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Abstract

Simulating particle interactions is a fundamental challenge in computational physics,
molecular dynamics, and engineering applications. Efficiently managing these sim-
ulations is particularly important in large-scale systems, where millions of particles
interact over extended periods of time. A key aspect of these simulations is the identifi-
cation of particles which are eligible for pairwise force calculations. In algorithms like
Verlet Lists, these particles are stored in neighbor lists, which are periodically rebuilt to
maintain accuracy.

This thesis investigates the Fast-Particle-Buffer mechanism as an alternative approach
to optimize the neighbor list rebuild process in AutoPas, a performance-optimized
C++ library for short-range particle simulations. Instead of triggering a full rebuild
whenever fast-moving particles exceed a predefined threshold, these particles are
temporarily stored in a buffer, allowing the neighbor lists to be used longer before
rebuilding.

Through various test scenarios, this approach is evaluated in terms of computational
efficiency and its impact on overall simulation performance. The findings suggest that
while the Fast-Particle-Buffer can reduce neighbor list rebuild costs, its effectiveness
depends on the simulation’s characteristics.
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1. Introduction

Simulating particle interactions plays a crucial role in computational physics, molecular
dynamics, and engineering applications. In large-scale systems, where millions of
particles interact over extended time periods, these simulations require significant
computational resources. As a result, optimizing runtime is essential to improve
efficiency, performance, and scalability. [2]

AutoPas is an auto-tuning C++ library designed to optimize short-range particle
simulations by selecting the most efficient algorithm for a given simulation. The library
implements various algorithms. However, since each simulation is unique, there is no
single best algorithm that performs optimally in all cases. To address this, AutoPas
uses auto-tuning, which dynamically selects the most efficient combination of internal
algorithms during run-time [17].

One of the internal algorithms provided by AutoPas is Verlet Lists. A key challenge
in Verlet Lists is the computational overhead caused by frequent neighbor list rebuilds.
As particles move dynamically within the simulation domain, neighbor lists—which
store information about neighboring particles within a defined search region—become
outdated and must be recomputed periodically. This rebuilding is computationally
expensive, impacting overall simulation performance.

This thesis investigates an alternative approach: the Fast-Particle-Buffer mechanism.
Instead of rebuilding neighbor lists whenever a fast-moving particle enters the search
region, the buffer temporarily stores these particles and avoids neighbor lists rebuilding.
The goal is to analyze whether this strategy can reduce computational overhead and
improve overall simulation performance.

The structure of this thesis is as follows: Chapter 2 provides a theoretical background
on molecular dynamics and introduces AutoPas. Chapter 3 presents related projects,
while Chapter 4 details the implementation of the Fast-Particle-Buffer mechanism.
Chapter 5 presents experimental results, analyzing the efficiency of the proposed
approaches across various scenarios. Finally, Chapter 6 discusses potential future opti-
mizations, followed by Chapter 7, which summarizes the key findings and conclusions
of this work.
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2. Background

2.1. Molecular Dynamics (MD) Simulations

Molecular dynamics (MD) is a computational method used to analyze the interactions
and movements of atoms and molecules. It offers better understanding of dynamic pro-
cesses at atomic scale, such as diffusion, chemical reactions, and phase changes, making
it an essential tool in physics, bioinformatics, molecular biology, materials science,
and more. MD simulations are widely used to study protein folding, predict material
properties, discover drugs, and analyze system behavior under various conditions [13]
[2].

MD simulations begin with an initial configuration of particles, with specified
positions and velocities. Forces acting on each particle are calculated using a force
field, which defines the potential energy of the system. These forces are then translated
into velocities and movements. Over discrete time steps, the positions and velocities of
particles are updated, providing a dynamic view of the system’s evolution.

2.1.1. Computational Challenges and Optimizations

While MD is a powerful tool, it is computationally expensive, requiring a significant
amount of resources to deliver accurate and reliable results. The main challenges
include handling large system sizes, modeling long simulation times, and more.

Short-Range Simulations

To balance computational efficiency and accuracy of results, approximations are com-
monly introduced. While the distance between two particles increases, the pairwise
forces between the two start converging to zero, and can therefore be ignored. For these
types of potentials, called short-range potentials, a cutoff radius (rc) is introduced. This
approximation assumes that interactions beyond rc are negligible and can be ignored.
By doing so, the computational complexity is reduced from O(N2) to O(N), where N
is the number of particles. [9]
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2. Background

Lennard-Jones Potential (LJ)

The Lennard-Jones 12-6 potential is a widely used function in molecular dynamics
simulations to model interactions between particles. It describes the balance between
short-range repulsion and long-range attraction forces. This balance is given by:

V(r) = 4ϵ

[(σ

r

)12
−

(σ

r

)6
]

,

where r is the distance between two particles, ϵ is the depth of the potential well,
representing the strength of attraction, and σ is the distance at which the potential
changes sign. [19]

The first term, (σ/r)12, models the steep repulsive forces that dominate at very short
distances, while the second term, (σ/r)6, represents the weaker attractive van der Waals
forces. The potential reaches its minimum value at r = 21/6σ, which corresponds to the
equilibrium distance between particles.

The Lennard-Jones potential is particularly suited for short-range interactions due to
its rapid convergence to zero as r increases. [11]

Figure 2.1.: Lennard-Jones Potential [6]

Newton’s Third Law

An essential optimization in MD simulations is the application of Newton’s third
law, which states that every action has an equal and opposite reaction; or, the mutual
actions of two bodies upon each other are always equal, and directed to contrary parts
[7]. In particle simulations, this means the force that particle p1 exerts on p2 is equal
and opposite to the force p2 exerts on p1. Using this symmetry the number of force
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2. Background

calculations is cut in half, significantly improving computational efficiency. In AutoPas,
this optimization is implemented as the Newton3-optimization [9].

2.2. AutoPas Software

AutoPas is a C++ library specifically designed to optimize short-range particle sim-
ulations through dynamic algorithm selection. It acts as a black box, where users
provide the specifications while the library handles the choice of the best suitable
algorithm through auto-tuning. By periodically evaluating various algorithms, AutoPas
ensures that the most efficient configuration is applied as simulation conditions change.
The library includes example applications, such as md-flexible, which will be used
throughout the course of this thesis [10].

2.2.1. Data layouts

AutoPas supports two primary data layouts for storing particle information in memory:
Array of Structures (AoS) and Structure of Arrays (SoA). In the AoS layout, each particle
is represented as an object containing all its properties, such as position and force,
stored together in memory. This arrangement allows for efficient cache utilization
when accessing individual particles, but can limit vectorization efficiency. On the other
hand, the SoA layout separates particle properties into individual arrays, with each
array containing data for all particles, leading to better vectorization by aligning data
contiguously in memory. However, this layout may lead to less efficient cache usage
when accessing properties of a single particle [10].

2.2.2. Neighbor identification algorithms

During auto-tuning AutoPas has to decide how to manage and store the particles of
the simulation, and most importantly how to identify the neighboring particles to
efficiently compute the pairwise forces. As shown in section 2.1.1, for each particle, the
particles within the cut-off radius should be found, and the rest will be ignored. This
process is repeated for every single particle in the container, and choosing the right
neighbor identification algorithm, is crucial when it comes to performance. Below, the
four algorithms used in AutoPas are presented. These algorithms are implemented
as containers in AutoPas, managing neighbor identification and the overall particle
organization, including the selection of the data layout.

4



2. Background

Direct Sum

The straightforward, and thus naive, approach, is to calculate the distances from one
particle to all other particles without utilizing any additional data structures. Instead,
all particles are stored in a single cell, and for each particle, distances to all other
particles are evaluated to determine whether they fall within the cutoff radius. Forces
are only computed for pairs of particles within this radius. As illustrated in Figure 2.2a,
the red particle represents the current particle, for which forces are being calculated,
the red circle denotes the cutoff region, and the arrows depict the interactions between
the current particle and the others.

