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Abstract

Measurements of river discharge are essential for effective flood protection, sustainable water manage-
ment, and research aimed at understanding the drivers and impacts of climate change within the global
hydrologic cycle. Despite their importance, the number of in-situ discharge gauges is declining and un-
evenly distributed, with significant gaps in remote basins or developing regions most vulnerable to water
scarcity and extreme events that are intensified by climate change. Therefore, observations of Water
Surface Elevation (WSE) or Water Surface Area (WSA) from radar altimeters and multispectral sensors
onboard satellites, which have been available globally for more than three decades, are regularly used to
extend the discharge time series of discontinued gauges via functional relationships. However, research
on satellite monitoring of discharge in ungauged river basins is still limited.

This work exploits the large variety of WSE, WSA, and Water Surface Slope (WSS) measurements from
multiple satellite missions to derive hydraulic parameters required for Manning’s empirical flow law to cal-
culate river discharge time series in ungauged basins. The thesis describes the fundamental framework
and hydraulic parameters to estimate river discharge and discusses the applied approximations from a
remote sensing perspective. The derived parameters are studied individually in a closed-loop test, and
innovative methods are developed to improve the multi-mission satellite measurements in terms of accu-
racy and transferability. A global reach-scale WSS dataset is calculated from the precise and synchronous
measurements of the lidar altimeter onboard ICESat-2. The WSE time series from radar altimeters are sig-
nificantly improved by slope corrections for the ground track shift using this WSS dataset. Deep-learning
water classification is applied to high-resolution satellite imagery to monitor the WSA of narrow rivers and
capture small variations of the river extent. By combining WSE and WSA through a hypsometric curve,
a large part of the river bathymetry can be constructed. The depth of the unknown, permanently sub-
merged part of the bathymetry is estimated using an empirical width-to-depth function, and the shape of
the submerged geometry is approximated by a parabola. The closed-loop test reveals that the unknown
roughness, which is first obtained from literature decision guides, causes the largest errors. Therefore, a
roughness optimization approach is developed, which uses flow law inversion based on the principle of
mass conservation, following current research in the scope of the novel SWOT satellite. SWOT is the first
mission to measure WSE, WSA, and WSS synchronously and will facilitate the hydraulic parameter esti-
mation by overcoming challenges when combining the observations of multiple missions as in this work.
However, the approach based on multi-mission data significantly extends the temporal coverage, which is
required for climate studies, and ensures redundancy by complementing the SWOT measurements.

The optimization approach requires only minimal expert input and is independent of calibration against
in-situ data. It is validated globally at 27 river sections with a median normalized root mean square error
of 12%. Furthermore, the research focuses on quantifying the uncertainties of the satellite observables
and transferring them to the estimated discharge to obtain a realistic uncertainty range, which is crucial for
data assimilation into hydrological models. On average, the 90% uncertainty range includes 91% of the
in-situ measurements. This research contributes to a more comprehensive understanding of global river
discharge dynamics and provides valuable data for improved water resource management and climate
change modeling in ungauged basins.
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Zusammenfassung

Messungen der Abflussmenge von Flüssen sind entscheidend für wirksamen Hochwasserschutz, nach-
haltiges Wassermanagement und liefern wichtige Erkenntnisse über Ursachen und Wirkungen des Klima-
wandels innerhalb des globalen Wasserkreislaufs. Jedoch ist die Anzahl von In-Situ-Abflussmessstationen
trotz ihrer Bedeutung vor allem in abgelegenen Flussgebieten oder Entwicklungsregionen stark abneh-
mend. Dabei ist die Bevölkerung dort besonders von zunehmenden Extremereignissen durch den Klima-
wandel bedroht. Daher werden schon häufig Satellitenmessungen des Wasserstandes (WSE) und der
Wasserfläche (WSA) genutzt, um die Abflusszeitreihen von ehemaligen Messstationen über funktiona-
le Beziehungen zu verlängern. Diese Messungen von Radaraltimetern und Multispektralsensoren sind
seit mehr als drei Jahrzehnten verfügbar. Die Forschung zur Abflussberechnung ohne vorherige In-Situ-
Messungen und ausschließlich basierend auf Satellitenbeobachtungen ist jedoch noch begrenzt.

Diese Arbeit nutzt die große Vielfalt an Satellitenmessungen von WSE, WSA und Flussgefälle (WSS),
um die hydraulischen Parameter abzuleiten, welche für die empirische Fließformel zur Abflussberechnung
nach Manning notwendig sind. Die hydraulischen Parameter und notwendigen Näherungen werden aus
der Fernerkundungsperspektive diskutiert. Die abgeleiteten Parameter werden durch die Ersetzung mit In-
Situ-Messungen einzeln untersucht, und innovative Methoden werden entwickelt, um die Genauigkeit und
Übertragbarkeit der Satellitenbeobachtungen zu verbessern. Die präzisen und synchronen Messungen
des ICESat-2 Lidar-Altimeters werden genutzt, um einen globaler WSS-Datensatz zu berechnen. Basie-
rend auf diesem WSS-Datensatz werden leichte Messverschiebungen der Radaraltimeter korrigiert und
die Genauigkeit der WSE-Zeitreihen dadurch deutlich verbessert. Mittels Deep-Learning wird die WSA in
hochauflösenden Satellitenbildern klassifiziert, wodurch auch kleine Veränderungen von schmalen Flüs-
sen erfasst werden können. WSE und WSA werden durch eine hypsometrische Funktion kombiniert, um
einen großen Teil der Bathymetrie zu konstruieren. Die unbekannte Tiefe unterhalb des minimalen WSE
wird mit einem empirischen Breite-Tiefe-Verhältnis geschätzt und die Geometrie durch eine Parabel er-
gänzt. Die Untersuchungen zeigen, dass die manuelle Schätzung des unbekannten Rauheitsbeiwerts die
größten Fehler verursacht. Deshalb wird ein Ansatz zur Optimierung des Rauheitsbeiwerts basierend auf
der Massenerhaltung entwickelt. Dieser Ansatz folgt der aktuellen Forschung im Rahmen der neuartigen
SWOT-Mission, welche als erste WSE, WSA und WSS gleichzeitig messen kann. Dadurch werden Her-
ausforderungen bei der Kombinierung der Beobachtungen zu unterschiedlichen Messzeitpunkten, wie sie
sich in dieser Arbeit stellen, überwunden. Jedoch kann der Ansatz basierend auf mehreren Missionen
einen deutlich längeren Zeitraum abdecken, welcher besonders für Klimastudien wichtig ist, und bietet
Redundanz für die SWOT-Messungen.

Der Optimierungsansatz erfordert nur minimalen Experteneingriff und keine Kalibrierung durch In-Situ-
Messungen. Die globale Validierung an 27 Flussabschnitten ergibt einen mittleren Fehler von 12 %. Dar-
über hinaus konzentriert sich die Arbeit auf die Quantifizierung der Unsicherheiten der Satellitenbeobach-
tungen und deren Übertragung auf den geschätzten Abfluss, um einen realistischen Unsicherheitsbereich
zu erhalten. Dieser ist für die Datenassimilation in hydrologische Modelle unerlässlich und umfasst im
Durchschnitt 91 % der In-Situ-Messungen. Diese Arbeit trägt zu einem umfassenderen Verständnis der
globalen Flussabflussdynamik bei und liefert wertvolle Daten für ein verbessertes Wassermanagement
und die Modellierung des Klimawandels in Flussgebieten ohne In-Situ-Messungen.
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1 Introduction

1.1 Background and Motivation

Rivers are lifelines for ecosystems, human welfare, food security, and industry (Wang & He, 2022). Access
to freshwater is critical for prosperity and peace, and geopolitical conflicts can be caused by the unequal
allocation of water resources that is intensified by climate change (UN, 2024). The number of violent
conflicts triggered by the access to freshwater increased from 8 in 2010 to 85 in 2021 (Shumilova et
al., 2023). As part of the global water cycle, river discharge directly responds to extreme drought and
precipitation events, serving as a critical indicator that characterizes Earth’s climate (Vicente-Serrano et
al., 2014). With climate change, there is an increasing risk of ecological change to rivers (Thompson et al.,
2021) and the future global streamflow declines could be more severe than previously estimated (Zhang
et al., 2023). Additionally, varying freshwater fluxes impact ocean salinity and temperature, which lead to
shifts in ocean circulation that drive climate change (IPCC, 2022). Consequently, it is important to monitor
river discharge (Depetris, 2021), and the Global Climate Observing System (GCOS) lists river discharge as
an Essential Climate Variable (ECV), expressing the requirement for a dense global network of streamflow
gauging stations (GCOS, 2022).

Over 50% of the world’s population live within a 3 km distance of freshwater with the highest population
density along large rivers (Kummu et al., 2011). To protect these people from flood damage and ensure
sustainable water supply, water management decisions rely on streamflow data (UN, 2024). However,
in-situ gauges for measuring river discharge are distributed unevenly with a bias towards large, perennial,
and regulated rivers within watersheds of large human impact. In contrast, limited data is available for less
developed economies, which are most vulnerable to water scarcity, droughts, or flood events (Krabbenhoft
et al., 2022; Wilby, 2019). This is reflected by the declining number of active stations in global discharge
databases, such as the Global Runoff Data Centre (GRDC). Especially, up-to-date data is not available
in developing countries (Hannah et al., 2011) such as large parts of Africa, which are at high risk of
high and low flow extremes under any warming scenario (Thompson et al., 2021). Although Riggs et al.
(2023) demonstrated that the GRDC only includes a fraction of discharge data compared to gathering
them from individual sources, data availability in developing and vulnerable regions is still relatively small
and decreasing when using data beyond the GRDC. Furthermore, daily discharge time series are missing
14% of data on average (Riggs et al., 2023).

Missing data and discontinued time series can be compensated by calibrating a functional relationship, of-
ten referred to as a rating curve, to the observed discharge and hydrogeodetic observations (e.g., Elmi et
al., 2024; Paris et al., 2016; Pavelsky, 2014; Riggs et al., 2023; Tarpanelli et al., 2019). Hydrogeodesy, the
science of monitoring terrestrial waters from space-based sensors, is an emerging field within Earth obser-
vation (Jaramillo et al., 2024). The two most commonly used hydrogeodetic observables are Water Surface
Elevation (WSE) measured from satellite altimetry and Water Surface Area (WSA) or the related river width
derived from remote sensing techniques such as multispectral or Synthetic Aperture Radar (SAR) satellite
imagery sensors (Gleason & Durand, 2020). In contrast to in-situ gauges, space-based sensors provide
continuous and coherent global coverage (Stammer & Cazenave, 2017). WSE time series from satellite
altimetry are provided at so-called virtual stations by platforms such as the Database for Hydrological Time
Series of Inland Waters (DAHITI, Schwatke et al., 2015) or Hydroweb (Cretaux et al., 2011; Normandin
et al., 2018; Santos da Silva et al., 2010). Both databases cover more than 10,000 virtual stations globally.
These virtual stations are located at the intersection of the satellite’s ground track with an inland water
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body because classical altimetry measurements work only in the nadir direction. Although developed for
ocean applications, early altimetry satellites could already be used to opportunistically measure the WSE
of wide rivers since the 1990s, and with improved sensors, a larger fraction of the World’s rivers could be
monitored since the launch of the Jason-2 mission in 2008 (Seyler et al., 2013). However, for the majority
of rivers on Earth, space-based WSE measurements with sufficient accuracy have only been possible
since the launch of Sentinel-3A in 2016. Using global covering satellite imagery, WSA rating curves can
be used to estimate even longer discharge time series dating back to 1984, only limited by cloud coverage
and the coarse ground sample distance of 30 m of early remote sensing sensors (Elmi et al., 2024). This
resolution improved with the launch of Sentinel-2A (2015) to 10 m, but WSA variations of small rivers can
only be observed since the PlanetScope constellation with a resolution of 3 m was reached in 2018. Given
the recent advancements in sensor technology and data availability, the full potential of hydrogeodetic
observations for comprehensive river monitoring is only beginning to be realized.

Although remote sensing observations and in-situ discharge measurements are not required to overlap for
fitting a rating curve to the data (Tourian et al., 2013), the river must have been gauged for a certain period
of time. However, many river basins have never been gauged, or the data is not publicly available for po-
litical reasons (Gleason & Durand, 2020). The estimation of river discharge independent of in-situ gauges
would be beneficial to answer many of the “23 unsolved problems in hydrology” summarized by Blöschl
et al. (2019), which can already be covered partially with various methods of hydrogeodesy (Jaramillo
et al., 2024). The launch of the novel wide-swath Surface Water and Ocean Topography (SWOT) mission
in 2022 and the first unconstrained (no calibration with gauges) SWOT discharge results (Andreadis et al.,
2025) mark an important step towards addressing the “Holy Grail of scientific hydrology” (Beven, 2006),
improving our ability to close the water balance at various spatial and temporal scales and advancing our
understanding of hydrological processes. The SWOT mission is capable of measuring WSE, WSA, and
Water Surface Slope (WSS) simultaneously with high spatial resolution. Several algorithms have been de-
veloped specifically for observations from the SWOT mission (Andreadis et al., 2025; Durand et al., 2016).
While some of these methods utilize large-scale data assimilation with hydraulic models (Andreadis et al.,
2020; Larnier et al., 2020; Larnier & Monnier, 2023; Oubanas et al., 2018), the approaches by Brinker-
hoff et al. (2020) and Durand et al. (2014) solve the remaining unknown hydraulic parameters (riverbed
roughness and submerged bathymetry cannot be measured from space) on reach scale based on the
principle of mass conservation. The anticipated error range of SWOT discharge is below 30% (Durand
et al., 2023), and the first results show the expected quality in discharge variations but with a higher bias
than predicted (Andreadis et al., 2025).

Despite these promising results, the planned mission period of SWOT is only three years (2022-2025),
and a follow-on mission is not expected to launch before 2032 (Vuilleumier & Egido, 2023). This makes it
challenging to rely solely on SWOT data for climate studies, which require decades of data to accurately
capture long-term trends and variability (Marchi et al., 2020). Furthermore, focusing on a single mission
introduces a potential vulnerability, as the continuity of data depends on the lifespan of SWOT and possible
successors. Therefore, it is crucial to investigate methods for estimating river discharge without in-situ
calibration from pre-SWOT satellite data such as nadir altimetry and optical imagery. Such diversification
of approaches would not only provide redundancy but also extend temporal coverage, complementing the
revolutionary data delivered by the SWOT mission (Cerbelaud et al., 2025).

The potential for measuring river discharge from multi-mission satellite data was explored by Bjerklie et al.
(2003), who developed multiple models for different combinations of hydrogeodetic observables such as
WSE, WSA, and WSS. Bjerklie et al. (2018), Sichangi et al. (2018), and Zakharova et al. (2020) suc-
cessfully combined WSE, WSA, and WSS observed from multiple satellite missions to derive discharge in
local studies. However, the spatial applicability of these approaches is limited because they require, e.g.,
significant width variations detectable from moderate resolution (250 m) daily satellite imagery to derive
the velocity via the time lag (Sichangi et al., 2018), or opportunistically located virtual stations enclosing
the studied reach to derive WSS (Bjerklie et al., 2018). Furthermore, these approaches require extensive
expert judgment, especially when choosing coefficients to parameterize the riverbed roughness.
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In this thesis, WSE, WSA, and WSS from pre-SWOT multi-mission satellite data are used to estimate
discharge similar to Bjerklie et al. (2018), Sichangi et al. (2018), and Zakharova et al. (2020). The in-
dividual observables are studied for possible improvements in accuracy and scalability using innovative
sensors and techniques. Figure 1.1 shows an illustration of the multiple sensors employed. Additionally,
the mass-conserved flow law inversion applied to SWOT data by Brinkerhoff et al. (2020) and Durand
et al. (2014) is transferred to the pre-SWOT data to mitigate the required expert judgment in choosing the
roughness coefficients. In this way, this thesis integrates long-term pre-SWOT observations with recent
advances in remote sensing hydraulics, introducing a method for estimating long-term discharge time se-
ries in ungauged basins. The results contain realistic uncertainty quantification, ensuring their suitability
for assimilation into hydrological models to enhance our understanding of climate change and develop
strategies to adapt to its threatening consequences.

Figure 1.1 Satellite sensors and observables for the estimation of river discharge.
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1.2 Objectives and Outline

As introduced in Section 1.1, hydrogeodetic observations have primarily been used to extend existing in-
situ discharge time series in gauged basins. However, the field of deriving river discharge in ungauged
basins without requiring calibration with in-situ measurements has not yet been well studied. There have
been recent advances using the novel SWOT sensor, whose current temporal coverage is low and contin-
uation is insecure, but there are only a few studies using long-term multi-mission satellite data. Therefore,
this thesis aims to develop a method to derive river discharge in ungauged basins only using multi-mission
hydrogeodetic observations without the need for calibration by in-situ data and with minimal expert deci-
sions required. This thesis addresses the following three objectives to achieve this goal:

O1 Identify the potential and limitations of uncalibrated satellite monitoring of river discharge
A framework for the estimation of river discharge will be established, and methods to derive the required
hydraulic parameters from multi-mission satellite observations without calibration by in-situ data will be
assessed. This involves evaluating the sensitivity to the parameters and possible improvements in their
observation or estimation. Furthermore, river conditions that are most favorable or limit the applicability of
the developed methods will be identified.

O2 Investigate innovative techniques to improve the hydraulic parameter estimation
The observation or estimation of the hydraulic parameters will be improved not only in terms of errors but
also regarding robustness, scalability, and transferability. Additionally, the need for expert adjustments and
the risk of observer bias shall be minimized using unsupervised methods.

O3 Provide reliable uncertainty quantification
Uncertainties and error quantification are important for users when incorporating the data into broader
hydrologic models. The discharge results shall include a confidence interval based on the uncertainties of
the input observations and estimations.

These objectives are addressed by the following four publications, which are the main part of this thesis
containing detailed discussions of the materials and methods and are included in the Appendix:

P1 Scherer, D., Schwatke, C., Dettmering, D., & Seitz, F. (2020). Long-Term Discharge Estimation for
the Lower Mississippi River Using Satellite Altimetry and Remote Sensing Images. Remote
Sensing, 12, 2693. https://doi.org/10.3390/rs12172693

P2 Scherer, D., Schwatke, C., Dettmering, D., & Seitz, F. (2022). ICESat-2 Based River Surface Slope
and Its Impact on Water Level Time Series From Satellite Altimetry. Water Resources Research,
58, 1–25. https://doi.org/10.1029/2022WR032842

P3 Scherer, D., Schwatke, C., Dettmering, D., & Seitz, F. (2023). ICESat-2 river surface slope (IRIS): A
global reach-scale water surface slope dataset. Scientific Data, 10, 359. https://doi.org/10.1038/
s41597-023-02215-x

P4 Scherer, D., Schwatke, C., Dettmering, D., & Seitz, F. (2024). Monitoring river discharge from
space: An optimization approach with uncertainty quantification for small ungauged rivers.
Remote Sensing of Environment, 315, 114434. https://doi.org/10.1016/j.rse.2024.114434

P1 is dedicated to O1, establishing a fundamental framework for estimating discharge using satellite data.
Exploiting the well-studied and data-rich Lower Mississippi Basin, P1 contains a closed-loop test to study
the sensitivity of the hydraulic parameters and limitations of the approach. Dedicated to O2, P2 introduces
an innovative approach for measuring WSS using lidar altimetry. The approach of P2 is scaled to a global
reach-scale dataset in P3. P4 addresses all objectives by propagating the uncertainties of the input data to
the discharge results (O3), introducing an optimization approach for unbiased estimation of the roughness
parameter (O2), and transferring the improved methods of P1 to smaller rivers of different flow regimes
using high-resolution sensors (O1).

https://doi.org/10.3390/rs12172693
https://doi.org/10.1029/2022WR032842
https://doi.org/10.1038/s41597-023-02215-x
https://doi.org/10.1038/s41597-023-02215-x
https://doi.org/10.1016/j.rse.2024.114434
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Figure 1.2 shows the general outline of the content of this thesis sorted by chapter and publication. Be-
cause the contents of the publications partially overlap or describe different methods to derive the same
parameters to fulfill O2, this thesis starts with a general introduction to river hydraulics in Chapter 2, de-
scribing the applied hydraulic methods, required hydraulic parameters, and approximations from a remote
sensing perspective. Then, Chapter 3 describes briefly the different sensors and methods used to derive
the hydraulic parameters side-by-side structured by the observables WSE, WSS (including summaries of
P2 and P3), WSA, and their combination. Chapter 4 comprises P1 and P4, which describe the initial
discharge framework, closed-loop test, and the improved optimization approach with uncertainty quantifi-
cation. An overall summary with conclusions on the research objectives is given in Chapter 5 followed by
an outlook with recommendations for future work in Chapter 6.

Figure 1.2 Thesis outline with key contents sorted by chapter and describing publication colored by objective
(blue: O1, green: O2, orange: O3)

Additional contributions related to the objective and referenced in this thesis have been made in the fol-
lowing publications:

AP1 Schwatke, C., Scherer, D., & Dettmering, D. (2019). Automated Extraction of Consistent Time-
Variable Water Surfaces of Lakes and Reservoirs Based on Landsat and Sentinel-2. Remote
Sensing, 11, 1010. https://doi.org/10.3390/rs11091010

AP2 Dettmering, D., Ellenbeck, L., Scherer, D., Schwatke, C., & Niemann, C. (2020). Potential and limi-
tations of satellite altimetry constellations for monitoring surface water storage changes—A
case study in the Mississippi basin. Remote Sensing, 12. https://doi.org/10.3390/rs12203320

AP3 Schwatke, C., Halicki, M., & Scherer, D. (2024). Generation of High-Resolution Water Surface
Slopes From Multi-Mission Satellite Altimetry. Water Resources Research, 60. https://doi.org/
10.1029/2023WR034907

AP1 describes an automated method for water classification in multispectral satellite images. This method
is applied in P1. AP2 discusses the potential of different satellite altimetry constellations to cover inland
water bodies and addresses O1, as the coverage with space-based WSE measurements is one major lim-
itation of the multi-mission approach described in this thesis. AP3 describes a further alternative approach
to obtain WSS from multi-mission altimetry, using the results of P2 and P3 for calibration and validation
purposes.

https://doi.org/10.3390/rs11091010
https://doi.org/10.3390/rs12203320
https://doi.org/10.1029/2023WR034907
https://doi.org/10.1029/2023WR034907
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2 River Hydraulics

This thesis combines space-based geodetic measurement techniques with fundamental hydraulic equa-
tions and principles to obtain river discharge. While the hydrogeodetic satellite sensors provide a variety
of observables, not all required hydraulic parameters can be derived from space-based measurements.
This chapter introduces the applied hydraulic concepts and the required parameters and links them to the
satellite observables described in Chapter 3.

2.1 Fundamental Concepts in River Hydraulics

This thesis refers to river discharge as the open-channel flow of natural rivers with the water surface subject
to atmospheric pressure (Chow, 1959). River discharge Q [m3/s], the mass of water passing a location of
measurement (x) along the river at a time step (t), cannot be measured directly but must be calculated
from the flow velocity v [m/s] and the cross-sectional area A [m2] (Julien, 2018).

Q(t, x) = v(t, x) · A(t, x) (2.1)

In-situ, hydroacoustic instruments like the Acoustic Doppler Current Profiler (ADCP) become increasingly
common to measure v and A. ADCPs transmit sound signals from multiple transducers and receive
reflections from suspended particles in the water. Because of the Doppler effect, the frequency of the
received signals is shifted proportionally to v. Using range bins, a vertical velocity profile and the flow depth
can be measured across the river (Rhoads, 2020; Turnipseed & Sauer, 2010). While measurements near
the transducers, the riverbed, and in shallow waters are unreliable or impossible (Mueller et al., 2007), the
majority of the cross-sectional geometry and area A can be obtained from ADCPs (Rhoads, 2020).

Without ADCPs, extensive measurements of v with rotating mechanical or electromagnetic current meters
are required (Rhoads, 2020). The cross-sectional geometry and velocity distribution must be determined
manually, e.g., using the mid-section method, which accounts for the velocity profile across the channel, by
dividing the cross-section into n segments and measuring the depth-averaged velocity v̄i and mean depth
of each segment i. For natural channels, Turnipseed and Sauer (2010) recommend up to 30 segments
depending on the river width, and the flow at the selected site should be steady and uniform. Based on the
segment’s mean depth and width, its cross-sectional area Ai is calculated to obtain the discharge within
each segment, the sum of which is the total discharge at the cross-section (Rhoads, 2020):

Q(t, x) =
n∑

i=1
v̄i(t, x) · Ai(t, x) (2.2)

This segmentation into vertical sections is also employed in P1 and P4 to consider the different flow
velocities across the channel.

Even though advanced sensors such as ADCPs are available and can now be attached to unmanned
aerial systems for cost-effective surveys (Frias et al., 2025), discharge measurements still require consid-
erable financial, temporal, and human resources. Therefore, the river discharge of a natural channel is
typically not measured continuously. Instead, only a few samples are used to calibrate a stage-discharge
model (rating curve) at different stages. Hysteresis effects, channel dynamics, and the sparse sampling of
discharge extremes can cause significant uncertainties in these models (Le Coz et al., 2014). Therefore,
errors w.r.t. the in-situ discharge must not necessarily indicate that the data, assumptions, and methods
applied in this thesis are unsuitable for deriving river discharge.
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2.1.1 Flow Types

Different types of flow can be classified in open-channel hydraulics based on spatial and temporal vari-
ations in discharge, velocity, and the cross-sectional area within the channel. The flow is steady if the
discharge is constant over the time interval of observation and uniform if v and A do not change within the
studied channel section. Based on these features, four classes can be defined (Rhoads, 2020):

Steady Uniform Flow occurs when the discharge is at a constant rate over time, and the cross-sectional
area and velocity do not change along the channel. ∂Q

∂t = 0, ∂A
∂x = 0, ∂v

∂x = 0

Steady Non-Uniform Flow refers to a constant rate of discharge through a channel of changing cross-
sectional area and velocity in space. ∂Q

∂t = 0, ∂A
∂x ̸= 0, ∂v

∂x ̸= 0

Unsteady Uniform Flow is an extremely rare state when v and A are constant along the channel, but the
discharge changes over time. ∂Q

∂t ̸= 0, ∂A
∂x = 0, ∂v

∂x = 0

Unsteady Non-Uniform Flow can be observed when a flood wave of varying discharge passes a channel
with spatiotemporally varying cross-sectional area and velocity. ∂Q

∂t ̸= 0, ∂A
∂x ̸= 0, ∂v

∂x ̸= 0

The flow can be further classified as laminar, turbulent, or transitional, depending on the Reynolds number,
which considers water viscosity, velocity, and channel geometry. However, laminar flow occurs very rarely
in open channels (Chow, 1959). Therefore, the flow of the natural channels studied in this thesis is always
considered turbulent. Depending on the Froude number, which considers flow velocity, depth, and gravity,
the flow can be classified into subcritical (calm, small v relative to depth with dominant gravitational forces),
critical, and supercritical (rapid, large v relative to depth with dominant inertial forces) (Chow, 1959). In
subcritical conditions, which are most common in natural rivers except for mountain rivers or flood events,
waves caused by a downstream flow disturbance can propagate upstream because the wave velocity
(celerity) exceeds the flow velocity (Rhoads, 2020). Subcritical flow is also affected further upstream by
backwater effects from dams or natural barriers than supercritical flow (Chow, 1959).

2.1.2 Approximations

The flow complexity varies depending on the flow type. For steady uniform flow, the velocity in the down-
stream direction is predominant (one-dimensional flow), and the slope of the river bed is equal to the slope
of the water surface. With increasing variations in v, A, and Q over t or x (i.e., in backwater affected, un-
steady, or non-uniform flow), the complexity increases so that the velocity vector must also be considered
laterally and vertically (two- and three-dimensional flow) (Rhoads, 2020). However, the steady non-uniform
flow can be divided into

Steady Gradually Varied Flow with slight changes in area and velocity along the channel.
∂Q
∂t = 0, ∂A

∂x ≈ 0, ∂v
∂x ≈ 0

Steady Rapidly Varied Flow with rapid changes in area and velocity along the channel.
∂Q
∂t = 0, ∂A

∂x ̸= 0, ∂v
∂x ̸= 0

so that one-dimensional flow laws designed for steady uniform flow can be applied to steady gradually var-
ied flow as the expected errors from this approximation are “small compared with those ordinarily incurred
in the use of a uniform-flow formula and in the selection of the roughness coefficient” (Chow, 1959).

All natural rivers are unsteady and non-uniform to some degree. Their discharge varies over time de-
pending on precipitation and melting with different frequencies and amplitudes depending, among others,
on morphology, catchment area, land use, soil, or climate (Rhoads, 2020; Cerbelaud et al., 2024). The
channel form can be highly variable, e.g., depending on sediment size, river bed material, or mean annual
discharge. However, when the studied site is carefully selected so that the channel geometry on a reach
scale does not change significantly, gradually varied flow can be approximated. Especially reaches up-
stream of abrupt changes of bed slope or channel geometry, waterfalls, rapids, confluences, or lakes can
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be influenced by significant backwater effects that require more sophisticated flow models (Bauer-Gottwein
et al., 2024; J. Liu et al., 2023) but can be avoided judging from satellite imagery and the river topology.
Furthermore, with instantaneous observations of a long-term unsteady flow, it can be approximated to be
quasi-steady (Battjes & Labeur, 2017).

In this thesis, daily discharge is calculated on a reach scale of ∼10 km based on instantaneous obser-
vations from satellite imagery of maximum 3 m resolution and satellite altimetry with decimeter uncertain-
ties (see Chapter 3). These scales and uncertainties must be considered when deciding whether the
approximation of steady uniform flow is suitable for the studied river sections. The expected error by ap-
plying a one-dimensional flow law to a section that is more complex on a smaller scale might still be low
compared to the uncertainties propagated from the satellite observations.

2.2 Gauckler-Manning-Strickler Formula and Hydraulic Parameters

Various empirical equations have been developed to approximate the open-channel uniform flow velocity.
Robert Manning calculated the flow velocity using seven established equations (by Du Buat, Eytelwein,
Weisbach, St. Venant, Neville, Darcy and Bazin, and Ganguillet and Kutter) for different conditions and
developed an empirical formula best fitting the mean results (Fischenich, 2000; Manning, 1891; Chow,
1959; Chaudhry, 2022):

v = k · R
2
3 · I

1
2 with R = A/P (2.3)

where k [m1/3/s] is the Strickler roughness coefficient, R [m] is the hydraulic radius calculated from the
cross-sectional area A [m2] and wetted perimeter P [m], and I [m/m] is the energy slope. The velocity
vector of this formula is one-dimensional, so it requires the approximation of steady uniform flow as in-
troduced in Section 2.1.2. The formula is also influenced by Gauckler (1868) and Strickler (1923), but
for simplicity, it is called the Manning equation in this thesis. Applying the vertical segmentation of Equa-
tion 2.2, the Manning equation can be written as follows to account for the velocity profile across the river:

v̄i(t, x) = ki(t, x) · Ri(t, x)
2
3 · I(t, x)

1
2 with Ri(t, x) = Ai(t, x)/Pi(t, x) (2.4)

Figure 2.1 shows a schematic cross-section with the parameters required for applying the Manning equa-
tion per vertical segment. The following sections introduce the hydraulic parameters of the Manning equa-
tion in terms of their potential for observation using satellite-based sensors. The methods to derive the
parameters from these sensors are discussed in more detail in Chapter 3 and the four publications.

Figure 2.1 Schematic cross-sections with hydraulic parameters required for the Manning equation per vertical seg-
ment. The width of the segments is exaggerated in relation to the depth.
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2.2.1 Slope

Equation 2.3 is valid for uniform flow where the energy slope I is parallel to the bed slope and WSS (Chow,
1959). In non-uniform flow, I can significantly deviate from the bed slope and WSS depending on, e.g., the
flow regime or variations in the cross-sectional area. However, in rivers with gentle slopes and gradually
varied flow, I can be approximated by WSS (Chow, 1959). WSS can either be obtained from radar
(P1) or lidar (P2) altimetry (see Section 3.2). The spatial coverage of WSS derived from lidar altimetry
is significantly higher compared to radar altimetry and is used to map reach-scale WSS globally in P3,
addressing O2 to improve the transferability. However, neither sensor can be used to globally observe the
reach-scale temporal variability or the spatial variability of WSS within a reach, which can vary significantly,
especially in backwater-affected reaches (Bauer-Gottwein et al., 2024). This is only possible with the novel
wide-swath altimetry sensors such as SWOT, which combine high temporal resolution with large spatial
coverage but have only been available since 2023. Therefore, the WSS is assumed to be constant in P1
and P4. A closed-loop test in P1 shows that using a time-variable slope yields the least significant error
improvements among the hydraulic parameters in large alluvial rivers and that a high spatial resolution is
more important. Nevertheless, the reach-scale WSS extremes can be estimated using lidar altimetry and
are used in P4 as uncertainty criteria to fulfill O3.

2.2.2 Roughness

The Strickler roughness coefficient kSt (for simplicity called k in this thesis) is the inverse of Manning’s n
parameter (Chaudhry, 2022) and is commonly used for SI units. The roughness coefficient is not physically
based but comprises any resistance to the flow and is originally derived by Strickler (1923) through empiri-
cal studies. Within natural rivers, k typically ranges from 10 (high friction) to 50 (low friction) (Lecher et al.,
2021). It cannot be measured but must be determined via flow-law inversion or estimated from literature
values. Furthermore, k is not dimensionless and, therefore, depends on R and the flow depth (LUBW,
2002). In contrast, the dimensionless friction factor λ is used in the physically based Darcy-Weisbach
equation (Julien, 2018; LUBW, 2002):

v = 1√
λ

·
√

8g ·
√

R · I (2.5)

where g is the gravity of Earth [m/s2]. Following Colebrook and White (1937), λ can be derived as a
function of R, the Reynolds number (see Section 2.1.1), and the equivalent sand-grain roughness ks [m]
defined by Nikuradse (1932). However, in natural rivers without in-situ measurements, ks can also only
be estimated from empirical factors, and the calculation of λ requires a high computational effort (LUBW,
2002). Furthermore, in turbulent flow (high Reynolds number), λ can be approximated (DVWK, 1990) with

1√
λ

= 2.33 · (ks/4R)− 1
6 (2.6)

which can be inserted into Equation 2.5 to get

v = 2.33 · (ks/4R)− 1
6 ·
√

8g ·
√

R · I

= 2.33 · 4
1
6 ·
√

8g · k
− 1

6
s · R

1
6 · R

1
2 · I

1
2

(2.7)

and after rearrangements (LUBW, 2002) results in the form of Equation 2.3 (Manning):

v = k · R
2
3 · I

1
2 with k = 5.87 ·

√
2g · k

− 1
6

s (2.8)

where k is the Strickler roughness coefficient [m1/3/s]. Therefore, when there is turbulent flow (as assumed
in all cases studied in this thesis) and Equation 2.6 is valid, k can be approximated to be independent of
R and related to the physical parameters ks and g. Nevertheless, neither k nor ks can be observed from
satellite sensors.
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However, the roughness coefficient can be estimated using adjustment factors such as the river bed mate-
rial and grain size nb (which poses similar challenges as estimating ks), surface irregularities n1, variations
in channel shape and size n2, obstruction n3, the amount of submerged vegetation n4, and the amount of
meandering m (Chow, 1959). Arcement and Schneider (1989) provide a guide to select suitable factors
so that the roughness coefficient can be calculated as follows:

k = 1
(nb + n1 + n2 + n3 + n4)m (2.9)

This equation is used in P1 to estimate k. Although the factors can be approximated from planform features
visible in satellite imagery, such as the meandering pattern, sandbars, or type of meander cutoff (Rosgen,
1996; Schumm, 1977), the choice is highly subjective and prone to errors as the guide still leaves a wide
range of possible values and the factors are not quantitative (Ye et al., 2018). Even in-situ, Chow (1959)
describes the process of selecting a roughness value as “a matter of intangibles” and “it can be no more
than a guess, and different individuals will obtain different results.” The closed-loop test in P1 confirmed
that the roughness coefficient causes the most significant errors in discharge.

Addressing O2, an optimization approach is applied in P4 to overcome the caveats of using Equation 2.9
and objectively estimate the roughness coefficient based on the principle of mass-conservation (see Sec-
tion 2.3). Additionally, the roughness coefficient is varied depending on the river sinuosity s (which is
similar to m in Equation 2.9) and the flow depth:

ki(t, x) = kB(x)
d · s(x) with d =

{
(di(t, x)/d0)−ϵ if di(t, x) > d0

1, otherwise
(2.10)

where kB is the optimized base roughness coefficient, di(t) is the section’s flow depth, d0 is the minimum
depth below which the roughness is assumed to be constant, and ϵ is a drag coefficient. This approach
follows a method proposed by Jain et al. (2004), and the concept of a depth-dependent roughness co-
efficient within the context of satellite data has been successfully demonstrated by Bjerklie et al. (2018).
Using Equation 2.10, the roughness not only varies over time but also across the vertical segments i.
Strong roughness differences between adjacent segments can cause shear stress, which requires addi-
tional roughness consideration at the boundaries of the segments (LUBW, 2002). However, these are
not implemented because of the expected measurement uncertainties and applied approximations (cf.
Section 2.1.2).

2.2.3 Geometry

The shape of the cross-sectional geometry is required to derive the segment’s cross-sectional area Ai and
wetted perimeter Pi to get Ri in Equation 2.4. Additionally, it is required to get the depth of the segment di

as part of the depth-dependent roughness estimation in Equation 2.10. The cross-section can be divided
horizontally into two parts, above (observed) and below (unobserved) the minimum measured WSE as
shown in Figure 2.1. In ephemeral rivers, the entire cross-section can be observed, while in large down-
stream main stems, the observable variations cover only a fraction of the entire cross-sectional geometry.
A river bathymetry map showing the observable part of the geometry is constructed by combining WSE
measurements from satellite altimetry with the WSA from satellite imagery. The observed cross-sectional
geometry is sampled from the bathymetry map along the normal of the river centerline at the location
of measurement x. An empirical width-to-depth relationship by Moody and Troutman (2002) is used to
estimate the riverbed elevation. The unobserved part of the geometry is constructed by a parabola to
the estimated riverbed elevation. This method is described in detail in Section 3.4. The approach was
validated in P1 and works best in straight and relatively wide river sections because the river erosion in
curved or narrowing sections cannot be modeled. As the empirical width-to-depth relationship is only valid
in meandering rivers, the approach cannot be applied to braided rivers. Based on the assumption of grad-
ually varied flow, the river bed elevations of the cross-sections are further optimized in P4 (see Section
3.4.1), to improve the estimation (O2) and address O3 by quantifying the depth uncertainty.
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2.3 Mass-Conservation

Instead of limiting the discharge estimation to a single cross-section, estimates from multiple locations can
be integrated based on the principle of mass conservation to improve the hydraulic parameters and derive
their uncertainties. In this thesis, the discharge of rivers wider than ∼50 m is estimated over ∼10 km long
reaches within which the flow is assumed uniform (i.e., without significant tributaries or withdrawal) and
steady (i.e., no changes in flow rate during the time of measurement) as discussed in Section 2.1. With the
assumption of steady uniform flow, the discharge is continuous, i.e., constant along the reach as defined
by Chow (1959):

Q(t) = v(t, x1) · A(t, x1) = v(t, x2) · A(t, x2) = . . . (2.11)

which can be expressed using Equations 2.2, 2.4, and 2.10 as:

Q(t) =
n∑

i=1

kB(x1)
d · s(x1) · Ri(t, x1)

2
3 · I(t, x1)

1
2 · Ai(t, x1)

=
n∑

i=1

kB(x2)
d · s(x2) · Ri(t, x2)

2
3 · I(t, x2)

1
2 · Ai(t, x2)

= . . .

with d =


(

di(t,x)
d0

)−ϵ
, if di(t, x) > d0,

1, otherwise.

(2.12)

The parameters di, s, Ri, I, and Ai can be observed using space-based sensors, although there are
specific limitations for each parameter, as discussed in Section 2.2 and Chapter 3. According to the law
of mass conservation in steady uniform flow, the values of the unknown parameters kB(x), ϵ, and d0 must
yield zero differences between the results at any location of measurement x. Due to the uncertainty in the
observed parameters, the approximation of steady uniform flow, and Manning’s simplified one-dimensional
flow equation, the exact state of zero differences cannot be attained, but the differences must be minimal.
In P4, this constraint is expressed as the following objective function:

min
k̇

max(kB)
min(kB)

m∑
a=1

m∑
b=1,a ̸=b

 1
Q̄(a)

√√√√1
l

l∑
t=1

(Q(t, a) − Q(t, b))2

2

(2.13)

where m is the number of cross-sections, l is the number of time steps in the WSE time series, and k̇
is the vector of unknowns [kB(a), . . . , kB(m), d0, ϵ]. The objective function is basically the Normalized
Root Mean Square Error (NRMSE) sum between all cross-sections factored by the ratio between the
maximum and minimum kB as regularization to prevent unexpected high variations under the assumption
of gradually varied flow. Still, there is the possibility of multiple solutions because the objective function
has a high degree of freedom with multiple local minima, and the problem remains ill-posed. However, the
expert user can usually identify the most likely solution and accordingly adjust the boundary values of the
unknowns as discussed in P4. In this way, this approach for estimating the roughness coefficient is much
more robust and objective than using literature decision guides.

As introduced in Section 2.1.2, the application of a one-dimensional flow law such as the Manning equation
requires gradually varied flow, i.e., minimal differences in A, across the consecutive locations of measure-
ments x. Therefore, before optimizing the roughness based on the principle of mass conservation with
Equation 2.13, the unknown river bed elevations are first optimized in P4 by reducing the differences of A
at mean flow across the locations x to ensure the condition of gradually varied flow, as further described
in Sections 3.4.1 and 3.4.2.
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2.3.1 Optimization Algorithm

The central element of P4 is the optimization of unknown parameters by minimizing the result of an ob-
jective function such as Equation 2.13 to obtain the optimal roughness coefficient or the optimal riverbed
elevation (Equation 3.7). For this optimization, a parallel version (Gerber & Furrer, 2019; Gerber et al.,
2023) of the Limited-Memory BFGS Algorithm with Box Constraints (L-BFGS-B, Byrd et al., 1996; D. C.
Liu and Nocedal, 1989; C. Zhu et al., 1997) is used. The Broyden–Fletcher–Goldfarb–Shanno Algorithm
(BFGS, Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) is a quasi-Newton method that,
like Newton’s method, considers gradient changes (curvature) of the objective function to find its minimum.
By incorporating curvature information, Newton’s method can utilize larger step sizes during each iteration
compared to methods that consider only the gradient, which leads to faster convergence, particularly in
ill-conditioned problems (Papageorgiou et al., 2012).

Newton’s method requires the exact Hessian matrix, which is the second derivative of the multivariate
objective function and thus represents its curvature. An analytical calculation of the exact Hessian ma-
trix is not feasible for complex objective functions with sub-routines, and a numerical determination is
computationally expensive because it requires matrix inversion (Papageorgiou et al., 2012). In contrast,
quasi-Newton methods like BFGS approximate the Hessian matrix without matrix inversion and are par-
ticularly suitable for solving large optimization problems (Nocedal & Wright, 2006). For each iteration,
BFGS uses a line search to adaptively choose the optimal step size that satisfies the Wolfe conditions
(significant decrease of the objective value and a reduced curvature) (Nocedal & Wright, 2006). Then, the
algorithm calculates the local gradient and uses the difference between successive gradients to update
the approximated Hessian.

