

[
1 +

η̃Ξ(α)

η̃Ξ(β)

]
,

(7.39)
which is suppressed as ∼ x2

` tan2 α and, therefore, negligible.
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Chapter 7 Electromagnetic moments of neutrinos

7.3.2 Left-right symmetric model

As another example, we can calculate the EM moments of Majorana neutrinos within
a left-right symmetric model. The simplest weak gauge group with this idea is
SU(2)L × SU(2)R ×U(1)B−L, for details of the model, see for example refs. [261,
485].
The relevant part of the Lagrangian reads [485]

L ⊃ g√
2
ν̄γµ [cos ξKLPL − sin ξKRPR] `W †1µ

+
g√
2
ν̄γµ [sin ξKLPL + cos ξKRPR] `W †2µ + h.c., (7.40)

where ξ denotes the mixing angle between the gauge bosons WL and WR, W1 and
W2 are the associated mass eigenstates, and the mixing elements of the vertices read

KL = V ν†
L V `

L, KR = V ν†
R V `

R, (7.41)

where the 3×3 matrices V `
L/R diagonalize the charged leptons `L/R, and the neutrino

mixing matrices are such that the 6× 6 matrix

V ν =

(
V ν∗
L

V ν
R

)
(7.42)

diagonalizes the neutrinos as

ν`R = V ν
`ανRα, ν`L = V ν∗

`α νLα, (7.43)

where V ν
L/R are 6×3 mixing matrices. Finally, the physical Majorana neutrino states

are
ν = νL + νR = νc. (7.44)

Due to the experimental limits on WR, the heavier mass eigenstate W2 has to
be heavier than ∼ 2 TeV [486] (see also the discussion and references in ref. [261]),
such that this contribution is mass-suppressed as ∼ m2

W1
/m2

W2
w.r.t. the SM-like

contribution due to the W1 term in eq. (7.40). Further, the FVM terms now also
receive contributions from the right-chiral interaction with coefficient proportional
to v2

R ∼ sin2 ξ < 2× 10−5 [487], which is therefore negligible.
In principle, contributions from the two Higgs triplets and the Goldstone bosons as-

sociated with the interaction of eq. (7.40) should be considered. However, the former
contribute similarly to the discussion in section 7.3.1, and the latter is negligible at
the lowest order, as their couplings are suppressed by ∼ mν/mW1 or m`/mW1 with
respect to the interaction of eq. (7.40), as here the couplings are gauge couplings. We
found a similar hierarchy in the SM, where at lowest order, the vector contributions
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7.3 Neutrino electromagnetic moments beyond the SM

FVM and GVM are dominant, cf. eq. (7.7). Thus, we focus on the diagrams with vector
bosons to estimate the EM moments in the left-right symmetric model.
The crucial difference in this scenario with respect to the SM is the presence of the

right-chiral current in eq. (7.40), giving rise to a non-zero ∼ GVM term, which could
give large contributions according to the discussion in section 7.1.2.
At the lowest order in m` and mα,β , the magnetic dipole moment reads

µLRβα ' i
eGF√

2
cos ξ sin ξ

∑

`

m` Im [(KL)`β(K∗R)`α + (KR)`β(K∗L)`α] . (7.45)

In the manifest left-right symmetric model V `
L = V `

R, such that eq. (7.45) simplifies
to

µLRβα ' i
eGF√

2
cos ξ sin ξ

∑

`

m` Im [(V ν∗
L )`β(V ν

R)`α + (V ν∗
R )`β(V ν

L )`α] . (7.46)

The expression in eq. (7.46) is consistent with the results presented in ref. [415],
where they utilized the formalism in which the creation phases are factored out to
compute the decay widths of neutrinos in the left-right symmetric model assuming
CP conservation. In contrast to their results, however, we are not limited to the
CP-conserving scenario and thus also predict an electric dipole moment, which can
be obtained by making the according replacements in eq. (7.46), cf. section 3.4.3.
As pointed out in refs. [261, 415], for active neutrinos eq. (7.46) may still be small

owing to the small gauge boson mixing sin ξ and the small right neutrino mixings with
active neutrinos—at least in the see-saw paradigm. The latter parameter, however,
can be large if one of the neutrinos is sterile, i.e. if να = νs or νβ = νs. As the dipole
moments are linked to the radiative decay, this would, in turn, give rise to enhanced
decays νs → ν + γ in left-right symmetric models [488].
The anapole moment and charge radius, on the other hand, do not receive signi-

ficant contributions, as also here the suppression of v2
R ∼ sin2 ξ renders the new term

∼ FVA,b negligible. The GVA,b term is suppressed by the light neutrino mass scale, as
discussed in section 7.1.2.

7.3.3 R-parity conserving MSSM

Here, we consider supersymmetric contributions to Dirac neutrinos within the MSSM
(see section 5.1 for an overview), in which two additional loops contribute to the EM
multipoles: a) chargino-slepton loops and b) lepton-Higgs loops, as shown in fig. 7.5.
In the following section, we discuss these two contributions separately.
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Figure 7.5: R-parity conserving MSSM contributions to the EM moments of neutri-
nos.

a) Chargino-slepton loops

This interaction gives rise to the one-loop coupling to the photon via the two left
diagrams depicted in fig. 7.5. The relevant interaction reads [319]

L ⊃
∑

`,i,k

cik`R ν̄`PR ˜̀iχ̃+
k + h.c. =

∑

α,`,i,k

cik`R U∗`αν̄αPR ˜̀
iχ̃
−
k + h.c. (7.47)

We can identify the canonical couplings as

cik`αL = 0, cik`αR = U∗`αc
ik`
R , (7.48)

where

c1k`
R = −gUk1 cos θ˜̀ +

gm`√
2 cosβmW

Uk2 sin θ˜̀, (7.49a)

c2k`
R = gUk1 sin θ˜̀ +

gm`√
2 cosβmW

Uk2 cos θ˜̀. (7.49b)

Then, the magnetic dipole moment reads

µ
(a)
βα = − e

32π2

∑

i,k,`

U`αU
∗
`β|cik`R |2FSµ

(mχ̃±k
mα

,
m˜̀

i

mα
,
mβ

mα

)
. (7.50)

In contrast to the discussion of the (minimally extended) SM, the factor ρ = mχ̃±k
/m˜̀

i

(in the SM this was m`/mW ) is not necessarily small. Therefore, we only expand
the loop function in the neutrino masses, leading at the lowest order in mα,β to

µ
(a)
βα = − e

128π2

∑

i,k,`

|cik`R |2U`αU∗`β
mα +mβ

m2˜̀
i

ρ4 − 4ρ2 log(ρ)− 1

(ρ2 − 1)3

= − e

128π2
(mα +mβ)

∑

i,k,`

|cik`R |2U`αU∗`β
m4
χ̃±k
−m4˜̀

i
− 2m2˜̀

i
m2
χ̃±k

log
(
m2
χ̃±k
/m2˜̀

i

)

m2˜̀
i
(m2

χ̃±k
−m2˜̀

i
)3

.

(7.51)
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7.3 Neutrino electromagnetic moments beyond the SM

In the same approximation, the anapole moment reads

A(a)
βα = − e

192π2

∑

i,k,`

|cik`R |2U`αU∗`β

(
m2
χ̃±k

+ 2m2˜̀
i

)
log
(
m2
χ̃±k
/m2˜̀

i

)
− 3m2

χ±k
+ 3m2˜̀

i

(m2
χ̃±k
−m2˜̀

i
)2

.

(7.52)

We note that the contributions to the dipole moments are proportional to the
neutrino masses, as the interaction is maximally parity-violating, resulting in the
term ∼ GSµ,d vanishing. In contrast, the anapole and charge radius do not suffer from
such a suppression.
To estimate the contribution to the neutrino anapole moment, we may integrate

out the heavier slepton ˜̀2 and chargino χ̃±2 . Further, we can neglect the term pro-
portional to m`/mW in the coupling, viz. cik`R ' −gδ1iUk1 cos θ˜̀. The contribution
then reads for mass-degenerate sleptons

A(a)
βα ' −

eg2

192π2
|U11|2

∑

`

U`αU
∗
`β cos2

(
θ˜̀

)
(
m2
χ̃± + 2m2˜̀

)
log
(
m2
χ̃±/m

2˜̀
)
− 3m2

χ̃± + 3m2˜̀
(m2

χ̃± −m2˜̀)2

(7.53)
where we dropped the index i = k = 1 of the chargino and slepton.
For a numeric estimate, we set the slepton mass to m˜̀ = 300 GeV and for the

chargino, we choose mχ̃± = 200 GeV, resulting in1

A(a)
αα ' |U11|2

∑

`

U`αU
∗
`β cos2

(
θ˜̀

)
× (7.21)× 10−10 GeV−2, (7.54)

which is smaller than the SM contribution by around three orders of magnitude. The
smallness is simply because both mass scales appearing in the loop are relatively
large.
From the functional behavior discussed in chapter 3 and section 7.1.2, it is evident

that an enhancement is achieved if there is a small mass scale in the loop and
optimally, some masses are degenerate. In the SM case, the lepton was light, so we
may expect other contributions with leptons inside the loop to be comparable to the
SM prediction. This is the case for the lepton-Higgs contribution.