This method, while eliminating the complexity and overhead associated with bigger
data structures, is computationally inefficient. The calculation of pairwise forces results
in a time complexity of O(n2), where n is the number of particles [9]. Although simple,
this approach is only practical for simulations with a very small number of particles.

Linked Cells

This approach extends the Direct Sum method by dividing the simulation domain into
cells, with each cell containing the particles within its boundaries. The cell dimensions
are set to at least the cutoff radius (rc). This ensures that short-range interactions are
computed only between particles in the current cell and its eight neighboring cells, as
depicted with blue in Figure 2.2b.

Because the cell size matches the cutoff radius, particles outside these neighboring
cells are guaranteed to lie beyond the interaction range and can be excluded from force
calculations. For homogeneous particle distributions, this reduces the computational
complexity from O(n2) to O(n) [12]. Furthermore, Linked Cells improve cache efficiency
by storing particles within the same cell contiguously in memory.

Nonetheless, there is still computational overhead, as around 84.5% of the particles
in the search region are outside the cutoff radius, leading to redundant distance
calculations. The probability of finding a pair of particles within the cutoff radius in
a 3D simulation, is approximately 15.5% and can be estimated using the following
equation [10]:

Cutoff volume
Search volumeLC

=
4
3 πr3

c

(3rc)3

Verlet Lists

The idea behind Verlet Lists is to precompute and store neighbor lists for each particle.
This allows AutoPas to efficiently track all nearby particles within a particle’s cutoff
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2. Background

radius, making pairwise interaction calculations faster by reducing the number of
distance checks needed in each iteration.

Since particles move during the simulation, these lists eventually become outdated
and need to be rebuilt whenever a new particle enters or leaves the cutoff region. To
reduce how often these lists need to be rebuilt, an additional safety margin is introduced,
known as the Verlet skin factor s. The cutoff radius rc is scaled by this factor, expanding
the search radius to rc · s, as shown with yellow in Figure 2.2c. This extended region
allows the neighbor lists to remain valid for multiple iterations, reducing the frequency
of rebuilds.

With this approach, the probability of finding a particle in the cutoff region in a 3D
simulation domain is given by [10]:

Cutoff volume
Search volumeVL

=
4
3 πr3

c
4
3 π(rc · s)3

=
1
s3 .

Selecting an appropriate skin factor is crucial, as it affects both the number of
unnecessary calculations and how often the neighbor lists are rebuilt. For instance,
a skin factor of 1.2 reduces the number of unnecessary distance calculations by half
compared to Linked Cells.

Throughout the simulation, as particles move, two cases arise:

• If a particle moves away from another, it may remain in the neighbor list longer
than necessary, increasing storage costs and unnecessary force calculations.

• If a particle moves closer to another, it may enter its cutoff radius but not be
included in the neighbor list, leading to incorrect force calculations.

To avoid these issues, AutoPas uses a fixed rebuild frequency parameter, ensuring
that all neighbor lists are rebuilt every N iterations to keep them compact and accurate.

On top of that, when using dynamic containers as described in [8], the maximum
particle displacement per iteration is used as a metric of when to rebuild. In this
case the displacement of each particle from its last rebuild position is tracked in every
iteration. This displacement is then compared to a threshold, which is chosen as half of
the Verlet skin size [18]. If at least one particle moves beyond this threshold, it could
have entered the cutoff region of another particle, and therefore the neighbor lists are
rebuilt.

To improve efficiency, AutoPas builds the Verlet Lists algorithm on top of Linked
Cells. Therefore, the neighbor lists are constructed by assessing only particles in
neighboring cells. This allows the computational complexity to be reduced from O(n2)

to O(n) [20].
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2. Background

Verlet Lists are particularly effective for systems with high particle densities. However,
their lack of spatial locality can lead to inefficient memory access, resulting in poor
cache performance and reduced vectorization efficiency [9].

Verlet Cluster Lists

Verlet Cluster Lists are built upon regular Verlet Lists by grouping particles into clusters
rather than maintaining individual neighbor lists for each particle Figure 2.2d. This
approach reduces memory overhead, as a single neighbor list is created for each cluster
instead of one for every particle. The algorithm uses the observation that neighboring
particles often share similar neighbor lists, allowing M particles to be combined into
a cluster. When two clusters are close, all interactions between the particles within
these clusters are calculated. This optimization decreases the number of neighbor
lists by a factor of 1

M [9], and enhances computational efficiency by enabling better
vectorization. However, the increased search radius, can lead to additional distance
calculations. Despite this, Verlet Cluster Lists are well-suited for large systems with
high particle densities.

(a) Direct Sum (b) Linked Cells (c) Verlet Lists (d) Verlet Cluster Lists

Figure 2.2.: Neighbor Identification Algorithms in AutoPas [9]

2.2.3. Traversals

Traversals determine the order in which particle interactions are computed. AutoPas
supports a variety of traversal strategies, each specific to the container being used.
These strategies are designed to optimize performance by parallelizing the traversal
process, while avoiding race conditions and minimizing the need for schedulers or
locking mechanisms [10].

Traversal strategies in AutoPas utilize different cell strategies as their base step.
The goal of these base steps is to divide and color the cells of the domain, such that
particles in cells of the same color can be processed independently by separate threads.
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2. Background

Currently, AutoPas implements three types of base steps: c01, c18, and c08; however,
for this thesis, only c01 and c08 are relevant.

2.2.4. Base Steps in AutoPas

c01 Base Step

The c01 base step uses only a single color, as illustrated in Figure 2.3a, and calculates
interactions for all neighboring cells without utilizing the Newton3 optimization. In
this approach, each cell is assigned to a thread, which calculates the interactions with
particles in the neighboring cells. This strategy is highly parallelizable.

c08 Base Step

As the name suggests, the c08 base step uses 8 colors. It is similar to c18 but reduces
the locked area further by limiting diagonal interactions and focusing on only four cells
(see Figure 2.3b). This adjustment allows for better parallel processing and improved
cache utilization.

2.2.5. Traversal Strategies

This thesis focuses on the traversals lc_c08, vlc_c08, and vcl_c06, as they were exten-
sively used in the experiments conducted. A detailed explanation of these strategies is
provided below. For information on all traversal strategies, refer to [9].

lc_c08

This traversal utilizes c08 as its base step, and is designed for the Linked Cells container.
It divides a 2D domain into four colors and a 3D domain into eight colors. The
dependency of the number of colors C on the number of dimensions D follows C = 2D

[9].

vlc_c08

This traversal applies the c08 base step to each individual cell. To ensure thread safety,
a domain coloring consisting of eight colors is used. For each cell, all neighbor lists
are processed. Depending on whether the lists were built with Newton3, the base step
used is either c01 or c08. [5]

8



2. Background

vcl_c06

This traversal is used for Verlet Cluster Lists, and it employs a 2D coloring scheme
with a stride of x = 3 and y = 2, resulting in six colors (3× 2 = 6). Interactions
within clusters are always computed using Newton3, regardless of whether Newton3 is
enabled or disabled for the overall traversal. [5]

(a) c01 base step (b) c08 base step

Figure 2.3.: Base Step Approaches [14]

2.2.6. Auto-Tuning

One of the key features of AutoPas is its auto-tuning capability. Choosing the optimal
combination of container and traversal for a simulation can be challenging, especially
since different parts of the simulation may benefit from different configurations. Au-
toPas automates this process, relieving the user of the need to determine the best setup
manually.

At the beginning of a simulation, AutoPas tests various configurations over a few
iterations, measuring their performance. To reduce overhead, configurations using
the same container are tested consecutively. This approach assumes that the state
of the simulation remains relatively stable over consecutive time steps, making the
performance results comparable. Importantly, the results of these initial tests are not
discarded but are used in the following iterations [10].