While BFGS stores all Hessian approximations, L-BFGS (D. C. Liu & Nocedal, 1989) keeps only the most
recent updates to reduce memory usage and ensure scalability for large problems (Nocedal & Wright,
2006). Additionally, L-BFGS-B (Byrd et al., 1996; C. Zhu et al., 1997) provides the possibility of defining
boundary conditions. The implementation by Gerber et al. (2023) reduces the computation time by paral-
lelizing the evaluations required to calculate the local gradient. The L-BFGS-B algorithm approximates the
Hessian for optimization efficiency, but a more accurate Hessian is calculated using finite differences after
convergence (Nocedal & Wright, 2006). The inverse of this more accurate Hessian can be considered the
covariance matrix (Niwa & Fujii, 2020) so that high curvature represents low variance values. To fulfill O3,
the standard deviations which quantify the uncertainty of the optimal parameters are obtained from the
squared diagonal of the covariance matrix.
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3 Satellite Observables and Derivables

In this thesis, different hydrogeodetic sensors onboard a wide range of satellites commissioned by the
European Space Agency (ESA), National Aeronautics and Space Administration (NASA), and commer-
cial operators are used. Figure 3.1 shows a timeline of these satellite missions colored by similar orbit
attributes and grouped by sensor type. The sensors can be categorized into satellite altimetry comprising
radar and lidar altimeters and satellite imagery from multi-spectral sensors. The radar altimetry is used
to observe WSE (Sec. 3.1), which is the fundamental driver of the discharge algorithm presented in this
thesis. The WSS of the rivers is derived from lidar altimetry (Sec. 3.2) as an input for the Manning equa-
tion and to correct the radar WSE time series. The multi-spectral sensors are used to observe the WSA
(Sec. 3.3) of the studied river sections, which is combined with the WSE to derive the river bathymetry
(Sec. 3.4). Figure 3.1 does not represent an exclusive list of remote sensing techniques and missions ap-
plicable to hydrogeodesy and instead includes only the missions mentioned in this study. Other important
missions are, e.g., the Gravity Recovery and Climate Experiment (GRACE) for monitoring terrestrial water
storage, the Moderate Resolution Imaging Spectroradiometer (MODIS) for observing large-scale inunda-
tion or snow cover with high temporal resolution, or the Shuttle Radar Topography Mission (SRTM) used
to derive vector representations of river networks.
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Figure 3.1 Timeline of satellite missions and constellations (*) grouped by sensor types and colored by similar orbit
attributes. Gray missions are not used in this thesis. Light colors show extended phases on different orbits.
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3.1 Water Surface Elevation

The WSE is observed by satellite altimetry, which utilizes active space-based geodetic sensors to mea-
sure the range between the spacecraft and Earth surface based on the signal propagation time from pulse
emission to the reception of a reflection. The technique was initially developed in the 1970s with a focus
on monitoring ocean dynamics and deriving information on Earth’s gravity field, but the first observations
contained considerable uncertainties due to large errors in the Precise Orbit Determination (POD) (Stam-
mer & Cazenave, 2017). With improvements to the POD such as new reflectors for Satellite Laser Ranging
(SLR) and Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS), the data quality of
the Topex/Poseidon and European Remote Sensing (ERS-1) missions launched in the 1990s was suffi-
cient to monitor large inland water bodies (Schwatke et al., 2015; Stammer & Cazenave, 2017). Advancing
innovations in radar altimetry (see Section 3.1.1) and new techniques like lidar or wide-swath altimeters
increase the capability of retrieving the WSE of inland waters such as rivers and the WSE time series can
span over more than two decades by now. P1 and P4 use WSE time series from DAHITI as a primary
input to obtain the river geometry and estimate river discharge. In DAHITI, repeated radar altimeter mea-
surements at the intersection of the satellite’s ground track and an inland water body are binned into a
so-called Virtual Station (VS).

3.1.1 Radar Altimeters

Radar altimeters emit a radar signal and measure the range R between the satellite and Earth surface
through waveform retracking of the received reflection (see Section 3.1.3) to calculate the surface height
h (or WSE) (Rosmorduc et al., 2016):

h = H − (R + ∆R) (3.1)

where H is the POD-derived orbit height of the satellite above a reference ellipsoid and ∆R is the sum
of corrections, which are described in Section 3.1.4. The two most common types of altimeters are the
pulse-limited Low Resolution Mode (LRM) and the Delay-Doppler SAR sensors, which differ primarily in
their signal footprint shape and size as shown in Figure 3.2. LRM altimeters have a large radial footprint
with a diameter of up to 30 km (Cretaux et al., 2017), while SAR sensors can differentiate the received
signal into strip-shaped footprints of a few hundred meters in the along-track direction using the Delay-
Doppler technique (Rosmorduc et al., 2016).

Pulse-limited LRM altimeters are operated by the Jason-1/2/3 and Envisat missions. They transmit radar
pulses for a duration of 105.6 µs (20 µs for Envisat) on a primary Ku-band frequency of 13.575 GHz at a
repetition rate of 1.80 to 2.06 kHz depending on the mission. Between the transmitted pulses, the previous
backscattered signal from the surface is received. Multiple received returns are accumulated onboard
the satellite for an improved Signal-to-Noise Ratio (SNR) so that the resulting temporal resolution of the
downlinked signals is approximately 20 Hz (eoPortal, 2024; Escudier et al., 2017).

SAR altimeters exploit the Doppler frequency change caused by the speed of the satellite (Escudier et al.,
2017). Analogous to LRM altimeters, the SAR altimeters onboard the Sentinel-3A/B constellation use the
primary Ku-band frequency of 13.575 GHz. However, the signal is emitted in bursts of 64 pulses with
a significantly higher pulse repetition rate of 17.8 kHz compared to LRM altimeters. These bursts are
required to ensure a constant phase of the transmitted pulses, which is critical to detecting the frequency
changes in the unfocused Delay-Doppler SAR processing. Thereby, the footprint size is reduced to 330 m
in the along-track direction, improving the SNR (Cretaux et al., 2017; ESA, 2023) and facilitating WSE
and discharge measurements of small rivers in P4. Sentinel-6A is the follow-on of the Jason-3 mission
and is supposed to continue the measurements in coherence. The satellite carries an LRM with similar
characteristics as the Jason-1/2/3 missions and an additional SAR altimeter (Donlon et al., 2021).
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Figure 3.2 Received radar waveforms affected by different conditions requiring corrections.

3.1.2 Limitations by Orbit Configuration

Besides the sensor capabilities, the most significant factor limiting global inland water monitoring with satel-
lite altimetry is the orbit configuration of the spacecraft and the resulting measurement geometry (Alsdorf
et al., 2007). Classical altimeters measure only in the nadir direction and miss any water body that does
not intersect the ground track of the satellite. The spatial pattern of the ground tracks is governed by the
mission’s repeat cycle, which ranges from 10 days (Jason-1/2/3) to 35 days (Envisat) and also limits the
temporal resolution of the WSE time series. Shorter repetitions would be beneficial because any extreme
flood or drought events in between the cycles cannot be captured (Cerbelaud et al., 2025), but the spatial
coverage decreases. Long repeat cycles are required for a dense ground track pattern, but these missions
cannot be used to obtain meaningful WSE time series. This limitation is quantified in AP2 (Dettmering et
al., 2020) with a case study for the Mississippi River basin. Four different satellite altimetry configurations
are studied: Jason only (same as Topex/Poseidon and Sentinel-6), Sentinel-3 (A and B), the past con-
figuration (Jason and Envisat), and the current configuration (Jason, Sentinel-3, CryoSat-2, and SARAL).
The current configuration misses 67% of the lakes and reservoirs larger 1 km2. The probability of rivers
being intersected by nadir altimeters is higher because of their oblong geometry. Alsdorf et al. (2007)
demonstrate that 19 to 44% of rivers are missed depending on the repeat cycle. However, the likelihood
that a specific location of interest is missed or that the intersection situation is not suitable for monitoring
the WSE is still very high. New wide-swath altimeters such as SWOT will be capable of filling this gap of
observations.

3.1.3 Waveform Tracking and Retracking

The waveforms of the radar echoes describe the received power as a function of time binned into reception
gates. The typical gate size of 3.125 ns is equivalent to a range of 0.47 m (ESA, 2023; Gommenginger et
al., 2011). The onboard tracker adjusts the reception window of the altimeter to ensure the correct capture
of the backscattered signal, and retracking algorithms are applied to the waveform to retrieve the range R.
Echoes of the open ocean have a standard waveform with a sharp rise called the leading edge followed by
a gentle decline called the trailing edge (Figure 3.2). The leading edge slope is influenced by the significant
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wave height, and the amplitude of the leading edge depends on the sea surface roughness due to the
wind speed. During retracking, this physically derived model can be fitted to the ocean waveforms, and the
range to the water surface is represented by the gate of the half-power point of the leading edge (Brown,
1977). However, over heterogeneous surfaces such as coastal or continental areas, the waveforms do
not follow this standard shape but are specular and contaminated by noise and secondary peaks in power
from nearby off-nadir targets as shown in Figure 3.2. This is most notable with the large footprint diameter
of LRM altimeters and can lead to significant errors in the onboard processing of the tracker unit and
the range retracking (Cretaux et al., 2017). The tracker of Jason-1 expected an ocean-like waveform
and frequently failed over continental areas. The Envisat tracker was more robust but could fail due to
steep topography or significant noise. Jason-2/3, Sentinel-3A/B, and Sentinel-6A all use an a-priori Digital
Elevation Model (DEM) in combination with the real-time DORIS measurements to determine the reception
window ensuring good tracking in complex areas but causing data gaps due to incorrect DEM data (Cretaux
et al., 2017).

Special retracking algorithms such as the Offset Center of Gravity (OCOG, Wingham et al., 1986) must
be applied to non-standard (continental) waveforms to find the leading edge for retrieving the range. The
empirical OCOG retracker determines the gate representing the center of gravity of the waveform and sub-
tracts the half-width of the waveform from this gate to calculate the leading edge position. The data used
in this thesis is processed using the improved threshold retracker (Jinyum et al., 2006; Schwatke et al.,
2015). This retracker distinguishes between multiple sub-waveforms reflected from different features within
the footprint. Despite the advances in retracking algorithms, the range precision remains at decimeters for
LRM missions and centimeters for SAR sensors in small inland waters (Nielsen et al., 2017).

3.1.4 Range Corrections

Once the range is obtained by the retracking of the received signal waveform, it has to be corrected for
instrument biases, atmospheric delays, and geophysical effects. Table 3.1 lists the corrections and their
typical impact on the range measurements of radar altimeters as described by Rosmorduc et al. (2016).
Instrument biases are typically the least significant compared to the retracking precision over inland waters.
Larger corrections of up to 2.3 m magnitude must be applied for atmospheric delays caused by particle
interaction within the ionosphere and troposphere. The LRM and SAR altimeters use a secondary C-
band frequency of 3.2 to 5.41 GHz to derive the electron content for direct ionosphere correction (eoPortal,
2024). However, the dual-frequency ionosphere correction is unreliable for inland applications due to
possible land contamination (Dettmering & Schwatke, 2022). Therefore, all corrections for atmospheric
delays must be derived from models for inland altimetry. Table 3.1 does not list ocean tides and tidal loading
because they do not affect the reaches studied in this thesis. Still, the corrections for other geophysical
effects, such as solid Earth tides and pole tides, must be applied.

These corrections and the range measurements are obtained in the Multi-Version Altimetry (MVA) format
from the Open Altimeter Database (OpenADB, Schwatke et al., 2023). MVA contains not only the mission-
specific standard corrections but also alternative corrections, e.g., from different troposphere models. Fur-
thermore, MVA provides corrections for systematic orbit errors estimated with the Multi-Mission Crossover
Analysis (MMXO) by Bosch et al. (2014). By harmonizing the applied corrections for all missions and uti-
lizing the MMXO correction, data from different satellite altimetry missions can be easily combined without
residual biases.

Besides the standard corrections, which are also used for ocean applications, the most significant errors
in inland altimetry with a magnitude of multiple meters are caused by the position of the satellite above the
target, the target’s properties, or multiple targets within the footprint that can also affect the SAR stripes
(depending on the intersection angle) as shown in Figure 3.2. Boergens et al. (2016) studied corrections
for the off-nadir (or hooking) effect. When using Equation 3.1, the water body is assumed to be nadir below
the satellite, but the sensor can also receive signal reflections from off-nadir water bodies within the radar
footprint, which results in an erroneous range. This hooking effect can be corrected by fitting a parabola
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Table 3.1 Corrections for instrument biases, atmospheric delays, geophysical effects, and target properties applied
to satellite altimetry range measurements as described by Rosmorduc et al. (2016), Boergens et al. (2016), and P2.

Correction Description Magnitude [m]

Instrument Biases
Ultra-Stable Oscillator Clock drift 0.01
Centre of Gravity Variations due to fuel consumption 0.01
Waveform Filters Blocking certain frequencies in the signal <0.10

Signal Delays by the Atmosphere
Ionosphere Electron content 0.5
Wet Troposphere Water vapour and liquid water 0.5
Dry Troposphere Atmospheric gases 2.3

Vertical Surface Variations by Geophysical Effects
Solid Earth Tides Deformations of the solid Earth by the attraction of the Sun and Moon 0.5
Pole Tides Solid Earth deformation caused by motion of the rotational axis 0.02

Target Properties
Hooking Effect Off-nadir measurements up to 3
River Slope Ground track shift across sloping river up to 3

to the off-nadir measurements to maximize the data coverage and precision over narrow rivers or without
direct nadir measurements (Boergens et al., 2016). In the DAHITI approach (Schwatke et al., 2015),
the hooking effect is mitigated by careful selection of the VS and discarding the off-nadir measurements
through extended outlier rejection. Although the altimeter satellites nominally stay on the same orbit and
are therefore assumed to intersect a river at the exact location each cycle, the satellite’s ground track
actually shifts by kilometers during the mission lifetime, as shown in Figure 3.3. Depending on the WSS
of the river, this shift causes a significant error of up to several meters in the WSE time series (Halicki
et al., 2023). This is much more significant than the order of magnitude of most of the common corrections
applied to satellite altimetry (cf. Table 3.1). P2 demonstrates that an improvement in the Root Mean
Square Error (RMSE) by up to 30 cm or 66% can be achieved by the WSS correction. With the global
WSS dataset published in P3, this correction can be applied to the majority of DAHITI stations and is also
used in P4.

Figure 3.3 Slope correction at the Platte River for the DAHITI virtual station 37118. Left: Ground track shift of
Sentinel-3A at the virtual station. Right: WSE time series without (orange) and with (blue) the WSS correction
applied compared to the in-situ time series (green).
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3.2 Water Surface Slope

A time-variable WSS profile can be derived from radar altimetry using WSE differences between consec-
utive VSs of the same satellite pass (i.e., with data from the same day) (Bjerklie et al., 2018; Garambois
et al., 2017). However, this approach is limited by the orbit geometry to a small number of sites. Sim-
ilar spatial constraints apply to estimating WSE profiles from fully focused SAR observations (Ehlers et
al., 2025), which can monitor time-variability but require extensive processing. A higher spatial coverage
and, in some cases, the time variability of WSS within an entire river system can be modeled using cubic
spline (Nielsen et al., 2022; Zakharova et al., 2020) or B-spline (Boergens et al., 2021) functions. Despite
their advantages, these methods face challenges due to uneven or limited data availability. A commonly
used and more robust but coarse approach is deriving the average WSS from the average WSE at the
VSs (Halicki et al., 2023; Tarpanelli et al., 2013; Tourian et al., 2016). However, the average WSE can be
biased because of the different temporal sampling of the VSs.

A linear model is applied in P1 using a least-squares approach to obtain the adjusted elevations of the VSs
within the Lower Mississippi River and derive the WSS. The time differences are considered in the weight-
ing of the data, resulting in a higher accuracy of the average WSS with less bias. AP3 further includes
Laplace and a-priori gradient conditions and data from long-repeat orbit missions such as Cryosat-2 to
increase the spatial resolution and estimate the average WSS for several Polish rivers. Although the lin-
ear models used in P1 and AP3 generally align with the average in-situ gradient, they cannot capture the
temporal WSS variations. Therefore, P2 introduces an innovative approach to obtain instantaneous WSS
measurements from lidar altimeters, addressing O2 by highly accurate and spatial dense observations and
O3 by quantifying the temporal WSS variability.

3.2.1 Lidar Altimeters

The Geoscience Laser Altimeter System (GLAS) carried by the NASA Ice, Cloud, and Land Elevation
Satellite (ICESat), which launched in 2003, was the first-ever operational lidar sensor in space (Remy
et al., 2017). The primary objective of ICESat was to measure the elevation of the polar ice sheet and
derive the ice mass changes to assess their impact on global sea level (Schenk & Csathó, 2012). GLAS
consisted of three alternately operating infrared analog pulse lasers with a wavelength of 1064 nm and an
energy of 70 mJ. The analog pulse laser accumulates the power of the received backscattered photons
over time in a waveform comparable to pulse limited LRM altimetry, retrieving the WSE with Equation 3.1.
Unlike radar altimetry, which operates with much longer wavelengths, lidar cannot penetrate clouds, but the
backscattered signal can be associated with a significantly smaller footprint of about 70 m for GLAS. The
first laser of GLAS failed after 37 days, and the second laser experienced rapid energy decay, so operations
switched from continuous to periodical observations (Abdalati et al., 2010). Due to the long repeat cycle
and the intermittent observation phases, ICESat is of little use for hydrogeodesy (Magruder et al., 2024).
Nevertheless, GLAS proved to measure the WSE of inland waters accurately with an RMSE of 0.03 to
0.25 m and has the major advantage of its small footprint being unaffected by surrounding topography in
contrast to radar altimetry (Urban et al., 2008).

ICESat-2, the follow-on mission of ICESat, was launched in 2018 into a polar 92° orbit and carries the
photon-counting Advanced Topographic Laser Altimeter System (ATLAS). In contrast to the GLAS wave-
form detectors, the photon-counting detector can measure the time of flight of the individual photons and
works with pulses of less energy (Degnan, 2002). ATLAS uses a wavelength of 532 nm and can determine
the geolocation of each backscattered photon within a footprint of 17 m. Compared to GLAS the along-
track ground sampling distance is improved from 150 m to 0.7 m. Furthermore, the coverage of ICESat-2
observations is increased by splitting the laser pulse into six beams. These beams are arranged into three
pairs separated by 3.3 km on the ground, each of which consists of a low energy (weak) beam of 45 µJ
and a high energy (strong) beam of 175 µJ. Within a pair, the strong and weak beams are separated by
90 m (Markus et al., 2017; Neumann et al., 2019).
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ICESat-2 science data are available at different product levels (ATL##) from basic telemetry data (ATL01)
over geolocated data of each received photon (ATL03) to surface-specific products such as inland water
height (ATL13) used in this thesis. ATL13 does not contain the WSE for each single photon but average
values over short segments of 75 to 100 received photons (Jasinski et al., 2023). Additionally, the ATL13
data is already filtered for photons received from potential inland waters based on water extent datasets
such as HydroLakes (Messager et al., 2016) or Global River Widths from Landsat (GRWL, Allen and
Pavelsky, 2018). These ancillary datasets are not time-variable, so the ATL13 product can contain non-
water observations during low WSE, e.g., from river banks and bars.

Regardless of the product level, ICESat-2 data does not contain the required information (e.g., POD) for
integration into the MVA structure, so the corrections cannot be harmonized with other satellite altimetry
missions and the MMXO is not applicable. Therefore, the data cannot be used for multi-mission analy-
sis. However, spaceborne lidar data are considered “ready-to-use” (Cretaux et al., 2017) and especially
ICESat-2 data show high accuracy with an RMSE of ∼0.14 m for inland waters (Ryan et al., 2020; Xiang
et al., 2021).

3.2.2 P2: Water Surface Slope from ICESat-2

The ATLAS sensor of ICESat-2 is used in P2 to obtain WSS observations of rivers. Due to the high
accuracy and precision of ATLAS, the intersection of a single beam with a river is sufficient to measure
reach-scale WSS along the beam (along-track approach). Nevertheless, the preprocessed ATL13 data
still contains outliers that are identified and rejected using a Support Vector Regression (SVR) and the
Absolute Deviation Around the Median (ADM) within a moving window. The along-track WSS is fitted to
the remaining WSE observations using linear regression and projected onto the river centerline vector
to obtain the WSS along the river centerline. This along-track approach can only be applied when the
intersection angle is small (a threshold of 65° is set in P2) because the confidence of fitting decreases
as the intersection becomes more orthogonal. In such orthogonal cases, there is a high probability that
multiple beams intersect the river reach, and the WSS is measured across-track using the difference
in WSE and chainage between two intersections. The WSS measurements are binned at reach scale,
referencing the SWORD reaches, which have been established as the community standard and facilitate
data exchange and usage.

The validation in P2 between 277 gauges shows an accuracy comparable to the science requirements
of the SWOT mission (17 mm/km). Especially, the across-track approach is robust and accurate with an
Median Absolute Error (MAE) of 24 mm/km. In contrast, the along-track slope requires additional angle-
dependent outlier rejection based on the confidence of fit, and the remaining observations are still less
accurate with an MAE of 57 mm/km. To maximize the spatial and temporal coverage, daily averages of
both approaches are combined and show an MAE of 28 mm/km. However, the temporal resolution is still
relatively low because of the long repeat orbit of ICESat-2 and occasional cloud cover. Therefore, ICESat-2
cannot be used to obtain meaningful WSS time series. Nevertheless, the time variability can be quantified
by the standard deviation and extreme values of the daily reach-scale WSS, and this information grows with
each additional mission cycle. This quantification of the time-variability is not possible with the approach
of P1 or other static datasets such as SRTM. Furthermore, P2 demonstrates that the constant average
ICESat-2 WSS can be used to correct the WSE measurements from radar altimetry and significantly
improve the WSE time series (see Section 3.1.4). The MAE of the constant average combined WSS is
23 mm/km.

The methodology, results and validation, and WSE time series correction are described and discussed in
detail in Appendix P2:

P2 Scherer, D., Schwatke, C., Dettmering, D., & Seitz, F. (2022). ICESat-2 Based River Surface Slope
and Its Impact on Water Level Time Series From Satellite Altimetry. Water Resources Research, 58,
1–25. https://doi.org/10.1029/2022WR032842

https://doi.org/10.1029/2022WR032842
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3.2.3 P3: Global River Slope Dataset

In P3, the approach developed in P2 is applied at a global scale to all SWORD river reaches and published
as the ICESat-2 River Surface Slope (IRIS) dataset. IRIS covers more than 70% of the global SWORD
reaches because of the long-repeat orbit and the consequent dense ground track pattern of the satellite.
However, most reaches are covered by less than six measurements within four years of observation be-
cause of the long-repeat orbit. Figure 3.4 shows the measurement principle with the six parallel beams
and the resulting global IRIS dataset. The IRIS dataset and statistics (e.g., by river properties, cloud cover,
and climate zones) are described and discussed in Appendix P3:

P3 Scherer, D., Schwatke, C., Dettmering, D., & Seitz, F. (2023). ICESat-2 river surface slope (IRIS):
A global reach-scale water surface slope dataset. Scientific Data, 10, 359. https://doi.org/10.1038/
s41597-023-02215-x

Since the publication of P3 and IRIS in 2023, it has been widely utilized within the hydrogeodesy commu-
nity, and Christoffersen et al. (2023) developed a similar approach. DAHITI uses the IRIS data to correct
WSE time series as demonstrated in P2. AP3, Dhote et al. (2024), Musaeus et al. (2024), and Normandin
et al. (2024) use IRIS as a reference to compare their WSS results from multi-mission altimetry, SWOT, and
ICESat-2. Rezende et al. (2023) use IRIS as a proxy for SWOT slopes to test a SWOT discharge algorithm,
and it is also used to interpolate WSE from observations from VS to a nearby location (Rezende et al.,
2025). Furthermore, Chen et al. (2024) use IRIS to update the water prediction flood inundation mapping
system of the National Oceanic and Atmospheric Administration (NOAA). Using IRIS slopes improved the
inundation accuracy by 16% over the previously used river slope data.

Figure 3.4 Global IRIS WSS dataset derived from ICESat-2’s six parallel lidar beams

https://doi.org/10.1038/s41597-023-02215-x
https://doi.org/10.1038/s41597-023-02215-x
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3.3 Water Surface Area

Time-variable water masks and WSA observed by satellite imagery are essential for P1 and P4 to derive
the river bathymetry from a combination with satellite altimetry data (Sec. 3.4). P1 uses 10 to 30 m res-
olution images acquired by the Landsat and Sentinel-2 missions. To meet objective O2 and improve the
results both in accuracy and transferability to smaller rivers, P4 employs high-resolution (3 m) PlanetScope
data, which, however, have a different spectral resolution and require a different approach to retrieve the
WSA. The differences between the sensors and water classification methods are described in the following
sections.

3.3.1 Multispectral Sensors

Landsat

The NASA Landsat program started in 1972 and was one of the first missions dedicated to terrain obser-
vation. The first satellite was equipped with a passive multispectral scanner system detecting red, green,
blue, and Near Infrared (NIR) light with a resolution of 80 m. Further launches of Landsat satellites keep
the program ongoing, resulting in the longest global environmental satellite record. With each launch, the
sensors of the Landsat satellites improve in radiometric, spectral, and spatial resolution. Since the launch
of Landsat-4 in 1982, the program reached a spatial resolution of 30 m with additional Shortwave Infrared
(SWIR) and thermal infrared bands. Landsat imagery is provided in collections, ensuring consistent pro-
cessing of all missions and sensor iterations, including, e.g., atmospheric corrections to convert the top of
atmosphere reflectance to land surface reflectance (Wulder et al., 2022).

In contrast to nadir satellite altimetry, the spatial coverage of the optical sensors is nearly global. The
imaging sensors onboard the early Landsat satellites utilize a rotating mirror to scan 185 km wide stripes
across the ground track. The forward motion of the satellite is compensated by the Scan Line Corrector
(SLC) system, which ensures that the scanned lines are parallel and perpendicular to the ground track.
Landsat-7 data contains significant sensor errors (stripes of void pixels) caused by a failure of the SLC
system in May 2003. Since Landsat-8, a sensor capable of scanning an entire line at once without a mirror
is employed, making it less prone to such errors (Emery & Camps, 2017).

Additional void pixels are caused by clouds and cloud shadows, which is the primary limitation of multi-
spectral satellite imagery. Especially within the tropics and sub-tropics, ground features such as rivers
can be unobservable during rainy seasons (Eberhardt et al., 2016; Wulder et al., 2015). Clouds and cloud
shadows are masked by a homogenous approach across all Landsat missions (Z. Zhu & Woodcock, 2012).

Satellite imagery from the Landsat-4, -5, -7, and -8 missions are used in P1. The spectral resolution of
Landsat-1, -2, and -3 is not sufficient for the applied water classification (cf. Section 3.3.2), Landsat-6
failed to reach orbit, and Landsat-9 was not launched at the time of publication.

Sentinel-2

The ESA Sentinel-2 constellation consists of the Sentinel-2A and -2B satellites launched in 2015 and 2017.
The satellites are equipped with identical multispectral imagers, which provide 12 spectral bands with
similar characteristics as the recent Landsat sensors, and an equivalent cloud masking can be applied (Z.
Zhu et al., 2015). The swath of Sentinel-2 is 290 km wide, and the spatial resolution is 10 m for the visible
and 20 m for the used NIR and SWIR bands. In P1, Landsat and Sentinel-2 observations are jointly used
by resampling all images to a 10 m resolution. This combined constellation can achieve a minimum revisit
time below 5 days depending on the latitude (Wulder et al., 2015).
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PlanetScope

P4 focuses on monitoring the discharge of small rivers (<100 m width) whose surface variations are often
too low for detection with the coarse maximum 10 m resolution of the Landsat and Sentinel-2 constellation.
In contrast, the nominal 3 m ground sampling resolution of the commercial PlanetScope cube satellite con-
stellation is sufficient to detect such small rivers and their variations. The orbit altitude of the approximately
130 satellites varies so that the actual resolution ranges from 3.0 to 4.2 m. The constellation consists of
three different instrument generations: The Dove Classic satellites launched in 2014 capture red, green,
blue, and NIR channels within a 24 km wide swath. The updated Dove-R satellites were launched in 2019
with an increased scene size in the along-track direction from 8 to 16 km. With the launch of the latest
Super Dove generation in 2020, the spectral resolution increased by four additional bands within the visi-
ble spectrum, and the scene size increased to 32.5 km × 19.6 km. With the large number of satellites, the
constellation reaches a daily revisit time (PlanetScope, 2023). This increases the probability of monitoring
the surface water extent at water level extremes and acquiring cloud-free images with a minimum time
interval to the altimetry observations, which is important for the combination of both data (cf. Sec. 3.4).

3.3.2 Water Classification

P1 and P4 describe two different automatic water classification approaches for multi-spectral satellite im-
agery. The approaches differ by the required spectral resolution. The resulting watermasks are used to
calculate the WSA, which is required for fitting the hypsometric water-level-to-surface-area relationship
and constructing the observed bathymetry in Section 3.4.

Automated Water Area Extraction Tool (AWAX)

The Automated Water Area Extraction Tool (AWAX), developed in AP1 (Schwatke et al., 2019) and applied
in P1, consists of two steps: (1) The automated water classification and (2) the filling of data gaps caused
by clouds and sensor errors such as the SLC error based on a long-term water probability mask to monitor
the time-variable surface extent of inland water bodies. In the first step, AWAX applies the following five
proven water classification methods to cloud-masked Landsat and Sentinel-2 imagery:

• Modified Normalized Difference Water Index (MNDWI, H. Xu, 2006)

• New Water Index (NWI, Ding, 2009)

• Automated Water Extraction Index for Non-Shadow Areas (AWEInsh, Feyisa et al., 2014)

• Automated Water Extraction Index for Shadow Areas (AWEIsh, Feyisa et al., 2014)

• Tasseled Cap for Wetness (TCwet, Kauth and Thomas, 1976)

These indexes apply different combinations of the optical (red, green, blue) and infrared bands (NIR,
SWIR1, SWIR2). The result of each index is a raster of continuous values, and its frequency histogram
usually shows two distinct maxima representing water and land pixels. The indices differ in their maximum
value range and significance of both maxima. Additionally, the threshold value separating both classes
varies for each scene and index, e.g., depending on atmospheric conditions (Emery & Camps, 2017) or
the ratio of mixed pixels (Ji et al., 2009). In general, the threshold value is assumed to be at a local
minimum between both maxima. AWAX automatically calculates these thresholds and combines them for
a robust classification.

Figure 3.5 shows an example of the automated threshold determination of AWAX. It is based on the
assumption that the number of land and water pixels must be consistent for each index. The initial rough
threshold is set to the commonly used default value of 0 for the MNDWI. The corresponding reference pixel
is identified in the cumulative histogram of the MNDWI, and a search window of ±0.05% of the number
of all pixels is defined around it. This search window is transferred to the cumulative histograms and
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Figure 3.5 Example for the AWAX land-water threshold calculation (modified) from AP1 (Schwatke et al., 2019).
Left: Definition of a search window (light blue) in the cumulative histogram around the reference pixel representing
the default threshold. Right: Individual minima (red) of each index in the frequency histograms within the transferred
search window (light green). The final threshold based on the average pixel value of the individual minima is shown
in green.
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further to the frequency histograms of all water indices. For the frequency histogram of each index, the
minimum value within the search window is determined and re-transferred to the cumulative histograms.
The average of all pixel indexes representing the individual minima is used as a common threshold to
classify water and land pixels into five binary water masks.

The binary water masks of the five indices are summed pixel-wise, leading to different confidences in the
presence of water. Depending on the discrepancy between the indices, a pixel is either marked as land,
water, or a data gap in the final mask. Data gaps caused by clouds, sensor errors, or index mismatches
are filled by a long-term water probability mask. The probability mask is computed by dividing the number
of water pixels accumulated over all obtained scenes by the number of accumulated valid pixels (i.e., land
or water). Using an approach that iterates over the probability values p, the difference between the initial
WSA with gaps (WSAinit) filled with a subset of the probability mask (WSAfill(p)) and the WSA derived
solely from the probability mask (WSA(p)) is minimized to obtain the best fill:

min
p

|(WSAinit + WSAfill(p)) − WSA(p)| (3.2)

Segment Anything Model (SAM)

The spectral resolution of the PlanetScope sensors is not sufficient to apply the AWAX approach because
there are no SWIR channels. Therefore, P4 employs a new classification method using the Segment Any-
thing Model (SAM, Kirillov et al., 2023). SAM is an artificial intelligence model trained on over 1 billion
masks on 11 million images. Although SAM was most probably not trained on water masks and satellite
imagery, its zero-shot transfer capabilities based on minimal user inputs are sufficient to classify various
features in satellite images (Osco et al., 2023), and SAM is also already used in the geospatial computa-
tion (Wu & Osco, 2023).

SAM provides two different methods, the SAM Generator and the SAM Predictor. The SAM Generator is an
unsupervised algorithm that generates various masks for all detected image features. The SAM Predictor
requires minimal user supervision by setting a small set of reference points both within and outside the
feature of interest. Both methods require a three-band image. Instead of using a regular red, green, and
blue channel combination, P4 uses a false color image containing the NIR, a derived MNDWI, and the red
bands to improve the contrast between water and land. Analogous to the AWAX approach, the resulting
binary masks of the SAM Generator, SAM Predictor, and a standard MNDWI classification are summed
pixel-wise to obtain different classes of water probability.

In contrast to the AWAX processing of Landsat and Sentinel-2 data, no cloud filling is applied in P4 using
SAM with PlanetScope data. Although the approach based on Equation 3.2 could be transferred to the
resulting water masks, the number of processed PlanetScope scenes is not sufficient to obtain a robust
water probability mask. The number of processed scenes is limited by the free-of-charge PlanetScope
download quota. Instead, only cloud-free images are used in P4. This is feasible due to the daily revisit
time of the PlanetScope satellites and the resulting high likelihood of acquiring cloud-free images with a
minimum lag to the satellite altimetry.
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3.4 River Bathymetry

The processed WSE from satellite altimetry and WSA from optical imagery must be combined to obtain
river bathymetry and cross-sectional geometry to derive the geometric parameters (cross-sectional area
Ai, wetted perimeter Pi, and depth di), which are required for the flow velocity, depth-dependent rough-
ness, and discharge calculation as introduced in Chapter 2. The upper part of the geometry can be
observed from the combined data, while the permanently submerged part of the geometry is estimated
using empirical relationships and optimization. While the fundamental methods to derive the geometry
are established in P1, P4 focuses on increasing the accuracy of the unobserved part and quantifying the
geometric uncertainties based on the WSE and WSA input uncertainties to fulfill objectives O2 and O3.

The imaging sensors and their spatial and temporal resolution are the main differences between P1 and
P4. The 10 to 30 m Landsat and Sentinel-2 data used in P1 are freely available, and nearly all images ac-
quired within the Area of Interest (AOI) can be classified and cloud-filled using AWAX (see Section 3.3.2),
but the temporal resolution is low causing large time lags between WSA and WSE observations. In con-
trast, P4 uses 3 m resolution PlanetScope data, which is available daily but not free of charge. Because of
the relatively high temporal variability of rivers, the time lag between WSE and WSA measurements should
be minimal or synchronous for a meaningful combination. Therefore, the PlanetScope images are selected
manually to be cloud-free and with minimal delay (typically less than a day) to the altimetry measurements.
Because the average time lag is significantly longer in P1, it requires the fitting of a hypsometric model to
assign the correct WSE to the images. Nevertheless, the hypsometric model is also used in P4 for WSE
estimation in seasons of permanent cloud coverage and outlier detection and mitigation.

The hypsometry model, or hypsometric curve, describes the relationship between elevation and area and is
used in geomorphology to quantitatively compare the topography and landform processes such as erosion
between different catchments (Willgoose & Hancock, 1998). The hypsometric curve is continuous and
monotonic increasing and can be modeled using, e.g., (piecewise) linear or polynomial functions (Crétaux
et al., 2016; Durand et al., 2024). Schwatke et al. (2020) use a modified function from Strahler (1952) that
can model a large variety of hypsometric relationships given these conditions:

y =
[

xmin − x

xmin − xip
· xmax − xip

xmax − x

]z

· yscale + ymin (3.3)

where xmin and xmax define the minimum and maximum WSA, ymin the bed elevation, and yscale the WSE
variation. The parameters describing the shape of the curve (z) and the abscissa of its inflection point (xip)
must be fitted to the data, and xmin and ymin are unknown. Figure 3.6 shows an example hypsometric
curve of varying shape depending on the exponent z.

Figure 3.6 Shape of the modified Strahler hypsometric model depending on the exponent z (Schwatke et al., 2020).
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The hypsometry is commonly used to describe lake bathymetry, which is basically a small catchment, to
relate WSA and WSE (e.g. Carrea et al., 2023; Crétaux et al., 2016; Li et al., 2019; Schwatke et al.,
2020). However, the application in lakes mainly involves the estimation of volume variations, which does
not require the entire lake bathymetry, and the exact value of the unknowns is less important. Therefore,
ymin can be assumed to be close to zero, and loose bounds can be given for xmin when fitting the model
to the data. Similar to lakes, the bathymetry of a river (an even smaller catchment than a lake) can also
be described with a hypsometric function (Durand et al., 2024) and Equation 3.6 is applied in P1 and
P4. In contrast to the relative lake volume variations, the unknown riverbed elevation (ymin) derived from
depth estimates is important for estimating the absolute discharge values, which requires the entire river
bathymetry. Although the unobserved submerged bathymetry is not reconstructed from the hypsometry,
large errors in ymin can cause a poor fitting of the hypsometric curve due to the small area-to-depth
relationship.

3.4.1 Depth Estimation

There is no satellite sensor capable of reliably measuring the depth of inland waters, which is required for
fitting the hypsometry and reconstructing the submerged bathymetry. In some rare cases of clear waters,
the depth can be measured using the ICESat-2 lidar alitimeter (Datta & Wouters, 2021; Xiao et al., 2023;
N. Xu et al., 2022). However, these measurements are not suitable in rivers because of their high degree
of turbidity (Coppo Frias et al., 2023; Henke, 2024). Instead, P1 and P4 use an empirical width-to-depth
relationship derived from Moody and Troutman (2002). They use power-law regressions as proposed by
Leopold and Maddock (1953), which are typically used in hydrology and geomorphology (Kenney, 1993),
to relate the average water-surface width w̄ and average depth d̄ to discharge measurements of more
than a thousand globally distributed cross-sections with different flow regimes ranging from mountainous
streams to large alluvial rivers. Moody and Troutman (2002) obtain the following regression relations:

w̄ = 7.2Q0.50±0.02 (3.4)

d̄ = 0.27Q0.39±0.01 (3.5)

where the coefficients and exponents are empirical factors derived from the regression. When solving
Equation 3.4 for the discharge Q these regression relations can be written as:

d̄ = 0.27
(

w̄2

7.22

)0.39

(3.6)

However, equation 3.6 must be used with caution as Kenney (1993) states that power-law regressions
must not be treated like single-valued analytical functions, and rearrangements “may severely distort the
results”. Additionally, the uncertainty of the exponents is disregarded. Nevertheless, considering the many
unknowns and uncertainties in satellite monitoring of river discharge, this method still yields good results,
as confirmed by the validation in P1, and the river width can be derived from the water masks resulting from
Section 3.3.2. In P1, Equation 3.6 is used to estimate the depth for each synchronous data pair and retrieve
the river bed elevation by subtracting the depth from the respective WSE. The median of all observations
is then used as the final river bed elevation at the cross-section. Instead of the median, P4 calculates the
weighted average of the depth estimates with higher weights on the observations during low flow in order
to reduce the overestimation caused by flood events with large widths when the river exceeds its banks.
Still, the geometric parameters obtained from this empirically derived depth (see Section 3.4.2) may vary
significantly and unrealistically between the multiple consecutive sections studied in P4. Therefore, the
vector of bed elevations (h0) is further optimized with the same method used in Section 2.3.1. Constrained
by the range of empirical depth estimates and under the assumption of gradually varied flow, the objective
function minimizes the standard deviation in cross-sectional area at the mean WSE (Ā(x)) between all
cross-sections within the studied reach:

min
h0

σ
([

Ā(x1), . . . , Ā(xm)
])

(3.7)
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3.4.2 Cross-Sectional Geometry

In P1 and P4, the water masks resulting from Section 3.3.2 are aligned to a common pixel grid and
ordered by the hypsometric WSE, resulting in a stack of water masks which is used to derive a map of
the observable bathymetry as shown in Figure 3.7. Because of classification errors or changes in the river
bed, there can still be inconsistencies in each pixel column (i.e., a pixel classified as land is classified as
water in the masks above and below). P1 follows Schwatke et al. (2020) and applies a moving window filter
to mitigate these outliers. It sets the respective pixels’ elevation in the bathymetry map when the majority
of classes within the window indicate land. Instead of a single bathymetry map, P4 computes three rasters.
The first is based on the elevation of the minimum water elevation per pixel, the second on the maximum
land elevation per pixel, and the third on the mean of the two rasters. In this way, the classification errors
are preserved as uncertainty, which can be transferred to the geometric parameters and derived discharge
to fulfill objective O3.
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Figure 3.7 Schemes visualizing the processing of the river bathymetry raster based on the approach used in P1 (left,
modified from Schwatke et al. (2020)) and the approach used in P4 (right). A moving window is used in P1 to set the
bottom elevation per pixel column of the stacked land-water masks sorted by WSE. In P4, two bathymetry rasters
are derived from the minimum water and the maximum land elevation per pixel column to obtain a mean bathymetry
raster with uncertainties.

The observable part of the cross-sectional geometry can be sampled along the cross-section. Following
Bjerklie et al. (2018), the shape between the minimum observed WSE and the estimated river bed eleva-
tion is approximated with a parabola as shown on the left of Figure 3.8. This is the final cross-sectional
geometry in P1, from which the cross-sectional parameters A(t), P (t), and R(t) (see Section 2.2.3) can
be derived depending on the WSE time series. As described in Section 3.4.1, the river bed elevation is op-
timized in P4 under the assumption of gradually varied flow, and the geometries are adjusted respectively
so that the difference between the cross-sectional area at mean flow is minimal. The center of Figure 3.8
shows the cross-sections after optimization. Addressing objective O3, the remaining range between the
minimum and maximum bed elevation is used to quantify the uncertainty of the geometric parameters
(Figure 3.8 right), which is transferred to the discharge uncertainty.

Figure 3.8 Processing of the cross-sectional geometries based on the empirical Equation 3.6 (left), the optimization
with Equation 3.7 (center), and the resulting uncertainty based on the extreme values (right).
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4 Discharge Algorithms and Results

Based on the hydraulic concepts introduced in Chapter 2 and with the different satellite observables and
derivables described in Chapter 3, the two publications P1 and P4 focus on algorithms for the satellite
monitoring of river discharge and discuss the results. While P1 concentrates on the identification of the
potential and limitations of the observations and methods (O1), P4 also investigates innovative techniques
to improve the hydraulic parameter estimation (O2) and provides reliable uncertainty quantification (O3).