1These values are currently not excluded by collider limits. However, as the limits depend
strongly on the assumed mass spectra, they are model-dependent. In particular, they are sensitive
to the mass-splitting with respect to the lightest neutralino. See, for example, the ATLAS limits
on staus [396] and charginos [489].
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b) Lepton-Higgs loops

For the interaction between the neutrino, a lepton, and the charged Higgs boson, the
interaction Lagrangian is given by [319]

L ⊃ g√
2mW

∑

`

U∗`αν̄α [mνα cotβPL +m` tanβPR]H+`, (7.55)

where we assumed a Dirac mass term for the neutrino. The canonical couplings read

c`αL =
g√

2mW

U∗`αmνα cotβ, c`αR =
g√

2mW

U∗`αm` tanβ. (7.56)

We note that the analytic expression can obtained from the result of the CP-
conserving Majorana model extended with a Higgs triplet discussed in section 7.3.1
by dropping the factors [1± η̃Ξ(α)/η̃Ξ(β)], and by making the replacements B+ → H+

and tanα→ tanβ.
As in the MSSM (or a generic two-Higgs doublet model), the value for tanβ

is less constrained than tanα for the triplet-extended SM, we may expect a more
considerable contribution to the EM moments in the former model.
With x` = m`/mH± the magnetic dipole moment therefore reads

µ
(b)
βα =

eGF (mα +mβ)

32
√

2π2

∑

`

U`αU
∗
`β

x2
`

(1− x2
` )

3
×

×
[
4
(
x2
` − 1

) (
x2
` − 2 log(x`)− 1

)

+ tan2(β)
(
x4
` − 4x2

` log(x`)− 1
)]
, (7.57)

Being suppressed by the neutrino masses. The anapole moment is given by

A(b)
αβ =

eGF

48
√

2π2
tan2 β

∑

`

U`αU
∗
`βx

2
`

3− 3x2
` + (2 + x2

` ) log
(
x2
`

)

(1− x2
` )

2
. (7.58)

If we expand the anapole moment in m`/mH± , we find

A(b)
`` =

eGF

48
√

2π2
tan2 β

m2
`

m2
H±

[
3 + 2 log

(
m2
`

m2
H±

)]
. (7.59)

As the SM contribution reads

ASM
`` =

eGF

24
√

2π2

[
−3 + 2 log

(
m2
`

m2
W

)]
, (7.60)

126



7.3 Neutrino electromagnetic moments beyond the SM

100 200 300 400 500

mH± [GeV]

101

102

103

1
+

µ
(b

)
β
α

µ
S
M

β
α

Transition magnetic moments in the MSSM

tan β = 50

tan β = 40

tan β = 20

tan β = 10

100 150 200 250 300

mH± [GeV]

1.00

1.05

1.10

1.15

1.20

1.25

1
+

A
(b

)
τ
τ

A
S
M

τ
τ

τ Neutrino anapole moment in the MSSM

tan β = 50

tan β = 40

tan β = 20

tan β = 10

Figure 7.6: MSSM contributions to the transition magnetic dipole of neutrinos (in-
dependent of the mass eigenstates) and the anapole moment of ντ .

we may expect a similar order of magnitude between the Higgs-lepton contribution
and the SM prediction if

1

2

(
m`

mH±
tanβ

)2

' O(1). (7.61)

which is feasible only for ` = τ and large tanβ.
We show in fig. 7.6 the relative correction to the anapole moment ASM

ττ and to the
magnetic moment in analog to the discussion of the Higgs triplet extended Major-
ana model. We find that all EM moments are increased in this model. While the
discussion for the magnetic dipole moments follows the reasonings of section 7.3.1,
the anapole moment and charge radius may be enhanced by up to (10 − 30)%,
depending on the details of the Higgs sector. Considering experimental constraints
on the parameter space, it turns out that the low-mH± , high-tanβ region is largely
excluded for reasonable benchmark choices, leading to a maximal enhancement of a
few percent. However, the details depend on the specifics of the benchmark scenario
considered [490–492], allowing some freedom in the parameter space.

7.3.4 Leptoquarks

Leptoquarks are hypothetical particles that interact with both leptons and quarks
simultaneously. There are two types of leptoquarks: scalar leptoquarks and vector
leptoquarks, which are further classified based on their representation (for a compre-
hensive review, see ref. [493]). Of particular interest are the additional interactions
they introduce between neutrinos and quarks, as such interactions can generate EM
moments of neutrinos [420]. The relevant Feynman diagrams that illustrate these
contributions are displayed in fig. 7.7.
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Figure 7.7: Scalar leptoquark Φk and vector leptoquarks V k contributions to the EM
moments of neutrinos.

Scalar leptoquarks

The interaction of the scalar leptoquark may be written as [493, 494]

L
R̃2
⊃ R̃2/3

2 VikỸ
LR

2kj ū
i
Lν

j
R + R̃

−1/3
2

[
Ukj Ỹ

RL
2ik d̄

i
Rν

j
L + Ỹ LR

2ij d̄
i
Lν

j
R

]
+ h.c. (7.62)

and
LS1 ⊃ S

1/3
1

[
UkjY

LL
1ik d̄

ci
Lν

j
L + Y RR

1ij d̄
ci
Rν

j
R

]
+ h.c., (7.63)

with CKM and PMNS matrixes V and U , respectively, and the superscript indicates
the charge of the leptoquark. The Yukawa matrices Ỹ constitute the new parameters
of the theory. These interactions can be cast as

L ⊃ ν̄α
[
cikαL PL + cikαR PR

]
qi(Φ

k)∗ + h.c., (7.64)

where Φk = Φ2/3 if q is an up-type quark and Φk = Φ−1/3 for q being a down-type
quark.2 The coupling constants cikαL and cikαR depend on the representation of Φ (i.e.
Φ2/3 = R̃

2/3
2 or Φ−1/3 = R̃

−1/3
2 (S1/3

1 )), and are a combination of fermion mixing
matrices and new Yukawa coupling matrices.
The contribution to all EM moments is obtained by applying our general for-

mulas given in eq. (3.47) by identifying the scalar mass with the leptoquark mass
mS = mLQ, the fermion mass with a quark mass and accounting for the color factor
by multiplying with Nc.
For cikβL/R 6= 0, we may approximate the contribution to the dipole moments as

µSβα

−idSβα

}
' eQkNc

32π2

3∑

i,k=1

[
cikβL (cikαR )∗ ± cikβR (cikαL )∗

]
GSµ

(
mqi

mα
,
mLQ

mα
,
mβ

mα

)
, (7.65)

2It was pointed out in refs. [420, 495, 496] that the term with the charge-conjugated field
contributes the same as if there was no charge-conjugation involved, after making the appropriate
replacements for the charges and couplings. The same conclusion can be found using the formalism
proposed in ref. [236].
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where we dropped the first term ∼ FSµ,d as this is proportional to the neutrino masses
and used GSd = iGSµ . However, if cikβL ' 0 or cikβR ' 0, the leading contribution can
come from the FSµ,d term, similar to the SM situation.

For the anapole and the charge radius, we can drop the term ∼ GSA,b, and find

ASβα
bSβα

}
' eQkNc

32π2

3∑

i,k=1

[
cikβL (cikαL )∗ ∓ cikβR (cikαR )∗

]
FSA

(
mqi

mα
,
mLQ

mα
,
mβ

mα

)
, (7.66)

where we used FSb ' FSA.

Vector leptoquarks

Similarly, for the vector leptoquarks, the Lagrangian of the relevant representations
read [493, 494]

LU1 ⊃ U
2/3
1µ

(
VimUkjX

LL
1mkū

i
Lγ

µνjL +XRR
1ij ū

i
Rγ

µνR

)
+ h.c. (7.67)

and

L
Ṽ2
⊃ Ṽ −2/3

2µ

(
−UikX̃RL

2kj ū
ci
Rγ

µνjL + V T
ik X̃

LR
2kj ū

ci
Lγ

µνjR

)
− Ṽ 1/3

2µ X̃LR
2ij d̄

ci
Lγ

µνjR + h.c.
(7.68)

Again, these interactions can be cast in the canonical form:

L ⊃ ν̄αγµ
[
viαL PL + viαR PR

]
qiV k∗

µ + h.c. (7.69)

Therefore, the EM moments read

µVβα

idVβα

}
' eQkNc

32π2

∑

i

[
viβL (viαR )∗ ± viβR (viαL )∗

]
GVµ

(
mqi

mα
,
mLQ

mα
,
mβ

mα

)
(7.70)

AVβα
−bVβα

}
' eQkNc

32π2

∑

i

[
viβL (viαL )∗ ∓ viβR (viαR )∗

]
FVA

(
mqi

mα
,
mLQ

mα
,
mβ

mα

)
, (7.71)

where we used GVd = −iGVµ and FVb = −FVA, see section 3.4.3.
We note that specific models may lead to certain restrictions on the coupling

constants. For example, in the gauge leptoquark model discussed in ref. [420], which
is inspired by the model of ref. [497], the vector coupling to the right-handed quark
vanishes. In this scenario, the leading contribution to the dipole moments is ∼ FVµ,d
and therefore suppressed by the neutrino masses. Meanwhile, the anapole receives a
large contribution, as this model maximally violates parity. The additional Goldstone
loops are phenomenologically suppressed as ∼ mqi/mLQ and ∼ mα/mLQ. They are,
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therefore, typically negligible for an estimate of the EM moments, similar to the
situation in the SM.
Leptoquarks are experimentally constrained to be in the TeV range (see for ex-

ample searches from CMS [498–503] and ATLAS [504–507]), such that their contri-
butions to the dimension-6 operators are expected to be negligible, even for O(1)
couplings and light quarks in the loop. On the other hand, the dimension-5 oper-
ators can be enhanced as the coefficient of the G

S,V
µ,d term may be of O(1), possibly

compensating the mass suppression of the loop functions. This would be in contrast
to the SM where the scalar contribution of the dipole moments due to Goldstone
bosons is suppressed as ∼ m`mν/m

2
W and the vector part ∼ GVµ,d is absent because

the weak interaction maximally violates parity.

7.3.5 R-parity violating MSSM

We saw that for leptoquarks, even with O(1) couplings, the contributions to the
EM moments of neutrinos are typically expected to be tiny as the masses of the
leptoquarks have to be of O(TeV) to avoid collider constraints on colored particles.
Therefore, if the SM fermions in the loop are leptons instead of quarks, the limits on
the new colorless scalars would relax, and thus, the EM moments might be enhanced.
A model with such a structure is the R-parity violating (RPV) MSSM (see ref. [319]

for an introduction and ref. [508] for a recent status report). In contrast to the R-
parity conserving MSSM introduced in section 5.1, the key feature in the RPVMSSM
is the addition of interactions breaking lepton- or baryon number at the tree-level.
In the superpotential, these terms are written as

W∆L=1 =
1

2
λijkLiLj ēk + λ′ijkLiQj d̄k + µiLLiHu, (7.72a)

W∆B=1 =
1

2
λ′′ijkūid̄j d̄k, (7.72b)

where λijk = −λjik and λ′′ijk = −λ′′ikj due to gauge invariance. The first two terms
in eq. (7.72a) are called the LLE- and LQD term, and the term in eq. (7.72b) is the
UDD term; the latter can induce proton decays.
Constraints on the couplings λijk, λ′ijk and λ′′ijk are strongly model dependent. To

reduce the large number of new parameters introduced in the RPV MSSM, often
some elements of these couplings are set to zero, and certain assumptions about
the supersymmetric mass-spectrum and branching ratios are made.3 In particular,
the mass-splitting between the lightest neutralino and the next-to-LSP, which may
be assumed to be a slepton, is relevant for collider constraints, as for compressed
spectra, the final states can be soft and thus hard to detect [509].