After evaluating multiple configurations, AutoPas selects the best-performing setup
and uses it for a user-defined number of iterations. Following this period, the system
enters a re-tuning phase, where a new configuration may be selected based on how the
simulation has evolved.

2.2.7. Particle Types

In AutoPas, there are three types of particles: Owned, Halo, and Dummy particles.

9



2. Background

• Owned particles are the primary particles managed by the current AutoPas
instance. These represent the actual simulation particles within a subdomain.

• Halo particles are not owned by the current AutoPas object but exist at the borders
of subdomains. Since they interact with particles in neighboring domains, they
must be duplicated and made available in neighboring subdomains to ensure the
correct computation of forces. During force calculations, halo particles serve as
interaction partners like any other particle, but their forces are only computed in
the domain that owns them.

• Dummy particles represent deleted particles. They do not participate in force
calculations.

2.2.8. Interaction Computation in AutoPas

Two important buffers are used in AutoPas: the particle buffer and the halo particle
buffer. The particle buffer stores particles that should not yet be added to the container.
The halo particle buffer holds halo particles, making sure that particles at the boundaries
of subdomains are available for correct force calculations.

In AutoPas, interactions are computed in two stages so that all particles are correctly
accounted for during the simulation.

1. Container Interactions: The main function computeInteractions(&traversal)
calculates interactions for particles within the container. This involves iterating
over particle pairs, triplets, or higher multiples, ensuring efficient resolution of
regular particle interactions.

2. Buffer Interactions: Interactions for particles in the buffers are computed sep-
arately using the computeRemainderInteractions(functor, newton3) function.
This step ensures that particles in the buffer interact correctly with container
particles and among themselves. The following types of interactions are handled:

• Particle Buffer ↔ Container: Interactions between buffer particles and
container particles.

• Halo Particle Buffer→ Container: Interactions from halo particle buffers to
container particles.

• Particle Buffer↔ Particle Buffer: Interactions among buffer particles.

• Halo Particle Buffer → Particle Buffer: Interactions from halo particle
buffers to buffer particles.

10



3. Related Work

As discussed in the previous chapters, a significant portion of the computational time
in molecular dynamics simulations is spent on calculating pairwise force interactions
between particles. A common optimization technique is to store the nearby particles,
which in the case of Verlet Lists involves maintaining neighbor lists, as previously
explained.

Since rebuilding these neighbor lists is computationally expensive, several works have
focused on reducing this overhead. One such approach was presented in a previous
thesis by Luis Gall [8].

Gall’s work primarily focused on reducing the time spent on neighbor list rebuilds.
To achieve this, he proposed a dynamic rebuild criterion that adapts based on particle
movement, triggering updates only when necessary. This thesis builds upon his
work on dynamic containers, by further exploring methods to optimize neighbor list
management and reduce unnecessary computations.

Furthermore, Gall also focused on a partial rebuild strategy, where only the neigh-
bor lists affected by particle movement were updated. This method proved to be
advantageous in large simulation domains, for small Verlet skin sizes.

Beyond AutoPas, several molecular dynamics simulators also implement the neighbor
identification algorithms described in Section 2.2.2. Examples include:

• LS1 MarDyn - A Linked Cells-based simulator optimized for large-scale parallel
molecular dynamics simulations. [15]

• LAMMPS - A molecular dynamics software package that employs Verlet Lists.
[18]

• GROMACS - A high-performance molecular dynamics package that utilizes Verlet
Cluster Lists. [1]

Unlike AutoPas, which dynamically selects the best suited algorithm based on
runtime performance using tuning, these pieces of software rely on fixed algorithms
that are optimized for specific types of simulations. While this allows them to be
highly efficient in their intended use cases, they lack the flexibility to adapt to varying
simulation conditions.
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4. Implementation

Rebuilding neighbor lists is computationally expensive, so it is advantageous to reuse
these lists for as many iterations as possible. Neighbor lists are generated for each
particle, containing references to all particles within the cutoff range. To maximize
utilization use, particles slightly beyond the cutoff radius are also included in the
neighbor lists by extending the radius with a region called the "Verlet skin", which is
configurable by the user.

If particles move faster than half the defined Verlet skin distance, they may enter the
cutoff region of other particles, invalidating the neighbor lists. Even if a single particle
among hundreds of thousands exceeds this threshold, all neighbor lists must be rebuilt,
incurring high computational costs.

This thesis investigates whether storing fast-moving particles in a buffer temporarily,
instead of rebuilding the neighbor lists immediately, can reduce computational over-
head. The objective is to evaluate the potential of this approach for future optimization
and research.

This work builds upon the Dynamic-VL-Merge branch in AutoPas, referred to as
the parent branch. All modifications and implementations were carried out in the
Fast-Particle-Buffer branch, which will be referred to as the child branch throughout
this thesis.

4.1. Particle Buffer Mechanism

In AutoPas, each iteration involves a call to the updateContainer() function, which
performs several tasks, including:

• Removing particles that no longer belong in the container.

• Checking whether the neighbor lists are invalid, based on criteria such as the
verlet-rebuild-frequency, tuning iterations, or the presence of fast particles.

The function checkNeighborListsInvalidDoDynamicRebuild() is responsible for
finding fast particles and is called within updateContainer(). It operates by iterating
through owned particles in the container and calculating their displacement squared rel-
ative to the Verlet skin squared. Originally, if the displacement exceeded the threshold,
the neighbor list rebuild procedure was triggered.

12
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4. Implementation

However, instead of immediately rebuilding, fast particles are now marked for
buffering. A copy of the particle is added to the particle buffer, which was previously
introduced in 2.2.8. From this point forward, this buffer will also be referred to as the
fast particle buffer. Meanwhile, the original particle is marked as deleted (i.e., turned
into a dummy particle) to maintain neighbor list integrity. In the pseudocode (1) below,
this modification is marked with blue.

By deferring the integration of fast particles until the next scheduled fixed rebuild,
this approach reduces the cost of frequent neighbor list rebuilds. When a rebuild is
triggered, the buffer is cleared, and its particles are integrated into either the neighbor
lists or the container, depending on their current position.

Algorithm 1

1: procedure CheckNeighborListsInvalidDoDynamicRebuild

2: for all owned particles in the container do ▷ Iterate in parallel
3:

4: distance← particle.calculateDisplacementSinceRebuild()
5: distanceSquare← dot(distance, distance)
6:

7: if distanceSquare ≥ halfSkinSquare then
8:

9: particleCopy← copy(particle)
10: particleBuffer[thread_id].addParticle(particleCopy)
11: markParticleAsDeleted(particle)
12:

13: end if
14: end for
15: end procedure

13



4. Implementation

4.2. Deletion of Particles

Initially as previously described, in checkNeighborListsInvalidDoDynamicRebuild()
particles were marked as deleted in the container, and a copy was created and added to
the buffer.

While this approach works for containers like Verlet Lists, as it preserves the integrity
of the neighbor lists, it introduces overhead for containers such as Linked Cells. In
the case of Linked Cells, every fast-moving particle results in the creation of a dummy
particle within the container, depending on the simulation, potentially leading to a
significant accumulation of these dummies until they are disregarded.

This issue could become problematic when simulations involve the combined usage
of Linked Cells and Verlet Lists. To address this, the hypothesis was to minimize the
overhead caused by dummy particles when using containers like Linked Cells.

The available delete functions at the time were:

bool deleteParticle(size_t cellIndex, size_t particleIndex); (4.1)

bool deleteParticle(Particle &particle); (4.2)

These functions could not be directly used within the parallel loop. For certain
containers, the delete operation employs a swap-delete mechanism, where the particle
to be deleted is swapped with the last particle in the assigned cell before being removed.
This implementation, while efficient, is not thread-safe within a parallel loop.