4.1 P1: Initial Framework for Satellite-Derived Discharge

The Manning equation is chosen in P1 as the fundamental hydraulic flow law because of its communi-
tywide use, especially in the context of the SWOT mission (Durand et al., 2014; Garambois & Monnier,
2015; Hagemann et al., 2017), but also with multi-mission satellite data (Bjerklie et al., 2018; Sichangi
et al., 2018; Zakharova et al., 2020). The required parameters are derived from different satellite sen-
sors. The average WSS is calculated from satellite altimetry using linear adjustment of the VSs’ elevation.
The upper part of the cross-sectional geometry is observed by combining satellite altimetry and water
masks from Landsat and Sentinel-2 images employing the AWAX algorithm developed in AP1. The un-
known depth is estimated using the empirical width-to-depth relationship (Equation 3.6) to complete the
cross-sectional geometry with a parabola. The roughness coefficient is calculated with Equation 2.9 using
literature decision guides for adjustment factors that are selected by an expert based on satellite imagery.

The approach of P1 is applied to the Lower Mississippi River, where extensive validation data are available
so that a closed-loop test can be performed by substituting all satellite-derived parameters with in-situ ob-
servations. The WSS is validated against a dense network of in-situ WSE stations, showing that the results
are well within the range of the in-situ WSS but partially deviate significantly from the average in-situ WSS.
The spatial resolution depends on the location of VSs, and large errors occur between closely located
adjacent stations. The WSE accuracy of the VSs depends on the respective sensor and river properties
(width, intersection angle, etc.) that propagate to the WSS and make a global application challenging.
Additionally, temporal WSS variations, which improved the results significantly, cannot be quantified using
the linear adjustment approach. Except for small deviations that can be caused by erosion and sedimen-
tation, the observable bathymetry shows good agreement with the in-situ multibeam bathymetric survey
data. The estimation of the permanently submerged cross-sectional geometry succeeds in straight and
gradually widening river sections but significantly underestimates the cross-sectional area in narrow and
bending sections where the riverbed is affected by strong erosion that cannot be detected using the em-
pirical width-to-depth relationship. However, such sections can be avoided judging from satellite imagery.
Knowing the in-situ discharge, time-variable WSS, and geometry, the closed-loop test reveals that the
roughness is the dominant error source for 12 out of the 16 cross-sections studied, caused by an incorrect
selection of the adjustment factors using the coarse decision guides. The validation leads to the conclu-
sion that errors from incorrect roughness values are most significant, while a better slope estimation would
improve the results and general applicability, and errors from the bathymetry can be avoided by carefully
selecting the study site.

The framework, results, and closed-loop validation are described and discussed in detail in Appendix P1:

P1 Scherer, D., Schwatke, C., Dettmering, D., & Seitz, F. (2020). Long-Term Discharge Estimation for
the Lower Mississippi River Using Satellite Altimetry and Remote Sensing Images. Remote Sensing,
12, 2693. https://doi.org/10.3390/rs12172693

https://doi.org/10.3390/rs12172693
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4.2 P4: Discharge Monitoring with Roughness Optimization

With improved WSS measurements in P2 and P3, P4 addresses the roughness coefficient, identified in
P1 as the principal source of discharge error. To achieve O2, a new optimization approach based on
the principle of mass conservation is developed, minimizing the discharge differences between consec-
utive cross-sections by adjusting the roughness coefficients using the L-BFGS-B algorithm described in
Section 2.3.1. This method not only minimizes discharge errors resulting from inaccurate roughness coef-
ficients but also minimizes the potential for observer bias present in P1, where roughness coefficients are
selected based on a decision guide. Also concerning O2, the unknown depth of the unobserved cross-
sectional geometry is optimized across multiple cross-sections to reduce the probability of outliers. In
contrast to P1, P4 uses high-resolution satellite imagery to transfer the approach to smaller rivers. Be-
cause of the lower spectral resolution, a novel deep-learning classification method is required to obtain
water masks from the high-resolution images.

Furthermore, P4 fulfills O3 by transferring all uncertainties of the input quantities to the resulting discharge
time series. This uncertainty range is not equivalent to statistical error propagation, which is challenging
because of the complex and non-linear relationship between the input uncertainties (such as water extent
classification errors) and the discharge. Instead, a 90% uncertainty range is computed using an ensemble
of multiple computations with different parameter configurations based on the following observed and
derived uncertainties:

• The WSS uncertainty is obtained from the IRIS WSS extremes (see Section 3.2.2).

• The uncertainty of the observed bathymetry is considered by constructing two additional bathymetry
rasters representing possible extremes caused by false positive and false negative water classifica-
tions of the satellite imagery (see Section 3.4.2).

• The uncertainty of the unobserved bathymetry is derived from the remaining range of depth esti-
mates after the depth optimization (see Section 3.4.2).

• The uncertainty of the entire cross-sectional geometry is influenced by the uncertainty of the WSE
time series consisting of retracking and correction errors (see Section 3.1) which are obtained from
DAHITI.

• The standard deviations of the roughness coefficients are obtained from the squared diagonal of the
inverse Hessian matrix computed during the roughness optimization (see Section 2.3.1).

In this way, the uncertainty can be broken down into constituents based on the individual satellite ob-
servables, demonstrating further potential for improvement and addressing objective O1. For instance, a
time-variable slope could reduce the uncertainty by up to 20%, especially in smaller upstream reaches.

The approach is transferred to 27 globally distributed rivers of different discharge domains to estimate
discharge time series covering up to 22 years. The validation shows that 91% of the in-situ observations
are within the 90% uncertainty range, which has a coefficient of variation of 43%. With a median NRMSE of
12% (132 m3/s RMSE), the quality aligns with the GCOS standard of 15% (GCOS, 2022) and is comparable
with the expected uncertainty of SWOT discharge of less than 30% in ungauged basins (Durand et al.,
2023). The requirement of 10% measurement uncertainty, which marks a breakthrough according to
GCOS (2022), is met for 7 out of the 27 studied rivers under difficult and diverse test conditions, highlighting
the potential of satellite monitoring of river discharge without in-situ calibration (O1).

The optimization approach, results, and validation are described and discussed in detail in Appendix P4:

P4 Scherer, D., Schwatke, C., Dettmering, D., & Seitz, F. (2024). Monitoring river discharge from
space: An optimization approach with uncertainty quantification for small ungauged rivers. Re-
mote Sensing of Environment, 315, 114434. https://doi.org/10.1016/j.rse.2024.114434

https://doi.org/10.1016/j.rse.2024.114434
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5 Conclusion

This thesis describes an extensive approach to the satellite monitoring of river discharge without calibration
data, enabling its application in ungauged basins. The work addresses the declining number and uneven
distribution of in-situ gauges, particularly in regions most vulnerable to water scarcity and hydrological ex-
tremes, to support the understanding and management of freshwater resources under a changing climate.
The discharge estimates with uncertainties are valuable for hydrological models, such as the ongoing ESA
project EO4FLOOD (Tarpanelli et al., 2025), which integrates discharge from the optimization approach.
In contrast to recent advancements in hydrogeodesy, which focus on data from the unprecedented SWOT
mission, this thesis leverages the large variety of multi-mission satellite observations, combining long-term
measurements of WSE, WSS, and WSA with hydraulic methods based on the principle of mass conser-
vation. This approach complements the SWOT mission by ensuring resilience against potential data gaps
in SWOT data and offering discharge time series for decades prior to the launch of SWOT.

The thesis comprises four key publications, which address the research objectives defined in Section 1.2
to achieve the goal of long-term satellite monitoring of river discharge in ungauged basins. The advance-
ments and key findings related to these objectives are discussed below.

O1 Identify the potential and limitations of uncalibrated satellite monitoring of river discharge

The potential of estimating river discharge from satellite observations without in-situ calibration is demon-
strated for the Lower Mississippi River in P1 with extensive validation and transferred to 27 rivers in P4,
where the average quality meets the standards defined by GCOS (2022) and reveals no significant de-
pendencies on the flow regime. In line with multiple state-of-the-art studies, the Manning equation and
the necessary approximations of gradually varied flow prove to be valid and sufficient in the context of the
scales and uncertainties of the satellite observables. However, it is important to avoid backwater-affected
reaches, as the applied approximations can lead to significant errors in these conditions, as described in
P4. Similarly, curved or narrowing reaches should be avoided since the erosion and sedimentation pro-
cesses in these sections cannot be modeled using the empirical width-to-depth equation, which is also not
valid for braided rivers. Most of these limiting conditions can be identified through satellite imagery.

In contrast, in straight and widening river sections, the geometric parameters of the Manning equation can
be effectively derived from WSE and WSA observations by satellite altimetry and remote sensing optical
imagery with high accuracy, as demonstrated by the validation in P1. The WSS can be obtained by a linear
adjustment of WSE measurements from nadir radar altimetry as shown in P1 but occasionally deviates
significantly depending on the opportunistic spatial distribution of VSs. The WSS accuracy and spatial
distribution are improved using lidar altimetry, but neither method can be used to derive a meaningful
WSS time series, which would better constrain the discharge estimation and could reduce the resulting
uncertainty by up to 20% as indicated in P4. The roughness coefficient is the most critical parameter,
leading to significant errors when chosen manually using literature decision guides, as shown in P1, and
causing large uncertainties in the optimization approach of P4.

The general applicability of the discharge approaches is limited by the inhomogeneous distribution of nadir
altimetry discussed in AP2 so that only reaches intersected by the nadir ground track can be monitored.
Although WSE time series from multiple stations can be combined in P4 using the IRIS dataset to increase
temporal coverage, the temporal resolution of the discharge time series, which is limited by the repeat cycle
of the altimeter satellites, remains coarse, so that many extreme events are likely missed.
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O2 Investigate innovative techniques to improve the parameter estimation

The space-based observation of WSS can be improved by leveraging the unique multibeam lidar altimeter
of the ICESat-2 mission with an innovative approach described in P2. The high accuracy and spatial res-
olution of ICESat-2 not only reduces the WSS errors but also enables the measurement of instantaneous
WSS and the quantification of WSS variability. This approach can be transferred to the majority of SWORD
river reaches, leading to the IRIS dataset published in P3, which provides reach-scale WSS globally. The
quality of the IRIS dataset is reflected in its large impact within the hydrogeodesy community as described
in Section 3.2.3. Besides the direct improvement of the discharge by the more accurate WSS, IRIS data
can also be used to correct the WSE time series from nadir altimetry for the ground track shift. In steep
rivers, this correction reduces the WSE RMSE by up to 30 cm or 66%, as demonstrated in P2. This also
affects the accuracy of the satellite-derived bathymetry and cross-sectional geometries. Furthermore, the
IRIS WSS is used to combine WSE measurements from multiple virtual stations of different missions within
one reach. In this way, the temporal resolution of the resulting discharge time series, which depends on
the resolution of the WSE time series, can be increased in P4.

Using a novel and robust deep-learning water classification in P4, high-resolution satellite imagery by
PlanetScope, which lacks the spectral resolution required for established index-based classification, can
be combined with WSE to obtain a fine-scale river bathymetry. With the increased spatial resolution
compared to Landsat or Sentinel-2 imagery, the discharge approach can be transferred to significantly
smaller rivers below 100 m width.

Following recent advances in approaches designed for the innovative SWOT mission, a major improve-
ment within P4 is the optimization of the roughness coefficient, mitigating the risk of observer bias when
choosing this parameter manually. Based on the principle of mass conservation, the roughness coefficient
is optimized to minimize the difference in discharge between multiple consecutive cross-sections within a
reach. In contrast to the approach of P1, this unsupervised method only requires minimal expert input,
such as the definition of coarse boundary values, and can quantify the roughness uncertainty.

O3 Provide reliable uncertainty quantification

The optimization approach of P4 provides a confidence interval reflecting a reliable uncertainty quantifica-
tion, ensuring that the discharge time series can be integrated into comprehensive hydrologic models. The
uncertainty range is based on the uncertainty of the estimated hydraulic parameters, which further depend
on the uncertainties of the satellite observables and derivables.

The WSS errors of the ICESat-2 measurement are low and likely neglectable, as demonstrated by the
validation in P2. However, there is no method to obtain meaningful WSS time series from satellite obser-
vations prior to the launch of SWOT, and a constant WSS must be used. Therefore, there is a significant
WSS uncertainty caused by the temporal variations, which can be approximated from the temporal sparse
instantaneous ICESat-2 observations.

Geometric uncertainties caused by WSA classification errors or erosion and sedimentation are repre-
sented by two additional bathymetric rasters representing the possible extremes. Additionally, the depth of
the unobserved bathymetry is optimized across multiple cross-sections, and the remaining range of depth
estimates quantifies the uncertainty of the unobserved geometry. Furthermore, the uncertainties of the
DAHITI WSE time series are considered in the uncertainty of the cross-sectional geometry.

The standard deviation of the roughness coefficients can be obtained from L-BFGS-B optimization. Each
of the hydraulic parameters is individually varied from the optimal solution to their respective minimum and
maximum values, generating an ensemble of extreme scenarios. The range between the 5th and 95th
percentile of the ensemble results is used as the 90% uncertainty range. This range includes 91% of the
validation data across all rivers studied in P4, confirming the reliability of the uncertainty quantification.
With 43%, the coefficient of variation is reasonable given the number of unknowns in ungauged basins.
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6 Outlook

Not all limitations identified in the scope of O1 could be overcome in this thesis, but the optimization
approach developed in P4 is also not limited to the selected sensors and can be transferred to other ob-
servations of WSE, WSA, and WSS. It would be logical to include SWOT data in future developments.
The groundbreaking coverage of WSE measurements within the wide swath, in contrast to nadir altimetry,
would increase the number of applicable reaches significantly. First studies by Köhn and Nielsen (2024),
Maubant et al. (2025), Yu et al. (2024), and Zhao et al. (2025) show that the SWOT WSE and WSS accu-
racy is considerably better compared to nadir altimetry and mainly within the science requirements (JPL,
2018) for inland waters of 10 to 25 cm and 17 mm/km, except for some outliers that occur especially in
the Level 2 vectorized product. Monitoring WSA with optical sensors is still more accurate and robust
than SWOT (Kistler, 2025) because SWOT, as any SAR imager, is affected by radar layover and other
effects (JPL, 2024; Peral et al., 2024). Still, beyond the preprocessed pixel cloud product, the single-look
complex SWOT data could further reduce the size of detectable water features. Although the synchronous
SWOT observations of WSE and WSA would remove the dependency on fitting the hypsometric curve (ex-
cept for outlier detection), the most accurate solution could be the combination of the wide-swath SWOT
WSE with daily high-resolution satellite imagery such as PlanetScope. The spatially dense and time-
variable SWOT WSS measurements would further constrain the optimization of the roughness coefficient,
reduce the uncertainties, and allow the capture of hysteresis effects. The SWOT WSS could enhance the
quantification of the temporal variability and extremes within IRIS and could potentially be used to obtain
historical WSS time series using a rating curve approach with nadir altimetry.

Still, the limitation of the temporal resolution remains with the 10-day repeat cycle of SWOT (Cerbelaud et
al., 2024). As there is no satellite constellation providing observations with high temporal resolution, tem-
poral and spatial densification is required for a better capture of peak flow events. While there are several
statistical and empirical approaches for spatiotemporal interpolation of WSE from satellite altimetry, the
(sub-)daily PlanetScope data could be used to directly measure flood wave propagation by calculating the
WSA time lag between reaches. The deep-learning water classification applied in P4 could facilitate this
approach. A similar method has been used by Sichangi et al. (2018) using daily MODIS imagery, but with
PlanetScope, much smaller rivers and WSA variations can be measured, potentially providing improved
accuracy and transferability. The spatiotemporal WSE densification could lead to a basin-scale discharge
approach, integrating discharge estimates from multiple branches to further constrain the optimization of
the unknown parameters similar to Durand et al. (2023).

The high-resolution PlanetScope imagery is required to monitor the small rivers studied in P4, but the
optimization approach could also be applied to the lower-resolution Landsat and Sentinel-2 data when
observing larger rivers. The threshold river width, above which the lower resolution is sufficient, could be
studied in future research. Many peak flow events cannot be observed with satellite imagery due to cloud
cover. Watermasks from the radar images acquired by the Sentinel-1 mission could be used besides the
SWOT pixel cloud to refine the upper part of the observed bathymetry.

The current approach cannot be applied to braided rivers because the empirical width-to-depth relationship
utilized is only valid in meandering rivers. However, a simplified depth estimation might be feasible because
of the ephemeral character of braided rivers and the resulting shallow depth at low flows. Additionally,
braided rivers show large variations in the riverbed because of high erosion and sedimentation, which
would require up to yearly unique bathymetries to capture the temporal geometry variations. While the
Manning equation yields good results in meandering rivers, it could be worth applying more sophisticated
hydraulic models within braided rivers.
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Abstract: Despite increasing interest in monitoring the global water cycle, the availability of in situ
gauging and discharge time series is decreasing. However, this lack of ground data can partly be
compensated for by using remote sensing techniques to observe river stages and discharge. In this
paper, a new approach for estimating discharge by combining water levels from multi-mission
satellite altimetry and surface area extents from optical imagery with physical flow equations at a
single cross-section is presented and tested at the Lower Mississippi River. The datasets are combined
by fitting a hypsometric curve, which is then used to derive the water level for each acquisition epoch
of the long-term multi-spectral remote sensing missions. In this way, the chance of detecting water
level extremes is increased and a bathymetry can be estimated from water surface extent observations.
Below the minimum hypsometric water level, the river bed elevation is estimated using an empirical
width-to-depth relationship in order to determine the final cross-sectional geometry. The required
flow gradient is derived from the differences between virtual station elevations, which are computed
in a least square adjustment from the height differences of all multi-mission satellite altimetry data
that are close in time. Using the virtual station elevations, satellite altimetry data from multiple
virtual stations and missions are combined to one long-term water level time series. All required
parameters are estimated purely based on remote sensing data, without using any ground data or
calibration. The validation at three gauging stations of the Lower Mississippi River shows large
deviations primarily caused by the below average width of the predefined cross-sections. At 13
additional cross-sections situated in wide, uniform, and straight river sections nearby the gauges the
Normalized Root Mean Square Error (NRMSE) varies between 10.95% and 28.43%. The Nash-Sutcliffe
Efficiency (NSE) for these targets is in a range from 0.658 to 0.946.

Keywords: river discharge; satellite altimetry; remote sensing; bathymetry; Manning; roughness;
flow gradient; DAHITI

1. Introduction

Water is essential for all aspects of life on Earth and the global water cycle influences the climate
decisively. In particular, freshwater is elementary as people’s livelihood. While rivers store only
0.006% of the global freshwater resources, they are the main source for freshwater consumption and
irrigation [1]. With growing needs of the Earth’s increasing population and growing attention of
climate change, water management developments are required to be sustainable. River discharge
measurements provide the foundation for water resource planning, decision making, and design
and operation of related infrastructure [2]. Moreover, they are of extreme importance for monitoring
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hydrological change in space and time. As discharge combines a variety of different flow and transfer
processes within the up-stream catchment, it is an essential hydrological variable widely used for
tuning and calibrating hydrological models [3]. Such models help to increase our knowledge about
the global water cycle. While the water cycle is affected by global warming, it also influences the
climate. As water cycles between the land, oceans, and atmosphere, it changes the dynamics and
thermodynamics of the climate system [4].

In situ discharge is usually calculated using the water level measured at a gauge and a functional
relation (rating curve), which is calibrated and regularly adjusted by in situ velocity measurements
and depth soundings [5,6]. Establishing and maintaining such a discharge station is an involved
and complicated process, which is cost- and time-intensive [7]. Thus, despite the need for increased
attention to the global water cycle and freshwater resources, the number of freely available in situ
discharge time-series in public databases such as the Global Runoff Data Centre (GRDC) is rapidly
declining since about 1980, especially in remote areas outside Europe or the USA [8]. Therefore, there is
a strong motivation to estimate discharge with remote sensing techniques.

In contrast to discharge, which cannot be measured directly from remote sensing data [9],
many hydrological and hydraulic variables such as inundated area [10], lake surface area [11,12],
and river widths [13–15] can be measured reliably with multispectral or hyperspectral sensors on
board of satellites [16,17], such as the MODIS, Landsat, and Sentinel-2 satellites. In addition to the
widely used sensors covering the visible and infrared spectrum, water surface area can also be acquired
using other techniques such as SAR or passive microwave radiometers [16,18]. Although intended to
monitor oceans, satellite altimetry can presently be used to measure water levels of inland water bodies
such as lakes and reservoirs [19–22]. Furthermore, satellite altimetry is capable of measuring the water
level and longitudinal topography of rivers wider than 200 m [23,24]. Combining water level and
surface area data, reservoir bathymetry and storage variations can be derived but are limited by the
minimum observed water level [25,26]. Rating curves between previously sampled in situ discharge
measurements and water level from satellite altimetry observations [27–29] are established to allow
discharge estimation beyond the period of the in situ time series. These approaches are constrained by
the need for in situ discharge measurements in order to establish and maintain the rating curve similar
to. Estimating discharge solely from remote sensing data, however, is a big challenge, but allows to
obtain discharge data even in remote, low developed, or crisis-affected regions where it may not be
possible to maintain a network of gauging stations, although these regions are among those most
affected by water scarcity [30,31].

With the announcement and preparation of the Surface Water and Ocean Topography (SWOT)
mission, which will synchronously measure water level, water surface slope, and inundated areas [32],
several studies discussed discharge estimation based on remote sensing data using basic hydraulic flow
laws, e.g., the Manning formula [33], which requires an estimated roughness coefficient. The developed
algorithms can be divided into two approaches: The At-a-station Hydraulic Geometry (AHG),
estimates discharge based on the hydraulic parameters at single stations. Reach averaging methods
such as the At-Many-stations Hydraulic Geometry (AMHG) combine multiple AHG relations along
river reaches, which interact stably and predictably, considering the river equilibrium and conservation
of mass [9,34,35].

Durand et al. [36] developed an reach averaging algorithm called MetroMan that calculates a best
estimate of reach averaged river bathymetry and roughness coefficient based on input measurements
of water level and water surface slope using the Metropolis algorithm in a Bayesian Markov Chain
Monte Carlo scheme to estimate discharge with an normalized root-mean-squared error (NRMSE)
of 36% in a case study for the river Severn. Water levels and time variable slopes are derived from
gauge measurements. Additionally, a high resolution LiDAR digital elevation model (DEM) is used
for the floodplain. This method sucessfully estimates the roughness coefficient, but underestimates the
cross-sectional area. In a previous study [37], the authors emphasize the importance of time variable
flow gradient data, which will be measured by SWOT. Other studies notice only small errors when
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using a constant value [38,39]. The GaMo algorithm by Garambois and Monnier [40] works similar to
MetroMan, using an AMHG approach, synthetic SWOT such as data and the Levenberg-Marquardt
solver to estimate the unknown parameters. The method is tested on 91 synthetic test cases and
the river Garonne. Overall the NRMSE is about 15% without using in situ data. Bjerklie et al. [41]
estimate the bankfull discharge of the Yukon River at two locations in Alaska using a combination
of the Manning formula and the Prandtl-von Karman equation in an AHG approach. The roughness
coefficient is expressed by the Froude number, which is estimated using the meander length and the
water surface slope, derived from satellite altimetry [42]. A parabolic cross-sectional shape is assumed
using four Landsat scenes and an empirical dataset of hydraulic parameters measured at a large variety
of rivers in the US. On average, the uncalibrated discharge results are within 20% of the validation
data. In a recent study, Zakharova et al. [38] use an AHG approach to estimate daily discharge for the
Ob river in Siberia from radar altimetry and a selection of nine Landsat scenes. The NRMSE is 23%
using depth information from topographic maps and 20% after calibration of the parameters of the
Manning formula. Kebede et al. [43] estimate discharge time series for the Lhasa River using only
Landsat and SRTM data. The NRMSE is in a range of 25.7% to 41.4% and the NSE is between 0.886
and 0.956.

No universally applicable approach can be found in a comparison [44] of algorithms for the
upcoming SWOT mission, which shows the need for further algorithm improvements to handle
special cases such as extreme flood events or braided rivers. However, for most rivers there is at least
one approach, but not always the same one, that can estimate the discharge within an NRMSE of
35%. There are several other studies that estimate discharge from remote sensing data (e.g., [45,46]).
However, these require in situ data for calibration. The biggest challenge is the estimation of the flow
velocity. Besides the mentioned methods using hydraulic flow laws, MODIS data was used to estimate
the velocity by measuring the time lag of width variations between two stations [47].

In this paper, we use only remote sensing data without calibration, because we are aiming
to develop a method applicable to ungauged regions. However, a large variety of in situ data is
required for the validation. Therefore, we chose the well surveyed Lower Mississipi River as study
area. In contrast to existing similar AHG and also reach averaging approaches, we use significantly
more remote sensing and satellite altimetry data. In addition to satellite altimetry, the Database for
Hydrological Time Series over Inland Waters (DAHITI) [21] provides long-term land-water masks and
surface area time series since 1982 using satellite imagery from Landsat and Sentinel-2. Observational
data gaps in these satellite images caused by clouds or sensor errors are filled using a long-term
water occurrence mask allowing us to use every available satellite image [12]. To obtain a long-term
water level time series from satellite altimetry observations available in DAHITI, we combine multiple
virtual stations of the Envisat, Jason-2/-3, and Sentinel-3A/-3B missions covering different observation
periods. We further increase the temporal coverage of available data by fitting a hypsometric function
to synchronized satellite altimetry and surface area observations. Using the resulting hypsometry,
we can predict the water level for each surface area observation derived from the images of the Landsat
mission, which launched more than 20 years before the first satellite altimetry measurements over
inland waters. The long-term satellite altimetry and remote sensing data allows us to construct large
parts of the river bathymetry using observed instead of estimated data, because there are multiple
occurrences of low water levels. Based on the predicted geometry, the velocity is estimated with the
Manning Formula. The required roughness coefficient is estimated similar to other studies using
adjustment factors [38,43,47]. The flow gradient is derived from satellite altimetry measurements
at multiple stations along the river. The resulting discharge time series are validated using in situ
data. In situ measurements are substituted for the estimated parameters in order to analyze each
parameter’s error and its effect on the residuals in the resulting discharge time series.

The article is structured as follows. In Section 2 we introduce the selected study areas and
describe the data used for processing and validation. In Section 3 the methodology for estimating river
discharge from remote sensing data is explained. In Section 4 the results are presented and validated
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for each study area. The paper concludes with a discussion of the results in Section 5 and a conclusion
(Section 6).

2. Study Area and Data

Section 2.1 gives an overview of the Lower Mississippi River and the selected study areas.
The results of our study are validated with in situ data which are described in Section 2.2. For the
method of this paper, only remote sensing and satellite altimetry data are required which we describe
in Section 2.3. Additionally, a river centerline is required (Section 2.4).

2.1. Study Areas

The Lower Mississippi River is an alluvial river, with a gradual longitudinal profile. Although
the river is maintained to allow safe navigation for ships and barges, it is still naturally shaped with
shallows, meander, and without artificial dams. Nevertheless, it is modified by human activities
such as riverbank protections to prevent further natural meandering [48]. A long-term assessment of
the historical trends in hydrology, sedimentation, and channel geometry shows a large spatial and
temporal variability of morphological trends in the study area [49]. The Mississippi River basin has a
drainage area of 3.23 million km2 and the water transported by the river comes mostly from winter
snowfall, frontal storms, and convective storms [50]. Measurements at Vicksburg between 1931 and
2017 show a mean daily discharge of 17,543 m3/s with a peak of 65,411 m3/s recorded in May 2011 [51].
The three selected study areas for this paper are located along a 525 km long segment of the Lower
Mississippi River between the cities of Greenville (MS, USA) and Baton Rouge (LA, USA). Figure 1
shows an overview map of the river segment and study areas (red). Each study area includes one of the
in situ gauges at Vicksburg, Natchez, and Tarbert Landing, that we use to validate the respective results.
The study areas also include river reaches up- and downstream of the gauge locations where we apply
our methodology to additional cross-sections. However, the study area at Tarbert Landing covers only
the river reaches downstream of the gauge, because the flow is diverted into the Atchafalaya River at
the Old River Control Complex [52] which is located just upstream the gauge.

2.2. In-Situ Validation Data

We use in situ data collected and distributed by the United States Army Corps of Engineering
(USACE) and the United States Geological Survey (USGS) to validate the predicted river bathymetry,
the resulting discharge time series, and the satellite altimetry time series.

2.2.1. Water Levels and Discharge

In situ discharge time series of the Mississippi River at Vicksburg, available from the USGS
National Water Information System (NWIS) [53], and at Natchez and Tarbert Landing, available from
the USACE RiverGages.com website [54] are used to validate the resulting discharge time series of this
paper. Additionally, water level time series from the stage gauges at Greenville, Vicksburg, Natchez,
Knox Landing, Red River Landing, St. Francisville, and Baton Rouge, available from RiverGages.com
are used to evaluate the quality of the input satellite altimetry data (see Section 2.3.1). The gauge
locations are shown in Figure 1.

2.2.2. River Bathymetry

Multibeam and singlebeam bathymetric point cloud data collected by the USACE in several
hydrographic surveys between June 2018 and September 2019 are available on the eHydro website [55].
Additional multibeam data collected for the 2013 hydrographic survey are available on the the USACE
New Orleans District website [56] for areas not covered by the more recent surveys. The point
cloud data is merged, interpolated, and exported as a raster with CloudCompare [57]. The surveyed
bathymetry is used to evaluate the quality of the predicted bathymetry.
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Figure 1. Overview of study areas, discharge and water level gauge locations, satellite altimetry tracks,
and virtual stations with the DAHITI identifier and the short identifier used in this paper (brackets).

2.3. Remote Sensing Data

All remotely sensed data used in this study are processed and provided by the Database for
Hydrological Time Series over Inland Waters (DAHITI) [21], which is developed and maintained by
the Deutsches Geodätisches Forschungsinstitut der Technischen Universität München (DGFI-TUM).
All datasets are freely available on the DAHITI website (http://dahiti.dgfi.tum.de) after registration.
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2.3.1. Satellite Altimetry

Satellite altimetry provides profiled along-track data nearly globally, only limited by the orbital
parameters of the satellite. As the sensors are measuring in nadir direction only, the available
data is limited to the satellite’s ground track. Unlike ocean applications, the major challenge of
satellite altimetry over inland waters are the different reflections caused from multiple land and
water features within the sensor footprint. Depending on the sensor, the reflection of water bodies
narrower than 300 m may be too weak and unidentifiable in the received radar waveform to measure
the water level. Comparisons to in situ time series reveal a Root Mean Square Error (RMSE) of a
few centimeters (for larger lakes) up to some decimeters for smaller rivers [21]. Satellite altimetry
water level measurements are possible also in remote areas with no infrastructure at so-called virtual
stations where the ground track of the satellite crosses a river of suitable width. However, in contrast
to continuous in situ observations, the temporal resolution is low, with one observation every 10 to 35
days depending on the mission.

Within the study area, 21 virtual stations at the Lower Mississippi River are available on the
DAHITI website [21]. To achieve homogeneous altimetry data over multiple satellite missions and
sensors a multi-mission cross-calibration is performed in the preprocessing of the DAHITI data [58].
Additionally, an extended outlier rejection is applied and a Kalman filter approach is used to estimate
water level time series. In this study, we use time series of water heights with respect to the EIGEN-6c4
global gravity field model and formal errors from the Kalman filtering derived from measurements
by the Envisat, Jason-2/-3, and Sentinel-3A/-3B missions. Figure 1 shows the nominal tracks of
the altimetry satellites passing the study area and the available virtual stations at the Mississippi
River. The identifiers of the virtual stations are assigned by DAHITI. An additional short identifier
for this paper is shown in brackets. The time series at each station contains one averaged water level
per crossing and additionally the formal error and acquisition date. Figure 2 shows a Hovmöller
diagram [59] of the satellite altimetry data with every available measurement plotted as its deviation
from the mean height which is shown per station in brackets at the y-axis.

Figure 2. Measured height anomalies for each virtual station. The mean height per station is provided
in brackets at the y-axis.

Envisat orbited the Earth from 2002 to 2010 with a repeat cycle of 35 days. Jason-2 (launched
in 2008) and its successor Jason-3 (launched in 2016) are on an orbit with a repeat cycle of 10 days.
The orbits of Sentinel-3A (launched in 2016) and the structurally identical satellite Sentinel-3B (launched
in 2018) are congruent but shifted and thus interleaved with a repeat cycle of 27 days each. For a
comparison of the water level time series measured at the virtual and in situ stations, Table 1 shows the
closest gauge per virtual station, the along river distance, the number n of synchronous observations
and the respective median offset, RMSE, NRMSE, and the squared Pearson correlation coefficient R2

P.
The last column shows the number of removed in situ outliers detected by a simple outliers detection
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algorithm which is required because the in situ data is preliminary [54]. The average RMSE is 0.46 m
and the mean R2

P is 0.976.

Table 1. Satellite altimetry comparison with in situ gauges showing the distance between the two
locations, the number # of synchronous observations and the respective median offset, RMSE, NRMSE
and the squared Pearson correlation coefficient R2

P. The arrows indicate whether the stage (•) or
combined stage and discharge (◦) gauge is located upstream (↑) or downstream (↓) of the virtual station.

Station Gauge Distance # Offset RMSE NRMSE R2
P Outliers

(DAHITI ID) [km] [m] [%]

S1 (13257)

Greenville •

28.08 ↓ 13 2.35 0.35 0.99 0.994 40
S2 (13256) 11.69 ↓ 14 1.04 0.11 0.31 0.999 40
J1 (10971) 24.29 ↑ 282 −1.85 0.68 2.11 0.965 40
E1 (13260) 47.97 ↑ 42 −3.68 0.73 2.34 0.951 40
E2 (13258) 58.16 ↑ 36 −4.37 0.39 1.24 0.985 40

S3 (13255)
Vicksburg ◦

66.64 ↓ 12 3.89 0.37 1.38 0.991 28
S4 (13254) 42.86 ↓ 14 2.67 0.53 2.01 0.969 28
E3 (11193) 1.70 ↑ 46 −0.17 1.13 5.44 0.901 28

S5 (13251)
Natchez ◦

39.08 ↓ 13 2.07 0.43 2.13 0.976 24
E4 (10766) 0.70 ↓ 34 0.19 0.47 2.86 0.978 24
S6 (13250) 28.28 ↑ 14 −1.66 0.51 2.60 0.976 24

E5 (13030) Knox Landing • 31.57 ↓ 50 1.18 0.44 3.98 0.986 50
E6 (13029) 17.38 ↓ 53 0.67 0.79 7.03 0.948 50

S7 (13249) Red River Landing • 11.40 ↑ 10 −0.29 0.22 1.49 0.995 42
J2 (2065) 31.99 ↑ 299 −1.50 0.50 4.23 0.981 42

J3 (11416) St. Francisville • 27.67 ↓ 347 1.32 0.49 5.48 0.979 9
S8 (13246) 21.77 ↑ 11 −0.78 0.20 1.71 0.997 9

S9 (13248)
Baton Rouge ◦

15.39 ↓ 7 1.22 0.21 1.78 0.989 39
S10 (11460) 11.29 ↓ 29 0.73 0.14 1.80 0.998 39
S11 (13247) 5.10 ↑ 8 0.07 0.53 5.08 0.970 39

2.3.2. Water Surface Extent

The DAHITI land-water masks and water occurrence masks used in this study, are extracted
using the Automated Water Area Extraction Tool (AWAX) [12], originally designed to extract the
time-variable surface area of lakes and reservoirs. Using five different indices, AWAX calculates a
land-water mask for every multispectral satellite image acquired by the Landsat-4/-5/-7/-8 missions
whose spatial resolution is 30 m and the Sentinel-2A/-2B satellites which use a similar bandwidth as
Landsat, but the spatial resolution improved to 10 m and 20 m, respectively. Additionally, a quality
mask indicating data gaps caused by voids, clouds, cloud shadows, or snow is extracted for every
scene. All land-water masks are stacked to get a long-term water occurrence mask, which is used in an
iterative approach to fill the remaining data gaps in the land-water masks for every scene. This leads
to a gapless water surface area time series which can be obtained from DAHITI for selected targets
together with the void free land-water masks and the water occurrence masks. In this paper, subsets
of the void free land-water masks are used to compute the water surface extent and river width of
the Mississippi River within the study area. On average, 407 land-water masks per target are used
in this paper. The maximum number of available land-water masks is 524 and the minimum 223.
The respective scenes were acquired between January 1983 and December 2019 with an average interval
of 21 days. From 17 June 2002, the date of the first available altimetry measurement, the average
interval is 15 days.
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2.4. River Centerline

The determination of the flow gradient and sinuosity requires a continuous river centerline,
which is available from OpenStreetMaps (OSM) [60]. The centerline is used to measure the distances
between the stations and to define the river kilometer of the virtual-stations, gauges, and cross-sections.

3. Methodology

In this section, we describe the methodology used to estimate river discharge from remote sensing
data at a given cross-section (CS) in detail. The methodology is similar to the AHG relations. Therefore,
the fundamental equations to calculate discharge and flow velocity, described in Section 3.1, require
the determination of the at-a-station hydrographic parameters shown in Figure 3. All parameters at a
CS that are a function of stage are elements of the AHG [35].

Figure 3. At-a-station hydrographic parameters.

Next, we describe the estimation of the shown parameters, starting with the flow gradient
which requires a linear adjustment of the satellite altimetry data (Section 3.2) to derive the elevation
differences between the virtual stations. Additionally, the resulting elevations enable us to combine
short-term satellite altimetry data from multiple virtual stations to one long-term time series.
In Section 3.3, we estimate the geometric parameters by synchronizing the long-term water level
time series with land-water masks to fit a hypsometric curve, construct a bathymetry, and extract
the cross-sectional geometry. The hypsometry fitting requires the estimation of the river depth using
empirically established width to depth relations. The estimation of the roughness coefficient using
geomorphological adjustment factors is described in Section 3.4. Figure 4 shows a detailed flowchart
of the explained approach with the processing steps and data grouped by the describing sections.

3.1. Discharge and Velocity Calculation

In this paper, commonly established equations are used to calculate the hydraulic parameters and
derive a discharge time series. The fundamental equation to calculate the discharge Q at a river CS for
time t is defined as follows [35]:

Q(t) =
n

∑
i=1

v̄i(t) · Ai(t) (1)

where n is the number of subsections of CS, v̄i is the mean velocity in the subsection, and Ai
is the cross-sectional area of the subsection. The CS is divided to consider the velocity
distribution [61]. We divide each channel in 30 subsections analogous to the recommendation for in
situ measurements [5].
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Figure 4. Methodology flowchart with time series data (white), constant data (green), processing steps
(blue), and sections (gray). Orange arrows represent data derived from land-water masks and blue
arrows represent satellite altimetry.

The mean velocity v̄ is calculated with the Gauckler-Manning-Strickler formula [33], which is also
known as the Manning Formula:

v̄i(t) = kst · Ri(t)
2
3 · I 1

2 (2)

where kst is the roughness coefficient and I is the flow gradient, both assumed to be constant over the
width of a given CS and time in this study even if they are actually variable. This simplification is
necessary to adapt the equation to the possibilities of remote sensing data. Ri is the variable hydraulic
radius of the subsection, which is expressed as:

Ri(t) =
Ai(t)
Pi(t)

(3)

where Ai is the cross-sectional area and Pi is the wetted perimeter of the subsection. Both variables are
related to the change of the water level h over time obtained from the satellite altimetry time series.
The estimations of each parameter are described in the following sections, starting with I in Section 3.2,
followed by A and P in Section 3.3 and kst in Section 3.4.

3.2. Elevation Determination

The elevation differences of the virtual stations are required for two purposes. First, to calculate
the flow gradient (Section 3.2.1) and second, to combine short-term satellite altimetry data of multiple
virtual stations to one long-term water level time series per study area by subtracting the virtual station
elevations (Section 3.2.2). The mean value of each virtual station is not accurate enough to be used as
the reference elevation. Therefore, the elevations of all virtual stations are determined using a linear
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least-squares adjustment of the observed water level differences, which is applicable for alluvial rivers
with a gradual longitudinal profile without flow control structures so we can assume the functional
model for the difference between two stations to be linear:

∆hij(t) = hi(t)− hj(t) (4)

The most downstream station is defined as reference station with elevation 0. The elevations of
all u remaining stations are unknown. For every water level measurement hi(t) at every station i the
temporally closest measurement hj(t) is searched at each remaining station j. If the time difference
∆tij(t) between two measurements is lower than a threshold of 3 days, the water level difference
∆hij(t) is added as an observation b to the vector of observations l and ∆tij(t) is considered to be ∆tb.
Although a lower threshold would be beneficial to obtain more accurate values, it is not feasible with
the satellite altimetry constellation over the past 18 years because of the low temporal resolution of the
water level measurements. At the end of the iterations, l has the shape (k, 1), where k is the number of
observed water level differences. With a linear least-squares adjustment [62] the unknown elevations x
above the reference station can be estimated:

x = (ATPA)−1ATPl (5)

where A is a (k, u)-design matrix indicating the stations i and j of each observation b. The weights,
or diagonal elements of the weighting matrix P, are calculated for every observation b using the time
differences ∆tb of the water level measurements at the two stations as follows:

pbb =
1

1 + ∆tb
(6)

Additionally, this method provides the inaccuracies of the adjusted heights to evaluate the
accuracy of the derived data.

3.2.1. Flow Gradient Calculation

The flow gradient I at a CS is calculated by the elevation difference ∆x of two virtual stations
upstream and downstream of the CS and their distance s along the river:

I =
∆x
s

(7)

The distance s is extracted from the river centerline. ∆x is calculated using x.

3.2.2. Altimetry Combination

Figures 1 and 2 show that the altimetry observations are not evenly distributed in space and time.
To achieve a long-term discharge estimation, we combine water level data from multiple selected
virtual stations within and nearby the study area by subtracting the linear adjusted station elevation xi
(Equation (5)) from every water level observation in the time series of each respective virtual station i.
For the combination to be valid, it must be ensured that the flow between the selected virtual stations
is not interrupted or diverted. Appendix A describes further offsets that are applied to the long-term
water level time series in order to validate the derived bathymetry.

3.3. Geometric Parameters

To estimate the parameters A and P, a geometric representation of the river’s cross-sectional shape
is required. The location of the CS is defined by two coordinates at the river bank, which are manually
selected using the river centerline and the DAHITI water occurrence mask to assure the CS includes
the maximum contiguous water extent but no standing water nearby the river. We first construct the
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river bathymetry within an area of interest (AOI) enclosing the CS (Section 3.3.1). Then, we extract
the cross-sectional geometry and geometric parameters from the bathymetry (Section 3.3.2). The AOI
is square-shaped with an edge length of 1.5 times the distance between the coordinates defining the
CS and centered on the midpoint of the CS. The chosen size of the AOI ensures that the AOI includes
the morphologic features of the respective reach and a wide surface area range to derive a robust
area-height relationship in the following steps.

3.3.1. Bathymetry

The bathymetry is constructed using the method by Schwatke et al. [26] whose details and
adaption to rivers are described in the following paragraphs. It combines water levels from satellite
altimetry and land-water masks to estimate the bathymetry and volume variations of lakes and
reservoirs. The two datasets are combined by fitting a hypsometry, which considers the water level as
a monotonically increasing function of surface area. To adapt this method to the application on rivers,
we clip the land-water masks to the AOI and remove non-contiguous water surfaces using image
segmentation methods which ensures that the area-height relationship is monotonically increasing
within the AOI.