3See, for example, the reported studies of the Particle Data Group [335] for a comprehensive list
of collider exclusion limits on the RPV SUSY spectrum, including the respective model assumptions.
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Both LLE- and LQD terms of the lepton number violating superpotential contrib-
ute to the EM moments of the neutrinos, as the new scalar degrees of freedom give
rise to interactions between neutrinos and the SM fermions. Here, we only discuss
the LLE term in more detail. The LQD term leads to a phenomenology similar to
that of leptoquarks, such that due to the strong collider constraints on squarks, the
EM moments are expected to be suppressed by their mass scale.
The relevant part of the Lagrangian for the LLE term reads for i > j [510]

−LLLE =
∑

ijk, i>j

λijk

(
˜̀∗
kRν̄

c
iPL`j + ˜̀jL ¯̀

kPLνi − ν̃j ¯̀kPL`i + h.c.
)
. (7.73)

The first two terms contribute to the EM moments of neutrinos. While the second
term fits our canonical vertex parameterization,

−L ⊃
∑

α

∑

ijk, i>j

U∗iαλijk ν̄αPR`k ˜̀∗jL + h.c., (7.74)

due to the presence of the charge conjugation νc, the first does not. We already
encountered a similar situation in the discussion of leptoquarks in section 7.3.4. The
contribution can be calculated using the formalism proposed in ref. [236], which turns
out to be equivalent to the contribution from the Lagrangian

−L ⊃
∑

α

∑

ijk, i>j

U∗iαλijk ν̄αPL`j ˜̀∗kR + h.c. (7.75)

Thus, we may use eq. (7.75) to calculate the RPV contribution from the first term
in eq. (7.73).
If the sleptons mix, (˜̀kL, ˜̀kR)Tm = L2k−1

mn (˜̀k1, ˜̀k2)Tn , the overall RPV SUSY contri-
bution can be cast in the canonical form:

L = ν̄α

[
L2k−1

2n λijkPL + L2k−1
1n λikjPR

]
`j ˜̀∗kn + h.c. (7.76)

In general, both left- and right-handed leptons can contribute to the EM multipoles
of neutrinos. We will assume no sfermion mixing and consider only the right-handed
part of eq. (7.76) for simplicity. The case with mixing is qualitatively similar to the
leptoquark discussion in section 7.3.4. Then, the Lagrangian can be cast as

−L ⊃
∑

α

∑

i

λiU
∗
iα ν̄αPR `

˜̀∗ + h.c., (7.77)

where ˜̀ and ` can be any slepton or lepton to which the neutrino να couples with
strength λi (which can be different for each combination of leptons and sleptons).
We can identify the canonical couplings as

cαiL = 0, cαiR = −U∗iαλi. (7.78)
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As the interaction maximally violates parity, we have a similar situation as in the
SM: the dipole moments are suppressed as they are proportional to the neutrino
masses, whereas the anapole and charge radius are relatively large. Explicitly, we
find

µRPVβα = − e

32π2

∑

i

cβiR (cαiR )∗FSµ

(
m`

mα
,
m˜̀

mα
,
mβ

mα

)
, (7.79)

ARPV
βα =

e

32π2

∑

i

cβiR (cαiR )∗FSA

(
m`

mα
,
m˜̀

mα
,
mβ

mα

)
, (7.80)

where we used Qf = −1 for all leptons. Then, at lowest order in the neutrino masses,
the magnetic dipole and the anapole moment reduce, respectively, to

µRPVβα = − eGF

16
√

2π2

λ2

g2

m2
W

m2˜̀ (mα +mβ)
∑

i

UiαU
∗
iβ

(
ρ4 − 4ρ2 log(ρ)− 1

)

(ρ2 − 1)3 , (7.81)

ARPV
βα =

eGF

24
√

2π2

λ2

g2

m2
W

m2˜̀
∑

i

UiαU
∗
iβ

3− 3ρ2 + (2 + ρ2) log
(
ρ2
)

(ρ2 − 1)2
, (7.82)

with ρ = m`/m˜̀ and we assumed a democratic λi = λ for all i. Following the
parameterization of eq. (7.35), the relative correction to the SM contribution of the
transition magnetic dipole moment can be expressed as

1 +
µRPVβα

µSMβα
' F (mτ )− F (0) + c−1

τ FRPV

F (mτ )− F (0)
, (7.83)

with

FRPV ' −
∑

`

c`
1

3

λ2

g2

m2
W

m2˜̀
[
1 +m2

`/m
2˜̀
(

3 + 2 log
(
m2
`/m

2˜̀
))]

(7.84)

' −cτ
1

3

λ2

g2

m2
W

m2˜̀
m2
τ

m2˜̀
(

3 + 2 log

(
m2
τ

m2˜̀
))

, (7.85)

where we used the fact that the neutrino mixing matrix is unitary and therefore∑
` c` = 0 (as α 6= β). Thus

1 +
µRPVβα

µSMβα
' 1 +

2

3

λ2

g2

m4
W

m4˜̀
(

3 + 2 log

(
m2
τ

m2˜̀
))

< 1. (7.86)

The anapole moment reads

ARPV
βα =

∑

`

U∗`βU`αA``, (7.87)
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Figure 7.8: Neutrino magnetic- and anapole moments in the RPV MSSM.

where we defined

ARPV
`` ' eGF

24
√

2π2

λ2

g2

m2
W

m2˜̀
(

3 + 2 log

(
m2
`

m2˜̀
))

, (7.88)

which becomes sizeable for λ ∼ g andm˜̀∼ mW . In practice, this may be challenging
to achieve, as λ . (10−3−10−1)

( m˜̀
100 GeV

)
[319], where the exact limit depends on the

triplet (ijk) and is inferred from charged-current universality and neutrino-electron
scattering analyses [511–513].
We present in fig. 7.8 the normalized RPV SUSY contribution to the magnetic

dipole moment and the anapole moment for λ ∈ {0.1, 0.5, 1} in blue, orange and
green respectively. Without scalar mixing, the magnetic dipole moment is small in
magnitude and is found to have the opposite phase to the SM prediction. However,
mixing between the scalars could lead to a contribution ∼ GSµ , which could be dom-
inant. The anapole moment can get O(1) corrections for optimistic values for the
slepton mass and coupling. In contrast, the enhancement is at the percent level for
more conservative values.

7.3.6 Dark electromagnetic moments

In the previous sections, we discussed models that modify the interactions between
the neutrino and other SM particles by adding a mediator particle with a mass scale
subject to strong experimental constraints. Therefore, the resulting contributions to
the EM moments M are typically suppressed by this new scale, particularly in the
absence of right-handed currents.
In this section, we follow a different approach and assume the EM interactions

are entirely generated in a dark sector, which is connected to the visible sector via
the kinetic mixing of a dark photon with the SM photon. Therefore, the neutrinos
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have dark electromagnetic moments in this setup. This idea has been, for example,
explored in the EFT framework for the magnetic dipole operator in ref. [470], and
for both dipoles and in conjunction with a neutrino mass mechanism in ref. [426].
Here, we want to explicitly calculate the EM moments due to dark sector particles
in a simplified model to estimate their size.
This approach differs conceptually from the previous models, as the dark sector

particles are experimentally allowed to be relatively light, enhancing the loop func-
tions. The suppression due to the dark photon mixing parameter κ competes with
this enhancement.
For the dark photon, we consider the Lagrangian [292, 293]

L ⊃ −1

4
F ′µνF

′µν +
κ

2
F ′µνF

µν +
1

2
m2
A′A

′2, (7.89)

where A′µ is the U(1)dark gauge boson, F ′µν its field strength tensor, mA′ the dark
photon mass, and Fµν is the photon field strength tensor. We will consider the
massless case, and from now on, set mA′ = 0. The dark sector further contains a
scalar S and a fermion ψ, charged under the U(1)dark symmetry described by the
Lagrangian

L ⊃ (DµS)†(DµS)−m2
SS
†S + ψ̄ (i /D −mψ)ψ, (7.90)

where Dµ is the covariant derivative. Thus, with respect to the SM photon, these
fields have a (milli-) charge εe = κe′e, where e′ is the dark photon gauge coupling.
We assume that the portal interactions with the neutrinos can be cast as

L ⊃ ν̄α [cαLPL + cαRPR]ψS† + h.c., (7.91)

such that the theory discriminates between the left- and right components of ψ,
allowing parity violation, and, for complex couplings cαL/R, also CP violation. This
interaction generates at the one-loop level the neutrino EM moments with respect
to the dark photon, which we will refer to as dark moments. As the dark photon
mixes with the SM photon, the dark moments are transmitted to the visible sector,
effectively yielding an additional contribution to the neutrino EM moments with
respect to the SM photon. We depict this process in fig. 7.9.
We can obtain the analytical expressions for the dark moments by making the

replacement Qf → ε in eq. (3.47) and eq. (3.48), i.e. we take particles ψ, S and V
with millicharge εe (with e > 0) in the loop.
Therefore, the relevant parameters are the masses of the particles in the dark sec-

tor and the millicharge ε. We present in fig. 7.10 a collection of exclusion limits
on millicharged Dirac fermions from LSND [514], proton beam dump studies from
SENSEI [515] and BEBC [516], Big Bang Nucleosynthesis (BBN) [517, 518], col-
lider limits [519], supernova cooling [520], low-energy supernovae (LESN) [521] and
electron beam dumb forecasts [455] for one skipper-CCD detector at BDX [522–524].
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γ′

γ

νβνα

ǫ

Figure 7.9: Dark moments of neutrinos, represented by the effective vertex. The
kinetic mixing parameter ε between the dark photon γ′ and the SM photon γ mediates
the dark EM moments to the visible sector.

In particular, the BBN constraints on the effective number of relativistic degrees
of freedom at the time of recombination, Neff, lead to a lower bound on the mass
of millicharged particles of mψ > 8.62 MeV [518]. Similar constraints on scalars
and vectors are expected to be of comparable size [455], such that we will use the
constraints shown in fig. 7.10 for all millicharged loop particles.
For concreteness, we consider the scenario of a scalar and a chiral fermion in the

loop, such that the enhancement on the EM moments of Dirac neutrinos due to dark
moments reads

Mdark
βα =

eε

32π2

{[
cβLc

α
L ± cβRcαR

]
FSM

(
mψ

mα
,
mS

mα
,
mβ

mα

)

+
[
cβLc

α
R ± cβRcαL

]
GSM

(
mψ

mα
,
mS

mα
,
mβ

mα

)}
. (7.92)

For a fixed value of mψ, we perform a log-scaled random scan over the paramet-
ers 0.01 ≤ ±cα/βL/R ≤ 1, 8.62 MeV ≤ mS ≤ 20 GeV and 10−8 ≤ ε ≤ 10−2 taking into
account all current exclusion limits for the pairs (mψ, ε) and (mS , ε) collected in
fig. 7.10. The EM moments generated by vector bosons are subject to model depend-
ency due to the Goldstone contributions. Nevertheless, the EM moments generated
by the vector bosons are expected to be comparable to the scalar contribution up to
O(1) corrections.
We present in the top panels of fig. 7.11 the result of the scan for the anapole

moment Adark
βα for 8.62 MeV < mS < 20 GeV (top left panel) and mS = 1 GeV (top

right panel) together with the Dirac neutrino predictions within the SM, eq. (7.14).
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Figure 7.10: Collection of exclusion limits on millicharged particles from various
terrestrial and astrophysical searches [455, 514–521]; see main text for details.