One proposed solution was to gather all particles marked for deletion into a separate
buffer and process them sequentially after the parallel loop. However, this approach
proved infeasible for function 4.1, as the indices of remaining particles change dy-
namically when deletions occur, making it too time-consuming to update and track
these indices. Whereas for function 4.2, attempts to store references or pointers to
the particles encountered issues when multiple particles were deleted from the same
vector. This led to invalid references, as deletions could shift the positions of particles
in memory.

To resolve these issues, a new delete function was implemented:

deleteParticle(int id, size_t cellIndex); (4.3)

Since deletion is container-dependent, the new deletion function 4.3 was implemented
for all containers available in AutoPas. As many containers share similarities in how
deletion is handled, the implementation follows a common structure. Below are
examples from two of these containers:

14



4. Implementation

In LinkedCells.h

The swap-delete method is used here to efficiently manage particle deletions:

1: procedure DeleteParticle(id, cellIndex)
2: particleVec← cells[cellIndex].particles
3: for all particle ∈ particleVec do
4: if particle.getID() = id then
5: isRearParticle← (particle = last element in particleVec)
6: particle← last element in particleVec
7: remove last element from particleVec
8: return not isRearParticle
9: end if

10: end for
11: end procedure

In VerletListsLinkedBase.h

Here, particles are marked as deleted to avoid interfering with the internal structures
of the Verlet Lists:

1: procedure DeleteParticle(id, cellIndex)
2: particleVec← linkedCells.getCells()[cellIndex].particles
3: for all particle ∈ particleVec do
4: if particle.getID() = id then
5: markParticleAsDeleted(particle)
6: return false
7: end if
8: end for
9: end procedure

The remaining implementations for other containers follow a similar structure. The
full code can be found on GitHub1.

4.2.1. Updated Code

The updated implementation of checkNeighborListsInvalidDoDynamicRebuild() han-
dles deletions safely within its parallel loop by temporarily storing particle IDs and

1Commit ID: d251b0ab8544a76f4e8150bf5e91c09d874d4f4c
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their cell indices in a buffer. After the loop, this buffer is iterated through sequentially
to perform deletions:

1: procedure CheckNeighborListsInvalidDoDynamicRebuild

2: for all owned particles in the container do ▷ Iterate in parallel
3:

4: distance← particle.calculateDisplacementSinceRebuild()
5: distanceSquare← dot(distance, distance)
6:

7: if distanceSquare ≥ halfSkinSquare then
8:

9: particleCopy← copy(particle)
10: particleBuffer[thread_id].addParticle(particleCopy)
11: cellIndex← iter.getVectorIndex()
12: toDelete[thread_id].push_back((particle.getID(), cellIndex))
13:

14: end if
15: end for
16:

17: for all thread ∈ toDelete do
18: for all particle ∈ thread do
19: id← first element of particle
20: cellIndex← second element of particle
21: containerSelector.getCurrentContainer().deleteParticle(id, cellIndex)
22: end for
23: end for
24: end procedure

4.3. Simulation Data Logging

By enabling the CMake flag LOG_ITERATIONS, the simulation generates a .csv file
containing valuable information for each iteration. This data provides insights into the
performance and configuration of the simulation. The header fields included in the file
are as follows:

Date
Iteration

Functor
inTuningPhase
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Interaction Type
Container
CellSizeFactor
Traversal
Load Estimator
Data Layout

Newton 3
computeInteractions[ns]
remainderTraversal[ns]
rebuildNeighborLists[ns]
computeInteractionsTotal[ns]
tuning[ns]

Among these, the fields computeInteractions[ns], remainderTraversal[ns], and rebuild-
NeighborLists[ns] are of particular importance for tracking the computational time spent
on interaction calculations in the container and in the buffers.

To facilitate further analysis of performance, three additional fields were introduced:

• numberOfParticlesInContainer: Records the total number of particles currently
in the container.

• numberFastParticles: Tracks the number of fast-moving particles identified in
each iteration.

• particleBufferSize: Indicates the size of the particle buffer.

These new fields allow us to evaluate the efficiency of the fast particle buffer, and
study the flow and behavior of the fast particles better.
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This chapter explores whether the use of the fast particle buffer provides measurable
advantages by presenting the results of various experiments conducted under different
scenarios. It details the experimental setup, including the working environment,
explains the rationale behind the selection of specific experiments, and provides an
analysis of the observed outcomes. Due to the high number of experiments conducted,
only the most relevant data and plots are presented here. However, the complete
dataset, including the .yaml files and all scripts used for plotting, is available in the
accompanying GitHub repository.

5.1. Test System Specifications

The initial experiments were conducted on the CoolMUC2 Linux cluster at the Leibniz
Supercomputing Centre (LRZ), TUM. This cluster operated on the SLES15 SP1 Linux
OS and consisted of 812 nodes, each equipped with 28 cores running at a nominal
frequency of 2.6 GHz with two hyperthreads per core [3]. The cm2_tiny partition was
used for these experiments. Unfortunately, due to a severe hardware failure, CoolMUC2
was decommissioned during the course of this work.

Subsequent experiments were performed on CoolMUC4, the successor to CoolMUC2.
CoolMUC4 features Intel® Xeon® Platinum 8380 CPUs (Ice Lake) with 112 cores per
node, 512 GB of RAM, and a nominal core frequency of 3.0 GHz (ranging from 0.8 to
4.2 GHz). It operates on the SLES15 SP6 Linux OS [4]. The experiments were run on
the cm4_tiny partition.

The code was compiled with GCC 11.2.0 in CoolMuc2 and GCC 12.2.0 in CoolMuc4.

5.2. Deletion Function

The additional delete function did not yield significant performance improvements. Its
primary use case arises when tuning is enabled, yet for the majority of the experiments,
as it will be explained throughout this section, tuning was turned off, making its
impact minimal. Moreover, since the focus of this thesis is on Verlet Lists, which rely
on neighbor lists, the function has limited applicability. In these types of containers,
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particles cannot be fully deleted but must instead be marked as dummy particles to
maintain neighbor list integrity.

The only scenario where this function could be beneficial is when tuning is enabled
and a combination of Linked Cells and Verlet Lists is used, as it would primarily benefit
Linked Cells. However, considering the primary focus of this work, the function was
not extensively used. Additionally, implementing it introduced extra computational
overhead and increased code complexity, as it required implementation across all
container types in AutoPas, as described in the Implementation section.

5.3. Scenario descriptions

For the experiments, four different simulations were used, each chosen to assess the
impact of the fast particle buffer under various conditions and provide a comprehensive
evaluation of its performance.

5.3.1. Falling Drop

This experiment involves two objects: CubeClosestPacked, which represents a bed
of particles, and a sphere of particles. At the start of the simulation, the sphere is
accelerated by gravity and falls into the basin. Upon collision, the particles from the
sphere mix with those in the basin. This experiment uses reflective boundaries and
the Lennard-Jones AVX functor, containing over 15,000 particles. The default YAML
configuration for this experiment is set to run for 15,000 iterations; however, as will be
discussed later, this parameter is adjusted for specific tests. The initial and final states
of the simulation are depicted in Figure 5.1, illustrating the transition from the sphere’s
descent to the equilibrium state of the mixed particles.