Observation Synchronization

The fitting of the hypsometric curve requires contemporaneous observations of water level
measured by satellite altimetry and surface area derived from land-water masks. As the altimetry
and multispectral sensors are onboard of different satellites which do not acquire data synchronously,
the observations have to be synchronized. For an optimized fitting result, it is best to have a large
number of observations with a high correlation of water level and surface area. The correlation is
expected to decrease with a longer time between the observations, because of changing conditions of
water level and inundated area. To get a suitable data set, the synchronizing process iterates from a
long to a short time delta between the observations, reducing the number of pairs with every iteration.
Once the pairs have a correlation higher than a threshold of 0.75, the iteration stops, and the data is
used in the following processing steps. If no iteration yields a sufficient correlation, the threshold is
lowered and the iterations are repeated. As the relation of surface area and water level is not necessarily
linear, the correlation coefficient by Spearman [63] is used.

Depth Estimation

In contrast to the study by Schwatke et al. [26] which only requires a good quality topography
above the minimum water level to estimate volume variations, it is necessary for our methodology
to also characterize the submerged topography or bathymetry and thus, the river bed elevation h0 in
order to estimate the cross-sectional geometry. Using h0 we can optimize the fitting of the hypsometric
function and estimate the cross-sectional geometry below the minimum water level. The elevation
of the riverbed is required in order to optimize the fitting of the hypsometric curve to the observed
synchronized data and limit the predictions to a reasonable minimum water level. Moody and
Troutman [64] studied the relationship of depth, width, and discharge for a large dataset of world-wide
distributed rivers, from small mountain streams to large alluvial rivers. They obtained the following
regression relations:

w̄ = 7.2Q0.50 (8)

d̄ = 0.27Q0.39 (9)

where Q is the discharge, w̄ is the mean water-surface width and d̄ is the mean depth at a CS. By solving
Equation (8) for Q and substituting Q in Equation (9) with the resulting term, d̄ can be calculated by
measurements of w̄:

d̄ = 0.27
(

w̄2

7.22

)0.39

(10)
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To estimate the bed elevation h0, the cross-sectional river width w(t) is extracted from the land-water
masks of the synchronized observations. w(t) is inserted in Equation (10) to calculate d̄(t), which is
subtracted from the synchronous water level h(t) to obtain h0(t). Finally, we use the median result of
all synchronous observations as h0.

Hypsometry Fitting

Because the land-water masks are clipped to the AOI and contain only contiguous water surfaces,
a fixed area-height relationship of the river reach can be described by a hypsometric curve. Due to
the bathymetry and the surrounding topography, the adjusted hypsometric function must always be
monotonically increasing. Following Schwatke et al. [26], we fit a modified hypsometric Strahler [65]
function to the synchronous observations of water level y and surface area x within the AOI:

y =

[
xmin − x

xmin − xip
· xmax − xip

xmax − x

]z

· yscale + ymin (11)

Six parameters of Equation (11) have to be fitted to the x and y data. xmin defines the minimum
surface area and xmax the maximum surface area of the hypsometric curve. The minimum water level
is defined as ymin and the variations of water level is defined by yscale. The exponent z describes the
shape of the hypsometric curve and xip represents the abscissa of the curves inflection point. To limit
and improve the resulting curve, bounds are given to the fitting process. In contrast to [26], we set the
minimum water level boundary ymin to the estimated river bed elevation h0. The function is necessary
because, although for the period from January 1983 until 2002 land-water masks are available, there are
no contemporaneous satellite altimetry observations. Using the hypsometric function we obtain water
levels for each land-water mask and increase the number of data. Additionally, the use of a hypsometric
function fitted to water level and surface area observations reduces the influence of observational
errors in the satellite altimetry data. In contrast to a width-height relationship, the variation amplitude
of the area-height relationship is larger and incorrectly classified pixels in the land-water masks have a
smaller effect on the resulting water level.

Bathymetry Construction

In this step, all available land-water masks are stacked and sorted by the respective hypsometric
water level. Analogous to [26], each pixel column is analyzed and filtered with a median filter to obtain
a bathymetric layer whose pixel values represent the respective minimum water level, disregarding
outliers. Figure 5a shows the resulting bathymetry within the AOI and the CS between the user defined
coordinates A and B.

3.3.2. Cross-Sectional Geometry

We use evenly spaced samples along the CS with a distance of 1 m to obtain the cross-sectional
geometry from the bathymetric raster. However, the geometry is incomplete below the baseflow
hb, which is the minimum water level either observed by satellite altimetry or estimated using the
hypsometry for the minimum observed surface area. Therefore, we fill the gap between hb and the
river bed elevation h0 with a parabola as proposed by Bjerklie et al. [41]. The parabola is fitted to
the two lowest points of the observed geometry and their midpoint whose ordinate is replaced by
the predicted bed elevation. Figure 5b shows the resulting complete cross-sectional profile with the
sampled geometry above hb and the parabolic fill to h0 below hb.

3.3.3. Geometric Parameter Extraction

Using the cross-sectional geometry, the geometric parameters A and P are extracted for each
water level h in the combined long-term satellite altimetry time series 3.2.2. P is the length of the
profile line below h and A is the area of the polygon enclosed by the profile line and the water line at h.
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As we split the CS in subsections, Pi is only the part of the wetted perimeter touching the river bed in
the subsection and not the border part to a neighboring subsection. Figure 5b illustrates an example
subsection i and the respective parameters Ai and Pi.

(a) Bathymetry (b) Cross-sectional geometry

Figure 5. Constructed bathymetry (a) within the AOI and extracted cross-sectional geometry (b)
with geometric parameters downstream of Vicksburg at CS 694.7. The solid blue line in (b) shows
the estimated cross-sectional profile and the green line the bathymetric survey data as reference.
The dashed blue line shows the observed baseflow hb and the solid orange line the estimated river bed
elevation h0. Ai(t) is the area of subsection i defined by the water level h(t) at the top and the wetted
perimeter Pi(t) at the bottom.

3.4. Roughness Estimation

The roughness of the river bed is specified by the roughness coefficient kst which can be
interchanged with the expression 1

n where n is the Gauckler Manning coefficient. The lower the
value of kst, the higher is the disturbance of flow from the river bed. The roughness coefficient can be
determined objectively based on different factors [66,67]:

kst =
1

(nb + n1 + n2 + n3 + n4)m
(12)

In Equation (12), nb is a base value for the channel material, n1 is a correction factor for surface
irregularities, n2 is a value for variations in shape and size of the channel CS, n3 is a value for
obstructions and n4 is a value for vegetation and flow conditions. Arcement and Schneider [67]
provide a decision guide to select suitable adjustment factors. m is a correction factor for the channel
meandering depending on the sinuosity s:

m =





1.00 if 1.0 < s ≤ 1.2

1.15 if 1.2 < s ≤ 1.5

1.30 if 1.5 < s

(13)

s is calculated using a segment of the river centerline around the selected CS that has a length of 20 times
the maximum width, since this distance is likely to include at least one meander wavelength [68–70].
This method was also used in other related studies, e.g., for the Yangtze River [47], the Lhasa River [43]
and two siberian rivers [38]. Except for m, we use constant adjustment factors for all cross-sections.
Because the Lower Mississippi River is an alluvial and meandering river with a low flow gradient
and as there are many locks and dams at the Upper Mississippi River we assume the bed material
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to be fine sand or firm soil, which is confirmed by in situ surveys [71]. Therefore, we set the base
value nb to 0.02 according to the decision guide [67]. Each CS is selected to be situated in straight
river segments without obstructions or irregularities such as banks or multiple channels. Therefore,
the adjustment factors for irregularity n1, shape and size variation n2, and obstruction n3 are set to
0. The vegetation factor n4 is set to 0, as well, because the effect of bank vegetation in wide channels
with small depth-to-width ratios is small [67]. Depending on the degree of meandering the resulting
kst is 38.46, 43.48, or 50.00. These values are comparable to literature values for natural channels with
moderate sediment transport (kst = 35), natural channels with solid bed and no irregularities (kst = 40),
and maintained channels with solid sand and clay or gravel (kst = 50) [72]. Therefore, the estimated
values are plausible and suitable to estimate the velocity.

4. Results and Validation

In this section, we present and validate the results for the Lower Mississippi River. Section 4.1
covers the estimated flow gradient and different validation methods. In Section 4.2, we present and
validate the estimated cross-sectional geometries and resulting discharge time series for multiple CS
within each of the three study areas shown in Figure 1.

4.1. Flow Gradient

Figure 6 shows the virtual stations at the adjusted elevations above the reference station S11 (12347)
and the flow gradient I of the resulting longitudinal profile in blue. Additionally, the upper table shows
the maximum, median, and minimum flow gradient between the water level gauges for validation.
In order to obtain these statistics, we calculate the flow gradient between the gauges for each date
that is consistently included across all in situ time series. We ignore any resulting gradient below 0,
assuming bad data or extreme events. This shows the high variability of the flow gradient.

The most extreme values occur around Knox Landing which is nearest to the Old River Control
Complex where the flow is partially diverted into the Atchafalaya River. Figure 6 also shows
a longitudinal profile in black which is derived from single beam soundings conducted in 2019.
The sounding data includes the measured water level at the survey site. The Baton Rouge water level
measured at the survey date and the constant offset between the Baton Rouge gauge and virtual station
13247 (see Table 1) is subtracted to equalize the variation due to surveys at different dates and the
datum difference between in situ and altimetry data.

A comparison of the satellite altimetry derived flow gradient and the in situ statistics shows
that the estimates are mostly within the range of the measurements and close to the median gradient.
The largest deviations occur between stations located close to each other. The flow gradient does not
change continuously, but discretely at each virtual station. Therefore, large deviations are possible at
nearby river segments with a virtual station in between.

Table 2 shows the uncertainties of the resulting station elevations as a formal error from the linear
adjustment. The uncertainties are largest for virtual stations of the Envisat mission and lowest for the
Jason and Sentinel-3 missions.

Table 2. Uncertainties δ of the adjusted virtual station (VS) elevations in millimeters.

VS: S1 S2 J1 E1 E2 S3 S4 E3 S5 E4 S6 E5 E6 S7 J2 J3 S8 S9 S10

δ [mm]: 27 26 20 51 51 21 21 48 21 68 18 42 42 23 18 18 20 23 36
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Figure 6. Flow Gradient [10−6] of the Lower Mississippi River (blue numbers) derived from adjusted
virtual station elevations. A longitudinal profile derived from bathymetric survey data is shown in
black. The dashed lines represent the locations of in situ water level gauges. The minimum, median,
and maximum flow gradient between the gauges is shown at the top.

4.2. Geometry and Discharge

The methodology presented in this paper can be applied at any location along the river since the
input data is not bound to a specific location. However, it may not be suited for every river segment.
For example, it can be expected that the estimated river bed elevation and thus the channel geometry
is incorrect in curved river segments, because of strong erosion along the thalweg [69]. For this study,
we focus on the three in situ discharge gauge locations within the study area at Vicksburg, Natchez,
and Tarbert Landing. For each study area, we examine a CS at the gauge and four to five additional
nearby locations. Using the DAHITI water occurrence mask, the additional CSs are selected to be
situated in reaches with geomorphologic features such as straight and wide river segments without
irregularities such as sand banks or multiple channels. Therefore, the additional CSs are expected to be
most suitable for the application of the methodology. Each CS is numbered according to the respective
estuary distance in kilometers. Figure 7 shows a map for each study area with each gauge, VS, and CS.
Additionally, the figure shows the DAHITI water occurrence masks.

To validate the cross-sectional geometric parameters, we compared the estimated geometry
with in situ bathymetric survey data. We validate the resulting discharge time series against the
measured discharge at the gauge located within each study area. The validation is quantified by
the Nash–Sutcliffe efficiency (NSE) [73], the root mean square error (RMSE), the normalized RMSE
(NRMSE), and the squared Pearson correlation coefficient R2

P. The discharge estimation results for
the three study areas and selected cross-sectional geometries are presented in Sections 4.2.1–4.2.3.
The supplementary material contains figures for each CS.
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(a) Vicksburg (b) Natchez

(c) Tarbert Landing.

Figure 7. Water occurrence, gauges, virtual stations, and cross-sections within the study areas.

4.2.1. Vicksburg

First, we present the results for each CS within the study area around the Vicksburg gauge shown
in Figure 7a. We use satellite altimetry data from virtual stations E3, J1, and S4 which are combined as
described in Section 3.2.2 to one single water level time series with 361 observations in the time period
from 17 June 2002 to 12 March 2020. We use the same long-term water level time series at each CS within
the study area. 458 surface area observations are available between 13 January 1983 and 1 June 2019.
On the left side of Table 3, we show the estimated parameters used to derive the velocity and discharge
for each CS at Vicksburg. The flow gradient I is inconsistent because virtual station E3 is located
between CS 698.8 and CS 694.7. The roughness kst changes depending on the sinuosity of the river as
described in Section 3.4. The cross-sectional area A and hydraulic radius R are given as percentage of
the respective in situ values below the maximum observed water level for validation. The estimated
bed elevation h0 is given as the deviation from the in situ data. To estimate the geometric parameters
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of the CSs, the long-term water level time series and the observations of surface area within each
AOI are synchronized per CS. The number of synchronized pairs, the squared Spearman correlation
coefficient R2

S of water level and surface area, and the average time difference ∆t are listed on the right
side of Table 3. The results are validated using in situ data of the Vicksburg gauge provided by the
USGS which is available for 330 matching days in the time period from 2 January 2008 to 6 March 2020.

Table 3. Estimated Parameters (left), discharge validation results (center), and observations
synchronization statistics (right) at Vicksburg using combined altimetry data from E3, J1, and S4.
A and P are given as percentage and h0 as deviation of the respective in situ data. The synchronization
statistics shows the resulting number of surface area and water level observation pairs, the area-height
correlation coefficient R2

S, and the average time ∆t between the synchronized observations.

Parameters Discharge Validation Synchronization
CS I kst A R ∆h0 ∆Q NSE NRMSE RMSE R2

P Pairs R2
S ∆t

[10−6] [%] [%] [m] [m3/s] [%] [m3/s] [Days]

683.9 51 50.00 92.72 109.31 2.70 −2130.80 0.873 17.34 3827 0.974 239 0.681 5.00
694.7 51 43.48 98.14 104.40 0.97 −4321.02 0.658 28.43 6275 0.976 239 0.704 5.00
698.8 71 38.46 60.72 60.96 20.78 −13457.17 −1.112 70.69 15604 0.960 239 0.634 5.00
702.4 71 38.46 102.47 105.63 3.84 −1938.45 0.844 19.24 4246 0.978 239 0.748 5.00
721.1 71 50.00 97.38 161.45 0.37 1471.94 0.929 12.96 2861 0.975 239 0.720 5.00

Figure 8 shows the fitted hypsometry, estimated bathymetry, and extracted cross-sectional
geometry at CS 721.1 upstream the Vicksburg gauge. Figure 8 and Table 3 show, that the river bed
elevation is correctly estimated at CS 721.1. Therefore, the cross-sectional geometry matches the
bathymetric survey data. However, R is overestimated but the in situ value could be too low due to
interpolation in the upper area.

(a) Cross-sectional geometry (b) Bathymetry (c) Hypsometry

Figure 8. Estimated geometry, bathymetry, and hypsometry upstream of the Vicksburg Gauge
(CS 721.1). The blue line in (a) shows the estimated and the green line the in situ cross-sectional
geometry. Additionally, the figure shows the predicted bed elevation h0 (orange) and minimum
observed water level hb (dashed blue). The bathymetry (b) is shown within the AOI defined by the
CS which is represented by the orange line. The hypsometry (c) was used to construct the bathymetry.
The dashed orange line represents h0 which was used as boundary condition to fit the hypsometric
function (dark blue) to the synchronized observations. The color of the observations shows the surface
area error within the entire land-water mask not limited to the AOI. The green rectangle shows the
bounds of the entire available water level and surface area observations.

Figure 9 shows the fitted hypsometry, estimated bathymetry, and extracted cross-sectional
geometry at the Vicksburg gauge (CS 698.8). In contrast to CS 721.1 (Figure 8), a wrong h0 is
estimated because the river is narrower than the average reach, causing the geometry to be significantly
underestimated with an area of only 60.72% of the actual size. Furthermore, a bridge obscures the
satellite images of parts of the river. Consequently, the residuals of the discharge time series shown in
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Figure 10 are much larger at CS 698.8 (red) than at CS 721.1 (blue) compared to in situ data (green).
CS 694.7 (orange) has the worst results of the CSs whose locations are not defined by the gauge but
morphological features.

(a) Cross-sectional geometry (b) Bathymetry (c) Hypsometry

Figure 9. Estimated geometry, bathymetry, and hypsometry at the Vicksburg Gauge (CS 698.8).
For details see Figure 8.

Figure 10. Discharge time series with residuals per time (horizontal) and discharge (vertical) of selected
cross-sections around the Vicksburg gauge.

4.2.2. Natchez

Satellite altimetry data from virtual stations E4, J1, S5, and S6 is used for the study area around
the Natchez gauge at CS 580.9 shown in Figure 7b. The combined time series contains 360 observations
in the time period between 8 March 2003 and 12 March 2020. 459 land-water masks are available
from 7 November 1984 to 1 June 2019. Similar to Vicksburg, the Natchez gauge is located on a narrow
river segment. The four additional selected CSs are in regular, straight, and widening reaches. Table 4
shows the estimated parameters, the validation results of the estimated discharge time series, and the
statistics of the observation synchronization per CS. The in situ time series for Natchez is not daily but
contains a record every 14 days on average with 585 entries in the time period from 3 January 2000 to
10 September 2019. To increase the number of validation data, we fit a rating curve using daily water
level measurements at Natchez (see Appendix B). Therefore, 343 entries in the time period between
7 January 1984 and 28 November 2019 can be used to validate the estimated discharge. Although errors
could be introduced by using the rating curve, we assume the result is good enough for validation.
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Similar to Vicksburg, a virtual station (E4) is just in the middle of the study area, so the flow gradient
is not consistent. Meandering in the study area is low, causing the kst to be constant across all CSs.

Table 4. Estimated Parameters (left), discharge validation results (center), and observations
synchronization statistics (right) at Natchez using combined altimetry data from E4, J1, S5, and S6.
For details see Table 3.

Parameters Discharge Validation Synchronization
CS I kst A R ∆h0 ∆Q NSE NRMSE RMSE R2

P Pairs R2
S ∆t

[10−6] [%] [%] [m] [m3/s] [%] [m3/s] [Days]

564.8 76 50.00 125.53 140.19 −2.43 4094.80 0.785 21.92 5059 0.963 232 0.829 5.14
576.0 76 50.00 99.43 118.78 −0.86 1625.15 0.921 13.26 3060 0.966 232 0.572 5.14
580.9 76 50.00 59.14 83.75 11.90 −9632.32 −0.002 47.27 10912 0.956 232 0.714 5.14
591.1 41 50.00 76.13 111.05 1.54 −3714.84 0.745 23.83 5500 0.966 232 0.715 5.14
599.4 41 50.00 87.92 104.37 7.10 −3516.56 0.754 23.42 5405 0.967 232 0.655 5.14

Similar to CS 698.8 at Vicksburg the cross-sectional area is underestimated at the location of
the Natchez gauge (CS 580.9), because the estimated river bed elevation is too high due to the
below-average river width. A figure showing the cross-sectional geometry of CS 580.9 as well as every
other CS is provided in the supplemetary materials. Therefore, the estimated discharge time series
for CS 580.9 at the Natchez gauge (red) shown in Figure 11 has the largest residuals compared to the
rated in situ discharge time series (green). CS 576.0 (blue) and CS 591.1 (orange) are the best and worst
performing additional CSs which are selected by geomorphologic features. For CS 580.9 and CS 591.1
the negative residuals increase with rising discharge. There is no systematic error visible for CS 576.0.

Figure 11. Discharge time series with residuals per time (horizontal) and discharge (vertical) of selected
cross-sections at Natchez.

4.2.3. Tarbert Landing

The third study area shown in Figure 7c is located at and below the Tarbert Landing discharge
gauge. Upstream Tarbert Landing is the Old River Control Complex, where the Mississippi River is
partially diverted into the Atchafalaya River. Therefore, a validation with the Tarbert Landing discharge
would be invalid for estimates in the upstream reach, so we extended the study area downstream to
the St. Francisville gauge. We also do not use Envisat data from the nearby virtual stations E5 or E6 as
they are upstream of the Old River Control Complex. We combine satellite altimetry data from virtual
stations J2, S7, S9, and S10 to a time series of 360 observations between 16 July 2008 and 9 March 2020.
379 land-water masks are available from 7 November 1984 to 21 November 2018. Table 5 shows the
estimated parameters, discharge validation results, and synchronization statistics for each CS. The flow
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gradient varies throughout the study area as multiple virtual stations are located along the reach.
The kst is not consistent because of different degrees of meandering along the river. The estimated
discharge time series were validated against daily in situ data for Tarbert Landing provided by the
USACE for the time period from 3 January 1984 to 28 November 2019. The estimated and in situ time
series can be compared at 344 matching days.

Table 5. Estimated Parameters (left), discharge validation results (center), and observations
synchronization statistics (right) at Tarbert Landing using combined altimetry data from J2, S7, S9,
and S10. For details see Table 3.

Parameters Discharge Validation Synchronization
CS I kst A R ∆h0 ∆Q NSE NRMSE RMSE R2

P Pairs R2
S ∆t

[10−6] [%] [%] [m] [m3/s] [%] [m3/s] [Days]

416.9 39 50.00 115.52 117.83 6.41 1191.17 0.933 12.12 2226 0.981 148 0.899 4.12
427.5 39 43.48 116.25 117.48 −0.71 1188.82 0.924 12.97 2381 0.982 148 0.847 4.12
439.4 39 50.00 103.66 100.79 2.69 −109.32 0.946 10.95 2011 0.978 148 0.818 4.12
460.9 72 43.48 107.07 109.58 2.58 1541.46 0.925 12.86 2361 0.980 147 0.712 4.00
471.4 72 43.48 102.30 112.37 3.66 −555.25 0.926 12.76 2344 0.979 147 0.794 4.00
492.5 31 43.48 99.76 101.60 −0.70 −4914.37 0.389 36.73 6745 0.980 136 0.582 4.38

Figure 12 shows the hypsometry, bathymetry, and cross-sectional geometry of CS 492.5 at the
Tarbert Landing discharge gauge. Although the estimated geometry matches the surveyed bathymetry,
which is also apparent from the low A and R deviations, the resulting time series deviates largely
from the in situ data with an NRMSE of 36.73% and an NSE of 0.389. This is presumably caused
by an erroneously low flow gradient, which is probably introduced by the upstream flow diversion.
Figure 13 shows the estimated discharge and residuals compared to the in situ time series (green) for
CS 492.5 at the Tarbert Landing gauge (red) and the best (CS 439.4, blue) and worst (CS 460.9, orange)
performing additional CS selected by geomorphologic features.

(a) Cross-sectional geometry (b) Bathymetry (c) Hypsometry

Figure 12. Estimated geometry, bathymetry, and hypsometry at Tarbert Landing (CS 492.5). For details
see Figure 8.
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Figure 13. Discharge time series with residuals per time (horizontal) and discharge (vertical) of selected
cross-sections at Tarbert Landing.

5. Discussion

This study is the first application of the DAHITI land-water and water occurrence masks on rivers.
These masks and the modified hypsometric function were previously only used to determine the
surface area, extent, and volume of lakes and reservoirs [12,26]. The study shows that also for large
alluvial rivers that are morphologically more dynamic than lakes or reservoirs, the water occurrence
mask can be used to extract a large amount of void-free land-water masks to fill data gaps caused by
clouds, cloud shadows, instrument errors or ice. Additionally, the modified hypsometric function can
be used to derive the water level within a river reach based on the respective surface area. However,
it cannot be concluded that the approach is applicable to smaller rivers whose size does not exceed a few
image pixels, or braided rivers which are morphologically much more dynamic than the Mississippi.

We showed in Section 4.1 that the elevation differences between virtual stations of multiple
missions with different observation periods can be estimated accurately within river segments without
flow disruptions such as the Lower Mississippi River. This can be seen from the low inaccuracies
resulting from the linear adjustment shown in Table 2. Additionally, a comparison with the in situ
values (Figure 6) shows that the estimates are within the range of the variable in situ gradient and in
general close to the median value. The largest deviations occur between adjacent stations. In contrast
to the calculation of the flow gradient using SRTM or other DEM data which is limited to a short period
of observation, the usage of multi-mission satellite altimetry allows the calculation of an average flow
gradient over time. Using the mean values of each virtual station is not sufficient to calculate the
flow gradient as these do not monotonically increasing with the estuary distance (see Figure 2) which
would result in a negative flow gradient. However, the continuity and variability of the flow gradient
cannot be determined using our approach. The spatial resolution of the estimated flow gradient is
limited by the fixed orbits of the satellite altimetry missions, but may be increased using long-repeat
orbit missions such as Cryosat-2. In most cases a high spatial resolution of the flow gradient is of
minor importance, but at Tarbert Landing (CS 492.5) a higher resolution would be beneficial to detect
possibly rapid changes due to the upstream flow diversion. Deriving a variable flow gradient from a
satellite-based sensor will first become possible with the SWOT mission.

The roughness coefficient is estimated using multiple adjustment factors, a method that has been
well established in several studies [38,43,47,67]. Most of the adjustment factors are set to 0, because we
select only uniform sections without irregularities such as eroded banks, abrupt changes in CS size,
or obstructions based on the DAHITI water occurrence mask. However, the method is useful because
different rates of meandering could be considered. There is no in situ data available for validation,
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but the calculated roughness coefficients are within the ranges of literature values for natural and
maintained channels with solid bed materials which are common in alluvial rivers.

Our method differs from classical state of the art AHG approaches [38,41,43] by the construction
of the river bathymetry which uses as many observational data from satellite altimetry and remote
sensing images as possible and a hypsometric function which was originally developed for lakes [26].
Our results for 16 cross-sections show that the hypsometry can also be fitted to surface area and satellite
altimetry observations over large alluvial rivers to increase the number of water level observations
when the river depth is estimated correctly. The depth estimation succeeds for straight, wide,
and uniform cross-sections with a median deviation of 2.4 m. We are able to manually identify such
river segments using the DAHITI water occurrence mask. The method and its limitation to specific
river segments might be transferable to similar rivers, because the empirical width-depth relationship
used is derived from a large dataset of world-wide distributed rivers. The geometry extracted from
the estimated bathymetry is validated using bathymetric survey data. Overall, the cross-sectional
area is underestimated with an average coverage of 96.51% of the actual area. However, the average
hydraulic radius is overestimated with 109.97% of the surveyed data, because of the medium spatial
resolution of the Landsat mission and the parabola that is used to extend the geometry below the
baseflow. The larger hydraulic radius leads to an increased velocity and thus discharge estimation,
while the reduced area causes an underestimation of the discharge.

Using long-term satellite altimetry time series combined from multiple virtual stations enables the
estimation of discharge time series over a period of up to 18 years. The validation at 16 cross-sections
against the closest in situ measurements yields a median Normalized Root Mean Square Error (NRMSE)
of 18.29% with a minimum of 10.95% and a maximum of 70.69%. The median Nash-Sutcliffe Efficiency
(NSE) is 0.858 with a minimum of −1.112 and a maximum of 0.946. However, the resulting errors
are significantly high at the three gauge locations. At Vicksburg and Natchez this is caused by the
below average river width, which leads to an underestimation of the river depth and the depending
geometric parameters. At Tarbert Landing the extracted channel geometry is correct, but the estimated
flow gradient is most likely too low. At the 13 other cross-sections, which are not defined by the gauge
locations but are selected to be in straight, wide, and uniform river segments, the median NRMSE is
13.26% with a minimum of 10.95% and a maximum of 28.43%. The median NSE at these cross-sections
is 0.921 with a minimum of 0.658 and a maximum of 0.946. These errors are within the range of results
from an intercomparison of state of the art studies [44].

In contrast to the variable distribution of errors, the correlations between estimated and in situ
discharge are consistently high at all cross-sections with values above 0.95. Figure 14a–c show the
linear regressions of estimated and in situ discharge for each CS. It is apparent that the discharge is
predominantly underestimated at each CS and the deviation increases with rising discharge. At Tarbert
Landing the results of the selected CS are very consistent, while they are more widely spread at
Natchez and Vicksburg.

To evaluate the quality of the estimated geometric parameters, we substitute the estimated
cross-sectional geometry with a geometry extracted from the bathymetric survey data and calculate
an additional time series for each CS. Figure 14d–f show the relation of these new estimates and the
in situ discharge. The estimates improve for CS 698.8 at the Vicksburg gauge and CS 580.9 at the
Natchez gauge which is expected as the geometry is clearly underestimated. This emphasizes the high
importance of correctly estimated geometric parameters. However, the estimated discharge at CS 580.9
is now consistently too high. This could be caused by an overestimated flow gradient which is much
smaller downstream at CS 576.0 and CS 564.8 where the estimated discharge decreased using the
bathymetric survey data. At Tarbert Landing the estimates do not change significantly, which confirms
that the geometric parameters are estimated well.

Next, we use the in situ flow gradient time-series derived from in situ water-level time series
(see Figure 6) to substitute the estimated constant slope. The variable flow gradient is used in two
analyses. First, Figure 14g–i show the relation of in situ discharge and estimates using bathymetric
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survey data and variable in situ flow gradient. In this analysis, all parameters are extracted from in
situ data except the roughness which has to be estimated anyway and the input water level time series
which is obtained from satellite altimetry. Compared to the results shown in Figure 14d–f, the estimates
improve e.g., at the Tarbert Landing (CS 492.5) and Natchez gauge (CS 580.9) where we expected
the estimated gradient to be wrong. However, at some CS (e.g., CS 460.9) there is a higher discharge
deviation using the variable gradient and bathymetric survey data. Therefore, we assume that the
estimated roughness must be wrong at those places. In the second analysis, we use the estimated
bathymetry and the variable in situ flow gradient. Figure 14j–l show the respective relation of in situ
data and estimates. Again, the results are worst at the narrow CS 698.8 and 580.9 where the estimated
bathymetry is too shallow. The use of the variable flow gradient shows no improvement in the results
of these CS compared to Figure 14a–c. At Natchez, the results get more consistent at the different CS
while they are more widely spread at Tarbert Landing using the variable flow gradient.

(a) Vicksburg (b) Natchez (c) Tarbert Landing

(d) Vicksburg (e) Natchez (f) Tarbert Landing

(g) Vicksburg (h) Natchez (i) Tarbert Landing

Figure 14. Cont.
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(j) Vicksburg (k) Natchez (l) Tarbert Landing

Figure 14. In-Situ vs. estimated discharge and linear regression for each CS using all estimated
parameters (a–c), bathymetric survey data (d–f), bathymetric survey data and variable in situ flow
gradients (g–i), and variable in situ flow gradient and estimated bathymetry (j–l). The black dashed
lines show the optimum relation. The colored dashed lines represent the CS at the gauges.

Table 6 shows the NRMSE values per CS for each substitute and additionally the assumed
significant factor for further improvements of the methodology which is chosen as follows: If the
NRMSE increases or the improvements are only marginal using substituted values of I, A and
P, we assume the roughness to be significant for further improvements. If the NRMSE decreases
significantly by either substituting I or A and P we assume the respective substitute to be significant
for further improvements but only when the effect is not negated using all substitutes.

Table 6. Errors of the discharge estimation using estimated parameters and respective increase (+)
or decrease (−) using in situ substitutions per CS. The right column shows the significant parameter
causing the largest error.

CS Estimated Substitute Significant
I A and P I, A, and P Parameter

NRMSE[%] ∆ NRMSE[%] ∆ NRMSE[%] ∆ NRMSE[%]

721.1 12.96 −1.02 −2.13 +0.65 Roughness
702.4 19.24 +3.19 +3.97 +7.24 Roughness
698.8 70.69 +5.03 −49.11 −47.87 Bathymetry
694.7 28.43 −2.72 +0.30 −2.31 Roughness
683.9 17.34 −2.58 −4.90 −3.79 Roughness

599.4 23.42 −9.76 −11.25 −6.09 All
591.1 23.83 −9.96 −10.69 +4.24 Roughness
580.9 47.27 +13.40 −14.32 −30.78 Bathymetry
576.0 13.26 +8.42 −0.27 +16.95 Roughness
564.8 21.92 −6.60 +0.29 +17.76 Roughness

492.5 36.73 −14.84 +2.46 −12.23 Gradient
471.4 12.76 +19.92 +3.84 +24.11 Roughness
460.9 12.86 +9.80 -1.51 +18.72 Roughness
439.4 10.95 −0.47 +3.49 +1.03 Roughness
427.5 12.97 +1.27 +10.77 +7.67 Roughness
416.9 12.12 +1.47 +8.50 +3.06 Roughness

At CS 721.1, 702.4, 683.9, 591.1, 576.0, 564.8, 471.4, 460.9, 427.5, and 416.9 single or no substituted
parameters lead to improvements while the errors increase when all parameters are substituted.
As we expect the results to improve using the substituted parameters, the estimated roughness must
be the cause of error. At CS 694.7 and 439.4 the estimation improves using the substitutes but the
remaining error is still high compared to the improvements. Therefore, the roughness must also be the
significant parameter at these locations to gain further improvements. At CS 698.8 and 580.9 the results
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significantly improve by substituting the geometric parameters. These are predominantly the narrow
CS at the gauges where the bathymetry construction failed caused by the underestimation of the river
depth. At CS 599.4 the substitution leads to significant improvements but the remaining errors are still
high. Therefore, all parameters (I, A, P, and the roughness) are significant for improvements. CS 492.5
is the only location where the result improve significantly using the in situ flow gradient and the effect
was not dampened by substituting the bathymetry. Here, the estimated flow gradient is probably
incorrect due to the flow diversion just upstream of Tarbert Landing.

Although the number of 16 CS as test locations might be too low to be statistically significant and
the CS are manually selected, the substitution of parameters shows that the largest cause of error is the
incorrect roughness value. This is probably not only caused by the coarse estimation of the roughness
coefficient using adjustment factors but also by the used flow formula itself. To estimate the flow
velocity we use the Manning formula which is the most commonly used relation between velocity and
water level described by a friction factor. However, being an empirical equation, the Manning formula
has no theoretical basis. It is inhomogeneous in terms of dimensional analysis and the value of the
roughness coefficient has no direct relation on the properties that cause bed roughness. Furthermore,
using the Manning formula we can only obtain an average velocity over width and depth, and complex
characteristics as backwater effects, negative flow gradients or uneven velocity distributions due to
meandering cannot be considered. We minimize the effect of generalization in width by dividing
the CS in multiple subsections but to overcome the velocity distribution over depth and the other
mentioned challenges a more sophisticated formula will be required. Some improvements can be
expected by using a variable roughness coefficient as it is the standard for non-remote sensing methods
and already used by Bjerklie et al. [41] with remote sensing data.

6. Conclusion and Outlook

In this paper, we present an approach to determine long-term river discharge time series using
solely satellite altimetry and remote sensing data at the Lower Mississippi River. The methodology
does not require calibration and works at cross-sections in straight, wide, and uniform reaches of the
river and possibly at comperable large alluvial rivers. At river segments without flow disruptions,
a linear adjustment of the virtual station elevations allows us to combine satellite altimetry data from
multiple virtual stations and missions to one single long-term water level time series. At the Lower
Mississippi River, the constant flow gradient derived from the virtual station elevations shows a high
agreement with the average of the variable flow gradient calculated using in situ data. The roughness
coefficient is estimated using multiple adjustment factors similar to many state of the art studies. Using
long-term optical remote sensing data and a hypsometric function, further water levels can be derived
from surface areas in addition to the satellite altimetry observations. In this way, we can cover a
wider range of water levels and use it in combination with the respective water surface extents to
construct large parts of the river bathymetry. The remaining part of the bathymetry below the baseflow
is approximated using a parabola and an estimation of the river bed elevation which is based on an
empirical width-to-depth relationship that shows limitations in below average wide cross-sections.

In straight, wide, and uniform river reaches, the NRMSE varies between 10.95% and 28.43% and
is comparable with other studies without calibration. The NSE is in a range from 0.658 to 0.946.
The NRMSE increases up to 70.69% at CS not defined by the planform shape of the river but by gauges
which are predominantly located in narrow reaches where depth is underestimated in our approach.

To discuss the significance of the parameters in the Manning formula, we substitute in situ
measurements of bathymetry and variable flow gradient for the respective estimated parameters.
Except for narrow CS where the in situ bathymetry leads to the smallest residuals, overall roughness is
the most significant parameter for further improvements of the methodology. The in situ flow gradient
was only significant at one CS of the study where the spatial resolution of the satellite altimetry was
too low to detect a larger change of the flow gradient.
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The case study at the Lower Mississippi river shows that the approach is limited to selected
regular and uniform reaches where the flow is not disturbed by obstacles, bends, or abrupt changes in
width. Such conditions cause an underestimation of the channel depth using the empirical width-depth
relationship. However, potentially suitable reaches can be identified based on the DAHITI water
occurrence mask. At CS in these reaches, the geometry can be approximated well, because of the
large number of synchronized water level and surface area observations and the derived hypsometry.
Since the estimated flow gradient matches the mean of the variable in situ data, only the difficult to
determine roughness coefficient remains as a limiting factor for the application of the methodology in
suitable reaches.

For future studies, improvements of the roughness estimation and selection of cross-sections
will be a particular challenge. In particular, the applicability and potential of more sophisticated
flow equations should be examined. Additionally, the transferability to other targets such as smaller,
braided, or non-alluvial rivers should be studied. The principle of mass conservation and reach
averaging could be used to reduce the currently wide range of errors. Using water levels derived from
surface areas with a hypsometry [26] would extend the resulting discharge time series over the period
of the Landsat mission starting with the launch of Landsat 4 in 1982. The implementation of additional
remote sensing missions gives new possibilities. Cryosat-2 data could be used to increase the spatial
resolution of the estimated flow gradient and in future, the time synchronous observations of water
level, surface area, and time variable flow gradient by the SWOT mission could be used to improve all
aspects of our methodology while the effort of an implementation of SWOT data should be small.
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Appendix A

To validate the cross-sectional geometry (Section 3.3) with in situ bathymetry, we apply two
offsets, ∆hg and ∆hcs to the long-term water level time series h(t) to get an individual time series hcs(t)
for each cross-section cs:

hcs(t) = h(t) + ∆hg + ∆hcs (A1)

where ∆hg is the median of the differences between the long-term satellite altimetry time series and the
time series of a nearby water level gauge g, and ∆hcs is the height difference between the cross-section
and that gauge. To obtain ∆hcs, we determine the gauge elevations analogous to the virtual stations
using Equations (4)–(6) and estimate the elevation at the position of the cross-section using a linear
interpolation between the gauge elevations. ∆hcs is the difference between the interpolated elevation
and the elevation of gauge g.
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Figure A1. Illustration of the determined elevations showing three virtual stations (VS1-3), two gauges
(G1 and G2), and a cross-section (CS) along a river (blue). The dashed blue line shows the river relative
to the satellite altimetry datum. The elevations x1 and x2 above the reference station VS3 are the results
of a linear adjustment of the satellite altimetry data. x1 and x2 are subtracted from measurements at
VS1 and VS2 respectively to combine all VS to one long-term time series. The two offsets ∆hg and
∆hcs are necessary for the validation of the cross-sectional geometry with bathymetric survey data to
compensate for the different datums and the shift in location.

Appendix B

In contrast to Vicksburg and Tarbert Landing, the time resolution of the in situ discharge time
series for Natchez provided by the USACE is not daily but contains a record every 14 days on average
with 585 entries in the time period from 3 January 2000 to 10 September 2019. However, only 21 in situ
observations match a date in the estimated discharge time series and can be used for the validation.
In order to increase the number of validation data, an additional discharge time series is estimated
using a rating curve based on daily water level measurements at Natchez, which are also provided by
the USACE. To consider the hysteresis effect [6], we use the rating curve formula by Jones [74–76]:

Q = Qn

√
1 +

1
SC

∆h
∆t

(A2)

where Qn is the estimated discharge for the water level h using a simple rating curve, in our case an
exponential function, and t denotes time. The parameters of the exponential function, as well as the
river bed slope S and the flood wave celerity C are fitted to the observed data for each year separately
to consider changes in the channel geometry over time. For years when the fitting fails, parameters
fitted to the entire observational period are used. The RMSE of the rated data is 1225 m3/s compared
to the original observations. The respective NRMSE is 5.66% and the R2

P is 0.978.
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Abstract

The water surface slope (WSS) of rivers is essential for estimating flow velocity and discharge. It is also helpful
as a correction applied to range measurements of satellite altimetry missions to derive water level time series at a
virtual station. Using radar altimetry, WSS can only be roughly estimated and is limited to wide rivers because of
its coarse spatiotemporal resolution. In contrast, the lidar sensor onboard ICESat-2 can also observe small rivers.
Using ICESat-2’s unique measurement geometry with six parallel laser beams, we derive instantaneous WSS along
and across the satellite’s ground track, time-variable WSS (with an average of five days of records in the studied
epoch between October 2018 and October 2021), and average WSS on reach-scale. Although the method can be
applied globally, this study is limited to 815 reaches in Europe and North America where sufficient validation data is
available. We compare the ICESat-2 WSS with time-variable WSS derived from multiple gauges and constant data
from the “SWOT River Database” (SWORD). For 89% of the studied reaches, ICESat-2 can be used to estimate the
average WSS with a median absolute error of 23 mm/km. We also show the possible performance gain at multiple
virtual stations in the “Database for Hydrological Time Series of Inland Waters” (DAHITI, https://dahiti.dgfi.tum.de),
applying the WSS as a correction for altimetry satellites’ ground track variability. We correct 137 virtual stations for
the derived ICESat-2 WSS and yield improvements in the root mean square error (RMSE) by up to 30 cm or 66%.
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1.  Introduction
The water surface slope (WSS), hydraulic gradient, or flow gradient of a river is the slope of the hydraulic grade 
line, that is, the change of the pressure head per distance unit (Gliński et al., 2011; Herrmann & Bucksch, 2014; 
Julien, 2018b). It is typically defined positive for an decreasing water surface elevation (WSE) in downstream 
direction (Julien, 2018b). WSS is not stationary but changes over time and space. Especially in natural rivers 
that are non-uniform and unsteady, the WSS is variable over time because of morphological changes of the river 
bed and flood waves (Julien, 2018a). Locally, WSS may differ from larger-scale averages and change with every 
reach because of local characteristics like cascades, pools, or tributary estuaries (Rhoads, 2020; Schumm, 2005). 
While the WSS of an alluvial river is gradual, bedrock causes natural discontinuities in semi-alluvial rivers 
(Julien,  2018b). In hydrology, WSS is a critical parameter required to calculate flow velocity and discharge 
(Manning, 1891; Rhoads, 2020). The flow velocity derived from WSS is also essential for densifying spatial 
or temporal low-resolution water level measurements from non-repeating satellite altimetry missions such as 
Cryosat-2 (Tourian et al., 2016). Generally, the WSS can be used to correct any satellite altimetry mission to 
compensate for the satellites' ground track variability when calculating long-term water level time series at fixed 
locations, so-called virtual stations (VS).

WSE measurements of the “Shuttle Radar Topography Mission” (SRTM) are regularly used to derive WSS 
(Cohen et al., 2018; Kebede et al., 2020; LeFavour & Alsdorf, 2005; Sichangi et al., 2018). However, because of 
its relatively large height error, WSS estimates from SRTM data are only appropriate on a large scale (LeFavour 
& Alsdorf, 2005). For river discharge estimation and satellite altimetry correction, though, smaller-scale WSS are 
favorable. Additionally, SRTM captured only a short epoch of 11 days in February 2000, and the WSS observed 
during this time may not represent the respective average WSS.