We find that the dark anapole moment can become comparable to the SM prediction
if the millicharged particles in the loop are below the GeV scale.
The situation for the magnetic dipole moment in the minimally extended SM is

somewhat different, as the SM value is very suppressed due to the light nature of
neutrinos. In the bottom panel of fig. 7.11, we plot the dark magnetic moments from
our scan and the diagonal SM prediction for Dirac neutrinos. All points µdarkβα >

10−14 GeV−1 are due to the GSµ part, and for mψ > 1 GeV, all predictions above
µSMαα are. As the loop functions GSM and FSM contribute democratically in the scan,
the dominant contribution to the magnetic moment comes from the former being
enhanced by its ∼ mψ scaling, see section 7.1.2.
The relative phase of the dark moments can become important and could lead

to a reduction of the physical observable. Therefore, an observation of the anapole
moment below the SM prediction would also be an indication of new physics. This po-
tential decrease can be seen in fig. 7.12, where we present the relative enhancement to
the SM prediction ASM

βα given in eq. (7.14) in the dark photon model for the diagonal
(left panels) and the transition moments (right panels) for 8.62 MeV < mS < 20 GeV
(top panels) and for mS = 1 GeV (bottom panels). For demonstration purposes, we
assumed Adark

βα = Adark, i.e. the same dark anapole moment for all diagonal and
transition elements. The different colors indicate the different elements of the ana-
pole matrix; see the legends. As |ASM

33 | < |ASM
22 | < |ASM

11 |, the respective relative
enhancement for the diagonal case is of opposite ordering; a similar statement is true
for the transition moments. For the latter, we find that the relative enhancements
can be larger than for the diagonal elements as we assumed a democratic BSM con-

136



7.3 Neutrino electromagnetic moments beyond the SM

10−2 10−1 100 101

mψ [GeV]

10−8

10−7

10−6

10−5

|A
d
ar

k
β
α

|[
G

eV
−

2
]

Dark anapole moment

|ASM
11 |

|ASM
22 |

|ASM
33 |

10−2 10−1 100 101

mψ [GeV]

10−8

10−7

10−6

10−5

|A
d
ar

k
β
α

|[
G

eV
−

2
]

Dark anapole moment, mS = 1 GeV

|ASM
11 |

|ASM
22 |

|ASM
33 |

10−2 10−1 100 101

mψ [GeV]

10−16

10−14

10−12

10−10

10−8

10−6

|µ
d
ar

k
β
α

|[
G

eV
−

2
]

Dark magnetic moment

|µSMαα |

Figure 7.11: Result of the random scan for the neutrino dark anapole moment as
a function of the fermion mass in the loop (top left), and the result of the random
scan with fixed mS = 1 GeV (top right). Further, we present the dark magnetic
moment (bottom). For reference, we also add the absolute values of the prediction
for the magnetic moment and anapole moment within the minimally extended SM
for mα = mβ = 1 eV.

tribution, and because the transition moments ASM
βα (α 6= β) are about one order of

magnitude smaller than the diagonal elements ASM
αα .

We find that the contribution from the dark anapole moment can be up to two
orders of magnitude above the SM prediction. We emphasize that the phase of the
BSM contribution is important, as an opposite sign can similarly lead to a reduction
of the observable anapole by a factor ∼ 100.
As mentioned in section 7.2.1, for relativistic active neutrinos, the initial beam can

be approximated to be left-chiral, such that experiments are sensitive to the effective
coupling

(bβα)eff. = bβα −Aβα, (7.93)

with
Aβα = ASM

βα +Adark
βα and bβα = bSMβα + bdarkβα , (7.94)
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Figure 7.12: Relative enhancement of the SM anapole moments due to millicharged
particles in the loop for the full random sample (top), and setting mS = 1 GeV
(bottom). We only show points which satisfy Adark

βα /ASM
βα > 1% as to avoid clutter;

most points in the full scan do not lead to a sizeable shift to the SM prediction and
are found close to the horizontal black line. Note the different axes.

where ASM
βα ' −bSMβα is given by eq. (7.14) for normal ordering.

Therefore, to compare the theory predictions with the experiment, we have to
include the corrections to both the charge radius and the anapole moment, which
respectively are proportional to (c2

L + c2
R) and (c2

L − c2
R), where, for simplicity, we

relabeled the couplings as cαL/Rc
β
L/R → (cL/R)2. As the terms G

S,V
b,A are phenomen-

ologically negligible, the phenomenology of the dimension-6 operators remains un-
changed under this relabeling. Then, the additional contribution to the effective
charge radius due to the dark moments reads

(bdarkβα )eff. = bdarkβα −Adark
βα ' εc2

R

16π2
FSb

(
mf

mα
,
mS

mα
,
mβ

mα

)
(7.95)

=

{
2bdarkβα , if cL = 0

0, if cR = 0
, (7.96)
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up to terms of order O
(
mαmβ/m

2
S

)
; we used eq. (3.62) to express FSA in terms of

FSb .
Note that the effective charge radius vanishes if cL = 0 is unique to our proposed

scalar contribution. If we would consider a millicharged vector boson instead of the
scalar, as then FVb ' −FVA, the opposite dependency emerges:

(bV,darkβα )eff. = bV,darkβα −AV,darkβα ' εv2
L

16π2
FVb

(
mf

mα
,
mV

mα
,
mβ

mα

)
(7.97)

=

{
0, if vL = 0

2bV,darkβα , if vR = 0
. (7.98)

This observation aligns with the SM weak interaction discussion in section 7.2.1.
The fact that the effective charge radius (or effective anapole moment) depends

only on one of the chiral couplings in the maximal parity-violating setup is a con-
sequence of the polarization of the initial beams for active relativistic neutrinos,
which we assumed to be maximal (γ5 = −1). Further, this feature emerges only
for Dirac neutrinos; for Majorana neutrinos, only the anapole moment is non-zero,
being proportional to (c2

L−c2
R). Therefore, if the dark sector respects parity, only the

effective dimension-6 interaction of a Dirac neutrino receives a non-zero contribution.
To quantify this behavior, we show in fig. 7.13 the effective dark charge radius in

units of the dark anapole Adark
βα . For concreteness, we assume neutrinos with masses

mα = mβ = 1 eV. However, the exact values are not important for the dimension-6
operators, as the correction terms are ∼ mαmβ/m

2
f,S,V and therefore suppressed by

the heavier loop scale, see appendix B.4.
The experimentally accessible effective charge radius can roughly differ by up to six

orders of magnitude from the dark anapole moment, being suppressed or enhanced,
depending on the P violation in the dark sector. The relative suppression occurs if
cR → 0 while cL remains large, i.e. the P violation in the dark sector is large. Then,
the dark effective charge radius for the Dirac case becomes suppressed, whereas the
anapole is ∼ |cL|2. As we considered in the scan a lower bound of |cL/R| > 0.01,
in principle, the relative suppression can be even stronger. Therefore, considering
only the anapole moment to estimate the experimental signature would severely
overestimate the total BSM correction in this scenario.
On the other hand, if parity is conserved in the dark sector, the dark anapole

moment vanishes, whereas the dark charge radius remains non-zero. This feature
is captured by the enhanced points in fig. 7.13, where taking only the anapole as
coupling between neutrinos and photons would significantly underestimate the total
coupling strength to the photon. Finally, the clustering at |(bdarkβα )eff./(Adark

βα )| ' 2 is
because if the left coupling vanishes, cL → 0, the effective charge radius simplifies to
(bdarkβα )eff. → 2bdarkβα , see eq. (7.96).
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Figure 7.13: The effective charge radius (bdarkβα )eff. = bdarkβα −Adark
βα relative to the dark

anapole only.

Overall, we find that the EM moments can receive large corrections (both pos-
itive and negative) from dark moments for millicharged particles with masses
mψ ∼ 100 MeV. The phase of this contribution is determined by the masses of the
loop particles, the value of the Yukawa couplings, and the sign of the millicharge.
We conclude that, for the same dark sector parameters, a measurable difference

between the Majorana- and Dirac scenario can emerge, as the effective charge radius
has a different dependency on the P-violating couplings cL/R and vL/R. Although
we focused here on the dark moments, the findings of this section are more general
and applicable to other models. In particular, correctly differentiating the effective
charge radius (or effective anapole moment) from the canonical one is essential in
interpreting experimental results.
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Summary and conclusions

Summary

Despite decades of experimental and theoretical efforts, the nature of DM remains
one of the big open questions in particle physics, astrophysics, and cosmology.
In this thesis, we explored the scenario of electromagnetically interacting neutral

spin-1/2 fermions, focusing on DM candidates and neutrinos. After introducing the
observational evidence for DM, various production mechanisms, and current search
strategies in chapter 2, we detailed in chapter 3 the model-independent one-loop
calculation of all EM interactions of generic neutral spin-1/2 fermions for scalar-
and vector-mediated t-channel interactions, including the transition moments. We
resorted to evaluating the diagrams in the background Feynman gauge to obtain UV-
convergent and gauge-independent expressions for the loops containing vector bosons.
We found that in these classes of models, the fermions can possess electric- and mag-
netic dipole moments, charge radii, and anapole moments. These EM moments can
be expressed as a product of the Yukawa coupling parameters of the UV Lagrangian
and the loop functions encompassing all kinematic information. This factorization
motivated our study of the loop functions individually for various phenomenologic-
ally relevant scenarios, including the diagonal case, large hierarchies between the
external particles and internal states, and a large hierarchy between the two neutral
fermions. Hereby, we provided relatively compact analytical expressions for these
cases.
The diagonal EM moments can lead to elastic scattering events of DM particles

with targets in direct detection facilities. In chapter 4, we reviewed the non-
relativistic effective field theory, which allows for a model-independent study of direct
detection phenomenology, and we particularized this formalism to the effective field
theory of electromagnetically interacting DM. We calculated the rate matrices for
XENON1T, LUX-ZEPLIN, DarkSide-50, and PICO-60, which serve as a model-
independent tool for examining the interplay of different EM moments and their
interference effects and used them to derive exclusion limits on the EM moments.
Our findings indicate that considering experiments with different targets improves
the combined experimental reach on the interfering EM moments. For individual
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experiments, including the interference terms leads to conservative exclusion limits,
which are weaker than those derived following the standard approach, in which only
one operator is non-zero at a time.
If DM is a Majorana fermion, the only non-zero diagonal EM moment is the ana-