5.3.2. Exploding Liquid

The second scenario describes an exploding liquid consisting of a highly compressed
and heated liquid film suddenly exposed to a vacuum. This exposure causes the film
to rapidly expand and disintegrate into thin filaments and droplets as it destabilizes
[17]. This experiment consists of approximately 3,800 particles and, by default, runs for
12,000 iterations. Unlike the first scenario, this simulation uses periodic boundaries. A
visualization of the system before and after the explosion is provided in Figure 5.2,
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5.3.3. Constant Velocity Cube

This scenario features a cube that moves at a nearly constant velocity and, by default,
runs for 5000 iterations [8]. The cube consists of approximately 50,000 particles, which
do not interact with each other as dynamically as in the previous two scenarios.
Reflective boundaries are employed in this experiment. Due to the minimal interaction
between particles, this scenario was selected to examine the effects of a structured,
uniform motion. The goal was to evaluate how the particle buffer performs in such
conditions. A visual representation of the cube’s motion over time can be found in
Figure 5.3.

5.3.4. Equilibration

The fourth scenario examines an equilibration simulation, where a GridBlock object
populates the domain with particles. The simulation then runs for 100,000 iterations,
allowing the particles to reach an equilibrium state. This scenario involves over four
million particles and is characterized by high particle interaction dynamics, resulting
in a substantial number of fast-moving particles. The evolution of the system to
equilibrium is depicted in Figure 5.4.

Figure 5.1.: Falling Drop [9] Figure 5.2.: Exploding Liquid [17]

Figure 5.3.: Constant Cube Figure 5.4.: Equilibration [16]
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5.4. Results and Findings

The primary objective was to evaluate the performance of the fast particle buffer by
systematically modifying specific variables and observing its behavior across different
scenarios. Additionally, the experiments aimed to assess the impact of these variables,
when applied in modified configurations of the same scenarios.

The variables selected for modification included:

• Verlet Rebuild Frequency: This variable was adjusted to identify an optimal
frequency that maximizes the reuse of neighbor lists across iterations without
compromising runtime performance. The goal was to determine how much the
rebuild frequency could be extended to achieve a performance gain.

• Number of Particles: Different simulation scenarios were selected, each with a
varying number of particles, to examine how the buffer performs across different
scales. The goal was to determine whether the buffer provides noticeable benefits
in smaller simulations or if its advantages only become more apparent in larger
configurations.

• Iteration Count: By increasing the number of iterations, the experiments aimed
to evaluate whether frequent neighbor list rebuilds were needed less often. This
was tested in scenarios where fewer fast particles remained after the dynamic
phase.

The initial approach involved running a broad range of experiments, systematically
varying these parameters to identify patterns and correlations. Key metrics of interest
included the number of particles in the container versus the buffer and the time spent
in computeInteractions compared to remainderTraversal.

5.4.1. Initial Test Series

The initial series of experiments focused on analyzing frequency and iteration behavior
across the first three scenarios. These experiments were run on CoolMUC2.

Frequency Tests

Frequency tests were conducted by varying the rebuild frequency between 10 and
15,810. The objective was to evaluate the runtime behavior for typical low frequencies
and higher frequencies exceeding the total number of iterations (effectively disabling
rebuilds apart from tuning). A logarithmic distribution of frequencies was chosen to
emphasize the analysis of larger frequencies. The following Python function illustrates
the frequency selection logic:
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1 def get_step_size(freq):
2 log_freq = math.log10(freq)
3 step_diff = max_step - min_step
4 step_size = min_step + (log_freq * step_diff / math.log10(end_freq))
5 return int(step_size)

For each frequency experiment, four types of graphs were generated to help interpret
the results more effectively:

1. A frequency vs. runtime graph comparing the performance of the parent branch
DynamicVLMerge with the Fast-Particle-Buffer branch.

2. A graph highlighting the differences in computeInteractions runtime between
the two branches.

3. A graph illustrating the differences in remainderTraversal.

The results consistently showed that the Fast-Particle-Buffer performed worse across
all scenarios and frequencies:

• For the Falling Drop scenario, the runtime ranged from 1.1 to 6 times slower
(Figure 5.5a).

• For the Exploding Liquid scenario, the runtime ranged from 1.1 to 4 times slower
(Figure 5.5b).

• For the Constant Velocity Cube scenario, the runtime ranged from 1.3 to 11.2
times slower (Figure 5.5c).

To investigate the cause of this performance degradation, the focus was shifted
to analyzing the graphs highlighting computeInteractions and remainderTraversal.
However, these graphs were challenging to interpret due to significant spikes caused by
the tuning phase. Tuning is the most computationally expensive part of the simulation,
and its periodic spikes (determined by the tuning frequency) overshadowed the subtler
runtime variations, making it difficult to analyze the true behavior of the buffer.

Refined Tests Without Tuning

To better understand the program’s behavior, the tuning phase was effectively elimi-
nated by specifying exact configurations for the container and traversal. This ensured
that the simulation used fixed setups without requiring tuning. Since testing all pos-
sible configurations was impractical, three key traversal-container combinations were
selected:
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(a) Falling Drop

(b) Exploding Liquid

(c) Constant Velocity Cube

Figure 5.5.: Comparison of Frequency vs Time with Tuning

23



5. Performance

• Traversal: vlc_c08 / vlp_c08, Container: VerletListsCells, Data Layout: AoS,
Newton3: Enabled

• Traversal: vcl_c06, Container: VerletClusterLists, Data Layout: AoS,
Newton3: Enabled

• Traversal: lc_c08, Container: LinkedCellsReferences, Data Layout: SoA,
Newton3: Enabled

Frequency tests were then repeated for the first three scenarios using these fixed
configurations. This approach eliminated tuning-related noise, allowing for a clearer
analysis of how the buffer performed under different traversal and container setups.
By isolating these configurations, it was possible to focus on the individual behaviors
of each traversal and container, leading to more thorough insights into the implementa-
tion’s performance.

Upon examining the individual frequency versus time graphs, that compare the dif-
ferent configurations across various scenarios (Figures A.1 A.2 A.3), the implementation
with the Fast-Particle-Buffer generally underperformed relative to the implementation
without it.

A unique case, however, is observed at frequency 10, where the Fast-Particle-Buffer
branch performs nearly as well as the parent branch. This behavior occurs because, at
such a low frequency, there are almost no fast particles; the neighbor lists are rebuilt so
frequently that particles do not have sufficient time to accumulate in the buffer.

Falling Drop: The runtime of the Fast-Particle-Buffer branch across all configurations
was up to four times longer than that of the parent branch, Dynamic-VL-Merge (see
Figure A.1). This raises the question: what is the underlying cause of this difference in
performance?

To investigate, we focus on the relationship between computeInteractions,
remainderTraversal (Figure 5.6), and neighbor list rebuild times per iteration (Figure
5.7), as well as the number of particles stored in the buffer per iteration (Figure 5.8).

Between iterations 2000 and 5000, there is a gradual accumulation of particles in the
buffer, peaking at approximately 1798 particles around iteration 3850. Following this
peak, the number of particles in the buffer starts to decline. This fluctuation is directly
reflected in the remainder traversal time, which increases as the buffer fills up and
decreases once particles start leaving the buffer.

While there is a reduction in the time spent on computeInteractions within the Fast-
Particle-Buffer branch (due to particles being removed from the container), this saving
is overshadowed by the significant increase in the time required for remainder traversal
calculations. At its peak, the remainder traversal phase in the Fast-Particle-Buffer branch
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Figure 5.6.: Compute interactions vs. remainder traversal in Falling Drop (vlc_c08)

Figure 5.7.: Time spent on neighbor list rebuilds in Falling Drop (vlc_c08)
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Figure 5.8.: Buffer size over iterations in Falling Drop (vlc_c08)

takes more time than the computeInteractions phase itself in the Dynamic-VL-Merge
branch, where all particles are being considered.

One noticeable advantage of the Fast-Particle-Buffer approach is the reduction in
neighbor list rebuild time, which takes an average of four times less compared to the
Dynamic-VL-Merge branch (Figure 5.7). However, the saved time does not compensate
for the excessive time spent in remainder traversal. The combined savings from both
reduced computeInteractions and neighbor list rebuilds are significantly smaller than
the additional time required for remainderTraversal.