There are only a few methods capable of detecting small-scale local changes of WSS with high resolution. 
Airborne lidar (Mandlburger et  al.,  2020) and radar (Jiang et  al.,  2020) sensors or measurements from field 
campaigns (Carr et al., 2019; Pitcher et al., 2020) are suitable because of the continuous local mapping of the 
WSE. However, such airborne or field campaigns require significant personnel and cost-intensive effort, so they 

Abstract  The water surface slope (WSS) of rivers is essential for estimating flow velocity and discharge. 
It is also helpful as a correction applied to range measurements of satellite altimetry missions to derive water 
level time series at a virtual station. Using radar altimetry, WSS can only be roughly estimated and is limited 
to wide rivers because of its coarse spatiotemporal resolution. In contrast, the lidar sensor onboard Ice, Cloud, 
and Land Elevation Satellite 2 (ICESat-2) can also observe small rivers. Using ICESat-2's unique measurement 
geometry with six parallel laser beams, we derive instantaneous WSS along and across the satellite's ground 
track, time-variable WSS (with an average of 5 days of records in the studied epoch between October 2018 and 
October 2021), and average WSS on reach-scale. Although the method can be applied globally, this study is 
limited to 815 reaches in Europe and North America where sufficient validation data is available. We compare 
the ICESat-2 WSS with time-variable WSS derived from multiple gauges and constant data from the “SWOT 
River Database.” For 89% of the studied reaches, ICESat-2 can be used to estimate the average WSS with a 
median absolute error of 23 mm/km. We also show the possible performance gain at multiple virtual stations 
(VS) in the “Database for Hydrological Time Series of Inland Waters” (https://dahiti.dgfi.tum.de), applying 
the WSS as a correction for altimetry satellites' ground track variability. We correct 137 VS for the derived 
ICESat-2 WSS and yield improvements in the root mean square error by up to 30 cm or 66%.
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can only be applied occasionally to selected reaches but are not suitable to continuously observe the WSS of 
an entire river system. Therefore, the WSS observations may not agree with the actual average WSS, similar to 
methods using SRTM data.

Better suited for operational usage, WSE measurements between two stations, such as gauges, with a known 
distance along the river and without flow disturbances in between can be used to estimate WSS. The local scales 
depend on the distribution of stations along the river. Although such WSS estimates represent only a mean 
between the stations and small-scale deviations may not be captured, temporal changes of the long-term mean 
WSS can be monitored by the temporal continuous WSE measurements.

In-situ gauging stations are the most accurate WSE sources as the pressure head is continuously measured by 
a probe in a housing sheltered from disturbances, for example, weather (Sauer & Turnipseed, 2010). However, 
maintaining a network of gauging stations is challenging (Calmant & Seyler, 2006), limiting the number of moni-
tored sites and increasing the probability of undetected flow disturbances or significant changes in WSS between 
two gauges. Therefore, WSS estimates between two in-situ stations may not always be meaningful, especially, 
when both stations do not reference the same vertical datum. Often, gauge data can not be used to derive WSS 
because the vertical datum is not specified. Additionally, from a global view, the spatial distribution of gauges is 
uneven, concentrated in developed countries and absent in remote areas, which is apparent from the availability 
of the derived discharge data (Hannah et al., 2011).

In contrast, satellite altimetry provides homogeneously distributed data globally. However, the number of poten-
tial VS depends on the satellite orbit and how the track crosses a river of interest. It may miss meridional flowing 
rivers parallel to its ground track or cross meandering rivers multiple times within a short distance. Overall, the 
temporal resolution of WSE measurements by satellite altimetry is significantly lower than that of gauges. Clas-
sical pulse-limited radar or low-resolution mode (LRM) altimeters measure only in nadir direction and may have 
a significant error for narrow rivers due to the large radar footprint (Calmant et al., 2016). Still, for rivers wider 
than 200 m the WSE can be derived from LRM altimetry with an root mean square error (RMSE) of a few deci-
meters (Schwatke et al., 2015; Sulistioadi et al., 2015). WSE measurements using synthetic aperture radar (SAR) 
can be used for rivers that are up to 40 m narrow with similar accuracy (Halicki & Niedzielski, 2022), and the 
more modern techniques like interferometric SAR (SARIn) and laser altimeters are still more accurate and appli-
cable for even more narrow rivers. Furthermore, modern sensors such as the planned “Surface Water  and  Ocean 
Topography” (SWOT) mission measure not only in nadir direction but within a swath so that WSS can be instan-
taneously derived within one pass (Langhorst et al., 2019).

Despite the challenges and uncertainties, satellite altimetry is widely used to estimate WSS, predominantly to 
derive river discharge (Gleason & Durand, 2020; Sichangi et al., 2016). In a study for two arctic rivers, SARIn 
and SAR data from the CryoSat-2, SARAL, and Sentinel-3A missions were used to model the longitudinal 
river profile using a time-variable cubic spline function (Zakharova et al., 2020). In this way, it was possible to 
estimate WSS at any location and time for a 175 km segment of the Ob River. However, no satisfactory satel-
lite altimetry data could be retrieved for the Pur River. The average relative model error was 22%, with error 
estimates ranging from 1.4 to 10 mm/km for WSS between 1 and 13 mm/km. However, the authors state these 
errors might be underestimated. A linear model was used to derive constant WSS of the Mississippi River with 
a least-squares approach based on Jason-2/-3, ENVISAT ("Environmental Satellite"), and Sentinel-3A/B data 
(Scherer et al., 2020). The average absolute median deviation of the WSS between the VS compared to the WSS 
measurements between seven gauges was 12 mm/km with a median relative error of 19.4%. WSS could also be 
derived from a topographic model of the Mekong River which used B-Splines on a directed tree graph fitted to 
multi-mission satellite altimetry WSE observations (Boergens et al., 2021). However, the model was limited by 
the uneven distribution of observations and quality suffered in regions with sparse data.

Without applying a model, WSE differences between consecutive intersections of the same satellite altimetry 
passes with two reaches of the Yukon River were used to estimate WSS (Bjerklie et al., 2018). The resulting WSS 
ranged between 30 and 140 mm/km and were within the range of 10–320 mm/km observed by field measure-
ments. In a similar way, WSS was determined for the Xingu River using WSE measurements of 10 consecutive 
crossings of the ENVISAT mission (Garambois et al., 2017). Although these studies may yield good results, 
methods using consecutive crossings of one satellite altimetry pass are limited to a small number of sites by the 
orbit geometry of the respective mission. In contrast, ICESat data of different passes observed within 2 days 
difference were used to estimate WSS for the Congo River (O’Loughlin et al., 2013). Because of the long repeat 
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cycle of ICESat, it is more likely to get useable data for any global river with this method. However, there may be 
errors introduced due to the time lag between the asynchronous WSE observations.

In this paper, we use WSE measurements acquired by the follow-on mission of ICESat, the “Ice, Cloud, and 
Land Elevation Satellite 2” (ICESat-2). Similar to ICESat, it is placed on a long-repeat orbit and therefore, covers 
many reaches but revisits them only every 91 days. Compared to ICESat, the coverage of ICESat-2 is increased 
by its new sensor, the “Advanced Topographic Laser Altimeter System” (ATLAS), which measures the Earth's 
topography along the ground track of three parallel pairs of laser beams spaced 3.3 km apart (Markus et al., 2017; 
Neumann et al., 2019). This increases the probability of simultaneous WSE measurements at different locations 
within a river reach.

The novel approach presented in this study uses ICESat-2's unique measurement geometry to derive instanta-
neous reach-scale river WSS. Two methods, (a) the across-track and (b) the along-track, are combined in this 
approach. In the across-track method, we calculate the WSS between the simultaneous WSE measurements of 
ICESat-2's parallel beams intersecting a reach. Additionally, we fit the WSS to all WSE observations of each 
individual beam intersecting the river reach and project it to the river centerline in the along-track method. Both 
methods are combined into a time-variable WSS to maximize the temporal and spatial coverage. Furthermore, 
an average reach-scale WSS is computed. In this way, we aim to derive global average reach-scale WSS and its 
variability in future studies.

Amongst other data required for this study, the used ICESat-2 data set is described in Section 2. The approach 
to derive WSS is described in Section 3. The resulting WSS are compared with time-variable WSS between 
in-situ gauges in Section 4 where we also show the impact of applying the reach-scale WSS as a correction to 
VS hydrographs.

2.  Study Areas and Data
For this study, we select rivers in Europe and North America where a sufficient number of in-situ data are 
available for validation. The maps of these regions (Figure 1) contain all reaches defined by the “SWOT River 
Database” (SWORD, see Section 2.2). Only the bold reaches are studied in this paper because the selection of 
the studied reaches is limited by the availability of in-situ gauges suitable for validation and their connectivity 
so that there are no dams, weirs, major riffles, or confluences in between the gauges. All the in-situ sources are 
given in Section 2.3. No WSS can be derived for the purple reaches because no or insufficient data is available 
from ICESat-2. The ICESat-2 data is described in Section 2.1. Table A1 in the appendix lists the characteristics 
of the studied river sections according to SWORD and the in-situ sources used which we describe in Section 2.3. 
Although strongly limited by the spatial distribution of suitable gauges, we include as diverse reaches as possible, 
especially regarding the nominal slope and width. Figure 1 also shows the orbit ground tracks of the Jason-2/3 and 
Sentinel-3A/B missions and the VS used in this study. We describe the radar satellite altimetry data in Section 2.4.

2.1.  ATLAS/ICESat-2 ATL13 L3A Inland Water Surface Height Product

The primary data used in this study are WSE measurements acquired by ICESat-2 provided within the 
“ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data” (ATL13) (Jasinski et al., 2021b) product by 
the “National Snow & ICE Data Center” (NSIDC). The satellite is placed on a 91-day repeat orbit with an incli-
nation of 92° (Markus et al., 2017). The ATLAS sensor onboard ICESat-2 is a photon-counting lidar, measuring 
the time an emitted photon travels to Earth and back to the sensor. ATLAS emits photons along three pairs of 
beams, which each consist of a high energy (175 ± 17 μJ) “strong” beam and a low energy (45 ± 5 μJ) “weak” 
beam. Each beam illuminates a footprint of approximately 17 m in diameter at a pulse rate of 10kHz (i.e., one 
pulse every 0.7 m) (Neumann et al., 2019). However, because of the low reflectance of water, a maximum of 2.9 
photons per meter can be observed by the sensor over inland waters, depending on the water and atmospheric 
conditions (Jasinski et al., 2021a).

Two global studies (Cooley et al., 2021; Ryan et al., 2020) validate the “ATLAS/ICESat-2 L3A Land and Vege-
tation Height (ATL08)” data, which reportedly contain very similar water level observations to the ATL13 data 
(Ryan et al., 2020). For lakes and reservoirs, there is no significant difference in the accuracy between the strong 
and weak beams (Cooley et al., 2021). In contrast to radar altimetry, the lidar sensor can not penetrate clouds, so 
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there are missing observations in overcast conditions. The median standard deviation of ICESat-2 observations 
over inland waters is reported to be 0.017 m, with a mean error of 0.14 m (Cooley et al., 2021; Ryan et al., 2020). 
A regional study validating ATL13 data at the Mekong River reports similar results with an RMSE of 0.24 m and 
a median standard deviation of 0.04 m (Lao et al., 2022).

Figure 1.  Regions with studied reaches, in-situ gauges we use for validation, and virtual stations to which we apply the water 
surface slope correction. Top: Europe. Bottom: North America.
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The ATL13 product does not contain photon-level observations but representative values over short segments 
of 75–100 consecutive received photons above inland water bodies. These short segments have an along-track 
length of 30 to several hundred meters, depending on the number of received signal photons per pulse. In this 
paper, we use the “ht_water_surf” parameter, the mean water surface height, with reference to the WGS84 ellip-
soid per beam and short segment (Jasinski et al., 2021a). We apply the EIGEN-6C4 geoid (Foerste et al., 2014) 
to have a common reference of the ICESat-2 WSE data with other satellite altimetry data used in this study. 
Additionally, we use the spacecraft orientation parameter to identify the strong and weak beams and compare the 
respective results.

2.2.  SWOT River Database (SWORD)

To determine the angle and chainage at which the beam ground tracks of ICESat-2 intersect a river, we use the 
high-resolution (30 m) river centerlines from SWORD (Version v1) (Altenau et al., 2021a). SWORD is based on 
the “Global River Widths from Landsat” (GRWL) data set (Allen & Pavelsky, 2018), which contains river center-
lines processed from Landsat imagery at mean annual flow. For SWORD, the GRWL centerlines were segmented 
at natural and artificial river obstructions, basin boundaries, tributary junctions, or otherwise approximately 
every 10 km. SWORD also includes data on river obstructions and topology, which we use to determine whether 
two stations are connected without flow disturbances in between. Additionally, SWORD contains constant WSS 
data per reach, which we use as a benchmark to compare our results besides in-situ gauging data. The SWORD 
WSS are estimated by fitting a linear regression to elevation data from the MERIT Hydro data set (Altenau 
et  al., 2021a; Yamazaki et  al.,  2019). MERIT Hydro is derived from MERIT DEM which comprises remote 
sensing data from the SRTM and “Advanced Land Observing Satellite” (ALOS) missions, with removed noise, 
height errors, and tree canopy biases (Yamazaki et al., 2017). Furthermore, SWORD contains the width of each 
reach at mean annual flow, which we use to filter the ICESat-2 observations.

2.3.  In-Situ Water Level Time Series From Gauges

We validate the WSS using in-situ WSE data observed at multiple pairs of gauges. The in-situ data of single 
gauges are also used to determine error measures for satellite-derived hydrographs at VS before and after applying 
the WSS as a correction. We retrieve the in-situ data for Germany from the “Wasserstraßen- und Schifffahrtsver-
waltung des Bundes” (WSV) provided by the “Bundesanstalt f’́ur Gewässerkunde” (BfG), for the United States 
from the “U.S. Army Corps of Engineering” (USACE) and the “U.S. Geological Survey” (USGS), for France 
from “Hydroportail”, and for Serbia from the “Republic Hydrometeorological Service of Serbia” (HIDMET). 
The number of gauges per river and their vertical datum is listed for each source in Table A1 in the appendix. We 
only use in-situ data from gauges with a given vertical datum to get an accurate WSE difference between a pair 
of gauges. In case the given vertical datum varies per gauge within a source, it is converted to the common datum 
given in Table A1. If a conversion is not possible, the gauge is discarded.

2.4.  DAHITI Water Level Time Series From Radar Altimetry

We use water level time series derived from radar satellite altimetry data from the “Database for Hydrological 
Time Series of Inland Waters” (DAHITI, www.dahiti.dgfi.tum.de) (Schwatke et al., 2015) in this study. The data 
is provided at VS, which are located at the intersections of a satellite's orbit ground track with a river. We select 
the Jason-2/3 and Sentinel-3A/B missions for this study. These satellites orbit Earth in a repeating pattern, revis-
iting the same location every 10 and 27 days, respectively. However, the orbit repeatability at the equator crossing 
of altimetry satellites is designed to be within ±1 km (Tapley et al., 1994) so that the exact location where they 
cross a river is not stationary. For the selected missions, the empirical repeatability magnitude is in a range of 
1.5–1.7 km. With a global median river WSS of 469 mm/km (Frasson et al., 2019), these slight deviations at the 
assumed to be stationary VS can cause a WSE error of up to 1 m on average.

The Jason-2/3 satellites are equipped with a LRM altimeter, which scans a circular area with a diameter of several 
kilometers (Calmant et al., 2016). Special retracking software must be used for smaller rivers to treat the so-called 
“hooking” or “off-nadir” effect and signal noise caused by ambient topographic features (Boergens et al., 2016; 
Frappart et  al.,  2006; Schwatke et  al.,  2015). The sensor onboard Sentinel-3A/B is a SAR altimeter, which 
has an improved along-track resolution of about 300 m (Calmant et al., 2016). Atmospheric, geophysical, and 
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instrument corrections must be applied to estimate accurate WSE from satellite altimetry measurements (Calmant 
et al., 2016). All mutual and satellite-specific corrections are already applied to the time series data retrieved 
from DAHITI. Additionally, the DAHITI data are corrected by inter-mission biases from a multi-mission cross-

over analysis to allow the combination of WSE data from different missions 
(Bosch et al., 2014; Schwatke et al., 2015).

3.  Methodology
In this paper, we use two methods to estimate instantaneous, time-variable, 
and average reach-scale WSS from ICESat-2 observations: (a) Across-track 
WSE differences of two beams (Section 3.2) and (b) along-track WSE linear 
trends of single beams (Section  3.3). Both methods have advantages and 
disadvantages depending on the intersection angle of the orbit ground track 
with the reach centerline. Therefore, we also estimate time-variable and 
average WSS using a combined approach (Section 3.4). Figure 2 shows the 
processing flow and data structure after preprocessing.

3.1.  Preprocessing

The processing is performed for each given SWORD reach and starts by 
selecting all ATL13 observations within the reach area of interest (AOI). 
To construct the reach AOI, we buffer the SWORD reach center line by the 
reach's width plus four times its width standard deviation. The AOI of a sche-
matic river reach is shown in Figure 3 as a light-blue polygon. Each beam and 
cycle of the ATL13 data intersecting with the AOI is handled as an individ-
ual feature. Each feature is intersected with the SWORD reach centerline to 
determine the intersection location as feature reference point Pi and its chain-
age. In case there are multiple intersections, the feature is split in between. 

Figure 2.  Processing flow and data structure. After preprocessing (Section 3.1) the instantaneous water surface slope (WSS) is estimated using the across-track 
(blue, Section 3.2) and along-track (orange, Section 3.3) approach. The results are reduced to a time-variable WSS with daily resolution using a weighted average. 
Both approaches are combined (black, Section 3.4) using the across-track time-variable data supplemented by the along-track data while duplicate along-track data is 
discarded. An average value is derived for each approach by calculating the median of each time-variable WSS.

Figure 3.  Schematic of Ice, Cloud, and Land Elevation Satellite 2 ATL13 
observations (circles) of one cycle within a reach area of interest (light-blue 
polygon), segmented as features (orange) per beam (green) with reference 
points (squares) at the centerline (dashed blue) intersections or the nearest 
centerline point. Features with multiple intersections (dashed orange) are split.
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If a feature is not intersecting the river centerline, the nearest point of the 
centerline to the feature is taken as the reference point Pi. Figure 3 shows a 
schematic of the feature definition with a significantly reduced number of 
observations for simplicity.

We use the WSE of the already preprocessed ATL13 inland water body 
height data. Outliers within each feature are detected and removed similar to 
the DAHITI approach (Schwatke et al., 2015). For this purpose, an absolute 
deviation around the median (ADM) is calculated using a rolling window 
along the beam ground track. The windows size is seven observations for 
features with more than 20 data points across the river. Otherwise, the ADM 
of all observations is used. All observations with an ADM of more than 
5 cm are assumed to be outliers and rejected. Additionally, we use the type 
(“inland_water_body_type”) and cloud (“cloud_flag_asr_atl09”) flags from 
the ATL13 data. Observations, which are not flagged as reservoir, river, or 
estuary are rejected as well as observation marked cloudy with at least low 

confidence (flags 0–3). If there are along-track gaps of more than 500 m in the remaining observations, we split 
the data into clusters at these gaps and use only the cluster with the largest number of observations. Further 
outliers are detected using a linear support vector regression (SVR). Contrary to the standard DAHITI approach 
(Schwatke et al., 2015) for radar altimetry, we do not use a zero-slope constraint for the SVR. WSE observations 
that deviate more than 5 cm from the SVR fit are rejected as outliers.

3.2.  Across-Track WSS Estimation

For each feature reference position Pi, we calculate a reference WSE using the average of the valid WSE observa-
tions weighted by their inverse distance to Pi. Next, the chainage difference between all possible pairs of reference 
positions Pi of the same cycle, so also between features of the same beam (e.g., P4 and P5 in Figure 3), are calcu-
lated. Pairs of reference positions with a chainage distance below 1,000 m are disregarded, assuming the baseline 
is too short for estimating a meaningful WSS. Between the remaining pairs of reference positions, the WSS is 
calculated by dividing their WSE difference by their chainage difference. Negative WSS estimates are rejected 
assuming outliers. In order to reduce the multiple instantaneous results to a reach scale time-variable across-track 
WSS with daily temporal resolution (i.e., a WSS time series, cf. Figure 2), the daily weighted average is used. 
The weights are defined as the inverse of the sum of the standard deviations of the WSE observations in both 
features used to calculate the instantaneous WSS records. In this step samples from different locations within the 
reach are combined and treated as if the WSS is not changing over the reach. While this does not reflect the real 
behavior of a river, we assume the SWORD reaches to be homogeneous so that the local WSS variability is of 
minor significance. Additionally, we derive an average reach-scale across-track WSS by calculating the median 
of the time-variable WSS values.

3.3.  Along-Track WSS Estimation

The spatial resolution of the ICESat-2 ATLAS instrument is high enough (approx. 0.7 m (Jasinski et al., 2021a)) to 
detect along-track water level differences with small error (approx. 0.061 m (Jasinski et al., 2021a)) in cloud-free 
conditions within a single river crossing of a beam, respectively one feature (the ATL13 observations assigned 
to a reference position Pi). Figure 4 shows a schematic of such a feature. Because of the high spatial resolution, 
precision, and accuracy, we can estimate the along-track WSS (tan β) by fitting a linear regression to the ATL13 
short segment WSE observations and their along-track position. We use a fitting instead of the difference of 
the maximum and minimum WSE to cope with undetected outliers. However, for hydraulic applications, the 
along-river WSS (tan α) is required instead of tan β. In order to estimate tan α at a reference position Pi, the vector 
of the features beam ground track segment 𝐴𝐴 𝑏⃗𝑏 is projected onto the river centerline tangent vector 𝐴𝐴 𝐴𝐴𝐴  :

𝑏𝑏′ =
𝑏⃗𝑏 ⋅ 𝑐𝑐

‖𝑐𝑐‖2
𝑐𝑐� (1)

Figure 4.  Schematic of an Ice, Cloud, and Land Elevation Satellite 2 beam 
ground track 𝐴𝐴 𝑏⃗𝑏 crossing a river (blue polygon) with centerline tangent vector 

𝐴𝐴 𝐴𝐴𝐴  at an angle γ, along-track water surface slope (WSS) (tan β), and along-river 
WSS (tan α).

 19447973, 2022, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
032842, W

iley O
nline L

ibrary on [29/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

SCHERER ET AL.

10.1029/2022WR032842

8 of 25

𝐴𝐴 𝐴𝐴𝐴  is the connecting vector between the upstream and downstream SWORD nodes of the SWORD node closest to 
Pi. Then, the WSS tan α can be calculated by dividing the fitted WSE difference by the length of the river section 

intersected by the beam ground track 𝐴𝐴

(

‖𝑏𝑏′‖

)

 as follows:

tan 𝛼𝛼 =
‖𝑏⃗𝑏‖ tan 𝛽𝛽

‖𝑏𝑏′‖
sgn

(

𝑏⃗𝑏 ⋅ 𝑐𝑐

)

� (2)

Note the multiplication by the sign of the scalar product of 𝐴𝐴 𝑏⃗𝑏 and 𝐴𝐴 𝐴𝐴𝐴  in order to preserve the slope direction in the 
rare cases the river slope is negative. However, negative WSS results are rejected assuming outliers.

Using a Students t-distribution the WSS confidence interval (CI) is calculated at a 95% confidence level based 
on the standard error of the linear fitting of tan β (Niemeier, 2008). The CI is used as an outlier criteria to reject 
linear fits with high uncertainty. We use an angle-dependent outlier threshold CIth(γ), which allows a higher CI for 
less orthogonal and thus longer intersections. At such intersections we assume a larger CI caused by small-scale 
WSS variations such as riffles and waves but better results than for shorter more orthogonal intersections with 
a possible lower CI. Additionally, the angle-dependent outlier threshold rejects any result from an intersection 
angle larger then the given maximum angle. CIth(γ) is calculated as follows:

CI�ℎ(�) =

⎧

⎪

⎨

⎪

⎩

CImax −
CImax

�max
� ′ if� ′ < �max

0, otherwise
� (3)

with

� ′ =

⎧

⎪

⎨

⎪

⎩

180◦ − � if� > 90◦

�, otherwise
� (4)

and

𝛾𝛾 = arccos
𝑏⃗𝑏 ⋅ 𝑐𝑐

‖𝑐𝑐‖‖𝑏⃗𝑏‖
� (5)

where γ is the intersection angle of the beam 𝐴𝐴 𝑏⃗𝑏 with the reach centerline 𝐴𝐴 𝐴𝐴𝐴  , CImax is the defined maximum CI 
parameter, and γmax is the defined maximum intersection angle parameter. In this study, we use CImax = 300 mm/
km and γmax = 65° as a result of empirical tests. Analogous to Section 3.2 and as shown in Figure 2 a weighted 
average is used to calculate time-variable mean values with daily temporal resolution where γ′ −1 is used as 
weight. The median value of this time-variable WSS is used as an average reach scale along-track WSS.

3.4.  Combined WSS Estimation

In order to increase the spatial and temporal coverage, we merge both, the across- and along-track methods, in 
one combined approach. This combination is necessary because depending on the intersection angle between the 
orbit ground track and the river centerline, it is possible that only one approach yields a WSS estimate. We expect 
the along-track method to yield results in situations where the across-track method can not be applied because of 
lacking simultaneous intersections with meridional reaches. On the other hand, orthogonal crossings with zonal 
reaches are favorable for the across-track approach, increasing the probability of multiple beams crossing the 
same reach. Therefore, the days of record in the WSS time series from both methods may differ.

As shown in Figure 2, the combination of both approaches is executed based on the time-variable WSS results 
with daily resolution. Because the across-track approach proves to be more accurate (see Section 4), its time 
series is used as the initial data. This time series is then supplemented by records from the along-track time series 
for dates on which no across-track observations are available. Thus, in the combined approach, the across-track 
WSS is used for each available day, while the along-track WSS is only used for days without across-track WSS. 
The average combined WSS is determined using the median of the combined time-variable WSS.
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4.  Results and Discussion
We use two different methods to validate the WSS derived from ICESat-2 
data. In Section 4.1, we compare the ICESat-2 WSS against time-variable 
in-situ WSS derived from two gauges enclosing the respective reach. The 
accuracy of the in-situ WSS depends on the gauge distance and river char-
acteristics. We do not expect this data to reflect small-scale WSS variations 
between the gauges, but there is no more accurate time-variable WSS source 
covering large regions. As an alternative validation and to better quantify 
the quality of the ICESat-2 WSS, we apply the average combined WSS 
as a correction to water level time series from radar satellite altimetry in 
Section 4.2.

4.1.  Validation Against Pairs of Gauges

To validate the method against in-situ WSS, we manually select pairs 
of in-situ gauges and determine their distance using the high-resolution 
SWORD centerline. We then calculate an in-situ WSS time series for each 
pair based on the difference between the two WSE time series. We apply our 
method to all SWORD reaches between the gauges of each pair and validate 
the instantaneous (Section  4.1.1), time-variable (Section  4.1.2), and aver-
age (Section 4.1.3) ICESat-2 WSS against the in-situ WSS time series, or 

the median in-situ WSS, respectively. The number of validation pairs is limited by the spatial distribution of 
the  gauges, the epoch overlap with ICESat-2, and the availability of essential metadata such as the vertical datum, 
gauge zero, and exact location. We omit pairs of gauges with an average negative slope, mismatching vertical 
datums, or manually detected errors in the SWORD centerline between the gauges. In this way, 205 pairs of 
in-situ gauges are defined with 815 unique SWORD reaches located between the defined pairs. However, 132 
reaches are located at the end and beginning of consecutive pairs of gauges, that is, within two validation sets, 
so there are more validation data than individual estimates. We manually select the pairs of gauges to ensure that 
they are connected without flow disturbances, that is, weirs, dams, or waterfalls.

4.1.1.  Instantaneous WSS

Table 1 shows the results of the instantaneous WSS validated against the in-situ WSS. The median absolute error 
(MAE) refers to all validations, that is, if a reach is associated with multiple pairs of gauges, the WSS estimates 
are validated repeatedly. The along-track method is shown twice, with and without applying the angle-dependent 
outlier rejection. Each method is validated for strong and weak beams separately and with the data from all 
beams. Along-track results rejected as outliers because of a negative WSS fit are not listed in Table 1. Negative 
WSS fits occur for both beams with an equal probability of 35%. Table 1 also lists the percentage of the studied 
reaches covered by the respective method and subset of beams. Additionally, it shows the median CI for the 
along-track method.

Applying the across-track method to the data from all beams yields significantly more results than applying it 
to the strong or weak beams separately because there are more combinations possible between the intersections. 
Therefore, using all beams maximizes the coverage. However, the loss of coverage is not as significant as the loss 
of estimates when using only the strong or weak beams. Furthermore, the MAE is consistent at around 23 mm/
km for any subset of beams with the across-track method. The MAE is significantly larger for the along-track 
method (57 mm/km), especially without the angle-dependent outlier rejection (133 mm/km). There is no differ-
ence in the MAE depending on the used beams with the along-track method. However, the CI is noticeably larger 
for the weak beams before outlier rejection. Figure 5 shows the absolute errors of the along-track method by the 
intersection angle and CI. Additionally, it shows the angle-dependent confidence threshold (black line) used for 
outlier rejection. Applying the outlier rejection to the results of the along-track method reduces the number of 
estimates by 63% and there are significantly fewer records than for the across-track method. Furthermore, the 
coverage of the studied reaches decreases, especially for the weak beams. However, the MAE improves by 57% 
with the application of the outlier rejection.

Method Beams nest nval
 a

MAE 
𝐴𝐴

[
mm

km

] Coverage 
(%)

Med. 
CI 𝐴𝐴

[
mm

km

]

Across All 18,178 20,021 24 82

Strong 4,889 5,345 23 78

Weak 4,382 4,839 23 75

Along All 4,455 4,645 57 78 30

Strong 2,609 2,749 61 74 25

Weak 1,846 1,896 52 62 36

Along b All 12169 13183 133 96 79

Strong 6,360 6,912 133 94 62

Weak 5,809 6,271 134 94 110

 aEstimates may be validated repeatedly when associated with multiple pairs 
of gauges.  bWithout outlier rejection.

Table 1 
Instantaneous Water Surface Slope Validation Results by Method and Used 
Beams With the Median Absolute Error (MAE), Coverage of the Studied 
Reaches, and Median 95% Confidence Interval (CI) of the Fitting
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Overall, the results in Table 1 show no notable difference in quality between the strong and weak beams through-
out the methods, except for the number of estimates and coverage, which are higher for the strong beams. The 
covered percentage of the studied reaches is practically the same for both approaches, with 82% for the across-track 
method and 78% for the along-track method after the outlier rejection.

Figure 6 shows on the left the along-track WSS error by the length of the intersection between the satellite's 
ground track and the river surface area. The orange line shows the median error in a 200 m window. Addition-
ally, the point color indicates the relative data point density. It shows a higher probability of large errors for 
shorter intersections. For intersections longer than 500 m, the rolling median along-track WSS error stays below 
100 mm/km. The shortest intersection yielding a valid along-track WSS estimate is 66.2 m long. On the right, 
Figure 6 shows the across-track WSS error by the average width of the river reach according to SWORD data. The 
orange line shows the median error in a 100 m window. The narrowest river reach with an observed across-track 
WSS is 42 m wide. Although the probability of large errors rises with narrower reaches, the rolling median error 
stays below 55 mm/km.

As an example for fitting the along-track WSS and estimating the reference WSE for the across-track method, 
Figures 7–9 show selected intersection features with the Danube and Mississippi River. At the top, the figures 
show different types of outliers detected and rejected before the WSS estimation. The bottom plots show 
the along-track WSS fitted to the valid ATL13 observations and the elevation at the reference position (the 

Figure 5.  Along-Track water surface slope absolute errors by intersection angle and confidence interval with the applied 
angle-depended outlier threshold (black line). Estimates above the line are rejected.

Figure 6.  Left: Along-Track water surface slope (WSS) absolute errors by intersection length. Right: Across-Track WSS absolute errors by reach width. The orange 
lines show the rolling median within a 200 and 100 m window, respectively. The point color indicates the relative data point density.
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intersection with the centerline), which is used to calculate the across-track WSS in combination with simulta-
neous observations at other reference positions. The maps show the centerline and beam vector with the valid 
ATL13 observations and the feature reference location above a Sentinel-2 scene from the same month. The 
outliers in Figure 7 are caused by incorrect range measurements and detected by the ADM and SVR thresholds. 
The outliers in Figure 9 are caused by an additional intersection with the reach AOI. The WSE observations of 
the first intersection are considered outliers because the data is split into clusters at along-track gaps greater than 
500 m and only the largest cluster is used. Figures 7 and 8 show the simultaneous intersection of the adjacent 

Figure 7.  Beam GT1R (strong) intersecting reach 22791100061 (Danube) on 29 February 2020. Top: All ATL13 
observations, including rejected outliers. Lower-left: Along-track Elevation of the ATL13 observations after outlier rejection 
with fitted along-track water surface slope (WSS) (89 mm/km, confidence interval: 10 mm/km). Lower-right: Beam GT1R 
intersecting the river centerline vector at an angle of 34° with ATL13 observations after outlier rejection. The resulting 
along-river WSS is 107 mm/km.

Figure 8.  Lower-right: Beam GT1L (weak) intersecting reach 22791100061 (Danube) on 29 February 2020 at an angle of 
32°. Top: ATL13 observations including outliers. Lower-left: water surface slope (WSS) fitted to valid ATL13 data. The 
resulting along-river WSS of −18 mm/km (confidence interval: 28 mm/km) is rejected.
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strong GT1R and weak GT1L beam with the same reach of the Danube River. There are significant less photon 
returns for the weak beam resulting in a lower spatial resolution of the ATL13 short segment data. Therefore, the 
WSS of −18 mm/km fitted to the weak data is not meaningful and gets rejected because it is negative. In contrast, 
the WSS fitting to the WSE of the strong beam is much more confident and accurate with a result of 107 mm/km 
while the in-situ WSS is 52 mm/km.

4.1.2.  Time-Variable WSS

We do not distinguish between strong and weak beams for the time-variable WSS because the instantaneous 
WSS validation reveals no significant difference in quality (see Section 4.1.1). As mentioned in Sections 3.2 
and 3.3, we use a weighted average to estimate time-variable WSS with daily temporal resolution using the WSE 
standard deviation or the intersection angle as the weight for the across- and along-track methods, respectively. 
Additionally, we combine both methods (Section 3.4) to increase the spatial and temporal resolution. Thus, there 
are three different WSS time series for each reach which we validate against the in-situ WSS. Table 2 shows the 
results of the validation.

There are 2,868 and 2,272 daily records for the across- and along-track methods. Combining both methods, we 
retrieve 3,671 estimates distributed over 726 reaches. 89% of the 815 studied reaches are covered by the combined 
approach, which is a 7% respectively 11% increase compared to using only the across- or along-track method 
(cf. Table 1). The median MAE slightly decreases by 2 mm/km for the across-track method using daily averages 
compared to the instantaneous results (cf. Table 1). For the along-track method, the MAE stays at 57 mm/km, and 
with 28 mm/km, the MAE of the combined time series is similar to the across-track method, which is plausible 
because the across-track method is preferred in the combination.

The temporal resolution of the combined WSS time series is sparse, with a maximum of 15 and a median of 5 
records within the studied epoch from October 2018 to October 2021 because of the 91-day orbit repetition time. 
The median RMSE is 32, 80, and 49 mm/km for the across, along, and combined time series, and the median 
normalized RMSE (NRMSE) is 23%, 45%, and 35%, respectively. The mean in-situ WSS is used for the normal-
ization of the RMSE. 79 reaches, about 10% of the studied reaches, do not have more than one daily WSS record. 
For the others, the median correlation coefficient is poor, especially for the combined method with only 0.35. 
Hence, even if the errors are small, the temporal variations are not well captured for most of the reaches. There-
fore, the benefit of the daily WSS records is questionable or limited to individual reaches. On the other hand, 
local differences in WSS could cause the deviation of the ICESat-2 derived WSS over a relatively short baseline 
compared to the in-situ WSS measured along a much longer baseline.

Figure 9.  Lower-right: Beam GT2R (strong) intersecting reach 74282100031 (Mississippi) on 12 April 2020 at an angle 
of 19°. Top: ATL13 observations including outliers. Lower-left: water surface slope (WSS) fitted to valid ATL13 data. The 
resulting along-river WSS is 41 mm/km (confidence interval: 11 mm/km).
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Figure 10 shows selected good performing WSS time series estimated with the combined approach (blue) and the 
in-situ data (orange). The amplitude and temporal variability are well captured for the shown reaches, especially 
at the reaches of the rivers Loire and Ohio. Note, that the number of records varies per reach and the record inter-
val is inconsistent within the time series. The interval is not necessarily coherent with the 91-day repeat orbit but 
can be lower when the reach is intersected by two ICESat-2 tracks (e.g., the shown reach of the Missouri River) 
or larger when there are outliers, no data due to cloud coverage, or the reach is only partially intersected by an 
ICESat-2 track.

4.1.3.  Average WSS

We derive an average reach-scale WSS by calculating the median value of the daily WSS estimates. We compare 
this average WSS with the median of the in-situ WSS time series and the constant WSS provided with the 
SWORD data, which is derived from the MERIT Hydro DEM (see Section 2.2). Table 3 shows the MAE and 
coverage of the WSS from the three approaches and the SWORD WSS compared to the median in-situ WSS. 
The SWORD coverage is 100% because of the large swath width of the SRTM mission. However, the MAE of 
SWORD with 71 mm/km is more than three times larger than the MAE of the combined approach with 23 mm/
km. Additionally, the histogram of the SWORD WSS in Figure 11 shows a tendency to values below 50 mm/km, 
which does not fit the distribution of the median in-situ WSS between the studied pairs of gauges. The different 
distributions of the in-situ WSS and the ICESat-2 or SWORD WSS might be biased because of the variable 
number of reaches between the pairs of gauges.

4.2.  Correcting WSE Time Series From Radar Satellite Altimetry for WSS

To better quantify the quality of the ICESat-2 WSS, we apply the average combined WSS as a correction to 
DAHITI water level time series derived from satellite altimetry at 137 VS. As described in Section  2.4, the 
altimetry satellites do not cross a river precisely at the same position but within a range of approximately ±1 km. 
Combined with a meandering river, this range leads to a variation of river crossing positions of up to 5.7 km at the 
studied VS. Still, the observations of all orbit repetition cycles within this range are typically aggregated in one 
time series per VS. To apply the WSS to the DAHITI time series, we intersect the respective orbit of each time 

Measure Method Min Mean Med Max Std nest nval
 a

Abs. error b 𝐴𝐴

[
mm

km

]
Across 0 65 22 2,138 144 2,868 3,067

Along 0 106 57 3,355 183 2,272 2,359

Combined 0 75 28 3,267 158 3,671 3,886

RMSE c 𝐴𝐴

[
mm

km

]
Across 0 76 32 1,295 137 663 766

Along 0 133 80 2,728 193 635 732

Combined 0 98 49 2,728 177 726 841

NRMSE c (%) Across 0 46 23 1,155 93 663 766

Along 0 95 54 3,836 224 635 732

Combined 0 68 35 3,836 198 726 841

Correlation d Across 0.00 0.51 0.49 1.00 0.39 573 639

Along 0.00 0.53 0.48 1.00 0.40 496 549

Combined 0.00 0.44 0.35 1.00 0.38 647 729

Number of records c Across 1 4 4 14 3 663

Along 1 4 3 12 2 635

Combined 1 5 5 15 3 726

Note. The minimum, mean, median, maximum, and standard deviation values are given per quality measure and method.
 aEstimations may be validated repeatedly when associated with multiple pairs of gauges.  bPer record in all time series.  cPer 
time series.  dPer time series with more than one record.

Table 2 
Time-Variable Water Surface Slope Validation Results Including the Absolute Error, Root Mean Square Error (RMSE), 
Normalized RMSE (NRMSE), Correlation Coefficient, and the Number of Records per Time Series
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series record with the SWORD river centerline and determine the chainage of each intersection. By subtracting 
the VS reference point chainage, we get the crossing anomaly which is multiplied by the WSS to get the slope 
correction for each time series record. Outliers with errors above 75 cm in the DAHITI time series are removed 
before the comparison.

For this study, we select 137 VS from DAHITI. The VS must be adjacent to a gauge to validate the original 
DAHITI and WSS-corrected water level time series. Additionally, we selected only VS located between pairs of 
gauges so that we can compare the impact of the average ICESat-2 derived and SWORD WSS with the median 
in-situ WSS. We select only VS for which we can clearly and unambiguously determine the intersection of the 
orbits with the river centerline. For example, VS in curved reaches with multiple intersections and VS where the 
river runs nearly parallel to the satellite's ground track, which makes the exact measuring location hard to detect, 
are not part of this study. Furthermore, we do not use VS prone to the off-nadir effect caused by nearby water 
bodies because its errors likely exceed those caused by WSS. Tables B1 and B2 in the appendix list each studied 

VS with the mission, the reach, the amplitude of the crossing positions, the 
applied WSS, and the relative and absolute RMSE differences to the origi-
nal DAHITI time series RMSE after applying the WSS as a correction. The 
relative RMSE difference is the percentage of the absolute RMSE difference 
from the RMSE before applying the correction.

Figure 12 shows histograms of the absolute and relative RMSE difference 
between the original DAHITI and the WSS-corrected time series for the 
in-situ, ICESat-2, and SWORD WSS. The RMSE improves by 30 cm or 66% 
in the best case. However, the histograms show only minor improvements for 
many VS and even an increased RMSE at some VS. For 88 VS (64% of the 
studied VS), the RMSE difference is insignificant between −2 and 2 cm using 
the WSS from ICESat-2. Overall, the correction based on the ICESat-2 WSS 
makes the most significant improvements with an RMSE difference below 

Figure 10.  Water surface slope (WSS) time series for selected reaches of the rivers Elbe, Ohio, Loire, and Missouri. Blue dots show estimates using the combined 
approach. The in-situ WSS is shown in orange and the errors below. The correlation coefficient and root mean square error are given above each time series.

MAE 𝐴𝐴

[
mm

km

]

Coverage [%] nest nval
 a

Across 19 81 663 780

Along 47 78 635 752

Combined 23 89 726 855

SWORD 71 100 811 943

 aEstimates may be validated repeatedly when associated with multiple pairs 
of gauges.

Table 3 
Coverage of the Studied Reaches and Median Absolute Errors (MAE) of 
the Average Reach-Scale Water Surface Slope (WSS) per Method and the 
SWORD WSS w.r.t. the Median In-Situ WSS
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−2 cm for 43 VS (31% of the studied VS) and a mean improvement of −2.20 cm RMSE (−8.24% NRMSE). 
The in-situ WSS performs similarly, with 44 VS (32% of the studied VS) improving by more than 2 cm and a 
mean improvement of −1.90 cm RMSE (−7.04% NRMSE). For some pairs of gauges used for validation, the 
SWORD connectivity differs from our manual determination. Therefore, a reduced set of results with only the 
stations between pairs of gauges connected according to SWORD is shown in orange in Figure 12. Even with 
the  reduced set of VS, the WSS from ICESat-2 performs best. The correction based on the SWORD WSS has the 
lowest performance, with 37 VS (27% of the studied VS) improving by more than 2 cm and a mean improvement 
of −1.51 cm RMSE (−4.69% NRMSE). Using the SWORD WSS also results in the most considerable RMSE 
deterioration of +8 cm or +76%.