pole moment. An archetypical Majorana WIMP candidate is the lightest neutralino
in supersymmetric extensions of the SM. Using the model-independent results, we
calculated the anapole moment of the lightest neutralino in chapter 5 for some lim-
iting scenarios and within the entire MSSM. We found that the anapole moment
can be reasonably enhanced for light scalars in the spectrum. However, in split-
SUSY scenarios—where the scalar particles are heavy—the prediction falls one to
two orders of magnitude below the experimental reach.
Next, in chapter 6, we examined a Dirac DM toy model consisting of two scalar

t-channel mediators coupling to the τ -lepton. In this model, the DM particle can
possess up to four EM moments. We used the previously introduced rate matrices
to obtain limits on the UV parameter space. Since direct detection experiments are
sensitive to the electric dipole operator, we found that the CP-violating parameter
in the toy model faces relatively strong constraints. Further, we used a minimized
signal rate to obtain conservative exclusion limits, finding that even in this scenario,
the direct detection experiments probe a significant part of the parameter space,
complementing collider studies. Finally, we analyzed the impact on the thermal
relic, assuming standard freeze-out production for the electromagnetically interacting
DM particle. The direct detection limits also yield potent constraints on this UV
parameter space; the entire parameter space is excluded for the benchmark scenario
with maximal CP violation.
Lastly, in chapter 7, we explored the application of the model-independent for-

mulas to neutrinos. We revisited the predictions within the (minimally extended)
SM for Dirac- and Majorana neutrinos and calculated the contributions to the EM
moments in extensions of the SM, such as from a Higgs triplet, a left-right sym-
metric model, the R-parity conserving and R-parity violating MSSM, leptoquarks,
and a dark sector. In all models except the dark sector, the additional contributions
are typically suppressed by the large mass scale of new particles. The dark photon
model evades these constraints, as all loop particles are millicharged dark sector
particles. We found that for millicharged particles satisfying current constraints, the
effective anapole moments can receive significant contributions, potentially resulting
in an enhancement or suppression of the experimentally accessible neutrino anapole
moment.
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Conclusions

The analytical formulas for the EM moments of neutral spin-1/2 fermions offer a
model-independent toolkit for calculating the EM moment matrix within various
models. In this dissertation, we focused on the diagonal elements of this matrix and
discussed their role in the DM direct detection phenomenology. The systematic EFT
approach we followed is compelling, both in studying the EFT of electromagnetically
interacting DM and in light of complete UV theories in which these EM moments
are generated. Although we focused on relatively simple models, the underlying
approach and its strengths can be used in more elaborate setups.
Further future avenues include the discussion of multicomponent DM models, for

which inelastic scattering events may occur via the transition moments, resulting
in distinct signatures in direct detection facilities or neutron star environments. In
particular, for the Majorana scenario, a natural hierarchy between elastic and in-
elastic processes emerges, as the anapole operator exclusively governs the elastic
processes, whereas the transition moments can be non-zero. For both Dirac- or
Majorana candidates, these transition dipole moments can further lead to radiative
decays, which result in monochromatic gamma-ray lines that could be detectable in
indirect searches. Finally, the mediator particles generating the EM moments via
the loop diagrams might be produced at particle colliders. Therefore, EM moments
may be observed directly or indirectly through all three primary methods of non-
gravitational DM searches, and the general formulas provided in this dissertation
can bridge between the effective field theory and UV models to combine these search
strategies.
Albeit we focused on the scenario of spin-1/2 fermions, the presented mapping

between the experiment and theory could be generalized to higher-spin particles and
allow for a systematic study of EM properties of particles with arbitrary spins, in
particular, in terrestrial direct detection laboratories. Similarly, the calculation of
the EM moments themselves could be generalized to allow for particles with different
spins as external states or to calculate corrections beyond the one-loop level.
As discussed in-depth for neutrinos, our formulas can be applied to particles bey-

ond DM candidates. Due to recent experimental advancements proving the capab-
ility of DM experiments to serve as solar neutrino telescopes, the effective anapole
moment of neutrinos is expected to be tested within the foreseeable future. Investig-
ating their EM properties could help uncover the theoretically important questions
of whether neutrinos are Dirac- or Majorana fermions. Should experiments detect
signatures consistent with additional EM interactions or identify an effective anapole
moment that diverges from the predictions of the SM, the general formulas presented
in this thesis offer a framework for interpreting these results within the context of
specific UV models.
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Appendix A

Derivation of exclusion limits

A.1 XENON1T, PICO-60 and LZ

For the statistical treatment of deriving the exclusion limits of XENON1T, PICO-
60, and LZ, we follow the approach outlined in ref. [279]. We take the Poissonian
likelihood

L =
1

Nobs!
(Nsig +Nbck)Nobs exp(−(Nsig +Nbck)), (A.1)

where Nobs is the observed number of events, Nbck the reported background events,
and Nsig is the number of events due to DM, see table A.1. The χ2 distribution reads

χ2 = −2 log(L) = 2(Nsig +Nbck −Nobs log(Nsig +Nbck) + log(Nobs!)), (A.2)

with minimum

χ2
min. =

{
2(Nobs −Nobs. log(Nobs) + log(Nobs!)) if Nsig > 0

0 else
. (A.3)

We then solve
χ2 − χ2

min. = ncl 90% (A.4)

numerically for a model parameter such as an EM moment M for the EFT discus-
sion in chapter 4, or the mass-splitting η for the t-channel toy model discussed in
chapter 6. In the above equation, ncl 90% = 2.71 if the experiment observed at least
one event, and ncl 90% = 4.6 if they reported zero due to the increase in the number
of degrees of freedom [279].
The χ2 distribution can be approximated via the polynomial

χ2 ' aEN2
sig + bENsig + cE , (A.5)

with minimum

χ2
min =

{
cE − b2E/(4aE) if Nsig > 0

0 else
, (A.6)
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Appendix A Derivation of exclusion limits

Experiment Nobs Nbkg
XENON1T (NR) 14 7.36
XENON1T (Migdal) 49 0
LZ 0 0
PICO-60 (1st bin) 3 1
PICO-60 (2nd bin) 0 0

Table A.1: Observed events and the background prediction for the experiments de-
scribed in this section. The values for XENON1T (NR) and PICO-60 are taken from
ref. [279], for LZ from ref. [301] and for XENON1T (Migdal) from ref. [526].

Experiment aE bE cE
XENON1T (NR) 0.09873702 −1.33278654 8.87456345
LZ 0 2 0
PICO-60 (1st bin) 0.17200563 −0.63312258 3.6519904
PICO-60 (2nd bin) 0 2 0

Table A.2: Fit parameters {aE , bE , cE} for the quadratic approximation of the likeli-
hood functions.

where the parameters {aE , bE , cE} are obtained by fitting the full distribution in the
region of interest and are summarized in table A.2. This approximation turns out
to be extremely useful to calculate the conservative limit on the Wilson coefficients,
both for individual experiments and for their combination; see refs. [278, 279, 525]
for more details. We follow their approach in calculating the conservative limits on
the individual EM moments presented in fig. 4.6.
We present the likelihood functions in fig. A.1; for the figure in the right panel, we

set χ2 = 0 if Nsig < Nobs−Nbck, corresponding to the upper limit on the DM signal
rate.
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A.2 DarkSide-50
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Figure A.1: Likelihood test statistic to determine the 90% C.L. exclusion limit on a
given prediction for the signal rate, indicated by the intersections with the horizontal
line. The likelihood distributions in the left panel result in upper- and lower limits.
As we are not interested in the lower limit (i.e. the given signal count explains the
experimental data at 90% C.L.), we use the likelihoods shown in the right panel,
where only the upper limits are determined.

A.2 DarkSide-50

For the DarkSide-50 experiment, we follow the background subtraction ap-
proach [303], for which the likelihood for the standard model-independent analysis
can be written as [527]

−2L =
9∑

bins i=1

(σSi + ρbi − xi)2

σ2
i

, (A.7)

where σSi is the DM signal count, ρbi the background, xi the reported energy spec-
trum, and σi the associated deviation (see table A.3 for the data). The coefficients
σ and ρ are free parameters.1 Using the above likelihood function, we define the
profile likelihood [527]

−2L − (−2L)min = n2, (A.8)

with n = 1.28 for the 90% C.L. bound. Here, (−2L)min is obtained by numerically
minimizing −2L with respect to σ and ρ.
In our specific setup, the DM signal count for each bin, N i

sig, is a function of
the DM mass mχ, the mass-splitting η − 1 = (mS −mχ)/mχ between DM and the
scalar S, and the two angles sin θ and sinφCP parameterizing P- and CP violation,

1However, σ may be identified with the DM-nucleon cross section in the standard analysis.
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Appendix A Derivation of exclusion limits

respectively. We can formulate eq. (A.7) as

−2L =
9∑

bins i=1

(N i
sig(mχ, η, sin θ, sinφCP) + ρbi − xi)2

σ2
i

, (A.9)

where we sum over all bins. The signal rate for each bin is calculated as

N i
sig(mχ, η, sin θ, sinφCP) =

4∑

j,k=1

vj Nijk vk, (A.10)

with v = (µχ, dχ,Aχ, bχ), and Ni are the rate matrices introduced in section 4.3.1.
The calculation of (−2L)min needed for the evaluation of eq. (A.8) is not trivial for

the derivation of exclusion limits for the toy model of chapter 6, as we dynamically
subtract the background via the nuisance parameter ρ.
While for the benchmark analysis for fixed sin θ and sinφCP we can minimize with

respect to η and ρ, for the analysis using the minimized signal rate Nmin the situation
is more involved. For fixed mχ, we are trying to minimize the likelihood w.r.t. η,
sin θ, sinφCP and ρ subject to the condition of minimizing the total signal rate

N tot =
∑

i

N i
sig(mχ, η, sin θ, sinφCP) (A.11)

w.r.t. the angles. We can simplify this numerical minimization by noting that
the electric dipole moment, controlled by sinφCP, does not interfere with the other
operators. Therefore, the minimization will always yield sinφmin

CP = 0. Meanwhile,
the dependency for θmin(mχ, η) is not trivial as can be seen in the right panel of
fig. A.2, where we show sin θmin as function of mχ and η− 1 obtained by minimizing
the signal rate with respect to the angles. For small mass-splittings, sin θmin becomes
independent of η.
To find the conservative exclusion limit using the minimized signal rate, we followed

the following two approaches:

Approach A:

Whenever we evaluate eq. (A.9), we make the following replacement:

N i
sig(mχ, η, sin θ, sinφCP)→ N i

sig(mχ, η, sin θmin, sinφ
min
CP ), (A.12)

where the angles are determined by dynamically minimizing eq. (A.11) with respect
to the angles while keeping the other parameters fixed. This is akin to the solutions
for the angles presented in the right panel of fig. A.2, corresponding to a signal rate
with dominant EM moments as shown in the left panel of fig. A.2. This process
can be numerically costly, as eq. (A.11) is minimized during each evaluation of the
multi-dimensional minimization of the likelihood function in eq. (A.9).
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Figure A.2: Dominant EM moment in the minimized total rate (summed over all
bins) for the DS50 experiment (left), and the corresponding solution for sin θmin
(right). We note that for η . 2, θmin becomes independent of η. For larger mass-
splittings, there is a dependency on η in the small mass-region 3 GeV . mχ . 6 GeV.
The non-trivial shape is because the dominant contribution is the charge radius, and
the appearing loop function FS5 changes sign at this threshold.