At the end of the experiment, the recorded execution times for key operations in
both branches are as follows:

• Fast-Particle-Buffer:

– computeInteractions: 45.74 s

– remainderTraversal: 23.40 s

– rebuildNeighborLists: 0.92 s

• Dynamic-VL-Merge:

– computeInteractions: 48.23 s
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– remainderTraversal: 1.95 s

– rebuildNeighborLists: 3.73 s

The higher the frequency, the more time is saved from avoiding neighbor list rebuilds.
However, the rate at which remainder traversal time increases significantly outweighs
the benefits. To illustrate, at frequency 15,810 (where rebuilding no longer occurs, as
all particles are in the buffer), the theoretical maximum time savings from avoiding
rebuilds is approximately 3.5× 105 ns per iteration. However, the average remainder
traversal time per iteration reaches approximately 1.38× 107 ns, demonstrating that
the overhead introduced by the buffer is vastly greater than the savings obtained from
eliminating neighbor list rebuilds.

Constant Velocity Cube: This scenario exhibited similar behavior, where the Fast-
Particle-Buffer consistently underperformed compared to its counterpart (Figure A.3).
Performance differences ranged from:

• 6 times slower for vlp_c08 (selected instead of vlc_c08, as vlp_c08 was frequently
chosen during tuning experiments as it is optimized for this scenario).

• Up to 18 times slower for lc_c08.

• Approximately 4 times slower for vcl_c06.

The reasoning for these results remains consistent: the time saved from infrequent
neighbor list rebuilds is outweighed by the excessive computation time in remainder
traversals.

Exploding Liquid: In the Exploding Liquid scenario, the traversals lc_c08 and
vlc_c08 demonstrated similar performance trends to those observed in other sce-
narios (Figure A.2). However, an exception was noted in the vcl_c06 traversal (Figure
A.2c). During this traversal, the Dynamic-VL-Merge branch exhibited an average
runtime nearly twice as long as the other two traversals, whereas the runtime of the
Fast-Particle-Buffer branch increased only slightly in comparison.

Analyzing frequencies between 10 and 2451, the Fast-Particle-Buffer branch out-
performed the Dynamic-VL-Merge branch. The shortest runtime achieved by the
Fast-Particle-Buffer branch was 37.88 seconds at frequency 265, whereas the lowest
runtime for the Dynamic-VL-Merge branch within vcl_c06 was 39.2 seconds in the
9963rd iteration.

A deeper analysis of the computeInteractions and remainderTraversal times pro-
vides insight into the underlying reason for this speedup. Unlike in other traversals,
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computeInteractions in the parent branch consumed significantly more time using
vcl_c06, whereas the remainder traversal time in the Fast-Particle-Buffer branch ex-
perienced changes that were not as drastic (Figure A.4). This discrepancy led to a
unique case where the increased computational cost of computeInteractions in the
Dynamic-VL-Merge branch effectively offset the additional remainder traversal time
in the Fast-Particle-Buffer branch. Consequently, for vcl_c06, the Fast-Particle-Buffer
branch gained a net advantage by reducing the cost of neighbor list rebuilds.

However, while this might initially appear as a speedup, it is important to put the
results into context. The lowest overall runtime across all traversal methods was not
achieved by the Fast-Particle-Buffer branch but rather by the Dynamic-VL-Merge branch
in other traversal configurations. This suggests that, although the Fast-Particle-Buffer
branch outperformed the Dynamic-VL-Merge branch specifically for vcl_c06, it was
not the most efficient approach across all tested traversal methods. Therefore, while the
buffer mechanism provided a performance gain in this isolated case, it did not lead to
an overall improvement in execution time across the entire experiment.

Iteration Tests

For the iteration tests, a base frequency of 100 was maintained for the first two scenarios
and 1000 for the third scenario. The number of iterations varied between 500 and 30,000,
with a step size of 500 iterations. The goal of these experiments was to observe the
behavior of fast particles at different stages of the simulation by increasing the number
of iterations. This approach aimed to identify any correlations between simulation
progression and the performance of the particle buffer implementation, as well as to
expand the range of experiments conducted.

Initially, as in the frequency tests, the first three scenarios were executed with
tuning enabled. However, like earlier this approach did not give us a clear enough
understanding of the performance of the Fast-Particle-Buffer branch. The results of
these initial tests are presented in Figure A.5.

Individual Test Results

Falling Drop Scenario: For the vlc_c08 traversal, no performance improvement was
observed. Across all iteration counts, the Fast-Particle-Buffer consistently performed
worse than the Dynamic-VL-Merge branch.

The same trend was observed for lc_c08. The remainder traversal phase required
excessive time, negating any potential gains from avoiding neighbor list rebuilds. Thus,
the time saved from fewer rebuilds was insufficient to offset the overhead introduced
by the remainder traversal.
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On the other hand, the vcl_c06 traversal displayed similar performance in both
branches, with the Fast-Particle-Buffer occasionally running 1-2 seconds faster. This
behavior follows the same reasoning as in 5.4.1, namely the pronounced increase in
runtime for computeInteractions. Specifically, for vcl_c06, computeInteractions
had a runtime four times greater than vcl_c08. While the Fast-Particle-Buffer also
experienced a runtime increase, it was less pronounced than in Dynamic-VL-Merge,
explaining why the overall performance remained similar. While these results suggest
some efficiency gains in this particular experiment, they do not indicate a significant
overall performance improvement. The corresponding plots can be found in Figure
A.6.

Exploding Liquid Scenario: The results for this scenario followed a pattern similar
to Falling Drop. However, anomalies were observed in the behavior of vlc_c08 and
vcl_c06, as indicated in Figure A.7. Missing plotting points in the graphs suggest that
the experiment failed for certain iteration counts in both branches. Although there
were spikes in vlc_c08 (Figure A.7a), where the Fast-Particle-Buffer branch appeared
to outperform the Dynamic-VL-Merge, the anomalies in the experiments make these
results unreliable. The lc_c08 traversal exhibited stable behavior with no failed runs;
however, the results were fairly routine and did not provide significant new insights
into the topic.

Constant Velocity Cube Scenario: In this scenario, no performance improvement
was observed for the Fast-Particle-Buffer. Instead, the performance difference between
the two branches was more pronounced compared to Falling Drop. For lc_c08, the
Fast-Particle-Buffer was up to 16 times slower; for vcl_c06, it was 4 times slower;
and for vlp_c08, it was around 3 times slower. This poor performance is due to the
large number of particles accumulating in the buffer. For instance, in the experiment
with 30,000 iterations, more than half of the total particles—around 28,000 out of
50,000—were in the buffer. This high number of particles in the buffer significantly
increased the time required for remainder traversal. This is illustrated in Figure 5.9,
where the runtime scale for the remainder traversal is e8, while computeInteractions
operates on the e7 scale, highlighting a clear difference in time consumption.
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Figure 5.9.: Compute Interactions vs Remainder Traversal in Constant Velocity Cube
(vlp_c08)

5.4.2. Percentage Experiments

The primary challenge with the fast particle buffer implementation is that the time
required for remainderTraversal significantly outweighs the time saved from reducing
the frequency of neighbor list rebuilds. To address this issue, a percentage-based
threshold was introduced, limiting the number of particles that can accumulate in
the buffer to a fixed percentage of the total number of particles in the container. The
objective was to reduce the time spent in remainderTraversall, while still benefiting
from fewer neighbor list rebuilds.

Given that rebuildFrequency is directly tied to the particle buffer’s efficiency, these
experiments focus on adjusting the rebuild frequency rather than the number of
iterations. In earlier experiments, the iteration count was varied to see how performance
evolved over longer runtimes. However, since rebuild frequency determines when
particles move in and out of the buffer, varying it gives a more precise understanding
of the buffer’s efficiency, making it the primary focus of this set of experiments.