Figure 13 shows the absolute and relative RMSE differences after applying the WSS correction compared to the 
original DAHITI time series plotted depending on the reach WSS by source. The figure demonstrates, that most 
of the insignificant differences between −2 and 2 cm apparent in Figure 12 occur for VS in reaches of small WSS, 
shown in more detail in the plots on the right of Figure 13. The WSS correction's overall impact increases with a 
steeper WSS. However, there are VS where the RMSE increases or does not change significantly even in reaches 
with a steeper WSS. Since this occurs regardless of the used WSS source, either the reach-scale WSS is too coarse 
to reflect the local WSS, or the temporal WSS variability is so significant that an average WSS is not sufficient. 
With the ICESat-2 derived WSS correction, most degradations occur with WSS below 200 mm/km. However, 
for a WSS of more than 100 mm/km, the maximum RMSE improvements reach 5 cm or 30%. Although there are 
some outliers apparent, especially for the SWORD WSS, the majority of VS improves when correcting for WSS 
larger than 100 mm/km.

Figures 14 and 15 show, as an example, the original DAHITI and WSS-corrected water level time series at VS 
37118 (Platte) and VS 13443 (Loire) compared to in-situ gauging data from USGS and Hydroportail, respec-
tively. Both VS are derived from Sentinel-3A, and the combined WSS from this study is used for the WSS 
correction. The center plots show the crossing anomaly, that is, the difference of the nominal VS chainage to the 
chainage where the respective orbit crosses the river centerline. The bottom plots show the water level error w.r.t. 
the in-situ time series with and without the WSS correction. VS 37118 (Figure 14) shows a significant improve-
ment in the time series, with the RMSE reduced by 29.39 cm or 65.82%. The combined WSS from this study 
used for correction is 1,164 mm/km, and the crossing anomaly magnitude is 1,545 m. At VS 13443 (Figure 15), 
the crossing anomaly magnitude is slightly larger (1,777 m), but the WSS of 430 mm/km used for correction is 
significantly lower than for VS 37118. Still, the RMSE improvements of 15.89 cm or 49.42% can be observed in 
the error bars and time series.

5.  Conclusion
In this study, we successfully derive river WSS from ICESat-2 ATL13 observations at reach scale. The instan-
taneous results of the described methods, the across- and along-track approach, have median errors of 24 and 
57 mm/km, respectively. We detect no difference in quality between WSS originating from strong or weak beam 
measurements. Only the confidence of fitting the along-track WSS is significantly lower for the weak beams. For 
the along-track approach, an angle-dependent outlier rejection is required, reducing the number of observations 

Figure 11.  Histograms of the median in-situ water surface slope (WSS) per pair of gauges, the combined Ice, Cloud, and Land Elevation Satellite 2 WSS per reach, and 
the SWOT River Database WSS per reach.
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and coverage significantly but improving the estimated WSS quality. Overall, the across-track method has lower 
errors than the along-track method. The combined daily observations of both approaches cover 89% of the stud-
ied reaches with an MAE of 28 mm/km. However, the time variability of the WSS can not be estimated with 
confidence because although the median RMSE is low (49 mm/km), the median correlation coefficient of the 
time-variable WSS w.r.t. in-situ WSS between gauges is only 0.35. Additionally, the temporal resolution of the 
time-variable WSS is very sparse, with a median of only five records within the studied epoch of 2 years. Besides, 

Figure 12.  Histograms of the absolute (left) and relative (right) root mean square error difference applying the median combined (top), SWOT River Database 
(SWORD) (center), and median in-situ (bottom) water surface slope as a correction to the original Database for Hydrological Time Series of Inland Waters (DAHITI) 
water level time series. The in-situ histograms show all studied virtual stations in blue and a subset (orange) between pairs of gauges that are connected judging by 
SWORD data.
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an average WSS is calculated for each reach also covering 89% of the reaches with an MAE of 23 mm/km w.r.t. 
average gauge data.

WSS can be an important correction for water level time series derived from radar satellite altimetry at VS when 
other errors like the off-nadir effect are not prevailing. To apply the WSS as a correction, the crossing chainage 

Figure 13.  Root mean square error difference after applying the water surface slope (WSS)-correction compared to the 
original Database for Hydrological Time Series of Inland Waters time series for the 137 studied virtual stations. Negative 
values mean improvements due to the application of the WSS correction. The plots on the right show the regions of smaller 
WSS for more detail.

Figure 14.  Top: Original Database for Hydrological Time Series of Inland Waters (DAHITI) and water surface slope (WSS)-corrected water level time series for 
virtual stations (VS) 37118 at the Platte River compared to the in-situ time series provided by U.S. Geological Survey (Station 06770200 near Kearney, Nebraska). 
Center: Crossing anomaly of the orbit ground tracks w.r.t. the VS nominal location. Bottom: Water level errors with and without the WSS correction applied.
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of the satellite orbit must be unambiguously determinable. Applying the WSS correction to the studied VS of the 
Sentinel-3A/B and Jason-2/3 missions improves the RMSE by up to 30 cm or 66%. However, the mean RMSE 
improvement is only 2.2 cm or 8.24% as for 64% of the studied VS, the impact is insignificant and sometimes 
leads to deterioration. A much more significant impact is expected for the calculation of reach-scale hydrographs 
of long repeat orbit missions like CryoSat-2, for which the WSS correction is mandatory because of the large 
crossing anomaly within the reach. Compared to using the ICESat-2 WSS from this study, the correction based 
on the SWORD WSS derived from DEM data has a lower impact, with a mean RMSE improvement of 1.51 cm 
or 4.69%. Overall, at VS situated in reaches with an average WSS below 100 mm/km, the WSS correction has 
no significant effect, presumably because the impact is lower than the radar altimeters accuracy. Still, a larger 
WSS should be considered an important source of error worth correcting, even with the less accurate WSS from 
SWORD.

The computational effort of the methodology to derive WSS from ICESat-2 is manageable, so the aim to apply 
the approach to all SWORD reaches globally is achievable. However, a denser cloud cover may affect observa-
tions of reaches in climate zones different from the studied area. Therefore, it must be determined whether the 
achieved coverage of 89% also applies globally.

Compared to the 91-day repeat orbit of ICESat-2, WSS time series derived from the upcoming SWOT mission 
will likely have a higher temporal resolution because the time interval of SWOT revisiting a reach is about 11 days 
due to its 120 km swath width and a 21-day repeat orbit (Biancamaria et al., 2016). Additionally, SWOT will 
use a Ka-band Radar Interferometer (KaRin) instrument, which can penetrate clouds in contrast to the ICESat-2 
laser altimeter. Therefore, more data will be available for regions of high cloud coverage. SWOT is specifi-
cally designed to observe WSS and the science requirements of SWOT aim for a slope accuracy of 17 mm/km 
(Biancamaria et al., 2016), which would be better than the median results of this study. The airborne AirSWOT 
mission mounted with the same sensor as SWOT demonstrated that 90% of the slope errors were in the range of 
the required 17 mm/km with an MAE of 8.3 mm/km (Altenau et al., 2017). However, whether SWOT-derived 
WSS can match the accuracy of ICESat-2 with 23 mm/km must be studied after the launch of SWOT.

Figure 15.  Top: Original Database for Hydrological Time Series of Inland Waters (DAHITI) and water surface slope 
(WSS)-corrected water level time series for virtual stations (VS) 13443 at the Loire River compared to the in-situ time series 
provided by Hydroportail (Station K418001010 at Gien). Center: Crossing anomaly of the orbit ground tracks w.r.t. the VS 
nominal location. Bottom: Water level errors with and without the WSS correction applied.
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Appendix A:  Studied Rivers With Characteristics and In-Situ Sourcess
Table A1 groups the studied rivers by the sources of in situ water level elevations used for validation. For each 
river, the characteristics are given according to the SWOT River Database (SWORD).

In-situ 
source River

Number of 
gauges

Median width 
(m)

Studied length 
(km)

Median Slope 
𝐴𝐴

[
mm

km

] Vertical 
datum

Bundesanstalt für Gewässerkunde (BfG) Normalnull

Elbe 15 171 591 201

Mosel 2 131 74 283

Neckar 2 107 33 218

Oder 3 174 44 309

Rhine 20 345 477 156

U.S. Army Corps of Engineers (USACE) NAVD88

Mississippi 20 829 1,392 86

U.S. Geological Survey (USGS) NAVD88

Allegheny 10 209 189 422

Altamaha 4 169 151 108

Arkansas 6 170 127 683

Big Sioux 4 45 127 184

Brazos 14 84 843 194

Cheyenne 5 51 200 928

Choctawhatchee 3 75 121 160

Colorado (Texas) 6 63 359 252

Illinois 9 277 178 12

Iowa 2 252 29 302

James 4 48 160 81

Kansas 6 179 161 332

Mississippi 12 829 1,392 86

Missouri 37 257 1,620 180

Neches 2 90 105 173

Ohio 12 685 392 25

Pascagoula 2 92 83 79

Platte 9 257 252 1,046

Red 11 155 809 210

Rock 7 160 178 157

Sabine 2 87 92 83

Trinity 9 80 330 134

Yellowstone 3 313 33 198

Republic Hydrometeorological Service of Serbia (HIDMET) Adriatic

Danube 11 664 348 7

Hydroportail IGN 1969

Table A1 
Data Sources for the In-Situ Water Surface Elevation Data Used in This Study With the Median Width, Length, and Median 
Slope of the Studied River Sections According to SWOT River Database
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Appendix B:  Detailed Results of the VS Water Surface Slope (WSS) Correction
Tables B1 and B2 list the WSS-corrected results for each studied virtual station (VS) and WSS source in Europe 
and North America, respectively.

Table A1 
Continued

In-situ 
source River

Number of 
gauges

Median width 
(m)

Studied length 
(km)

Median Slope 
𝐴𝐴

[
mm

km

] Vertical 
datum

Garonne 4 184 113 289

Loire 17 318 476 310

Saône 4 234 59 21

River VS ID Mis. Reach ID Crossing ampl. (m)

WSS 𝐴𝐴

[
mm

km

]

Rel. RMSE difference (%) Abs. RMSE difference (cm)

1 2 3 1 2 3 1 2 3

Danube

  14383 S3A 22737900241 2,017 13 1 10 +0.99 +0.09 +0.67 +0.12 +0.01 +0.08

  17612 S3B 22737900251 1,770 9 2 13 +1.79 +0.49 +2.91 +0.25 +0.07 +0.41

  15558 S3B 22737900271 2,262 18 0 13 −1.79 +0.00 −1.41 −0.26 +0.00 −0.20

  17227 S3B 22750000011 1,146 25 33 31 +2.23 +2.99 +2.78 +0.38 +0.51 +0.47

  17970 S3A 22770000021 1,685 47 63 37 +2.03 +2.51 +1.62 +0.44 +0.55 +0.35

  15195 S3B 22770000021 1,401 47 63 37 −1.36 −1.35 −1.28 −0.20 −0.20 −0.19

  16850 S3B 22770000081 1,614 60 0 50 +7.77 +0.00 +6.00 +0.75 +0.00 +0.58

  21581 S3A 22770000141 1,634 73 50 −6.38 −5.21 −0.80 −0.65

  18403 S3A 22770000221 1,740 48 0 49 −1.55 +0.00 −1.50 −0.19 +0.00 −0.18

  17363 S3B 22770000231 1,992 43 215 49 −0.19 +39.36 +0.85 −0.03 +5.96 +0.13

  17364 S3B 22791100061 1,117 47 74 45 −0.89 −1.04 −0.87 −0.18 −0.21 −0.18

  16479 S3B 22791100071 1,484 47 0 45 −1.75 +0.00 −1.66 −0.51 +0.00 −0.49

Elbe

  13618 S3A 23281000071 1,649 17 74 50 +0.56 +4.03 +2.42 +0.08 +0.61 +0.37

  13631 S3B 23281000111 2,398 122 124 128 −28.40 −28.64 −29.03 −4.60 −4.64 −4.70

  13619 S3A 23281000141 1,933 121 200 128 +0.91 +12.24 +1.93 +0.13 +1.80 +0.28

  13620 S3A 23281000151 2,023 145 213 141 +0.67 +6.64 +0.49 +0.11 +1.04 +0.08

  13621 S3B 23281000171 1,222 147 79 141 −1.75 −1.19 −1.63 −0.27 −0.19 −0.26

  13627 S3A 23283000041 1,784 164 0 172 −21.61 −0.00 −21.66 −2.80 −0.00 −2.80

  13626 J23 23283000081 1,565 200 222 204 +0.97 +1.64 +1.08 +0.20 +0.35 +0.23

  13623 S3A 23283000091 1,611 178 221 190 −12.63 −13.18 −13.12 −2.00 −2.09 −2.08

  13630 S3A 23285000011 1,587 204 475 190 −20.11 +14.97 −19.98 −3.11 +2.32 −3.09

  13632 J23 23285000021 1,372 213 260 212 −4.74 −5.00 −4.73 −1.14 −1.20 −1.14

  13635 S3B 23285000091 1,406 216 227 212 −25.14 −26.59 −24.56 −4.72 −4.99 −4.61

  13634 S3A 23285000101 2,524 211 12 212 −33.54 −3.17 −33.53 −5.75 −0.54 −5.75

  13649 J23 23285000141 1,071 188 441 204 −2.11 +1.45 −2.18 −0.43 +0.29 −0.44

  13650 S3A 23285000161 1,909 298 127 289 −2.78 −6.03 −3.39 −0.56 −1.21 −0.68

  13651 S3A 23285000181 1,000 296 202 289 −10.54 −8.38 −10.40 −1.76 −1.40 −1.74

Table B1 
Results of the WSS Correction for Virtual Stations in Europe
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Table B1 
Continued

River VS ID Mis. Reach ID Crossing ampl. (m)

WSS 𝐴𝐴

[
mm

km

]

Rel. RMSE difference (%) Abs. RMSE difference (cm)

1 2 3 1 2 3 1 2 3

  13652 S3B 23285000211 1,410 304 110 264 −18.07 −8.36 −17.19 −3.38 −1.56 −3.22

  13653 S3A 23285000241 1,409 124 251 256 −3.23 +0.55 +0.85 −0.57 +0.10 +0.15

Loire

  13412 S3A 23221000171 1,728 174 165 186 −12.55 −12.06 −13.13 −3.28 −3.16 −3.43

  13417 S3B 23227000021 1,605 321 32 360 −16.91 −2.65 −17.21 −4.25 −0.67 −4.32

  13415 S3A 23227000031 1,499 344 373 360 −27.39 −27.09 −27.29 −5.88 −5.82 −5.86

  13419 S3B 23227000061 2,288 536 553 376 −18.65 −17.00 −27.13 −5.00 −4.56 −7.28

  13420 S3A 23227000091 1,532 205 284 431 −4.66 +5.33 +32.31 −0.64 +0.73 +4.44

  13421 S3A 23227000151 1,879 398 274 417 −36.29 −30.59 −35.60 −9.21 −7.77 −9.04

  13443 S3A 23227000181 1,777 430 269 453 −49.42 −34.22 −50.73 −15.89 −11.00 −16.31

  13399 J23 23227000191 732 276 1,084 453 −4.91 +33.92 −2.46 −0.91 +6.30 −0.46

  13578 S3A 23227000251 1,268 411 254 459 −18.69 −21.61 −14.54 −2.85 −3.29 −2.22

Oder

  13660 S3A 24222100071 1,889 279 436 267 −48.60 −38.18 −47.94 −9.12 −7.17 −9.00

  13661 S3A 24222100071 1,790 279 436 267 −32.36 −29.14 −31.79 −5.86 −5.28 −5.76

  18752 S3A 24222100081 1,790 270 295 267 −0.10 +5.08 −0.68 −0.02 +0.80 −0.11

  18753 S3A 24222300011 3,687 285 324 276 −35.81 −27.61 −37.18 −11.67 −9.00 −12.11

Rhine

  13593 S3A 23261000141 1,842 195 242 191 −0.67 +1.36 −0.82 −0.16 +0.32 −0.19

  13584 S3A 23261001811 1,428 123 20 127 +0.18 −0.14 +0.23 +0.08 −0.06 +0.10

  13654 J23 23263000081 954 71 71 93 +1.86 +1.89 +2.70 +0.35 +0.36 +0.51

Note. 1: Combined WSS from this study, 2: SWORD WSS, 3: In-Situ WSS. SWORD, SWOT River Database; RMSE, root mean square error; WSS, water surface 
slope; VS, virtual stations.

River VS ID Mis. Reach ID Crossing ampl. (m)

WSS 𝐴𝐴

[
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘

]

Rel. RMSE difference (%) Abs. RMSE difference (cm)

1 2 3 1 2 3 1 2 3

Illinois

  15094 S3A 74282100021 2,841 44 31 14 +4.65 +3.47 +1.44 +1.52 +1.14 +0.47

  14256 S3A 74282100071 2,573 16 62 18 +1.05 +4.98 +1.15 +0.31 +1.47 +0.34

  18655 S3A 74282700071 1,541 27 143 25 −0.49 +3.25 −0.62 −0.09 +0.60 −0.12

Mississippi

  11484 J23 74210000281 2,677 34 72 95 −0.06 +0.18 +0.48 −0.03 +0.08 +0.22

  13250 S3B 74230300051 1,816 39 0 41 +0.78 −0.00 +0.86 +0.16 −0.00 +0.18

  17172 S3B 74255000021 1,213 57 266 87 +0.02 +7.78 +0.50 +0.00 +1.67 +0.11

  22858 S3A 74255000071 2,108 100 139 94 −1.93 −1.56 −1.91 −0.52 −0.42 −0.52

  15411 S3B 74257000021 4,936 50 151 98 −2.65 +13.87 +2.17 −0.64 +3.35 +0.52

  15412 S3B 74257000031 2,374 106 148 95 −1.49 +0.39 −2.61 −0.35 +0.09 −0.62

  36325 S3A 74259000021 2,668 72 122 95 +0.51 +0.67 +0.49 +0.17 +0.22 +0.16

Table B2 
Results of the WSS Correction for Virtual Stations in North America
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Table B2 
Continued

River VS ID Mis. Reach ID Crossing ampl. (m)

WSS 𝐴𝐴

[
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘

]

Rel. RMSE difference (%) Abs. RMSE difference (cm)

1 2 3 1 2 3 1 2 3

  14252 S3A 74259000021 1,984 72 122 95 +1.77 +4.35 +2.83 +0.56 +1.37 +0.89

  15776 S3B 74270100131 1,771 129 140 106 −1.19 −0.56 −1.96 −0.25 −0.11 −0.40

  15777 S3B 74270500021 2,464 108 39 106 +5.74 +0.43 +5.54 +1.43 +0.11 +1.38

  17170 S3B 74270500021 1,393 108 39 106 −7.26 −3.51 −7.18 −1.51 −0.73 −1.49

  14253 S3A 74270700061 1,929 97 139 97 +0.47 +2.87 +0.47 +0.10 +0.60 +0.10

  16793 S3B 74270700221 2,306 72 162 97 +0.46 +3.02 +1.29 +0.14 +0.90 +0.38

  14254 S3A 74270900021 1,443 74 122 97 +2.02 +3.49 +2.66 +0.57 +0.99 +0.76

  16794 S3B 74270900031 5,748 98 113 88 −25.22 −21.96 −24.02 −4.39 −3.82 −4.18

  36755 S3B 74289500091 1,704 386 361 459 +0.35 −1.22 +5.63 +0.09 −0.33 +1.53

  22867 S3A 74289500101 1,555 550 601 459 +1.07 +4.60 −5.29 +0.27 +1.18 −1.36

  18656 S3A 74289500131 2,287 141 301 459 −13.89 −0.06 +37.94 −2.70 −0.01 +7.39

Missouri

  15096 S3A 74291100171 1,554 210 469 179 +5.67 +76.12 +0.96 +0.64 +8.58 +0.11

  19674 S3B 74291100241 1,578 187 279 178 −10.23 −6.26 −10.45 −1.65 −1.01 −1.69

  22888 S3A 74291100281 1,870 179 114 177 −9.58 −7.30 −9.54 −2.38 −1.82 −2.37

  14790 S3A 74291300011 1,754 169 213 161 −11.68 −13.22 −11.51 −2.63 −2.98 −2.59

  17590 S3B 74291300061 1,804 156 96 161 −0.37 −1.91 −0.17 −0.08 −0.40 −0.03

  36834 J23 74291300061 1,346 156 96 161 −6.93 −4.70 −7.07 −1.57 −1.07 −1.60

  22889 S3B 74291500021 1,369 148 176 161 −17.28 −20.28 −18.72 −4.31 −5.06 −4.67

  22890 S3A 74291500031 2,199 169 93 168 −5.51 −5.56 −5.55 −1.29 −1.30 −1.30

  14470 S3A 74291500061 1,752 147 47 168 −15.49 −7.97 −15.50 −2.57 −1.32 −2.57

  36891 J23 74291500061 1,565 136 47 168 −5.36 −2.31 −5.90 −1.22 −0.53 −1.34

  17213 S3B 74291500141 1,419 162 238 161 +3.88 +9.66 +3.73 +0.61 +1.53 +0.59

  15649 S3B 74291700011 1,617 162 41 161 −7.96 −2.71 −7.95 −1.56 −0.53 −1.56

  17214 S3B 74291700041 1,899 157 125 161 +4.79 +2.99 +5.09 +1.14 +0.71 +1.21

  14151 S3A 74291900031 2,544 179 19 168 +5.17 −0.32 +4.30 +1.39 −0.09 +1.15

  18020 S3A 74291900041 1,708 167 267 168 +3.44 +8.84 +3.52 +0.86 +2.21 +0.88

  15283 S3B 74291900091 1,668 139 288 166 −11.34 −11.07 −12.33 −2.21 −2.16 −2.40

  16835 S3B 74291900091 1,700 139 288 166 −6.95 +0.81 −6.65 −1.23 +0.14 −1.17

  22891 S3A 74291900121 1,807 162 102 151 +2.30 −1.99 +1.19 +0.35 −0.30 +0.18

  18661 S3A 74291900131 2,498 138 88 151 −4.76 −4.40 −4.61 −1.20 −1.11 −1.16

  16456 S3B 74293300021 4,395 188 206 184 −17.82 −12.02 −18.69 −4.49 −3.03 −4.71

  17455 S3B 74293300021 1,465 188 206 184 −18.41 −19.59 −18.19 −5.58 −5.94 −5.52

  37033 J23 74293300041 1,222 184 181 457 −9.15 −9.11 −11.34 −2.24 −2.23 −2.78

  22892 S3A 74293300071 1,772 177 205 123 −2.61 −2.05 −3.14 −0.57 −0.45 −0.69

  16457 S3B 74293300101 1,918 171 0 123 −19.40 +0.00 −14.92 −3.75 +0.00 −2.89

  22894 S3A 74293300131 1,521 199 134 190 +0.19 −1.47 −0.20 +0.04 −0.29 −0.04

  22895 S3B 74293500011 1,912 203 50 190 −11.42 −4.84 −11.38 −2.33 −0.99 −2.33

  22896 S3B 74293700011 1,628 202 152 190 −1.45 −2.39 −2.01 −0.24 −0.40 −0.34

  19675 S3A 74293700061 2,416 191 151 21 −9.30 −8.85 −1.71 −2.39 −2.28 −0.44

  18662 S3A 74293700081 2,055 186 250 21 −1.51 +0.17 −0.74 −0.61 +0.07 −0.30

  38434 S3A 74295100031 2,501 135 101 150 −26.70 −22.63 −27.44 −4.13 −3.50 −4.25
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Table B2 
Continued

River VS ID Mis. Reach ID Crossing ampl. (m)

WSS 𝐴𝐴

[
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘

]

Rel. RMSE difference (%) Abs. RMSE difference (cm)

1 2 3 1 2 3 1 2 3

  22897 S3B 74295100031 1,026 135 101 135 −8.61 −6.44 −8.66 −3.17 −2.37 −3.19

  14950 S3A 74297700211 2,282 92 87 118 +4.83 +4.42 +7.52 +0.90 +0.83 +1.41

  16234 S3B 74297700251 1,794 116 72 120 +5.44 −0.34 +6.09 +0.74 −0.05 +0.83

  18664 S3A 74299300181 2,006 162 90 141 −5.11 −4.30 −5.79 −0.83 −0.69 −0.94

  14413 S3A 74299300181 2,333 162 90 141 +18.25 +6.29 +14.02 +3.26 +1.12 +2.50

  19687 S3A 74299900021 2,096 664 659 711 −46.40 −46.53 −44.80 −18.63 −18.68 −17.99

  22909 S3A 74299900041 1,938 949 798 1,144 −6.26 −18.86 +13.78 −1.95 −5.86 +4.28

Ohio

  14904 S3A 74265000091 1,687 14 0 24 −0.14 +0.00 −0.21 −0.05 +0.00 −0.08

  36357 J23 74265000091 1,602 14 0 24 +0.01 +0.00 +0.03 +0.01 +0.00 +0.01

  16549 S3B 74267100061 1,741 12 77 65 +0.15 +2.30 +1.73 +0.06 +0.93 +0.70

  15867 S3B 74267700151 1,913 30 0 25 +1.70 +0.00 +1.49 +0.46 +0.00 +0.40

  36420 J23 74267700161 1,418 34 13 25 +0.10 +0.03 +0.07 +0.04 +0.01 +0.03

  36421 S3A 74267700161 1,571 34 13 25 −0.06 −0.06 −0.07 −0.02 −0.02 −0.02

Platte

  37079 J23 74294100031 2,050 718 553 744 −39.59 −41.46 −38.70 −11.00 −11.51 −10.75

  37089 J23 74294300041 1,264 957 1,033 941 −31.12 −29.21 −31.46 −11.07 −10.39 −11.18

  15689 S3B 74294500011 1,091 1,196 1,108 785 −63.72 −67.53 −63.79 −23.29 −24.68 −23.31

  37117 S3A 74294500211 1,814 1,286 1,159 1,225 −17.77 −26.56 −22.09 −6.12 −9.15 −7.61

  37118 S3A 74294500221 1,545 1,164 1,207 1,225 −65.82 −65.12 −64.75 −29.39 −29.08 −28.91

  37120 J23 74294500231 1,530 1,055 1,108 1,225 −2.77 +0.08 +5.11 −1.07 +0.03 +1.98

Red

  35699 S3B 74223700061 1,570 147 272 129 +3.97 +13.77 +2.97 +0.84 +2.91 +0.63

  35705 S3B 74223700081 2,054 156 0 129 +10.62 +0.00 +8.13 +2.43 +0.00 +1.86

  35708 S3B 74223900031 3,045 150 216 141 −0.59 +1.84 −0.85 −0.21 +0.66 −0.30

  35713 S3B 74223900051 1,650 106 7 141 +0.79 +0.04 +1.61 +0.24 +0.01 +0.50

  35720 S3B 74225000031 1,652 131 171 177 −6.13 −5.51 −5.49 −1.78 −1.60 −1.60

  35722 S3A 74225000051 1,825 170 167 147 −1.12 −1.14 −1.23 −0.42 −0.42 −0.46

  35730 S3A 74225000091 1,995 146 151 147 −2.30 −2.29 −2.30 −0.63 −0.63 −0.63

  35741 S3A 74225000151 1,606 140 180 164 +0.30 +2.31 +1.23 +0.08 +0.63 +0.34

  35742 S3B 74225000161 1,897 187 211 164 −5.63 −5.45 −5.63 −2.27 −2.20 −2.27

  35752 S3A 74225000201 1,644 158 251 164 −8.55 −9.78 −8.67 −2.31 −2.65 −2.35

  35750 S3B 74225000201 1,507 158 251 164 −1.66 +0.52 −1.59 −0.39 +0.12 −0.38

  35751 J23 74225000201 1,941 171 251 253 −10.83 −14.33 −14.39 −3.17 −4.19 −4.21

  35757 S3A 74225000241 1,678 263 212 253 +0.64 −0.51 +0.36 +0.19 −0.15 +0.11

  35759 S3B 74225000251 1,535 149 265 253 +6.70 +16.92 +15.57 +1.74 +4.40 +4.05

  35764 S3B 74225000301 1,556 219 253 +9.26 +10.85 +3.28 +3.84

  35763 S3A 74225000301 2,947 219 253 +12.83 +17.04 +4.70 +6.24

  35779 S3B 74227100161 1,486 294 152 294 −25.73 −14.51 −25.73 −6.67 −3.76 −6.67

  35781 S3A 74227100171 1,867 336 380 294 +3.25 +5.20 +1.70 +1.39 +2.21 +0.72

  35783 S3A 74227100221 2,195 282 329 306 −20.70 −20.38 −20.79 −5.37 −5.29 −5.40

  35796 J23 74227700011 1,465 584 488 −12.73 −13.31 −4.02 −4.20
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Data Availability Statement
The results of this study are available at Zenodo via https://doi.org/10.5281/zenodo.7098114. The ICESat-2 
ATL13 data used for the WSS estimation in the study are available at the National Snow & Ice Datacenter 
(NSIDC) via https://doi.org/10.5067/ATLAS/ATL13.005 (Jasinski et  al.,  2021b). The SWOT River Database 
(SWORD) (Version v1) used for the reach definition and centerlines in the study are available at Zenodo via 
https://doi.org/10.5281/zenodo.4917236 (Altenau et al., 2021b). The water level time series from the Database 
for Hydrological Time Series of Inland Waters (DAHITI) used to assess the impact of correcting virtual stations 
for water surface slope are available at https://dahiti.dgfi.tum.de (Schwatke et al., 2015).
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Table B2 
Continued

River VS ID Mis. Reach ID Crossing ampl. (m)

WSS 𝐴𝐴

[
𝑚𝑚𝑚𝑚

𝑘𝑘𝑘𝑘

]

Rel. RMSE difference (%) Abs. RMSE difference (cm)

1 2 3 1 2 3 1 2 3
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Note. 1: Combined WSS from this study, 2: SWORD WSS, 3: In-Situ WSS. SWORD, SWOT River Database; RMSE, root mean square error; WSS, water surface 
slope; VS, virtual stations.
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ICESat-2 river surface slope (IRIS): 
A global reach-scale water surface 
slope dataset
Daniel Scherer    ✉, Christian Schwatke   , Denise Dettmering    & Florian Seitz

The global reach-scale “ICESat-2 River Surface Slope” (IRIS) dataset comprises average and extreme 
water surface slopes (WSS) derived from ICESat-2 observations between October 2018 and August 
2022 as a supplement to 121,583 reaches from the “SWOT Mission River Database” (SWORD). To gain 
full advantage of ICESat-2’s unique measurement geometry with six parallel lidar beams, the WSS 
is determined across pairs of beams or along individual beams, depending on the intersection angle 
of spacecraft orbit and river centerline. Combining both approaches maximizes spatial and temporal 
coverage. IRIS can be used to research river dynamics, estimate river discharge, and correct water level 
time series from satellite altimetry for shifting ground tracks. Additionally, by referencing SWORD as 
a common database, IRIS may be used in combination with observations from the recently launched 
SWOT mission.

Background & Summary
The water surface slope (WSS) is a fundamental parameter for calculating river discharge, one of the Essential 
Climate Variables (ECVs) as defined by the Global Climate Observing System1. River discharge critically con-
tributes to the characterization of the Earth’s hydrological cycle and climate and, thus, its determination on a 
global scale is of great scientific relevance. Additionally, correcting water surface elevation (WSE) observations 
from satellite altimetry for WSS can significantly improve the accuracy of the resulting water level time series2,3. 
Depending on the river’s morphology, regulation, bed material, and basin size, the WSS can be highly variable 
in both space and time4.

Various methods exist to measure WSS based on field surveys, gauges, airborne sensors, or satellites. 
However, most of them face difficulties in capturing the temporal and/or spatial variability of WSS at global 
scale. Although they are very accurate, field surveys and airborne campaigns can only cover relatively small study 
areas within a short period of time because of the high human and financial effort. Gauge records are usually 
available over long periods at a high sampling rate, but their suitability to derive WSS is limited to free-flowing 
river segments covered by multiple gauges. Due to the small number of free-flowing rivers in developed areas5 
and the lack of gauging stations in remote areas, global WSS coverage with gauges cannot be achieved. In con-
trast, radar satellite altimetry provides a globally distributed network of so-called virtual stations, but at the same 
time lacks simultaneous observations over short distances and provides much fewer measurements compared 
to gauges6. Additionally, the distribution of virtual stations along a river is irregular, so that radar satellite altim-
etry cannot be used to derive a globally homogeneous WSS dataset. Another space-based technique is the use 
of digital elevation models (DEM) such as the “Shuttle Radar Topography Mission” (SRTM) or the “Advanced 
Spaceborne Thermal Emission and Reflection Radiometer” (ASTER) data, which provide spatially continuous 
elevation measurements within the boundaries of the spacecrafts’ orbits. The elevation accuracy of the DEM 
data, however, is low, which leads to errors when deriving WSS for short reach lengths and narrow rivers7,8. In 
addition, also the temporal resolution of DEM data is low, if the models are time-dependent at all. Just recently 
(December 2022), the “Surface Water and Ocean Topography” (SWOT) satellite was launched, targeting a WSS 
accuracy of 17 mm/km9. It was demonstrated that 90% of the sensor’s slope errors are in the desired range10, but 
SWOT observations are not yet available. In contrast, the unique measurement geometry of the “Ice, Cloud, and 
Land Elevation Satellite 2” (ICESat-2) with six parallel laser beams enables instantaneous and highly accurate 
WSS observations since its launch in September 2018. Due to its dense ground track pattern, ICESat-2 is well 
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suited for global studies of the Earth’s hydrosphere11. ICESat-2 WSE observations have already been used to 
derive WSS in small study areas2,12, but not at the global scale. WSS datasets at the global scale so far exist only 
on the basis of DEM data such as the “Global River-Slope” (GloRS13) or as part of the “SWOT Mission River 
Database” (SWORD14).

In a previous study2, we developed an approach to derive reach-scale WSS from ICESat-2 observations. 
The approach was applied to 815 reaches in Europe and North America where sufficient validation data was 
available. For 89% of those reaches, the approach could be used to estimate WSS with a median absolute error of 
23 mm/km, almost complying with the SWOT requirements of 17 mm/km. For the remaining studied reaches, 
there were no or not sufficient observations from ICESat-2. In order to create the global “ICESat-2 River Surface 
Slope” (IRIS15) dataset, we applied our approach2 to all reaches defined within SWORD. By referencing SWORD, 
IRIS can be easily compared or combined with SWOT mission observations as they become available. IRIS is 
the first WSS dataset with global coverage based on ICESat-2 observations. In this paper, we briefly review the 
materials and methods and present the resulting dataset.

Fig. 1  Processing strategy for the computation of the IRIS water surface slope (WSS) data.
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Methods
Except for minor differences in preprocessing (more details below), the methodology used to derive the global 
“ICESat-2 River Surface Slope” (IRIS, Version v115) dataset follows our published approach2, which has already 
been applied to derive and validate a regional dataset (Version v016). Figure 1 shows a flowchart of the main steps 
in the processing of the IRIS dataset. The approach combines two different methods that are applicable depend-
ing on the intersection angle between the satellite orbit and the river: If ICESat-2 crosses a river reach nearly per-
pendicularly, the across-track approach calculates the WSS between the crossings of the sensor’s multiple beams. 
Otherwise, if satellite orbit and river are nearly parallel, the along-track approach calculates the WSS directly 
from the continuous water level observations along a single intersecting beam. The WSS within IRIS is defined 
as positive for a decreasing water surface elevation (WSE) in downstream direction. Table 1 lists the required 
input data. Besides the fundamental ICESat-2 and SWORD data, no auxiliary inputs are required. Version v1 
of IRIS comprises ICESat-2 ATL13 version 517 data from cycles 1 to 16 (October 2018 to August 2022) and uses 
SWORD version v214,18. In the following, we briefly describe the materials and relevant processing steps. For a 
more detailed description, we refer the reader to our previous publication2.

SWOT mission river database (SWORD).  Version v1 of IRIS is designed as a supplement to version v2 
of the “SWOT Mission River Database” (SWORD14,18), which contains high-resolution (30 m) river centerline 

Dataset Variable Description

SWOT Mission River Database (SWORD14,18)

reach_id ID of each reach (Used as key and to identify the reach type)

centerline Reach centerline shapefile geometry (Used to construct the reach AOI and measure the chainage)

width Average reach width (Used to construct the reach AOI)

ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data (ATL1317)

ht_water_surf Water surface height per short segment with reference to WGS84 ellipsoid

cloud_flag_asr_atl09 Cloud probability using Apparent Surface Reflectance (ASR).

snow_ice_atl09 NOAA snow/ice flag.

Table 1.  Input data for the IRIS dataset.

Variable Name Unit Description

reach_id The SWORD reach identifier

lon degrees east Approx. centroid longitude of the SWORD reach

lat degrees north Approx. centroid latitude of the SWORD reach

across_flag
Flags indicating whether ICESat-2 [across/along/combined] slope is available (1) 
for the reach or not (0)along_flag

combined_flag

avg_across_slope

mm/km Average (median) ICESat-2 [across/along/combined] slope for the reachavg_along_slope

avg_combined_slope

min_across_slope

mm/km Minimum ICESat-2 [across/along/combined] slope for the reachmin_along_slope

min_combined_slope

max_across_slope

mm/km Maximum ICESat-2 [across/along/combined] slope for the reachmax_along_slope

max_combined_slope

std_across_slope

mm/km ICESat-2 [across/along/combined] slope standard deviation for the reachstd_along_slope

std_combined_slope

n_across_slope

days Number of days with ICESat-2 [across/along/combined] slope observations for 
the reachn_along_slope

n_combined_slope

min_date_across_slope

 days since 2000-01-01 First date of ICESat-2 [across/along/combined] slope observations for the reachmin_date_along_slope

min_date_combined_slope

max_date_across_slope

days since 2000-01-01 Latest date of ICESat-2 [across/along/combined] slope observations for the reachmax_date_along_slope

max_date_combined_slope

Table 2.  Contents of the resulting IRIS dataset.
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geometries and river widths from the “Global River Widths from Landsat” (GRWL19) dataset segmented into 
reaches approximately every 10 km and topologically ordered. The direction of flow can be inferred from the 
reach identifiers, which increase upstream. The reaches are segmented at natural and artificial river obstructions 
such as dams and waterfalls, or anomalies like basin boundaries and tributary junctions. Therefore, we assume 
the WSS within each reach to be reasonably homogeneous. Each SWORD reach has an assigned type, and only 
reaches of type “river” or “lake on river” are processed for IRIS. SWORD also contains WSE and WSS data from 
MERIT Hydro20 which is derived from the multi-error-removed improved-terrain (MERIT) DEM21 based on 
SRTM. We use the SWORD WSS for comparison with IRIS. IRIS uses the SWORD reach identifier as a key so that 
both datasets can be used together.

In the first step of preprocessing, we buffer each SWORD reach’s centerline geometry by its average width to 
construct a polygon that defines the area of interest (AOI) for further processing. The resulting AOI is thus twice 
as wide as the average SWORD reach’s width to account for any significant temporal and spatial variability (e.g., 
on braided rivers). Note, that for the creation of the regional dataset (version v0), the AOIs were even wider by 

Fig. 2  Averaged combined water surface slope (WSS).

Fig. 3  Detailed views of the averaged combined WSS for North America, Europe, and Siberia (upper f.l.t.r.), 
South America, Central Africa, and East Asia (lower f.l.t.r.).
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four times the width’s standard deviation2. We reduced the AOI size for version v1 because we observed a signif-
icant number of AOIs overlapping with adjacent water bodies on the global scale. In this way, some input data 
from ICESat-2 (see below) might be lost, but we also reduce the number of outliers.

Ice, cloud, and land elevation satellite 2 (ICESat-2).  Each reach AOI is used to spatially filter WSE 
measurements from the “ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data” (ATL13, Version 517) 
dataset provided by the “National Snow & ICE Data Center” (NSIDC). These measurements are taken by ICESat-
2’s photon-counting lidar sensor “Advanced Topographic Laser Altimeter System” (ATLAS) which determines the 
travel time of an emitted photon to the Earth and back to the sensor along three pairs of beams at a pulse rate of 
10 kHz (i.e., one pulse every 0.7 m) and a footprint of approximately 17 m in diameter22. However, depending on 
water and atmospheric conditions, the sensor can detect only a maximum of 2.9 photons per meter over inland 
waters23. Each pair of beams consists of a high energy (175 ± 17 J) and a low energy (45 ± 5 J) beam. The energy 
of the beams used to estimate the WSS has no significant influence on the WSS accuracy2. The spatial resolution 
is relatively high compared to other repeat-orbit satellite altimetry missions because the 91-day repeat orbit with 
an inclination of 92 degrees and changing off-nadir pointings over a two-year period results in a track density of 
2 km24. Version v1 of IRIS is based on ATL13 data from ICESat-2’s cycles 1 to 16 (October 2018 to August 2022). 

Fig. 4  Percentage of processed reaches with Water Surface Slope (WSS) results per Pfaffstetter level 4 basin.

Fig. 5  Average number of days with WSS results per Pfaffstetter Level 4 basin.
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ATL13 does not contain photon-level observations but representative values over short segments of 75 to 100 
consecutive received photons above inland water bodies. These short segments have an along-track length of 30 to 
several hundred meters, depending on the number of received signal photons per pulse23. We use the mean water 
surface height parameter (“ht_water_surf”) with reference to the WGS84 ellipsoid and apply the EIGEN-6C4 
geoid25, which, unlike the EGM2008 geoid used for the ATL13 orthometric heights, also includes measurements 
from the GOCE mission. Additionally, we use the “cloud_flag_asr_atl09” and “snow_ice_atl09” (new in version 
v1 compared to v0) parameters to identify and reject outliers caused by clouds and ice coverage. All remaining 
ATL13 observations within the respective AOI are grouped by beam, cycle, and individual river intersection into 
so-called features (3D-geometries containing points of common properties). For each feature i, the chainage value 
xi of its intersection with the river centerline or otherwise of the nearest point of the centerline is determined. We 
detect further outliers within each feature by calculating the absolute deviation around the median (ADM) within 
a rolling window and a linear support vector regression (SVR), similar to the approach applied in DGFI-TUM’s 

Fig. 6  Combined water surface slope (WSS) variation. Only reaches with more than 3 days of record are shown.

Fig. 7  Combined water surface slope (WSS) variation details. Only reaches with more than 3 days of record are 
shown.
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“Database for Hydrological Time Series over Inland Waters” (DAHITI26). Observations deviating more than 5 cm 
from the SVR or the respective median are rejected. If a feature contains a gap larger than 500 m, it is split at this 
gap, and only the largest cluster is processed further.

Estimation of across-track WSS.  For each feature i, we calculate the average elevation hi of all valid ATL13 
observations, weighted by their inverse distance to the river centerline. Then, the instantaneous WSS between i 
and every other feature j observed at the same date and within the same reach can be calculated as follows:

=
−

−
WSS i j

h h

x x
( , ) i j

i j

Pairs of features with − <∣ ∣x x 1i j  km are not considered, and negative WSS estimates are viewed as outliers 
and rejected. Multiple instantaneous WSS observations of identical dates are averaged, weighted by the inverse 

Fig. 8  Percentage of processed reaches with missing ICESat-2 ATL13 data per Pfaffstetter level 4 basin.

Fig. 9  Averaged combined water surface slope (WSS) extremes. Reaches with an average WSS above the 99th 
percentile (8,237 mm/km, red) and below the 1st percentile (3 mm/km, blue).
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sum of WSE standard deviations in both respective features, to get a reach-scale across-track WSS time series 
with daily temporal resolution.