Approach B:

Alternatively, we can use that fact the experiment is sensitive to values of η in the
same ballpark for which θmin does not depend on η. Therefore, we can take the
one-dimensional solution of sin θmin for η = 1.1 shown in the right panel of fig. A.3
and interpolate the data, leading to θmin(mχ). The corresponding total signal rate
at the DS50 experiment is provided in the left panel of fig. A.3. Since both angles are
expressed semi-analytically in this approach, the multi-dimensional minimization of
the likelihood function in eq. (A.9) is numerically more efficient than in approach A.
Both approaches, A) dynamically finding the minimum and B) using the one-

dimensional interpolation, lead to identical exclusion limits for the scenarios con-
sidered here.
Numerically minimizing eq. (A.9) with respect to η and ρ gives us its minimum, as

well as the corresponding ηmin and ρmin, for which (−2L)min = −2L(ηmin, ρmin). This
ρmin is then used in the likelihood function, following the background subtraction
procedure.
Then, the 90% C.L. exclusion limit on η for a fixed mχ is obtained by solving the

equation
−2L(η; ρ = ρmin)− (−2L)min − n2 = 0 (A.13)

for η. The angles are either fixed from the benchmark scenario considered or de-
termined via approaches A) or B) outlined above. This way, we obtained the DS50
exclusion limits shown in fig. 6.4.
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Figure A.3: Minimized total rate (summed over all bins) for the DS50 experiment
(left) for fixed η = 1.1, and the corresponding solution for sin θmin and sinφmin

CP
(right).

# Bin xi σi bi
1 251.9933 15.87429 119.706074
2 226.9883 15.06613 127.083462
3 197.9644 14.06998 152.893184
4 1703.821 41.27737 1638.54481
5 2587.918 50.87158 2578.07507
6 3476.694 58.96349 3339.57099
7 4218.602 64.95076 4331.65119
8 5478.566 74.01733 5336.48678
9 7779.372 88.20074 6157.69737

Table A.3: DS50 reported events xi, background estimate bi and uncertainty σi for
the i’th bin. Data taken from Fig. 7 of ref. [303]; see also ref. [527].
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Appendix B

Analytical expressions for the loop
functions of the EM moments

B.1 The general loop functions

In this appendix, we present analytic expressions for the loop functions we found in
the one-loop calculation of the EM moments for neutral fermions χ1 and χ2 with
masses mχ1 and mχ2 , respectively.
The result is given in terms of the scalar three-point Passarino-Veltman func-

tion [528]

C0(p2
1, q

2, p2
2,m0,m1,m2) =

1

iπ2

∫
dnk

1

(k2 −m2
0)

1

(k + p1)2 −m2
1

1

(k + p2)2 −m2
2

(B.1)
and

F̃ (ξ, µ, η) =

√
λ(ξ2, η2, µ2)

ξ2
log

(
µ2 + η2 − ξ2 +

√
λ(ξ2, η2, µ2)

2ηµ
+ iε

)
(B.2)

=
2
√
λ(ξ2, η2, µ2)

ξ2
arctanh

(√
λ(ξ2, η2, µ2)

(η + µ)2 − ξ2
+ iε

)
, (B.3)

where
λ(a, b, c) = a2 + b2 + c2 − 2ab− 2ac− 2bc (B.4)

is the Källén function [264].
Further, for the presentation of the general results, we parameterize the loop func-

tions FS/Vi and G
S/V
i as

F
S/V
i (µ, η, ξ) =

F̄
S/V
i (µ, η, ξ)

m
(i)
χ1(1 + ξ)2

and G
S/V
i (µ, η, ξ) =

Ḡ
S/V
i (µ, η, ξ)

m
(i)
χ1(1 + ξ)2

, (B.5)

where we defined m(µ)
χ1 = m

(d)
χ1 = mχ1 , m

(A)
χ1 = m

(b)
χ1 = m2

χ1
and ξ = mχ2/mχ1 . In

the following, we report the analytical results for these dimensionless loop functions
F̄
S/V
i and Ḡ

S/V
i .
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Scalar loop functions

Magnetic dipole moment:

F̄Sµ (µ, η, ξ) =
1

ξ(ξ − 1)

{
ξ2
[
F̃ (ξ, µ, η)− F̃ (1, µ, η)

]

+ (1− ξ2)

[
ξ + (η2 − µ2) log

(
µ

η

)
+m2

χ1
ξ×

×
(
η2C0(0,m2

χ1
,m2

χ1
ξ2,mχ1η,mχ1η,mχ1µ) + (µ↔ η)

)]}
,

(B.6)

and

ḠSµ(µ, η, ξ) = −m2
χ1
µ(1 + ξ)2C0(0,m2

χ1
,m2

χ1
ξ2,mχ1µ,mχ1µ,mχ1η). (B.7)

Electric dipole moment:

F̄Sd (µ, η, ξ) = i
(1 + ξ)

ξ(1− ξ)2

{
ξ2
[
F̃ (ξ, µ, η)− F̃ (1, µ, η)

]

− (1− ξ2)

[
ξ + (µ2 − η2) log

(
µ

η

)
+m2

χ1
ξ×

×
(
η2C0(0,m2

χ1
,m2

χ1
ξ2,mχ1η,mχ1η,mχ1µ) + (µ↔ η)

)]}
,

(B.8)

and
ḠSd (µ, η, ξ) = iḠSµ(µ, η, ξ). (B.9)

Anapole moment:

F̄SA(µ, η, ξ) =
1

(ξ − 1)3

{
(1 + ξ)

[
(1 + 2ξ)F̃ (1, µ, η)− ξ(2 + ξ)F̃ (ξ, µ, η)

]

+
1− ξ
ξ

[
3ξ(1 + ξ)2 + κξ1 log

(
µ

η

)

+ κξ2C0(0,m2
χ1
,m2

χ1
ξ2,mχ1η,mχ1η,mχ1µ)

+ κξ3C0(0,m2
χ1
,m2

χ1
ξ2,mχ1µ,mχ1µ,mχ1η)

]}
, (B.10)

with

κξ1 = 2 (ξ(ξ + 4) + 1) (µ2 − η2) + (ξ − 1)2ξ, (B.11)

κξ2 = m2
χ1
ξ
[
2η4 + 2η2

(
(ξ + 1)2 − 2µ2

)
+ 2µ4 − µ2(ξ + 1)2 + ξ3 + ξ

]
, (B.12)

κξ3 = m2
χ1
ξ
[
2η4 − 2η2

(
2µ2 + ξ2 + 1

)
+ 2µ4 + µ2(ξ(3ξ + 2) + 3) + 2ξ2

]
, (B.13)
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and

ḠSA(µ, η, ξ) =
µ

ξ − 1

{
2 log

(
µ2

η2

)
+m2

χ1

[ (
1 + 2µ2 − 2η2 + ξ2

)
×

C0

(
0,m2

χ1
,m2

χ1
ξ2,mχ1µ,mχ1µ,mχ1η

)
− (µ↔ η)

]}
. (B.14)

Charge radius:

F̄Sb (µ, η, ξ) = − 1

(1− ξ)2(1 + ξ)

{
(ξ − 1)

[
(2ξ − 1)F̃ (1, µ, η) + (ξ − 2)ξF̃ (ξ, µ, η)

]

+
(ξ + 1)

ξ

[
3ξ(1− ξ)2 + κξ4 log

(
µ

η

)

+ κξ5C0(0,m2
χ1
,m2

χ1
ξ2,mχ1η,mχ1η,mχ1µ)

+ κξ6C0(0,m2
χ1
,m2

χ1
ξ2,mχ1µ,mχ1µ,mχ1η)

]}
,

(B.15)

with

κξ4 = 2 (ξ(ξ − 4) + 1) (η2 − µ2) + (ξ + 1)2ξ, (B.16)

κξ5 = m2
χ1
ξ
[
2η4 + 2η2

(
(ξ − 1)2 − 2µ2

)
+
(
µ2 + ξ

) (
2µ2 − ξ2 − 1

)]
, (B.17)

κξ6 = m2
χ1
ξ
[
2η4 − 2η2

(
2µ2 + ξ2 + 1

)
+ 2µ4 + µ2(ξ(3ξ − 2) + 3) + 2ξ2

]
, (B.18)

and

ḠSb (µ, η, ξ) = −µ (1 + ξ)

(1− ξ)2

{
2 log

(
µ2

η2

)
+m2

χ1

[ (
1 + 2µ2 − 2η2 + ξ2

)
×

C0

(
0,m2

χ1
,m2

χ1
ξ2,mχ1µ,mχ1µ,mχ1η

)
− (µ↔ η)

]}
.