Initially, experiments were conducted across frequencies ranging from 10 to 1900,
based on the previous findings that smaller frequencies performed better. Threshold
values of 10%, 15%, 20%, and 30% were tested, meaning that if the buffer contained the
specified percentage of the container’s particles, a rebuild was triggered.

30



5. Performance

For frequencies above 100, the performance gap between the Fast-Particle-Buffer
branch and Dynamic-VL-Merge increased, with the latter performing better. However,
for frequencies below 100, certain thresholds—particularly the 10% threshold—showed
slight performance improvements of a few seconds. The complete set of graphs
supporting these findings is available in the provided repository.

To further analyze these trends, the Falling Drop scenario was selected as it displayed
consistent behavior across different configurations. The traversal vlc_c08 was chosen
as it was one of the better-performing traversals in previous experiments.

Given that performance improvements remained minor—mostly 1 to 2 seconds—the
experiments were repeated four times per configuration to improve accuracy. Moreover,
smaller threshold values were introduced: 5%, 1%, 0.5%, and 0.1%, along with ultra-
small thresholds of 0.01%, 0.001%, and 0%, to analyze how performance evolves as
the Fast-Particle-Buffer branch converges toward the Dynamic-VL-Merge branch. The
primary goal of this extension was to confirm that any observed performance gains
were genuinely due to the buffer mechanism.

The experimental data is presented as a box plot in Figure 5.10, where red dots
represent the mean runtime for each experiment. Only frequencies from 20 to 300
are shown, as including all frequencies would make the graph appear too cluttered.
However, these selected frequencies cover the main bulk of the data and are the most
representative ones. The rest of the data can be found in the provided repository. The
key findings are as follows:

• On average, thresholds between 0.1% and 1% provided the best performance.

• Extremely small thresholds (0.01%, 0.001%, 0%) sometimes performed worse than
the Dynamic-VL-Merge branch. This can be explained by the overhead introduced
by continuously scanning the container to check whether the threshold condition
was met.

• Although some configurations achieved minor performance improvements, these
gains were marginal and nearly insignificant compared to the overall runtime.
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Figure 5.10.: Percentage Experiments in Falling Drop (vlc_c08)

5.4.3. Equilibration

Based on the earlier experiments, the observed performance improvement was minimal,
leading to the question of whether the analysis was limited by the selected test cases.
Instead of focusing on short simulations lasting around a couple of minutes or less, a
more dynamic scenario with a significantly larger number of particles was needed. For
this reason, the equilibration scenario was chosen.

The hypothesis was that, due to its highly dynamic nature and large particle count (4
million), this scenario would be better suited to reveal potential performance benefits
of the fast particle buffer.

From prior frequency experiments, it was observed that the particle buffer performed
better at smaller frequencies. Therefore, this experiment focused on frequencies ranging
from 10 to 50 with a step size of 10. Additionally, as established earlier, smaller
thresholds tended to yield better results. Considering the large particle count in the
equilibration scenario, initial tests were conducted with thresholds of 1% and 5% of the
container’s particles.

It is important to note that 1% and 5% of 4 million correspond to 40,000 and 200,000
particles, respectively, which exceed the total particle count of the other scenarios.

Results for vlc_c08: Throughout this scenario the average runtime for the Dynamic-
VL-Merge branch consisted of 9 hours and 59 minutes (Figure 5.11). When the threshold
was set to 5%, the fast particle buffer demonstrated a performance improvement of 4.2%
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(equivalent to saving 25 minutes) at frequency 30. At frequency 20, the improvement
was 2.5% (saving 15 minutes). For frequency 10, the runtime was marginally worse
by 1%. However, for larger frequencies, such as 40 and 50, there was a significant
slowdown of 44% and 111%, respectively.

For the 1% threshold, fluctuations were less pronounced compared to the 5% thresh-
old. The runtime for all frequencies was closer to that of the Dynamic-VL-Merge
branch. A performance improvement of 2.2% (equivalent to 13 minutes) was observed
at frequency 20, and 3% (18 minutes) at frequency 30. For frequencies 10 and 50,
the runtime was nearly identical to the parent branch, differing by only ±1 minute.
At frequency 40, there was a minor slowdown of 1% (6 minutes), which is relatively
insignificant.

The fastest runtime in this experiment was achieved by the Fast-Particle-Buffer with a
5% threshold at frequency 30, completing in 9 hours and 33 minutes. The second-fastest
was the Fast-Particle-Buffer with a 1% threshold, which took 6 minutes longer.

For the Dynamic-VL-Merge branch, the shortest runtime was 9 hours and 47 minutes,
recorded at frequency 40. Comparing the best results from both approaches, the Fast-
Particle-Buffer provided a speedup of 14 minutes, equivalent to a 2.74% improvement
over the fastest Dynamic-VL-Merge run.

Figure 5.11.: Frequency vs Time for Equilibration (vlc_c08)

Results for lc_c08: Using LinkedCellsReferences with traversal lc_c08 (Figure 5.12),
the average runtime for the Dynamic-VL-Merge branch was 14 hours and 27 minutes,
approximately 4 hours and 30 minutes longer than the vlc_c08 configuration.

At a 5% threshold, a 1.94% performance improvement (16 minutes) was observed at
frequency 30, with a smaller 0.9% improvement (7 minutes) at frequency 20. However,
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for all other frequencies, no improvement was recorded. In contrast, at frequencies
40 and 50, the runtime of the Fast-Particle-Buffer branch increased significantly. At
frequency 50, the performance degraded to the point where the simulation timed out.

For the 1% threshold, a more notable improvement was observed at frequency 30,
with a 2.3% improvement (20 minutes). For the remaining frequencies, the runtime
was very similar to the parent branch, fluctuating between -0.96% and 0.29% of the
respective Dynamic-VL-Merge runtimes.

For this container-traversal combination, the fastest experiment overall was achieved
using the Fast-Particle-Buffer with a 1% threshold at frequency 30, resulting in a
runtime of 14 hours and 4 minutes. This corresponds to a 12-minute improvement
(1.43%) compared to the Dynamic-VL-Merge branch at frequency 20, which recorded
the fastest runtime for that branch.

Figure 5.12.: Frequency vs Time for Equilibration (lc_c08)

Equilibration with Increased Temperature

To further amplify the number of fast particles and make the experiment more dy-
namic, the temperature of the system in the equilibration scenario was increased. This
adjustment resulted in molecules with higher kinetic energy, thereby increasing their
speed. The focus of this experiment remained on the same frequencies as in previous
tests, with the addition of a new frequency, 5, to further investigate performance trends
at lower rebuild intervals. For this experiment, the vlc_c08 traversal configuration was
used, as the lc_c08 configuration proved too inefficient, resulting in timeouts at the
maximum allowed runtime of 16 hours.

In this configuration, the fast particle buffer with a threshold of 1% achieved an
8.6% performance improvement at frequency 10. This translates to a time saving of 60
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minutes from a total runtime of 11 hours and 42 minutes. Similarly, the fast particle
buffer with a threshold of 5% exhibited a 7.8% performance improvement at the same
frequency, resulting in a 55-minute reduction from the same total runtime.

For the remaining frequencies, neither version of the fast particle buffer outperformed
the Dynamic-VL-Merge branch. However, the overall fastest experiment was the Fast-
Particle-Buffer with a 1% threshold, achieving a 41-minute improvement compared to
the fastest version of the Dynamic-VL-Merge branch at frequency 40. This corresponds
to a 6% performance boost, the largest improvement observed in the experiments so far.
The results are summarized in Figure 5.13, which visualizes the performance trends
across different configurations.