Estimation of along-track WSS.  Taking advantage of the high spatial resolution, precision, and accuracy 
of ATLAS, the along-track WSS (tan β) can be estimated by fitting a linear regression to the ATL13 WSE observa-
tions and their position along the track within a single feature. However, tan β only represents the WSS along the 
beam ground track which is not fully parallel to the river centerline. This results in an erroneous WSS. Therefore, 
tan β is projected onto the river centerline tangent vector c→ to obtain an undistorted WSS along the river:

WSS
b tan

b
b c b b c

c
csgn( ) with ,

2

� �

� � � �

β
=

′
⋅ ′ = ⋅

→

→

→ → →
→ →

→
→

Fig. 10  Averaged combined water surface slope (WSS) by reach elevation (left) and reach width (right).

Fig. 11  Mean number of observation days (left) and processed reaches with Water Surface Slope (WSS) results 
(right) by mean cloud fraction.

Fig. 12  Mean number of observation days, WSS result ratio, and mean WSS variation per reach width grouped 
by 10% percentiles and river morphology.
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where 
→
b  is the vector of the feature’s beam ground track segment. As above, negative WSS are rejected. In addi-

tion, an angle-dependent outlier threshold is applied to the confidence interval (CI) of tan β. The smaller the 
angle between c→ and b

→
, the higher the allowed CI, with a maximum angle of 65° and a maximum CI of 

300 mm/km. These constraints were determined empirically by comparison with in-situ data2. We obtain a 
reach-scale along-track WSS time series by averaging the instantaneous results from identical dates weighted by 
the inverse of the angle between →c  and b

→
.

Combined estimation of WSS.  To increase the overall spatial and temporal coverage, we combine both 
methods. Depending on the intersection angle, only one of them may provide a WSS result. Thus, in the combi-
nation the reach-scale daily averaged across- and along-track WSS time series are merged, with the across-track 
results being preferred in the case of overlapping dates as this is the more accurate and robust approach2.

Fig. 13  Correlation coefficient between IRIS average combined WSS and SWORD WSS from MERIT Hydro 
per Pfaffstetter level 4 basin enclosing more than 5 reaches covered with WSS results.

Fig. 14  Bias (SWORD - IRIS) between IRIS average combined WSS and SWORD WSS from MERIT Hydro per 
Pfaffstetter level 4 basin enclosing more than 5 reaches covered with WSS results.
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Data Records
The global “ICESat-2 River Surface Slope” (IRIS15) dataset is available at Zenodo. IRIS is stored in a single 
NetCDF4 file, which is structured in a single group containing the variables listed in Table 2. IRIS can be used as 
a supplement to SWORD by joining the datasets via the “reach_id ” key. Otherwise, the “lon” and “lat” variables 
give the approximate centroid of the reach. All other variables are provided separately for each method. The 
“[across/along/combined]_ flag” variable indicates the availability of data from the respective method.

The main content of IRIS is the reach-scale median WSS from the combined approach (“avg_combined_
slope”) shown in Fig. 2. More detailed views on specific regions are presented in Fig. 3. In dark grey, both figures 
display reaches that were not processed due to the SWORD type flag filter, such as ghost reaches or reaches with 
unreliable topography. Reaches that have been processed but do not contain valid results are shown in white. 
Overall, 178,659 (74.1%) of the total 241,107 reaches in the SWORD dataset pass the type flag filter (types “river” 
or “lake on river”) and are further processed. The approach yields results for 121,583 reaches which corresponds 
to a coverage of 68.1% of the processed SWORD reaches. Figure 4 shows the ratio of processed reaches with WSS 
results per river basin (Pfaffstetter level 427).

IRIS provides the number of days with WSS observations per reach by the parameter “n_[across/along/com-
bined]_slope”. Figure 5 shows the average number of days with combined observations per basin. The detection 
of WSS changes over time is possible through the continuous addition of ICESat-2 observations. IRIS contains 
the minimum (“min_[across/along/combined]_slope”) and maximum (“max_[across/along/combined]_slope”) 
WSS obtained with the respective method per reach. The amplitude of WSS variations (“max_combined_slope” 
- “min_combined_slope”) for reaches with more than 3 days of WSS observations can be seen in Fig. 6. More 
detailed views of specific regions are provided in Fig. 7. The parameters “min_date_[across/along/combined]_
slope” and “max_date_[across/along/combined]_slope” give the first and latest observation of the respective 

Fig. 16  Probability density of the IRIS average combined WSS per climate zone.

Fig. 15  Root mean square deviation (RMSD) between IRIS average combined WSS and SWORD WSS from 
MERIT Hydro per Pfaffstetter level 4 basin enclosing more than 5 reaches covered with WSS results.
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method per reach, and “std_[across/along/combined]_slope” provides the standard deviation of all respective 
WSS observations per reach.

Technical Validation
The approach was validated at 815 reaches in a regional study2 with a median absolute error (MAE) of 23 mm/
km for the “avg_combined_slope” compared to gauge data. The MAE for the “avg_across_slope” and “avg_along_
slope” were 19 and 47 mm/km, respectively2. Although a global validation is not feasible, the overall robustness 
of the results can be inferred from Figs. 2, 3. Especially at the free-flowing Amazon and Congo Rivers, the WSS 
increases gradually in upstream direction. Discontinuities can be observed primarily in basins influenced by 
human intervention. For example, reservoirs in the western Mississippi River basin are apparent as single dis-
continuities with low WSS (cf. Fig. 3). In Figs. 6, 7, low variations of WSS can be observed along river main stems 
and regulated rivers. Large fluctuations, on the other hand, occur mainly at upstream reaches.

Among others, high coverage can be achieved for Eastern Europe, Brazil, and the Nile River. Below-average 
coverage is apparent for parts of the Lena and Indus Rivers, Western Europe, East Asia, and the Pacific coast of 
South America. This is caused, among other factors, by missing ATL13 input data (cf. Figure 8). Overall, 16,754 
(9.4%) of the processed reaches are not covered by ATL13 data.

Figure 9 displays extremely high (99th percentile: 8,237 mm/km) and low (1st percentile: 3 mm/km) “avg_
combined_slope” WSS values. Except for some plateaus, low WSS values are located in low-lying regions. On 
the other hand, high WSS values are not limited to regions of high elevation as shown in Fig. 10 on the left. 
Figure 10 also provides the averaged combined WSS by reach width. With increasing width, the WSS tends 
towards 10 mm/km. Extremely high WSS are limited to narrow reaches. The data density in Fig. 10 indicates that 
the majority of the studied reaches are less than 300 m wide and situated lower than 200 m.

In Fig. 11 the number of observed days and and the coverage with WSS results is compared with cloud 
coverage data from MODIS28 during the ICESat-2 period. Both values, especially the number of observed days, 
depend strongly on cloud coverage since the ATLAS lidar sensor cannot penetrate clouds. Additionally, Fig. 12 
shows the number of observed days, the coverage with WSS results, and mean temporal WSS variation (“max_
combined_slope” - “min_combined_slope”) per 10% reach width percentiles for meandering (n = 96,900) and 
braided (n = 24,683) rivers. For the morphological classification, the “Global River Morphology” (GRM) raster 
from the “Global Channel Belt” (GCB29,30) dataset is sampled along each reaches’ centerline, assigning the class 
with the highest summed probability. Figure 12 shows that with increasing width, more observations can be 
provided. The mean temporal WSS variation is significantly larger for braided rivers than for meandering rivers, 
especially at widths below 171 m.

DEM data cannot be used to validate the accuracy of the results. However, for further analysis of the statis-
tical soundness of the IRIS WSS, we compare the “avg_combined_slope” to the SWORD WSS derived from the 
MERIT Hydro DEM. Figures 13–15 show the correlation coefficient r, the bias (SWORD - IRIS), and the root 
mean square deviation (RMSD) between the two datasets per Pfaffstetter level 4 basin. Basins with less than six 
reaches covered by IRIS are not included because there is not enough data to make a meaningful comparison. 
On basin scale, r is greater than 0.50 for 580 (72%) out of the 808 basins with more than 5 covered reaches. Of 
the major river basins, only the Nile has a low correlation (0.03, cf. Figure 13). Over all IRIS and SWORD WSS, 
r is 0.73.

The bias ranges from −657 to 4,774 mm/km at the basin scale (with more than 5 reaches covered) with a 
mean of 149 mm/km. Thus, SWORD tends to have greater WSS than IRIS, especially in East Asia, while for 
almost the entire Amazon basin, the WSS results are greater in the IRIS dataset (cf. Figure 14). The overall 
RMSD after subtracting the bias between SWORD and IRIS is 1,514 mm/km, ranging from 12 to 19,994 mm/km 
at the basin scale (with more than 5 reaches covered) with a mean RMSD of 942 mm/km.

One reason for low correlations or large biases at the basin scale could be the gap between the acquisition 
time of the SWORD and IRIS input data, which spans 18 years in the case of SRTM and ICESat-2. During this 
time, significant hydraulic structures affecting the WSS may have been constructed and the river morphology 
may have changed. In addition, the bias between the two datasets is expected due to the better vertical accuracy 

Fig. 17  Probability density of the IRIS average combined WSS per freshwater habitat.
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of ICESat-2 compared to the MERIT DEM31 used to derive the SWORD WSS. The MERIT DEM shows signifi-
cant elevation errors21 compared to the first ICESat mission in basins where large biases occur between IRIS and 
SWORD (e.g., in East Asia).

For an additional analysis of the statistical soundness, we classify the “avg_combined_slope” by different 
hydro-environmental classifications provided by HydroATLAS32 at the basin scale (BasinATLAS). Figures 16, 17 
show the WSS probability density by different climate zones33 and freshwater habitats34, respectively. The legends 
listing the classes also show the relative contribution of each class to the total number of basins. Classes with a 
percentage of less than 1% are not shown.

Usage Notes
Although IRIS contains separate values for each of the three approaches, the “avg_combined_slope” is likely to be 
appropriate for most use cases because it has the highest spatial and temporal coverage. Users should consider 
the number of days with WSS observations (“n_[across/along/combined]_slope”) when using the aggregated 
“max_[across/along/combined]_slope”, “min_[across/along/combined]_slope”, and “std_[across/along/combined]_
slope” parameters. With fewer samples, these aggregated parameters get less significant or not meaningful at 
all. In this paper, only reaches with more than 3 days of WSS observations were used when plotting the param-
eters (i.e., Figs. 6, 7). IRIS will be updated progressively by adding future ICESat-2 cycles. This will provide 
increasing insight into the temporal variability of WSS. IRIS will also be updated with new versions of SWORD. 
Additionally, for future versions it is planned to include WSS uncertainty values derived from the confidence of 
fit or the WSE uncertainties for the along- and across-track method, respectively. Note, that the IRIS dataset is 
generated fully automatically and depends on the availability and quality of the ATL13 observations and flags, as 
well as the accuracy of the SWORD centerline, topology, and type parameters. Therefore, isolated outliers cannot 
be excluded, e.g., caused by missing dams in SWORD.

Code availability
A code example of IRIS is available at Zenodo35. The methodology is described in detail in our regional study2.
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Abstract

The number of in-situ stations measuring river discharge, one of the Essential Climate Variables (ECV), is declin-
ing steadily, and numerous basins have never been gauged. With the aim of improving data availability worldwide,
we propose an easily applicable and transferable approach to estimate reach-scale discharge solely using remote
sensing data that is suitable for filling gaps in the in-situ network. We combine 20 years of satellite altimetry obser-
vations with high-resolution satellite imagery via a hypsometric function to observe large portions of the reach-scale
bathymetry. The high-resolution satellite images, which are classified using deep learning image segmentation, al-
low for detecting small rivers (narrower than 100 m) and can capture small width variations. The unobserved part
of the bathymetry is estimated using an empirical width-to-depth function. Combined with precise satellite-derived
slope measurements, river discharge is calculated at multiple consecutive cross-sections within the reach. The un-
known roughness coefficient is optimized by minimizing the discharge differences between the cross-sections. The
approach requires minimal input and approximate boundary conditions based on expert knowledge but is not de-
pendent on calibration. We provide realistic uncertainties, which are crucial for data assimilation, by accounting for
errors and uncertainties in the different input quantities. The approach is applied globally to 27 river sections with a
median normalized root mean square error of 12% and a Nash-Sutcliffe model efficiency of 0.560. On average, the
90% uncertainty range includes 91% of the in-situ measurements.
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A B S T R A C T

The number of in-situ stations measuring river discharge, one of the Essential Climate Variables (ECV), is
declining steadily, and numerous basins have never been gauged. With the aim of improving data availability
worldwide, we propose an easily applicable and transferable approach to estimate reach-scale discharge solely
using remote sensing data that is suitable for filling gaps in the in-situ network. We combine 20 years of
satellite altimetry observations with high-resolution satellite imagery via a hypsometric function to observe
large portions of the reach-scale bathymetry. The high-resolution satellite images, which are classified using
deep learning image segmentation, allow for detecting small rivers (narrower than 100 m) and can capture
small width variations. The unobserved part of the bathymetry is estimated using an empirical width-to-depth
function. Combined with precise satellite-derived slope measurements, river discharge is calculated at multiple
consecutive cross-sections within the reach. The unknown roughness coefficient is optimized by minimizing
the discharge differences between the cross-sections. The approach requires minimal input and approximate
boundary conditions based on expert knowledge but is not dependent on calibration. We provide realistic
uncertainties, which are crucial for data assimilation, by accounting for errors and uncertainties in the different
input quantities. The approach is applied globally to 27 river sections with a median normalized root mean
square error of 12% and a Nash–Sutcliffe model efficiency of 0.560. On average, the 90% uncertainty range
includes 91% of the in-situ measurements.

1. Introduction

River discharge is one of the ‘‘Essential Climate Variables’’ (ECV)
defined by the ‘‘Global Climate Observing System’’ (GCOS) (World
Meteorological Organization, 2022). Knowledge of this parameter is
required for various tasks related to water management and civil
protection. Furthermore, river discharge is an important quantity in
studies of the hydrological cycle and climate change impacts. Despite
this relevance, the number of publicly accessible in-situ discharge
stations in databases like the GRDC (Global Runoff Data Centre, 2023)
is steadily declining, especially in remote places (Hannah et al., 2011;
Riggs et al., 2023). Therefore, multiple studies aim at extending previ-
ously active in-situ discharge stations using remote sensing observables
such as water level, river width, or reflectance ratios and a calibrated
functional relationship to the river discharge, often referred to as rating
curve (e.g., Tarpanelli et al., 2019; Elmi et al., 2021; Gleason and Du-
rand, 2020; Riggs et al., 2023). To establish the functional relationship,
the periods of remote sensing and in-situ data do not necessarily have
to overlap (Tourian et al., 2013). Still the river must have been gauged
at some point in time. However, many river basins have never been

∗ Corresponding author.
E-mail address: daniel.scherer@tum.de (D. Scherer).

gauged due to their remoteness or security concerns. In some places,
political factors prohibit or restrict data sharing (Gleason and Durand,
2020).

For ungauged rivers, shallow water equations like the Gauckler–
Manning–Strickler equation (Manning, 1891) are regularly used with a
combination of different remote sensing data. These equations require
the channel geometry, water surface slope, and a roughness coeffi-
cient. Bjerklie et al. (2018), Zakharova et al. (2020), and Scherer et al.
(2020) derive the channel geometry from river widths observed by
the Landsat mission and water levels observed by satellite altimetry.
However, the geometry can only be partially reconstructed this way,
and the river depth is either estimated from empirical relationships
or literature values. Water surface slope is also derived from satellite
altimetry data, and roughness coefficients are determined based on
literature or empirical relationships (Bjerklie et al., 2018; Zakharova
et al., 2020; Scherer et al., 2020). The approach by (Lamine et al.,
2021) is similar but uses higher resolution PlanetScope data at an
ephemeral section of the Niger River where the full bathymetry can be
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observed. These approaches demand extensive user input and judgment
to estimate discharge at even a single cross-section.

To reduce the number of assumptions, many studies (e.g., Durand
et al., 2014; Garambois and Monnier, 2015; Gleason and Hamdan,
2017; Hagemann et al., 2017) use the principle of mass conservation or
‘‘Mass-Conserved Flow Law Inversion’’ (McFLI) (Durand et al., 2023),
considering the discharge to be constant in space within a short reach of
steady (in time, constant river stage during the satellite observation),
and uniform or gradually varied (in space, with the river shape the
same throughout the studied reach) flow (Rhoads, 2020). Using this
constraint, the unknown parameters such as roughness and depth can
be better approximated, but the problem remains ill-posed. There is
no exact solution, and boundary constraints are required (Roux and
Dartus, 2005; Gleason and Durand, 2020). Most of these approaches
are designed specifically for and tested with simulated data from the
new ‘‘Surface Water and Ocean Topography’’ (SWOT) mission, which
measures river width, height, and slope simultaneously. The uncon-
strained SWOT methods for ungauged rivers still require model data
as prior information (Durand et al., 2023). Due to the current lack of
SWOT observations, the McFLI ‘‘Bayesian At-Many-Stations Hydraulic
Geometry-Manning Algorithm’’ (BAM) (Hagemann et al., 2017) is pri-
marily used with river widths from satellite imagery. Feng et al. (2019)
use BAM with river widths extracted from Landsat 8, Sentinel-2, and
PlanetScope satellite imagery. However, without slope and height data,
BAM requires a priori data from global runoff reanalysis datasets. Lin
et al. (2023) apply the BAM and the updated geoBAM (Brinkerhoff
et al., 2020) algorithms to more than 3000 globally distributed river
reaches using Landsat imagery. With the standard configuration, up to
39% of sites show good model performance, and with more sophis-
ticated a priori data, this number increases to 65%. The operational
SWOT discharge product will provide uncertainty estimates based on
random and systematic errors of the SWOT sensor, the flow law ap-
proximation employed, and parameter estimation (Durand et al., 2023).
A total uncertainty of 30% is expected for SWOT estimates at ungauged
rivers (Durand et al., 2023).

In this study, we leverage and fuse the large amount of diverse
remotely sensed data on water level, slope, and width to derive a
discrete river discharge time series. The approach does not depend
on SWOT data. Instead, we use over 20 years of water level ob-
servations from satellite altimetry, beginning with the Jason-1 and
Envisat missions in 2001. Using the unique measurement geometry of
the ICESat-2 mission with six parallel observations, we obtain global
reach-scale average measurements of river slopes. We observe small
rivers (< 100m), as categorized by Nielsen et al. (2022), and small
variations in river width using 3 m resolution PlanetScope satellite
imagery. However, the approach can also be applied to larger rivers.
A hypsometric curve is fitted to simultaneous water level and surface
area observations to reconstruct the river bathymetry. An empirical
width-to-depth relationship is used to obtain a first estimate of the
unobserved part of the river bathymetry, which is further optimized by
reducing the difference between adjacent cross-sections. Based on the
principle of mass conservation, we optimize the roughness coefficient to
minimize the discharge difference between multiple consecutive cross-
sections. Observation errors and uncertainties from all measurement
techniques involved are included in the estimation of uncertainty.
Our approach is specifically designed for ungauged rivers, where no
calibration data is available and SWOT would only cover the most
recent years. The new method works with minimal user input such as
label points for the image classification and requires only approximate
boundary conditions for the optimization. However, expert judgment
is still needed to assess the results and adjust the boundary conditions.
We provide uncertainty ranges to facilitate the assimilation of our
results into hydrological models. The amount and variety of satellite
data employed are unprecedented, and yet the approach is transferable
to other river reaches with steady uniform or gradually varied flow.
The approach is expected to be extremely valuable for hydrological
modeling by providing discharge time series with uncertainty estimates
in remote ungauged basins without requiring any calibration data.

2. Materials and methods

We estimate discharge time series for 𝑚 consecutive cross-sections
within a river reach of steady uniform or gradually varied flow and
aim to minimize the differences in discharge based on the principle of
mass conservation. To calculate the river discharge 𝑄(𝑡, 𝑥) at a given
cross-section at chainage 𝑥 and time 𝑡, we first divide the cross-section
into 𝑛 = 30 vertical segments as recommended by Boyer (1964),
which is also common practice for field measurements (Turnipseed and
Sauer, 2010; Rhoads, 2020). For each segment 𝑖, the partial discharge
is calculated by multiplying the depth-averaged flow velocity 𝑣̄𝑖(𝑡, 𝑥)
calculated for the segment and its cross-sectional wetted area 𝐴𝑖(𝑡, 𝑥).
Both parameters vary over time depending on the water level at the
cross-section ℎ(𝑡, 𝑥). The final discharge at the cross-section is the sum
over all the vertical segments:

𝑄(𝑡, 𝑥) =
𝑛∑
𝑖=1

𝑣̄𝑖(𝑡, 𝑥) ⋅ 𝐴𝑖(𝑡, 𝑥) (1)

We calculate the depth-averaged river flow velocity within a segment
using the Gauckler–Manning–Strickler equation (Manning, 1891):

𝑣𝑖(𝑡, 𝑥) = 𝑘𝑖(𝑡, 𝑥) ⋅ 𝑅𝑖(𝑡, 𝑥)
2
3 ⋅ 𝐼(𝑡, 𝑥)

1
2 with 𝑅𝑖(𝑡, 𝑥) = 𝐴𝑖(𝑡, 𝑥)∕𝑃𝑖(𝑡, 𝑥) (2)

where 𝑘𝑖(𝑡, 𝑥) is the Strickler roughness coefficient (the inverse of Man-
ning’s 𝑛), whose larger magnitude leads to a more stable optimization
compared to the small values of Manning’s 𝑛. 𝐼(𝑡, 𝑥) is the water surface
slope, and 𝑃𝑖(𝑡, 𝑥) is the wetted perimeter of the segment. Note that
𝑃𝑖(𝑡, 𝑥) only includes the riverbed of the vertical segment and not
the boundaries to the adjacent segments. For the nearly rectangular
segments in the center of the cross-section, this is identical to replacing
the hydraulic radius 𝑅𝑖(𝑡, 𝑥) with the depth of the vertical segment,
as studied by Song et al. (2017). However, using the hydraulic radius
improves the generality of the approach because it is recommended for
channels with small width-depth ratios or complex geometry such as
vertical segments close to the river bank (Julien, 2018; Song et al.,
2017; Wei et al., 2023). Fig. 1 depicts two schematic cross-sections and
the cross-sectional parameters per vertical segment. Except for 𝑘𝑖(𝑡, 𝑥),
and the depth and shape of the cross-section below the minimum ob-
served water level, all parameters can be derived from remote sensing
data.

We calculate 𝑘𝑖(𝑡, 𝑥) using a base Strickler value 𝑘𝐵(𝑥) and the reach
sinuosity 𝑠(𝑥) at the cross-section:

𝑘𝑖(𝑡, 𝑥) =
𝑘𝐵(𝑥)
𝑑 ⋅ 𝑠(𝑥)

with 𝑑 =

{(
𝑑𝑖(𝑡, 𝑥)∕𝑑0

)−𝜖 if 𝑑𝑖(𝑡, 𝑥) > 𝑑0
1, otherwise

(3)

where 𝑑 is a parameter to adjust the roughness for the flow depth so
we can account for different surface types across the cross-section, and
𝑠(𝑥) is the sinuosity, which accounts for the increased resistance caused
by meandering (Chow, 1959). Variations in 𝑠(𝑥) along the studied
reach introduce additional constraints to the problem, which aids in
finding an optimal solution. The concept of a roughness coefficient
depending on depth and sinuosity has been successfully demonstrated
in previous studies that have estimated discharge from remote sensing
data (Bjerklie et al., 2018; Bjerklie, 2007). To calculate 𝑑, we apply a
method proposed by Jain et al. (2004), which requires the section’s
depth 𝑑𝑖(𝑡) and the parameters 𝑑0 and 𝜖. 𝑑0 is the minimum depth
below which the roughness is assumed to be constant, and 𝜖 is the drag
coefficient. In contrast to the fixed relationship used by Bjerklie et al.
(2018), the parameters of Eq. (3) are adjusted during optimization.
Fig. 2 shows the depth-dependent Strickler roughness coefficient as
calculated with Eq. (3) for example values of the 𝑑0, 𝜖, 𝑘𝐵(𝑥), and 𝑠(𝑥)
parameters. In summary, we calculate the roughness coefficient 𝑘𝑖(𝑡, 𝑥)
from the parameters 𝑘𝐵(𝑥), 𝑠(𝑥), 𝑑𝑖(𝑡, 𝑥), 𝑑0, and 𝜖 from which only 𝑠(𝑥)
can be derived from remote sensing data and the remaining parameters
must be inferred from the optimization.

In the following sections, we derive the observable parameters
for Eq. (2) (𝐼(𝑡, 𝑥) and partially 𝑅𝑖(𝑡, 𝑥)) from satellite altimetry and
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Fig. 1. Schematic cross-sections with required parameters per vertical segment. Note that the width of the segments is exaggerated in relation to the depth.

Fig. 2. Depth-dependent Strickler roughness coefficient for a set of example pa-
rameters (solid black) at the bounds of 𝑠, 𝑑0, and 𝜖, and variations in the base
value 𝑘𝐵 (dashed black), sinuosity 𝑠 (gray), 𝑑0 (blue), and 𝜖 (orange). (For interpretation
of the references to color in this figure legend, the reader is referred to the web version
of this article.)

remote sensing observations for multiple consecutive cross-sections.
Fig. 3 shows a flowchart of these first steps. In Section 2.3, we obtain
the water level time series which is used in Section 2.4 to find represen-
tative satellite images for high and low flows and the range between.
Section 2.4 also describes the water classification. The resulting binary
water masks are combined with the water level time series using a fitted
hypsometric function to construct the observed river bathymetry raster.

Two optimization steps follow the construction of the observable
river bathymetry. In Section 2.6, we optimize the shape of the cross-
sections below the baseflow (minimum observed water level) to get
𝑑𝑖(𝑡, 𝑥) and the entire 𝑅𝑖(𝑡, 𝑥). Then, in Section 2.7, we optimize the
roughness parameters 𝑘𝐵(𝑥), 𝑑0, and 𝜖 to obtain a set of roughness
coefficients 𝑘𝑖(𝑡, 𝑥) that minimize the difference in discharge between
all cross-sections. Fig. 4 shows a flowchart of these two sections.

2.1. Framework: SWOT mission river database

The basic framework for our approach is the ‘‘SWOT Mission River
Database’’ (SWORD) (Altenau et al., 2021a,b) version 15. SWORD pro-
vides vectorized river centerlines divided into ∼10 km long reaches and
nodes with a spacing of ∼200m along the centerlines. The vectors are
derived from the 30 m resolution ‘‘Global River Widths from Landsat’’
(GRWL) data set (Allen and Pavelsky, 2018). In our study, we use the
SWORD nodes within a given ‘‘Area Of Interest’’ (AOI) to define the

locations 𝑥 of the 𝑚 cross-sections. The number of cross-sections (𝑚)
depends on the size of the AOI. We manually remove irregular cross-
sections (e.g., cutoff at the edge or not aligned with the neighboring
cross-sections). The AOI should comprise a uniform or gradually varied
river section without significant lateral inflows so the discharge can
be assumed constant. Choosing a straight river section increases the
probability of a uniform or gradually varied channel shape, which is
required for the flow law inversion and is easier to reconstruct from
remote sensing data than a strongly curved section, where a river can
naturally and severely erode its own bed (Scherer et al., 2020). SWORD
reaches are designed to not incorporate major tributaries, and we set
up the AOI to be smaller than a typical SWORD reach (i.e., < 10 km
chainage) at which McFLI approaches are commonly applied (Durand
et al., 2023). Hence, we consider the assumption of mass conservation
within the AOI to be valid. SWORD includes many hydrological and
morphological attributes, such as the node-scale river sinuosity, which
we use as 𝑠(𝑥) in Eq. (3). Based on the location of the consecutive up-
and downstream nodes, we calculate each node’s normal along which
we extract the cross-sectional geometry (see Section 2.6). The normal
width is derived from the SWORD nodes’ river width attribute.

2.2. Slope: ICESat-2 river surface slope

We use the ‘‘ICESat-2 River Surface Slope’’ (IRIS) (Scherer et al.,
2023) dataset version 2 as input for 𝐼(𝑡, 𝑥) in Eq. (2). IRIS contains aver-
age and extreme water surface slopes for each SWORD reach. The water
surface slope is derived from water level measurements by the photon-
counting ‘‘Advanced Topographic Laser Altimeter System’’ (ATLAS)
lidar sensor onboard the ‘‘Ice, Cloud, and Land Elevation Satellite 2’’
(ICESat-2). ATLAS measures along six parallel lidar beams, which, in
combination with ICESat-2’s 91-day repeat orbit at an inclination of
92◦, results in thorough spatial coverage, such that 89% of all SWORD
reaches flagged as ‘‘river ’’ or ‘‘lake_on_river ’’ are covered by IRIS. How-
ever, due to the orbit configuration and clouds that ATLAS cannot
penetrate, the temporal resolution is relatively low. Therefore, IRIS
cannot be used as a time-variable slope input, and we assume 𝐼(𝑡, 𝑥)
to be constant in time due to the lack of suitable data. The IRIS water
surface slope is determined across pairs of beams or along individual
beams, depending on the intersection angle of spacecraft orbit and river
centerline (Scherer et al., 2022). We use the ‘‘avg_combined_slope’’ value,
which combines the result of both approaches as an average over all
observations. Additionally, we use extreme values ‘‘min_combined_slope’’
and ‘‘max_combined_slope’’ observed over time when calculating the
confidence interval.

2.3. Water level: Database for hydrological time series of inland waters

The resulting discharge is based on water level time series from
DGFI-TUM’s ‘‘Database for Hydrological Time Series of Inland Waters’’
(DAHITI) (Schwatke et al., 2015). Water levels of DAHITI are derived
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Fig. 3. Flowchart of Section 2.3 to 2.5 summarizing the steps to obtain the observable part of the river bathymetry.

Fig. 4. Flowchart of Sections 2.6 and 2.7 summarizing the optimization of the cross-sectional geometries and the roughness parameters.

from numerous satellite altimetry missions at so-called virtual stations
where the satellite’s ground track intersects a lake or river. Data from
virtual stations are available worldwide but are limited by the orbit
configuration of the satellites and the measurement geometry of the

sensors, which only measure in the nadir direction (Dettmering et al.,
2020). The orbit configuration also affects the temporal resolution
of the water level time series, which are between 10 days (Jason-
1/2/3, Sentinel-6A) and 35 days (Envisat) for the missions used in
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this study. Pulse-limited or low-resolution mode (LRM) radar altimeter
sensors are most suitable for rivers wider than 200 m. For smaller rivers,
measurement errors, mainly caused by topography contamination of
the large radar footprint, often exceed decimeters (Calmant et al., 2016;
Schwatke et al., 2015; Sulistioadi et al., 2015). For narrower rivers,
missions equipped with synthetic aperture radar (SAR), interferometric
SAR (SARIn), or light detection and ranging (lidar) sensors are capable
of measuring the water level with high accuracy (Halicki and Niedziel-
ski, 2022; Cooley et al., 2021; Lao et al., 2022). In this study, we use
virtual stations from the Envisat (LRM), Jason-1/2/3 (LRM), Sentinel-
3A/B (SAR), and Sentinel-6A (LRM) missions, depending on the river
width. The quality of the water level time series at virtual stations
strongly depends on the surrounding topography and the intersection
angle (Schwatke et al., 2015).

The satellite altimetry data processed in DAHITI are extracted from
the ‘‘Open Altimeter Database’’ (OpenADB) (Schwatke et al., 2023).
DAHITI applies extensive automatic outlier detection and Kalman fil-
tering. DAHITI water level time series are corrected for the wet and
dry atmosphere, ionosphere, solid Earth and pole tides, and inter-
mission biases from a multi-mission cross-over analysis (Bosch et al.,
2014; Schwatke et al., 2015). In addition to the standard corrections
applied in DAHITI, we correct the water levels for the slope bias
caused by the satellites’ slightly shifting ground tracks over the sloped
river (Scherer et al., 2022; Halicki et al., 2023). To calculate the slope
bias, the distance along the SWORD centerline between each orbit’s
intersection to a defined reference point is multiplied by the average
water surface slope from IRIS. In this way, we can also bin observations
from multiple virtual stations within an AOI to a combined reach-scale
time series ℎ(𝑡, 𝑥). Note that ℎ(𝑡, 𝑥) is thus constant in space across the
cross-sections 𝑥. This affects only the bathymetry and cross-sectional
geometry but not the slope, which is based on the reach-scale IRIS
data. Possible uncertainties of this bias correction caused by ambiguous
crossings (i.e., a bending river reach is crossed multiple times by one
satellite track) are added to the uncertainties provided by DAHITI. We
use the combined uncertainties to calculate the confidence interval in
Section 2.8.

2.4. Water extent: PlanetScope satellite imagery

In previous studies, we used multispectral satellite imagery from
the Landsat and Sentinel-2 missions to determine the time-variable
water surface extents of rivers and lakes as well as the water bodies’
bathymetry (Schwatke et al., 2019; Scherer et al., 2020; Schwatke
et al., 2020). However, the ground sample resolutions of these mis-
sions are limited to 30 m (Landsat) and 10 m (Sentinel-2). Here, we
apply 3 m resolution PlanetScope scene tiles (Planet Labs PBC, 2022).
Besides the significantly improved spatial resolution, which allows us
to detect smaller changes and narrower rivers, the near-daily temporal
resolution (Roy et al., 2021) of the current PlanetScope constellation
of approximately 130 CubeSats increases the probability of monitor-
ing the surface water extent at water level extremes and acquiring
cloud-free images with a minimum time interval to the altimetry obser-
vations. However, in contrast to Landsat and Sentinel-2, PlanetScope
data are not freely available, and with a basic research license, only
a limited quota is available for download per month. Therefore, we
download only the minimum number of images required to observe
approximately each 25 cm step between the minimum and maximum
water level. Because of the small number of obtained images, gap-
filling approaches based on a large number of long-term surface water
observations (Schwatke et al., 2019) cannot be applied. Furthermore,
the water classification used by Schwatke et al. (2019) cannot be
applied to the PlanetScope scenes as the classification is designed
for multispectral images that include two shortwave infrared bands.
However, the PlanetScope scenes used here do not include shortwave
infrared bands.

To classify water, we first calculate the ‘‘Normalized Difference
Water Index’’ (NDWI) (McFeeters, 1996) in each PlanetScope scene
based on the green and near-infrared bands. Then, we apply three
different approaches to obtain three binary land–water masks. The
first approach is based on a simple NDWI threshold and the two
other approaches use the ‘‘Segment Anything Model’’ (SAM) (Kirillov
et al., 2023) software, an artificial intelligence model trained with
over 1 billion masks on 11 million images. Although SAM was most
probably not trained on water masks and satellite imagery, its zero-shot
transfer capabilities based on minimal user inputs are sufficient for our
study (Osco et al., 2023), and SAM is also already used in the segment-
geospatial package (Wu and Osco, 2023). All approaches require the
user to define one or more label points to specify the water body of
interest. Additionally, the ‘‘SAM Predictor’’ approach can be improved
by user-defined label points inside and outside the water body of
interest. SAM does not work with multispectral images and instead
requires a 3-band image. However, we do not apply a typical red, green,
and blue combination. Instead, we use the infrared, the previously
calculated NDWI, and the red band for both SAM approaches because
this combination shows high contrast between water and non-water
areas. The three classification approaches are:

NDWI Thresholding: Using the PeakUtils software (Negri and Vestri,
2017), we determine the pixel values of the land and water
peaks in the NDWI histogram. We use the mean pixel value
between both peaks as the threshold to distinguish between land
(<threshold) and water (>threshold), similar to Schwatke et al.
(2019). A connected-component labeling algorithm (Weaver,
1985) is applied to label each water body in the binary water
mask. The label of the water body of interest is defined by the
first user-defined label point so that an isolated water mask of
the river can be created.

SAM Predictor: The ‘‘SamPredictor’’ class of SAM automatically cre-
ates a binary water mask showing only the river of interest
using the user-defined label points within and outside the river
surface. In contrast to the NDWI thresholding approach, no
further labeling algorithm is required to identify connected-
components. However, the classification can be refined by ad-
ditional user-defined label points.

SAM Generator: The ‘‘SamAutomaticMaskGenerator’’ does not
require label points for classification but automatically gener-
ates masks for every detected feature. However, one label point
is still required to determine the feature containing the river
surface after classification. We define a minimum feature size of
10% of the AOI area.

After applying the three approaches, we sum up the three binary water
masks of the river. This results in an image with four classes: 0 (land),
1 and 2 (mixed result), and 3 (river). To ensure the robustness of our
method, we require that at least two of the classification approaches
match. Hence, we accept every pixel with a value of 2 or 3 to create
our final river water mask for each PlanetScope scene.

2.5. River bathymetry

Following Schwatke et al. (2020) and Scherer et al. (2020), we fit a
modified hypsometric Strahler function (Strahler, 1952) to the DAHITI
water level (ℎ) and synchronous surface area (𝑎) from the classified
PlanetScope scenes within the AOI:

ℎ(𝑎) =
[
𝑎𝑚𝑖𝑛 − 𝑎
𝑎𝑚𝑖𝑛 − 𝑎𝑖𝑝

⋅
𝑎𝑚𝑎𝑥 − 𝑎𝑖𝑝
𝑎𝑚𝑎𝑥 − 𝑎

]𝑧
⋅ ℎ𝑠𝑐𝑎𝑙𝑒 + ℎ𝑚𝑖𝑛 (4)

where 𝑎𝑚𝑖𝑛 and 𝑎𝑚𝑎𝑥 define the minimum and maximum surface area,
ℎ𝑚𝑖𝑛 the minimum water level, and ℎ𝑠𝑐𝑎𝑙𝑒 the water level variation. 𝑧
and 𝑎𝑖𝑝 describe the shape of the curve and the abscissa of its inflection
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point, respectively. ℎ𝑚𝑖𝑛 must be selected by the user, whereby the
fitting quality must be assessed. ℎ𝑚𝑖𝑛 does not represent the final river
bed elevation of the cross-sectional geometry but is only used for fitting
the hypsometry. In contrast to previous studies (Scherer et al., 2020;
Schwatke et al., 2020) using Landsat and Sentinel-2 data with a time
lag of several days, the time lag between water level and the frequent
surface area observations from PlanetScope is much smaller and often
shorter than one day. However, fitting the hypsometric function is
still useful to reduce the influence of water level errors, interpolate
the water level in case there is a time lag of a few days caused by
cloud cover, and detect surface area outliers caused by rare errors
(i.e., over- or underestimation of the water surface extent) of the water
classification (Section 2.4). Such outliers are removed manually.

Each water mask is assigned a water level based on the hypsometry,
and the masks are sorted accordingly. The pixels in all masks are
aligned, and a bathymetry raster is constructed by using the water level
of the lowest water classification that occurs for each pixel column.
Additionally, a second bathymetry raster is derived from the elevation
of the maximum land classification per pixel column. Usually, the two
rasters disagree due to changes in the river bed or classification errors.
We use the mean of both rasters to derive the main cross-sectional
geometry, and the difference between the minimum and maximum is
used in the uncertainty estimation (Section 2.8). This process and the
difference between the bathymetry rasters is depicted in Fig. A.1 in the
appendix. Note that the resulting raster contains only the bathymetry
above the minimum observed water level. The part underneath is
constructed in Section 2.6.

2.6. Depth optimization and cross-sectional geometry

Our approach requires multiple cross-sectional geometries at the
location of 𝑚 consecutive SWORD nodes (𝑥). We extract the geome-
tries along each node’s normal from the previously constructed mean
river bathymetry raster. However, these geometries are incomplete
below the minimum observed water level, and the geometry below
the baseflow is estimated as follows. We calculate the cross-sectional
width 𝑤(ℎ, 𝑥) for each water level ℎ from the geometry at the cross-
section 𝑥 and then estimate the depth 𝑑(ℎ, 𝑥) following Scherer et al.
(2020) using an empirical width-to-depth relationship derived from
observations by Moody and Troutman (2002):

𝑑(ℎ, 𝑥) = 0.27
(
𝑤(ℎ, 𝑥)2

7.22

)0.39
(5)

By subtracting 𝑑(ℎ, 𝑥) from ℎ, we get multiple estimates for the river
bed elevation ℎ0(ℎ, 𝑥). To obtain an average river bed elevation per
cross-section ℎ0(𝑥), we weight these results by

weight =
ℎ𝑚𝑎𝑥 − ℎ

ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛
(6)

with ℎ𝑚𝑎𝑥 and ℎ𝑚𝑖𝑛 being the maximum and minimum observed wa-
ter level. In this way, the estimates based on low flows have the
greatest weight. This reduces the possibility of overestimation caused
by large widths at high flows when the river could exceed its banks
during a flood. However, the estimated river bed elevations may vary
significantly and unrealistically between consecutive cross-sections.
Therefore, we optimize the bed elevations bounded by the minimum
and maximum estimates to minimize the differences between the cross-
sectional areas at the mean water level. For this optimization, we
use a parallel version (Gerber and Furrer, 2019; Gerber et al., 2023)
of the ‘‘limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm
with box constraints’’ (L-BFGS-B) (Byrd et al., 1996; Broyden, 1970;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) because it is particularly
suitable for solving large optimization problems (in this study we need
to solve up to 31 unknowns) and can handle boundary constraints
which we require (Byrd et al., 1996). BFGS is a quasi-Newton method
that considers gradient changes of the objective function, with the

distinctive feature that it efficiently approximates the Hessian matrix
instead of calculating the true Hessian matrix (Nocedal and Wright,
2006). The efficient and parallel L-BFGS-B approach allows us to use
very approximate boundary conditions and calculate many iterations
within a reasonable time.

Finally, the gap in the geometry below the minimum observed
elevation and the optimized river bed elevation ℎ0(𝑥) is filled by a
parabola (Bjerklie et al., 2018; Scherer et al., 2020). The minimum
and maximum of all optimized river bed elevations are used in the un-
certainty estimation (Section 2.8). As recommended by Boyer (1964),
we divide the geometry at each cross-section 𝑥 into 𝑛 = 30 segments.
For each segment 𝑖, we obtain the cross-sectional geometry parameters
𝐴𝑖(𝑡, 𝑥), 𝑃𝑖(𝑡, 𝑥), and 𝑑𝑖(𝑡, 𝑥) based on the water level ℎ(𝑡, 𝑥) from satellite
altimetry.