(B.19)

We present in figs. B.1 to B.3 a numerical evaluation of the loop functions for fixed
mass splittings of ξ = 1.1, ξ = 2 and ξ = 10, respectively. Note that the numerical
evaluation of the EM loop functions presented here can lead to a loss of precision
due to non-exact numerical cancellations. For example, in fig. B.1 this can be seen
from the unstable behavior of |FSA/b| for large mS/mχ1 or large mf/mχ1 , resulting
in non-continuous, divergent and thus unphysical behavior. From comparison with
figs. B.2 and B.3, it becomes clear that this unphysical behavior relaxes the larger
mχ2 becomes. Therefore, it is advised to use analytical approximations of the loop
functions for scenarios of large mass splittings.
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Figure B.1: Generic scalar loop functions for mχ1 = 100 GeV and mχ2 = 1.1×mχ1 .
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Figure B.2: Generic scalar loop functions for mχ1 = 100 GeV and mχ2 = 2mχ1 .
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Figure B.3: Generic scalar loop functions for mχ1 = 100 GeV and mχ2 = 10×mχ1 .
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B.1 The general loop functions

Vector loop functions

Magnetic dipole moment:

F̄Vµ (µ, η, ξ) =
2

ξ(ξ − 1)

{
ξ2
(
−F̃ (1, µ, η) + F̃ (ξ, µ, η)

)

+ (ξ2 − 1)

[
− ξ + (η2 − µ2) log

(
η

µ

)
+m2

χ1
ξ×

×
( (

(1 + ξ2)− η2
)
C0(0,m2

χ1
,m2

χ1
ξ2,mχ1η,mχ1η,mχ1µ)

− µ2C0(0,m2
χ1
,m2

χ1
ξ2,mχ1µ,mχ1µ,mχ1η)

)]}
, (B.20)

and

ḠVµ (µ, η, ξ) = −4m2
χ1
µ(1 + ξ)2C0

(
0,m2

χ1
,m2

χ1
ξ2,mχ1η,mχ1η,mχ1µ

)
. (B.21)

Electric dipole moment:

F̄Vd (µ, η, ξ) = i
2(1 + ξ)

ξ(1− ξ)2

{
ξ2
(
F̃ (1, µ, η)− F̃ (ξ, µ, η)

)

+ (ξ2 − 1)

[
− ξ + (η2 − µ2) log

(
µ

η

)

−m2
χ1
ξ
(

(η − ξ + 1) (η + ξ − 1)×
× C0(0,m2

χ1
,m2

χ1
ξ2,mχ1η,mχ1η,mχ1µ)

+ µ2C0(0,m2
χ1
,m2

χ1
ξ2,mχ1µ,mχ1µ,mχ1η)

)]}
, (B.22)

and

ḠVd (µ, η, ξ) = −iḠVµ (µ, η, ξ) . (B.23)

Anapole moment:

F̄VA (µ, η, ξ) = − 2

(1− ξ)3

{
− (1 + ξ)(1 + 2ξ)F̃ (1, µ, η)

+ ξ(1 + ξ)(2 + ξ)F̃ (ξ, µ, η)

+
ξ − 1

ξ

[
3ξ(1 + ξ)2 + κξ7 log

(
µ

η

)

+ κξ8C0(0,m2
χ1
,m2

χ1
ξ2,mχ1η,mχ1η,mχ1µ)

+ κξ9C0(0,m2
χ1
,m2

χ1
ξ2,mχ1µ,mχ1µ,mχ1η)

]}
, (B.24)
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with

κξ7 = −2η2(ξ(ξ + 4) + 1) + 2µ2(ξ(ξ + 4) + 1) + (ξ − 1)2ξ, (B.25)

κξ8 = m2
χ1
ξ
[
2η4 + 2η2

(
(ξ + 1)2 − 2µ2

)
+ 2µ4

− µ2(ξ + 1)2 + ξ2
(
−ξ2 + ξ + 2

)
+ ξ − 1

]
, (B.26)

κξ9 = m2
χ1
ξ
[
2η4 − 2η2

(
2µ2 + ξ2 + 1

)
+ 2µ4 + µ2(ξ(3ξ + 2) + 3) + 2ξ2

]
, (B.27)

and

ḠVA (µ, η, ξ) =
4µ

ξ − 1

{
2 log

(
µ2

η2

)
+m2

χ1

[
(1− 2η2 + 2µ2 + ξ2)×

C0(0,m2
χ1
,m2

χ1
ξ2,mχ1µ,mχ1µ,mχ1η)− (µ↔ η)

]}
. (B.28)

Charge radius:

F̄Vb (µ, η, ξ) = − 2

(1− ξ)2(1 + ξ)

{
(ξ − 1)(2ξ − 1)F̃ (1, µ, η)

+ (ξ − 1)(ξ − 2)ξF̃ (ξ, µ, η)

+
1 + ξ

ξ

[
3(1− ξ)2ξ + κξ10 log

(
µ

η

)

+ κξ11C0(0,m2
χ1
,m2

χ1
ξ2,mχ1η,mχ1η,mχ1µ)

+ κξ12C0(0,m2
χ1
,m2

χ1
ξ2,mχ1µ,mχ1µ,mχ1η)

]}
,

(B.29)

with

κξ10 = 2η2((ξ − 4)ξ + 1)− 2µ2((ξ − 4)ξ + 1) + ξ(ξ + 1)2, (B.30)

κξ11 = m2
χ1
ξ
[
− 2η4 + 2η2

(
2µ2 − (ξ − 1)2

)
− 2µ4 + µ2(ξ − 1)2

+ ξ2
(
ξ2 + ξ − 2

)
+ ξ + 1

]
, (B.31)

κξ12 = m2
χ1
ξ
[
2η4 − 2η2

(
2µ2 + ξ2 + 1

)
+ 2µ4 + µ2(ξ(3ξ − 2) + 3) + 2ξ2

]
, (B.32)

and

ḠVb =
4µ(ξ + 1)

(ξ − 1)2

{
2 log

(
µ2

η2

)
+m2

χ1

[ (
1− 2η2 + 2µ2 + ξ2

)
× (B.33)

C0

(
0,m2

χ1
,m2

χ1
ξ2,mχ1µ,mχ1µ,mχ1η

)
− (µ↔ η)

]}
. (B.34)
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Figure B.4: Generic vector loop functions for mχ1 = 100 GeV and mχ2 = 1.1×mχ1 .
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Figure B.5: Generic vector loop functions for mχ1 = 100 GeV and mχ2 = 2mχ1 .
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Figure B.6: Generic vector loop functions for mχ1 = 100 GeV and mχ2 = 10×mχ1 .
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B.2 Limit of identical external states

Here, we summarize the loop functions for the diagonal case with mχ1 = mχ2 ≡ mχ,
i.e. when ξ = 1. We introduce

∆ = λ(1, η2, µ2) = (µ2 − η2 + 1)2 − 4µ2, (B.35)

and

f(µ, η) =
1

∆
F̃ (1, µ, η) =

1√
∆
arctanh

( √
∆

η2 + µ2 − 1

)
. (B.36)

Note that expressions for the EM moments summarized here agree with the results
presented section 3.2.3. Still, for completeness, we will provide them here again in
the canonical normalization.

Scalar loop functions

Magnetic dipole moment:

FSµ = − 1

mχ

[ (
∆ + η2 + µ2 − 1

)
f(µ, η) + (η2 − µ2) log

(
µ

η

)
+ 1

]
, (B.37)

and

GSµ = − µ

mχ

[ (
−η2 + µ2 − 1

)
f(µ, η) + log

(
η

µ

)]
. (B.38)

Electric dipole moment:

FSd = 0, GSd = iGSµ . (B.39)

Anapole moment:

FSA =
1

6m2
χ

[ (
−3η2 + 3µ2 − 1

)
f(µ, η) + 3 log

(
η

µ

)]
, GSA = 0. (B.40)

Charge radius:

FSb =
1

6∆m2
χ

[
∆
(
8η2 − 8µ2 + 1

)
log

(
η

µ

)
− 2

(
4∆ + η2 + 3µ2 − 1

)

+ f(µ, η)

(
µ2
(
−7∆ + 12η2 − 4

)
+ ∆

(
−8∆− 9η2 + 5

)
+ 4µ4

)]
,

(B.41)

and

GSb =
2µ

3∆m2
χ

[
∆ log

(
µ

η

)
+ η2 − µ2 + f(µ, η)×

×
(
−µ2

(
∆ + 2η2 + 3

)
+ (∆− 1)

(
η2 − 1

)
+ 2µ4

)]
. (B.42)
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Vector loop functions

Magnetic dipole moment:

FVµ = − 2

mχ

[ (
∆− η2 + 3µ2 + 1

)
f(µ, η) +

(
µ2 − η2 + 2

)
log

(
η

µ

)
+ 1

]
, (B.43)

and

GVµ = − 4µ

mχ

[ (
η2 − µ2 − 1

)
f(µ, η) + log

(
µ

η

)]
. (B.44)

Electric dipole moment:

FVd = 0, GVd = −iGVµ . (B.45)

Anapole moment:

FVA =
1

3m2
χ

[ (
−3η2 + 3µ2 + 7

)
f(µ, η) + 3 log

(
η

µ

)]
, GVA = 0. (B.46)

Charge radius:

FVb =
1

3∆m2
χ

[
∆
(
−8η2 + 8µ2 + 5

)
log

(
µ

η

)
− 2

(
4∆ + η2 + 3µ2 − 1

)

− f(µ, η)

(
µ2
(
13∆− 12η2 + 4

)
+ ∆

(
8∆ + 3η2 + 1

)
− 4µ4

)]
,

(B.47)

and

GVb =
8µ

3∆m2
χ

[
∆ log

(
η

µ

)
− η2 + µ2 + f(µ, η)×

×
(
µ2
(
∆ + 2η2 + 3

)
− (∆− 1)

(
η2 − 1

)
− 2µ4

)]
. (B.48)

B.3 Large mass splitting between external states

Here, we consider the scenario for whichmχ1 � mχ2 and introduce the abbreviations
α =
√

∆− η2 + µ2 + 1 and β =
√

∆ + η2 − µ2 + 1.
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Scalar loop functions

Magnetic dipole moment:

FSµ =
1

mχ1

[
η2

(
Li2
(

2

2− α

)
+ Li2

(
2

β

)
− Li2

(
1− µ2

η2

))

+ µ2

(
Li2
(

2

2− β

)
+ Li2

(
2

α

)
− Li2

(
1− η2

µ2

))
− 1

]
, (B.49)

and

GSµ =
µ

mχ1

(
Li2
(

2

α

)
+ Li2

(
2

2− β

)
− Li2

(
1− η2

µ2

))
. (B.50)

Electric dipole moment:

FSd = iFSµ , GSd = iGSµ . (B.51)

Anapole moment:

FSA =
1

m2
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[
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and

GSA =
µ

m2
χ1

[
4 log
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. (B.53)

Charge radius:

FSb = FSA, GSb = GSA. (B.54)

Vector loop functions

Magnetic dipole moment:

FVµ =
2

mχ1

[
µ2

(
Li2
(
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)
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)
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]
, (B.55)
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and

GVµ =
4µ

mχ1

(
Li2
(

2

2− α

)
+ Li2

(
2

β

)
− Li2

(
1− µ2

η2

))
. (B.56)

Electric dipole moment:

FVd = −iFVµ , GVd = −iGVµ . (B.57)

Anapole moment:

FVA =
2

m2
χ1
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, (B.58)

with

λ1 = 2
(
η4 − η2

(
2µ2 + 1

)
+ µ4

)
+ 3µ2, (B.59)

λ2 = −2
(
η4 + η2

(
1− 2µ2

)
+ µ4

)
+ µ2 + 1, (B.60)

and

GVA =
4µ

m2
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. (B.61)

Charge radius:

FVb = −FVA, GVb = −GSA. (B.62)

B.4 Light external mass limit

Here, we expand the loop functions presented in appendix B.1 for the limit in which
the masses of the external fermions are small compared to the relevant mass scale
in the loop. We keep the leading order terms in mχ1 and mχ2 , and introduce the
abbreviations ρ = mf/mS and r = mf/mV .
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Appendix B Analytical expressions for the loop functions of the EM moments