Figure 5.13.: Frequency vs Time for Equilibration with Increased Temperature (vlc_c08)

5.5. Checkpoint Experiments

Another approach to further investigate the benefits of the particle buffer was to apply it
selectively during the least dynamic phase of the simulation. Since remainder traversal
is one of the most computationally expensive aspects of the buffer mechanism, the idea
was to store particles in the buffer only when the number of fast particles was relatively
low.

During the most dynamic phase of the simulation, a large number of fast particles
are generated in each iteration, rapidly increasing the number of particles stored in the
buffer. Even with a threshold in place, the high number of buffered particles causes
remainder traversal times to grow significantly, reducing the overall benefit of avoiding
frequent neighbor list rebuilds. However, in the less dynamic phase, where fewer fast
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particles appear, the remainder traversal overhead should be considerably lower. The
hypothesis was that enabling the buffer only during these less dynamic phases could
still save neighbor list rebuild time while keeping remainder traversal costs manageable.

To test this hypothesis, the Falling Drop scenario was selected with a 30,000-iteration
simulation. Observations showed that after iteration 15,000, the simulation became less
dynamic. Based on this, the simulation was divided into two phases:

• First 15,000 iterations: The simulation ran without using the buffer.

• After iteration 15,000: The buffer was enabled with a 1% threshold.

To enable the transition between the two phases, the last VTK output file from the
first phase was used as a checkpoint to initialize the second phase. A VTK output file is
a structured XML-based format that stores simulation data, including particle positions,
velocities, forces and more.

Figure 5.14 illustrates the results of this experiment. To assess the potential im-
provement, the simulation was additionally run with a 1% threshold for the entire
30,000 iterations, allowing for comparison with both the two-phase approach and the
Dynamic-VL-Merge branch.

As shown in the figure, the two-phase approach outperformed the standard 1%
threshold Fast-Particle-Buffer, and ultimately, it also achieved a slightly faster runtime
than the Dynamic-VL-Merge branch, although the difference was approximately 1
to 2 seconds. While this improvement may seem small, it suggests that for larger
simulations running for several hours, the benefit could become more significant. The
effect would likely be more pronounced in longer-running experiments, where reducing
remainder traversal costs over extended periods could deliver greater performance
gains.
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Figure 5.14.: Chekcpoint Experiments: Frequency vs Time for Falling Drop (vlc_c08)
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6. Future Work

While the Fast-Particle-Buffer showed potential in larger simulations, it did not provide
a significant performance improvement in smaller ones. Further research can focus on
different aspects to enhance its efficiency.

One possible direction is studying how different hardware setups affect the buffer’s
performance. Running tests on various processors and memory architectures could
help understand whether certain hardware configurations benefit more from the buffer
approach.

Another improvement could involve combining the Fast-Particle-Buffer with Gall’s
adaptive partial neighbor list rebuild strategy [8]. Since both methods aim to reduce the
cost of rebuilding neighbor lists, merging them could lead to better overall performance.

Additionally, an alternative approach to identifying fast particles could be explored.
Instead of classifying each particle individually, a group-based approach could be
tested. The current definition of fast particles is based on how much a particle moves
relative to its previous position, determining whether it has potentially left or entered
another particle’s search region. However, this classification does not consider relative
motion within a larger system of particles. If a group of particles moves as a unit,
their positions relative to one another remain unchanged, meaning that no particle has
actually moved into or out of another’s search region. In this case, classifying them
as fast particles and adding them to the buffer would be unnecessary because their
relative interactions have not changed. By incorporating a group motion detection
method, the buffer mechanism could avoid unnecessary classifications of fast particles,
reducing remainder traversal costs.

Testing the buffer in other larger and longer-running simulations could also be bene-
ficial. While small simulations showed only minor improvements, a 6% performance
boost was observed in one of the longer simulations. This suggests that the effectiveness
of the buffer may become more apparent in extended simulations. Running additional
tests on different long-running scenarios could help determine whether if even greater
performance gains can be achieved.

Finally, optimizing how buffer traversal is handled could further reduce remainder
traversal time. Since remainder traversal is currently a major performance bottleneck,
improving its efficiency could reveal the full advantages of the buffer approach.
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7. Conclusion

This thesis investigated the Fast-Particle-Buffer as a method to reduce the computational
cost of frequent neighbor list rebuilds in AutoPas. The approach aimed to improve
simulation efficiency by temporarily storing fast particles instead of immediately
rebuilding neighbor lists.

Through a series of experiments, the performance of the buffer was evaluated under
different scenarios, thresholds, and frequencies. The results showed that while the
buffer did not significantly improve performance in smaller simulations, it provided
measurable benefits in longer-running simulations, with a maximum observed speedup
of 6%.

Further analysis revealed that remainder traversal time remained a key limiting
factor, often negating the benefits of reduced neighbor list rebuilds. Additionally, the
effectiveness of the buffer depended on the characteristics of the simulation.

Future work could explore hardware-dependent optimizations, integrating adaptive
rebuild criteria, and exploring group-based fast particle classification. Additionally,
optimizing buffer traversal could further reduce remainder traversal overhead, making
the approach more performative.

Overall, while the Fast-Particle-Buffer presents a good strategy for improving simula-
tion performance, its benefits are highly scenario-dependent. With further refinements,
it could become a useful optimization technique in AutoPas.
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A. Appendix

A.1. Understanding .yaml files

Simulations in AutoPas are configured using parameters specified in a .yaml file, which
defines the conditions of the simulation. The key fields relevant to this thesis are:

container : # List of containers to choose from
verlet-rebuild-frequency : # Frequency of neighbor list rebuilds
verlet-skin-radius : # Distance within which a particle is

# stored in the neighbor list
data-layout : # Data storage format (AoS or SoA)
traversal : # List of traversals to choose from
newton3 : # Boolean value determining if Newton’s

# third law is enabled
iterations : # Number of iterations

All the .yaml files, used for every simulation, are available here.

A.2. Experimental Results and Plots

The following section contains the plots used and referenced throughout this thesis.
Additional plots, along with the corresponding YAML files and CSV files, can be found
in the referenced repository in the previous section A.1.
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(a) Falling Drop vlc_c08

(b) Falling Drop lc_c08

(c) Falling Drop vcl_c06

Figure A.1.: Comparison of Frequency vs Time for Falling Drop Experiments
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(a) Exploding Liquid vlc_c08

(b) Exploding Liquid lc_c08

(c) Exploding Liquid vcl_c06

Figure A.2.: Comparison of Frequency vs Time for Exploding Liquid Experiments
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(a) Constant Velocity Cube vlp_c08

(b) Constant Velocity Cube lc_c08

(c) Constant Velocity Cube vcl_c06

Figure A.3.: Comparison of Frequency vs Time for Constant Velocity Cube Experiments
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(a) Exploding Liquid Vcl_c06

(b) Exploding Liquid Vlc_c08

Figure A.4.: Comparison of Compute Interactions and Remainder Traversal for Explod-
ing Liquid Experiments
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(a) Falling Drop

(b) Exploding Liquid

(c) Constant Velocity Cube

Figure A.5.: Comparison of Frequency vs Iterations with Tuning
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(a) Falling Drop vlc_c08

(b) Falling Drop lc_c08

(c) Falling Drop vcl_c06

Figure A.6.: Comparison of Iteration vs Time for Falling Drop Experiments
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(a) Exploding Liquid vlc_c08

(b) Exploding Liquid lc_c08

(c) Exploding Liquid vcl_c06

Figure A.7.: Comparison of Iteration vs Time for Exploding Liquid Experiments
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(a) Constant Velocity Cube vlp_c08

(b) Constant Velocity Cube lc_c08

(c) Constant Velocity Cube vcl_c06

Figure A.8.: Comparison of Iteration vs Time for Constant Velocity Cube Experiments
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