2.7. Roughness optimization and discharge time series

The discharge time series is based on the timestamps and heights of
the water level time series, which is used to obtain the time variable
cross-sectional geometric parameters at each node 𝑥. In contrast to
the slope 𝐼(𝑡, 𝑥) and the cross-sectional geometry parameters 𝐴𝑖(𝑡, 𝑥)
and 𝑃𝑖(𝑡, 𝑥), the roughness coefficient 𝑘𝑖(𝑡, 𝑥) and its parameters 𝑘𝐵(𝑥),
𝑑0, and 𝜖 (cf. Eq. (3)) cannot be derived from remote sensing data.
However, based on the principle of mass conservation and assuming
steady flow conditions, we can assume that the reach-scale discharge
at each timestamp 𝑡 is constant across all cross-sections 𝑥 within the
selected AOI. Therefore, a set of roughness parameters must be found
that minimizes the square sum of discharge differences between the
cross-sections over the entire time series. This constraint is formulated
by the following objective function, which we minimize using the
parallel L-BFGS-B optimization algorithm (cf. Section 2.6) to obtain the
optimal set of values for 𝑘𝐵(𝑥), 𝑑0, and 𝜖:

min
𝐤̇

𝑚𝑎𝑥(𝑘𝐵)
𝑚𝑖𝑛(𝑘𝐵)

𝑚∑
𝑎=1

𝑚∑
𝑏=1,𝑎≠𝑏

⎛⎜⎜⎝
1

𝑄̄(𝑎)

√√√√1
𝑙

𝑙∑
𝑡=1

(𝑄(𝑡, 𝑎) −𝑄(𝑡, 𝑏))2
⎞⎟⎟⎠

2

(7)

where 𝑙 is the number of all timestamps 𝑡 in the water level time series,
𝑚 is the number of cross-sections at which the discharge 𝑄 is estimated,
and 𝑎 and 𝑏 are pairs of cross-sections between which the root mean
square difference is calculated and normalized by the mean discharge
𝑄̄ at cross-section 𝑎. The function is minimized with respect to the
parameter vector 𝐤̇, which contains the roughness parameters 𝑘𝐵(𝑥) for
each of the 𝑚 cross-sections as well as 𝑑0 and 𝜖:

𝐤̇ = (𝑘𝐵(𝑎),… , 𝑘𝐵(𝑚), 𝑑0, 𝜖) (8)

The score of the optimization function is the summed squared normal-
ized root mean squared discharge deviation between all cross sections.
Without normalization, the optimization would lead to solutions with
the lowest average discharge. The objective function score is scaled by
the ratio of the maximum (𝑚𝑎𝑥(𝑘𝐵)) and minimum (𝑚𝑖𝑛(𝑘𝐵)) occurring
base roughness parameter per run to avoid unrealistic rapid changes
of the roughness within the reach. Note that there might be multiple
local minima in the objective function. Therefore, the user can define
the bounds for 𝐤̇ to improve the optimization. Following Jain et al.
(2004), the bounds of 𝑑0 and 𝜖 are 0.2 <= 𝑑0 <= 0.5 and 0.38 <=
𝜖 <= 0.5 by default. Approximate bounds must be given for 𝑘𝐵 , which
can be taken from published empirical values like Lecher et al. (2021).
Typical values for natural rivers range from 10 (high friction) to 50
(low friction). However, because of the resource-efficient and parallel
L-BFGS-B algorithm, the optimization works with a large range between
the 𝑘𝐵 bounds, so these can be given loosely. We obtain the final reach-
scale discharge time series by taking the daily mean discharge of all
cross-sections’ results of the optimal solution.

For the uncertainty estimation, we calculate the Hessian matrix,
which describes the curvature of the optimization function at the loca-
tion of the optimum parameters. In contrast to the L-BFGS-B, we obtain
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the Hessian matrix using finite difference, which is computationally
more expensive but provides a more accurate representation of the
Hessian matrix. We derive the covariance matrix as the inverse of the
Hessian and obtain the standard deviation of each base roughness value
𝑘𝐵(𝑥) from the squared diagonal values of the covariance matrix. These
standard deviations and the minimum and maximum bounds of 𝑑0 and
𝜖 are considered for the uncertainty estimation in Section 2.8.

2.8. Uncertainty estimation

We use the uncertainties of each previously estimated parameter to
derive the total discharge uncertainty range and assess the influence of
each individual parameter. We run the optimal solution (standard run)
from Section 2.7 and vary the following parameters individually:

Water Surface Slope: In contrast to the standard run, where we apply
the IRIS ‘‘avg_combined_slope’’, we use the ‘‘min_combined_slope’’
and ‘‘max_combined_slope’’ values to estimate the uncertainties
resulting from the time-variable water surface slope.

Water Level: The DAHITI water level time series contain process-
ing uncertainties, e.g., from Kalman filtering. Additionally, the
crossing position of the satellite ground track with the river cen-
terline can be ambiguous when there are multiple intersections
with a bending river. In this case, we add an error based on
the distance between the possible crossing position and the IRIS
water surface slope. For the uncertainty estimation, we add and
subtract these water level uncertainties to the DAHITI water
levels before rerunning the optimal solution.

Bathymetry: In Section 2.5, we obtain three different bathymetry
rasters, which represent the minimum water, maximum land,
and mean occurring hypsometric water level per pixel. Differ-
ences between these rasters can occur because of water misclas-
sifications by SAM. The mean raster is used in the standard run,
and the minimum water and maximum land rasters are used to
estimate the uncertainty resulting from the water classification,
hypsometry fitting, and the time-varying river bed.

Cross-Sectional Geometry: We optimize the river bed elevation ℎ0(𝑥)
for each cross-section 𝑥 (Section 2.6). Depending on the uni-
formity of the studied river reach, ℎ0(𝑥) varies between the
cross-sections. We conduct two runs, one with all ℎ0(𝑥) set
to the minimum estimated river bed elevation and the other
one with them set to the maximum estimated value across all
cross-sections.

Roughness Parameters: As described in Section 2.7, the standard
deviations of 𝑘𝐵(𝑥) and the minimum and maximum boundaries
of 𝑑0 and 𝜖 are propagated to the uncertainty estimation. We
conduct two runs using the respective minimum and maximum
values (for 𝑘𝐵(𝑥) with subtracted and added standard devia-
tions) to estimate the discharge uncertainty introduced by the
roughness optimization.

Total Uncertainty Range: In addition to the individual runs with sin-
gle parameters varied, we conduct two runs using the minimum
and maximum values across all parameters listed above. This
represents the worst cases of over- or underestimated discharge.

The uncertainty range is not equivalent to a statistical error propagation
but is computed using an ensemble of multiple computations with
different parameter configurations based on the maximum observed
uncertainty of these parameters. For each timestamp 𝑡, we take the
5th and 95th percentile of all the listed runs to estimate the 90%
uncertainty range 𝑄𝜖(𝑡). This 90% percentile range is selected based
on the empirical analysis discussed in Section 3.5.

2.9. Validation

To validate the resulting discharge time series, we compare them to
daily discharge data obtained from the GRDC, the ADO (Alpine Drought
Observatory, 2023), and the ‘‘National Water Dashboard’’ by the U.S.
Geological Survey (2023). We calculate the ‘‘Root Mean Squared Error’’
(RMSE), the RMSE normalized by the range between the minimum
and maximum true data (NRMSE), the squared ‘‘Pearson Correlation
Coefficient’’ (R2), and the ‘‘Nash–Sutcliffe Model Efficiency Coefficient’’
(NSE). Furthermore, we calculate the confidence coverage probability
(CP) of the results, i.e., the percentage of true data points within the
90% uncertainty range.

In addition to the validation against in-situ measurements, we cal-
culate a ‘‘Coefficient of Variation’’ (CV), which shows the average
proportion of the uncertainty range from the maximum range of the
discharge signal. The CV is defined as follows:

CV = 1
𝑙

𝑙∑
𝑡=1

𝑄𝜖(𝑡)
𝑄𝑚𝑎𝑥 −𝑄𝑚𝑖𝑛

(9)

where 𝑙 is the number of observations, 𝑄𝜖(𝑡) is the 90% uncertainty
range (cf. Section 2.8), and 𝑄𝑚𝑖𝑛 and 𝑄𝑚𝑎𝑥 are the minimum and
maximum values of the resulting discharge time series. High CV values
represent lower reliability of the time series signal and a more volatile
result. In contrast, low CV values are desirable as they suggest that the
signal exceeds the uncertainty range.

3. Results and discussion

We apply our approach to 27 globally distributed study sites to ex-
amine its accuracy and applicability for estimating river discharge from
remote sensing data without calibration. The locations of the study sites
are shown in Fig. 5. Fig. A.2 in the appendix shows the studied sites
in more detail. They are chosen according to the availability of in-
situ discharge stations (for validation) and their temporal overlap with
remote sensing data. Water level observations from satellite altimetry
are only available at the intersections of the satellite ground track
with a river. Depending on the mission and river geometry, these
intersections can be hundreds of kilometers apart or unsuitable for a
virtual station. For meaningful validation, the in-situ station must be
connected to a virtual station without obstructions or significant con-
fluences in between. Additionally, the number of study sites is limited
by our PlanetScope download quota. We select the sites to represent
rivers of different mean annual discharge and width. Rivers surrounded
by dense forests cannot be observed, and we do not investigate arctic
rivers due to cloud, ice, and snow coverage. Most of the rivers are
located in temperate, tropical, or arid climate zones. All studied reaches
are non-braided meandering, as classified by Nyberg et al. (2023).
Braided rivers can change dramatically over time, causing significant
errors in the derived river bathymetry. Additionally, the empirical
width-to-depth relationship used in Section 2.6 tends to significantly
overestimate the river depth of braided rivers.

Table 1 lists all studied reaches by river name and includes the
error metrics, the number of validation samples, the coverage prob-
ability (CP) and coefficient of variation (CV), the optimal 𝑑0 and 𝜖
parameters of the roughness coefficient, the mean discharge during
the studied period (Q̄, from GRDC or USGS), the reach width and
chainage (from SWORD), the available satellite altimetry missions, the
SWORD reach ID, the chainage distance (Length) between the most
up- and downstream cross-sections, the number 𝑚 of cross-sections,
and the 𝑘𝐵 bounds given to the optimization algorithm. The mean in-
situ discharge of the studied reaches is between 37 and 1648m3∕s.
The studied reaches are between 63 and 349 m wide and between
0.8 and 15.4 km long. The median RMSE, NRMSE, NSE, and R2 are
132m3∕s, 12%, 0.560, and 0.77, respectively. The NRMSE aligns with
the expected uncertainty of SWOT discharge of less than 30% in
ungauged basins (Durand et al., 2023). However, the requirement of
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Fig. 5. Location and NRMSE of the studied reaches. Values exceeding 30% are shown in brackets.

Table 1
Studied river reaches with error metrics, number of validated samples (n Val.), coverage probability (CP), coefficient of variation (CV), reach-scale roughness parameters (𝜖 and 𝑑0),
mean discharge (𝑄̄), used satellite altimetry missions (ENV: Envisat, J1/2/3: Jason-1/2/3, S3A/B: Sentinel-3A/B, S6A: Sentinel-6A), number of cross-sections (𝑚), base roughness
parameter bounds (𝑘𝐵), width, length, and chainage.

River RMSE NRMSE NSE R2 n Val.a CP CV 𝜖 𝑑0 Q̄ Width Chainage Missionsb SWORD Length 𝑚 𝑘𝐵
[m3∕s] [%] [%] [%] [m3∕s] [m] [km] Reach ID [km] Bounds

Adige 162 28 −1.088 0.49 43 14 30 0.40 0.40 159 63 289 S3B 21404000301 1.0 6 25 – 40
Burdekin 132 16 0.266 0.50 92 78 25 0.40 0.40 288 263 60 S3A 56321000075 10.1 11 10 – 40
Cholchol 70 18 0.420 0.95 42 100 62 0.40 0.40 120 100 91 S3A 66210800101 3.4 18 20 – 40
Do Sono 194 18 −0.460 0.73 110 80 13 0.40 0.40 660 154 1359 J2/3, S6A 62444300121 4.0 19 15 – 40
Dordogne 74 7 0.851 0.83 217 99 43 0.40 0.40 231 104 123 J3, S6A 23216000411 4.0 21 10 – 40
Elbe 218 11 0.560 0.96 281 99 68 0.40 0.40 611 270 213 J2/3, S6A 23281000271 4.6 6 5 – 25
Fitzroy 211 15 −0.036 0.55 145 4 9 0.50 0.40 246 80 448 J2/3, S6A 56220300181 5.8 29 5 – 30
Karun 74 6 0.703 0.68 146 100 76 0.40 0.40 478 236 596 J2/3, S6A 29420300251 2.0 10 10 – 40
Kelantan 1032 70 −9.387 0.71 69 0 128 0.40 0.40 485 260 90 J2/3, S6A 44403800091 0.8 5 15 – 50
Milo 72 11 0.871 0.75 47 45 27 0.50 0.40 136 102 4198 S3A 14298200091 2.8 13 5 – 40
Missouri 280 7 0.855 0.88 152 100 59 0.40 0.40 1273 210 2967 ENV, S3A 74293900061 1.4 8 25 – 55
Mitchell 240 24 −1.412 0.81 419 3 41 0.40 0.40 211 94 106 J1/2/3, S6A 56298300081 4.0 10 20 – 50
Murray 173 10 0.361 0.52 523 92 69 0.40 0.40 146 123 717 J2/3, S6A 56410700021 1.0 6 5 – 30
Narev 41 17 0.483 0.76 52 87 44 0.40 0.40 89 87 540 S3A 24248000081 1.2 7 15 – 50
Oder 101 6 0.799 0.87 637 100 119 0.41 0.40 469 245 187 J2/3, S3A/B, S6A 24221000161 3.4 18 5 – 40
Okavango 73 10 0.813 0.80 455 89 66 0.40 0.40 190 101 709 J2/3, S6A 12991004741 1.2 7 15 – 40
Orange 340 8 0.709 0.39 327 87 22 0.40 0.40 178 190 1007 J2/3, S3A, S6A 12770100821 5.8 17 5 – 30
Oueme 76 8 0.928 0.84 44 91 26 0.50 0.40 213 68 132 ENV, J2/3, S6A 14306500081 2.0 5 5 – 30
Rahue 101 31 0.243 0.75 10 50 23 0.40 0.40 241 88 94 S3A 66210200231 1.0 14 10 – 40
Red 204 14 0.639 0.90 298 99 55 0.40 0.40 285 188 1481 J3, S3B, S6A 74225000191 2.8 12 5 – 30
Rhine 247 8 0.851 0.77 78 97 39 0.40 0.40 1648 349 452 S3B 23263000051 5.0 25 10 – 40
Santa Cruz 267 22 0.465 0.98 39 100 67 0.43 0.40 748 175 319 S3A 65380000231 5.0 18 15 – 50
Sava 56 10 0.820 0.78 61 100 83 0.40 0.40 262 83 2072 S3A 22740900101 1.6 9 10 – 50
Sittang 135 18 0.547 0.66 71 85 65 0.40 0.40 309 177 281 ENV, S3A 44560100411 4.2 15 5 – 40
Warta 47 12 0.611 0.96 96 99 37 0.42 0.40 190 90 279 S3A/B 24223000061 2.8 15 15 – 40
Willamette 98 10 0.779 0.94 99 96 27 0.40 0.40 349 98 400 S3A 78220000231 15.3 16 20 – 40
Yobe 25 34 0.164 0.58 18 22 32 0.50 0.40 37 65 218 S3A 16245000141 1.2 6 5 – 35

Mean 176 17 0.050 0.75 75 50 380 151 720 3.6
Median 132 12 0.560 0.77 91 43 246 104 319 2.8

a Number of validated samples.
b ENV: Envisat, J1/2/3: Jason-1/2/3, S3A/B: Sentinel-3A/B, S6A: Sentinel-6A.

10% measurement uncertainty, which marks a breakthrough according
to GCOS (World Meteorological Organization, 2022), can only be met
for 7 out of the 27 studied rivers. The errors are comparable with the
results of Bjerklie et al. (2018), who achieved an NRMSE of 4 and
8% and an NSE of 0.94 and 0.62 using the Manning equation at two
sections of the Yukon River. Lamine et al. (2021) obtained an NRMSE
of 19.7% and an NSE of 0.93 at an ephemeral of the Niger River.
Both approaches use similar input data as this study but have not been
transferred to other rivers and do not provide uncertainty estimates.

We use between 5 and 29 cross-sections per site. There is no corre-
lation between the number of cross-sections and NRMSE and no clear
spatial pattern in the NRMSE of the results, except for higher values
for the Australian rivers (cf. Fig. 17), which are dominated by high
interannual variability and highly variable flood behavior (Finlayson,
2010). The CP of true data points within the 90% confidence interval
is at or above 80% for 19 out of the 27 studied reaches, with a mean
coverage of 75%. Therefore, although the errors compared to in-situ
data are relatively high, the uncertainty ranges are reliable to estimate
the range of the true discharge. The mean and median CV values
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Fig. 6. Left: NRMSE by mean in-situ discharge and river width. Right: Mean discharge by mean in-situ discharge and NRMSE.

Fig. 7. Top: Discharge time series for the Oder River from this study (blue) and GRDC (orange). The 90% uncertainty range from this study is shown as a blue area. Bottom:
Components of the uncertainty range. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

are about 50%, which suggests that the 90% uncertainty range is, on
average, half the maximum observed amplitude.

The left panel of Fig. 6 shows the NRMSE by the mean in-situ
discharge during the studied period 𝑄̄ and river width. There is no
clear correlation between the NRMSE and 𝑄̄ or width. However, an
NRMSE of 10% cannot be achieved below a 𝑄̄ of 150m3∕s, and below
50m3∕s, the best result is 35%. This behavior might be related to a
dominant section control caused by the pooling of water, as described
by Bjerklie et al. (2023), or by rapid changes in the flow parameters
during flood events. In both cases, the assumptions of uniform flow and
mass conservation would not be valid for the river section. The river
width is not a limiting factor for the approach, as an NRMSE of 8% was
achieved for the 68 m wide Oueme, one of the narrowest rivers studied.
The right panel shows the mean result of this study by 𝑄̄ and NRMSE.
The correlation between our results and 𝑄̄ is 0.82. Our results tend to
underestimate 𝑄̄ for most of the studied reaches.

In the following sections, we present and discuss the results of
three example rivers (Sections 3.1 to 3.3), all remaining discharge time
series (Section 3.4), the uncertainty range (Section 3.5), the slope (Sec-
tion 3.6), the image classification using SAM (Section 3.7), the rough-
ness optimization (Section 3.8), and the unobserved cross-sectional
geometry (Section 3.9).

3.1. Oder River

The approach yields the best results in terms of NRMSE for the
3.4 km long studied reach of the Oder River with a value of 6%,
corresponding to an RMSE of 101m3∕s. This reach also has the most
available validation data, with 637 matching samples. Almost the
complete water level time series from satellite altimetry data of Jason-
2/3, Sentinel-6A, and Sentinel-3A/B is covered by the GRDC discharge
time series that we used for validation. The 0.87 correlation of our
results with the in-situ data and the NSE of 0.799 are only exceeded
at a few other studied reaches.

Fig. 7 shows the resulting discharge time series for the Oder River,
the validation data, and the 90% uncertainty range. The result matches
the validation data well but misses isolated extreme flood events be-
tween 2010 and 2012 when PlanetScope satellite imagery was not yet
available. Because similar flood events are unrepresented in the period
covered by PlanetScope, the surface areas for respective extreme water
levels are missing in the hypsometry. Thus, the approach is not limited
to bankfull discharge but is prone to errors for water levels that did not
occur during the period used to generate the bathymetry. From 2019,
the noise in the resulting discharge time series increases (cf. Fig. 7).
This period coincides with the beginning of the Sentinel-3B mission
so that three different missions (Sentinel-3A/B and Sentinel-6A) are
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Fig. 8. The different bathymetric rasters for the Oder River are based on the maximum non-water elevation per pixel (right), the minimum water level per pixel (center), and
the mean of both rasters (left), which is used for the standard run.

used. As described in Section 2.3, the water level time series from the
different missions at multiple virtual stations are combined using multi-
mission crossover analysis and the IRIS water surface slope. However,
judging from the noise, some height bias still remains.

With a CV of 119%, the uncertainty range is, on average, larger than
the maximum discharge variation. Below the time series, Fig. 7 shows
the components of the uncertainty range as calculated in Section 2.8.
The input uncertainties of most components are not symmetrical in
the negative and positive domains. Additionally, parameters varying
𝐴𝑖(𝑡, 𝑥) (i.e., ℎ(𝑡), geometry, and bathymetry) affect Eqs. (1) and (2),
which leads to an exponential behavior of the uncertainties. The stan-
dard deviations of the base roughness parameters 𝑘𝐵 have the largest
influence on the confidence interval. The water surface slope (WSS)
with extreme values of 31 and 219 mm/km and an average value
of 129 mm/km used in the standard run has a similar effect on the
confidence interval as the uncertainties of the geometry varied by the
river bed elevation ℎ0, the roughness parameters 𝑑0 and 𝜖, and the
water levels ℎ(𝑡). The effects on the total confidence range from the
different observed bathymetry rasters is less than 10m3∕s.

Fig. 8 shows the different bathymetry rasters as computed in Sec-
tion 2.5. Fine structures along the shore are visible, but the bathymetry
is generally uniform, and there are also only minor differences between
the three bathymetric rasters. Hence, the contribution of using different
bathymetric rasters to the uncertainty range shown in Fig. 7 is insignif-
icant. The biggest difference is the elevation of the floodplain, which
is of minor importance for most dates of the discharge time series. The
large adjacent floodplain is not covered by the cross-sections anyway
(cf. Fig. 9).

Fig. 9 shows the location of all used cross-sections at the studied
reach of the Oder River. On the right, the figure shows the cross-
sectional geometries. The optimized river bed elevation ℎ0(𝑥) varies
by ∼ 1m. Overall, the cross-sections are uniform or gradually varied,
and more than half of the depth is covered by the parabola below the
minimum observed water level. Isolated outliers can be identified to
the left of the cross-sections at the SWORD nodes 029 and 031.

Fig. 10 shows the result for 𝑘𝐵(𝑥) for each cross-section 𝑥. Each
iteration during the roughness optimization is shown as an individual
line colored by the objective function’s score, with the optimal result
used in the standard run in red. The maximum and minimum 𝑘𝐵
values from the 189 results represented by solid lines are considered
in the uncertainty estimation. The variability of these results is low,
with a minimum of 5 and a maximum of 10 for 𝑘𝐵 , which leads to
a small contribution to the uncertainty range, as shown in Fig. 7.
Across the nodes defining the cross-sections, the variability is also low
within each run, caused by the uniform cross-sections. The right labels
of Fig. 10 show the roughness values converted with Eq. (3) at the
maximum occurred depth of 7.35 m and a river sinuosity of 1. The
figure demonstrates the loose bounds given to the optimization process.
The converted values for the maximum bound exceed any literature
value as it depends on the optimized values for 𝜖 and 𝑑0.

3.2. Oueme River

For rivers like the Oueme, our approach is particularly beneficial.
There are many similar remote and ungauged rivers with comparable
characteristics. Because of the discontinuation of the in-situ time series
in 2008, only 44 samples could be validated against GRDC data with
an NRMSE of 8%, corresponding to an RMSE of 76m3∕s, a correlation
of 0.84, and an almost optimal NSE of 0.928. At the Oueme River,
we look at two AOIs (cf. Fig. A.2) that are still close enough to
assume mass conservation, with a distance between the most up- and
downstream cross-section of 2 km. For the area between the AOIs, we
could not obtain enough cloud-free satellite imagery. Fig. 11 shows the
mean bathymetry and cross-sectional geometries for both AOIs. The
bathymetry and the geometries are much less uniform compared to
the Oder River (cf. Fig. 8) and instead more gradually varied. A much
larger portion of the cross-sectional geometry can be constructed from
satellite altimetry observations due to the large seasonality and nearly
ephemeral characteristics of the Oueme River, as indicated by our
results and the validation data shown in Fig. 12. The uncertainty range
of our results for the Oueme River is much smaller than for the Oder
River, with a CV of 26%. Again, the water surface slope contributes sig-
nificantly to the uncertainty range, especially in the negative domain.
The water surface slope varies from 27 to 219 mm/km, with an average
value of 168 mm/km used in the standard run. The satellite altimetry
errors have a similar effect on the discharge uncertainty. The variations
of 𝑘𝐵(𝑥) between 5.0 and 7.6 and 𝑑0 are especially significant in the
positive domain of the uncertainty range. The effect of the different
bathymetric rasters shows more variations throughout the different
approaches compared to the Oder River, as shown in Fig. 13. Although
there is no cross-section at the specific location, an island is visible
in the bathymetry based on the maximum non-water elevation, which
is missing in the bathymetry based on the minimum water elevation.
Fig. 13 reveals further detailed differences between the two approaches
and the mean bathymetric raster used in the standard run.

3.3. Willamette River

In the example of the Willamette River, we demonstrate how the
user can judge the results and adjust the boundary conditions when
necessary. Using the default loose bounds for 𝑘𝐵(𝑥) of 5 and 40, the
optimization tends to yield the lowest possible values, as shown on
the top of Fig. 14. However, these values lead to an almost constant
low discharge, as shown on the bottom of Fig. 14. An expert user
could judge this time series as wrong without in-situ data based on the
expected typical seasonal variability and mean discharge of comparable
rivers in similar climate regimes. Fig. 14 shows a second local minimum
of the objective function and, hence, a possible optimal solution above
𝑘𝐵(𝑥) values of 25. Adjusting the minimum bounds to a value of 25
leads to the results shown in Fig. 15 and listed in Table 1 with an
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Fig. 9. Left: Location of cross sections at SWORD nodes over the mean bathymetry of the studied reach of the Oder River. Right: Geometry at each cross-section.

Fig. 10. 𝑘𝐵 results of the roughness optimization by the nodes defining the cross-sections of the studied reach of the Oder River. Each line represents the result of one iteration,
colored by the score of the objective function. The red line shows the optimal result. Note that many runs differ only slightly and appear as one stacked line. The labels on the
right show the result of Eq. (3) at the maximum occurred depth.

Fig. 11. Left: Location of cross-sections at SWORD nodes over the mean bathymetry of the AOIs at the studied reach of the Oueme River. Right: Geometry at each cross-section.

NRMSE of 10% and an NSE of 0.941. However, the converted roughness
values at maximum depth based on Eq. (3) exceed the maximum
literature values for natural channels. Therefore, the river bed elevation
might be overestimated, which results in an underestimated cross-
sectional area of the geometries shown in Fig. 16. As the roughness
values exceed the literature values, confidence in the result would
be low without validation data. A framework such as Durand et al.
(2023), which integrates the results of multiple reaches, branches, and

reservoirs at the basin level, would be beneficial to further improve the
confidence. With 15.3 km, this reach of the Willamette River has the
longest distance between the most up- and downstream cross-section
of all studied reaches and is slightly longer than the average SWORD
reach. However, a large section in between the two AOIs is not used
because of the strong meandering (cf. Fig. A.2). Despite the length, the
resulting errors are comparable to the shorter studied reaches, implying
that the principle of mass is applicable to such a long reach without
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Fig. 12. Top: Discharge time series for the Oueme River from this study (blue) and GRDC (orange). The 90% uncertainty range from this study is shown as a blue area. Bottom:
Components of the uncertainty range. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 13. The different bathymetric rasters for the Oueme River are based on the maximum non-water elevation per pixel (right), the minimum water level per pixel (center), and
the mean of both rasters (left), which is used for the standard run.

major lateral inflows. The section spans across two SWORD reaches, so
different IRIS slopes are applied for the cross-sections in the respective
reaches.

3.4. Time series characteristics

Fig. 17 shows the time series of all other studied reaches sorted by
the maximum derived discharge. The longest time series span 21 years,
starting in 2002 with the launch of Envisat. The number of results
and their temporal resolution depend on the duration of the altimetry
missions and their revisit cycle. There is a significant gap within
the time series of the Sittang and Missouri Rivers from 2010, when
the Envisat mission ended, until 2016 when the Sentinel-3A mission
started. In between, the reach was not covered by any satellite altimetry
observations. The results of many reaches begin with the launch of
Sentinel-3A. Either because the ground tracks of previous missions did
not intersect with these reaches or because LRM altimeters, in contrast
to the newer SAR sensors, could not deliver useful measurements. The
time series for the Do Sono River lacks data from 2016 to 2020 during
the period of the Jason-3 mission. There are no altimetry observations
during that time, most probably caused by an incorrect reception
window used in the onboard processing caused by erroneous a priori
elevation information (Gac et al., 2021). The quality of the results is
independent of the seasonal variability. For example, the noisy and
nearly constant time series of the Karun River without annual variation

matches our result well with an NRMSE of 6%. However, the approach
cannot capture the short-term extreme events at the Burdekin and
Fitzroy Rivers with an NRMSE of up to 18%. The results for the Adige
and Kelantan show a significant bias that strongly affects the NSE of
these time series.

3.5. Uncertainty range

On average, the cross-sectional geometry and base roughness pa-
rameters 𝑘𝐵(𝑥) contribute most to the total uncertainty range with
20% each. This large contribution is expected and reasonable as both
parameters cannot be observed from remote sensing data. They rely
on empirical assumptions and depend on the number of degrees of
freedom in the optimization problem. The contribution of water level
and water surface slope errors is similar at 20% and 16%, respectively.
Both parameters are expected to be measured with improved accuracy
and resolution using future missions like SWOT and have the potential
to significantly lower the uncertainty range. The contributions of 𝑑0 and
𝜖 are at 11% each. The lower contributions of 𝑑0 and 𝜖 are caused by the
low variability of these parameters throughout the solutions. Changes
to 𝑑0 and 𝜖 affect all cross-sections equally and do not appear to change
the result of the objective function significantly, so they remain at or
close to the initial value during the optimization process. Errors within
the observed part of the bathymetry are considerably lower, at 3%.
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Fig. 14. Top: Roughness optimization at the Willamette River with default bounds. Bottom: Resulting discharge time series at the Willamette River with default bounds.

Fig. 15. Top: Roughness Optimization at the Willamette River with adjusted bounds. Bottom: Resulting discharge time series at the Willamette River with adjusted bounds.

These errors are basically propagated misclassifications of SAM, and
the low value underlines the good quality of the SAM classification.

The total uncertainty range with all inputs set to their respective
minimum or maximum values is very pessimistic. The resulting large
total uncertainty values are not useful for data assimilation. How-
ever, we assume an uncertainty range greater than the most uncertain
component to be realistic because the river depth and roughness can
neither be measured nor estimated accurately. Therefore, we study
the effect of different inter-percentile ranges on the CP to compute a
reduced uncertainty range based on the total uncertainty range and its
components.

Table 2 shows the median CP and CV of all studied sites for the
different inter-percentile ranges. The 100% range is equivalent to the
most pessimistic total uncertainty, while the 90% range is used in this
study. With the 90% range, the CP is just 9% less than the 100%

Table 2
Median Coverage Probability (CP) and Coefficient of Variation (CV) of different
inter-percentile ranges for the computation of the uncertainty range.

Range [%] CP [%] CV [%]

100 100 97
95 98 69
90 91 43
85 56 24

range, but the CV drops significantly from 97% to 43%. However,
when choosing a lower range of 85%, the CP drops significantly, which
suggests that this range would be too optimistic. Therefore, judging by
this empirical test, we used the 90% range from the 5th to the 95th
percentile for our uncertainty estimation.
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Fig. 16. Left: Location of cross-sections at SWORD nodes over the mean bathymetry of the AOIs at the studied reach of the Willamette River. Right: Geometry at each cross-section.

3.6. Water surface slope

As explained in Section 2.2, we cannot use a time-variable slope
𝐼(𝑡, 𝑥) but must assume a constant slope over time due to the lack
of suitable data. Here, we use the average reach-scale water surface
slope from the IRIS dataset and the minimum and maximum observed
measurements for the uncertainty estimation. The range between the
minimum and maximum slope contributes 16% of the total uncer-
tainty range (cf. Section 3.5). Accurate time-variable slope data could
significantly reduce this uncertainty.

As discussed by Scherer et al. (2022), it is not feasible yet to obtain
a reliable water surface slope time series from ICESat-2 with a sufficient
number of samples to study the temporal water surface slope charac-
teristics. This may change as more ICESat-2 cycles become available
over time, and most likely with the availability of continuous SWOT
data. SWOT improves the accuracy of remotely sensed water surface
slopes, meeting its science requirement of 17 mm/km. Additionally, it
increases the temporal resolution due to its repeat orbit of 21 days
(ICESat-2: 92 days) in connection with its 120 km wide swath, which
enables it to revisit the same location on up to ten passes during one
cycle (Fu et al., 2012, 2024). As the approach of this study refers
to reaches from SWORD, which is the same framework used for the
SWOT mission, implementing time-variable slopes from SWOT can be
achieved without major modifications. When using SWOT in conjunc-
tion with other satellite altimetry missions, it will still be necessary to
generate a stage-slope relationship that considers hysteresis effects to
transfer the slope variability to observations outside the SWOT period.

3.7. Water classification using SAM

The authors of SAM state that their model can miss fine structures
when masking image features (Kirillov et al., 2023). However, the
quality of the automatically generated masks is sufficient to map the
variability in river width as small as the PlanetScope pixel size of 3 m.
The number of false-positive and false-negative classified water areas
is marginal and easy to improve with the definition of additional label
points. The use of two different SAM-based methods and a classical
NDWI thresholding for masking makes our approach robust. If wrongly
classified areas remain, they appear as outliers in the hypsometric curve
fitted to the water level and surface area observations and can be
manually removed. The source of errors can be clouds, mountain or
cloud shadows, boats, or water with high sediment content.

In contrast to the classification by Schwatke et al. (2019), this
approach is much more versatile in terms of the spectral characteristics
of the input image. However, the SAM-based approach has a lower
level of automation because it requires more user-defined label points
than Schwatke et al. (2019).

3.8. Roughness optimization

The unknown roughness parameters are optimized using the L-
BFGS-B algorithm by minimizing the difference in discharge between
adjacent cross-sections. The approach requires only approximate
boundary conditions that can be derived from literature values. How-
ever, as demonstrated in Section 3.3, expert judgment is still necessary
to slightly adjust these boundaries since erroneous geometries can
cause unrealistic roughness values. We modify the base roughness value
𝑘𝐵(𝑥) depending on the depth of the cross-section segment 𝑑𝑖(𝑡, 𝑥) to
account for different surface types within the cross-section (e.g., flood-
plain, bank, bar, and thalweg). The functional relationship between
depth and final roughness is defined by the unknown parameters 𝜖 and
𝑑0. However, the optimization algorithm rarely deviates from the initial
values of 𝜖 and 𝑑0. Fig. 18 shows the depth-dependent roughness coef-
ficient calculated with Eq. (3) using the average optimized parameters
𝑘𝐵(𝑥), 𝜖, and 𝑑0 and the average sinuosity 𝑠(𝑥) per studied river reach
by occurring depth range and the mean discharge.

Applying the depth-dependent roughness coefficient improves the
accuracy of our results, as demonstrated in Fig. 19 for the Okavango
River. Without applying the depth-dependent roughness adjustment
(i.e., setting 𝑑 = 1 in Eq. (3) and running a new optimization), the
NRMSE rises from 10% to 19%. Fig. 20 shows this behavior throughout
all studied sites except for the Kelantan and Mitchell Rivers, where the
effect is the opposite, and the method without depth-depended rough-
ness adjustment yields better results. Overall, the median NRMSE rises
from 12% to 27% without applying the depth-dependent roughness
adjustment.

3.9. Unobserved cross-sectional geometry

In addition to the roughness coefficient, the full cross-sectional
geometry (i.e., the permanently submerged bathymetry) cannot be
observed from remote sensing data, and both unknowns are estimated
in an optimization approach. Both unknowns contribute equally to
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Fig. 17. Discharge results of the remaining sites with uncertainty (blue) and in-situ data (orange). The time series are discontinued at data gaps larger one year. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

the uncertainty range (cf. Section 3.5). There is no data across all
studied sites to validate either of the parameters. Therefore, we cannot
distinguish between errors introduced by these parameters. Scherer
et al. (2020) used a similar approach to obtain the cross-sectional
geometry and estimate the discharge of the Lower Mississippi River.
In contrast to this study, in-situ bathymetry and slope were available
for the Mississippi. Thus, a closed-loop test could be conducted in
which the estimated parameters were substituted individually by in-situ
measurements. This test identified the roughness coefficient as a more
significant source of error compared to the cross-sectional geometry.

The optimization of both parameters runs over the number of cross-
sections within the AOI. The AOI size depends on the length of the
reach, which is bounded to a section where the flow can be assumed to
be steady uniform or gradually varied judging from satellite imagery.
Additionally, the AOI location and size can be constrained by the
availability of a sufficient number of cloud-free satellite images to

observe the water extent at high and low water levels. Therefore, the
approach is limited to short sections for some rivers. For example, the
studied section of the Kelantan River comprises only five cross-sections
because clouds obscured the surrounding sections during water level
extremes. Still, multiple studied sections comprise only six or seven
cross-sections and yield good results below 10% NRMSE. Fig. 17 shows
that the discharge for the Kelantan is overestimated. The optimization
yielded the largest depth and an average roughness coefficient for the
Kelantan compared to the other rivers (cf. Fig. 18). One possible reason
is that the river sections lacks sufficient variability in the observables,
such as width and sinuosity, so that the optimization of the cross-
sectional area and roughness coefficients are not properly constraint.
Additionally, Fig. A.2 shows that the observable AOI contains a section
just before a sharp river bend, potentially affected by backwater ef-
fects not accounted for by the employed sinuosity value. These effects
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Fig. 18. Depth-dependent Strickler roughness coefficient with the average optimized parameters per studied river reach by mean discharge.

Fig. 19. Results for the Okavango River without (upper) and with (lower) applying the depth-dependent roughness adjustment.

Fig. 20. NRMSE with (blue) and without (orange) applying the depth-dependent roughness adjustment. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

may result in an increased width, deviating from the used width-to-
depth relationship. Therefore, we assume the cross-sectional area to be
overestimated in this case of an unfavorable study site.

4. Conclusion and outlook

We present an approach specifically designed to estimate satellite-
based river discharge time series for narrow, ungauged rivers. The
approach leverages the variety of remote sensing data available over

the past 20 years. We calculate the river discharge using the Gauckler–
Manning–Strickler equation, which requires information about
the river’s slope, cross-sectional geometry, and roughness coefficient.
While we derive the slope from the global reach-scale ‘‘ICESat-2 River
Surface Slope’’ (IRIS) dataset, we determine the water surface area
and even minor river width variations from 3 m resolution PlanetScope
satellite images. The images are classified into water and land pixels
utilizing the ‘‘Segment Anything Model’’ (SAM), which we considered
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suitable for the purpose of this study. The classification requires mini-
mal user input, and by applying three different methods, water can be
detected robustly. To reconstruct the river bathymetry, a hypsometric
curve is fitted to the surface area and DAHITI water level time series.
We extract the cross-sectional geometries from the bathymetry and
approximate the submerged part below the baseflow using an empirical
width-to-depth relationship. Under the assumption of mass conserva-
tion, we optimize the parameters of the depth-dependent roughness
coefficient at multiple consecutive cross-sections within a pre-defined
AOI by minimizing the difference between the estimated discharges
at individual cross-sections. By taking into account all uncertainties
of the input parameters, we estimate the uncertainty of the resulting
discharge time series. In contrast to other approaches, the method does
not require a model of the river or data outside the respective AOI.

We applied our approach to 27 globally distributed reaches of
different widths and mean discharge under various climate conditions.
The number of studied examples and their locations are limited by the
availability of in-situ validation data and our PlanetScope download
quota. The ground track pattern of the altimeter missions further limits
the application. In this respect, however, the new SWOT mission can
be expected to provide a huge improvement.

To apply the approach based on the concept of mass conservation
and uniform or gradually varied flow, the user must ensure that there
are no significant tributaries or flow obstructions within the studied
section or the downstream reach. Otherwise, significant errors can oc-
cur, as demonstrated in the case of the Kelantan River, where backwater
effects from a narrow and sharply bending downstream section likely
caused an overestimation of discharge. The river must not be braided,
and sufficient cloud-free satellite imagery must be available covering
the entire range from low to high flows to reduce the uncertainty
and errors caused by the unobserved part of the river bathymetry.
River sections with gradual variations in width, slope, or sinuosity are
beneficial for the optimization, as they introduce additional constraints.
The approximate boundaries of the base Strickler roughness coefficient
should be set based on literature values for natural channels, typically
within the range between 5 and 50. In cases where the optimization
shows multiple possible solutions at different local minima, such as the
Willamette River example presented in this study, expert judgment is
required to adjust the boundary conditions and prevent unrealistic low
or high discharge patterns.

The median RMSE, NRMSE, NSE, and R2 are 132m3∕s, 12%, 0.560,
and 0.77, respectively. Large errors occur at rivers where depth ap-
pears overestimated or the concept of mass-conservation is not ap-
plicable. Insights from further studies on identifying suitable river
sections from satellite imagery could help to mitigate these errors. On
average, the 90% uncertainty range covers 91% of the in-situ data
and measures 43% of the observed amplitude. Besides the standard
deviation of the unknown roughness parameters, the uncertainty of the
cross-sectional geometry, influenced mainly by the unknown river bed
elevation, contributes most to the total discharge uncertainty range.
Improved techniques for satellite-derived bathymetry, either through li-
dar measurements or more sophisticated empirical relationships, would
significantly enhance this approach.

The approach depends strongly on the frequency of water level
observations and thus would benefit from techniques that interpolate
water level observations along the river and over time, such as using
spatiotemporal kriging (Boergens et al., 2017), to enhance the temporal
resolution of the derived discharge time series. No discharge can be
derived for extreme water levels that have never occurred during
the period of simultaneous water level and surface area observations
required for the reconstruction of the bathymetry. The approach would
also benefit from sub-reach-scale or time-variable water surface slopes
since 𝐼(𝑡, 𝑥) currently only varies if the AOI comprises multiple SWORD
reaches. If this variability could be better resolved spatially and tem-
porally, we expect the optimization problem to be better constrained
and result in a more distinct solution with lower uncertainties. Again,

concerning sub-reach-scale and time-varying slope measurements, we
can expect significant improvement in errors and uncertainty as soon
as continuous SWOT measurements become available. Our approach
is not fully automated, but it requires only minimal user input, such as
label points for the water classification and approximate boundaries for
the optimization, and can be transferred to other locations with fairly
minimal effort. However, it cannot be easily transferred to braided
rivers, which require a different depth estimation. Some label points
must be defined, and expert judgment is required to set up and adjust
the boundary conditions for the optimization process. The amount of
expert input and judgment might be reduced by integrating the results
of multiple reaches, branches, and reservoirs at the basin level, which
must yield coherent and rational results (e.g., increasing discharge in
the downstream direction).

The key advantage of the presented method is that in-situ data are
not needed for calibration and that no data is required beyond the
studied reach (like in extensive hydrological models). These attributes
make the approach especially valuable for applications in ungauged
or poorly gauged basins. The propagated uncertainties facilitate the
assimilation with models. Furthermore, the approach is based on read-
ily available global satellite data spanning up to 20 years, whereas
methods specifically designed for the new SWOT mission cover only
the period since 2023.

CRediT authorship contribution statement

Daniel Scherer: Writing – original draft, Visualization, Valida-
tion, Software, Methodology, Investigation, Conceptualization. Chris-
tian Schwatke: Writing – review & editing, Data curation. Denise
Dettmering: Writing – review & editing, Supervision, Project adminis-
tration, Funding acquisition. Florian Seitz: Writing – review & editing,
Supervision, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The discharge data resulting from this study are available at Zen-
odo (https://doi.org/10.5281/zenodo.10611165). Part of the code is
available upon request from the main author.

Acknowledgments

This work was funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation)—Project number 324641997,
Grant DE 2174/10-2. Open access funding enabled and organized by
Projekt DEAL. We thank the U.S. Geological Survey (USGS), Alpine
Drought Observatory (ADO), and Global Runoff Data Centre (GRDC)
for providing the in-situ data.

Appendix

Fig. A.1 shows a schematic of the method used in Section 2.5 for
creating the different observed bathymetry rasters from the stacked
watermasks with an example for two pixel columns.

Fig. A.2 shows detailed maps of each studied river section with
the selected AOIs within which the approach is applied, the SWORD
reaches, the locations of the DAHITI virtual stations where the water
level is measured from satellite altimetry and the ground tracks of the
respective satellite missions.
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Fig. A.1. Schematic creation of the maximum land, minimum water, and mean bathymetry mask from the stacked water masks with an example for two pixel columns.

Fig. A.2. Detailed maps of the AOIs with SWORD reaches, virtual stations, and tracks of the satellite altimetry missions.
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