Scalar loop functions

Magnetic dipole moment:

FSµ =
(mχ1 +mχ2)

(
ρ4 − 2ρ2 log

(
ρ2
)
− 1
)

4m2
S (ρ2 − 1)3 , GSµ =

ρ
(
ρ2 − log

(
ρ2
)
− 1
)

mS (ρ2 − 1)2 . (B.63)

Electric dipole moment:

FSd = i
(mχ1 −mχ2)

(
ρ4 − 2ρ2 log

(
ρ2
)
− 1
)

4m2
S (ρ2 − 1)3 , GSd = i

ρ
(
ρ2 − log

(
ρ2
)
− 1
)

mS (ρ2 − 1)2 . (B.64)

Anapole moment:

FSA =
−3ρ2 +

(
ρ2 + 2

)
log
(
ρ2
)

+ 3

6m2
S (ρ2 − 1)2

− mχ1mχ2

36m4
S (ρ2 − 1)5

[
−19ρ6 − 9ρ4 + 27ρ2 + 6

(
ρ4 + 5ρ2 + 2

)
ρ2 log

(
ρ2
)

+ 1
]
,

(B.65)

and

GSA =
ρ(mχ1 −mχ2)

(
−3ρ4 +

(
ρ4 + 4ρ2 + 1

)
log
(
ρ2
)

+ 3
)

6m3
S (ρ2 − 1)4 . (B.66)

Charge radius:

FSb =
−3ρ2 +

(
ρ2 + 2

)
log
(
ρ2
)

+ 3

6m2
S (ρ2 − 1)2

+
mχ1mχ2

36m4
S (ρ2 − 1)5

[
−19ρ6 − 9ρ4 + 27ρ2 + 6

(
ρ4 + 5ρ2 + 2

)
ρ2 log

(
ρ2
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+ 1
]
,

(B.67)

and

GSb =
ρ(mχ1 +mχ2)

(
−3ρ4 +

(
ρ4 + 4ρ2 + 1

)
log
(
ρ2
)

+ 3
)

6m3
S (ρ2 − 1)4 . (B.68)

Vector loop functions

Magnetic dipole moment:

FVµ = −(mχ1 +mχ2)
(
−5r4 + 8r2 +

(
4r4 − 2r2

)
log
(
r2
)
− 3
)

2m2
V (r2 − 1)3 , (B.69)

and

GVµ = r
4
(
−r2 + r2 log

(
r2
)

+ 1
)

mV (r2 − 1)2 . (B.70)
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Electric dipole moment:

FVd = i
(mχ1 −mχ2)

(
−5r4 + 8r2 +

(
4r4 − 2r2

)
log
(
r2
)
− 3
)

2m2
V (r2 − 1)3 , (B.71)

and

GVd = −r4i
(
−r2 + r2 log

(
r2
)

+ 1
)

mV (r2 − 1)2 . (B.72)

Anapole moment:

FVA = −3
(
r2 − 1

)
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2− 5r2
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log
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3m2
V (r2 − 1)2
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18m4
V (r2 − 1)5

[
− 19r6 − 9r4 + 27r2 + 6

(
r4 + 5r2 + 2

)
r2 log

(
r2
)

+ 1
]
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(B.73)

and

GVA =
2r(mχ1 −mχ2)

(
−3r4 +
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log
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+ 3
)

3m3
V (r2 − 1)4 . (B.74)

Charge radius:

FVb =
3
(
r2 − 1

)
+
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log
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3m2
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(B.75)

and

GVb = −2r(mχ1 +mχ2)
(
−3r4 +

(
r4 + 4r2 + 1

)
log
(
r2
)

+ 3
)

3m3
V (r2 − 1)4 . (B.76)
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Appendix C

Electromagnetic- vs. hypercharge
moments

Here, we provide more details on the issue of defining the EM moments with respect
to the photon field Aµ.
Concretely, we consider the Dirac DM toy model, in which χ interacts with the

photon field Aµ or the hypercharge gauge boson Bµ. The effective Lagrangian reads

Leff =
µχ
2
χ̄σµνχXµν +

dχ
2
iχ̄σµνγ5χXµν +bχχ̄γ

µχ∂νXµν +Aχ χ̄γµγ5χ∂νXµν , (C.1)

where the vector field is Xµ = Aµ or Xµ = Bµ, Xµν = ∂µXν − ∂νXµ is the
respective field strength tensor, and the coefficients are the EM moments as discussed
in chapter 3. Note that in this formulation, the term EM moment is ambiguously
defined; in practice, one should keep either Aµ or Bµ as a reference. Throughout this
work, we consider the moments w.r.t. Aµ, even if we consider DM interacting with
the hypercharge gauge boson (see the FeynRules [401–403] implementation below).
After electroweak symmetry breaking, the photon and hypercharge gauge boson are
related, Bµ = cos θWA

µ − sin θWZ
µ, where θW denotes the Weinberg angle. Thus,

the respective moments are trivially related to each other.
The crucial difference between the photon- and the hypercharge model is that

for the latter, the low energy EFT consists of photon- and Z mediated processes
with couplings given by the EM moments, resulting in important theoretical and
phenomenological consequences [310]:

• The presence of the Z channel leads to resonant thermal production via s-
channel diagrams, if mχ ' mZ/2.

• The DM annihilation cross-section in the photon-mediated version leads to
non-unitary growth in the high-energy regime caused by the χχ → WW sub-
amplitude.

• Similarly, the absence of the Z channel causes an incorrect enhancement of the
two-jet topology due to vector boson fusion at particle colliders.
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Appendix C Electromagnetic- vs. hypercharge moments

The unphysical behavior described in the last two points is mitigated if the Z
contribution is included, taming the total amplitude and restoring the SM gauge
invariance. Therefore, adapting the hypercharge model when considering thermal
production, indirect signals, or collider phenomenology is crucial. For direct detec-
tion experiments, on the other hand, the addition of the Z diagrams does not alter
the phenomenology, as the additional diagrams are sufficiently suppressed by the Z
boson propagator, asMZ ∼ m−2

Z

Often, the relic density is computed with the help of public numerical tools such
as micrOMEGAs [368, 404], madDM [529] or DarkSUSY [530]. Here we will focus on
micrOMEGAs v5.3.41 and madDM v3.2 within Madgraph5_aMC@NLO v2.9.16 [531].
We created a FeynRules [401–403] model file, generating CalcHEP [405] and

Madgraph5_aMC@NLO output files for micrOMEGAs and madDM, respectively. The Lag-
rangian for electromagnetically interacting DM given in eq. (3.10) is written for the
photon model as:

LDM := I DMbar.Ga[mu].del[DM,mu] - mdm DMbar.DM;
Ledm := (I/2) dedm DMbar.(I/2 Ga[mu].Ga[nu] - I/2 Ga[nu].Ga[mu])

.Ga[5].DM FS[A,mu,nu];
Lmdm := (1/2) dmdm DMbar.(I/2 Ga[mu].Ga[nu] - I/2 Ga[nu].Ga[mu])

.DM FS[A,mu,nu];
Lana := dana DMbar.Ga[mu].Ga[5].DM del[FS[A,mu,nu],nu];
Lcr := dcr DMbar.Ga[mu].DM del[FS[A,mu,nu],nu];
Lmilli := ee Qchi DMbar.Ga[mu].DM A[mu];

LBSM := LDM + Ledm + Lmdm + Lana + Lcr + Lmilli;

For the hypercharge model, we replace the photon with the hypercharge gauge
boson:

LDM := I DMbar.Ga[mu].del[DM,mu] - mdm DMbar.DM;
Ledm := (I/2) dedm DMbar.(I/2 Ga[mu].Ga[nu] - I/2 Ga[nu].Ga[mu])

.Ga[5].DM FS[B,mu,nu] (1/cw);
Lmdm := (1/2) dmdm DMbar.(I/2 Ga[mu].Ga[nu] - I/2 Ga[nu].Ga[mu])

.DM FS[B,mu,nu] (1/cw);
Lana := dana DMbar.Ga[mu].Ga[5].DM del[FS[B,mu,nu],nu] (1/cw);
Lcr := dcr DMbar.Ga[mu].DM del[FS[B,mu,nu],nu] (1/cw);
Lmilli := ee Qchi DMbar.Ga[mu].DM B[mu] (1/cw);

LBSM := LDM + Ledm + Lmdm + Lana + Lcr + Lmilli;

We then calculate the relic density using the respective numerical tool, utilizing
a numerical minimizer to find the value of the EM needed for the DM candidate
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Figure C.1: Anapole moment required for thermal dark matter production via the
freeze-out mechanism using madDM (left) and micrOMEGAs (right) for different input
models and gauge-choices. The “force UG” in the right panel’s legend refers to the
forceUG=true statement within micrOMEGAs’ main.c file.

to match with today’s observed relic abundance of ΩDMh
2 ' 0.12 [45]. We also

cross-check our implementation with the model files of ref. [310].1

In fig. C.1, we show the results for the anapole moment, but the implications
are similar for the other EM moments. The different gauge choices in the legend
describe the choice within the FeynRules SM file, whereas forceUG=true describes
the boolean in the main.c file used for the micrOMEGAs routines. Notably, both codes
agree for the hypercharge model, shown as a gray line, irrespective of the gauge set
in the FeynRules model file, as it should.

For the photon model, madDM reproduces the ill behavior mentioned above, i.e. the
χχ → WW annihilation cross-section seems enhanced for mχ & 100 GeV, leading
to a smaller anapole moment to obtain Ωχh

2 = 0.12. However, coupling only to
the photon violates the SM gauge group, so an unphysical behavior is unsurpris-
ing. In contrast, using micrOMEGAs, this behavior is only found when the switch
forceUG=true is used, and the other choices for the gauges coincide with the hyper-
charge line beyond the resonance. Therefore, these codes do not consistently treat
the photon-mediated model.
An analytical calculation of the relic density in the hypercharge anapole scenario

was conducted in ref. [218], confirming that the hypercharge model results in physical
cross-sections and, therefore, agrees with the findings of ref. [310].2 In particular,
the blue dashed line in the right panel of fig. C.1, indicating the photon model
in the Feynman gauge calculated with micrOMEGAs, is coinciding with the correct
hypercharge model prediction only accidentally.

1Available at https://feynrules.irmp.ucl.ac.be/wiki/EWFF4DM.
2We thank Jaehoon Jeong for helpful discussions on this matter.
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Appendix C Electromagnetic- vs. hypercharge moments

These findings underscore the importance of working in the framework of the
hypercharge moments in favor of the electromagnetic moments for the freeze-out
calculation. For a consistent formulation of electromagnetically interacting DM, one
has to include the trivially related diagrams where the Z boson replaces the photon.
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